MATHEMATICS ASSIGNMENT – IX STEPS … A T C Y Prog r am _________________________________________________________________________________
ASSIGNMENT ON POLYNOMIALS Directions for questions 1 – 6: State true or false 1.
If ‘x’ is a variable and ‘a’ is a constant, then x + a is a constant.
2.
Every combination of constants and variables is a variable.
3.
The coefficient of xo in the polynomial 3x3 – 5x2 + 4x – 8 is ‘4’.
4.
The degree of the polynomial 5x2 – 3x3 + 4x5 – 6x + 7 is 11.
5.
The degree of the polynomial ax + by + cxy + 7 is 1 (given that a, b, c are constants and ‘x’ and ‘y’ are variables)
6.
x15 – y25 is a polynomial in degree ‘10’.
7.
Write the degrees of the following polynomials. (a)
3x – 5x2 – 7
(c)
1–x
(e)
2 2 3
2
–2
(x y ) + (x y) + (xy)
(b)
25 – 2x2 – 7x3
(d)
5
4
8.
If p(x) = 2x2 + x + 3, find the value of p(0), p(1) and p(–3).
9.
If p(y) = (y + 3) (y – 1) y, find the values of p(1) and p(y + 1)
10.
Given that p(x) = 5x2 + 7x + k. If p(1) = 25 find the value of ‘k’.
11.
If p(x) = (x + 2) (x + 3) + 7, find the values of p(–2) and p(–3). Also find p(–3) – p(–2).
12.
Find the zeros of the following linear polynomials.
13.
14.
(i)
p(x) = lx + m
(iii)
p(x) =
4x –5 3
(ii)
p(x) = 4x – 3
(iv)
p(x) = 8x – 5
Check whether the values indicated against each polynomial are its zeros or not (i)
x2 – 1; x = 1, – 1
(iii)
7x + 4; x =
−7 4
(ii)
2x + π; x =
π 2
(iv)
4x – 1; x =
1 4
Find the zeros of the following polynomials. (a)
p(x) = ax + b
(b)
p(x) = mx – n
(c)
p(x) = 4x + 7
(d)
p(y) = y2 – 16
15.
Find the value of the polynomial 3x2 + 2x + 8 at x = 0, x = – 1 and x = 2.
16.
If zero of the polynomial p(x) = x + k is – 2, find ‘k’.
STEPS____________________________________________________________ 1 Get free notes for Class X and IX on www.tcyonline.com
MATHEMATICS ASSIGNMENT – IX STEPS … A TC Y P r og r am _________________________________________________________________________________
17.
If zero of the polynomial p(y) = 5y – k is 5, find the value of k .
18.
Using remainder theorem, find the remainder when 2x2 + x + 3 is divided by (x – 1).
19.
Divide 4x3 – 3x2 + 2x + 5 by (x – 2).
20.
When p(x) = 5x2 – 7x + 15 is divided by (x + 5), what is the remainder?
21.
Find the remainder when 3x2 + 4x – 5 is divided by (3x – 6)
22.
The polynomial p(x) = 2x3 + 6x2 + bx + 9 leaves a remainder 15 when divided by (x + 1), find the value of ‘b’.
23.
Use the remainder theorem to find the remainder when x3 – 3x2 + 3x – 1 is divided by (i)
x–1
(ii)
x–
1 2
24.
Find the remainder when x3 + kx2 + 9x + k is divided by (x + k).
25.
If f(x) = 5x3 – 2x2 – 2x – 2, find the values of (i)
f(0)
(ii)
f(–1)
(iii)
2x + 1
(iii)
⎛1⎞ f⎜ ⎟ ⎝2⎠
26.
Show that (2x – 3) is a factor of 2x3 – 9x2 + 11x – 3.
27.
What real number should be added to x4 – x2 – 12 to make it a multiple of (x + 2)?
28.
Find the value of ‘k’ for which (x – 1) is a factor of (i)
29.
p(x) = x2 + x + k
(ii)
p(x) = kx2 – 3x + k
(iii)
p(x) = 2x2 + kx +
(iv)
f(1)
2
Find the value of ‘m’ and ‘n’ for which (x – 1) and (x + 2) both are factors of the polynomial 2x3 + mx2 + nx – 10
30.
If (x – 3) is a factor of p(x) = x3 – kx2 + (k + 1) x – 12, find the value of ‘k’.
31.
Find the value of ‘a’, if (x + 1) is a factor of ax3 – 9x2 + x + 6a
32.
Factorize the following polynomials. (i)
x2 – 16x + 63
(ii)
3 – 2x2 + 5x
(iii)
15k2 – 4k – 3
(iv)
2x2 + 3 3 x + 3
(v)
15x2 + 3 3 x + 3
(vi)
2(x + y)2 + 9(x + y) (x – y) – 5 (x
5 – 20x2
(viii) (x + y)3 – x – y
(ix)
x(x – 1) – y(y – 1)
(v)
y2 –4 4
(vii)
x2 + y2 + 2xy – 100
(iii)
6a2 + a – 1
– y)2 (vii) 33.
34.
Factorize the following (i)
x10 – y4
(ii)
x7 – x3
(iii)
a – b – a2 + b
(iv)
x2 – (y + z)2
(vi)
a2 + b2 – c2 – d2 + 2ab – 2cd
Factorize the following using factor theorem (i)
x3 – 3x2 – 9x – 5
(ii)
2x3 + x2 – 2x – 1
(iv)
4x3 + 8x2 + x – 3
(v)
2x2 + x – 15
2 STEPS____________________________________________________________ Get free notes for Class X and IX on www.tcyonline.com
MATHEMATICS ASSIGNMENT – IX STEPS … A T C Y Prog r am _________________________________________________________________________________
35.
Expand (i)
36.
37.
38.
(4x + 3y) (4x + 2y)
(iv)
(x + 2y + 3z)2
(vii)
3⎞ ⎛x ⎜ − ⎟ 3 x⎠ ⎝
(ii)
(m – 9) (m + 10)
(v)
⎛1 1 1⎞ ⎜⎜ + + ⎟⎟ y z⎠ ⎝x
(ii)
(102)3
(iii)
(2k – 5) (2k + 7)
(vi)
(x – 3)3
(iii)
(201)3
2
3
Evaluate using suitable identities (i)
993
(iv)
(97)3
Factorize (i)
x3 – y3 – 1 – 3xy
(ii)
8x3 – y3 + 125z3 + 30xyz
(iii)
(a + b – c)3 + (a – b + c)3 – 8a3
(iv)
125x3 – 8 + 90xy + 27y3
Find the value of (i)
303 – 203 – 103
(ii)
103 + 203 – 303
(iii)
53 + 33 – 83
(iv)
503 + 303 – 803
39.
If a1/3 + b1/3 + c1/3 = 0 show that (a + b + c)3 = 27 abc
40.
If a + b = – 5 find the value of a3 + b3 + 125.
41.
If a – b = c, show that a3 – b3 – c3 – 3abc = 0
42.
If the polynomial p(x) leaves a remainder ‘5’ each when divided by (x – 1) and (x – 2), find p(x).
43.
The volume of a cuboid is x4 + 7x2 – 8. Write down the possible expressions for its dimensions.
44.
If a + b + c = 3m show that (m – a)3 + (m – b)2 + (m – c)3 – 3 (m – a) (m – b) (m – c) = 0
45.
If 2x3 + ax2 – bx – 15 has (2x + 3) as a factor and leaves a remainder – 5, when divided by (x – 1), find the value of a2 + b2
46.
If (x – 1) and (x + 2) both are factors of 2x3 + ax2 + bx – 10, then find the value of (a + b)2
47.
State remainder theorem and find the remainder when x3 + 4x2 + 7x – 15 is divided by (5 – 3x)
48.
If the zero of the polynomial ax + b is 1, find the value of (a + b + 1)2
49.
If the zero of the polynomial ax + bx + a + b is – 3 find the value of (a + b)2.
STEPS____________________________________________________________ 3 Get free notes for Class X and IX on www.tcyonline.com
MATHEMATICS ASSIGNMENT – IX STEPS … A TC Y P r og r am _________________________________________________________________________________
POLYNOMIALS ANSWER KEY 1.
False
2.
False
7.
(a) (2), (b) (3), (c) (1), (d) (0), (e) (12)
10.
–12
13.
(i) yes (ii) No (iii) No (iv) Yes
15.
(8, 9, 24)
16.
2
17.
22.
–2
23.
(i) (0),
⎛ −1 ⎞ (ii) ⎜ ⎟ ⎝ 8 ⎠
25.
(i) –2
(ii) –7
⎛ − 17 ⎞ (iii) ⎜ ⎟ ⎝ 8 ⎠
28.
⎛ 3⎞ (i) (–2) (ii) ⎜ ⎟ (iii) (–2 – 2 ) ⎝2⎠
29.
32.
(i) (x – 9) (x – 7)
(ii) –(2x + 1) (x – 3)
(iii)
(5k – 3) (3k + 1)
(v) 3(5x2 +
(vi)
2(3x2 – 4y2 + 7xy)
11.
(iv) (2x +
3.
(7, 7, 0)
3 ) (x +
12.
3)
33.
34.
2
5
2
False
5.
False
8.
(3, 6, 18)
9.
(0, (y + 4) y(y + 1)
(ii)
⎛3⎞ ⎜ ⎟ ⎝4⎠
(iii)
⎛ 15 ⎞ ⎜ ⎟ ⎝4⎠
⎛5⎞ (iv) ⎜ ⎟ ⎝8⎠
⎛ −7⎞ (c) ⎜ ⎟ ⎝ 4 ⎠
(d) (± 4)
⎛−b⎞ ⎛n⎞ 14. (a) ⎜ ⎟ (b) ⎜ ⎟ ⎝ a ⎠ ⎝m⎠ 5
18.
6
20.
175
⎛ −5⎞ (iii) ⎜ ⎟ ⎝ 2 ⎠
24.
–8k
(iv) –3
27.
0
21 −5⎞ ⎛ ,n = ⎜m = ⎟ 2 2 ⎠ ⎝
30.
3
3 x + 3)
3
2
(i) (x – y ) (x + y )
(ii) x (x – 1) (x + 1) (x + 1)
(iv) (x – y – z) (x + y + z)
⎛y ⎞ ⎛y ⎞ (v) ⎜ − 2 ⎟ ⎜ + 2 ⎟ ⎝2 ⎠ ⎝2 ⎠
(vi) (a + b + c + d) (a + b – c – d)
(vii) (x + y + 10) (x + y –10)
(i) (x + 1)2 (x – 5)
(ii) (2x + 1) (x + 1) (x – 1)
(iv) (2x – 1) (2x + 3) (x + 1) 35.
⎛ −m ⎞ (i) ⎜ ⎟ ⎝ l ⎠
4.
(viii) (x + y) (x2 + y2 + 2xy – 1)
(vii) 5(1 + 2x) (1 – 2x) 5
False
2
(i) 16x + 20xy + 6y
6.
False
21.
15
31.
2
(ix) (x – y) (x + y – 1) (iii) (a – b) (1 – a – b)
(iii) (3a – 1) (2a + 1)
(v) (2x – 5) (x + 3)
2
(ii) m2 + m – 90
(iv) x2 + 4y2 + 9z2 + 4xy + 12yz + 6xz
(v)
(vi) x3 – 9x2 + 27x – 27
(vii)
(iii) 4k2 + 4k – 35
1 1 1 2 2 2 + 2 + 2 + + 2 + 2 xy zx x y z y
(ii) 1061208
9 27 x3 – 3 –x+ 27 x x
36.
(i) 970299
(iii) 8120601
37.
(i) (x – y – 1) (x2 + y2 – xy + y – x + 1)
(ii) (2x – y + 5z) (4x2 + y2 + 25z2 – 2xy – 5yz + 100xz)
(iii) 2a(b2 + c2 – a2 – 2bc)
(iv) (5x + 3y – 2) (25x2 + 9y2 + 4 – 15xy + 6y + 10x) (iii) –360
(iv) 912673
38.
(i) 18000
(ii) –18000
(iv) –360000
40.
0
42.
(x2 – 3x +7)
43.
(x–1, x + 1, x2 + 8) 45.
82
46.
81
47.
335 27
48.
1
0
49.
4 STEPS____________________________________________________________ Get free notes for Class X and IX on www.tcyonline.com