6. Conclusion
Image: iStock
E
xpanding production capacity with the existing set of technology options in the iron and steel industry will significantly affect the country’s future greenhouse gas emissions. The findings from our report will help strengthen both the National Hydrogen Energy Mission and National Steel Policy 2017 in supporting the transition to green hydrogen-based steel production. We find that a 100 per cent green hydrogen operation only becomes viable in the next two decades. Our results comparing the production costs across various locations indicate that access to wind and solar resources is critical towards an early break-even with the conventional production processes. Producing green steel using only solar resources (which is true for most locations in the country) will push back the break-even period to 2050. A faster way to incentivise the transition is by blending green hydrogen with conventional grey hydrogen (produced from SMR). The high renewables intermittency costs of 100 per cent fossil-free operation can be significantly reduced by blending 7 per cent grey hydrogen while marginally increasing the emissions footprint of the process. At today’s prices, blending ~9