Presentation of Magazine recommendations based on social media trends

Page 1

Magazine recommendations based on social media trends Steffen Karlsson

I i



Problem

!

Recommendation Engine

đ&#x;“ˆ

đ&#x;“–

H

N

?

Topic distribution

Read history

Like

Stacks

External


Requirements

#

â?ą

đ&#x;”’

Data

Real-time

Accessibility


Social Media Networks

! " #

% $

&

' ( )

Photo sharing service

Video sharing service

Professional Networking

Social microblogging network


'

58 million tweets per day. 140 characters long. Pseudo real-time location based streaming service. 2 hours behind. Limited to a 1% representative subset of data.


Trends

“a general direction in which something is developing or changing”

Fast trend Slow trend

Count

- Dictionary

“hashtag-driven topic that is immediately popular at a particular time"

- This project

0

24


Methodology

'

#

âš™

&

I

Twitter

Data

Trending Framework

Trends

LDA/Solr

đ&#x;“– Documents


Twitter API

!

đ&#x;ŒŽ All tweets in the world

Location filter [USA]

#

#

Tweets in USA

Database


Trending Framework

30K

Raw total tweet count

tweets per hour

0

12

24

36

48

60

72

1.0

1 wt = 1 + exp( (m ⇥ (tweets 2 t weighted tweet count

0

12

24

36

48

60

72

X)))


âš™

Trending Framework



#apple

đ&#x;’ź

đ&#x;“ş đ&#x;’ź

đ&#x;’ź

Oct. 21

Oct. 22

Oct. 23

#jobs

#pll

#jobs

#jobs


Trending Framework

âš™

1,800

#pll #apple #jobs

Raw tweet count

0

12

24

36

48

60

0.07

72

#pll #apple #jobs

ft =

0

12

24

36

48

60

72

| the hashtag 2 tweets | | tweets 2 t |


Trending Framework

âš™

0.06

#pll #apple #jobs

0

ft ref =

|r| P

|the hashtag 2 tweets| |r| P |tweets 2 t|

r = 2 hours (reference window) 0

12

24

36

48

60

0.06

72

#pll #apple #jobs

0

max(fi ), i 2 {t

0

12

24

36

48

60

72

24; t}


âš™

Trending Framework



#apple

đ&#x;’ź

đ&#x;“ş đ&#x;’ź

đ&#x;’ź

Oct. 21

Oct. 22

Oct. 23

#jobs

#pll

#jobs

#jobs


LDA

I

✈

*

Trend related Tweets

LDA model

đ&#x;“śđ&#x;“ś Topic Distribution

đ&#x;“– Documents

âš˝

#

đ&#x;?”


LDA

I

✈

*

Trend related Tweets

LDA model

đ&#x;“śđ&#x;“ś Topic Distribution

đ&#x;“– Documents

âš˝

#

đ&#x;?”


LDA

I

✈

*

Trend related Tweets

LDA model

đ&#x;“śđ&#x;“ś Topic Distribution

đ&#x;“– Documents

âš˝

#

đ&#x;?”

Software


Solr

I

đ&#x;”? Magazine recommendations based on social media trends

‌

Magazine media social based on trends recommendations

on trend Magazine recommend social base media


Solr

I đ&#x;“– magazine

3

social

1

đ&#x;“–

‌

1

5

‌

recommend

đ&#x;“–

tf (t, d) = f (t, d) N idf (t, D) = log |{d 2 D : t 2 d}|

tf (�magazine�, d3) = 1 idf (�magazine�, D) = log

tf idf (�magazine�, d3, D) = 1 � log

3 2

3 2


Similar documents

đ&#x;“–

- Using Tweets containing the hashtag #apple

Using LDA

Using Solr


Result

!

Recommendation Engine

đ&#x;“ˆ

đ&#x;“–

H

N

t

Topic distribution

Read history

Like

Stacks

Twitter


FUTURE WORK


Location Support

Supported

English

Turkish

Danish

Spanish

Farsi

Finnish

German

Polish

Romanian

French

Indonesian

Hungarian

Portuguese

Swedish

Croatian

Russian

Catalan

Icelandic

Arabic

Norwegian

Italian

Czech

Dutch

Hebrew

Not supported

Yes

#

&

đ&#x;Œ?

* No

MySQL Database

Trends

English?

đ&#x;“śđ&#x;“ś

2 Translation

Issuu’s LDA

Topic Distribution


Trending Framework

2h

&

Fast

6h

#

#

&

Slow

12h

MySQL Database

Tweets

&

Trending Frameworks

Trends

Slow


LDA

‌

đ&#x;“–

đ&#x;?”

đ&#x;“ś đ&#x;“ś

✈

đ&#x;“ś đ&#x;“ś

âš˝

v v v v v v

‌ Magazine

&

Pages

vvv

v

v

4

đ&#x;“ś đ&#x;“ś

Topic Distribution

JSD

Trend

: đ&#x;?• <

‌

8 đ&#x;š† đ&#x;’ź

‌

đ&#x;?ˆ đ&#x;?€ đ&#x;ŽŤ

‌

Similar Pages


THANK YOU!

=


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.