McCabe DOUBLE CONCERTO

Page 1

OnDemand

McCabe, John Double Concerto

Score for sale (North America): http://www.halleonard.com/product/viewproduct.do?itemid=14021083&lid=5&li Score for sale (UK, Europe and other territories): http://www.musicroom.com/se/ID_No/00057672/details.html?kbid=1296 Information about work and materials for hire: http://www.PXVLFVDOHVFODVVLFDO FRP FRPSRVHU ZRUN 7790

Novello & Co Limited Part of the Music Sales Group



John McCabe DOUBLE CONCERTO for oboe, clarinet and orchestra (1987–8)

NOVELLO


NOV090634 ISBN 1-84449-367-9 Music setting by Robin Hagues Š 2003 Novello & Company Limited Published in Great Britain by Novello Publishing Limited Head office: 8/9, Frith Street, London W1D 3JB, England Tel +44 (0)20 7434 0066 Fax +44 (0)20 7287 6329 Sales and hire: Music Sales Distribution Centre, Newmarket Road, Bury St. Edmunds, Suffolk IP33 3YB, England Tel +44 (0)1284 702600 Fax +44 (0)1284 768301 www.chesternovello.com email: music@musicsales.co.uk All Rights reserved Printed in Great Britain No part of this publication may be copied or reproduced in any form or by any means without the prior permission of Novello Publishing Limited.


Instrumentation 2 Flutes 2 Oboes 2 Clarinets in B2 Bassoons 2 Horns in F 2 Trumpets in C Timpani Solo Oboe Solo Clarinet Strings The score is written in C

Performance Notes very fast, irregular repetition of the given note,

~

somewhat similar to Morse Code e.g.

Z

accelerando

Y

rallentando

bL n

tied note with glissando: indicates the glissando starting point and duration or

phrases are to be repeated until marked denotes synchronisation in the solo parts

The Double Concerto for oboe, clarinet and orchestra was commissioned by English Heritage for performance at their open air summer concerts in 1988. The first performances were given by Nicholas Daniel, oboe, Joy Farrall, clarinet, and the London Mozart Players conducted by Nicholas Cleobury at Kenwood Lakeside and Marble Hill Waterside concerts in June 1988. Duration: c.20 minutes


“Night, with her train of stars” W. E. Henley


to Michael Webber

Double Concerto for oboe, clarinet and orchestra  X

Largo (q = c.46)

Flute 1.2

Horn 1.2 in F Trumpet 1.2 in C Timpani

Solo Oboe Solo Clarinet in Bb

1. Solo

 X  X

X 

Bassoon 1.2

Clarinet 1.2 in Bb

 Largo X

 

(q = c.46)

X

3. Solo

X

gli altri

X

1. Solo

X

X

3. Solo

X

gli altri

X

Violin II

1. Solo

X   

Viola 2. Solo

X

gli altri

Solo

     

pp mormorando

Solo         

Solo          pp mormorando

        

pp mormorando

Solo

2. Solo

2. Solo Violin I

 

 X   X   X   X

1987–88

X

Oboe 1.2

John McCabe

        

        

        

       

        

        

       

        

        

        

        

        

        

       

        

        

 Solo

pp mormorando

X

pp mormorando

Solo

pp mormorando

1. Solo

X

2. Solo

X

3. Solo

gli altri

X X

X

X

Violoncello

 Double Bass div.

© 2003 Novello & Company Ltd.

Solo

pp mormorando

        

Solo

pp mormorando


2

 Fl. 1.2 

Ob. 1.2

Cl. 1.2 in Bb

Bsn 1.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solo Ob.

 

Solo Cl. in Bb

          pp mormorando Solo

  

2. Solo Vl. I

pp mormorando

gli altri

1. Solo

         

2. Solo

         

Vl. II

div. a3

gli altri

gli altri

 

 

         

 

 

 

Vc.

gli altri

pp mormorando

* See preface

   

 

 

   

 

 

         

    

     

pp

   

   

         

         

3. Solo

 

pp

div. a2

div.

     

   

    

div. a3

         

2. Solo

   

pp

         

1. Solo

p

     

         

Vla 2. Solo

f

 

         

1. Solo

                               *

 

         

3. Solo

A     

      

 pp

         

3. Solo

Db. div.

 

Solo

1. Solo

A

 

6

   

pp

   

  

   

 

     

     

 

   

 

 

 

 

 

   

        

fp sub.

  

fp sub.


  10

Solo Ob.

Solo Cl. in Bb



  

                   p

   

Solo Ob.

Solo Cl. in Bb

Solo Cl. in Bb

  

   

 

   

3





      

 



      



5

           

3

             

                

                    





                   

     



3

3

p

             

                    

   

p

   

   

Solo Ob.

7

   

  

pp

ff

Db. div.

 *                          



    



  

  

             f

          5

Solo Ob.

Solo Cl. in Bb

 



        dim.

  

Solo Cl. in Bb

Solo Cl. in Bb

 

Solo Cl. in Bb



  

3

        5

                  



Vivo

ff



       

3

               3

f

(stacc.

tenuto)

rall. e dim.

* This cadenza is to be played freely, but it is important that the soloists synchronize at the points marked

 p

      

mf

 5        

 p

accel. e cresc.

 

3                       

            

     

mp

                

p

   

mf

3

3

   

3

3

3

  

   

       

       3

             

   

Solo Ob.

           

mp

       

    

Solo Ob.



       3      

    3     

Solo Ob.

5                  3

rall e dim.

        p

  p


4

 Fl. 1.2  12

B

Ob. 1.2

Cl. 1.2 in Bb

 

Tpt 1.2 in C



Solo Ob.

   

Bsn 1.2

Hn 1.2 in F

Solo Cl. in Bb

1. Solo

 

 

 

        

      

Vl. I gli altri div. a3

Vl. II div. a3

B

cresc.

pp mormorando

cresc.

        

        

        

        

        

        

        

        

        

cresc.

        

        

        

        

        

        

        

        

cresc.

        

        

        

        

        

  

 

pp mormorando

pp mormorando

Vc. div.

pp mormorando

         

Vla div.

      

 

pp mormorando

pp mormorando

 

pp mormorando

pp mormorando

pp mormorando

        pp mormorando

Db.

       

cresc.

cresc.

cresc.

cresc.

cresc.

cresc.

unis.

pp mormorando

cresc.


1 Fl.

2

  *

C 17   

 

mf

p

  

p

Cl. 1.2 in Bb

 

 

 p    Bsn 1.2  

   

p

     p     

Hn 1.2 in F

Tpt 1.2 in C

 

Timp.

p

 

Solo Ob.

 

Solo Cl. in Bb

C   

1. Solo

 

 

  

 

       f

mf

      

Vl. I gli altri div. a3

mf

       mf

       mf        mf        mf      

Vl. II div. a3

mf

Vla div.

     mf        

mf

      

Vc. div.

Db.

mf

   

mf * See preface

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

  

 

 

  

     

 

pp

5

   f

 

    

Ob. 1.2

 

 

 

hard sticks *

mp

 

 

                f

  

 

p

 

 

 



  

  

  f

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ff

 

 

dim.

 

 

p


6

   

 

21

Timp.

pp

Solo Ob.

Solo Cl. in Bb

 Solo Ob.

    

           

mp

 Solo Ob.

  



mp

               p

Solo Cl. in Bb

7

p



   

mp

                   5 p

Solo Ob. Solo Cl. in Bb

 Solo Ob.

Solo Cl. in Bb

mp

f

                       



  

  

gli altri div.

       

            3

    

   

poco a poco dim.







f

dim.

p

D 

     

   



p

   

p

 

 

 





 

        

        

p

 

  

p

p 3

poco a poco dim.

        

dim.

            

9

f

 

mp dolce

 

Db.

     

Vc.

p

       

      

5                                  

Desk 1 div.

        

5                                     



div.

p

f

3

p

5

        

                              3 p

Solo Cl. in Bb

mp dolce

             

            

  

 

     

*

     

p mormorando

p mormorando

  

  (  )

   ( ) p

p * This cadenza is to be played as a duet, i.e. the solo parts should be synchronized — any freedom should derive from the natural “duo” interpretation. At points, this mark is used to emphasise the importance of synchronization.


7

 

24

Desk 1 div.

Vl. I

Desk 2 div.

gli altri div.

Desk 1 div.

Vl. II Desk 2 div.

gli altri div.

Desk 1 div.

 

Vla

      

gli altri div.

p mormorando

Vc.

       

p mormorando

p mormorando

                  

p mormorando

  (  ) p   ( ) 

p

      

         ( )

p mormorando

 

       

       

 

      

p mormorando

        

      

 

      

       

      

gli altri div.

Desk 1 div.

p

  ()  p

              

  ( )  p

  ( )  

     Db. div.

p

    


 (  )   ( )   cresc. p    p  (  )   ( )  cresc.   p p   ( )     

8

 

Ob. 1.2

Cl. 1.2 in Bb



27

Fl. 1.2

Desk 1 div.

Vl. I

Desk 2 div.

gli altri div.

Desk 1 div.

Vl. II Desk 2 div.

gli altri div.

Desk 1 div. Vla

gli altri div.

Desk 1 div.

Vc.

gli altri div.

Db. div.

 

 

p mormorando

p

 ( )  cresc.                     p mormorando

cresc.

       

cresc.

               

       

         

 

 

p mormorando

        

cresc.

       

cresc.

        

 

        



       

 

cresc.     ( )   p cresc.     ( )  

p mormorando

p

                

       

cresc.

         

       

cresc.

       

      

cresc.

               

 

                          cresc.                                    cresc.       cresc.              



      



                       cresc.       cresc.       cresc.

cresc. cresc.

                  cresc.       cresc.       cresc.               

cresc.      

cresc.


9 30        

Vivo (q = 168)

Fl. 1.2

f

Ob. 1.2

       f

Cl. 1.2 in Bb

      

   soft sticks      f

Timp.

Solo Ob. Solo Cl. in Bb

f

   

dim.

   

p

   

      

      

mp 3

     

    (  ) 

Desk 1 div.

con gli altri

      

       f

2 Vl. I Desk div.

gli altri div.

Desk 1 div.

f

        f       f         

f

   

f

        f

Vl. II Desk 2 div.

gli altri div.

Desk 1 div. Vla gli altri div.

      f       f      f        f       f     

Vc. gli altri div.

Db. div.

       f        f          f

Desk 1 div.

f

  

mp pizz.



   

 

mp 3

Vivo (q = 168)

f

 

 

3

      

3

  ( )   

mf

 



 

    

 

3

    

      3

 

 

   



con gli altri

tutti div. a3

 gliss. 





p









     

 gliss. 







 p

 p

  

 gliss.

 gliss.  p

p

1. Solo ( )

 

gliss.

tutti

mp gli altri

 tutti

p 1. Solo

gli altri gliss.

      

 

 

mp

p



unis., pizz.

  ()

mp




10

 

Ob. 1.2

Cl. 1.2 in Bb

 



35

Fl. 1.2

Bsn 1.2

Hn 1.2 in F

Tpt 1.2 in C

Solo Ob.

Solo Cl. in Bb

Desk 1 div.

  

       

 

  

       

 

   

Vl. I

gli altri div.

 

3

      



Vla

1. Solo Vc. gli altri





  

  

gliss.



gliss.



gliss.



  

gliss.



  

 gliss. 

 

   ( )    

 



gliss.

        

   

     ( )  (  )  

  

3



5



 

gli altri

 

gliss.

       3

         

1. Solo

5

 

Vl. II div. a3

Db.

3

  



  

 

gliss.

3

     3

   ( )    



 

    



  

gliss.

 

 gliss.

  gliss.  

      (  ) 

   ( )



  gliss. 

 (  )   

 gliss.  

   

 

   




11

E

 

Ob. 1.2

Cl. 1.2 in Bb

 



39

Fl. 1.2

Bsn 1.2

Hn 1.2 in F

Tpt 1.2 in C

Solo Ob.

Solo Cl. in Bb

Desk 1 div.

  

     

  

     

3

        

 

       

 

3

3

  

gli altri div.

  

div. Vl. II a 3



  

      

1. Solo Vla

 

gli altri

Vc.

 





 gliss.  



gliss.





gliss.



gliss.



gliss.



 

      ( ) 





gliss.

  

p

1.

  

p

       3

 

        3





     

     

   

 gliss.   

 gliss. 

 gliss.

           

  

  

       

 

5

 

gli altri

  

a2

E        ( )     

 gliss.      (  )     

 

1. Solo



 

5

3

         (  )       

Vl. I

Db.










12

   43

Fl. 1.2

Bsn 1.2

Hn 1.2 in F

Tpt 1.2 in C

Solo Ob.

Solo Cl. in Bb

Desk 1 div.

          

    



  

         

  

 



               

3

3

   (  )    

gli altri div.

  

Vl. II div. a3

Vla gli altri

1. Solo Vc. gli altri

       

   

      

    

   

    

3

3

      





 gliss. 







 

 gliss. 



   gliss.        



   



 

    ( )    

gliss.



gliss.



gliss.

   f

   ( )        f

f

  

f

   f

  

f



 

 gliss.  



gliss.



f

3







 

3

      

     ( )    

 1. Solo

 

Vl. I

Db.

   

     

 

Cl. 1 in Bb



Ob. 1.2

     

(a 2)





  

f

   f        f

  gliss. 



  

   ( )     f

 gliss. 

f



  

    f







f


13

 

2

Ob. 1.2

Cl. 1.2 in Bb

47

1 Fl.

     f

     f

2.

f

 

Tpt 1.2 in C



Timp.

 

Bsn 1.2

Hn 1.2 in F

Solo Ob. Solo Cl. in Bb

Desk 1 div.

                     

                                   

  

   

  

  

 

Vl. I

gli altri div.

Vl. II div. a3

1. Solo Vla gli altri

 

Vc.

gli altri

  



fp sub.



  

sul D

fp sub.

   fp sub.

  



 

  

 

  

fp sub.

cresc. gliss.

gliss.

cresc.

 gliss.

cresc.



  

f

gliss.



   f   

f

cresc.

fp sub.

gliss.



   f

cresc.



fp sub.

   

gliss.

cresc.

fp sub.

 

1. Solo

Db.

                    

 gliss.

   

   

f

     

        

nat.

            

f

f

cresc.

    

   

   




14

1

 51           ff

Fl. 2

ff

1

2

1

Timp.

Solo Ob.

Solo Cl. in Bb

Desk 1 div.

    

 

ff



 

f

dim.

p

3

   

3

3

  

mp 3

3

3

3

     

     3

  

mp

p

 

 

F

Vla

Vc.



  

mp

    

    

  

   

gli altri



  

    

1. Solo

mp arco



   

gli altri

    

1. Solo

 

Vl. II div. a3

    

3

gli altri div.

  

3

 

p

  

        

3

mf

      

       

3

mf

     

          

Vl. I

Db.

Cl. in Bb 2

    

   

Ob.

F

 p

 p

gliss.

 

p

mp

gliss.







gliss.

p







p

gliss.

 

  p

mp gliss.

   

 mp

gliss.



p




  55

1 Fl.

2

Ob.

2

Cl. in Bb

Solo Cl. in Bb

Desk 1 div.





       3

 

3

3

    

 

3

 

  

      

            

    

 

  

   

    

   

   

3

3

   

   

  

   

 

   

 

    

    

3

3

3

3

      

    

3

3

3

15

    

   

 

3

3

   3

   3

  

       

       

            

  

   



        

       

             

    

   

   

   



gliss.





gliss.





gliss.

 

gliss.

 



gliss.



        

      

  

Vl. I

gli altri div.

 

div. Vl. II a 3

 

1. Solo Vla

         

 

gli altri

 

1. Solo Vc.

       

 

gli altri

Db.

 

1

Solo Ob.

3

 

1

2

          

 

 

gliss.

         



gliss.

      

   



              






16

  59

1 Fl.

2

Ob. 2

2

Hn in F 2

Solo Ob. Solo Cl. in Bb

Desk 1 div.

 

       

      

Vla

1. Solo Vc. gli altri

     

  

     

 

 

3

      3



3

    3

               

  



  

p

p

p

        

            



       

             



gliss.





gliss.



  

gliss.

 

gliss.

 



gliss.



gliss.

             

              

 

 



       

 

      

p

    

 

gli altri

     

  

1. Solo

div. Vl. II a 3

      



gli altri div.

   

3

                 

3

 

Vl. I

Db.

 

 

3

1

3

        3

   

Cl. in Bb

1

 

1

2

         3

      

1

Bsn



         

gliss.

 

   

    



  



 






  62

1 Fl.

1 Ob. 2

1 Cl. in Bb

Hn in F 2

Solo Ob. Solo Cl. in Bb

Desk 1 div.

3

3

              

3

  

     3

3

 

        3

 

   

  

  

  

   

 

  

 

   

  

  

  

       

gli altri

 

  

 

 

 

  

     

 

 

  

 

  

 

3

 

  

 

 

     

        

        

            

         

     

            



gliss.









gliss.

 

gliss.

 



gliss.





gliss.

 

Vc.

 

  

1. Solo

 

 

       

 

gli altri

3



 

Vla

3

1. Solo

3

Vl. II div. a3

3

gli altri div.



3

     

 

3

3

3

     

  

3

           

 

Vl. I

Db.

  

   

1

1

3

 

2

2

3

17

          

         3  3              

2

Bsn

       



     

          

 

gliss.

 

 

   

        

 

gliss.

            

 



 

  


18

  65

Fl. 1.2

Ob.

2

Cl. in Bb

2

Solo Ob.

Solo Cl. in Bb

Desk 1 div.

   cresc.

     cresc.

3

3

cresc.

  

cresc.

3

     

 



gli altri div.

 

gliss.



gliss.

gliss.

cresc.

cresc.

 

gli altri

gliss.

cresc.

 

gli altri

gliss.

cresc.

   

   



G                    f

f

           

         

                     

                        

f

f



                   f

f

          

 

    

 

f

                    

3

   

                      

 

3

3

   

f



ff

        





           

f

3

ff





                 

 

f



          

                      f                     

cresc. Db.

   

          

Vc.

cresc.

1. Solo

       

Vla

cresc.

1. Solo

f

cresc.

 

f

gliss.

 

div. Vl. II a 3

f

cresc.

f

cresc. gliss.

        

cresc.

f



cresc.

Vl. I

   

 

           

f

     

 

   

        cresc.

     f    

f

  

3

cresc.

 

 

  

     

 

1

Hn 1.2 in F

cresc.

 

1

Bsn 1.2

G

 

  


19

  69

Timp.

Solo Ob. Solo Cl. in Bb

Vl. I div.

  



  

                       

gliss.

                 

gliss.

gliss.



                        

 

                     

gliss.



gliss.

gliss.

 

 

gliss.

     unis.      

           

                      

              

    unis.                  

Vc.

 

 

  

Vla

  

  

Vl. II div. a3



Db.



3

3

3

3

3

3

                                   

 74

Timp.

Solo Ob. Solo Cl. in Bb

Vl. I div.

    

5

 

    

5

 

  



   



Vl. II div. a3



  

 

Vla

Vc.

 

Db.

f

 

gliss.



gliss.



gliss.

 

gliss.

gliss.

gliss.

dim.

      

   

 

   

 

   

 

 

 

 

 

 

 

 

 .   gliss   

 

         

           

  

 



 



 

 

 

   

 


20

  Fl. 1.2  

Ob. 1.2

 

Cl. 2 in Bb

 

79

Andante (q = c.60)

            mp

 

  

1 Bsn 2

Timp.

    

p

1. Solo

 Andante 

2. Solo Vl. I

gli altri div.

(q = c.60)

 

 

2. Solo Vl. II

gli altri div.

 

Vla

 

con sord.

 

1. Solo

p

p

Vc.

   

 



3

  

gli altri

pizz.    

1. Solo

mf

Db.

    p

pp

 

con sord. pp

pp

    

3

3

pp

   



3

  

 pizz.

 

mf



6

 3

pizz.

     

mf

 

 

  





       

pizz.

mf

 



con sord.

p con sord.

3

3

6



         6

p

       

        3

3     

p

con sord.

 

     

6

3

p

pp 6

pp

         

      

 

 

6

con sord.

 

gli altri

mp

 

  

1. Solo

 

            

 

mp

 

1. Solo

gli altri

  


  82

Fl. 1.2

 

1

         

p

Ob.

Cl. in Bb

1

1. Solo

      

 

  

       

2. Solo Vl. I

gli altri div.

       

1. Solo

2. Solo Vl. II

gli altri div.

Vla

Vc.

Db.



 

  



   

 

3

3

    3



 



 

   









6

             3

 

 



 

3

     





         

 



3

  

    

  



1. Solo



 

gli altri

gli altri

3

p

3

3

 

 

1. Solo

   

      

 

gli altri

  



3



  

1. Solo

6

3

3

p

  

  

 

21

   

6

6

 

pp

p



6

      

 

 

              

Bsn

p





                   

2

  

pp

1

2

2

6



 


22

1

 85   

Fl.

2

  3

 

 

2

 3



2. Solo Vl. I

gli altri div.

1. Solo

2. Solo Vl. II

X

 

X

X

X

   

    3

     

       6



Vla

Vc.

Db.

3

pp



 

 

dim.

1. Solo

pp

   



X

X X

p

X  

pp

dim.

X

              6

 

6

  

X    

        



 

X X

    

5

X

5

X 



X X

 

 

gli altri

 

dim.

1. Solo

6

 

gli altri

 



X

p

 

1. Solo

 

 

gli altri div.

gli altri

 

 

3

X

p

  

X



 

X



3

Cl. in Bb

1. Solo

  

  

1

Solo Cl. in Bb

3

  

Ob.

Solo Ob.



1

2

X X


23

H

1

87    X

f

 X 

Fl. 2

f

X

1 Ob.

mf

mf

 X 

1

2

 X 

2

Cl. in Bb

 

f

  X 

mf

H

Solo Ob. Solo Cl. in Bb

  X 

 p

  X 

poco lib.

1. Solo

         X 3

mp poco lib.

           X

2. Solo

mp

Vl. I

X

gli altri div.

X

 

X

          

Vl. II

gli altri div.

 X 

1. Solo Vla gli altri

1. Solo Vc. gli altri

X

X

Db.

3

3

f





   

  

X

 

X

 

X

X

 

 

1. Solo

gli altri

mp

 X    X

2. Solo

5

p

mf

 

poco lib.

1. Solo

    

 



cresc.

 

    

dim. 3

3

         

mp


24

  (87)

Solo Ob.

Solo Cl. in Bb

 

               3

p

cresc.

mf

mf

 

mp 3

3

3

p

dim.



poco lib.

        mp

Vl. I

 gli altri div.

            

Vl. II

 gli altri div.

   

1. Solo Vla

gli altri

  

1. Solo Vc.

gli altri

   

2. Solo



 

mp

Db.

5

 

poco lib.

1. Solo

 p

 

In tempo  3 5                          

        

2. Solo

dim.



5

poco lib.

1. Solo

In tempo

5

  

cresc.

mf

dim.

       p


    88

Solo Ob.

Solo Cl. in Bb

1. Solo

2. Solo

    

3          

               

    

             

         3

 

cresc.

  

         



cresc.



 

    *





pp senza espressione

* 

  









pp senza espressione

 

(non accel.)

’ 

f

(non accel.)

’ 

f

 



1. Solo

2. Solo

       

quasi accel.

’ 

(pizz.)

f

mf

Vl. II

    *



pp senza espressione

gli altri div.

    *







pp senza espressione

 

(non accel.)

’ 

f

(non accel.)

’ 

f

quasi accel.

’ 

       (pizz.)

1. Solo

 

 

 

Vl. I

gli altri div.

     

25

  

mf

f

Vla

gli altri

* 

  



pp senza espressione



gli altri

*     

f



pp senza espressione

unis.

Db.

* arco     



pp senza espressione

f

’ 

mf

Vc.

’ 

quasi accel.

    (pizz.)

1. Solo

(non accel.)



 

* Without synchronization: each player plays independently.

(non accel.)

’ 

f

(non accel.)

’ 

f


26

1

I 89   

 

 

 

Ob. 2

1 Cl. in Bb 2

           mp

1 Bsn 2

Solo Ob.

 

 

     f

Solo Cl. in Bb

1. Solo

2. Solo Vl. I

gli altri div.

1. Solo

2. Solo Vl. II

gli altri div.

1. Solo Vla gli altri

1. Solo Vc. gli altri

1. Solo Db. gli altri

    

I   

f

 

   

    

3

3

dim.

  3

 

 



 

 









 

 

dim.

 

 

 

 

 

p

   

 arco



p

  

       

pizz.     mf

    p

 

p

 

p

  

6

    

6

3



  

 

 

3

3

pp

3

 pizz.

 

mf

 

pizz.

     

mf

       

pizz.

mf

 



 

  



pp

3

p

        



6

  



 

3

  

3

p



arco

pp

pp

6

3

     

6

     

pp

6

      

arco 3

p

3



6

 

  

    

mp



 

mp

          

3

      

  


  92

1

 

 

2

 

1

p

      

p

Ob. 2

1

1 Bsn 2

Solo Ob.

     

  p

 

           

p

Solo Cl. in Bb

    p

1. Solo

 

gli altri div.

Vl. II 2. Solo

Vla

 

1. Solo Vc.

1. Solo Db. gli altri

 

3

3

3

    

6

3

        6

6

 

3

   

     

      

 



 

   

     6

     3

   

 

 

 

 

   3

  

3

   6

3

   



  

  



 

3

3

      



 

    3

p



  



 

gli altri

 

      

 

gli altri



  

6

  

1. Solo

  

27

3

 

gli altri div.

3

      

1. Solo





  

   

       

3

3

  

Vl. I 2. Solo

  

 

   

3

 



  

3

3

p

   

3

pp

  

      

    

 

pp

Cl. in Bb 2

6

   



3

p

Fl.

   




28

1

  

Fl.

2

Ob.

2

1 Cl. in Bb

Solo Ob. Solo Cl. in Bb

1. Solo

Vl. I 2. Solo

p





gli altri

mf

 

  f  

mf

     

mf

X

    

X

   

   

6



3

   

 

pp

 

 



pp

 

(gli altri)



        



    

 

 6

    

  

X

 

X

6

      

5

 

X

X X

 arco tutti

       

  

   

J

X

 

 

3

X  



 

    

p

pp

p

X  

    

p dolce

p dolce

        

3

p dolce

p dolce

(1. Solo)

Db.

Vc.

 

f



 

1. Solo

X



gli altri

 

 

Vla

f

      

1. Solo

1. Solo

X

p

gli altri div.

X

 

gli altri div.

Vl. II 2. Solo

X

X

Hn in F 2

X

 

Bsn

1

X

1

2

 

2

X

 

 

1

J



95

X X

 3

X X X

 

        



p

    3

3

 


29

  ( 96)

Fl. 1.2

Ob. 1.2

Cl. 1.2 in Bb

Solo Ob.

Solo Cl. in Bb

1. Solo



 



 

 

  

  6

      6

  

Vl. I 2. Solo

gli altri div.

1. Solo

Vl. II 2. Solo

gli altri div.

1. Solo

Vla

gli altri

Vc. gli altri

    

3

  3

     

6

3

    3

6

     

6

          

    

6

6

     



6



6







’  





 

’  



’  

1. Solo

Db.



Hn in F 2

 

Bsn

1

 

1

2



 

’ 




30

1

 

 

 

 

 

Fl. 2

1 Ob. 2

1 Cl. in Bb 2

Allegro (q = 84)

  

1

pp

Bsn 2

1 Hn in F 2

Timp.

Solo Ob.

Solo Cl. in Bb

            

   97

  

pp

   

pp

  

   

pp

f

f

 

mf

    

p

3

arco

Vl. II div.

arco

con sord.   

Vla div.

 

p

arco con sord.

Db. div.

 

 

 

6

nat.

a punto d’arco

6

6

nat.

3

                     6

nat. 3               

              

nat.

a punto d’arco 3

 arco

   nat. 

a punto d’arco

3

3

 

f

  f

 

3

6

 

f

3

6

6

p

a punto d’arco

 

f

3

6

3

6

f

6

6

con sord.    

  

Vc. div.

6

                        

con sord.   p  

         

6

p

3

mf

con sord., a punto d’arco

Vl. I div.

          

3

Allegro (q = 84)

  

6

3

             

         

6

 

f

 

 

 

 

 


31

K

 

2

1

  

2

  

1

 

100

1 Fl.

Ob.

f

Cl. in Bb

1 Bsn

1

Timp.

Vl. I div.

 

6

mp









mp

  

  

p legato

   

  

  

p legato

     

 

 

 

f

K

f

Vc. div.

f

Vla div.

 

f

 

Vl. II div.

Db. div.

 



Hn in F 2

6

                f dim. p    

2

2

     6            6 dim. p

a punto d’arco

            6

p

6

6

a punto d’arco

6

6

                 6

p

a punto d’arco

p

6

           6

   

  

a punto d’arco

p

6

 

 3

p


32

 

104

1

                f

1

1

1 Bsn 2

1

2

Timp.

6                   6

f

6

dim.

          

p

3

6

mp

3





nat.             6

3

 

 

f

  f

 

f

3

 

f

 

 

 

 

 

6

3

        

6

p legato

f

f

3

6

mp

nat.           

6

p legato

p

6

nat.           

Db. div.

              3

                f dim. p   

6

Vc. div.

6

          

Vla div.

  

Vl. II div.

nat.

Vl. I div.

             3 

3



Hn in F

6

mf

Cl. in Bb 2

f

mf

Ob. 2

3

             

Fl. 2

6

 


33

 

2

1

2

1

107

1 Fl.

Ob.

Cl. in Bb 2

1

  

2

 

Bsn

1 Hn in F

 

 

 

 

f



f

     

2



  

 

 

f

f



 

1 Tpt in C 2

Vl. I div.

Vl. II div.

Vla div.

Vc. div.

Db. div.

3

       mp 3

3

3

         mp

 (con sord.)

3

   p      3

 (con sord.) arco 3

3

       p

     3

3

 

f

a punto d’arco

6

      p   

    

f

3

a punto d’arco

6

      p   

3

   

f a punto d’arco

6

     

p

 

f

   

 

a punto d’arco

6

 

p

 

 

p

6


34

 

111

1

L

         

2

1

1

 

mp cresc.

      3

p

1

6

 

Cl. in Bb 2

        

Ob. 2

cresc.

2

Timp.

     

p

cresc.

           6

mp cresc.

6

6

6

6

f

6

                  f

6

6

6

f

6

6

                  

        6

6

6

6

6

            f

mp cresc.

f



f

L                            6                       6 6 6 6 6

Vl. I div.

6

cresc.

Vl. II div.

p

dim.

 

f

a punto d’arco

6

     

                       6              6 6 6 6           f dim. p 6

6

6

               

6

6

                        

p cresc.

 

f

6         

         

6

f                  

6          

3

p cresc.

Bsn

6

p cresc.

Fl.

           

       

6

p leggiero

cresc.

a punto d’arco

                                            6 6 6 6 6

Vla div.

6

6

cresc.

f

p

dim.

                                            cresc.

Vc. div.

6

6

f

6

dim.

6

6

6

p

Db. div.

cresc.

f

6

dim.

6

6

6

p

 6

      p leggiero

(con sord.) a punto d’arco

                                               6 6 6

p leggiero

(con sord.) a punto d’arco

6

6

    

      6

p leggiero

    

con sord.

6

p leggiero


  114

1 Fl.

2

3                             6

6

6

6

6

6

6

6

Ob. 2

6

6

6

6

Cl. in Bb 2

6

6

6

3

2

 

6

6

6

p

 

f

nat.

f

6

6

3



  

f

nat.

f

3



 6   6                      f

6

cresc.

nat.

 3



                      f

6

cresc.

6

p

6

6

f

nat.

 

cresc. 6

6

6

f

                       cresc. 6

6

6

f

  3



  

  

dim.

  3

p

3

  

3

   

p

   3

   

p 3

 



(nat.)

nat.

 

3

    

3

p

p



3

f                         

3

3



  

dim.



 

dim.



dim.

6 6    

cresc. 6

Vc. div.

 

                          

Vla div.

mp

6

 

Vl. II div.

6 6

p

  

Vl. I div.

6 6

6                         dim. 3 p 6                  6 p  dim.                     

3

 

 

Hn in F

Db. div.

dim.

 

1 Bsn

6

                                            6 6 6                       

Timp.

3

                      

1

2

                                             6 6 6 6 6 dim. mp 6                                           

1

1

35

                           

mp

 p

 mp

 mp

 


36

 

117

Fl. 1.2

1 Ob. 2

1 Cl. in Bb 2

 

1







a2

              6

6

             p

p

cresc.

6

cresc.



6

     

             p

p

cresc.

6

cresc.

6

6

 p

cresc.

cresc.

Bsn 2

1 Hn in F

 



legato

   

   

  

legato



 

1 Tpt in C 2

Vl. I div.

Vl. II div.

 cresc.

  

2



      

  



cresc.

  







  

3

        3

3

mp

3

3

3

       

  

mp

 

nat.

3

p

3

3

       

  

p

Vla div.

 Vc. div.



     

Db. div.

   

  

  

   

  

 cresc.

            

 



6

     

p

cresc.

6

cresc.

 (p)

cresc.

p

cresc.















6

            

(p)

cresc.

cresc.

cresc.

6

cresc. 6             

p

3

nat. 3



cresc.

   

3

      

cresc.

 cresc.

6

6


37

Fl. 1.2

1 Ob.

121       6 (cresc.)     

(cresc.) 6

       

2

1 Cl. in Bb

    (cresc.) 6

(cresc.) 6

     

2

(cresc.) 6

 

1

(cresc.)

Bsn 2

1 Hn in F

 

 (cresc.)    (cresc.)

(cresc.)

 

1

(cresc.)

2

  

(cresc.)

Timp.

Solo Ob. Solo Cl. in Bb

Vl. I div.

Vl. II div.

Vla div.

Vc. div.

Db. div.

      









    f



6

  

f

                f 3             f hard sticks        

f

mp

                                         f marcato      

         6            6 (cresc.)            f        6  (cresc.) 66 f                    (cresc.) 6 f      6             (cresc.) 6 f                     (cresc.) 6 f 6       6 nat.                         6 f mf cresc.          3 (cresc.) f        3 (cresc.) f      (cresc.)



f

 

2

Tpt in C

             66 f               f       f 6               f 6                f       3 f   

 

(cresc.)

M



f

mf

















    f

M


38

Timp.

125           

mf distinto e secco sempre

Solo Ob.

Solo Cl. in Bb

             

     

                                                                            

                   

  



129

1 Cl. in Bb 2

1 Tpt in C 2

Timp.

  

             mp 



                

              mp

Solo Cl. in Bb

   

   133

1 Ob. 2

1 Cl. in Bb 2

1 Tpt in C 2

Timp.

Solo Ob.

Solo Cl. in Bb

 

 





 



             

    

                           





 

mp

           

  

      



   





 







 

    

  

mp

              mp

                         

     

                                            

  



  





 

       



   

mp



 

              mp

             

                 

                             

  

                   

N





            

     

                           

Solo Ob.

               


Ob. 1

137   

 

1



Cl. in Bb 2

1 Tpt in C 2

Timp.

Solo Ob.

Solo Cl. in Bb







 

  







  





   





 

             

            

                                        

     

   

 

     



     



     

                                



    



 





  





   

  



         

                

        

        

                             

O 



                      

Vl. II div.

  

            

 

    



39





  Vl. I div.

O

a punto d’arco

  

6

      pp

 

a punto d’arco

6

      pp 

a punto d’arco

6

    

pp

Vla div.

Vc. div.

Db. div.

 

a punto d’arco 6

  

pp

 

  

pp

6


40

  141

1

        

p

Fl.

2

1



 

Ob.

2

1 Cl. in Bb

2

Bsn

1 Tpt in C 2

Timp.

Solo Ob.

Solo Cl. in Bb

Vl. I div.

 





  

 



 

          

     

                                             

6 6                   6

6

                   

Vl. II div.

 

Vla div.

 

Vc. div.

cresc.

6

             6

6

cresc.

6

                 6

cresc.

6

6

        

cresc.

6

6

mp cresc.



 

6



cresc.

p

cresc.

6

6

6

6

6

6

                        ff

6

                 

ff

6             6 6 ff                               

 

6

                      ff

3



6

 

6

ff

6

                           6 6 ff              6                         6 6 3

6

ff

6

ff

                6

cresc.



  p   

 

6

Db. div.



 

1

2





6

6         

  

cresc.

          

        

6

p cresc.6

        

     

     

       



  

    

         

                              

   

p

       

ff

              

                                      f

6

6

dim.

6

6

p

6

6

a punto d’arco

6

     pp                                 f

6

dim.

6

6

6

p

6

a punto d’arco

6 6

    

                              pp

f

6

dim.

6

6

6

p

6

a punto d’arco

6 6

     

                                   f

6

dim.

6

6

6

p

pp

6

6

    

a punto d’arco pp

6

                             f

6

dim.

6

6

6

p

6

6 6

  

pp


P                                      144     Fl. 1.2  6 6 6 6 6 6                                         1 

41

a2

Ob.

2

1 Cl. in Bb

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

                                       

                                       

1

      6      

2

 

2

6

Bsn

Hn 1.2 in F

Timp.

Solo Ob.

Solo Cl. in Bb

 

                                        6      6       6      6      6         6

6

6

6



 

              

6

       

       

                                 3                f

cresc. 6

6

6

6

ff

cresc.

Vl. II div.

ff

6

6

6

nat.                                                6 6 6 6 6

6

cresc.

(

nat.)

ff nat.

                                                           (

cresc. 6

Vla div.

6

nat.)

6

ff

6

6

6

6

ff nat.

6

6

6

ff

6 6

6

6

  ( nat.)      nat.                                   6

cresc.

6

( nat.)                                          cresc.

Vc. div.

6

6

6

nat. ( nat.) 6 6                                        6 6 cresc. 6

ff

                                      Db. div.

cresc. 6 6

6 6

6

ff

6

6 6

6 6

6 6

                                    

cresc.

ff

    

                

nat.             ( nat.)                            6

          

ff nat.

6

f

( nat.)                                                                  6 6 6

Vl. I div.

 

P      nat.             ( nat.)                          6 6 6 6 6 6 cresc.


42

 Fl. 1.2 

147

1 Ob. 2

1 Cl. in Bb 2

1 Bsn 2

Hn 1.2 in F

Timp.

Solo Ob.

Solo Cl. in Bb

Vl. I div.



 

 

                 6

6

                6 6

mf

mf

               

mf

6

6

                mf

6

6

                6 6 mf                   mf

6

6

 

Vla div.

Vc. div.

mf

 

                                6 6

    

          6

          6

mp

mp

         

mp

6

         

mp

6

          6 mp            mp

6

    

1.

    

p



6

     

p

6

p

6

                 

p

     

p

6

p

6

6

 

 

                  

                     

dim.

                     

 dim.

 

Vl. II div.

Db. div.

(a 2)

 

                6 6

mf

               

mf

6

6

mf

6

6

                                6 6 mf                

mf

6

6

               

mf

6

6

6

6

            

mf

dim.

            

mf

                             6

6 6

6

  

          6

mp

         

mp

6

mp

6

         

          mp 6          

         

mp

mp

6

6

 

dim.

6

            

mf

mp

                           6 

dim.



  

p

     

     

p

6

     

p

6

p

6

p

6

p

6

p

6

                       


43

  150

Fl. 1.2

1

         

             

                        6 6

 

   

    

Cl. in Bb 2

   3

6

6

1 Bsn 2

Hn 1.2 in F

Timp.

Solo Ob.

Solo Cl. in Bb

Vl. I div.

(dim.)

pp

(dim.)

pp

  

 

  

               

 

                   

   3

           6

          6

3

   

(dim.)

  



(dim.)

 

               

 



      

(dim.)

 

         

6

        

6

Vc. div.

                   6   p f

                             6 6                   

Vla div.

Db. div.

3

   

Vl. II div.

1

    

Ob. 2

6

6

pp

   

pp

   

pp

6

6

6

6

6

6

6

6

f

6

6

dim.

6

6

6

6

   dim.

                        dim.

  

f

6

                         

f

6

dim.

f

 



                          f

  

6 6

6

dim.

6

6 6

6 6

  

f

dim.


44

1

        

 

      

153

f

2

1

f

Ob. 2

1



f

Hn in F

2

Tpt in C 2

Timp.

Solo Ob.

Solo Cl. in Bb

Vl. I



                

  

   

  

      

  

      

  

mf

dim.

dim.

        



poco a poco dim.

 

poco a poco dim.

dim.

3

dim.

poco a poco dim. 

5

   

mf

dim.

3

dim.

3

3

 



 

           

 

 



 

Vl. II

 Vla div.

6

              (dim.)

 

6

              (dim.)

6

       

(dim.)

Vc. div.

6

              (dim.)

         Db. div.

3

3

5

(dim.) 6

6

       

(dim.)

3      



 



3      



 



3      3     

    



 



 





 

 

3

3     



6

     

       

f 1

      

f

     

f



6

       

Fl.



 


  156

1 Fl. 2

1

Ob. 2

           

    

          

     

6

6

  

Hn in F

p

 

5

(dim.)

p

 

  

   p

  

( mf )

Solo Cl. in Bb

Vl. I

 

Vla div.

 

 

p

p

 

p

   

p

  p

 

(dim.)

  p  

Vc. div.

 

 

 

 

 

 

( mf )

 



 



 

                               

Solo Ob.

   



Solo Cl. in Bb

 



) ( mp )

 





  



 

3

)( mp )

(

    



(

  

 (

 )

 

 

( mp )

 



 



 



 

  

 (

)

   (p)

 

      

X

) (p)

3

) (p)

(

(

158

Timp.

 

( mf )

Vl. II

Db. div.

 

(dim.)

p

leggiero

     

 

5

p

Solo Ob.

   

1

Timp.

 

p

2

2

Tpt in C



(dim.)

1

45



X X


46 161

1

            

 X

languido

Lento (q = 56)

X

2

p 3

                p 3 languido

X

1 Ob.

            3 p

languido

X

2

X

1

1 Bsn

             

languido

X

p

      

languido

X

  

   X 

p

f

Solo Ob.

Solo Cl. in Bb

   X  f

     X f

Lento (q = 56)

Vl. I div. a2

 senza sord.  X   p senza sord. pizz.

X

   

mf senza sord.

  X 

Vl. II div. a2

p

  X   senza sord. pizz.

X

X

mf senza sord.

p senza sord. pizz.

Vla div.

   

mf senza sord.

X

p senza sord. pizz.

Vc. div.

Db. div.

     p

                p 3

X

2

Timp.

languido

languido

Cl. in Bb

2

p

             languido

Fl.

X

  

mf senza sord.

X

X

p senza sord. pizz.

 

mf

      

         3

3


47

accel.

  (161)

1

2

1 Cl. in Bb

2

2

Timp.

Solo Ob.

Solo Cl. in Bb

 (non cresc.)

 

     ( )   (div.)

Vl. I div.

accel.

Q

 

    

rall.

*

 

*

  

*

 

*

 



mp 5

R (q = 56)    

dim.

  

 

 

 

  

 

dim.

  

(alla gitarra)

 

dim.

   (alla gitarra)    dim.

(alla gitarra)

( mf )

    

3

5

mp

      

                  

( mf )

 

    (alla gitarra)   

    

(alla gitarra)

( mf )

(sempre p)

(non dim.)

( mf )

 () Db. div.

 

(sempre p)

*

 ( ) Vc. div.

 

(sempre p)

 () Vla div.

)  ( 



(sempre p)

 

(div.)

Vl. II div.

*

(sempre p)

(non dim.)

(non cresc.)

Bsn

(non dim.)

1

(non dim.)

(non cresc.)

(non dim.)

(non cresc.)

 

(non dim.)

(non cresc.)

R (q = 56)    

* (non dim.)

(non cresc.)

Ob.

*

(non dim.)

(non cresc.)

1

rall.

(non cresc.)

Fl. 2

Q

( mf )

* Hold the last note played before the next down-beat.

dim.

p

p

p

p

p


48

   165

1

      

p

Fl. 2

1

 

 

1

 

p

2

Solo Ob.

Solo Cl. in Bb

 

mp

   

    p        p

5

mp



 

 

 

mp

 

p

 

 

p

 

mp

  

 

        

       

 

   

 

   

 

 

 

mf

 



  



 

 

 

 

mf

 

 

mf



mp

   

mf

mf

mp

p

 



 

Db. div.

mp

 

 

  

p

Vc. div.

5

mp 5

   

          

 

 

     

unis.

 

p

mp

p

p

 

5

    mp p     

5

   

Vla div.

5

mp

5

p

 

    

Vl. II div.

5

5

p

 

5

unis.

Vl. I div.

mp

p

p

 

5

   

      

Cl. in Bb

Bsn

mp

5

2

1

5

5

    p      

Ob.

2

 



 


49

1

S 169            p

Fl.

         

5

p

Ob.

1 Bsn

Vl. I div.

p

                    

   

     

mp

5

5

 

 

 

Vl. II div.

  

 

 

   

mp

   mp

 

 

  

mp

 

 

 

 

 

5

 

 

 

 

 mf

mf

p

  mf

  mf

  

  mf

  mf

 

mf

   cresc.

p

cresc.

   

 

 

  

5

p

 p

  

 

 

 

 

 

mp

   

mp

 

5

cresc. 5

mf

   

5

5

cresc.

p

 

 

p

p

p

p

      mp p      5

cresc.

    

p

5

 

 

p

   

p

   

mf

 

 

5

        





  Db. div.



  Vc. div.

  

mp

Vla div.

      

  

  

p

     

5

cresc. 5

S      

mp

mp

mp

 

p

mp

 

5

5

p

      

mp

5

5

5

   

   

5

5

     p         

2

Solo Cl. in Bb

5

5

          

5

5

mp

p

Cl. in Bb

5

5

       

1

Solo Ob.

5

2

2

p

5

          

      

    mp

         5

    

1

5

5

5

2

  



 



  

 

mp

mp

 

mp


50

1

173                   5

Fl.

mf

mf

5

5

Ob.

5

mf

5

5

Bsn

5

mf

5

 

   

 

  

arco

   

 

 

  Vc. div.

 

  Db. div.

   

* Sounding note in brackets (concert pitch)

mf

 

mf

  mf

  mf

 

mf

       (p)

 



p

 

 s.r.* 



 



 



 

 

 



(p)

  

  

(p)

 

arco

f

 

 

  

p





(p)



arco

arco

 

 

  

 

(p)

arco



 

p

5

(p)

  

5

(p)

p

      

     

 

 

  Vla div.

p

 

p

5

                     

1

p

5                    

2

Vl. II div.

5

mf

p

5

Cl. in Bb

Vl. I div.

5

                  

1

Solo Cl. in Bb

5

2

p

5

mf

p

                    

1

Solo Ob.

5

5                     

2

2

5






51

 

X

2

X

1

X



X

176

1 Fl.

Cl. in Bb 2

Solo Ob.

   

 

lib.)   (poco            

 

p

Solo Cl. in Bb

              5

      

5

mf

           



Vl. I div.

    

  Vla div.

    

X

f

 

  

 

   

 

 

X

  

    

 

    

 

X



X

p

p

p

   

p



  

 

  

 

 p

 





  

p

p

f

X





X

p

f



    

   



f





   

f



X



 

X

p

f

f

    f

   





   

p



f

   

   

p

f

f



p

       

p

  

f

p

p

p

      

 

  

  Db. div.

 

p

p

   

    

 

p

   Vc. div.



    

p

   

p

p

    

    

  

X

f

p

p

p

Vl. II div.

  

X

(sim.)

p

    

5

   

 



nat. 

f

ff

X

f

ff

X


52

1

T 179  5     X         pp

Fl.

5        X       

2

pp

X

1 Cl. in Bb 2

Solo Ob.

Solo Cl. in Bb

             pp

 

  X  X

Vl. I div.

   



  

   

X

 

X

 

Vl. II div.

p

p

p

p

p

Vla div.

X

 p

X

 p

Vc. div.

X

 p

X

 p

Db. div.

X

  

p dolce

pp

T

 p

  

   

f

X

X

  

   

      X       pp   X

 

                 mf 5

p

5

mf



  p

 

     

             

         

                     


53

1

U 180   

 

Cl. in Bb 2

 

5

     

p

 

  

  

1

 

Bsn 2

1

Solo Ob.

Solo Cl. in Bb

Vl. I div.

5

p

5

5

       p

 

U       p

     

    

mp

 

 

  

 

5



 

  

 

 

5

6

f

p

               5

6

f

p

6

5

             f

5

5

 

p

f

             

5

       

mp

p

 

 

 

6

f

p

cresc.

f

   

cresc.

f

  

 

  

 

 

 3

 

              

           

           

              

           

           

             

           

           

             

           

           

             

           

           

             

           

           

p

p

Vl. II div.

p

    

            

                       

Hn in F

2

p

      

   

6

5

p

p

Vla div.

p

p

Vc. div.











 











 



 







   



































   



































 



p

p

Db. div.

p


54

 

183

Fl. 1.2

Ob. 1.2

1 Cl. in Bb

Bsn 2

1

5

 

Solo Cl. in Bb

Vl. I div.



        

Vla div.



dim.

Db. div.

5

cresc. 5

    

dim.

 

  

 

 



 

  

    

 

 

 

 

cresc.

  6    3

           

 

 

 

 

    

 

            

           

           

            

            

           

            

           

           

            

           

           

            

           

           

           





 







 







 



 



















 





















6         3

             Vc. div.

     cresc.        

5

  

5

mp

        

Vl. II div.

   

6

Solo Ob.

 

5



    cresc.

     

5

5

5

    

       

    

cresc.

5

5

       

 

p

5

5

5

5                 

     

5

      

5

5

      

5

cresc.

                       cresc.

             

5

Hn in F

Tpt in C 2

 

5

5 5

5

             

  

2

p

 

1

    

                

a2

p

 

2



            







 
































Fl. 1.2

186   

5

f

5

f

(cresc.)

5

f

(cresc.)

5

f

(cresc.)

Ob. 1.2

  

           

     

(cresc.)

1

2

1 Hn in F 2

 

mf

2

Solo Ob.



          

          

6

 

 

       

f

5

cresc.

 

f

 

5

6 6

     

5

5

           

(cresc.)

   

6

            

Tpt in C

              

6

5

1

5 5             (cresc.)               

(cresc.)5

55

6

5             

Cl. in Bb

Bsn 2

         

     

(a 2)

   

    

 

 

 (p)

p

Solo Cl. in Bb

p

Vl. I div.

cresc.

 

 

 

             cresc.

             

Vl. II div.

cresc.

              cresc.

             

Vla div.

cresc.

             cresc.

             Vc. div.

Db. div.

 



cresc.

 



cresc.

   









cresc.

(p)

  

f

     fp sub.              fp sub.       

















f





 





f

p

5

 p       p    

    



   

     

5



  

    





   

p

    

     

   

p

   

 s.r. 



p

fp sub.

f



f





f

cresc.



    

      fp sub.        






56

 

1

2

1

189

Fl. 1.2

Ob.

Cl. in Bb 2

1 Bsn 2

Solo Ob.

Solo Cl. in Bb

Vl. I div.

 

lib.     poco 

 

Vla div.

Vc. div.

               



5

p

 

Vl. II div.

Db. div.

             

                  5

p



 

 





 

 

 





 

 



 p

 

  p

  

 p



 

   



  

 

  

 



 

 p

 

 p

 


 Fl. 1.2  191

1

a2

 

 

1

Bsn 1.2

Timp.

Solo Ob.

Vl. I div.

5

p cresc.

p cresc.



 

p

 

 

f

f

 

 

f

p

 Vl. II div.

 

  

f

p

f

f

Vla div.

   



p

f

 







p

f

 

f

Db. div.





f

Vc. div.

 

   





(f) nat.



(f)

 

X 

   

X

 

f

 

X 5

X

 

(hard sticks)

                      

X

 

f

f

         

p cresc.

X

 

3

  

X

f

      

p cresc.

f

 

3



57

f

      



 

f

    

p cresc.

Solo Cl. in Bb

7

p cresc.

Cl. in Bb 2

      

X

5

p cresc.

Ob. 2

          

V

X V

X

ff

  

  

  

 

 

 

 

X

ff

  p

mp

   

X X

ff

ff

p

   

ff

 

 

mp

X

  

  

X

  

X

ff

 

   

X

ff

 

p

 

ff



p

 

X  X



p

 

 

mp

 

5

 

mp

ff

ff



mp

5

         

p

mp

(  )

    

p

p


58

    (192)

Timp. Solo Ob.

Solo Cl. in Bb

Vl. I div.

  

p

Solo Cl. in Bb

Vl. I div.

Vl. II div.

Vla div.

Vc. div.

Db. div.

         

5 5            

p

  

                               

   

 

(  )

 

p

                        

 

  

 

p

Solo Ob.

’

5

   

(192)

Timp.

p

       

5

          

 

      



5

 

    

Db. div.

5

 

Vc. div.



 

Vla div.

  



 

Vl. II div.

5

               

5

     ’

pp

’  ’

  

    

5

      p

  

  

5

5

          

cresc.

cresc.

 

cresc.

cresc.

cresc.

 

cresc.

 

cresc.

cresc.

cresc.

(   )

cresc.

cresc.

6

quasi accel.

       

  

  

    

       

 


59

Fl. 1.2

W 193   

Un poco movendo (q = 69)

poco accel.

1

 

2

 

Ob.

1 Cl. in Bb 2

1 Bsn 2

1 Hn in F 2

1 Tpt in C 2

Timp.

Solo Ob. Solo Cl. in Bb

         f          f      f



   

   f          f

  

        f        f        f

W

  

f

   

 



 

 

                    



   f        

             f

     

 



  

  

                                         

                    

  

  

                                        

   ff    ff   ff

  

    ff     ff

   ff    ff

  





Un poco movendo (q = 69)

   

poco accel.

             



                       



 

 

 



         

 

    

                                                                                    

ff

            ff Vl. I  nat. div.          ff          Vl. II ff   nat. div.        ff             Vla ff  nat. div.         ff        Vc. ff div.    nat.    ff Db.       div.   ff

                              

a2              ff f                ff f                f ff               

                                                                                                      

       


60

       197

Fl. 1.2

     

1

     

Ob. 2

    

1

     

Cl. in Bb 2

     

1 Bsn 2

1 Hn in F 2

1 Tpt in C 2

Vl. I div.

Vl. II div.

Vla div.

Vc. div.

Db. div.

(a2)

  

  



   

  



     

   

 

 

             

     

     

   

    

    

 

   

         

 

   

          

fff



fff

               sim. p         



    

  

       

 

  

 

    

  



Con moto (q = 88)

  

 

   



    

      

  

X

 

   

  X  

fff



fff



fff

  

fff

   

    

    

   

(p)



 





 



 

 

dim.





fff







fff



fff

fff

fff

 

fff

 poco a poco dim.

 

poco a poco dim.



dim.



fff

  

 

  

p



sim.

dim.

dim.

fff



dim.

 



fff

poco a poco dim.

fff

 

 

fff

 

 



fff

 

p

  

fff

Con moto (q = 88)

            sim. p     

 

  poco a poco dim.



poco a poco dim.





poco a poco dim.

 

 

   

 poco a poco dim.



poco a poco dim.

 

poco a poco dim.



poco a poco dim.



poco a poco dim.

 

poco a poco dim.


61

                 Fl. 1.2                          sim. 201

       sim.

1 Ob.

1 Cl. in Bb 2

1

(dim.)

Bsn

1

 

(dim.)

  

(dim.)

Hn in F 2

 (dim.)

1

 

2

 

Tpt in C

Vl. II div.

  

                  

   

  

   

 



(p)

  

  

   

  

  

    (poco dim.)     

 

  

 

 

    

(poco dim.)



Vla div.

Vc. div.

 

Db. div.

   

(poco dim.)



 



  



  







  

p



    



  



  









  





  

  



  



  



   

 

     

    

(poco dim.)

(poco dim.)



(poco dim.)

 



  

sim.

 

(poco dim.)



p



                              

(poco dim.)

(p)

(poco dim.)



sim.

p

  

(dim.)

Vl. I div.

                                                              sim.                              p (dim.) (p) sim.                          (dim.) p (p) sim.                   

2

2



   

     

unis.

pp

pp



pp

pp



pp

pp



pp

pp



pp


62

                     206

Fl. 1.2

(a 2)

poco a poco cresc.

              

1

poco a poco cresc.

Ob.

              

2

poco a poco cresc.

    

1 Cl. in Bb

   

2

 

1 Bsn 2

1

     

       

Vla div.

    

 

poco a poco cresc.







 

poco a poco cresc.

poco a poco cresc.

sim.

  

 

p

p

 

     

    

   





 

 







 





cresc.

cresc.

cresc.

cresc.

cresc.

p poco a poco cresc. sim.

      









f

 

  

 

 

 

 

 

       

f

f

f

   

f

f

f

f

 cresc.

 

cresc.



     

cresc.





p poco a poco cresc.

poco a poco cresc.

cresc.

 

     sim.    

  

      





              

poco a poco cresc.



          

poco a poco cresc.



              

    

              

     

     

    

 

 

 



Vc. div.



(p)

Vl. II div.

Db.

 

1

Vl. I div.

sim.

2

2



  

Hn in F

Tpt in C

              

(p)





  f


Fl. 1.2

                          

Allegro deciso (q = 88)

210                  

1 Ob. 2

f

(cresc.)

f

(cresc.)

f

                           

(cresc.)

Cl. in Bb

2

  

(cresc.)



(cresc.)

Bsn

1



f

                    f                               

        

           

1

f

                                          

                      

                (cresc.)

              

f

f

               (cresc.)

1

2

Solo Ob.

Solo Cl. in Bb

                                 

(cresc.)

     

   

 Vl. I  Vl. II

Vla

f

                                         

(cresc.)

Timp.

f

f

(hard sticks)             





f

     

 

a punto d’arco

pp

   

 

      

 

Vc.

dim.

Allegro deciso (q = 88)

a punto d’arco pp

a punto d’arco

pp

Db.

          

2

Tpt in C

  

(cresc.)

Hn in F

                                                      

1

2

                                        (cresc.)

63

     



a punto d’arco pp

  


64

       p    214

Timp. Solo Ob.

Vl. I

   

mf

    

Vl. II

Vc.

      

Solo Ob. Solo Cl. in Bb

Vl. I

 

 

 

 

 

 

 

 

  

  

 

  

 

  

Vc.

Solo Ob. Solo Cl. in Bb

 

 

 

 

 

 

Vla

Vc.

Db.

* See preface

  

         

pp pp

pp

 



pp

f

dim.

   

p

  

  

    

f

               

 

   

  p

p

  Vl. I   Vl. II

p

mf

   p    p   

                                                          

p

*

f

 

   

dim.

         

 

           

f

Y

224

Timp.

Y

 

mf

 

 

Vla

Db.

  

 



 

   

Vl. II



 

 

                                         

       

 

220

Timp.

f

  



 

  

Vla

Db.

*

   

  

  

p

mp

   mp   mp    mp

p



mf

pp

  

pp

  

 

  

pp

mf

  

 

pp



 

   mf


65

 

2

1



 

2

1

2



Timp.

 

229

Fl. 1.2

1 Ob.

Cl. in Bb 2

1 Hn in F

Tpt in C

Solo Ob.

                

 

 

f

Solo Cl. in Bb

   

   

f

   

      

                            

  

 

   

                 

Vl. I

   

  

  

Vl. II

 

 

 

Vla

 

 

 

Vc.

   

  

  

Db.


66

Z 

a2

  232

Fl. 1.2

mp

                                                         

                                                         

1

mp

Ob.

                            mp                          

2

1

mp

Cl. in Bb 2

1

                      

 

 

 

 



 





   

  

dim. con sord.

     6

con sord.

   

mf

6

     

 

    

Z       

    

   

     

 

 

ff

mf

Vl. II

mf

Vla

mf

Vc.

mf

Db.

   

ff

mp

ff

ff

Vl. I

f

mp

dim.

 

p

Solo Cl. in Bb

f

  

mf

Tpt in C

Solo Ob.

 

                        



mp 1

                                   

 

mp

2

Timp.

  

                                                   mp

Hn in F

2

   

  


   235

Fl. 1.2

      

                                                

67

                      

                                   

                      

                                      

                    

                                    

                     

                                             

1 Ob. 2

1 Cl. in Bb

2

1

  

 

 

 

 

 

  

 

Hn in F

 

2

1

 mf

Tpt in C 2

mf

Timp.

Vl. I

mp

 

cresc.

  

cresc.

  

dim.

      

f

f

mf

 

6

     

ff

mf

6

      

 

mp

 

mf

ff

 

 

mf

3

ff

3

    ff

   

 

  

mf



 

Vc.

 

mf

Vla



 

 

Vl. II

Db.

dim.

 

 


68

Fl. 1.2

1

  

AA            f cresc.                              

(a2)

238



 

   

f

cresc.

               cresc.                

Hn in F

Timp.

Solo Ob.

1. Solo

 p cresc.

          

1

2

   

  

cresc.

2

Tpt in C

                     cresc.

1

1

             

2

2

   f   

Ob.

Cl. in Bb

   

Vl. I gli altri div.

1. Solo

Vl. II gli altri div.

  

cresc.





 

  

  

cresc.

Vla

6

cresc.

6

 

cresc.

   

gli altri

Db.

Vc.

6

f

f

ff

ff

               f

1. Solo

6

             

gli altri

             

1. Solo

f

 

  

f

AA

dim.

a punto d’arco





f

 p cresc.

         

pp a punto d’arco

         

pp

a punto d’arco

         

pp a punto d’arco

              

pp

f

a punto d’arco

         

pp

a punto d’arco

         

pp


69

  241

Fl. 1.2

1 Ob.

  (cresc.)

 

2

 

f

 

 

p



 

p cresc.

f

f

p

cresc.



1 Cl. in Bb 2

Timp.

   p

Solo Ob.

Solo Cl. in Bb

1. Solo

  



 

(cresc.)

gli altri div.

 

f

gli altri div.

                  

 

  

p cresc.

f

      

    

  

     

 

 p cresc.

f

 p

cresc.

  

     

      

     

   

  

     

  

     

        

1. Solo

   

  

                

Vl. II

      

    

 

1. Solo

      

  

Vl. I



Vla

gli altri

1. Solo Vc.

    

gli altri

Db.


70

  244

Fl. 1.2

BB

 

 

1 Ob.

2

 

p cresc.

 

f

 

1

f

Solo Ob.

Solo Cl. in Bb

1. Solo

 

     

BB   

Vl. I

gli altri div.

f

     

p

cresc.

f

p cresc.

   



p cresc.

 

 

p



f

 

 

  





f

 

f

 

p cresc.

f

   

  

    

   

  

pp

 (cresc.)

 

f

pp



p cresc.

  f

 p

cresc.

                

   

  

   

  

p

pp

   

  

1. Solo

 

p cresc.

    

Vl. II

f

p cresc.

p

1. Solo





p

gli altri div.

p cresc.



Cl. in Bb 2

p

 

pp

 

 

 

Vla

gli altri

    p

 

1. Solo Vc.



f

( ) 

    

gli altri

Db.

pp

 

p a punto d’arco

pp

p

pp

   

  



   



  

                                             


71

 

247

Fl. 1.2

1 Ob.

  

2

f

1

  f

(cresc.)

Cl. in Bb 2

Solo Ob.

Solo Cl. in Bb

1. Solo

 

  

p

  



      

           

p

(cresc.)

f

gli altri div.

          

 

1. Solo

 p cresc.

  

p cresc.

   

p cresc.

f

p cresc.

       

       

f

 



              

         

 

 

p cresc.

f

        

 

 p cresc.

          

     

          

pp

pp

   f

 p cresc.

     

          

     

          

p

p

pp

pp

Vla

 

(f)

 

                                                

gli altri

 

1. Solo Vc.



p

pp

  

           

gli altri

Db.

     

p

           

Vl. II



p

  



        

           

f

 

p cresc.

f

f

      

  

  

 

1. Solo

 

p

       

gli altri div.

 

Vl. I

               

               

p

pp

p

pp

                                                


72

  250

Fl. 1.2

  

1

f

Ob.

2

1 Cl. in Bb

Bsn 2

Solo Ob.

Solo Cl. in Bb

1. Solo

f



 

p cresc.

f

p

cresc.

 

p cresc.

f

f

  f



p

p cresc.

 

p

         

 

 

     

p cresc.

         

               f

 

  

      

 

 

f

cresc.

  f

cresc.

  

     

  

     



 

p

cresc.

f

    





    

 





p

fp sub.

cresc.

p cresc.

 

f



 

f

   





            

     

     

1. Solo



 

f

gli altri div.

  

Vl. II

f

f

f

1. Solo

 

  

gli altri div.

p cresc.

 

p cresc.

p cresc.

                

Vl. I

  

f

1



  

2

Vla

                                                            

gli altri

1. Solo

(f)

Vc.

                

gli altri

Db.

               

               

                                                


CC  253 a2          Fl. 1.2  mp       1  p

       p       

Ob.

2

1

p

Cl. in Bb 2

1

      

                        

            p           

   

 

  

p

Bsn 2

1

2

Solo Ob. Solo Cl. in Bb

1. Solo Vl. I



      

ff

   

         

gli altri

gli altri

Db.

f

            

dim.

              

 



 

 



p

p

p

   

  

                           

                                

senza sord.

    

 

                   

  mf

     mf      mf

  

   mf

nat.



 nat.

mf

 



 

     

mf

mf

Vc.

dim.



 

1. Solo

f

               

mf

Vla



dim.

              

 

1. Solo

 

f

     

           

 

gli altri

 



 



 

 

 

 

 

  

 

 

 

73

          

mf

Vl. II



ff

     

1. Solo

                              

     

mf

CC   

gli altri



                

mf

     

             

mp senza sord.



            

mp

 

1 Tpt in C

 

2

mp

  

Hn in F



    

 

 

 




74

 Fl. 1.2   256

 

1 Ob. 2

 

1

 

Cl. in Bb

 

2

 

1 Bsn 2

1

(a 2)

                    

                

1. Solo

      

   

                

                         

   

  

   

f

dim.

   

dim.

  

dim.

 

  

  

p

  

   

  

p

 

   

p

mf

poco a poco cresc.

 

poco a poco cresc.

                        

   

  

Vl. II gli altri

1. Solo

Vla

   

  

gli altri

1. Solo Vc. gli altri

  

 

  

 

 

 

  



 

 

  

 



   

   

   

   

   

  

       

                           

 

   



   

     



 

      



1. Solo

 

   

poco a poco cresc.

                

   

  



                                                              

gli altri

   

                                   

Vl. I

Db.

   

    

   

 

1

2

  



                           

f

Tpt in C



     

                      

f

2

    

    

                                   

 

Hn in F

    

 

 

  






 Fl. 1.2   260

 

1

2

1 Cl. in Bb

        

2

1 Bsn

1



      

Ob.

2



 

(cresc.)

  

(cresc.)

Hn in F

  

2

(cresc.)

1 Tpt in C 2

Timp.

Solo Ob. Solo Cl. in Bb

Vl. I tutti div.

                                                                       

              

 

 

 

 

 

 

                          

 

 

 

ff

dim.



ff

 

dim.

ff

 

dim.

 

dim.

 

  

  





                         f                        f         

    

Vl. II tutti div.

Vla tutti div.

Vc. tutti div.

 

nat.

 

 

mf

 

mf

 

 

nat.

 

nat.

 

nat.



 

nat.



 

nat.

 

nat.

mf

 

  

mf

mf

mf

mf

mf

               

ff

              



 nat.

              



 

 Db. div.

75

DD

ff

dim.             f

 

                                

 

DD                  f dim.              dim.   

f

f

                dim.

f



               dim.

               

f

f

dim.

f

dim.





dim.

dim.

                               

                dim. f                  f

dim.

f

dim.

               


76

  263

Ob. 1.2

1

Bsn 2

1

  

 

 

 

 

1 Tpt in C



2

Timp.

p

p

 

p

p

f



* f



 

p

  

  

Solo Cl. in Bb

*

       (dim.)

Solo Ob.



 

2

 



Hn in F



 

Cl. in Bb 2



p

                            f                         f

Vl. I div.

            pp legg.

           

       

            

          

  

           

          

  

pp legg.

Vl. II div.

pp legg.

 

Vla div.

 

Vc. div.

       

       

          

  

pp legg.

       

          

  

       

pp legg.

          

  

       

          

  

          

  

          

  

pp legg.

                 

pp legg.

       

pp legg.

* See preface

       

pp legg.

pp legg.

Db. div.

       


77

 Fl. 1.2  266

*

 

1

  

1

 

Cl. in Bb

Solo Cl. in Bb

Vl. I div.

 

 

 

2

Solo Ob.



f

Ob.

2

*

f

          

         

  

5

 

 

 

Vl. II div.

      

 

  

     

         

5

                  5

5

 



           

                    p

           

            

       

 

 

  

             p

p

                    p

       

            

       

            

       

                               

       

                               

                

                               

                               

Vla div.

  



Db. div.

             

Vc. div.

   

 

 

       

             

  

  

 



 

 

       

* See preface

p

p

p

p

p

p


78

  269

Fl. 1.2



 

1 Ob.

  

Cl. in Bb 2

Solo Ob.

Solo Cl. in Bb

Vl. I div.

  

2

  







  

f

  





 f

a2 *

  f



 

 

 

                              

  

                           5

 

            5

          pp

  

       



           pp

  

             

  

         pp

  

             

  

Vl. II div.

Vla div.

pp

      

      

       

             

  

       

  

             

  

pp

           

  

               

               

           

                                   

            

                                   

pp

pp

  

Db. div.

  

     

             pp

pp

Vc. div.



           

pp

* See preface

  

               

              


Fl. 1.2

EE 272      

1 Ob.

2

  



f

Solo Ob.

Solo Cl. in Bb

Vl. I div.

    





 

   ff

  

      

79

 



  

 

ff

       

     ff      ff

  

     f

  

      

  

      

 

                   5

        



                

  

 

f

     

     

EE                                                     p

pp

                                                p

pp

                                               

Vl. II div.

p

pp

                                                 p

pp

                                                 p

Vla div.

pp

                                                 p

pp

p

pp

                                          

Vc. div.

                                              

p

Db. div.

1

2

  

2

Tpt in C

  

Cl. in Bb

Hn 1.2 in F

 



1

Bsn 1.2

 

            

pp

                                                 p

pp

                                               

p

pp


80

  275

Fl. 1.2

(a2)



       

 



      

  

   

   

1

2

  

1



Ob.

Cl. in Bb 2

1 Bsn 2

1



Hn in F 2

1 Tpt in C 2

Solo Ob.

Solo Cl. in Bb

Vl. I div.



       

  

 

  

       

  

       

  

      

    



     

   

            

    

       

  

 

        

    

      

  

            

  

  

   

    

  

   

         

   f  

    





      

    

    

  

  

           

  

  

   



ff

           

    

  

   

ff

      

  

    

     

ff

 



         

  

f

          

     

  

   

 

    

   

 

                cresc.

 



 

  

   

       

                               

     

   





               

                                 cresc.

Vl. II div.



                

                               cresc.

                                

Vla div.

cresc.

 

Vc. div.

 

Db. div.

                 cresc.

               

               

               

               

               

               

cresc.

cresc.

cresc.

                                cresc.

                cresc.

               


  277     Fl. 1.2      1           

Ob.

2

1 Cl. in Bb 2

1 Bsn 2

Timp.

Solo Ob.

Solo Cl. in Bb

Vl. I div.

          

   

 

     ff      Tpt 1.2 in C   Hn 1.2 in F

81

 

ff

                                                                

         

  f

X X X X X X X X

6

        X   ( ff )  soft sticks            

f

p

X

     X   ff         X  ff                       sim.          X  ff         sim.                 div. a3  X  

     ff

    

ff

Vl. II div.

div. a3

dim.



cresc.

    sim.                                          

    sim.                              

                                                       sim.

                                                            sim.     ff           sim.                                                        

Vla div.

 

Vc. div.

 

Db. div.

          

ff

     ff      ff

     ff      ff

    

ff

X X X X X X

                                                  sim.       sim.                                         

X

    sim.                                         sim.                         sim.                 

X

X X


82

FF

    Fl. 1.2  X  Ob. 1.2  X       Cl. 1.2    in Bb X     Bsn 1.2  X    Hn 1.2  X  in F

 

279

 

 

 

 

( )

    X     X 

 

ff

Tpt 1.2 in C Timp.

 

ff

Solo Ob.

Solo Cl. in Bb

    X

 

    X  

accel.

           

ff

p

FF  X

Solo Ob.

Solo Cl. in Bb



 

ff

 





 

 

 p



 

 

 

  

 

(279)

Timp.

 

p

dim.

 

X





  

f

poco lib.               

f

cresc.

      Vl. II div. a3  X   Vla  X  div.     Vc. div. X    Db.   div.  Vl. I div. a3

      



  



     f



 

f

ff

       f

3 ( ) () ()                ( ) 3 3 3



mf

                    

p

3

 

p

            5

cresc.

 

f

( 280) Timp.

Solo Ob.

Solo Cl. in Bb

                                                              f ruvido non ruvido dim.                                           3 3 3 3 mf

p

3

mf

3

          3

dim.


83

 

Timp.

              

  

Solo Ob.

p

(dim.)

Solo Cl. in Bb

 

   

 

           

 

p

Solo Ob.

Solo Cl. in Bb

            

Timp.

Solo Ob.

Solo Cl. in Bb



 

                  





ff 3

ff

 

 

Lento (q = 60)

       

trem.

3

pp

           

 

           

  

ff 3

ff 3

3

3

3

2.

            p

              p

             p

          

p





3x quasi come prima

Bsn

Tpt 1.2 in C

          



1

2

   

3x quasi come prima

   283

Cl. 1.2 in Bb

          

 

 

f

         

 

(282)

       

        

(dim.)

       

 

f

() 3    



f

 



 

 

281

     3

     3

 

poco a poco dim.

poco a poco dim.

Lento (q = 60)

Vl. I div.

  

 

 

Vl. II div.

Vla

Vc.

Db.

 

 

 

 

3

p

3

 p

3

 p

3

p

p3

3

p

3



p

3



  

3

3

3

  

 3

  3



3

3

 

  

  

 

3

3

 3

 

 

 

3

3

3



3

 

  

3

3

  

3

3

  3 3

 



3

  3

   3

    

3

3

 

3

 

3

 

3

  

  

  

3

3

3

3

3

3

  

  

  

 

3

3

  3



3

3

  

 

3

  

  

  3

3

3

   

3

  

  

  

  



3

3

3

3

  


84

  285

Fl. 1.2

1 Ob.

2

1

GG a 2                                         5

5

5

5

dim.                     

5

5

5

5

f

5

5

5

5

5

5

5

5

cresc.                     

p

5

5

5

5

dim.

f

5

5

dim.

f

5

5

f

5

5

5

5

5

5

5

5

cresc.                                         p

cresc.                                         p

p

dim.

           

1

   

 

                             

2

   

 

                            

2

Bsn

1 Hn in F 2

1 Tpt in C 2

Timp.

Solo Ob.

Solo Cl. in Bb

Vl. I div.

Vl. II div.

Vla

Vc.

 

cresc.

 

Cl. in Bb



f

dim.

cresc.

f

dim.

cresc.

f

 ff

  

 

           

  

 

           

cresc.

cresc.

 

 







dim.

 

ff

                f

dim.

f

dim.

                

dim. (hold playing position)

a niente (hold playing position)

  



f

 





cresc.

3

 3

 3



3

  

   

3



   

3

cresc. 3

cresc. 3

cresc.

3

cresc.

cresc.

3

cresc.



3

cresc.

3

3

 

a niente

GG

3

Db.

cresc.

  

               

   

3

 3

 3

 3

  

3

 

3



3

 3

3

  

3

3

3

 

  3 3

   

 f

3

 3

 

f

3

 

f

3

f

  

 f

  f

 3

3



3

3

3

3

dim.

3

  3

 

 

dim.

dim.

3

3

 

3

 

3

f

 

  3 3

dim.

dim.

dim.

 3

3

   3

  

  

3

3

  

  

3

  3    

dim.

3

 

3 3

   


                  

 Fl. 1.2 

(dim.)

(dim.)

287

1 Ob.

2

1 Cl. in Bb

2

5

                                     5

5

(dim.)

5

5

                 

    

      (dim.)

           

      

(dim.)

           

     

2

     

1 Hn in F 2

 

 

Tpt in C 2

Timp.

Solo Ob.

Solo Cl. in Bb

Vl. I div.

 

   

Vla



 

           



 3





         

3



3





  



  

3

3



  

3



  

3



  

 







 



(dim.)

(dim.)

 

3

3



3

  

(dim.)

 

3

 



 

3

3

3

3

 

  3 3

   

 

3

3

 3

3

 

3

   

 

3

3



3

 

3

3

  

3

3

 

  3 3

   



3

3

 

3

  

3

 

3

 

 

3

 3  

3

 

3

3

3

 

3



3

   

3



  3

  

3

 

3

3

 



3



  

(hold playing position)



 







3



 

3

3

3



3



  3

  

3

(dim.)

(dim.)





3

(hold playing position)



  



 

           

(dim.)

(dim.) 3 3

Db.

    



3

   

(dim.)

Vc.

 

(dim.)

(dim.)

Vl. II div.



dim.

  

3

(dim.)

dim.

1

    

           

1

    

   

Bsn

     

5

(dim.)

 3

5

5

     

3

3

  

  

3

  3



3

3

  

3

 

 

3

3

3

  3

  

 

3

3

3

 

  3 3

 

 

3

  3    

 

 

  3 3

    

85


86

 Fl. 1.2  289

1 Ob.

2

1 Cl. in Bb

2

1

1 Hn in F 2

1 Tpt in C 2

 

(dim.)

 

(dim.)

 (dim.)

Solo Ob.

Solo Cl. in Bb

Vl. I div.

 

  

 

 

(dim.)

(dim.)

  

 



 

    

(dim.)

 

(dim.)

   

  

(dim.)

 

pp



pp





   

   

 



  

   

 



   

   

 



   

   

 

pp

pp



pp

  

 

  

   

 



   

   

 



   

   

 



   

   

 



  

   

 

  

   



pp

pp

pp

pp

 

 

     

  

  



  



  

  



  







  



pp

pp

pp

pp

 

pp

pp

pp

 



pp

 

 

 

(dim.)

  



(dim.)

 

pp

  

   



pp

 

(dim.)

Db.





(dim.)

Vc.

 

(dim.)

Vla

(dim.)

Vl. II div.

 

(dim.)

Timp.

 

(dim.)



(dim.)

Bsn 2

(a 2)



     

   

(hold playing position)

   

  

   

   

   

   

        

   

 

 

(hold playing position)

  

  

 

         

   

   


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.