Berkeley SERENADE FOR STRINGS

Page 1

OnDemand

Berkeley, Lennox Serenade for Strings

Score for sale (North America): http://www.halleonard.com/product/viewproduct.do?itemid=14004140&lid=56&l Score for sale (UK, Europe and other territories): http://www.musicroom.com/se/ID_No/056628/details.html Information about the work and materials for hire: http://www.musicsalesclassical.com/composer/work/8248

Score begins on the next page.

Chester Music Limited Part of the Music Sales Group



serenade_prelims.qxd

26/02/03

23:05

Page 1

Lennox Berkeley Serenade for Strings Op.12 Study Score

Chester Music


serenade_prelims.qxd

26/02/03

23:05

Page 2

CH66308 ISBN 0-7119-9838-9 Music Setting by Bev Wilson Š 2003 Chester Music Limited Published in Great Britain by Chester Music Limited Head office: 8/9, Frith Street, London W1D 3JB, England Tel +44 (0)20 7434 0066 Fax +44 (0)20 7287 6329 Sales and hire: Music Sales Distribution Centre, Newmarket Road, Bury St. Edmunds, Suffolk IP33 3YB, England Tel +44 (0)1284 702600 Fax +44 (0)1284 768301 www.chesternovello.com email: music@musicsales.co.uk All Rights reserved Printed in Great Britain No part of this publication may be copied or reproduced in any form or by any means without the prior permission of Chester Music Limited.


serenade_prelims.qxd

26/02/03

23:05

Page 3

Berkeley: Serenade for Strings op.12 Vivace – Andantino – Allegro moderato – Lento Sir Lennox Berkeley (1903–1989) was one of the most prominent British composers of his generation. His work encompasses everything from solo songs to opera and from solo piano pieces to concertos. He was a Roman Catholic and his religious music is of particular significance in his output. Of partly French ancestry, he became the leading British pupil of Nadia Boulanger. Whilst living in Paris he came to know Ravel and Poulenc and in 1936 he met Britten, who became a close friend and colleague. From the late 1930s onwards Berkeley wrote for the finest performers of the day who valued his music for its lyricism and unassuming individuality. As a teacher he influenced some of the leading composers of the younger generation including Richard Rodney Bennett, Nicholas Maw, John Tavener and his eldest son Michael Berkeley. The Serenade for Strings is a classic in the repertoire of British music for this medium and is one of Berkeley’s most frequently played works. It was first performed by Boyd Neel and his Orchestra at the Aeolian Hall in London on 30 January 1940. The first movement has the sparkling elegance of Mozart whom Berkeley idolised, but also the driving rhythm of a Bach Brandenburg Concerto; the second is a serenade; the third a kind of scherzo; but the final movement seems to reflect the tragic war years with a slow reminiscence of the opening theme at the very end. Peter Dickinson, composer and pianist, knew Berkeley for the last forty years of his life. He has taken part in Berkeley performances and written articles about his music as well as the first study of his work: The Music of Lennox Berkeley [1989, new, enlarged edition, Boydell Press, 2003].


serenade_prelims.qxd

26/02/03

23:05

Page 4

48

Critical Commentary Sources A: autograph manuscript in black ink, held at the British Library LOAN 101.3, dated ‘Sept–Nov 1939’ and signed by the composer with dedication “To John and Clement Davenport”. There are various annotations in pencil and blue crayon, which appear to come from a conductor. E: first printed edition (hand-written) by J.&W. Chester, London, 1940. J.W.C.110 P: set of hand-written parts. Property of Chester Music Ltd R: recording conducted by composer, Lyrita SRCS 74 (1975), re-issued on CD SRCD 226 (1992) The commentary below accounts for corrections to the original printed score of 1940 based on the sources indicated. Minor details of notation have not always been indicated and there are places where the composer has not been consistent. The following system of pitch notation is used:

Variants I Bar 1: metronome marking N =176 taken from E, absent in A. However R takes a considerably faster tempo, at N = 216 Bar 34, 2nd vln & vla: accents to note 1 added editorially; cf 1st vln Bar 34, 2nd vla: = added editorially to note 3 Bar 37, 2nd vln: V added editorially; cf 1st vln Bars 47(last beat)–8, cb: 8ve higher in E; reading follows A and P Bars 62–3, vla: accents on beats 3 & 4 from A, absent in E Bar 69, 2nd vln: tie to last note from A; absent in E Bar 69, vc: div. in A, absent in E. Amended editorially to bar 66 Bar 88–9(3rd beat), vla: reading follows A; E has parts reversed

II Bar 1: metronome marking N = 88 taken from E, absent in A. However R is somewhat slower between N =72 and 76 Bar 16, vla: tie to last note from A, absent in E Bar 18, 2nd vln (lower part): last beat = to f' absent in A and E, but present in R. Presumed composer error Bar 25, cb: p added editorially Bar 34, 2nd vln (lower part): last note = to d' added editorially Bar 47, 2nd vln: arco added editorially Bar 59, 2nd vln: trem. added editorially to minim Bar 60, vc: last beat, = added to c'. Absent in A and E. Composer error. Present in R Bars 61–4, 2nd vln: duplication between 1st and 2nd divisions removed III Bar 1: metronome marking N. = 96 taken from E, absent in A. R is slightly faster at between N = 104 and 108 Bar 48, vla: bowing added; cf bar 29 Bar 75, vla: A and E have nothing in this bar; quavers b and e taken from P Bar 101, 1st vln (lower part): c'' changed to d'' editorially. c'' is written in A and E, but d'' is almost certainly intended and played in R IV Bar 1: metronome marking N = 42 taken from E, absent in A. R is close to this tempo Bar 1, vla: p added editorially Bar 28, cb: last note amended editorially to G+ Bar 30–4, cb: 8ve higher in E; reading from A and R Bar 32, 2nd vln: trem. to crotchet (lower part), and ties (both parts) added by analogy with previous bar Bars 32–3, vc & cb: ties absent in A and E. Reading follows P and R Peter Dickinson January 2003


SERENADE IN FOUR MOVEMENTS I Vivace ( q = 176)

Violin I

        

pp

       Violin II

   

   

pp

 

LENNOX BERKELEY, Op. 12

    

     

  

   

  

 

                              pp

                             pp

Viola

                             pp

   

    Contrabass 

Violoncello

 4

  

div.

     

    

     

    

pp

pp

 

     



                                           

       

   

  

         

© 1940 J. & W. Chester, Ltd. This edition © 2003 Chester Music Ltd.


2

1

           

   



8

        

 

    

 

   

                                                    

 

                                                                

 12

  



          

      

f

pp

f

pp

f

pp

f

pp

f

pp

f

pp

f

pp

f

pp

f

pp

f

pp

                                                                                                                                                

  

    

unis.

    



                          

f

f

pp

f



f

pp


             16

f

 pp

 2           

                           f

pp

f

pp

f

pp

f

pp

    

                                   pp f                                                                  

     

                       div.          

  



   

pp

f

           20

   



   



  

p subito

                               p subito                                   p subito                                    p subito

                                                      p subito            

    

    

p subito

p subito

 

3


4 24

  



   



  





   



        

          

                  

         

       

      

   

   

 

   



  

 3 28

  

 

 

 



 

     

 

         

    

 

          

   simile       simile      

   

   

    

 

   

      

     

p

p

          

         

p

p

             p

       

            

 

       

            

 





  

p

         p



sf

sf

    

        p

        p

unis.

p

p

p



       p

       p

sf

sf


5                                        f 31

 









                       

  

f

    

    

  

                               f

  

                         

  

f

 



  



 



 



4

35

 

     

ff

   

   

ff

pizz.

   

ff

  

    

   

ff

arco

       

ff

arco

          ff

  ff

non div. arco

      

 

  

      

 

mf

ff

pizz.

   

    pizz.

        

unis.

                           f

 

  mf

                sff

mf

                sff

mf

  

  

ff

  

  

  

  

mf

mf


6

   39

 

      

  

5                ff

  

 

        

 

 

 ff

   

              ff  pizz.                                ff                    

pizz.

 



  

  

          

 



  

  

          

 43

 pizz.       ff

  

    

    

unis. arco

 

ff

  

  

 

mf

         sff

mf

  

        

      

  

 

      

  

 

mf

      

   

mf

mf

ff

 

         sff

    

    

    

arco

ff

mf

 


7 47

   

  

    

    

6

  

p

   

                   p

                         p 

  

 

 

  

  

 



  



  

  

 

  

    

p

    p pizz.

p

   

  

 51

   

                       unis.

            

 

  

 

 

  

             

    

 

 f

      

 

arco

f


8 55 7   

 

f

       

     

     

                                 cresc. f mf

                 

f

cresc.

 

   

       

 

  

   

       

 

    

    

 59

                           

8    

 

 

 

 

 



    

marcato

   

                                    

    

marcato



     

 

       

 

       


     

            

       

            

       

63

      



     

       

        

    marcato 

         

    marcato 

9

 

       

 

        

   

        

   

 66                                 

       



                              

      



     



cresc.

 

cresc.

                              



cresc.

                       

   

cresc.

   

                                  



 div.     

 

    

 

unis.        cresc.

   



   

 

   

 

            cresc.

   



cresc.


10

9

70

  



più f

  

 

    

   

 



 

    

 

più f

       più f

             più f

                            più f

  

    

più f

  

    

         

 

        

 sffz



sffz

più f

            p molto                                  74

p

molto                            p

    p

      p

 

 

        molto

      

              (f)

molto

(f)

   

   

sffz

             sffz

molto

molto

molto


10  78   

ff

  



    

 



11

   

 

                    ff                                    

(non div.)

ff                                     ff                              ff

                                  ff   unis.                     div.         ff                          82

  

ff

  

  

    



11    

         

                                                         

 

    

        

                                                                   simile div.                           simile


12 86

    

      

               

ff

p

p

ff

p

ff

p

ff

p

ff

p

ff

p

ff

p

ff

p

ff

p

ff

p

ff

p

ff

p

p

          

ff

               

                                                                                                                                                                                     

 

 

ff

   

ff

p

ff

 12     p  p                      

                     

90

  

 

p

   pizz.

  

  

 

p

 

                  

p

pp

                                   p pp

                      p             p p

 

     

  

 


13 94

   



  

 

  

  

dim.

 



        

arco

pp

        pp

                             

 

                          

 

    

 





 

  



 

p











 pizz. (non div.)

98

  

     pizz.      

f pizz.

pizz.

p

 

     

 

pizz. (non div.)

 

   p

 

    f 

(non div.)

p

    

   

 

f

   

     

p

                                       pizz.                  pp


14

II Andantino ( q = 88)

Vln I

    

     Vln II

   

pizz.

 





pp pizz.

 



 



pp

pp



pp



 

 

 



     

   



pp

 



 



pp

pp



 







 pp



pp

pp

      

                    

        

p

pp

Vla

Sul G cantabile

 pp

Vc

   pizz.                                            pp

Cb

   pizz.                                             pp

 5              

13 





                                                                 

       













p

        p

                                               

                                              


15

    9

    





                                                                     



    





   





                                                                                       

   

     13



14                

       

p

p

arco                    arco                  

      

 

 

 

       p       p

                                        

mf

 mf

 

  

 

cresc.

 

   cresc.

 





f

 

 

 

 

 

 

f

arco        p

 

cresc.-

-

cresc.-

-

    

arco

       

p


16

  

 

    17

f

mf



(rit.)

     

  

dim.

     

   

                           p

    

   

                               p

mf

mf

unis.

                 

p

    

   mf

   mf

   

 

  

     











dim.

dim.

15 21 (A tempo)

 

          



p

      

 

    

p

    



   

 



    



    

  mf

    

cresc.

mf

  

   

      

   


17 25     

     

    

p

f dim.

    

p

 

                                           p  p p 

 



                    p



p

f

 

    





    

p

p

 

 

p

 29

 

16 





    







 

p pizz.

  



  

p

                         

pizz.

                                  p

 

  

   

  

   

  

   

  

 

  

  

  

  

  

  

  

  

p

  p



 



 

     



 



 

     

p

p


18 33

 

   





      

17  

 

  

 

   

pp

      



   pp unis.

             arco            p       mf

    

     









dim.

  

   

  

 unis.        p

  

  

  

  

  

   

p

      

p

 37   

  

simile                      

 

cresc.

 

  

     

simile                     cresc.

    

  

      

  

  

 

  

  

 

cresc.

    

  

 

        cresc.

 

   

     cresc.



   

 

   

     cresc.



   

pp


19



 

       

  

41

                          dim.

mf

  

mf

 

     mf

      mf

  

 

dim.

 

     

  

 

  

  

 

  



pizz. p

dim.

mf





    

p

dim.



    

poco



p

dim.

18   A tempo   45

 

 

 arco



pp arco



pp

  

  

  

  

                                   pp

                                   pp cantabile

   p





            p pizz.

dim.

mf

rit.

    

pizz.                                                 p


20

49     p          





 



    

  



    

  

         

                          

         

                       

  

                            

pizz.

       

     

p

       

19    



53



   

 

   

  



p

  

  

                  p

  

  

                  p

          arco                         

  arco                               

p

 





  arco  





   

arco

p

p

 



p

                


   57

 

     

pp

     pp      pp

       

21

     

           

         

       

 

       

         

        

         

       

  



 

mp

  

            

 

  





 

        

     



   

  

   



p

         60

    

20     

pp

       

 

         

pizz.          

               p

         

p

    

  

   

 

 

   

 

pizz.



  

pizz.



             

 

   

   

 

 

 

 

 

 

    

 

 

  

pp cresc.

pizz.

pp cresc.

    

  

arco

 

pp

 

arco

pp

 pp

 pp


22 64         

    

21 

                                   pp

                                   pp pizz.                                   68













 





 

   

          

div.

 

pp

 

 

pizz.

         sf p         sf p

   arco      

 



p

f

                   pizz.

       

poco rall.

                                

 

pp pizz.

arco

  p f    arco    

 

 

pizz.

           

   

  

 

pizz.

           

   

  

 

f

p


23

III moderato ( q. = 96)  Allegro     Vln I

Vln II

Vla

Cb

 

 

 

 

 

 

Vc

 

                     p

            p             p

6

                          p

    

p simile

22   

 

 

pp

    p

                 

     

                 

     

p simile


24

10       

f



      f       

 



            f f                                 p f                          f          f           f 23  15        

p

 

p

 

          simile

  

             sf p 

                                                                 

      p         p                       

 

                      

 

                       

 

sf p

 

f

f

      

              f               f              

                 p sf   

  

    p

      p       p

simile

 

    p

 


20

   

 

 

 

          

 

                                  

       

 

   

              

 

     

                

                                

     

      

    

 

 

 

      

 

 

 

 

 

mf

f

 

     

pp

mf

    f                                       pp f              pp f                      

      

mf

24        

  

      mf     

f

       

25

   

25



          

  

                                        

                       pp   

     

f

f

  

 

 

div.

f


26 31

  

    

simile

  

   

 

sf

   





sf

  

 

                       

  

 

  

 

                                     

 

                        

  unis.                       







     

 

 37

 



    sf

25

                  

sf

   

                        

   

                

       

  





 

                                                                                                 





   




                   42

26   

27

 

 

ff

cresc.

                        cresc. ff

                                     ff

cresc.

                        ff

cresc.

    

 

cresc.



 

cresc.

             f sempre

      p

ff

  

f sempre

       p

ff

                   

 46                                   mp

f

 

              f

       

 

       

mp

      f

 

     

   

   

   

   

f

 

 

                           

 

                           


28

 

   

27 

51

p

                      (        

f

 56

(cresc.)

 

                 cresc.)                 

ten. 28     

 

 

 

       

  

             

cresc.)

           

   

     

                 (cresc.)

           

   

     

                

(

   

   

           

     

(cresc.)

           

     

(cresc.)

   ten.   

   ten.   



ten.   



    

ten.    

  ten.   



    



ten.    

    ten.  



         

ten.        

ten. 

ten.      



         

f



f

ten.

      f

f

    

  

  

     

  

     

  

(f)

(f)

(f)

 


29

29

61

 

    

 

     

 

     

mf

     

        f





 

       

f

     

            

     

  

sf p

 p

sf

 

 65

     

   





 

ff

     f

   


30

30

69

 

 

    

  

 





 







f

 72

 

 

 

    

 

   



  

 

    

 

    f




      

75

trem.

sf - p trem.

31

 

 



  

 



sf - p

                                    p

                                  

p

   

   

 

 





p

   

  

78

31     sf - p   

   

sf - p

       

   

                          

  

pizz.   

f pizz.

   

f

 

 



 


32

      81

  











 



  

   





 



  

  

                                     

  

 







f

 84

 un poco meno vivo     pp

  

pp

   

   

arco 









p

 

   p


33

32                                       87

   

pizz.

mf





 

 

  



 

 90

                  

                

 

      

     



  

pp

pp

       

mp



  

p

    

  

arco

         pp 


34

33 A tempo

94

 

col legno

  



      

     



       

     







     

        



 

        

          



pizz.  

     

      

     

      

pp

col legno

 

pp



col legno

 





pp col legno

    

pp

              pp

     pp     

pp

pizz.

  pp

pizz.

pp

3

pizz.

     

pp

   

div. pizz. pp



  

 

 

3



3

         

      

        sf

     

sf



pp

pp


35

       

      

      

    

 

       

       

       

    

 



98

   



 

   

       

     

         



       

          

    

 

     

     

     

    

      

     

     

    

  

 

  



 

  

3



 

  

3



 

3

         

         

         

      

          sf

        sf

         sf

     

sf

sf

sf

pp

pp


36

34

102

 

          







p arco

                pp 

           

arco

pp arco

           

pp

arco

         

         

               

 

pp

     

arco

pp

arco pp

arco pp

107            



             simile



  etc.       

                                 simile

simile                               

        simile

                      


37 35                                            pp 112

                               pp

                               pp

    

  







           





            



mp

    

   





mp

 

                            pp

 

  

                       

pp

      

36       

117

f

                              



f

                               f

simile          











  

                          f

                          f

   


               

38

         122

                       

     

                 

         

                  

f

 

 

 



          



           





          



           



37                          

127

 

ff

            

 

  







            

 

    

 

   

ff

         



ff

     

 



ff

(  

 )

     

 



ff

 


39 133

 

    

   

     

   

                                          

  

  

       

p cresc.

    

         

    

         

     

    

         

 cresc.

 cresc.

 cresc.

 

 

 

  

 

ff

 

 

 

  

       

 

   p

             

p

ff

      p ff       p ff       p

p

ff

            

 

p

ff

            ff              ff             

  p

      p         p       

 

              

 

    

38  138                ff             

p cresc.

p cresc.



   

       

  

  

      

  

  

 

      

p

                  pp

                     


40

       

     

 

        

     

 

          

     

143

 

  p

 

p

                            p        p        p         p              

 

  

p

     

 

   p

     

                                          

     

 

 

            39                            

147

 

 

 

leggiero

              

            

   

leggiero

                                   pizz.                p  pizz.                 p  

 

                          

 

 

 

 

  

 


41

pizz.

151

  

 f

pizz.    

 

 

 

 

  

f

 

                 mf



pp

                   mf pp  

  

      

 

  

      

 

 

 

 

arco p

 

p

   

cresc.

cresc.

 



       mf espressivo

      

       

mf espressivo

 

     

     

pp

40 155  arco                     

pp

 









 





 



         

    

                  simile pp                 p espressivo

 


42 160

 

 

 

          

p

 

    

     

    

     

p

     

p

   

   p

  

p

  

p

  

p

div.

      p pizz.

arco

   p

41

164

  

           

 

   

pp

 

            

     

pp

     

pp

  

     

pp

   pp

 

 

           

 


168

  

 











 

  









 

  









 

  









 

  









 

  









 

    



 

   pp



 



 



pp

pp

pp

 



 



pp

pp

pp

    

pp

                       

                       

 





 



 

43


44

IV Lento ( q = 42)

Vln I

   tranquillo      

  

  

p

    

Vln II





  



p

        p

Vla

Vc

 

  

                              

   

 



 

 



 

   

 



 

 



 

p

Cb

    

  

  

p

 5

   

  

  

cresc.

   

    

cresc.

 

         

  

mf

                  mf

                             cresc.

 

                            



mf

 





 





 

cresc.







  

  

  

  

mf

cresc.

 

         

    

mf

cresc.

 

  

 



 mf





     

     


9

42

 

   

        



       

pp

 

  

 

pp

  

 

mp

   p

    p

    

     



 



   

   

     

              

     

45



 

 

 

   

 

   

      

      

p div.          pizz.

p ma pesante

      

      

      

      

      

    13



       

  

5

      

  



   

  

     

   

  

     

   

  

     

   

 

 



f

  

   

    

f

f

    

 f

p

              sim.

  

f

5



arco          

f unis.

 f

 


46

43              

16

     dim.

  dim.

p cresc.

p cresc.

dim.

 dim.  20   

  

 

 44   23     ff       ff      ff     

ff

ff

          

 

  

 

cresc. poco a poco

 

 

  

 

  

cresc. poco a poco

      

cresc. poco a poco

  

  

 

cresc. poco a poco

  

   

 

cresc. poco a poco

  





  

 

  

  

      

   

  

   

   

 

           

cresc. poco a poco

             p cresc. f              p cresc. f               

  

 

          

f

                f

 

 

f div.

p

                

dim.

dim.

            

  

 

 

f

p

 

     

   dim.

   dim.    

         dim.             dim.               dim.

     

 

      

       

  

       

  

  

  

  

  

 

  

  

  

 


47

45 27

div.

 trem.    p

  

 

    

p

    

mp

  

  

   div. trem.

  

          



div.

mp

   trem.     

p

 

 

  

  

 

 

 

  





  



 

 





  



 

 

p

        

p

           31

         

   

  



 

dolce

   pp

 

 

 

 

 

  

         

              

  

  

  

  



  

 



   



  

 



   

pp

 

    

       

    

       


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.