Po r t fo l i o Sotiris Monachogios selected work 2014 - 2020
MArch UCL Design for Manufacture DiplArch University of Patras London, United Kingdom
SOTIRIS MONACHOGIOS ARB Registered Architect
YoB: 1991 Stratford, London, UK (+44) 07802 629547 (+30) 6976633073 sot.mgs@gmail.com monachogios.com Sotiris Monachogios
PROFILE
WORK EXPERIENCE
Architect and Maker (UCL MArch) specialised in Design for Manufacture with 3-year hands-on professional experience in designing and developing concept ideas, manufacturing innovative projects, drawings and 3D modelling. Expert user of Rhino, Grasshopper, AutoCAD, Adobe Suite and other design software. Participated in several architectural competitions and exhibitions worldwide. Proven record of problem solving efficiency through evaluating the dynamics of the unit as well as the whole.
Pattern Design, London, UK // 03.2020
AREAS OF EXPERTISE Innovative Manufacturing Techniques Computational – Parametric Design Concept Design 3D CAD Drawings & Modelling Grasshopper – Rhino Rendering
DESIGN & TECHNICAL SKILLS
COMPUTATIONAL DESIGNER – ARCHITECT
Fast parametric design iterations of massing design, GA, pattern testing with Grasshopper and Rhino, also developing ways for efficient exchange of drawings between Revit and Grasshopper (contractor, termination due to the pandemic). o Participation in competition for the design and construction of a stadium. AUDO Architecture Urban Design Office, Greece // 09.2017-08.2018 JUNIOR ARCHITECT
Contributed to concept ideas, drawings, 3D modelling and renderings using Rhino and Grasshopper, built prototypes and conducted implementation studies. Liaised with engineers, interior designers and stakeholders (Lambs & Lions, K-Studio). o Participated in the design of Casa Cook Chania resort (Thomas Cook Group), GAKU Sushi Bar, hotels and private residences in Greece. Hellenic Navy, Lighthouse Service, Greece // 12.2016-11.2017 ARCHITECT (military service)
Responsible for the restoration and conservation of Greek Lighthouses. Designed and developed 3D modelling, renderings, and inspecting on-site activities. o Renovated the interior of existing lighthouses into temporary residences. o Designed and developed concept ideas for renovating a military warehouse. Mold Architects, Greece // 05.2017-07.2017 FREELANCE ARCHITECT
Participated in the late design stages of a private residence with 3D CAD drawings and post-processing using Photoshop. Patronis Architects, Greece // 12.2016-01.2017
Design Software Rhino, Grasshopper (incl. Kangaroo, Robots, Karamba), Revit, AutoCAD, Maya, Enscape, V-Ray, Photoshop, Illustrator, InDesign, Premiere, Lightroom, Dimension, Fusion 360
FREELANCE ARCHITECT
Technical Skills Hand drawing, model-making, wood milling (using KUKA robotic arm programmed with Grasshopper), 3D scanning, 3D printing, laser cutting, metal welding, wood working
INTERN ARCHITECT
DISTINCTIONS Junctions on the City (Thesis)|2017 1st prize in 2016 Diploma Thesis Competition held by gradreview.gr (Greek Architects site)
D3 Housing Tomorrow | 2014 Selected for exhibition along with 22 other international submissions
Designed and developed concept ideas, drawings, renderings, motion diagrams, and handled post-processing using Photoshop and Illustrator. As part of the “New Cyprus Museum” competition. 314 Architecture Studio, Greece // 07.2015-09.2015 Mold Architects, Greece // 07.2014-09.2014 Designed and developed design concepts, drawings, 3D CAD designs, video animations, volume charts, renderings, handled post-processing, and created volume compositions using Rhino, Grasshopper, Maya, Autocad, Photoshop and Illustrator. o Participated in the first design stages of a theatre in Alimos, Greece. o Participated in a competition for a public memorial building hosting a library.
COMPETITIONS Six competitions, including: Monte d'Oiro Wine Tasting Room | with I. Giannakopoulos | 2020 The New Cyprus Museum | with Patronis Architects | 2017 Casablanca Bombing Rooms | with 314 Architecture Studio | 2015 D3: Housing Tomorrow | curators’ selection | with V. Chaeropoulou, R. Charalamboudi, C. Loizou, A. Polykandriotis – supv.: I. Patronis| 2014
SOTIRIS MONACHOGIOS ARB Registered Architect (MArch)
50 Tennyson Road, Stratford, E15 4DH London 07802 629547 sot.mgs@gmail.com monachogios.com Sotiris Monachogios
PUBLICATIONS
EDUCATION
UCL Design Thesis: Bending active timber: the five symbiotic surfaces archisearch.gr
The Barlett School of Architecture, University College London, UK // 2018-2019 MArch Design for Manufacture
Diploma Thesis: Junctions on the City GRAD review: architechts and designers in Greece (architectural magazine, issue #2) Architectural Competition: Casablanca Bombing Rooms 314architecturestudio.com (architectural office website) // archisearch.gr Architectural Association Visiting School archisearch.gr // converstions.aaschool.ac.uk (AA website) Architectural Competition: D3 Housing Tomorrow 2014 Arch.upatras.gr (Patras School of Architecture official website)
Indicative Modules: Contextural Theory, Skills Portfolio, Thesis Report, Design Thesis Portfolio Design Thesis: Bending active timber: the five symbiotic surfaces |Tutors: Vincent Huyghe, Chris Leung, Tom Svilans, Emanuel Vercruysse | Advisors: Peter Scully, Prof. Bob Sheil Thesis Report: Active Bending: Peg Lamination in Structurally Informed Architecture| Supervisors: Stephen Cage, Ruby Law
Department of Architecture, University of Patras, Greece // 2010-2016 Diploma (Integrated Master) in Architecture (MArch) – 5-year degree Grade: 8.81/10 (summa cum laude)
Indicative Modules: Urban Art Interventions, Architectural and Urban Design Studio, Special Topics in Geometry and Digital Architecture, Sustainable Design, Building Technology, Architectural Design, Visual Arts, Structures, Urban Design and Planning Diploma Thesis: Junctions on the City | In collaboration with: A. Polykandriotis | Supervisors: A. Spanomaridis Diploma Research Thesis: Detail: Unveiling the Architectural Consistency | In collaboration with: A. Polykandriotis| Supervisor: A. Spanomaridis
PROFESSIONAL DEVELOPMENT Sir Peter Cook Drawing for Making Workshop | UCL, UK | 15-19.07.2019
ICT & LANGUAGE SKILLS ICT-Skills Word, Excel, PowerPoint (ECDL expert level) Language Skills English (fluent-C2 level) German (Intermediate-B1 level) Greek (mother language)
VOLUNTEER WORK Open House Athens | Official photographer in 2019 - Guide at Athenian buildings in 2017
INTERESTS Photography (collaborations, competitions with won prizes and exhibitions), electric and classical guitar, music writing
A workshop on catalyzing ideas for making through drawing, UCL at Here East, London.
Impossible Place: Critical Design and Urban Spaces | Athens, Greece | 27-29.05.2017 A workshop focusing on analytical tools and strategic models that promote a critical reflection on the present and an array of possible heterogeneous futures centered around the city of Athens.
Architectural Association Visiting School | Patras, Greece | 22.09-01.10.2014 A workshop where the fields of productive design and simulation technologies were explored. An interactive / moving architectural prototype that collects data from the city of Patras and is shaped accordingly was designed and built in 1:1 scale.
EXHIBITIONS Fifteen Show | 2019 participation with final Design for Manufacture project, 5-14 Dec 2019 // location: The Bartlett at UCL, 22 Gordon St, London, UK
Diploma Thesis Projects Exhibition | 2018 held by: greekarchitects (gradreview.gr) // location: Ianos bookstore, Athens, Greece
D3 Housing Tomorrow | 2014 the exhibition featured 22 international projects submitted to the 2014 competition // location: Gerald D. Hines College of Architecture, University of Houston, USA
Imagine the City | 2014 two entries. Exhibition with proposals of urban, architectural and visual interventions concerning the city, and more specifically the coastal zone of Patras // location: Agora Argyri, Patras, Greece
Sotiris Monachogios ARB registered architect in the UK Member of the Technical Chamber of Greece 50 Tennyson Road, Stratford, London, E15 4DH tel (+44) 07802 629547 (+30) 6976633073 sot.mgs@gmail.com monachogios.com
TA B L E O F C O N T E N T S Bending Active Timber: the Five Symbiotic Surfaces 6 UCL MArch Design for Manufacture Thesis // 2019 Casa Cook Chania 16 Part 2 Architect // Resort - Built Project // 2017 - 2018 Junctions on the City 24 DipArch Design Thesis // 2016 Detail: Unveiling the Architectural Consistency 34 DipArch Research Thesis // 2015 Vital Vessels 36 Architectural Competition // 2014 Chrysalis 40 Part 1 Architect // Architectural Competition // 2015 Aethyr 44 Workshop // 2014 The New Cyprus Museum 48 Part 2 Architect // Architectural Competition // 2017
B E N D I N G AC T I V E T I M B E R : T H E F I V E S Y M B I OT I C S U R FAC E S UCL MArch Design for Manufacture Thesis // Fall - Winter 2019 Design for Manufacture and Assembly - Built Project Tutors: V. Huyghe, C. Leung, T. Svilans, E. Vercruysse Advisors: P. Scully, Prof. B. Sheil
The project tries to build a mutually symbiotic relationship between elastically bent birch plywood sheets that actively seek their own forms. This relationship is a product of a forest of wooden pegs anchored in a way to minimize geometrical deformation. What connects the pegs to the sheets is an array of intelligent nodes that allow for easy disassemblage in situ. The versatility of the project hypothesis ensures application at all scales, ranging from furniture to habitable spaces where the purpose of the elements is increments from mere geometrical to added structural demands. In order to stress the interdependence of the surfaces and the contribution of all the components to the system, the design became more secluded from the external world, creating a universe where surfaces, pegs and nodes act as one. The design and manufacturing approach here was deterministic. Everything was designed in detail, the holes were later drilled, the pegs were cut to length, the nodes and the details were properly designed and fabricated for the high time of the assembly. During the assembling phase, the system acted as a live form-finding and force diagram, with the sequence of actions affecting the whole geometry until the final piece.
With a width of 1.3m, a height of 2.3m and a thickness of 0.3m, the artefact was the outcome of a fight between four birch plywood surfaces and a network of oak pegs. The external surfaces were 4mm thick, the one in the middle 4mm and the closed shape in the core of the structure was 2mm thick birch plywood. The curvature achieved was dependent on the thickness of the material and informed the decision for the layering sequence of the surfaces. The pegs were oak wood, 9, 12 and 18mm thick according to the length, their population size and the local tendency (highest curvature) of the surfaces to spring back due to active bending. In order to ensure that the designed geometries were feasible, physical bending tests were executed with hands, bending the strips to their extremes and defining their bending limits. Due to the deterministic nature of the project, all the geometries needed to be explicitly designed and anticipated before the assembling phase. As an extra security check, the design was refined after overlaying the wooden strips on their one to one printed front view, bending them on top of the printed paper, and making the required adjustments to the design.
7
Exploring active bending within structures initialized the formation of a relationship between two surfaces. Starting off with single pegs and a handcrafted metal jig, a set of plywood sheets was machined with a KUKA robot, following a toolpath delivered from a geometrical and structural analysis. The robotic arm provided milling freedom regarding the angles of the holes, whilst the jig brought rigidity and adaptability to the workpiece during the machining and assembling stages. Achieving the assembly between bending-active elements often requires a remarkable amount of strength and precision until the elements are forced to get the desired shape. The explorations performed with active bending proved that at least one of the two surfaces should be immovable so that the assembling phase becomes more feasible. The possibility of an extension of the making methods arose.
handcrafted, adjustable jig and panels on the robot’s rotary table before the workpiece calibration
Making use of the standardized dimensions that a big plywood sheet comes from the factory, a subdivision of its surface informed the size of the jig. From the 6 by 2440 by 1220 millimeters birch plywood, a 1220 by 305 mm was the new unitized board. A structure of an elongated box, a wireframe of edges made of steel box sections and a set of leadscrews comprised the jig. Receiving two of those panels at a time, one on each side of the jig, the pieces could be first machined flat while each of them being attached vertically from 6 support/ control points. Into Rhino’s Kangaroo physics simulation, every move of the 6 anchor points to a goal position would affect the surfaces, which would try to adapt to the changes and deform in an attempt to locally follow the new anchor points’ positions.
machining of the two panels: the jig, mounted on the robot’s rotary table, holding them flat in a vertical position. Breakouts at the holes due to resonance
closeup to the leadscrew component with which the positions of the 6 anchor points can be adjusted, and the preparation of the plywood panels to the correct formations by twisting the leadscrews manually
the (gently) bent, machined and assembled component before its removal from the jig
Next was the fabrication of a floor segment, where the bottom surface would be geometrically informed by the forces applied to the top of the structure. The bottom surface was a 6mm birch plywood sheet and the top was 12mm in order to increase the structure’s rigidity. After applying a set of forces and undergoing through a Karamba structural analysis and several design iterations, the pegs’ positions and angles were defined, informing the robotic milling operation. The displacement informed the creation of the bottom surface that would come to reinforce the floor. For the machining part of the floor section, a KUKA KR60 robot was used for milling the holes on the panels. A code that was exported from the Robots plugin from Grasshopper and executed on the stock birch plywood panels, clamped firmly on a flat table.
Robotic toolpath for machining of the top surface of the bending active system, generated with Grasshopper plugins
Machining of surface with angled holes using a KUKA robot
Assembling was the next phase, inverting the top and bottom skins: the thicker, top surface was clamped on a table and all the pegs that had similar orientation were hammered in their holes. It became apparent that due to the pegs coming at different angles, it was impractical to fix all the pegs and subsequently bend and fix the bottom, thinner surface at once. Because of the bottom surface tendency to spring back to its flat condition, ratchet straps were employed, escorted by several clamps that were placed near the areas of curvature changes. The edges of the top and bottom surfaces had to align and the global geometry had to be approximated with the ratchet straps, before the remaining pegs would come and lock everything in shape.
3D scanning unveiled geometrical inaccuracies due to high forces and curvatures that were more extreme than the material allowed for active bending
finished floor segment with peg lamination // photo: Sarah Lever 9
8
1 2
7
3 6
4
5
Following on to the final design project, in order to select the pegs’ positions, we did an optimisation where Kangaroo was redoing the active bending simulation multiple times, trying to minimise displacement in the output geometries. The simulation/optimization ran in eight increments, marked by the eight discrete zones of the structure. A one-go optimization for the whole structure would create a highly unstable model in Kangaroo that would be difficult to manipulate and analyze in terms of geometrical rigidity, our main target. Knowing by definition where the greatest forces on the surfaces would be applied, the ends of them were manually selected as support areas represented by points, which were always fed to the optimisation unaltered. Starting with specific points denoting the support ends, the optimisation would target for the least geometrical displacement, changing the points positions and creating sets (lines) between them in a way that would decrease geometrical displacement. The physics simulation was executed with Kangaroo and Zombie solver. Left: Areas of peg families, within the bounds of which separate optimization and geometrical simulations were executed. The dashed lines is the displacement read as length of lines between the initial geometry and the simulation run through Kangaroo: greater attention with the pegs potition needs to be paid at the areas with high curvature and at the end of the strips.
Above: Kangaroo inputs of geometries and pegs, being altered by Octopus evolutionary solver. Zombie Solver to the right ensures that the output is fed back to the solver after a specific time that is enough for the geometry to start settling to its stable condition.
The detail was designed and refined to have an easy assembly for the pegs to the nodes. The free rotation of the top part against the arm of the node releases the maker from the duty to align the holes at both ends of the peg that would connect it to the two nodes (one on each side). The pinch release holes provide an easy disassembly at any time. All the nodes have a pin on their base, extending towards the surface and securing them from sliding on it. Two holes on each node, placed parallel to the surfaces’ width, receive the fixings on the surface.
The nodes of the middle 4mm layer surface share the same spot with their neighbours in an attempt to leave the surface as unperforated as possible. A specific design with a pin and a slot was designed so that the two facing nodes can snap in place together, sharing the same fixings on the surface.
11
1300mm
300mm
2300mm
The nodes were crafted with the implementation of an additive manufacturing technique. Due to the need for clearance between the top and bottom parts of the snap fit joint, the normal 3D printing with PLA filament would require support material to build higher than the slots. For that reason and for increasing the strength of the connections, the method of SLS (selective laser sintering) was selected. Tests were conducted to ensure the durability of the connection so that the snap fit joint does remain in place within limits of forces applied to it. In order to simplify assembling, the initial thought was to nest pegs into families of lengths and have the printed node compromise for the length difference. The high cost of SLS dictated to keep the printed parts to their minimal volume, having the pegs to take up for the length differences. The five symbiotic surfaces: front and side view of the pegs-nodes network, unveiling the structure of the peg forest. Before shifting to the solution of hanging the installation from the top, the design was done so that it would be supported from the bottom, hence the extra pegs at the base of the system
Some of the Octopus optimization processes done for the segmented structure, opting for minimising deflection and the number of the nodes. Trying to keep the logic of a failry even distribution along the surfaces and with the need to reinforce the edges of them, the optimization could not work without some manual inputs by the user, close to the surface ends
The process of assembling, adjusting the positions of temporary threads and wooden blocks screwed on a board with the profile of the system. Pushing the surfaces in the right time and place was of high importance to secure the stability of the structure suring the assembling 13
With this bidirectional relationship between two or more bent plywood sheets, the sheets act against each other in bending, held in tension by a ‘forest’ of struts or pegs which tie the surfaces together. A smooth spatial structure can therefore be created – an actively bent space truss – hinting at applications for dynamic, lightweight structures, furniture, or aerodyamics. Above: pegs divided in families (numbers corresponding to p.8 diagram) before assembly and group of pegs connected to nodes
15
© k-studio
CASA COOK CHANIA A Thomas Cook Resort Built Project, Crete, Greece // Fall 2017 - Summer 2018 Part 2 Architect // K-Studio & AUDO, design direction by Lambs and Lions, Berlin 2D drawings and 3D modelling, stages 4 & 5 and preparation of as-built drawings
The third manifestation of the Casa Cook resort brand, Casa Cook Chania is a continuation of the brand’s image of texturally enriched comfort within a laid-back luxury concept. Here their refined creative approach is adapted to the extensive hillside location on the Cretan coast. The main characteristic and central idea of the architectural proposal for the development of the complex was the creation of a small house / room settlement with independent courtyards, as opposed to an alternative approach where the proposal would take the form of a single building unit. Therefore, the main objective was to maintain a small scale in the settlement but also to maximize the autonomy of the units. The hypothetical total volume of the building is split into smaller ones, accommodating different uses of the building program, which are developed following the topography of the plot. This split is based on a grid and axes oriented to the beach boundary and the view towards the sea. By combining the growth in levels and the volumes split, the hotel complex allows for views towards the seafront. The design approach was twofold: to use Modernistinspired architecture as an elegantly dynamic solution to the challenge of providing a lot of single-story space on a sloping site; The stone walls of the building create an initial visual barrier that allows the visitor to slowly discover the view as soon as it enters the building until it enters either the porch or one of the two exits that lead it to the rooms. With a simple, clean and earthy colour palette a lightweight composition is implemented: stonework, exposed concrete, natural coatings, and warmly coloured wood. These materials and the color palette help to further assimilate the proposal into the natural landscape.
contact with the boundaries of the plot and the required distances are maintained. The hotel complex consists of the following communal areas: the arrival building, a playground building,a restaurant, a retail shop, a yoga place and locker rooms with restrooms. Regarding the rooms, they are 106 in number and are divided into five typologies: 4 x Presidential Suites (x4), Villas (x16), Suites (x30), Junior Suites (x28) and Standard Rooms (x28). Having most of them at a unique relationship to their surroundings, a casespecific approach was widely followed. Limitations such as height regulations, the built rooms altitude proximity to the existing landscape and the need for not blocking views and pathways rendered many of the buildings unique in the small details and the as-built drawings. In order for the project to flow seamlessly, a continuous interaction with all the included parties was a necessity. Exchanging drawings and ideas happened between Stakeholders, architects, interior designers, engineers, contractors and builders. Preparing intricate 2D drawings and modelling the proposal in 3D space was the foundation upon which the project moved forward. After a number of revisions from the local building authorities, the implementation study took its place with as-built drawings for all the details, spanning from wall typologies to skylight or handrail details.
In the overall philosophy of the study, all the limitations laid down by legislation have been considered. The building program is developed in more than one building which are spaced between each other. No building is in 17
view to the sea
9
8 7
the hotel on site
5
6
4
4
3
3 Š k-studio 2
suite (mock up room) finished interior
Š k-studio
presidential villa view
elevation from the seafront
1. arrival building 2. villas and presidential villas 3. suites 4. junior suites and standard rooms 5. yoga place 6. restaurant 7. locker room and rest room 8. retail shop 9. playground
1
general topographic plan
villas and presidential villas plan
villas and suites section
19
Part of coverage and area diagram
8.90
0.45
0.25
E Γ
Z Δ
Α
Α
κάλυψη 133,92τμ
0.32
E Ημιυπαιθρίου = 0.84 x 7.50= 6.30τμ
E Πέργκολας* =5.00 x 5,05 = 25,25 τμ * μετράει ως ΑΗΧ
Α
δόμηση ορόφου 38.50τμ
ΟΨΗ Γ
Σχεδιάγραμμα A' Στάθμης
Z Δ
E ισογειου χ ύψος =119,12 χ 3,70 = 440,74 κμ E ορόφου χ ύψος =38,50 x 3,40 = 130.90 κμ EΗΧ1 χ ύψος =6,30 χ 3,70 = 23,31κμ EΗΧ2 χ ύψος =25.25 χ 3.40 = 85.85 κμ
Σχεδιάγραμμα ορόφου
7.70
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΔΟΜΗΣΗΣ = 157.62 τμ
1.70
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΙ ΗΧ
SJ11
E Ημιυπαιθρίου = 0.84 x 7.50= 6.30 τμ
E Πέργκολας* =5.00 x 5,05 = 25,25 τμ * μετράει ως ΑΗΧ
Α
δόμηση ορόφου 38.50τμ
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΩΝ ΑΗΧ= 31.55 τμ
E ισογειου χ ύψος =119,12 χ 3,70 = 440.74 κμ E ορόφου χ ύψος =38,50 x 3,40 = 130.90 κμ EΗΧ1 χ ύψος =6,30 χ 3,70 = 23.31κμ EΗΧ2 χ ύψος =25.25 χ 3.40 = 85.85 κμ
ΟΨΗ Γ
Σχεδιάγραμμα A' Στάθμης
ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΥΨΟΣ: 7.50 μ ΜΕΓΙΣΤΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟ ΥΨΟΣ: 7.10 μ
E Ισογείου =( 5.00 x 15.10) + (4.90 x 8.90) = 119.12 τμ E ορόφου = 5.00 x 7.70 = 38.50 τμ
5.00
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΣ ΟΓΚΟΣ
ΟΨΗ Γ
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝOY ΟΓΚΟΥ = 440.74 +130.90 +23.31 + 85.85 = 680.80 κμ
ΤΥΠΙΚΗ ΚΑΤΟΨΗ (SJ10) - ΠΛΗΘΟΣ 1 ΚΛ. 1:250
Α ΝΟΚ άρθρο 2 παρ. 6 υπολογισμός ΑΗΧ1 EB ≥ 35% x (EΓ+ΓΔ+ΔΖ+ΖΑ+AB) 7.30 ≥ 35%x (0.20+0.84+0.32+7.18+0.84) 7.30 ≥ 35%x 9,38 7.30 > 3,28
0.20 E Γ
E =(5.00 x 15,10) +(4.90 x 8.90) + EHX + Eσκαλας= = 75.50+ 43.61 + 6.31+ 8.5 = 133.92 τμ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΔΟΜΗΣΗ
Ανοιχτή κλίμακα
Α
0.32
0.25
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΚΑΛΥΨΗ ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΚΑΛΥΨΗΣ = 133.92 τμ
5.00
0.84 7.50
κάλυψη 133,92τμ
0.45
Πέργκολα* 25.25 τ.μ.
1.70
Β HX = 6.31 τ.μ.
δόμηση Ισογείου 119.12 τμ
8.90
Α
Α
15.10
SJ11
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΩΝ ΑΗΧ= 28.85 τμ
5.05
Ανοιχτή κλίμακα
4.90
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΣ ΟΓΚΟΣ
ΟΨΗ Γ
5.00
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΔΟΜΗΣΗΣ = 157.62 τμ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΙ ΗΧ
B 5.00
ΟΨΗ B
0.84
E Ισογείου =( 5.00 x 15.10) + (4.90 x 8.90) = 119.12 τμ E ορόφου = 5.00 x 7.70 = 38.50 τμ
SJ10
7.70
ΝΟΚ άρθρο 2 παρ. 6 υπολογισμός ΑΗΧ1 ΑΖ ≥ 35% x (ΑΒ+ΒΕ+ΕΓ+ΓΔ+ΔΖ) 7.30 ≥ 35%x (0,84+7,18+0,32+0,84+0,20) 7.30 ≥ 35%x 9,38 7.30 > 3,28
0.70
δεν προσμετράται στο Σ.Δ. (Ν. 4067/2012, αρ.11, παρ.στ)
Α
ΟΨΗ Δ
5.00
* μετράει ως ΑΗΧ ΝΟΚ άρθρο 2 παρ. 6 υπολογισμός ΑΗΧ2 ΑΒ ≥35% x (5.04x2+5x2) = 5.00+2x(70%x5.04) ≥ 35% (20.80) 12.06 ≥ 7.28
προστέγασμα
7.50
0.20
Προβολή ανοιχτής κλίμακας
1.70
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΔΟΜΗΣΗ
ΟΨΗ Α
5.00
ΟΨΗ B
4.90
δόμηση Ισογείου 119.12 τμ
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΚΑΛΥΨΗΣ = 133,92 τμ
ΟΨΗ Δ
SJ10
ΟΨΗ Δ
15.10 0.84
ΟΨΗ B
Β
Πέργκολα* 25.25 τ.μ.
προστέγασμα
Α
προστέγασμα
ΟΨΗ Δ
5.05
5.00 0.70
Α AHX1 = 6.30 τ.μ.
B
5.00
0,84μ. αρχιτεκτονικές προεξοχέ ς < 1/4 Δ ή 1/4δ δεν µετρούν στην κάλυψη, στο συντελεστή δόµησης και στο συντελεστή όγκου στο Σ.Δ. (σύμφωνα με τον Ν. 4067/2012, αρθρο 16, παρ. 1)
E =(5.00 x 15,10) +(4.90 x 8.90) + EHX + Εσκάλας = = 75.50+ 43.61 + 6.31 + 8,50= 133,92 τμ
ΝΟΚ άρθρο 2 παρ. 6 υπολογισμός ΑΗΧ2 ΑΒ ≥35% x (5.04x2+5x2) = 5.00+2x(70%x5.04) ≥ 35% (20.80) 12.06 ≥ 7.28
προστέγασμα
Α
5.00 Ανοιχτή κλίμακα
Μη βατό δώμα
ΟΨΗ B
0.84
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΚΑΛΥΨΗ
* μετράει ως ΑΗΧ
προστέγασμα
0,84μ. αρχιτεκτονικές προεξοχέ ς < 1/4 Δ ή 1/4δ δεν µετρούν στην κάλυψη, στο συντελεστή δόµησης και στο συντελεστή όγκου στο Σ.Δ. (σύμφωνα με τον Ν. 4067/2012, αρθρο 16, παρ. 1)
προστέγασμα
δεν προσμετράται στο Σ.Δ. (Ν. 4067/2012, αρ.11, παρ.στ)
1.70
0.70 ΟΨΗ Α 0.45
ΟΨΗ Α
0.45
προστέγασμα
προστέγασμα
ΟΨΗ Α0.70
5.00
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝOY ΟΓΚΟΥ = 440.74+130.90 +23,31 + 85.85 = 680.80 κ.μ.
Σχεδιάγραμμα ορόφου
ΤΥΠΙΚΗ ΚΑΤΟΨΗ (SJ11) - ΠΛΗΘΟΣ 1 ΚΛ. 1:250
ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΥΨΟΣ: 7.50 μ ΜΕΓΙΣΤΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟ ΥΨΟΣ: 7.10 μ +7.10 +7.10
+7.10 +7.10
3.40
+4.20 +4.20
+4.20 +3.70 +3.50
+3.70 +3.50
7.10
+3.05
2.14
3.70
+3.05
+3.05
2.74 +0.30 +0.00
+0.30 +0.00
+0.30 +0.00
+0.30 +0.00
+3.70 +3.50
7.18
+3.70 +3.50
7.28
7.10
+3.05
3.05
3.05
+7.10
ΤΥΠΙΚΗ ΟΨΗ Δ
ΤΥΠΙΚΗ ΟΨΗ Β
ΤΥΠΙΚΗ ΟΨΗ Α
ΤΥΠΙΚΗ ΟΨΗ Α +7.10
+7.10
3.40
2.70
+7.10
+7.10 +3.70 +3.50
+3.70 +3.50
+3.70 +3.50
7.26
7.10
+3.05
+4.20
+3.70 +3.50
7.08
+4.20 +3.70 +3.50
6.76
+3.05
3.70
2.70
ΓΡ ΑΜΜΗ ΦΥΣΙ ΚΟΥ Ε ΔΑΦΟΥΣ
+3.05
7.26
+0.30 +0.00
3.70
ΤΥΠΙΚΗ ΤΟΜΗ Α-Α
ΤΥΠΙΚΗ ΟΨΗ Γ
+3.05
+4.20
+0.30 +0.00
+0.30 +0.00
+0.30 +0.00
+3.70 +3.50
7.12
3.70
2.70
ΓΡ ΑΜΜΗ ΦΥΣΙ ΚΟΥ Ε ΔΑΦΟΥΣ
+3.05
3.45 2.74
3.40
2.70
+7.10
+3.05
+0.30 +0.00
ΤΥΠΙΚΗ ΤΟΜΗ Α-Α
+0.30 +0.00
ΤΥΠΙΚΗ ΟΨΗ Β ΤΥΠΙΚΗ ΟΨΗ Γ
ΤΥΠΙΚΗ ΟΨΗ Δ
ΝΟΚ άρθρο 2 παρ. 6 υπολογισμός ΑΗΧ1 ΔΕ ≥ 35% x (ΕΓ+ΓΒ+ΒΖ+ΖΑ+ΑΔ) 5,70 ≥ 35%x (0.23+0.84+0.32+5,58+0.84) 5,70 ≥ 35%x 7,78 5,70 > 2,72
E Ισογείου =(5.00 x 9.00) +(4.90 x 8.90) = 88.78τμ
προστέγασμα
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΔΟΜΗΣΗΣ = 88.78 τμ
Α
4.90
ΟΨΗ B
ΟΨΗ Δ
SJ7 Ισογείου 44.5 τ.μ.
8.90
8.90
0.84
E ισογειου χ ύψος =88.78 χ 3,70 = 328.48 κμ
κάλυψη 92.48 τμ
EΗΧ χ ύψος = 3.71 χ 3,70 = 13.73 κμ
0.45 0,84μ. αρχιτεκτονικές προεξοχέ ς < 1/4 Δ ή 1/4δ 0.70 δεν µετρούν στην κάλυψη, στο συντελεστή δόµησης και στο συντελεστή όγκου στο Σ.Δ. (σύμφωνα με τον Ν. 4067/2012, αρθρο 16, παρ. 1)
0.25
ΟΨΗ Γ
προστέγασμα
5.00
4.90
15.10
0.70
Α
H
5.00
Πέργκολα* 25.25 τ.μ.
SJ21
5.00
Εμβαδον υπογείου 75.50 τμ
Μη βατό δώμα
μπαζωμένο
περίγραμμα ισογείου
προστέγασμα
ΟΨΗ Γ
ΟΨΗ Γ
ΤΥΠΙΚΗ ΚΑΤΟΨΗ (SJ15,SJ17) - ΠΛΗΘΟΣ 2 ΚΛ. 1:250
Σχεδιάγραμμα A' Στάθμης +3.70 +3.50
3.65
+3.05
2.70
JUNIOR 31
36.52 m²
3.70
ΓΡΑΜΜΗ ΦΥΣΙΚΟΥ ΕΔΑΦΟΥΣ
3.58
Σχεδιάγραμμα υπογείου Σχεδιάγραμμα ορόφου
ΤΥΠΙΚΗ ΚΑΤΟΨΗ (SJ21) - ΠΛΗΘΟΣ 1 ΚΛ. 1:250
+3.05
2.70
δόμηση ορόφου 38.50 τμ
0,84μ. αρχιτεκτονικές προεξοχές < 1/4 Δ ή 1/4δ δεν µετρούν στην κάλυψη, στο συντελεστ ή δόµησης και στο συντελεστή όγκου στο Σ.Δ. (σύμφωνα με τον Ν. 4067/2012, αρθρο 16, παρ. 1)
προστέγασμα
+3.70 +3.50
3.70
5.05
SJ21
5.00
0.25
8.90
ΟΨΗ Γ
Σχεδιάγραμμα A' Στάθμης
7.70
H
H
κάλυψη 131,86 τμ
Σχεδιάγραμμα A' Στάθμης
ΓΡΑΜΜΗ ΦΥΣΙΚΟΥ ΕΔΑΦΟΥΣ
0.32
δόμηση Ισογείου 119.11 τμ
ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΥΨΟΣ: 7.50 μ ΜΕΓΙΣΤΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟ ΥΨΟΣ: 4.18 μ
ΤΥΠΙΚΗ ΚΑΤΟΨΗ (SJ14) - ΠΛΗΘΟΣ 1 ΚΛ. 1:250
Β
SJ21
0.70
ΝΟΚ άρθρο 2 παρ. 6 υπολογισμός ΑΗΧ2 ΑΒ ≥35% x (5.04x2+5x2) = 5.00+2x(70%x5.04) ≥ 35% (20.80) 12.06 ≥ 7.28
0.23
Ε Γ Ζ
15.10
H
ΜΕΓΙΣΤΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟ ΥΨΟΣ: 4.23 μ
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝOY ΟΓΚΟΥ = 342.21 κμ
HX = 4.95τ.μ.
Α
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΔΟΜΗΣΗΣ = 89.00 τμ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΣ ΟΓΚΟΣ E ισογειου χ ύψος = (44.50 x 3.70) x 2 = 164.65 x 2= 329.30 κμ 0,84μ. αρχιτεκτονικές προεξοχές < 1/4 Δ ή 1/4δ δεν µετρούν στην κάλυψη, στο συντελεστΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝOY ΟΓΚΟΥ = 329.30 κμ ή δόµησης και στο 0.25 συντελεστή όγκου στο Σ.Δ. (σύμφωνα με τον Ν. 4067/2012, ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΥΨΟΣ: 7.50 μ αρθρο 16, παρ. 1)
44.5 τ.μ.
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΣ ΟΓΚΟΣ
Δ
E Ισογείου =(5.00 x 8.90) x 2 = 44.5 x 2 = 89.00 τμ
Α
SJ7 Κάλυψη
E Ημιυπαιθρίου = 0.74 x 5.00= 3.70 τμ
* μετράει ως ΑΗΧ 1.70
ΟΨΗ Α
δεν προσμετράται Ανοιχτή στο Σ.Δ. (Ν. 4067/2012, 4.50 κλίμακα αρ.11, παρ.στ)
5.90
B
δόμηση Ισογείου 88.78 τμ
Α
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΙ ΗΧ
SJ14
9.00
0.25
δεν προσμετράται Ανοιχτή στο Σ.Δ. (Ν. 4067/2012, 4.50 κλίμακα 0.84 αρ.11, παρ.στ)
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΔΟΜΗΣΗ
5.00
Α
0.70
Α
0.70
ΟΨΗ B
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΔΟΜΗΣΗ
ΟΨΗ B
0.32
1.70
ΟΨΗ Α
ΟΨΗ Δ
0.25
Z B E Γ
0.32 5.00
E =(5.00 x 8.90) x 2 = 44.5 x 2= 89.00 τμ
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΚΑΛΥΨΗΣ = 89.00 τμ
ΟΨΗ B
0.20
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΚΑΛΥΨΗ
ΟΨΗ Α
0.45
ΟΨΗ Δ
0.74 ΑΘ Δ H
E =(5.00 x 9.00) +(4.90 x 8.90) + EHX = = 45.00 + 43.61+ 3.71 = 92.48τμ ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΚΑΛΥΨΗΣ =92.48τμ
ΟΨΗ Δ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΚΑΛΥΨΗ ΝΟΚ άρθρο 2 παρ. 6 υπολογισμός ΑΗΧ ΘΖ ≥ 35% x (ΖΒ+ΒΓ+ΓΕ+ΕΗ+ΗΔ+ΔΑ+ΑΘ) 4.55 ≥ 35%x (0,25+0,74+0,32+4,36+0,32+0,74+0,20) 4.55 ≥ 35%x 6,93 4.55 > 2,42
ΟΨΗ Α
HX = 3.71τ.μ.
+0.30 +0.00
+0.30 +0.00
ΤΥΠΙΚΗ ΤΟΜΗ Α-Α
+3.70 +3.50
+3.70 +3.50
+3.05
+3.05
3.43
3.70
+3.70 +3.50
+3.70 +3.50
+3.05
+3.05
3.45
2.75
3.43
2.75
4.08
+0.30 +0.00
+3.70 +3.50
7.08
4.23
+3.05
+0.30 +0.00
ΤΥΠΙΚΗ ΟΨΗ Δ
ΤΥΠΙΚΗ ΟΨΗ Α
+3.70 +3.50
7.08
+3.05
2.75 +0.30 +0.00
+0.30 +0.00
ΤΥΠΙΚΗ ΟΨΗ Α ΤΥΠΙΚΗ ΟΨΗ Δ
+3.70 +3.50
+3.70 +3.50
+3.70 +3.50
+3.70 +3.50
3.30
4.08
2.75
4.18
2.75 +0.30 +0.00
+3.70 +3.50
7.13
3.70
3.55
11.30
2.60
ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΥΨΟΣ: 7.50 μ ΜΕΓΙΣΤΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟ ΥΨΟΣ: 7.07 μ
5.00
ΟΨΗ B
E μη βατού εξώστη =( 5.79 x 1.27 )+( 5.29 x 1.57) + (0.50 x 2.35)= = 16.83τμ
5.29 εξώστης
2.35
23.32
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΔΟΜΗΣΗΣ = 113 τμ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΙ ΑΝΟΙΚΤΟΙ ΕΞΩΣΤΕΣ
1.70
προστέγασμα
ΟΨΗ Δ
1.55
ΟΨΗ B
προστέγασμα
3.30
ΟΨΗ Δ
E Ισογείου =5.00 χ 11.30 = 56.50 τμ E Ορόφου =5.00 χ 11.30 = 56.50 τμ
56.50 τ.μ.
1.57
3.31
1.55
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΣ ΟΓΚΟΣ ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝOY ΟΓΚΟΥ = = (56.50 + 56.50) x 3.70+0.60x3.31x1.55 =418.10 + 3.08 = 421.18 κμ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΣ ΟΓΚΟΣ ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝOY ΟΓΚΟΥ = = (56.50 + 56.50) x 3.70+0.60x2.31x0.55 = 418.10 + 0.76 =418.86 κμ 11.30
ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΥΨΟΣ: 7.50 μ ΜΕΓΙΣΤΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟ ΥΨΟΣ: 7,14 μ
ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΥΨΟΣ: 7.50 μ ΜΕΓΙΣΤΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟ ΥΨΟΣ: 7.41 μ
S14 Ορόφου 56.50 τ.μ.
μπαζωμένο
11.30 56.50 τ.μ.
μπαζωμένο
E =(5.00 x 11.30) + (5.00 x 11.30) - (3.30x 1.55) = 107.89 τμ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΔΟΜΗΣΗ
11.30 0.50
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΙ ΑΝΟΙΚΤΟΙ ΕΞΩΣΤΕΣ
S13 Ορόφου
μπαζωμένο
5.00
5.00 5.00 ΟΨΗ Γ
A
A ΟΨΗ Γ
Σχεδιάγραμμα A' Στάθμης
ΟΨΗ Γ
Σχεδιάγραμμα B' Στάθμης
ΤΥΠΙΚΗ ΚΑΤΟΨΗ (S12) - ΠΛΗΘΟΣ 1 ΚΛ. 1:250
Σχεδιάγραμμα A' Στάθμης
A
A
A
A
ΟΨΗ Γ
ΟΨΗ Γ
2.70
0.88
2.40
ΤΥΠΙΚΗ ΚΑΤΟΨΗ (S14) - ΠΛΗΘΟΣ 1 ΚΛ. 1:250
Σχεδιάγραμμα B' Στάθμης
ΤΥΠΙΚΗ ΚΑΤΟΨΗ (S13) - ΠΛΗΘΟΣ 1 ΚΛ. 1:250
+8.45 +8.05 +7.80
Σχεδιάγραμμα B' Στάθμης
ΟΨΗ Γ
Σχεδιάγραμμα A' Στάθμης
+7.95 +7.55 +7.30
+7.95 +7.55 +7.30
3.38
2.70
0.60
+5.05 +4.80
2.40
2.88
+3.05
4.95 +0.30 +0.00
2.40
ΜΗΧΑΝΟΛΟΓΙΚΟΣ ΔΙΑΔΡΟΜΟΣ
ΜΗΧΑΝΟΛΟΓΙΚΟΣ ΔΙΑΔΡΟΜΟΣ
+3.05
2.83 2.70
4.63
2.83
ΔΕΞΑΜΕΝ Η ΝΕΡΟΥ
2.70
+0.30 +0.00
ΜΗΧΑΝΟΛΟΓΙΚΟΣ ΔΙΑΔΡΟΜΟΣ
2.40
+3.70
+3.05
3.98
2.70
0.60 +4.55 +4.30
+4.55 +4.30 +3.70
+3.70
γραμμή φυσικού εδάφους
2.40
+0.30 +0.00
γραμμή φυσικού εδάφους
γραμμή φυσικού εδάφους
ΤΥΠΙΚΗ ΤΟΜΗ Α-Α ΤΥΠΙΚΗ ΤΟΜΗ Α-Α ΤΥΠΙΚΗ ΤΟΜΗ Α-Α
+7.95 +7.55 +7.30 +8.45 +8.05 +7.80
+8.45 +8.05 +7.80
3.28 +5.05 +4.80
+5.05 +4.80
1.13
7.07
+7.95 +7.55 +7.30
+7.95 +7.55 +7.30
+0.30 +0.00
4.63 +0.30 +0.00
στάθμη δρόμου
+3.70 +3.50
4.63
+0.30 +0.00
+0.30 +0.00
+0.30 +0.00
4.53
+3.05
+3.05
+4.55
+3.05
7.14
+3.70
+3.70
3.92
7.41
+3.05
+4.55
+3.05
+3.05
στάθμη δρόμου
+3.70 +3.50 στάθμη δρόμου
+4.55 +4.30
+3.70 +3.70
+7.95 +7.55 +7.30
2.89
0.60 2.88
2.88
3.38
στάθμη δρόμου
στάθμη δρόμου
ΤΥΠΙΚΗ ΟΨΗ Β
ΤΥΠΙΚΗ ΟΨΗ Α
+0.30 +0.00 στάθμη δρόμου
ΤΥΠΙΚΗ ΟΨΗ Δ
ΤΥΠΙΚΗ ΟΨΗ Α
ΤΥΠΙΚΗ ΟΨΗ Δ ΤΥΠΙΚΗ ΟΨΗ Α
3.28
3.38
3.33
+3.05
+3.05 +0.00
2.88
3.72
+0.30 +0.00
ΤΥΠΙΚΗ ΟΨΗ Β
3.88
ΤΥΠΙΚΗ ΟΨΗ Β ΤΥΠΙΚΗ ΟΨΗ Γ
+4.55 +3.70 +3.50
+3.05
2.88
2.88
+3.70
+3.70
+0.30 +0.00
2.39 +4.55 +4.30
+3.05 +5.05 +4.80
0.65
+3.05
4.84
+3.70
1.13 στάθμη δρόμου
2.88
+3.70
3.40
3.27
+3.05
+7.95 +7.55 +7.30
+7.95 +7.55 +7.30
+8.45 +8.05 +7.80 +3.70
4.63 +0.30 +0.00
ΤΥΠΙΚΗ ΟΨΗ Γ
στάθμη δρόμου
+0.30 +0.00
στάθμη δρόμου
+0.30 +0.00
3
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΚΑΛΥΨΗ
A
A A
24.32
E μη βατού εξώστη =( 5.79 x 1.27 )+( 5.29 x 1.57) + (0.50 x 2.60)= = 16.96τμ
0.50 0.55 5.29 1.57 2.31 εξώστης
2.31 0.55
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΣ ΟΓΚΟΣ ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝOY ΟΓΚΟΥ = = (56.50 + 56.50) x 3.70+0.30x1.55x0.88 = 418.10 + 0.41 = 418.51 κμ
S12 Ορόφου 56.50 τ.μ.
προστέγασμα
προστέγασμα
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΙ ΑΝΟΙΚΤΟΙ ΕΞΩΣΤΕΣ E μη βατού εξώστη =( 5.79 x 1.27 )+( 5.20 x 1.57) + (0.58 x 3.60)= 10.24 τμ
ΟΨΗ Δ
3.60
ΟΨΗ B
0.31 1.55
30.80 m²
2.20
S14 Ισογείου
5.00
11.30
11.30 προστέγασμα
5.20
1.57
56.50 τ.μ.
STANDARD ROO
ΚΤΙΡΙΟ 35 ΑΜΕΑ
προστέγασμα δεν προσμετρώνται στο Σ.Κ. (Ν. 4258/2014, αρ.12, παρ.4δ)
56.50 τ.μ.
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΔΟΜΗΣΗ ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΔΟΜΗΣΗΣ = 113 τμ
ΟΨΗ Δ
ΟΨΗ Δ
23.32
ΟΨΗ B
προστέγασμα
0.58 ΟΨΗ B
ΟΨΗ Δ
0.30 1.55
11.30
2
a/c
card holder
ΤΥΠΙΚΗ ΤΟΜΗ Α-Α
ΟΨΗ Α
εξώστης
S14 Ισογείου
E Ισογείου =5.00 χ 11.30 = 56.50 τμ E Ορόφου =5.00 χ 11.30 = 56.50 τμ
5.00
S13 Ισογείου
5.79
S13 Ισογείου
5.00
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΔΟΜΗΣΗΣ = 113 τμ
1.27
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΚΑΛΥΨΗΣ = 111.76 τμ 56.50 τ.μ.
E Ισογείου =5.00 χ 11.30 = 56.50 τμ E Ορόφου =5.00 χ 11.30 = 56.50 τμ
5.00
11.30
δεν προσμετρώνται στο Σ.Κ. (Ν. 4258/2014, αρ.12, παρ.4δ)
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΔΟΜΗΣΗ
56.50 τ.μ.
5.00
5.79
ΟΨΗ B
S12 Ισογείου
δεν προσμετρώνται στο Σ.Κ. (Ν. 4258/2014, αρ.12, παρ.4δ)
S12 Ισογείου 56.50 τ.μ.
11.30
1.27
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΚΑΛΥΨΗΣ = 112.52 τμ
προστέγασμα
0.50
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΚΑΛΥΨΗΣ = 107,89 τμ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΚΑΛΥΨΗ E =(5.00 x 11.30)+(5.00 x 11.30) -(2.31x 0.55) = 111.76τμ
προστέγασμα
εξώστης
card holder
+0.30 +0.00
ΟΨΗ Α
ΟΨΗ Α
A
A
A
5.79
ΟΨΗ Α
a/c
3.92
ΤΥΠΙΚΗ ΟΨΗ Α
ΟΨΗ Α
E =(5.00 x 11.30)+(5.00 x 11.30) -(0.30 x 1.55) = 112.52 τμ
2.70
0.45 2.40
card holder
30.80 m²
3.70
2.75
+0.30 +0.00
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΚΑΛΥΨΗ
TV
a/c
ΚΤΙΡΙΟ 35 ΑΜΕΑ
+3.05
ΤΥΠΙΚΗ ΟΨΗ Β
εξώστης
0.70 STANDARD ROOM
+3.70 +3.50
7.28
+3.05
ΤΥΠΙΚΗ ΟΨΗ Γ
ΟΨΗ Α
2.74
3.40
ΤΥΠΙΚΗ ΟΨΗ Γ
ΤΥΠΙΚΗ ΟΨΗ Β
ΤΥΠΙΚΗ ΟΨΗ Β
1.27
30.80 m²
7.10 +7.10 ΓΡ ΑΜΜΗ ΦΥΣΙ ΚΟΥ Ε ΔΑΦΟΥΣ
+0.30 +0.00
+0.30 +0.00
+0.30 +0.00
3.70
3.73
2.70
STANDARD ROOM
ΚΤΙΡΙΟ 35 ΟΡΟΦΟΣ
ΤΥΠΙΚΗ ΟΨΗ B
+7.10
+3.05
+3.05
+3.05
3.70
7.10
3.70
2.74
+0.30 +0.00
+0.30 +0.00
ΤΥΠΙΚΗ ΟΨΗ Δ
+7.10
+7.10
ΤΥΠΙΚΗ ΤΟΜΗ Α-Α
ΤΥΠΙΚΗ ΟΨΗ Γ ΤΥΠΙΚΗ ΟΨΗ Δ
στάθμη δρόμου
SJ12 Κάλυψη 110.05τ.μ.
Λ
Ρ
Μ
4.72
Ω Π
Χ Ψ
HX4 6.23 τ.μ.
ΦΥ
8.54
0.16
Α
0.45
(Eισογειου χ h) + ( EHX x h) = (88.11 x 3.70 ) + (21.94 x3.70) = 733.34 κμ ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝOY ΟΓΚΟΥ = 733.338 κμ
0.70
Α
6.20
προστέγασμα
9.90
Α
κάλυψη 132.56τμ
ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΥΨΟΣ: 7.50 μ ΜΕΓΙΣΤΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟ ΥΨΟΣ: 3.70 μ
0.84 Ζ Β
Α HX = 4.95τ.μ.
Δ
Ε Γ
5.90
Ανοιχτή
5.00 κλίμακα
Α
δεν προσμετράται στο Σ.Δ. (Ν. 4067/2012, αρ.11, παρ.στ)
ΟΨΗ Γ
7.46
Α 5.00
5.05
SJ13 δόμηση ορόφου 37.30 τμ
0.32
Ανοιχτή κλίμακα
ΝΟΚ άρθρο 2 παρ. 6 υπολογισμός ΑΗΧ1 ΔΕ ≥ 35% x (ΕΓ+ΓΒ+ΒΖ+ΖΑ+ΑΔ) 5,70 ≥ 35%x (0.20+0.84+0.32+5,58+0.84) 5,70 ≥ 35%x 7,78 5,70 > 2,72
1.70 ΟΨΗ Γ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΙ ΗΧ Α
5.00
E Ημιυπαιθρίου = (0.84 x 5.90) x 2 = 4.95 x 2 = 9.90 τμ
E Πέργκολας* =(5.00 x 5,05) x2 = 25,25 x2= 50.50 τμ * μετράει ως ΑΗΧ ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΩΝ ΑΗΧ= 60.4 τμ
* μετράει ως ΑΗΧ
0.20
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΣ ΟΓΚΟΣ
ΝΟΚ άρθρο 2 παρ. 6 υπολογισμός ΑΗΧ2 ΑΒ ≥35% x (5.04x2+5x2) = 5.00+2x(70%x5.04) ≥ 35% (20.80) 12.06 ≥ 7.28
E ισογειου χ ύψος =(119,12 χ 3,70) x 2 = 440.74 x 2 = 881.48 κμ E ορόφου χ ύψος =(37.30 x 3,40) x 2 = 126.82 x 2 = 253.64 κμ EΗΧ1 χ ύψος =( 4.95χ 3,70) x 2 = 18.31 x 2 = 36.62 κμ EΗΧ2 χ ύψος = (25.25 χ 3.40) x 2 = 171.7 κμ
ΟΨΗ Γ
Σχεδιάγραμμα A' Στάθμης
ΤΥΠΙΚΗ ΚΑΤΟΨΗ (SJ12) - ΠΛΗΘΟΣ 1 ΚΛ. 1:250
E Ισογείου =[( 5.00 x 6.20) + (9.90 x 8.90)]x 2 = 119.11 x 2 = 238.22 τμ E ορόφου = (5.00 x 7.46) x 2 = 37.30 x 2 = 74.60 τμ ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΔΟΜΗΣΗΣ = 312.82 τμ
δόμηση Ισογείου 119.11 τμ
5.00
Σχεδιάγραμμα A' Στάθμης
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΔΟΜΗΣΗ
SJ13
0.84
Ξ
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝOY ΟΓΚΟΥ 440.74 +126.82 +18.31+ 171.7 = 1343.44 κμ
Σχεδιάγραμμα ορόφου
+3.05
+7.10
3.70
2.70
ΓΡΑΜΜΗ ΦΥΣΙΚΟΥ ΕΔΑΦΟΥΣ
+7.10
2.40
+0.30 +0.00
+4.20
+4.20
+3.70 +3.50
7.10
+3.05
+3.70 +3.50
7.08
+3.05
+7.10
ΤΥΠΙΚΗ ΤΟΜΗ Α-Α +3.70 +3.50
+3.70 +3.50
+3.05
+0.30 +0.00
+3.05
3.70
3.70
+0.30 +0.00
ΤΥΠΙΚΗ ΟΨΗ Δ
+3.70 +3.50
ΤΥΠΙΚΗ ΟΨΗ Α
7.10
+3.05
+3.70 +3.50 +3.05
+3.05
ΤΥΠΙΚΗ ΟΨΗ Α
6.63
CF11
ΤΥΠΙΚΗ ΤΟΜΗ Α-Α
+4.20
+4.20
7.28
3.88
+3.70 +3.50
7.10
+3.70 +3.50 +3.05
+0.30 +0.00
+0.30 +0.00
+3.05
WF02
ΤΥΠΙΚΗ ΟΨΗ Β
+0.30 +0.00
+0.00
ΤΥΠΙΚΗ ΟΨΗ Β
ΤΥΠΙΚΗ ΟΨΗ Γ
ΟΨΗ Α
A
A
ΟΨΗ Α
1.27
0.84
15.10
5.00
E Ημιυπαιθρίου = 0.84 x 5.90= 4.95 τμ
8.90
119.11 τ.μ. Δ Γ
Ανοιχτή κλίμακα
5.05
Πέργκολα* 25.25 τ.μ.
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΔΟΜΗΣΗ
Μη βατό δώμα
Α
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΣ ΟΓΚΟΣ
0.70
0.20
E ισογειου χ ύψος =119,11 χ 3,70 = 440.71 κμ E ορόφου χ ύψος =38.45 x 3,40 = 130.73 κμ
7.70
προστέγασμα
προστέγασμα
3.65
1.55
23.32
2.72 0.58
1.55 3.65
E μη βατού εξώστη =( 5.79 x 1.27 )+( 5.20 x 1.57) + (0.58 x 2.72)= 17.12τμ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΣ ΟΓΚΟΣ
E Ημιυπαιθρίου = 0.84 x 5.90= 4.96 τμ
E Πέργκολας* =5.00 x 5,05 = 25,25 τμ * μετράει ως ΑΗΧ
SJ22
ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΥΨΟΣ: 7.50 μ ΜΕΓΙΣΤΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟ ΥΨΟΣ: 7.40 μ
μπαζωμένο
5.00
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΩΝ ΑΗΧ= 30.21 τμ
δόμηση ορόφου 38.50τμ
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝOY ΟΓΚΟΥ = = (56.50 + 56.50) x 3.70+0.35x3.65x1.55 = 418.10+1.98 = 420.08 κμ
S11 Ορόφου 11.30 56.50 τ.μ.
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΙ ΗΧ 5.00
0,84μ. αρχιτεκτονικές προεξοχέ ς < 1/4 Δ ή 1/4δ δεν µετρούν στην κάλυψη, στο συντελεστή δόµησης και στο συντελεστή όγκου στο Σ.Δ. (σύμφωνα με τον Ν. 4067/2012, αρθρο 16, παρ. 1)
E Ισογείου =( 5.00 x 15.10) + (4.90 x 8.90) = 119.11τμ E ορόφου = 5.00 x 7.70 = 38.45 τμ
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΔΟΜΗΣΗΣ = 113 τμ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΙ ΑΝΟΙΚΤΟΙ ΕΞΩΣΤΕΣ
εξώστης
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΔΟΜΗΣΗΣ = 157.62 τμ
Ανοιχτή κλίμακα
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΩΝ ΑΗΧ= 30.2 τμ
11.30
1.57
0.84
δεν προσμετράται στο Σ.Δ. (Ν. 4067/2012, αρ.11, παρ.στ)
E Πέργκολας* =5.00 x 5,05 = 25,25 τμ * μετράει ως ΑΗΧ
5.00
Α
Α
SJ22 Κάλυψη 132.57 τ.μ.
11.30
E Ισογείου =5.00 χ 11.30 = 56.50 τμ E Ορόφου =5.00 χ 11.30 = 56.50 τμ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΣ ΟΓΚΟΣ E ισογειου χ ύψος =119,12 χ 3,70 = 440.74 κμ E ορόφου χ ύψος =37.30 x 3,40 =126.82 κμ EΗΧ1 χ ύψος = 4.96χ 3,70 = 18.35 κμ EΗΧ2 χ ύψος =25.25 χ 3.40 = 85.85 κμ
EΗΧ1 χ ύψος = 4.95χ 3,70 = 18.32 κμ EΗΧ2 χ ύψος =25.25 χ 3.40 = 85.85 κμ
A
SJ7 Ισογείου
Α
1.70
E =(5.00 x 15.10) +(4.90 x 8.90) + EHX + Εσκάλας = =75.50 + 43.61 + 4.96 + 8.50 =132.57 τμ
B
ΟΨΗ Δ
5.90
E Ισογείου =( 5.00 x 15.10) + (4.90 x 8.90) = 119.11τμ E ορόφου = 5.00 x 7.70 = 38.45 τμ ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΔΟΜΗΣΗΣ = 157.62 τμ E υπογείου = 5.00 x 5,10 = 75.50 τμ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΙ ΗΧ
Α
ΟΨΗ B
SJ22
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΔΟΜΗΣΗ
5.00
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΚΑΛΥΨΗΣ =132.57 τμ
0.06 4.90
5.00
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΚΑΛΥΨΗ
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΚΑΛΥΨΗΣ = 107.35 τμ
56.50 τ.μ.
5.00
A
Α Β Ζ Ε HX = 4.96 τ.μ.
E =(5.00 x 11.30)+(5.00 x 11.30) -(3.65 x 1.55) = 107.35τμ S11 Ισογείου
S11 Ισογείου
ΟΨΗ Δ
0.20
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΔΟΜΗΣΗ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΚΑΛΥΨΗ
προστέγασμα δεν προσμετρώνται στο Σ.Κ. (Ν. 4258/2014, αρ.12, παρ.4δ)
56.50 τ.μ.
ΝΟΚ άρθρο 2 παρ. 6 υπολογισμός ΑΗΧ2 ΑΒ ≥35% x (5.04x2+5x2) = 5.00+2x(70%x5.04) ≥ 35% (20.80) 12.06 ≥ 7.28
προστέγασμα
E =(5.00 x 15.10) +(4.90 x 8.90) + EHX + Εσκάλας = =75.50 + 43.61 + 4.95 + 7.80 =131.86 τμ ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΚΑΛΥΨΗΣ =131.86 τμ
εξώστης
5.79
* μετράει ως ΑΗΧ
ΝΟΚ άρθρο 2 παρ. 6 υπολογισμός ΑΗΧ1 ΖΔ ≥ 35% x (ΑΖ+ΑΒ+ΒΕ+ΕΓ+ΓΔ) 7.30 ≥ 35%x (0,20+0,84+0,32+5,58+0,84) 7.30 ≥ 35%x 7,78 7.30 >2,72 0.32
προστέγασμα
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΚΑΛΥΨΗ
Α
3.70
2.70
+0.30 +0.00
+7.10
+7.10
+3.70 +3.50
2.70
ΓΡΑΜΜΗ ΦΥΣΙΚΟΥ ΕΔΑΦΟΥΣ
ΤΥΠΙΚΗ ΟΨΗ Δ
3.70
3.40
3.10
+0.30 +0.00
+0.30 +0.00
ΤΥΠΙΚΗ ΟΨΗ Γ
=
ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΥΨΟΣ: 7.50 μ ΜΕΓΙΣΤΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟ ΥΨΟΣ: 7.10 μ
ΤΥΠΙΚΗ ΚΑΤΟΨΗ (SJ13,SJ23 ) - ΠΛΗΘΟΣ 2 ΚΛ. 1:250
+3.70 +3.50
ΟΨΗ Γ
ΟΨΗ Γ
+7.70 +7.30 +7.05
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝOY ΟΓΚΟΥ = 699.096 κμ
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝOY ΟΓΚΟΥ = 675.61 κμ
Σχεδιάγραμμα A' Στάθμης
Όγκος υπογειου= 75.50 x 3,95 = 298.22 κμ
Σχεδιάγραμμα A' Στάθμης
Σχεδιάγραμμα ορόφου
ΤΥΠΙΚΗ ΚΑΤΟΨΗ (SJ22) - ΠΛΗΘΟΣ 1 ΚΛ. 1:250
ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΥΨΟΣ: 7.50 μ ΜΕΓΙΣΤΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟ ΥΨΟΣ: 7.10 μ
2.38
Σχεδιάγραμμα B' Στάθμης
2.70
0.35
2.40
+4.30
ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΥΨΟΣ: 7.50 μ ΜΕΓΙΣΤΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟ ΥΨΟΣ: 7.10 μ
+3.70
ΤΥΠΙΚΗ ΚΑΤΟΨΗ (S11) - ΠΛΗΘΟΣ 1 ΚΛ. 1:250
+3.05
2.70
4.38
2.40
+0.30 +0.00
γραμμή φυσικού εδάφους +7.10
+7.10
ΤΥΠΙΚΗ ΤΟΜΗ Α-Α
3.40 7.48
+7.10
+3.70 +3.50
7.10
+3.05
7.61
+3.70 +3.50
+7.70 +7.30 +7.05
6.96
+3.05
+3.70
2.38
+3.05
3.45
3.05
3.40
2.41
2.88
0.40
στάθμη δρόμου
+4.30
+0.30 +0.00
+0.30 +0.00
+3.70
+3.70 +3.50
+0.30 +0.00
+3.05
ΤΥΠΙΚΗ ΟΨΗ Δ
+3.05
ΤΥΠΙΚΗ ΟΨΗ A
3.70
Α
3.85
ΤΥΠΙΚΗ ΟΨΗ Β
ΤΥΠΙΚΗ ΟΨΗ Γ
+7.10
+7.10
OM
+0.30 +0.00
+0.30 +0.00
3.40 7.08
2.10
+3.70 +3.50
7.10
+3.05
3.70
2.74
3.70
2.70
ΓΡ ΑΜΜΗ ΦΥΣΙ ΚΟΥ Ε ΔΑΦΟΥΣ
+0.30 +0.00
ΤΥΠΙΚΗ ΟΨΗ B
+3.70 +3.50
7.10
+3.05
3.68
2.75
+7.70 +7.30 +7.05
+7.70 +7.30 +7.05 +0.30 +0.00
2.41
2.41
4.25 +4.30
ΤΥΠΙΚΗ ΟΨΗ Γ
+3.70
+4.30
7.40
+3.05
+3.70
ΤΥΠΙΚΗ ΤΟΜΗ Α-Α
+3.05
4.38
4.09
+0.30 +0.00 +0.30 +0.00
στάθμη δρόμου
ΤΥΠΙΚΗ ΟΨΗ Δ
ΤΥΠΙΚΗ ΟΨΗ Α
A
ΟΨΗ Α
A
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΔΟΜΗΣΗ
S16 Ισογείου
S16 Κάλυψη
56.50 τ.μ.
56.50 τ.μ.
E Ισογείου =(5.00 x 11.30) x 2 = 56.50 x 2 = 113.00 τμ ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΔΟΜΗΣΗΣ =113.00 τμ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΔΟΜΗΣΗ
5.79 S17 Ισογείου
S17 Κάλυψη
56.50 τ.μ.
56.50 τ.μ.
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΙ ΑΝΟΙΚΤΟΙ ΕΞΩΣΤΕΣ
εξώστης
5.79
προστέγασμα
=
3.70
2.70
3.83
2.40
A
+0.30 +0.00
5.00
Σχεδιάγραμμα Ισογείου
1.65
Σχεδιάγραμμα A' Oρόφου (άνω ισογείου)
ΟΨΗ Γ
γραμμή φυσικού εδάφους
ΤΥΠΙΚΗ ΤΟΜΗ Α-Α
+3.70 +3.30 +3.05
9.95
προστέγασμα
+3.05
ΜΕΓΙΣΤΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟ ΥΨΟΣ: 7.40 μ
F10 Ορόφου 77.50 τ.μ.
ΤΥΠΙΚΗ ΚΑΤΟΨΗ (S17) - ΠΛΗΘΟΣ 1 ΚΛ. 1:250
+3.70
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΣ ΟΓΚΟΣ
ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΥΨΟΣ: 7.50 μ 15.50
ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΥΨΟΣ: 7.50 μ ΜΕΓΙΣΤΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟ ΥΨΟΣ: 7.10 μ
Σχεδιάγραμμα A' Στάθμης
25.45
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝOY ΟΓΚΟΥ = = (77.50+77.50) x 3.70 + (5.55 x 5.00 x 0.35)= 583.212 κμ
μπαζωμένο
ΤΥΠΙΚΗ ΚΑΤΟΨΗ (S16,S15) - ΠΛΗΘΟΣ 2 ΚΛ. 1:250
5.55
0.59
5.00
ΟΨΗ Γ
ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΥΨΟΣ: 7.50 μ ΜΕΓΙΣΤΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟ ΥΨΟΣ: 7.08 μ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΙ ΑΝΟΙΚΤΟΙ ΕΞΩΣΤΕΣ
3.29
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝOY ΟΓΚΟΥ = = 56.50 *3.70 = 209,05 κμ
ΟΨΗ Γ
Σχεδιάγραμμα A' Στάθμης
1.27
Ε μη βατού εξώστη = 1.27 x 5.79 + (1.27 x 5.79 + 0.59 x 3.29) = 16.83 τμ
E μη βατού εξώστη =5.79 x 1.57 = 9.09 τμ
ΟΨΗ B
ΟΨΗ Δ
ΟΨΗ B
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝOY ΟΓΚΟΥ = (56.50 *3.70) x 2 = 209.05 x 2 = 418.10 κμ
E Ισογείου =5.00 χ 15.50 = 77.50 τμ
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΔΟΜΗΣΗΣ = 155 τμ
15.50
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΣ ΟΓΚΟΣ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΣ ΟΓΚΟΣ
E =5.00 χ 25.45 = 127.25τμ ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΚΑΛΥΨΗΣ = 127.25τμ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΔΟΜΗΣΗ
9.95
E Ορόφου =5.00 χ 15.50 = 77.50 τμ
E Υπογείου =5.00 x 11.30 = 56.50 τμ
11.30
E μη βατού εξώστη =(5.79 x 1.57) x 2 = 9.09 x 2 = 18.18 τμ
δεν προσμετρώνται στο Σ.Κ. (Ν. 4258/2014, αρ.12, παρ.4δ)
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΔΟΜΗΣΗΣ = 56.50 τμ
5.00
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΙ ΑΝΟΙΚΤΟΙ ΕΞΩΣΤΕΣ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΚΑΛΥΨΗ προστέγασμα
F10 Κάλυψη 127.25 τ.μ.
5.00
E Ισογείου =5.00 x 11.30 = 56.50 τμ
5.00
11.30
1.27
ΟΨΗ B
5.79
1.57
εξώστης
ΟΨΗ Δ
εξώστης
1.57
F10 Ισογείου 77.5 τ.μ.
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΚΑΛΥΨΗΣ = 56.50 τμ
ΟΨΗ Α
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΚΑΛΥΨΗΣ =113.00 τμ
5.79
E =5.00 x 11.30 = 56.50 τμ
προστέγασμα
A
E =(5.00 x 11.30) x 2 = 56.50 x 2 = 113.00 τμ ΟΨΗ Α
εξώστης
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΚΑΛΥΨΗ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΚΑΛΥΨΗ
προστέγασμα
3.95 2.70
ΟΨΗ Δ
3.92
0.25
0.20
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΣ ΟΓΚΟΣ
ΝΟΚ άρθρο 2 παρ. 6 υπολογισμός ΑΗΧ4 ΤΥ ≥35% x (ΟΤ+ΤΥ+ΥΦ+ΦΧ+ΧΨ+ΨΩ+ΩΠ+ΠΟ)= 8.54 ≥ 35% x (0.16+8.54+0.20+0.70+0,20+8.54+0.16+0,70)= 8.54 ≥ 35% x 19.20= 8.54 ≥ 6.72
4.97 0.45 Ν
Τ Ο
E Ημιυπαιθρίων = 6.23+4.55+4.93+6.23 = 21.94 τμ
Μη βατό δώμα
B
0.70
0.20
E =(5.00 x 6.20) +(9.90 x 8.90) + EHX + Εσκάλας = =(31.00 + 88.11 + 4.95 + 8.50) x 2= 132.56 x 2 = 265.12 τμ ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΚΑΛΥΨΗΣ =265.12 τμ
ΟΨΗ B
Α
Σ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΟΙ ΗΧ
ΝΟΚ άρθρο 2 παρ. 6 υπολογισμός ΑΗΧ3 ΝΜ ≥35% x(ΛΣ+ΣΡ+ΡΠ+ΠΟ+ΟΞ+ΞΝ+ΝΜ+ΜΛ)= 4.97 ≥ 35% x (0.84+0.45+4.72+0.45+0,84+0.45+4,97+0,45)= 4.97 ≥ 35% x 13,17= 4.97 ≥ 4.61
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΚΑΛΥΨΗ
ΟΨΗ Α
0.70
8.90
Πέργκολα* 25.25 τ.μ.
ΟΨΗ Δ
9.90
HX3 4.93 τ.μ.
88.11 τ.μ.
11.30
4.97 0.46
ΟΨΗ Α
0,84μ. αρχιτεκτονικές προεξοχέ ς < 1/4 Δ ή 1/4δ δεν µετρούν στην κάλυψη, στο συντελεστή δόµησης και στο συντελεστή όγκου στο Σ.Δ. (σύμφωνα με τον Ν. 4067/2012, αρθρο 16, παρ. 1) 0.45
ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΔΟΜΗΣΗΣ = 88.11 τμ
Α
HX2 4.55 τ.μ.
4.72
SJ12 Ισογείου
0,84μ. αρχιτεκτονικές προεξοχέ ς < 1/4 Δ ή 1/4δ δεν µετρούν στην κάλυψη, στο συντελεστή δόµησης και στο συντελεστή όγκου στο Σ.Δ. (σύμφωνα με τον Ν. 4067/2012, αρθρο 16, παρ. 1)
ΟΨΗ B
Ι Κ
ΟΨΗ Δ
9.74 8.90
Η Ζ Δ Ε
E Ισογείου =8.90 x 9.90 = 88.11 τμ
ΟΨΗ B
HX1 6.23 τ.μ.
E =11.30 x 9.74 = 110.05 τμ ΣΥΝΟΛΟ ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗΣ ΚΑΛΥΨΗΣ = 110.05 τμ
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΔΟΜΗΣΗ
ΝΟΚ άρθρο 2 παρ. 6 υπολογισμός ΑΗΧ2 ΛΚ ≥35% x(ΙΖ+ΖΕ+ΕΣ+ΣΛ+ΛΚ+ΚΙ)= 4.97 ≥ 35% x (0.84+0.70+4.72+0.84+4.97+0.45)= 4.97 ≥ 35% x 12.52= 4.97 ≥ 4.38
προστέγασμα
ΑΘ Β Γ
0.45
ΟΨΗ B
0.84
ΟΨΗ Δ
0.16
Α
2.70
8.54
ΠΡΑΓΜΑΤΟΠΟΙΟΥΜΕΝΗ ΚΑΛΥΨΗ
ΝΟΚ άρθρο 2 παρ. 6 υπολογισμός ΑΗΧ1 ΗΘ ≥35% x(ΑΒ+ΒΓ+ΓΔ+ΔΕ+ΕΖ+ΖΗ+ΗΘ+ΘΑ)= 8.54 ≥ 35% x (0.70+0.20+8.54+0.16+0.70+0.16+8.54+0.20)= 8.54 ≥ 35% x 19.20= 8.54 ≥ 6.72
ΟΨΗ Α
0.20 0.70
ΤΥΠΙΚΗ ΚΑΤΟΨΗ (F10) - ΠΛΗΘΟΣ 1- ΚΛ. 1:250
+3.70 +3.05 +2.55
2.33
C
+0.30 +0.00
+1.66
1.15
+8.00m +7.55m
στάθμη δρόμου
+0.30
7.08 +0.00
+3.70 +3.50
3.52
+3.05
3.60
2.95
3.70
ΤΥΠΙΚΗ ΟΨΗ B στάθμη δρόμου
γραμμή φυσικού εδάφους
ΤΥΠΙΚΗ ΟΨΗ Α
2.70
2.40
3.00
+3.70m
+0.30 +0.00
μπαζωμένο
0.35
1.65 ΜΗΧ/ΟΣ ΔΙΑΔΡ
±0.00m -0.40m
ΤΥΠΙΚΗ ΤΟΜΗ Α-Α
+3.70
2.70
+4.60m
3.83
2.70
3.00
+3.05
ΓΡΑΜΜΗ ΦΥΣΙΚΟΥ ΕΔΑΦΟΥΣ
+3.70 +3.05
3.58
+2.55
3.58
+1.66
+0.30 +0.00
+0.00
ΤΥΠΙΚΗ ΟΨΗ Γ
ΤΥΠΙΚΗ ΤΟΜΗ Α-Α
στάθμη δρόμου
3.11 +8.00m +7.55m
στάθμη δρόμου
+8.00m +7.55m
ΤΥΠΙΚΗ ΟΨΗ Δ
3.70
2.91
+3.70 +3.70
+3.05
+3.05 +2.55
3.40
3.71
+1.60
C
+0.00
+4.30m +3.70m +3.25m
στάθμη δρόμου
+0.30 +0.00
1.12
6.87
+4.30m +3.70m +3.25m
2.33
7.10 ±0.00m
±0.00m
5.95
στάθμη δρόμου
ΤΥΠΙΚΗ ΟΨΗ Β
ΤΥΠΙΚΗ ΟΨΗ Δ
ΤΥΠΙΚΗ ΟΨΗ Α
ΤΥΠΙΚΗ ΟΨΗ Α +8.00m +7.59m +3.70 +3.50
+3.70
+3.05
2.33
+3.05
3.58
+4.60m +3.70m +3.29m
3.58
+0.30 +0.00
+0.30 +0.00
στάθμη δρόμου
ΤΥΠΙΚΗ ΟΨΗ Γ ΤΥΠΙΚΗ ΟΨΗ B
3.11
7.40 3.52 3.40
±0.00m
στάθμη δρόμου
+3.70m +3.25m
5.66
4.56
±0.00m
5.73
ΤΥΠΙΚΗ ΟΨΗ Γ
ΤΥΠΙΚΗ ΟΨΗ Δ
21
0.47
CF03
2.75
ΜΗΧ. ΜΗΧΑΝΙΚΟΣ ΜΗΧ. ΜΗΧΑΝΙΚΟΣ Τεχνικη Εταιρεια Μ. και Β. Τεχνικη Κικιδης Εταιρεια OE Μ. και Β. Κικιδης OE
Λ. ΕΞΩΤ. ΘΥΡΑΣ
2.85
CF02
2.70
CF10
A11 9004
2.70
Flush Plate GEBERIT Flush Plate Sigma GEBERIT 01 Sigma 01 Ρολό χαρτιού Ρολό χαρτιού
0.20
c
t u r e
u
c
t i o n
o
n
A11 3001
a t h e n s
11471
s
FF01a 3.25
w
1.20
ΣΗΜΕΙΩΣΕΙΣ
i n f o
@
ΚΛΙΜΑΚΑ: w w .
k - s t u d i o .gr
A11 9011
ΤΟΜΗ Α-Α
WF05
A11-4000
ΚΛΕΙΔΑ a c
r
c h
t
e
c
t u ra e r
r
u
c
t i oc n o n s
s
a
v
r
o
n
c
a
5 l
i
b
e
t
t
o n s
Λεπτό χαλίκι
i
Θερμομόνωση πάχους 7εκ.
y
Tσιμεντοκονία εξομάλυνσης
t
a 20 t hεκ.e n s Πλάκα οπλισμένου σκυροδέματος
ΑΝΑΘΕΩΡΗΣΕΙΣ
2.75
CF10
11471
0 0 3 0 2 1 0 6 Μεταλλική Ανάρτηση
c h
sy
i t
c
a
g r e e c ae t h e n s
WF01
WF01
i n f o
ΠΕΡΙΓΡΑΦΗ
t
e
c
t u r e
r
u
c
t i o n
b
e
t
11471
w
@
s
t
w
w .
2.75
l
+10.78
WF02
0.20
1.25 0.57
συρόμενο ξύλινο πέτασμα σκίασης
προβολή εσοχής σιδηρόδρομου κουρτίνας
σταθερό ξύλινο πέτασμα σκίασης
ΑΝΑΘΕΩΡΗΣΕΙΣ
w
WF02
+8.63
NO.
ΠΕΡΙΓΡΑΦΗ
ΗΜ/ΝΙΑ
7.52
A11-4001
3.66
0.21 0.44 μεταλλικό κιγκλίδωμα
FF02α
0.885
WF03
0.85
ντουλάπες
FF01
T03.10
2.00
βο λή
1.20
0.30
2
0.30
ht ylig
WF01
T02.13
3.25 0.40
+11.28
ΑΡΙΘΜΟΣ ΣΧΕ∆ΙΟΥ
T03.8
1.46
Λ. ΕΣΩΤ. ΘΥΡΑΣ
A11 9003
0.90
T02.13α
0.10
0.44
0.44
0.21
0.21 0.21
3.25
0.30 +10.78
+10.20
ΜΑΡΤΙΟΣ 2018 +9.63
ΚΛΙΜΑΚΑ:
1:50
ΟΝΟΜΑ ΑΡΧΕΙΟΥ:
333_suite_S6_00_2D_ALL.3dm
DWG BY: X.XXXXXXX
T02.13
WC
εξωτερική θερμοπρόσοψη 19 εκ.
All measurements must be verified on site. * Our office, maintains all rights of the drawings which ** have been trusted to the receiver The reproduction and destribution is not allowed without *** written permition form our office
εξωτερική θερμοπρόσοψη 19 εκ.
ΚΛΕΙ∆Α
5.28 5.90
+12.43
μεταλλικό κιγκλίδωμα
FF02
Γ A11-3002
+13.08 +12.64
WF01
Α11 1100
T02.11
WF03
T03.8
sk
T01.3
WF05
ΗΜ/ΝΙΑ: S06 - Θ3 0.00 2.40
προβολή skylight 1
προβολή τοιχείου αντιστήριξης στο τμήμα της τοιχοποιίας κάτωθεν της στάθμης διαμορφωμένου εδάφους
σταθερό ξύλινο πέτασμα σκίασης
MOCK-UP ROOM (S6) ΚΑΤΟΨΗ ΙΣΟΓΕΙΟΥ
WF02
0.70
2.40
0.22
1.06
ΛΟΥΤΡΟ WF03
2.40 προ
0.15
T03.8
WF03
FF01α
+11.93
1 A11 9010 +12.69
WF05
WF01
1.66
0.30
SHOWER
μόνιμο προστέγασμα
mini bar τροφοθήκη
S06 - Θ2 0.00 0.88 2.40
4.12 WF06
0.94
2.90
WF03
T03.9
WF01
εσοχή
+12.43
A11 9004
υδρορρόη
WF04
T02.12
ΤΙΤΛΟΣ ΣΧΕ∆ΙΟΥ
ξύλινη πέργκολα
B A11-3001 Λ. ΕΞΩΤ. ΘΥΡΑΣ
1.10
WF03
3.30
2.20
WF03
1.78
WF03
WF04
0.62
A11 9010
+9.68m Τ.Δ. +9.63m Σ.Μ. 1.00
WF01
1.04
S06 - Θ1 0.00 2.75
WF04
+9.73m Τ.Δ. +9.63m Σ.Μ.
T02.10
ΜΕΛΕΤΗ ΕΦΑΡΜΟΓΗΣ
1 A11 9007
1 A11 9000
+12.64
Λ. ΚΙΓΚΛΙΔΩΜΑ
2.31
1.10
T02.11
υποστύλωμα πέργκολας
WF02
2.88
2.98 2.41 1.04
8.40
5.96 2.15 10.70
1.10
+13.08
γραφείο
0.90
0.50
NO.
ΣΤΑ∆ΙΟ
+7.70 m
προβολή εσοχής σιδηρόδρομου κουρτίνας
0.88
ΑΝ
ΕΡΓΟ
1
2.75
0.20
1 A11 9005
ΧΑΝΙΑ, ΚΡΗΤΗ
WF04
FF01α
0.62
ΣΗ
κρεβάτι
+9.38m
3.90
+9.38
ΠΕΡΙΓΡΑΜΜΑ ΥΠΟΓΕΙΟΥ ΜΗΧΑΝΟΔΙΑΔΡΟΜΟΣ
2.80
προβολή πέργκολας
WF02
+9.68
CASA COOK CHANIA
0.00
παρτέρι
T01.3
+9.98 FF02
k - s t u d i o .gr
ΠΕΛΑΤΗΣ Λήδρα Τουριστική ΑΕ
WF02
4.36
πετρινο σκαλοπάτι
παρτέρι
+10.20 FF02α
k - s t u d i o .gr
w .
WF02
Λ. ΥΔΡΟΡΡΟΗ
παρτέρι
καθιστικός πάγκος
WF02
+7.70
S06
+11.28 m
@
w
+11.28
s
+7.98
+6.70 +6.50
υδρορρόη
46.65 m²
Γ A11-3002
u
g r e e c e
WF05
SUITE
3.10
t
ξύλινη πέργκολα
t
WF01
0.25
0.50
t
s
+8.37
εξωτερική θερμοπρόσοψη 19 εκ.
T02.11
σιφώνι απορροής υδάτων
FF02
e
n
A11 9009
5.96
0.40
θερμομονωτικό επάλληλο συρόμενο σύστημα σειράς ALBIO 235 της EXALCO
S06 - Π2
28.30 m²
b
WF01
o
ΚΗΠΟΤΕΧΝΙΚΗ ΜΕΛΕΤΗ fytron landscapes
WF02
εσοχή για TV
εξωτερικό ντους
r
11471
WF05
i n f o
WF02
2.70
B A11-3001
a
v
0 0 3 0 2 1 0 6 7 7 7 5 2 2
0.75
FF03
ΚΗΠΟΣ
c
a t h e n s
εξωτερική θερμοπρόσοψη 31 εκ.
0.39 1.35
1.74
0.15
0.88
καθιστικός πάγκος
2.80
FF01
FF07
a
2.23
WF13
0.30
WF01
WF01
0.35
A11 9008
2.75
+8.88m
A11-4003
Λ. ΠΕΤΑΣΜΑ #6
FF01α
+8.08m
2.80
+9.68 σταθερό ξύλινο πέτασμα σκίασης
WF04
0.81
6.00
y
s
ΜΕΛΕΤΗ ΦΩΤΙΣΜΟΥ Αρης Μ. Κλονιζάκης
0.52
WF04
+9.38m
i
A11 9006
εξωτερική θερμοπρόσοψη 7 εκ.
3.60
r c h ΜΗΧΑΝΙΚΟΣ i t e c t u r e σταθερό κούφωμα με θερμοδιακοπή σειράς ALBIO 109C της EXALCO ΜΗΧ. σταθερό ξύλινο πέτασμα σκίασης o n s tΕταιρεια r u c Μ. t και i o Β.n Κικιδης OE Τεχνικη
0 0 3 0 2 1 0 6 7 FF01α 7 7 2 2 6 0 0 3 0 2 1 0 6 7 72.75 8 1 8 8 4.36
FF03
WF02
0.30 0.20
c 5
μεταλλικό κιγκλίδωμα
Λ. ΣΥΡΟΜΕΝΟ
10.00 m²
παρτέρι
+12.43 +11.93
a
1 A11 9010
A11-4000
2.75
+13.08 +12.64
μόνιμο προστέγασμα
συρόμενο ξύλινο πέτασμα σκίασης
WF01
3.65
0.30
*** written permition form our office
WF05
σταθερό ξύλινο πέτασμα σκίασης
S06 - Π1
1 A11 9000
* Our office, maintains all rights of the drawings which
ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ ** have been trusted to the receiver ΟΙΚΟThe∆ΟΜΗ Κατασκευαστική reproduction and destribution is not allowed without
WF05
ΚΛΕΙΔΑ
A11 9001
5.28
0.15
1
A11 9007 ΣΥΜΒΟΥΛΟΙ All measurements must be verified on site.
5.90
0.30
333_suite_S6_00_RCP_2D.3dm
DWG BY: X.XXXXXXX
1 A11 9006
+12.69
+12.64 +12.43
1 A11 9008
προβολή μόνιμου προστεγάσματος
WF13
1:50
0.21 0.44
ΣΗΜΕΙΩΣΕΙΣ
Λ. SKYLIGHT 1
A11 9011
FF03
ΜΑΡΤΙΟΣ 2018
ΚΛΙΜΑΚΑ:
1.15
0.21 0.44
T02.13α
CF10 2.75
4.40
ΗΜ/ΝΙΑ:
ΟΝΟΜΑ ΑΡΧΕΙΟΥ:
T02.13
2.40
A11-4002
σταθερό κούφωμα με θερμοδιακοπή σειράς ALBIO 109C της EXALCO
Πλάκα οπλισμένου σκυροδέματος 20εκ.
1.90
CF01
0.70
A11-3000 A
WF01
WF05
0.44
0.73 0.30
0.50
L10
WF01
0.64
L1e
e
0.60
A11 9002
+9.68m Τ.Δ. +9.63m Σ.Μ.
Τσιμεντοκονία εξομάλυνσης
ΑΡΙΘΜΟΣ ΣΧΕΔΙΟΥ
3.30
Λ. SKYLIGHT 2
0.40
Mωσαϊκό με πρόσμικτα αδιαβροχοποίησης
Restroom details and materials Α11 2100 sections Γ A11-3002
WC
T03.8
L1 0.10 0.05
ΤΟΜΗ Γ-Γ
Λ. ΚΟΥΡΤΙΝΙΕΡΑ
A11 9007
ΤΙΤΛΟΣ ΣΧΕΔΙΟΥ
Ανθυγρη γυψοσανίδα με επίχρισμα φυσικού σοβά με αδραβοχοποίηση σε Λεία Υφή
FF01a 3.25
MOCK-UP ROOM (S6) ΑΝΟΨΗ ΙΣΟΓΕΙΟΥ
+13.08
Λ. ΠΕΤΑΣΜΑ #3
FF01 2.40
L1
ΛΟΥΤΡΟ
0.70
Λ. ΠΕΡΓΚΟΛΑ
Μονή Δρομική Τοιχοποιία
T03.8
T03.10
CF04
FF01 2.40
WF01
0.42
SHOWER
L10
0.20
0.50
L10 1.40
B A11-3001
T02.11
3.15
L7 970mm
Θερμομόνωση πάχους 7εκ.
Νιπτήρας λουτρού ceppo di gre
WF04
WF03
0.15
Επίχρισμα
ΜΕΛΕΤΗ ΕΦΑΡΜΟΓΗΣ WF03
Mωσαϊκό με πρόσμικτα αδιαβροχοποίησης
0.58
WF03
0.90
0.90
e 1.07
T03.9 CF01 2.40
CF05
ΣΤΑΔΙΟ
2.10
WF04
1.07
WF03
0.49
0.12 0.35
L1e
L1
L1
1.07
0.30
2.75 1.35
A11-4001
L1
0.08 Ρολό χαρτιού
L1
L1
L1
2.10
L1
2.27
0.58
T02.13
A11 9005
0.43
0.21
L1 1.35
1.35
L1 1.35
L1 L10
CF02 2.70
WF03
4.35
Flush Plate GEBERIT Sigma 01
0.58
WF04
L5
L5
ΕΡΓΟ
WC χρώματος μαύρο ματ
1.20
1.20
CASA COOK CHANIA
WF03
ΧΑΝΙΑ, ΚΡΗΤΗ
CF10 2.75
WF03
0.10
2.75
2.00
WF05
T02.11
T02.12 0.31
ΛΕΠΤ. ΠΙΣΙΝΑ
1.20
WF03
0.15
1.20
1.35
1.35
CF01 2.40
WF03
0.90
L10
0.80
1.75
ΠΕΛΑΤΗΣ Λήδρα Τουριστική ΑΕ CF01 2.40
WF05
L1
2.27 2.27
A11-4003
S06
1.20
WF01
FF03
3.25 1.20
k - s t u d i o .gr
WF01
L1
L1
L1
L10
0.58
CF01 2.40
ΠΙΣΙΝΑ
0.78
ΚΗΠΟΤΕΧΝΙΚΗ ΜΕΛΕΤΗ @ k - s t u d i o .gr fytron landscapes
t u d i o . gwr
1.90
1.60
T03.8
T01.3
Πλάκα οπλισμένου σκυροδέματος 20εκ.
s
1.19
2.70
SUITE
0.15 0.43
T02.10
κενό υπερχείλισης πισίνας
Τσιμεντοκονία εξομάλυνσης
0.96
CF02
1.60
46.65 m²
CF10 2.75
+8.37m
Mωσαϊκό με πρόσμικτα αδιαβροχοποίησης
WF04
WF04
Ξύλινη πέργκολα με περσίδες σκίασης
T01.3
Πλάκα οπλισμένου Πλάκα οπλισμένου σκυροδέματοςσκυροδέματος 20εκ. 20εκ.
t
u
1.20
2.85
WF03
CF03 2.85
εξωτερική θερμοπρόσοψη 31 εκ.
ΤσιμεντοκονίαΤσιμεντοκονία εξομάλυνσης εξομάλυνσης
k - s t u d i o . ig rn f o
ΗΜ/ΝΙΑ k - s
w .
A11 9009
A11 9000
Mωσαϊκό με πρόσμικτα Mωσαϊκό με αδιαβροχοποίησης πρόσμικτα αδιαβροχοποίησης
FF01 2.40
g r e e c e
Λ. ΥΔΡΟΡΡΟΗ
Γ A11-3002
FF01 3.25
0.30
0.44
w
T02.11
+2.25m
FF01 0.08 3.25
0.44 WF04
0.15 0.43
28.30 m²
0.96
0.30
0.21
CF03
ΠΙΣΙΝΑ
ΚΗΠΟΣ
FF01 2.40
0 0 3 0 2 1 0 6 7 7 8 1 80 80 3 0 2 1 0 6 7 7 8 1 8 8
L10 0.31
B A11-3001
0.96 FF01 2.40
7 7 7 5 20 20 3 0 2 1 0 6 7 7 7 5 2 2
σοβά σε Λεία Υφή
NO.
WF05
FF01 2.40
2.40
ΜΕΛΕΤΗ ΦΩΤΙΣΜΟΥ s a v r o n Αρης Μ. Κλονιζάκης
ΚΛΕΙ∆Α ΚΛ
0 0 3 0 2 1 0 6 7 7 7 2 20 60 3 0 2 1 0 6 7 7 7 2 2 6 Γυψοσανίδα με επίχρισμα φυσικού
WF01
10.00 m²
0.70
ΜΑΡΤΙΟΣ 2018 FF01 1:50
s5 t i ul
Επίχρισμα
Ανθυγρη γυψοσανίδα Ανθυγρημε γυψοσανίδα επίχρισμα φυσικού με επίχρισμα φυσικού σοβά με αδραβοχοποίηση σοβά με αδραβοχοποίηση σε Λεία Υφή σε Λεία Υφή
0.42
Ε-Ε TOMH All measurements must be verified All measurements onTOMH site. must beΕ-Ε verified on site. the office, drawings maintains which all rights of the drawings which * Our office, maintains all rights*ofOur ** have been trusted to the receiver ** have been trusted to the receiver The reproduction and destribution The is reproduction not allowed without and destribution is not allowed without ΜΗΧ. ΜΗΧΑΝΙΚΟΣ office permition formΒ.ourΚικιδης office OE *** written permition form our *** written Τεχνικη Εταιρεια Μ. και
0.30
ΚΛΕΙΔΑ
Λ. ΚΟΥΡΤΙΝΙΕΡΑ
T02.13 ΘερμομόνωσηΘερμομόνωση πάχους 19εκ. πάχους 19εκ.
0.42
ΟΝΟΜΑ 333_suite_S6_sections_2D.3dm ΑΡΧΕΙΟΥ: 333_suite_S6_sections_2D.3dm
DWG BY: X.XXXXXXX
0.21
Μονή ΔρομικήΜονή Τοιχοποιία Δρομική Τοιχοποιία
ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ FF01 DWG BY: X.XXXXXXX ΟΙΚΟ ΔΟΜΗ Κατασκευαστική 2.40
FF01a 3.25
Section with details and material references
2018
ΣΥΜΒΟΥΛΟΙ
ΟΝΟΜΑ ΑΡΧΕΙΟΥ:
TOMH ∆-∆ TOMH ∆-∆
ΚΛΙΜΑΚΑ: 1:50
k - s t u d i o .gr
0.21
Επίχρισμα
0.70
ΜΑΡΤΙΟΣ 0 0ΗΜ/ΝΙΑ: 3 0 2 1 0 6 7 7 8 1 8 8 ΗΜ/ΝΙΑ:
0.95
WF03
A11 3001
g r e e c e
0 0 3 0 2 1 0 6 7 7 7 2 2 6 FF01a 3.25
0.19
4.35
t
2.75
e
vWF03r
2.75
0.89
t
r
ΑΡΙΘΜΟΣ ΣΧΕΔΙΟΥΑΡΙΘΜΟΣ ΣΧΕΔΙΟΥ y c a b e t t u s a
0.30
t
s
WF03
0.30
i
o n s
5 l
T02.13 T02.13
WF03
WF03
0.20
1.20
c h
c
i
WF03
0.33
0.20
2.10
r
CF01 2.401.66
2.40 0.40
0.33
2.28
Επίχρισμα
Ανθυγρη γυψοσανίδα με επίχρισμα φυσικού σοβά με αδιαβροχοποίηση σε Λεία Υφή
WF03
1.66
MOCK-UP ROOM MOCK-UP (S6) ROOM (S6) TOMH B-B TOMH B-B
0 0 3 0 2 1 0 6 7 7 7 5 2 2
Μονή Δρομική Τοιχοποιία Mωσαϊκό με πρόσμικτα Mωσαϊκό με αδιαβροχοποίησης πρόσμικτα αδιαβροχοποίησης Θερμομόνωση πάχους 7εκ. ΤσιμεντοκονίαΤσιμεντοκονία εξομάλυνσης εξομάλυνσης Επίχρισμα Πλάκα οπλισμένου Πλάκα οπλισμένου σκυροδέματοςσκυροδέματος 20εκ. 20εκ.
WF03
0.40
1.00
a
0.15
WF03
* Our office, maintains all rights of the drawings which CF01 ** have been trusted to the receiver 2.40 The reproduction and destribution is not allowed without *** written permition form our office
WF03
0.07
0.30
Πλάκα οπλισμένου σκυροδέματος 20 εκ.
WF03
CF01 2.40
0.30
1.75
3.25 0.30
1.00
CF01 2.40
0.73
0.21 Επίχρισμα
Χυτό βιομηχανικό δάπεδο
Πλάκα οπλισμένου σκυροδέματος 20 εκ.
333_suite_S6_sections_2D.3dm
ΣΤΑΔΙΟ
WF03
ΜΕΛΕΤΗ ΕΦΑΡΜΟΓΗΣ ΜΕΛΕΤΗ ΕΦΑΡΜΟΓΗΣ All measurements must be verified on site.
WF03
ΘερμομόνωσηΘερμομόνωση πάχους 19εκ. πάχους 19εκ. Χυτό βιομηχανικό δάπεδο
ΣΤΑΔΙΟ
DWG BY: X.XXXXXXX
2.10 Μονή ΔρομικήΜονή Τοιχοποιία Δρομική Τοιχοποιία
+5.36
WF03
1:50
ΟΝΟΜΑ ΑΡΧΕΙΟΥ:
1.66
WF03
Ανθυγρη γυψοσανίδα Ανθυγρημε γυψοσανίδα επίχρισμα φυσικού με επίχρισμα φυσικού σοβά με αδραβοχοποίηση σοβά με αδραβοχοποίηση σε Λεία Υφή σε Λεία Υφή
3.93
0.25 WF03
0.07
2.75
FF09
3.93
0.25 WF03
0.44
0.44
ΚΛΙΜΑΚΑ:
S Z-B 15-15
2.47
+6.78
1.35
2.47 1.35
FF09
Πλάκα οπλισμένου σκυροδέματος 20 εκ.
Γυψοσανίδα με επίχρισμα φυσικού σοβά σε Λεία Υφή
ΧΑΝΙΑ, ΚΡΗΤΗ
2.75
ΧΑΝΙΑ, ΚΡΗΤΗ
1.66
T02.13 T02.13
ΚΛΕΙΔΑ
WF03
ΗΜ/ΝΙΑ:
WF14
2.75
3.93
WF03
3.25
33.93 m²
Tσιμεντοκονία εξομάλυνσης
A11 3001 CASA COOKCASA CHANIA COOK CHANIA ΜΑΡΤΙΟΣ 2018
WF03
0.30
S06 - H/M
33.93 m² 4.20
S06 - H/M
+6.78
+5.36
0.44
3.93
ΧΩΡΟΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΧΩΡΟΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ WF14 WF14
WF14
ΑΡΙΘΜΟΣ ΣΧΕΔΙΟΥ ΕΡΓΟ ΕΡΓΟ
L7 970mm
WF03
0.30
CF02
3.93
L7 970mm
Λεπτό χαλίκι Θερμομόνωση πάχους 7εκ.
Μεταλλική Ανάρτηση
+9.68
0.20
0.38
0.70
CF02
3.93
0.44
+9.73 +9.68
Επίστρωση δαπέδων με πετρινες σχιστόπλακες Κονίαμα συγκόλησης Tσιμεντοκονία εξομάλυνσης Πλάκα οπλισμένου σκυροδέματος 15 εκ.
0.20
+9.73
Πλάκα οπλισμένου σκυροδέματος 20 εκ.
0.38
Επίστρωση δαπέδων με πετρινες σχιστόπλακες FF01α FF02 Κονίαμα συγκόλησης Tσιμεντοκονία 2.70εξομάλυνσης 2.75 Πλάκα οπλισμένου σκυροδέματος 15 εκ.
0.44
2.75
0.21
FF02
2.70
Μεταλλική Ανάρτηση Μεταλλική Ανάρτηση
Γυψοσανίδα με Γυψοσανίδα επίχρισμα φυσικού με επίχρισμα φυσικού σοβά σε Λεία σοβά Υφή σε Λεία Υφή
Οπλισμένο σκυρόδεμα Οπλισμένο σκυρόδεμα
0.21
FF01α
2.70
Λεπτό χαλίκι Λεπτό χαλίκι
ΘερμομόνωσηΘερμομόνωση πάχους 7εκ. πάχους 7εκ.
TσιμεντοκονίαTσιμεντοκονία εξομάλυνσης εξομάλυνσης
Πλάκα οπλισμένου Πλάκασκυροδέματος οπλισμένου σκυροδέματος 20 εκ. 20 εκ.
3.37
3.37
FF01
2.70
Πλάκα οπλισμένου Πλάκα οπλισμένου σκυροδέματοςσκυροδέματος 20εκ. 20εκ.
MOCK-UP ROOM (S6) TOMH B-B
A11 9004
46.65 m²
FF01 0.57
0.57
+9.68
+9.38 0.70
0.21
0.44 0.21
0.15
3.93
FF01α 2.75 δάπεδο Χυτό βιομηχανικό
ΤσιμεντοκονίαΤσιμεντοκονία εξομάλυνσης εξομάλυνσης
ΠΕΛΑΤΗΣ ΠΕΛΑΤΗΣ Λήδρα Τουριστική ΑΕ Λήδρα Τουριστική ΑΕ Λ. ΕΞΩΤ. ΘΥΡΑΣ
A11CF10 90042.70
+6.78
2.70
2.47
2.13
3.15
1.35
S06
Mωσαϊκό με πρόσμικτα Mωσαϊκό με αδιαβροχοποίησης πρόσμικτα αδιαβροχοποίησης
ΗΜ/ΝΙΑ
ΘερμομόνωσηΘερμομόνωση πάχους 7εκ. πάχους 7εκ.
SUITE
46.65 m²
Mωσαϊκό FF01α Πλάκα οπλισμένου σκυροδέματος 20 εκ. 2.75 με μείωση στα 15 εκ.
0.20 0.20
Πλάκα οπλισμένου σκυροδέματος 15 εκ.
+9.38
2.70 CF10
FF02α
28.30 m²
FF02
0.20 0.20
Mωσαϊκό Πλάκα οπλισμένου FF07 σκυροδέματος 20 εκ. Ξύλινο με μείωση στα 15 εκ. Deck Ξύλινο πηχάκι +9.68 υποστήριξης Deck
WF05
Λ. ΕΞΩΤ. ΘΥΡΑΣ CF02
FF01 2.40
TOMH B-B TOMH B-B ΜΕΛΕΤΗ ΕΦΑΡΜΟΓΗΣ
WF05
4.20
FF02α
1.90
1.90
Πλάκα οπλισμένου σκυροδέματος 15 εκ.
S06FF09
ΚΗΠΟΣ
WF02
+5.36
28.30 m²
FF02
SUITE
ΗΜ/ΝΙΑ
0.47
WF05
2.70
2.13
2.70
ΚΗΠΟΣ
T01.3 Ξύλινο Deck Ξύλινο πηχάκι υποστήριξης Deck
0.30
WF05
CF03 2.85 CF02 2.70
2.75
θερμομονωτικό επάλληλο συρόμενο σύστημα σειράς ALBIO 235 της EXALCO
συρόμενο σύστημα σειράς ALBIO 235 της EXALCO
0.30
0.47
σταθερό ξύλινο πέτασμα σκίασης
+11.28θερμομονωτικό επάλληλο
WF02
CF10
ΠΕΡΙΓΡΑΦΗ
2.75
A11 9007
NO.
0.55 0.54 0.01
2.70
Λ. ΠΕΤΑΣΜΑ #3 CF03 2.85
2.75
σταθερό ξύλινο πέτασμα σκίασης
FF07
WF05
0.55 0.54 0.01
33.93 m²
WF05
0.65 4.20
+12.43
3.15
CF10
S06 - H/M
0.92 3.93 0.65 0.15 0.50
0.65
A11 9007
+10.15m Λ. ΠΕΡΓΚΟΛΑ
A11 9000
Floor plan and RCP
Λ. SKYLIGHT 2
A11 9002
A11-4002
A11-3000 A
T01.3
0.01
WF14
WF05
Λ. ΠΕΤΑΣΜΑ #3
+11.28
0.30
+13.08
0.92
Πλάκα οπλισμένου σκυροδέματος 20 εκ. με μείωση στα 15 εκ. WF05 Τσιμεντοσανίδα με επίχρισμα φυσικού κονιάματος με λεία υφή
+12.43
5.00 4.40 WF14
0.65 0.50
0.01
+13.08
Επίχρισμα φυσικού κονιάματος με λεία υφή
Πλάκα οπλισμένου σκυροδέματος 20 εκ. με μείωση στα 15 εκ. Τσιμεντοσανίδα με επίχρισμα φυσικού κονιάματος με λεία υφή
1.00 5.00 ΧΩΡΟΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ 0.99 0.30 4.40
ΠΕΡΙΓΡΑΦΗ
0.54
ΣΤΑΔΙΟ
2.75
1.00 0.99
NO.
FF01 2.40
ΧΑΝΙΑ, ΚΡΗΤΗ
0.54
ΚΗΠΟΤΕΧΝΙΚΗ ΜΕΛΕΤΗ ΚΗΠΟΤΕΧΝΙΚΗ ΜΕΛΕΤΗ fytron landscapes fytron landscapes
Χαλίκι Θερμομόνωση πάχους 5εκ. Tσιμεντοκονία εξομάλυνσης Πλάκα οπλισμένου σκυροδέματος 20 εκ.
2.70
0.70
Χαλίκι CF02 3.93 Θερμομόνωση πάχους 5εκ. Tσιμεντοκονία εξομάλυνσης Πλάκα οπλισμένου σκυροδέματος 20 εκ.
Επίχρισμα φυσικού κονιάματος με λεία υφή
+9.68
0.38
0.20 0.20
+9.38
CASA COOK CHANIA
ΑΝΑΘΕΩΡΗΣΕΙΣ ΑΝΑΘΕΩΡΗΣΕΙΣ
Implementation study // as-built drawings
Πλάκα οπλισμένου σκυροδέματος 15 εκ.
0.78
Επίστρωση δαπέδων με πετρινες σχιστόπλακες Κονίαμα συγκόλησης Tσιμεντοκονία εξομάλυνσης Πλάκα οπλισμένου σκυροδέματος 15 εκ.
+9.73
0.25
2.40
2.75
2.40
FF02
2.70
0.25
1.47
FF01α
2.70
2.40
FF01
2.75
2.75
1.20
FF01α
+9.68
ΜΕΛΕΤΗ ΦΩΤΙΣΜΟΥ Αρης Μ. Κλονιζάκης
0.43
ΜΕΛΕΤΗ ΦΩΤΙΣΜΟΥ Αρης Μ. Κλονιζάκης ΕΡΓΟ
0.10
3.37
WC χρώματοςWC μαύρο χρώματος ματ μαύρο ματ
2.75
FF02α
Mωσαϊκό Πλάκα οπλισμένου σκυροδέματος 20 εκ. με μείωση στα 15 εκ.
0.57
FF02
Ξύλινο Deck Ξύλινο πηχάκι υποστήριξης Deck
2.70
2.13
3.15
S06
46.65 m²
28.30 m² FF07
SUITE
ΚΗΠΟΣ
1.90
T01.3
2.70
θερμομονωτικό επάλληλο συρόμενο σύστημα σειράς ALBIO 235 της EXALCO
WF02
ΠΕΡΙΓ NO
Ανθυγρη γυψοσανίδα Ανθυγρημε γυψοσανίδα επίχρισμα φυσικού με επίχρισμα φυσικού σοβά με αδραβοχοποίηση σοβά με αδραβοχοποίηση σε Λεία Υφή σε Λεία Υφή
1.46
σταθερό ξύλινο πέτασμα σκίασης
+11.28
NO.
Μονή ΔρομικήΜονή Τοιχοποιία Δρομική Τοιχοποιία
1.46
0.21 0.44
CF10
WF05
ΘερμομόνωσηΘερμομόνωση πάχους 19εκ. πάχους 19εκ.
ΠΕΛΑΤΗΣ Λήδρα Τουριστική ΑΕ
0.44
WF05
0.65 0.50
Λ. ΠΕΤΑΣΜΑ #3
A11 9007
ΟΙΚΟ ΔΟΜΗ Κατασκευαστική ΟΙΚΟ ΔΟΜΗ Κατασκευαστική
0.54 0.01
2.75
0.30
2.75
4.40
WF05
2.40
0.30
WF05
0.15
+12.43
2.40
0.99 0.92
0.65
Πλάκα οπλισμένου σκυροδέματος 20 εκ. με μείωση στα 15 εκ. Τσιμεντοσανίδα με επίχρισμα φυσικού κονιάματος με λεία υφή
0.21
0.01
+13.08 Επίχρισμα φυσικού κονιάματος με λεία υφή
Λ. SKYLIGHT 1
a
A11 9001
c
r
t
e
c
t
r
u
c
t
a
v
r
o
n
North and south elevations
b
e
t
t
l
c
h
i
o n s
5
i y
t
s c
a
a t h e n s
11471
u r
e
i o n s u
t s
g r e e c e
ΠΕΡΙΓΡΑΜΜΑ ΥΠΟΓΕΙΟΥ
0 0 3 0 2 1 0 6 7 7 7 5 2 2 0 0 3 0 2 1 0 6 7 7 7 2 2 6 0 0 3 0 2 1 0 6 7 7 8 1 8 8 i n f o w
w
@ w .
k - s t u d i o .gr k - s t u d i o .gr
ΚΛ
Χαλίκι Γεωύφασμα Θερμομόνωση πάχους 5εκ. Ασφαλτόπανο
ΑΝΑΘΕΩΡΗΣΕ
Tσιμεντοκονία εξομάλυνσης
NO.
ΠΕΡΙΓΡΑΦΗ
Πλάκα οπλισμένου σκυροδέματος 20 εκ.
After the first design stages of the whole complex, the focus was mainly concentrated on one of the rooms. The mock up room was a suite and was the first to be designed in full detail with implementation study and as-built drawings. This stage was later on applied to the entirety of the project.
ΣΗΜΕΙΩΣΕΙΣ
ΣΥΜΒΟΥΛΟΙ ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ ΟΙΚΟ ∆ΟΜΗ Κατασκευαστική
ΜΗΧ. ΜΗΧΑΝΙΚΟΣ Τεχνικη Εταιρεια Μ. και Β. Κικιδης OE ΣΗΜΕΙΩΣΕΙΣ Λαμαρίνα πλήρωσης
ΜΕΛΕΤΗ ΦΩΤΙΣΜΟΥ Αρης Μ. Κλονιζάκης
Δοκίδες στήριξης λαμαρίνας
ΑΝΑΘΕΩΡΗΣΕΙΣ
Sink detail NO.
ΠΕΡΙΓΡΑΦΗ
ΚΗΠΟΤΕΧΝΙΚΗ ΜΕΛΕΤΗ ΑΝΑΘΕΩΡΗΣΕΙΣ fytron landscapes
ΗΜ/ΝΙΑ
NO.
ΚΛΕΙΔΑ
ΠΕΡΙΓΡΑΦΗ
ΗΜ/ΝΙΑ
Υαλότουβλα 190x190mm
L7 970mm
ΠΕΛΑΤΗΣ 175 Λήδρα Τουριστική ΑΕ
50 50 40 ΤΟΜΗ Α-Α ΛΕΠΤΟΜΕΡΕΙΑ Α ΚΛΙΜΑΚΑ 1:5
ΕΡΓΟ
10
140
10
CASA COOK CHANIA
12
150
150
12
150
150
50
Βαφή τύπου Dulux Diamond Trade Matte (CF03)
12 10
150
12
Κονίαμα βάσης τσιμέντου, τροποποιημένο με πολυμερικά πρόσθετα
ΧΑΝΙΑ, ΚΡΗΤΗ
10
140
105
10
150
12 10
50
12
12 10
Γαλβανισμένη μεταλλική βέργα
Γυψοσανίδα με επίχρισμα φυσικού σοβά σε λεία υφή (CF02)
Τύπου Dulux Γυψοσανίδα Βαφή με επίχρισμα Diamond Trade Matte (CF03) φυσικού σοβά σε λεία υφή (CF02)
Μεταλλική Ανάρτηση
Μεταλλική Ανάρτηση
Βαφή Τύπου Dulux Diamond Trade Matte (CF03)
Σκελετός δοκίδων διατομής Τ 50mm
ΤΟΜΗ Α-Α ΛΕΠΤΟΜΕΡΕΙΑ Β ΚΛΙΜΑΚΑ 1:5
Μεταλλική Ανάρτηση
ΜΕΛΕΤΗ ΕΦΑΡΜΟΓΗΣ
Hidden curtain rail details
Φυσικό κονίαμα με άγρια υφή (WF04) Εσοχή σιδηρόδρομου κουρτίνας
Γυψοσανίδα με επίχρισμα φυσικού σοβά σε λεία υφή (CF02)
ΣΤΑ∆ΙΟ
Εσοχή σιδηρόδρομου κουρτίνας
Εσοχή σιδηρόδρομου κουρτίνας
ΤΙΤΛΟΣ ΣΧΕ∆ΙΟΥ
MOCK-UP ROOM (S
Σκελετός δοκίδων διατομής Τ 50mm Υαλότουβλα 190x190mm
Γαλβανισμένη μεταλλική βέργα
Οδηγός 30mm Γυψοσανίδα 6mm με επικάλυψη κονιάματος Δοκίδες στήριξης λαμαρίνας
ΤΥΠΙΚΗ ΤΟΜΗ (σε κούφωμα) ΚΛΙΜΑΚΑ 1:5
βέργα
Κονίαμα βάσης τσιμέντου, τροποποιημένο με πολυμερικά πρόσθετα
ΤΥΠΙΚΗ ΤΟΜΗ (σε τοίχο) ΚΛΙΜΑΚΑ 1:5
RHS 80x60mm
, μερικά
L7 970mm
50 50
ωσης
Λαμαρίνα πλήρωσης
ΑΡΙΘΜΟΣ ΣΧΕ∆ΙΟΥ
105
50mm
90mm
ΚΑΤΑΣΚΕΥΑΣΤΙΚΗ ΛΕΠΤΟΜΕ ΚΛΕΙΔΑ ΤΥΠΙΚΗ ΤΟΜΗ (σε κούφωμα) SKYLIGHT ΜΕ ΥΑΛΟΤΟΥΒΛΟ ΚΛΙΜΑΚΑ 1:5
L7 970mm
40
Α11 9002 B
175
ΛΕΠΤΟΜΕΡΕΙΑ A
ΛΕΠΤΟΜΕΡΕΙΑ B
50 50 40 ΤΟΜΗ Α-Α ΛΕΠΤΟΜΕΡΕΙΑ Α ΚΛΙΜΑΚΑ 1:5 1660
Γυψοσανίδα 6mm με επικάλυψη κονιάματος
ΗΜ/ΝΙΑ: 175
ΜΑΡΤΙΟΣ 2018
ΚΛΙΜΑΚΑ:
∆ΙΑΦΟΡΕΣ
ΟΝΟΜΑ ΑΡΧΕΙΟΥ:
skylight glassbrick
DWG BY: X.XXXXXXX
All measurements must beΑΞΟΝΟΜΕΤΡΙΚΟ verified on site. of the1:20 drawings * Our office, maintains all rights ΚΛΙΜΑΚΑ ** have been trusted to the receiver The reproduction and destribution is not allow *** written permition form our office
ΤΟΜΗ Α-Α ΚΛΙΜΑΚΑ 1:10
105
ΚΛΕΙ∆Α a
r
h
i
t
e
c
t
u r
c
o n s
t
r
u
c
t
i o n
5 l
c i
y
s
a
v
r
o
n
c
a
b
e
t
t
a t h e n s
Glass block skylight construction strategy
ΤΟΜΗ Α-Α ΛΕΠΤΟΜΕΡΕΙΑ Β ΚΛΙΜΑΚΑ 1:5
Glass block skylight details
ΑΞΟΝΟΜΕΤΡΙΚΟ ΚΛΙΜΑΚΑ 1:20
11471
e
s u
t s
g r e e c e
0 0 3 0 2 1 0 6 7 7 7 5 2 2 0 0 3 0 2 1 0 6 7 7 7 2 2 6 0 0 3 0 2 1 0 6 7 7 8 1 8 8 i n f o w
Οδηγός 30mm Γυψοσανίδα 6mm με επικάλυψη κονιάματος Δοκίδες στήριξης λαμαρίνας
@
k - s t u d i o .gr
Σκελετός δοκίδων διατομής Τ 50mm
w
23
Υαλότουβλα w . k190x190mm - s t u d i o .gr
Γαλβανισμένη μεταλλική βέργα Κονίαμα βάσης τσιμέντου, τροποποιημένο με πολυμερικά πρόσθετα Λαμαρίνα πλήρωσης
JUNCTIONS ON THE CITY DipArch Design Thesis // Fall 2016 // Grade 10/10 Architectural and Urban Design In collaboration with: Akis Polykandriotis Supervisor: Prof. Athanasios K. Spanomaridis
This thesis approaches the interlocution of multiple programs as a system with the city of Athens, recognizing the urban fabric as topography. This arrangement gets tied with the conurbation through a walkway. The proposal concerns the connection / junction between the Attiki and Larissa train stations and it aims at reestablishing the city relation to its infrastructure, nature, communal space, memory, reservation, restoration and topography, as read in multiple scales [city, program, detail]. Attiki station is a junction of two urban railway lines, namely line one and two. Larissa station connects line two with the national and suburban railway. They both play an important role in the proposed system. While the city is experiencing the loss of its center, its limits and its cohesion, networks and infrastructures are particularly important, while time unifies its composite parts. This introverted structure gets differentiated from the city in three ways: verticality [section], in detailing and materiality.
The main circulation path gets folded while passing through the city. Columns emerging from cityscape support the walkway and the programs. As for the structural detail of the connection, this meeting point seems to be vanished by the sunlight falling, as if the column is not bearing any load. Concerning the materiality contradiction, the walkway’s structural scaffolding is made of steel and its surface is of epdm rubber, a soft material that along with steel gets differentiated from concrete, the typical material of the Athenian city. The main entrances to the system can be achieved through the train station complexes at the two ends of it [Attikis and Larissis]. This is where the main load of visitors comes from and departs. Furthermore, there are secondary entry points [stairs and elevators] at various spots adjacent to the walkway. The pedestrian should make use of the main circulation path in order to approach any of the programs.
The existing train infrastructures are the project’s starting point. Another type of infrastructure, an intangible one, the internet, is the basis for the creation of a communal workplace at the middle of the main circulation path. In between those three there are more programs, located so that the existing urban conditions indicate [Artificial Garden, Square of Remembrance, Reused Trolley Depot, Section Observatory]. The project gets briefly explained in Greek by its name, having both the notion of “above” and “against”, as seen in the opposing nature between the proposal and the city embracing it.
25
1. Suburban Train Station - Larissa Station 2. Artificial Garden 3. Communal Workplace 4. Square of Remembrance 5. Reused Trolley Depot 6. Section Observatory 7. Regional Train Station - Attiki Station
1
2 3 4 5 6
7 1
2
3
4
5
6
7
Overground Line 1 National and Suburban Railway Underground Line 2 Attiki Station
Athens Municipal Library Larissa/Athina Station
Omonoia Square
bearing load [main typology]
circulation
sitting area
power supply working area
reception area
piping rest room
absence interior atrium
nature
site prior to intervention
COLUMN TYPOLOGY Regarding the way that the proposal is supported, there stands a circular metal pipe that gets intervened between the concrete column of the city and the proposal, creating the necessary distance between the two connecting elements. Four laminates in the interior of the pipe get the load connected with the column. The light penetrates the joint and turns it invisible. The column then acquires another function, other from its structural one. It gets denatured into something new, leaving the previous function behind. The column turns into circulation, sitting area, power supplier [working area], reception area, piping [restroom], absence [interior atrium] and nature.
1. Suburban Train Station - Larissa Station
Comparing the gothic cathedral and its importance to the city, we compare it to the contemporary urban junction of a train station, translating some of its characteristics. Scale, incorporeality, infinite space, verticality and the longitudinal axis of the cathedral are imbued into the two train stations [Larissa, Attiki]. During the design of the two stations, the act of transition from and to the train, litany is being accentuated, in correspondence with the cathedral. Here lies the one end of the path. As is the case in Attikis station, applied are the above-mentioned characteristics of the cathedral. Different typologies of columns and programs create openings on the ceiling. On the ground floor one can find the points of entry, information desks, customer services, waiting areas, ticket offices, luggage storage. Public programs and commercial premises are on the first floor of the train station. The old Larissa Station stays intact concerning its shell, while its facilities are turned into vertical circulation and auxiliary spaces.
The key elements of gothic cathedral, longitudinal and vertical axis, are translated as the basic elements of the train station // a row of columns is placed on the platforms stressing the longitudinal axis // slight distance between rows stresses the vertical axis // the height of the column is five times the height of a human
27
2. Artificial Garden
view of the man-made and rational nature
In an increasingly urbanized world, it is interesting to note that local urban planning seeks to define a new theoretical framework for the relationship between city and nature. The Artificial Garden is organized in an absolute, logical shape, the square. The position of this program is set to create a dialectical relationship with the Municipal Library of Athens that is facing it. The main walkway embraces the program, getting the wanderer at the point where a panoramic view of the rational nature is feasible. A firm structural grid holds the whole structure stiff. On top of the supporting columns stand planted olive trees. Cubic pots contain the olive trees. Pots that stand over the train rails remain empty, as there is no column to be translated into nature.
3. Communal Workplace
Communal workplace is the middle point between the two train stations [Attiki station - Larissa station]
Communal workplace is based on the immaterial infrastructure of the internet. This area includes the basic amenities [electricity, internet, toilet and furniture] so that they can accommodate all kinds of activities: meetings, work, study, discussion, production of ideas. Office intensity and rat race is often a reason to search for a more suitable place to work. Coworking brings people near each other who might have vastly different skillsets or solutions to problems. The internet is an infrastructure that is indispensable to the contemporary version of working and keeps this program running. This space is for people or groups who want to work under the same roof. The path forms the building and its slabs are derived from its parts. Different typologies of columns and programs create openings on the ceiling. Communal workplace hovers above the railway tracks of the national and suburban railway. The provisions in this collective workplace are the extremely essential ones and result from the denaturations of the support column: power supplied desks, sitting areas, reception desks, interior atria and sanitary facilities.
29
4. Square of Remembrance
The main circulation coming from the south is visible in brick-red rubber, crossing the old lab and heading to the transportation square
In the basement of the old trolley service station lies unearthed a WWII war bunker. Indestructible from time and with several remnants of the era, such as anti-tank doors, megaphones, wrecked carriers, and volumes of the governmentâ&#x20AC;&#x2122;s newspaper from 1927 onwards. The trolley storage room is demolished, only keeping the structure with the columns to remind its existence. A trench is created around the bunker, as an excavation that brings the find to light. The bunker is not a foreign body to its surroundings but still exists in the environment that was born, as the columns of the building in which it was located are preserved.
WWII bunker accidentally found in the square and kept, stressing the entrance and exit from it with two bold thresholds
5. Reused Trolley Depot
6. Section Observatory
The trolley depot is one of the three in Athens [it hosts 1.4% of network vehicles]. The building retains its structural skeleton and is divided into two sections, the existing workspace and a public space that the walkway passes through.
Section Observatory is a process of revealing the cityâ&#x20AC;&#x2122;s structures on the vertical axis. On the rise there is extroversion and observation of the city, while in the underground the observer looks inward, the cityâ&#x20AC;&#x2122;s vitals. The Museum has the ability to adjust its height and depth depending on city extensions. There is a spatial scaffolding that holds the walkway, allowing trains, people pass through it.
New banks for installations are created and some pre-existent cavings are transformed into meeting points and benches. Part of the Trolley Depot gets trimmed by the Section Museum, so that it reveals itself to the public.
Starting from the ground level and going upwards, there is a gentler walkway to the upper city. The whole trip to the top of the museum is an observatory to the structure of the conurbation.
31
7. Regional Train Station - Attiki Station
The Transportation Square lies in between the two train platforms of Attiki Station [metro lines 1 and 2]
Attiki Station is imbued with the elements of the cathedral. Between the two train platforms there is an intermediate plane created. This is the concourse level, the so called transportation square. This space acts as a connection between the metro lines 1 and 2 platforms. Furthermore, it is the other end/ starting point of the walkway.
The vertical and longitudinal axes are some of the driving design intentions of Attiki and Larissa stations.
First floor plan // metro line 1 platforms
Ground floor plan // Transportation Square
33
L. Mies van der Rohe: The technical truth Farnsworth House
S. Calatrava: Forms and interpretations Milwaukee Art Museum
Louis I. Kahn: Forms and interpretations Four Freedoms Park
Peter Zumthor: The arrangement Kunsthaus Bregenz
Tadao Ando: The light Koshino House
Zaha Hadid: Continuity Cincinnati
D E TA I L : U N V E I L I N G T H E A RC H I T E C T U R A L CONSISTENCY DipArch Research Thesis // Spring 2015 // Grade 10/10 Hardcopy publication, 22x22cm, 95 pages In collaboration with: Akis Polykandriotis Supervisor: Prof. Athanasios K. Spanomaridis
Unveiling the Architectural Consistency: A recent stimulus from the 2014 Biennale gives rise to the introduction of the theme of architecture as language in order to discover the meaning of “grammar”. The unifying role of the detail helps the emergence of its importance as grammar. The lexical and etymological analysis of the word is a starting point for the revelation of a new compreension, leading to the study of the “truth” in the detail, the meanings and intentions that flow from it.
and that of the excitement (sensation). Finally, with the help of selected examples, the detail illustrates the consistency and intentions, the technical truth, the narrative, the relations of form and meaning, the absence, the light, the organization, the continuity. Details move us.
The study of the Part and the Whole as relations emerge through the detail. The theory of perception illuminates the in-terpretation of these relations from the perspective of the observer. Through the method of elimination takes place a distinction between the detail of the construction MAIN BIBLIOGRAPHY Alberti, Leon Battista [1986], The Ten Books of Architecture, New York: Dover Publications // Banham, Reyner [1970], Theory and Design in the First Machine Age, New York: Praeger Publishers // Bizley, Graham [2010], Architecture in Detail II, Oxford: Elsevier // Blaser, Werner [1999], Mies van der Rohe, Farnsworth House: weekend house, Basel: Birkhauser // Bloomer, Kent [2000], The Nature of Ornament, Rhythm and Metamorphosis in Architecture, New York: W.W. Norton & Company // Bormann, Karl [2006], Plato, translation by G. I. Kalogerakos, Athens: Kardamitsa // Dal Co, Francesco [1995], Tadao Ando Complete Works, p.461, London: Phaidon // Dochantschi, Markus [2004], Zaha Hadid Space for Art, Baden: Lars Müller Publishers // Ford, R. Edward [1998], The Details of Modern Architecture, volume 2: 1928 to 1988, Cambridge, MA: MIT Press // Ford, R. Edward [2011], The Architectural Detail, New York: Princeton Architectural Press // Frampton, Kenneth [1995], Studies in Tectonic Culture, The Poetics of Con-struction in Nineteenth and Twentieth Century Architecture, Cambridge, MA: MIT Press // Hadid, Zaha [2009], The Complete Zaha Hadid, London: Thames & Hudson // Hays, K. Michael [1998], Architecture Theory since 1968, Cambridge, MA: The MIT Press // Heidegger, Martin [1978], Sein und Zeit, G. Tzavaras, Athens: Dodoni // Heidegger, Martin [1986], Der Ursprung des Kunstwerkes, G. Tzavaras, Athens: Dodoni // Hunter, Matthew [2012], Tadao Ando: Conversations with Students, New York: Princeton Architectural Press // Le Corbusier [2005], Vers Une Architecture, P. Tournikiotis, Athens: Ekkremes // Mc Carter, Robert [2005], Louis Kahn, New York: Phaidon Press Limited // Murphy, Richard [1990], Carlo Scarpa and the Castelvecchio, London: Butter-worth-Heinemann // Norberg-Schulz, Christian [1977], Intentions in Architecture, Cambridge, MA: The MIT Press // Norberg-Schulz, Christian [1980], Kahn, Heidegger and the Language of Architecture, London: Academy Editions // Scruton, Roger [1979], The Aesthetics of Architecture, London: Methuen and Co. // Vandenberg, Maritz [2005], Farnsworth House: Ludwig Mies van der Rohe, [B’, Architecture in Detail], New York: Phaidon // Vesely Dalibor [2004], Architecture in the Age of Divided Representation: the Question of Creativity on the Shadow of Production, Cambridge, MA: The MIT Press // Zumthor, Peter [2006], Peter Zumthor, Thinking Architecture, Basel: Birkhäuser // Zumthor, Peter, Binet, Hélène [1999], Peter Zumthor Works: Buildings and Projects 1979-1997, Basel: Birkhauser 35
V I TA L V E S S E L S Architectural Competition // Winter 2014 Dwelling of the Future In collaboration with: V. Chaeropoulou, R. Charalamboudi, C. Loizou, A. Polykandriotis Supervisor: Prof. I. Patronis
As of 2013, there are 24 megacities in existence, each of which has a population excess of 20 million inhabitants. Two of these are located around the Pearl River Delta. The delta has become one of the leading economic regions and a major manufacturing center of China and the world. Guangzhou is key to national transportation, serving as hub and trading port as it concentrates all political, economic, educational, scientific, technological, cultural and social functions. Its dynamic growth process does not only transform urban economies and population structures but also the urban morphology and Guangzhou’s cityscape with more and more people living in a high building density or in high rise.
the underground infrastructure in order to produce electricity by using water turbines. This energy is saved in order to be consumed for the community’s needs, achieving a sustainable housing system.
Based on daily routine, a large amount of people travel from home to work and vice versa, shifting through different levels reaching the city’s other end, entering their office building in daytime and returning home by nightfall. This is a reality for any society based on a modern megacity.
Work and housing are placed in each one of the two vessels. The vessel which act like infrastructure stand still, containing and protecting the two buildings. This system is designed to withstand the worst weather forecasts to come in the future (maximum sea level rise of 60m) and provide autonomy and sustainable protection. An adaptive vertical community with variations of private, open and closed public spaces is formed.
While people enter the building, a large amount of variable weight is gathered causing a downwards, gravitational force. The building with the largest amount of weight retreats into its shell, or vessel because of this input force. By the same time, the applied force is transmitted through the pistons infrastructure and an output counter force boosts up the second building. This action often takes place more than twice a day, depending on the inhabitants’ needs.
P1 = P2 P = (F )/A A1 d1 = A2 d2 W done = W output P = Pressure // F = Force exerted on each piston // A = Area of each piston // d = height variation // W = Work done
Utilizing Pascal’s Law, or the principle of transmission of fluid-pressure, we achieve the multiplication of our input force (gravitational force of human weight). Therefore, taking advantage of the buildings’ vertical movement, water is boosted via kinetic energy through 37
The estimated sea-level rise is about sixty meters above the current state. Our system fully consorted with today condition and possible future condition, located by the Pearl River Delta bank. Having a span of about forty floors between each pair of them, this is the main insertion of green in our vertical community. It is used as a gap, twice in the housing skyscraper and four times in the office skyscraper because of its height. It mainly contributes for social gathering, being used as a multifunctional place. Specially designed glass frames, reinforced with a metallic structure that contain the skyscrapers and hang the exterior blades. The mechanism that produces and saves energy from the water’s flow, is explained and applied by the Pascal’s primitive. The skyscraper structure is balanced in between the vessels’ inner walls. It perfectly seals and separates the water managing to constrain its pressure in order to achieve Pascal’s Principle. Estimated sea-level rise in the next century on Earth and in Pearl River Delta
Green plaza penetrated by the water stream
There is a particular way to approach our system from the rest of the urban fabric. In case of a severe weather disaster (floods, storms, sea level rise) the system maintains its autonomy and every-day life remains unaffected. Furthermore, this circulation connects the two skyscrapers with each other, so that people can move easily between them.
floors
Other Public Uses Various other public uses, such as Health care/ hospitals, courts, malls, schools, entertainment etc. Regardless of the uses, the space and, as a consequence, people are equally allocated between the two skyscrapers.
interior/exterior circulation - lifts
public open space
Exterior Blades Adding to the buildingâ&#x20AC;&#x2122;s outside appearance, the blades work as cantilevers of each one of the buildings, regardless of their position in the vessels.
exterior blades Water pillar This is an intrusion of water in the skyscraper, carving the building and climbing between the floors and public spaces.
housing
water pillar
vessel structure
vessel
39
C H RY S A L I S Architectural Competition // Summer 2015 Public Library Part 1 Architect // 314 Architecture Studio Design Concept, Drawings, Renderings, Post Processing
The design proposal concerns the Architecture Competition for the “Casablanca Bombing Rooms” on a highly charged site due to a bombing act in 2003. The project highlights the need for alteration and public communication and uses knowledge as the key feature. “Chrysalis” aims to make a gradual transition from unawareness to knowledge as an attempt of elimination of any act of violence. This transition is achieved through a movement that emerges from darkness, penetrates a water layer as a sign of purification and results to the light.
The building works in an energy efficient way due to a geothermic system that uses the stable temperature and the thermal capacity of the subsoil. A water tank in a depth of 10m into the subsoil works as a cold capacitor keeping a stable 16oC temperature. A turbine is placed above the water tank and revolves in a slow rate. Due to the sub-pressure in the surface of the water that occurs from the turbine, the air frigidity is propelled through the building. Finally the warm air escapes from the top of the building resulting to an air renewal and thus a natural air circulation.
The visitor follows a narrated promenade on a rising helix ramp that begins from the exhibition area underground and goes on as a journey of knowledge. The ramp is wrapped by a cloth shell producing an aerial and organic form leaving a humble imprint to the city of Casablanca. The light materiality contributes to that direction. The promenade is interrupted by several intermediate levels. A second cloth shell surrounds the levels creating semioutdoor spaces that host the conference room, the classrooms, the administration offices. The public space, that includes the main library, is transferred to the upper levels (agora) where people gather, study, communicate and interact with each other. The circulation is enabled through a helix ramp that rises from the underground and goes on for eternity. The helix ramp is wrapped with a cloth shell as a reference to the contour of the minaret and the islamic architectural vocabulary.
41
the formation process // eight star Islamic pattern
entrance
A ramp from the pedestrian walkway on the east side of the site develops around the water tank leading the visitor to the exhibition space on the lowest level. Then a spiral ramp penetrates the whole building leading to intermediate levels and finally to the upper level. On both sides of the spiral ramp the visitors can find the library with books surrounding them
geothermical water tank
Immediate access to the floors of the building is achieved with two elevators [platforms]
upper level
the helix ramp library
transition from unawareness to knowledge
typical floor plans
view from nearby rooftops
8
7
6
Chrysalis aims to set the basis for public communication. Through this procedure spring the essence of alteration, initiating a transition from unawareness towards kbowledge. Like the butterfly emerges from the chrysalis. The combination of the light materials and the aerial form creates a rather humble imprint to the city of Casablanca. The exchibition space is conceived as a spiritual interaction. The relation with the water is perceived visually and also acoustically. The visitor can experience the memory of acts of violence through interactive screens that trigger a journey of knowledge in the upcoming library. The library evolves on the helix ramp as a journey of knowledge. It begins from the exhibition space underground, ending at the upper level. The whole installation of the library is hang from the structural frame. The public space that includes the main libray is transfered to the upper levels (agora) where people gather, study, communicate and interact with each other. Concerning the liquid element, a turbine revolves in a slow rate and the cold air is propelled through the building. An inner and an outer cloth shell filter the heat that enters. The warm air gets conducted through the roof opening.
5 4
3 2
1 the helix ramp / library with suspended books and seats along the ramp
Programmatic section legend: 1. geothermical water tank 2. exhibition space 3. water tank - purification 4. classrooms
5. conference room 6. agora - library 7. agora - library 8. rooftop
the exhibition space
43
AETHYR Workshop // Fall 2014 Construction of a 1:1 scale interactive prototype Architectural Association Visiting School Greece Design Concept, Drawings, Arduino Electronics, Construction
Aethyr is the result of digital simulations coupled with physical programming and fabrication techniques. Reaching its goal to design and fabricate an interactive/ kinetic architectural prototype in 1:1 scale, the prototype is influenced by the urban characteristics of the city of Patras, specifically daily weather data, and the local features of human presence, calculated through density and distance values. The prototype is comprised of rigid and soft parts acting as a transformable installation, suspended in space at the University of Patras. Fabricated with kite fabric and steel-plate pieces, the prototype is positioned 3.5 meters high in space, allowing people to walk, work and talk underneath it. Animated with Arduino electronics, it reacts to external stimuli created by the human presence, as well as live stream of urban data for the local weather.
alter the perception of the piece itself as well as the area it inhabits. One of the main proposals that influenced Aethyr was a team project named Deformative Quake, which was completed during the workshop and alongside with others influenced Aethyr’s conception. A model created could be perceived as a view to the city’s history regarding the area’s seismic activities. Located close to one of Greece’s most active seismic areas, Patras has a long history of earthquakes, which have been documented and archived. Deformative Quake was making use of these data in different ways to affect the prototype’s transformation.
The interaction becomes two-fold and allows for an additional level of interplay. The form of the prototype emerges from a set of design explorations which are focused on natural movements. Such formations include attractive forces, repulsive forces and spiral forces. The fabrication was completed with the use of digital machines, consequent of a series of digital simulations. It occupies an area of 7 meters long by 4 meters wide. The movement affects the shape of the model in its’ vertical direction enabling to grow in thickness from 0.5 to 1 meter. As part of the user experience and interaction, a series of flickering LED lights are installed in order to
45
Collecting data from the area around the city of Patras, Deformative Quake resperents and interacts according to nearby earthquakes. An inflatable fabric enclosed in an exoskeleton depicts the earthquakes’ magnitude.
Starting from simple center points later translated into spheres, a 1:50 scale prototype was fabricated. Deformative Quake’s analytical process and interaction methods were passed on the final project as seen on the opposite page. Aethyr shared many of Deformative Quake’s characteristics, being inflatable, transformable and interactive regarding environmental stimuli.
volumetric diagram with size and position proportionate to the area’s recent earthquake history
physical model
diagramatic waffle structure that would later inform the actual physical model
physical model
Aethyr hanging over the lecture hall, Patras School of Architecture
1:50 scale prototype manufactured for an exhibition of AA students work
interior of Aethyr with fabric folds and LED stripes programmed with Arduino electronics
people interacting with Aethyr // section cutting through the two out of three turbine sets
47
THE NEW C Y P RU S M U S E U M Architectural Competition // Winter 2017 Archaeological Museum Part 2 Architect // Patronis Architects Late Design Concept, Drawings, Renderings, Post Processing
The design concept is developed from an understanding of the unique urban dynamics of the site, resulting in subtle volumetric gestures that invite the Garden’s ground level into the heart of the building, reinforcing the public character of the institution. The design looks to emphasize the following effect: it is not a building within a park but an “environmental shield” placed at the new Garden’s edge. The building’s North elevation extends tilted, floating low above the ground, while a system of louvers provide shade and protection from sun beams. Spaces enclaved under this environmental Shelter culminating with a gracious roofline will become a contemporary form of public space – one where city, gardens and exhibition rooms become part of an experiential whole. The site of the New Cyprus Museum is situated within the wider area of the cultural quarter. Its proximity to the Venetian Walls provides a cultural and natural setting, which can be utilized for activities and relaxation. Main design parameter is that all free areas surrounding the new building will be transformed into a new (green) “Park of Antiquities” as an extension of Nicosia Municipal Garden. This new “Park of Antiquities” will facilitate mostly the public’s access towards the new Museum through two pedestrian pathways: East reaching the site from area around the Venetian Walls and the existing Museum and North from the Nicosia Municipal Garden. The landscape formation of the new “Park of Antiquities” will allow visitors to take a Historical stroll through this new green park and enjoy some of the finest art (or even copies if security reasons appear). The discovering of
new gardens with intriguing visual sights of artifacts will lead ultimately to the Museum’s entrance. The Park’s overall use will be enhanced with the addition of open air activities as part of the education museum programs: especially for kids, a mockup of an archaeological excavation is situated close to historical stone building. In that way the latter building combined with the mockup dig will be become a center of understanding archaeological excavations and the process of recording archaeological remains. The final part of this historical stroll will be an environmentally shielded exterior atrium. This area will be the Central Court of public circulation of the new Museum creating welcoming, pleasant, spacious, comfortable spaces, while at the same time it will likely to become one of the most popular, and busiest, meeting places in Nicosia.
49
The exterior atrium. This is the Museumâ&#x20AC;&#x2122;s Central Court of public circulation creating welcoming, pleasant, and comfortable spaces, to be one of the most popular and busy meeting points of Nicosia.
view from foyer ramp
molding of the environmental shelter
conceptual and volumetric diagram
vertical section
51