Scirj simultaneous quadruple integral equations involving g(xn)

Page 1

Scientific Research Journal (SCIRJ), Volume I, Issue IV, November 2013 ISSN 2201-2796

31

Simultaneous Quadruple Integral Equations Involving G(xn) KULDEEP NARAIN School of Quantitative Sciences, UUM College of Arts and Sciences Universiti Utara Malaysia 06010 UUM, Sintok, Malaysia

Abstract- Integral and Series equations are very useful in the theory of elasticity, elastostatics, diffraction theory and acoustics. Particularly these equations are very much useful in finding the solution of crack problems of fracture mechanics .In the present section fractional integral operators are used to obtain a formal solution of simultaneous quadruple Integral equations involving Meijer’s G-function of n-variables i.e.

G( xn ) as kernel by reducing them to one having a common kernel.

Index Terms - Integral Equations, Fractional Integration, G-Functions of n variables. I. INTRODUCTION Khadia and Goyal [4] have introduced the Meijers G-function of n-variables i.e.

G( xn ) . Rewriting G( xn ) in a slightly

different form as

  (a );(b )   pm q   m, o;( M n ), ( N n ) Cn Cn Cn ))  ( x )((C nC n G 1, 2,......., M , 1  M ,......., p  M p  m, q;( pn  M n ), (qn  N n )  n n n n n    n n n n ((d d d d ))   1,........, N , 1  N ,........., q  N n n n n   n 1 S   '( Skk )  n ( Sk )  x k (dSk )  k n (2 i ) ( Ln ) k 1

n

where, a repeated suffix represents sum from 1 to

n , i.e.

 k 1

S k  S kk .

n  (a j  Skk ) j 1  '( S )  kk p q  (1  a j  m )  (b j  Skk ) j 1 j 1

www.scirj.org © 2013, Scientific Research Journal

(1.2)

(1.1)


Scientific Research Journal (SCIRJ), Volume I, Issue IV, November 2013 ISSN 2201-2796

32

M N   k k k k    (C j  Sk )  (d j  Sk )   n  j 1 j 1  (S )     n k q  k  1  pk k k k   (C j  M  Sk )  (d j  N  Sk )   j  1  j 1 k k

(1.3)

and

n  (dSk )  dS1.dS2 ........dSn k 1 Also

p2 ,……., pn

(bq ) ;

(1.4)

represents the sequence

b1 , b2 ,……, bq

q : q1 , q2 ,…….., qn ; m : M 1 , M 2 ,

p  0, q  0;(qk )  1; 0  (M k )  ( pk );

;

( Ln )

…….,

are

n

suitable contours and the positive integers

M n ; N1 , N 2 ,…………, N n satisfy

p  ( pk ) q  q(k

p : p1 ,

the following inequalities

1 , 2n, . The . . .values . . . ,( xk. )  0 ,

)k ;

(k  1,2,...., n) are excluded. An empty product is interpreted as unity. The contour necessary

to

ensure

that

the

poles

of

Lk

is in the

Sk

– plane and runs from  i to  i with loops, if

(d kj  S k ); j  1,2,........N k

lie

to

the

right

and

the

poles

of

(C kj  S k ); j  1,2,........M k and (a j  Skk ); j  1, 2,........m lie to the left of the contour Lk where k  1,2,......., n ,hereafter. The function

G( xn )

is an analytic function of (xn) under the following set of conditions :

1 1 1 1 arg X k  (m  M k  N k  q  qk  p  pk ) , 2(m  M k  Nk )  q  qk  p  pk . 2 2 2 2

II. NOTATIONS AND KNOWN RESULTS

 [S

kk

]

m II (a j  Skk ) j 1

(1.5)

p II (1  a j  m  Skk ) j 1

www.scirj.org © 2013, Scientific Research Journal


Scientific Research Journal (SCIRJ), Volume I, Issue IV, November 2013 ISSN 2201-2796

33

M N   k k k k    (l j  Sk )  ( f j  Sk )   n  j 1 j 1 % ( S )     n k q  k  1  pk k k k   (l j  M  Sk )  ( f j  N  Sk )   j  1  j 1 k k

(1.6)

M N   k k k k    (l j  Sk )  (d j  Sk )  n  j 1 j 1 % (S )    %  n k q  k  1  pk k k k    (c j  M  S k )   ( f j  N  S k )   j  1  j 1 k k

(1.7)

when

~

~n (S k )

Sk

is replaced by

respectively. n

 Sk

denotes

~ ~

in  n ( S k ) , ~n ( S k ) and  n ( S k ) , they will be replaced by  n ( S k ) , ~n ( S k ) and ……………n integrals.

III. RESULTS USED IN THE PROOF OF THE SEQUEL Mellin transform of

n

variables under similar suitable conditions as due to Reed [7] for two variables, we restate parseval

theorem for n variables identical to the one by Fox[3] for one variable. If  n   S 1 M [ f ( x )]  F (S )]  n  g ( x )   x k (dS ) n n n k 0  k k  1

then

(1.8)

M 1[ F ( S )]  g ( x ) n n 

Also, if

i n    S  F ( S )   x k (dS )   n k k   (2 i )n i k  1  n

n   S M [h(u )]  H (S )] and M [ f ( x u )]  F ( S )   x k n n n n n  k k  1

(1.9)

  ,  

where, M  f (u )   F ( S ),

n 

n

Then,

www.scirj.org © 2013, Scientific Research Journal


Scientific Research Journal (SCIRJ), Volume I, Issue IV, November 2013 ISSN 2201-2796

34

 n n  h( x u ) f (u )  (du ) n n n k 0 k 1 n   n  i  S   H ( S ) F (1  S )   x k (dS )   n n k   k (2 i)n i k  1 

(1.10)

Extending Erdelyi’s [1] fractional integral operators of one variable in to corresponding operators in n variables, we have

J  ( ),( ) : ( S ' ) : w( x )   n n n n 

 1  '   S '    '    1 xk  S ' S'  k  n  Sk  x k  v k     [x ] k k k k [v ] k (dv )  w(v )  k k  k k n 0  k  k  1  ( k )    

(1.11)

R  ( ), ( ) : ( S ' ) : w( x )  n n n   n

 1  '     S' S'  k   S '   S '  1 n  Sk k k k (dv )  w(v )    [ x ] k  v k  x k  [v ] k k k  k k n xk  k  k  1  ( k )     

(1.12)

where ( ), ( )  ( ,  ), ( ,  ),........................( ,  ).

n

n

1 1

2 2

n n

Equations (3.1.11) and (3.1.12) will reduce to Kober [ 5] operators for

( xn )  x , (Sn )  S  1 , ( n ) = 

the contracted form, we write

  J  (c k  l k ), (l k  1) : (1) :  ( x )   J  ( x ) i j j j n  j n

(1.13)

     J *  ( f k )  (d k ), (d k  1)  : (1) ( x )   J *  ( x ) j  j  N jN jN n  j n  k k k   

  R  ( f k  d k ), (d k ) : (1) : ( x )   R  ( x ) , j j j j n  j n www.scirj.org © 2013, Scientific Research Journal

(1.14)

(1.15)

and

( n ) =  . In


Scientific Research Journal (SCIRJ), Volume I, Issue IV, November 2013 ISSN 2201-2796

35

     R*  (c k  lk ), (l k )  : (1) : ( x )   R*  ( x ) j  j  M jM jM  n  j n k k k   

(1.16)

using (3.1.1), we have

  (a );   m p    m,0;( M ),( N ) n , c n ,........., c n C n n n n   (( c C )) M G (x ) 1 2 M , M  1,........... p  M  m  p,0;( p  M );(q  N  n n n n n  n n n n)   n n n n ((d d d d ))   1,........., N , N  1,............... q  N n n n n     [ S ] ( S ) kk k

(1.17)

IV. RESULTS TO BE PROVED In this section we shall establish that the formal solution of the simultaneous quadruple integral equations

    (a ); m p   m,0;( M ),( N )  n' n' n   n n cn ))   n G ( x u ) ((c k ,........, c k c  1 M , 1  M ,........, p  M m  p,0;( p  N ),(q  N )  n n 0 n n n n  n n n n (1.18) n m   n n d k' k' (( d d d ))   1,......., N , 1  N ,........., q  N n n n n   n n f (u )  (du )  ( x ), 0  ( x )  a, k '  1, 2,....., n ;  a' ' k n k n 1k ' n k 1 h  1 hk

 

  (a );   m p   m,0;( M ),( N )  n ,........., l n , c n n n n   (( l c )) n G (x u ) 1 M n 1  M ,........... p  M m  p,0;( p  M ),(q  N )  n n 0 n n n  n n n n   n n n n ((d d f f ))  1,........., N , 1  N ,............... q  N  n n n n   n ' n  ( x ), a  ( x )  b, k '  1, 2,....., n ;  b f (u )  (du ) ' h n k n hk 2k ' n k 1 h 1

 

www.scirj.org © 2013, Scientific Research Journal

(1.19)


Scientific Research Journal (SCIRJ), Volume I, Issue IV, November 2013 ISSN 2201-2796

36

  (a );   m p   m,0;( M ),( N )  n ,........., l n , c n n n n   (( l c )) n G (x u ) M n 1  M ,........., p  M   m  p,0;( p  M ),(q  N )  n n 1 0 n n n n n n n   (1.20) n n n n ((d d f f ))  1,........., N , 1  N ,.........., q  N  n n n n   n n '  ( x ), b  ( x )  c, k '  1, 2,....., n;  b f (u )  (du ) ' h n k n hk 3k ' n k 1 h 1



and

    (a ); m p     m,0;( M ),( N )  n' n' n n n n  k k  n G (x u ) m  p,0;( p  M ),(q  N )  n n ((l1 ,......., lM , l1  M ,........,l p  M ))  0 n n n n n n n n   n' n' n  (( f k f k f fn ))  1,........, N , 1  N ,........., q  N   n n n n   n n  ( x ), c  ( x ), k '  1, 2,....., n;  c f (u )  (du ) ' h n k n 4k ' n k 1 h  1 hk

(1.21)

 

is

  (1  n  a ),(1  n  a );  m  1, p m   p,0;( p ),(q )  n n );  n n  (1  c )(  1  l f (x )  n  G (x u )  1 M , p M h n m  p,0;( p  M ),(q  N )  n n 0 n n n  n n n n   (1  f n ),(1  d n )   1 N , q N n n n   n n '  t k (u )  (du ) , h  1, 2,....., n ; ' n k k 1 k '  1 hk

where,

t'

hk '

is the element of the matrix

[b' ' ]1 and hk

www.scirj.org © 2013, Scientific Research Journal

(1.22)


Scientific Research Journal (SCIRJ), Volume I, Issue IV, November 2013 ISSN 2201-2796

37

   n      d ' J *  J *.........J *  J J .......J  ( x )   , 0  ( x )  a, q  1 2 M 1k ' n  n h  1 hk ' 1  2 k  k   K (u )    ( x ) , a  ( x )  b, n 2k ' n n   ( x ) , b  ( x )  c,  3k ' n n   n    ' R*  R*.........R*  R R .......R l  ( x )  , c  (x )    ' 1 2 p  1 2 N 4k ' n  n hk h  1 k k     

 

 

We shall assume that

G( xn )

(1.23)

of (1.18), (1.19), (1.20) and (1.21) satisfies all the conditions given earlier in section (1.1).

V. PROOF To obtain the solution of (1.18) to (1.21), we observe that 1k ' ( xn ) , have to determine

2k ' ( xn ) , 3k ' ( xn ) , 4k ' ( xn )

f n ( xn ) . Using (1.10), 1.17), (1.18), (1.19) (1.20) and (1.21), we respectively obtain

i n   S  n   S  ( S )   x k (dS )   a' F (1  S )  k k k  ' h n (2 i )n i  kk  n k  1  h  1 hk   ( x ), 0  ( x )  a , k '  1,2,3,.......n. 1k ' n n 1

i n    S  n % ( S )   x k (dS )   b' F (1  S )   S %  k k k  ' h n (2 i )n i  kk  n k  1   h  1 hk   ( x ), a  ( x )  b , k '  1, 2,3,.......n. 2k ' n n

(1.24)

1

(1.25)

i n   S  n ' k %   %  S  (  S ) x ( dS )   k    b ' Fh (1  Sn ) kk n k k   n (2 i) i k  1  h  1 hk   (x ) , b  (x )  c, k '  1,2,3,.......n. 3k ' n n

(1.26)

i n   S  n   S % ( S )   x k (dS )   c' F (1  S )  k k k  ' h n (2 i)n i  kk  n k  1  h  1 hk   ( x ), c  ( x ), k '  1,2,3,.......n. 4k ' n n

(1.27)

1

1

www.scirj.org © 2013, Scientific Research Journal

are given and we


Scientific Research Journal (SCIRJ), Volume I, Issue IV, November 2013 ISSN 2201-2796

38

To reduce the equations (1.24), (1.25), (1.26) and (1.27) into three others with a common kernel, we shall transform

 M   M  k k k k      (c j  S k )  (l j  Sk )      n  j 1 n  j 1  int o      , q q   k  1 k k  1 k k k   ( d j  N  Sk )    ( f j  N  Sk )   j  1   j  1  k k  N   N  k k k k     ( d j  Sk )  ( f j  Sk )      n  j 1 n  j 1  int o       p    k  1  pk k  1 k k k    (c j  N  S k )    (l j  M  Sk )  k k  j  1   j  1  to make the first transformation in (1.24) replace

x ' s by v ' s

and then multiply both sides by

  c kk '  l k  1 k M M  xk  l 1 k k M n   x  v  .[v ] k (dv )  ,   k k  k k  k  1 0    

evaluate the inner integral with the help of Erdelyi [ 2 ] to obtain

N  M 1   k (c kk '  S ) k (d k  S )(l k  S )   i j k J k M k S   n n n j 1 k  j 1   [S ]   .x k (dS )   a ' F (1  S ) kk k hk ' h n n p q (2 i) h 1 k  1 k k k kk ' i  S )  (d S )     (c k jN k  j  1 j  M k  j 1 k   1  c kk ' kk '  l k  1 l k  1  M  x c k k  M M M n  [ xk ] k [v ] k (dv )   J    [x  v ] k  (x ) , k k k k M 1k ' n  k  1 (c kk '  l k ) k 0 M M   k k  

similarly applying the operator J j successively for j  M k  1,.............,1 ; we have

www.scirj.org © 2013, Scientific Research Journal


Scientific Research Journal (SCIRJ), Volume I, Issue IV, November 2013 ISSN 2201-2796

39

M N   k k k k    (l j  Sk )  (d j  Sk ) S   n  i  n k n j 1 j 1    [ S ] x ( dS ) .  a' F (1  S )  kk   p k k  hk ' h n n q (2 i) i  h 1 k  1 k k k kk '   (c j  M  S k )   ( d j  N  S k )   j  1  j 1 k k n     dhk' '  J1.J 2 ......J M 1k ' ( xn )  , k '  1,2,.......; n, 0  ( xn )  a k h 1  

'

'

(1.28)

'

where the matrix [ d hk ' ]= [ bhk ' ] [ ahk ' ]-1. also applying

J *j operator successively for j  qk ,..,1 ; ; we obtain

M N   k k k k S )    ( l  S )  ( d   j k j k   n  i  n  n j 1 j 1   [S ]   x  sk (dS )   a' F (1  S )  kk k hk ' h n q (2 i)n i h 1 k  1 pk k k k (1.29)  ( c  S )  ( f  S )    k  jN k  j  1 j  M k  j 1 k  n '  J *  J * .......J *  J J ............J  ( x )    , 0  ( x )  a, (k '  1,2,......, n),   dhk n Mk' '  1  2 q  1 2 1k ' n    k h 1   

Now applying the operators

R j and R*j to (4.1.27) for j  Nk ,..,1 ; and for j  pk , pk 1..,1 ; respectively , we have

M N   k k k k    (l j  Sk )  (d j  Sk )   n  i   S n n j 1 j 1    [S ]   x k .(dS )   a' F (1  S )  kk k hk ' h n n p q (2 i) i h 1 k  1 k k k k    (c j  M  S k )   ( f j  N  S k )  j 1 k k  j  1 

n '  * * *  l  R  R .......R hk '  1  2 p k h 1  

Where

lhk '



   , ( x )  c, (k '  1,2,......., n)

 R R ............R '  ( x ) Nk  1 2 3k ' n

' ' are the element of the matrix bhk '  chk ' 

n

1

, on setting

www.scirj.org © 2013, Scientific Research Journal

(1.30)


Scientific Research Journal (SCIRJ), Volume I, Issue IV, November 2013 ISSN 2201-2796

40

   n      d ' J *  J *.........J *  J J .......J  ( x )   , 0  ( x )  a, q  1 2 M 1k ' n  n h  1 hk ' 1  2 k  k   K (x )    ( x ) , a  ( x )  b, n 2k ' n n   ( x ) , b  ( x )  c,  3k ' n n   n    ' R*  R*.........R*  R R .......R l  ( x )  , c  (x )    ' 1 2 p  1 2 N 4k ' n  n hk h  1 k k     

 

 

The equations (1.25), (1.26), (1.29) and (1.30) transformed into one with a common kernel can be written as

M N   k k k k    (l j  Sk )  (d j  Sk )    i   S n n j 1 j 1   [S ]   x k (dS )   kk k q (2 i)n i  k  1  pk k k k    (c j  M  S k )   ( f j  N  S k )   j  1  j 1 k k n .  a' F (1  S n )  K  x n  hk ' h h 1

(1.31)

on treating the kernel of (1.31) as an unsymnetric Fourier kernel and following a procedure similar to the one adopted by Fox[3] for one variable,(1.31) becomes

p    (1  n  a j  m  Skk ) n  n  i j  1 f (x )   t  h n hk '  n  m (2  i ) k ' 1  i  (n  a j  Skk )  j 1  q   p  k k   k (1  c k   S )  (1  f S ) jM k jN k S   n  j 1  j 1  k k x k (dS )  K (1  S )    k k n  M N  k  1 k k k k     (l j  1  Sk )  (1  d j  Sk )    j 1 j 1    where

thk '

(1.32)

h  1,2,3,......., n .

are the element of the matrix

bhk' ' 

1

and M

 K ( xn )  K (Sn ) . Equation (1.32) is the formal solution of (1.24), (1.25),

(1.26) and (1.27). Applying (1.10) to (1.32), we get

www.scirj.org © 2013, Scientific Research Journal


Scientific Research Journal (SCIRJ), Volume I, Issue IV, November 2013 ISSN 2201-2796

41

n   p,0;( p ),(q ) n n f ( x )   t n  G n hk '  0 m  p,0;( p  M ),(q  N ) k 1 n n n n    (1  n  a ),(1  n  a );  m  1, p m   n n n    (1  c )(  1  l );  (x u ) K (un ){(duk )} 1  M , p M  n n k 1  n n n    n n (1  f ),(1  d )   1 N , q N n n n  

(1.33)

written out in full form (1.33) becomes

 a p, 0;( p ), (q ) n n n ( x u )   f (x )   t n  G h n hk ' m  p , 0;( p  M ), ( q  N )  n n   0 n n n n k'  1 n   n ' * * *   ( x )   ( du )   d J  J .......J  J .........J  ' 1 2 q  1 M  1k ' n  k k 1 h  1 hk k  k  b p, 0;( p ), (q ) n n n ( x u )   ( x )  (du )  n G m  p, 0;( M  p ), ( N  q )  n n  2k ' n k k 1 n n n n a c p, 0;( p ), (q ) n n n ( x u )   ( x )  (du )  n G m  p, 0;( M  p ), ( N  q )  n n  3k ' n k k 1 n n n n b  p, 0;( p ), (q ) n n ( x u )   n G m  p, 0;( M  p ), ( N  q )  n n  n n n n c

n ' * * *  l R  R .......R ' 1 2 p  h  1 hk k

  R1  R2 .........RN  k

 

  

 , h  1, 2,3,......, n

  n  ' ( xn )   (duk )  4k k 1

VI. PARTICULAR CASE

Let

c   in equations (1.18), (1.19),(1.20) and (1.21), then they are reduced to the triple integral equations considered by Narain

et. al.[6] and the above solution agrees with that solution.

REFERENCES [1] Erdelyi, A , On some functional transform , Re Semin Mat . Univ, Torino , 10 , 217-34 (1950-51) . [2] Erdelyi, A . ,Tables of Integral Transform, Vol. II, Mc Graw Hill Book co , Inc, New York , 185 (1954) . [3] Fox , C ., A formal solution of certain dual integral equations , Trans Amer. Math. Soc ; 119 , 389 -95 (1965) . [4] Khadia , S. S. and Goyal , A. N. , On generalized function of n-variables , Anusandhan Patrika , 13 , 119-201 (1970) . www.scirj.org © 2013, Scientific Research Journal


Scientific Research Journal (SCIRJ), Volume I, Issue IV, November 2013 ISSN 2201-2796

42

[5] Kober , H. , On fractional Integrals and derivatives , Q. J . Math (Oxford Ser) , 11 , 193-211 (1940) . [6] Narain Kuldeep ; Singh , V.B. and Lal , M , , On a class of simultaneous triple integral equations involving Jiwaji University , 10 , 56 -65 (1986) . [7] Reed , I. S. , The Mellin type of double integrals , Duke Math . J , 11 , 565 (1944) .

www.scirj.org Š 2013, Scientific Research Journal

G( xn ) , Journal of


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.