MANEJO DE ERRORES Cálculo Numérico y el Manejo de Errores
Métodos numéricos.
Cifras significativas
Error Editado por Sofía Berrios
Prologo
El análisis numérico o cálculo numérico es la rama de las matemáticas que se encarga de diseñar algoritmos para, a través de números y reglas matemáticas simples, simular procesos matemáticos más complejos aplicados a procesos del mundo real. El análisis numérico cobra especial importancia con la llegada de los ordenadores. Los ordenadores son útiles para
cálculos
matemáticos
extremadamente
complejos, pero en última instancia operan con números binarios y operaciones matemáticas simples. Desde este punto de vista, el análisis numérico proporcionará todo el andamiaje necesario para llevar
a cabo todos aquellos procedimientos matemáticos susceptibles
de
expresarse
algorítmicamente,
basándose en algoritmos que permitan su simulación o cálculo en procesos más sencillos empleando números.
Cálculo Numérico y el Manejo de Errores El análisis numérico consiste en procedimientos que resuelven problemas y realizan cálculos puramente aritméticos. Pero hay que tomar en cuenta las características
especiales
y
limitaciones
de
los
instrumentos de cálculo (como las computadoras) que nos ayudan en la ejecución de las instrucciones del algoritmo. Si bien no nos interesa la construcción de tal dispositivo o la manera en que funciona, si nos importarán los sistemas numéricos de máquinas en contraposición con nuestro sistema de números reales, y los errores resultantes de cambiar de uno a otro sistema.
Una buena razón para estudiar el análisis numérico es mejorar nuestra comprensión de los conceptos de las matemáticas (puras) observando como algunos de ello
deben
modificarse
necesariamente
matemáticas computacionales.
en
las
Métodos numéricos. Los métodos numéricos son técnicas mediante las cuales es posible formular problemas matemáticos de tal forma que puedan resolverse usando operaciones aritméticas. Hay muchos tipos de métodos numéricos, y comparten una característica común: invariablemente se deben realizar un buen número de tediosos cálculos aritméticos. Los métodos numéricos son herramientas muy poderosas para a solución de problemas. Pueden manejar sistemas de ecuaciones grandes, no linealidades y geometrías complicadas, comunes en la ingeniería. También es posible que se utilice software disponible comercialmente que contenga métodos numéricos. El uso inteligente de estos programas depende del conocimiento de la teoría básica de estos métodos; además hay muchos problemas que no pueden plantearse al emplear programas hechos, conociendo bien los métodos numéricos se puede diseñar programas propios y así no comprar software costoso. Al mismo tiempo se aprende a conocer y controlar los errores de aproximación que son inseparables de los cálculos numéricos a gran escala. Los métodos numéricos son un medio para reforzar la comprensión de las matemáticas, porque profundizan en los temas que de otro modo resultarían obscuros, esto aumenta su capacidad de comprensión y entendimiento en la materia.
Cifras significativas Cuando se emplea un número en un cálculo, debe haber seguridad de que pueda usarse con confianza. El concepto de cifras significativas tiene dos implicaciones importantes en el estudio de los métodos numéricos. 1.- Los métodos numéricos obtienen resultados aproximados. Por lo tanto, se debe desarrollar criterios para especificar que tan precisos son los resultados obtenidos. 2.- Aunque ciertos números representan número específicos, no se pueden expresar exactamente con un número finito de cifras. Exactitud y Precisión. La exactitud se refiere a que tan cercano está el valor calculado o medido del valor verdadero. La precisión se refiere a qué tan cercano está un valor individual medido o calculado respecto a los otros. La inexactitud se define como un alejamiento sistemático de la verdad. La imprecisión, sobre el otro lado, se refiere a la magnitud del esparcimiento de los valores. Los métodos numéricos deben ser lo suficientemente exactos o sin sesgos para que cumplan los requisitos de un problema particular de ingeniería.
Error En general, para cualquier tipo de error, la relación entre el número exact9 y el obtenido por aproximación se define como: Error = Valor real -valor estimado En ocasiones, se sabrá exactamente el valor del error, que denotaremos como Ev, o deberemos estimar un error aproximado. Ahora, para definir la magnitud del error, o que incidencia tiene en el cálculo el error detectado, podemos normalizar su valor : Ea = Error relativo (fracción) = error estimado I valor verdadero Como el valor de Ea puede ser tanto positivo como negativo, en muchos casos nos interesa saber más la magnitud del error, caso en el cual usaremos el valor absoluto de este. Un caso muy interesante es una investigación que realiza Scarborough, en que determinó el número de cifras significativas que contiene el error como: Si reemplazamos Es en la ecuación. Obtendremos el número de cifras significativas en que es confiable el valor aproximado obtenido. Así, si queremos que nuestro cálculo tenga un error menor al criterio para dos cifras significativas, debemos obtener números que correspondan a menos de: Es=(0.5x 102–2)%=0.5% Esto nos servirá para determinar cuántos términos serán necesarios en un cálculo aproximado para tener la certeza que el error se encuentra bajo el margen
Hay dos formas de expresar el tamaño del error en los resultados de un cálculo, el Error Absoluto y el Error Relativo. Error absoluto. Sea x0 una aproximación del valor exacto x, entonces: error absoluto: ε = ε (x) = |x − x0| Se trata de una medida cuantitativa del error, mide asépticamente lo que dista la aproximación x0 del valor exacto x. Error relativo. Sea x0 una aproximación del valor exacto x, entonces: error relativo: e = e(x) = ε / |x| Se trata de una medida cualitativa del error, mide lo proporcionada que es la aproximación x0 en relación con la magnitud del valor exacto x.
ERROR DE REDONDEO Muchas veces, los computadores cortan los números decimales entre e17° y 12° decimal introduciendo así un error de redondeo Por ejemplo, el valor de “e” se conoce como 2.718281828… hasta el infinito. Si cortamos el número en 2.71828182 (8 cifras significativas luego del punto decimal) estamos obteniendo u error de E = 2.718281828 −2.71828182 = 0.000000008… Sin embargo, como no consideramos que el número que seguía al corte era mayor que 5, entonces nos convenía dejar el número como 2.71828183, caso en el cual el error sería solo de E = 2.118281828 −2.11828183 = −0.000000002.. , que en términos absolutos es mucho menor que el anterior. En general, el error de corte de las computadoras será muy inferior al error introducido por un usuario, que generalmente corta a un menor número de cifras significativas.
ERRORES DE TRUNCAMIENTO. Los errores de truncamiento tienen relación con el método de aproximación que se usará ya que generalmente frente a una serie infinita de términos, se tenderá a cortar el número de términos, introduciendo en ese momento un error, por no utilizar la serie completa (que se supone es exacta). En una iteración, se entiende como el error por no seguir iterando y seguir aproximándose a la solución. En un intervalo que se subdivide para realizar una serie de cálculos sobre él, se asocia al número de paso, resultado de dividir el intervalo “n” veces. ERROR NUMERICO TOTAL El error numérico total se entiende como la suma de los errores de redondeo y truncamiento introducidos en el cálculo. Pero aquí surge un gran problema. Mientras más cálculos se tengan que realizar para obtener un resultado, el error de redondeo se irá incrementando. Pero por otro lado, el error de truncamiento se puede minimizar al incluir más términos en la ecuación, disminuir el paso o proseguir la iteración ( o sea mayor número de cálculos y seguramente mayor error de redondeo). Entonces, ¿qué criterio utilizamos? …lo ideal sería determinar el punto en que los errores de donde empiezan a ocultar la ventaja de considerar un menor error de truncamiento. Pero como dije, es lo ideal; en la práctica debemos considerar que hoy por hoy los computadores tienen un manejo de cifras significativas mucho mayor que antes por lo que el error de redondeo se minimiza
Cálculos estables e inestables Otro tema de frecuente aparición en el análisis numérico es la distinción entre los procesos numéricos que son estables y los que no lo son. Un concepto muy relacionado es el de problema bien condicionado o mal condicionado. Un proceso numérico es inestable cuando los pequeños errores que se producen en alguna de sus etapas se agrandan en etapas posteriores y degradan la calidad de los resultados. Un problema está mal condicionado si pequeños cambios en los datos de entrada pueden dar lugar a grandes cambios en las respuestas.