Test Bank for Discrete Mathematics And Its Applications 8th Us Edition by Rosen

Page 1


TEST

TEST BANK

TestBank

QuestionsforChapter1

Whatisthenegationofthepropositionsin1–4?

1. Abbyhasmorethan300friendsonFacebook.

2. AlissaownsmorequiltsthanFederico.

3. Amessagingpackageforacellphonecostslessthan$20permonth.

4. 4 5+2 5=6

Inquestions5–9,determinewhetherthepropositionisTRUEorFALSE.

5. 1+1=3ifandonlyif2+2=3.

6. Ifitisraining,thenitisraining.

7. If1 < 0,then3=4.

8. If2+1=3,then2=3 1.

9. If1+1=2or1+1=3,then2+2=3and2+2=4.

10. Writethetruthtablefortheproposition ¬(r →¬q) ∨ (p ∧¬r).

11. (a) Findapropositionwiththetruthtableattheright. (b) Findapropositionusingonly p,q, ¬ ,andtheconnective ∨ thathasthis truthtable. p ¬p ?

12. Findapropositionwiththreevariables p , q ,and r thatistruewhen p and r aretrueand q isfalse,and falseotherwise.

13. Findapropositionwiththreevariables p , q ,and r thatistruewhenatmostoneofthethreevariablesis true,andfalseotherwise.

14. Findapropositionwiththreevariables p , q ,and r thatisnevertrue.

15. Findapropositionusingonly p,q, ¬ ,andtheconnective ∨ withthetruthtable attheright. p ¬p ?

In16–17,usetheconditional-disjunctionequivalencetofindanequivalentcompoundpropositionthatdoesnot involveconditions.

16. ¬p → q

17. p → (p ∧ q)

18. Determinewhether p → (q → r)and p → (q ∧ r)areequivalent.

19. Determinewhether p → (q → r)isequivalentto(p → q) → r

20. Determinewhether(p → q) ∧ (¬p → q) ≡ q .

21. Writeapropositionequivalentto p ∨¬q thatusesonly p,q, ¬ ,andtheconnective ∧

22. Writeapropositionequivalentto ¬p ∧¬q usingonly p,q, ¬ ,andtheconnective ∨

23. Provethattheproposition“ifitisnothot,thenitishot”isequivalentto“itishot.”

24. Writeapropositionequivalentto p → q usingonly p,q, ¬ ,andtheconnective ∨ .

25. Writeapropositionequivalentto p → q usingonly p,q, ¬ ,andtheconnective ∧

26. Provethat p → q anditsconversearenotlogicallyequivalent.

27. Provethat ¬p →¬q anditsinversearenotlogicallyequivalent.

28. Determinewhetherthefollowingtwopropositionsarelogicallyequivalent: p ∨ (q ∧ r), (p ∧ q) ∨ (p ∧ r).

29. Determinewhetherthefollowingtwopropositionsarelogicallyequivalent: p

30. Provethat(q ∧ (p →¬q)) →¬p isatautologyusingpropositionalequivalenceandthelawsoflogic.

31. Determinewhetherthispropositionisatautology:((p → q) ∧¬p) →¬q

32. Determinewhetherthispropositionisatautology:((p →¬q) ∧ q) →¬p .

In33–39,writethestatementintheform“If ... ,then ... .”

33. x isevenonlyif y isodd.

34. A implies B

35. Itishotwheneveritissunny.

36. Togetagoodgradeitisnecessarythatyoustudy.

37. Studyingissufficientforpassing.

38. Theteamwinsifthequarterbackcanpass.

39. Youneedtoberegisteredinordertocheckoutlibrarybooks.

40. Writethecontrapositive,converse,andinverseofthefollowing:Ifyoutryhard,thenyouwillwin.

41. Writethecontrapositive,converse,andinverseofthefollowing:YousleeplateifitisSaturday.

In42–44writethenegationofthestatement.(Don’twrite“Itisnottruethat .”)

42. ItisThursdayanditiscold.

43. Iwillgototheplayorreadabook,butnotboth.

44. Ifitisrainy,thenwegotothemovies.

45. Explainwhythenegationof“AlandBillareabsent”isnot“AlandBillarepresent.”

46. Using c for“itiscold”and d for“itisdry,”write“Itisneithercoldnordry”insymbols.

47. Using c for“itiscold”and r for“itisrainy,”write“Itisrainyifitisnotcold”insymbols.

).

48. Using c for“itiscold”and w for“itiswindy,”write“Tobewindyitisnecessarythatitbecold”insymbols.

49. Using c for“itiscold,” r for“itisrainy,”and w for“itiswindy,”write“Itisrainyonlyifitiswindyand cold”insymbols.

50. Express r ⊕ d inEnglish,where r is“itisrainy”and d is“itisdry.”

51. Translatethegivenstatementintopropositionallogicusingthepropositionsprovided:Oncertainhighways intheWashington,DCmetroareayouareallowedtotravelonhighoccupancylanesduringrushhouronly ifthereareatleastthreepassengersinthevehicle.Expressyouranswerintermsof r:“Youaretraveling duringrushhour.” t:“Youareridinginacarwithatleastthreepassengers.”and h:“Youcantravelona highoccupancylane.”

52. Asetofpropositionsis consistent ifthereisanassignmentoftruthvaluestoeachofthevariablesinthe propositionsthatmakeseachpropositiontrue.Isthefollowingsetofpropositionsconsistent? Thesystemisinmultiuserstateifandonlyifitisoperatingnormally. Ifthesystemisoperatingnormally,thekernelisfunctioning. Thekernelisnotfunctioningorthesystemisininterruptmode. Ifthesystemisnotinmultiuserstate,thenitisininterruptmode. Thesystemisininterruptmode.

53. WhatBooleansearchcouldyouusetolookforwebpagesaboutU.S.nationalforestsnotinAlaskaorHawaii?

54. Ontheislandofknightsandknavesyouencountertwopeople, A and B .Person A says“ B isaknave.” Person B says“Wearebothknights.”Determinewhethereachpersonisaknightoraknave.

55. Ontheislandofknightsandknavesyouencountertwopeople, A and B .Person A says“ B isaknave.” Person B says“Atleastoneofusisaknight.”Determinewhethereachpersonisaknightoraknave.

Questions56–58relatetoinhabitantsofanislandonwhichtherearethreekindsofpeople:knightswhoalways tellthetruth,knaveswhoalwayslie,andspieswhocaneithertellthetruthorlie.Youencounterthreepeople, A , B ,and C .Youknowoneofthethreepeopleisaknight,oneisaknave,andoneisaspy.Eachofthethreepeople knowsthetypeofpersoneachoftheothertwois.Foreachofthesesituations,ifpossible,determinewhetherthere isauniquesolution,listallpossiblesolutionsorstatethattherearenosolutions.

56. A says“Iamnotaknight,” B says“Iamnotaspy,”and C says“Iamnotaknave.”

57. A says“Iamaspy,” B says“Iamaspy”and C says“ B isaspy.”

58. A says“Iamaknight,” B says“Iamaknave,”and C says“Iamnotaknave.”

Findtheoutputofthecombinatorialcircuitsin59–60.

59. p q r

60. p q q r

Constructacombinatorialcircuitusinginverters,ORgates,andANDgates,thatproducestheoutputsin61–62 frominputbits p,q and r .

61. (¬p ∧¬q) ∨ (p ∧¬r)

62. ((p ∨¬q) ∧ r) ∧ ((¬p ∧¬q) ∨ r)

Determinewhetherthecompoundpropositionsin63–64aresatisfiable.

63. (¬p ∨¬q) ∧ (p → q)

64. (p → q) ∧ (q →¬p) ∧ (p ∨ q)

In65–67supposethat Q(x)is“ x +1=2x ,”where x isarealnumber.Findthetruthvalueofthestatement.

65. Q(2)

66. ∀xQ(x)

67. ∃xQ(x)

In68–75 P (x,y)means“ x +2y = xy ,”where x and y areintegers.Determinethetruthvalueofthestatement.

68. P (1, 1)

69. P (0, 0)

70. ∃yP (3,y)

71. ∀x∃yP (x,y)

72. ∃x∀yP (x,y)

73. ∀y∃xP (x,y)

74. ∃y∀xP (x,y)

75. ¬∀x∃y ¬P (x,y)

In76–77,expressthenegationofthestatementintermsofquantifierswithoutusingthenegationsymbol.

76. ∀x((x> 1) ∨ (x< 1))

77. ∃x(3 <x ≤ 7)

In78–79 P (x,y)means“ x and y arerealnumberssuchthat x +2y =5.”Determinewhetherthestatementis true.

78. ∀x∃yP (x,y)

79. ∃x∀yP (x,y)

In80–82 P (m,n)means“ m ≤ n ,”wheretheuniverseofdiscoursefor m and n isthesetofnonnegativeintegers. Whatisthetruthvalueofthestatement?

80. ∀nP (0,n)

81. ∃n∀mP (m,n)

82. ∀m∃nP (m,n)

Inquestions83–88suppose P (x,y)isapredicateandtheuniverseforthevariables x and y is {1, 2, 3} .Suppose P (1, 3), P (2, 1), P (2, 2), P (2, 3), P (3, 1), P (3, 2)aretrue,and P (x,y)isfalseotherwise.Determinewhether thefollowingstatementsaretrue.

83. ∀x∃yP (x,y)

84. ∃x∀yP (x,y)

85. ¬∃x∃y (P (x,y) ∧¬P (y,x))

86. ∀y∃x (P (x,y) → P (y,x))

87. ∀x∀y (x = y → (P (x,y) ∨ P (y,x))

88. ∀y∃x (x ≤ y ∧ P (x,y))

In88–92supposethevariable x representsstudentsand y representscourses,and:

U (y): y isanupper-levelcourse M (y): y isamathcourse F (x): x isafreshman

B(x): x isafull-timestudent T (x,y):student x istakingcourse y Writethestatementusingthesepredicatesandanyneededquantifiers.

89. EricistakingMTH281.

90. Allstudentsarefreshmen.

91. Everyfreshmanisafull-timestudent.

92. Nomathcourseisupper-level.

In93–95supposethevariable x representsstudentsand y representscourses,and: U (y): y isanupper-levelcourse M (y): y isamathcourse F (x): x isafreshman A(x): x isapart-timestudent T (x,y):student x istakingcourse y Writethestatementusingthesepredicatesandanyneededquantifiers.

93. Everystudentistakingatleastonecourse.

94. Thereisapart-timestudentwhoisnottakinganymathcourse.

95. Everypart-timefreshmanistakingsomeupper-levelcourse.

In96–98supposethevariable x representsstudentsand y representscourses,and: F (x): x isafreshman A(x): x isapart-timestudent T (x,y): x istaking y . WritethestatementingoodEnglishwithoutusingvariablesinyouranswers.

96. F (Mikko)

97. ¬∃yT (Joe,y)

98. ∃x (A(x) ∧¬F (x))

In99–101supposethevariable x representsstudentsand y representscourses,and: M (y): y isamathcourse F (x): x isafreshman B(x): x isafull-timestudent T (x,y): x istaking y

WritethestatementingoodEnglishwithoutusingvariablesinyouranswers.

99. ∀x∃yT (x,y)

100. ∃x∀yT (x,y)

101. ∀x∃y [(B(x) ∧ F (x)) → (M (y) ∧ T (x,y))]

In102–104supposethevariables x and y representrealnumbers,and L(x,y): x<yG(x): x> 0 P (x): x isaprimenumber.

WritethestatementingoodEnglishwithoutusinganyvariablesinyouranswer.

102. L(7, 3)

103. ∀x∃yL(x,y)

104. ∀x∃y [G(x) → (P (y) ∧ L(x,y))]

In105–107supposethevariables x and y representrealnumbers,and L(x,y): x<yQ(x,y): x = yE(x): x iseven I(x): x isaninteger.

Writethestatementusingthesepredicatesandanyneededquantifiers.

105. Everyintegeriseven.

106. If x<y ,then x isnotequalto y

107. Thereisnolargestrealnumber.

In108–109supposethevariables x and y representrealnumbers,and E(x): x iseven G(x): x> 0 I(x): x isaninteger.

Writethestatementusingthesepredicatesandanyneededquantifiers.

108. Somerealnumbersarenotpositive.

109. Noevenintegersareodd.

In110–112supposethevariable x representspeople,and F (x): x isfriendly T (x): x istall A(x): x isangry.

Writethestatementusingthesepredicatesandanyneededquantifiers.

110. Somepeoplearenotangry.

111. Alltallpeoplearefriendly.

112. Nofriendlypeopleareangry.

In113–114supposethevariable x representspeople,and F (x): x isfriendly T (x): x istall A(x): x isangry. Writethestatementusingthesepredicatesandanyneededquantifiers.

113. Sometallangrypeoplearefriendly.

114. Ifapersonisfriendly,thenthatpersonisnotangry.

In115–117supposethevariable x representspeople,and F (x): x isfriendly T (x): x istall A(x): x isangry.

WritethestatementingoodEnglish.Donotusevariablesinyouranswer.

115. A(Bill)

116. ¬∃x (A(x) ∧ T (x))

117. ¬∀x (F (x) → A(x))

In118–120supposethevariable x representsstudentsandthevariable y representscourses,and A(y): y isanadvancedcourse S(x): x isasophomore F (x): x isafreshman T (x,y): x istaking y . Writethestatementusingthesepredicatesandanyneededquantifiers.

118. Thereisacoursethateveryfreshmanistaking.

119. Nofreshmanisasophomore.

120. Somefreshmanistakinganadvancedcourse.

In121–122supposethevariable x representsstudentsandthevariable y representscourses,and A(y): y isanadvancedcourse F (x): x isafreshman T (x,y): x istaking yP (x,y): x passed y Writethestatementusingtheabovepredicatesandanyneededquantifiers.

121. Nooneistakingeveryadvancedcourse.

122. Everyfreshmanpassedcalculus.

In123–125supposethevariable x representsstudentsandthevariable y representscourses,and T (x,y): x istaking yP (x,y): x passed y WritethestatementingoodEnglish.Donotusevariablesinyouranswers.

123. ¬P (Wisteria, MAT100)

124. ∃y∀xT (x,y)

125. ∀x∃yT (x,y)

In126–130assumethattheuniversefor x isallpeopleandtheuniversefor y isthesetofallmovies.Writethe Englishstatementusingthefollowingpredicatesandanyneededquantifiers:

S(x,y): x saw yL(x,y): x liked yA(y): y wonanaward C(y): y isacomedy.

126. Nocomedywonanaward.

127. Loissaw Casablanca,butdidn’tlikeit.

128. Somepeoplehaveseeneverycomedy.

129. Noonelikedeverymoviehehasseen.

130. Benhasneverseenamoviethatwonanaward.

In131–133assumethattheuniversefor x isallpeopleandtheuniversefor y isthesetofallmovies.Writethe statementingoodEnglish,usingthepredicates S(x,y): x saw yL(x,y): x liked y Donotusevariablesinyouranswer.

131. ∃y ¬S(Margaret,y)

132. ∃y∀xL(x,y)

133. ∀x∃yL(x,y)

In134–143supposethevariable x representsstudents, y representscourses,and T (x,y)means“ x istaking y .” MatchtheEnglishstatementwithallitsequivalentsymbolicstatementsinthislist:

1. ∃x∀yT (x,y)2. ∃y∀xT (x,y)3. ∀x∃yT (x,y) 4. ¬∃x∃yT (x,y)5. ∃x∀y ¬T (x,y)6. ∀y∃xT (x,y)

7. ∃y∀x ¬T (x,y)8. ¬∀x∃yT (x,y)9. ¬∃y∀xT (x,y) 10. ¬∀x∃y ¬T (x,y)11. ¬∀x¬∀y ¬T (x,y)12. ∀x∃y ¬T (x,y)

134. Everycourseisbeingtakenbyatleastonestudent.

135. Somestudentistakingeverycourse.

136. Nostudentistakingallcourses.

137. Thereisacoursethatallstudentsaretaking.

138. Everystudentistakingatleastonecourse.

139. Thereisacoursethatnostudentsaretaking.

140. Somestudentsaretakingnocourses.

141. Nocourseisbeingtakenbyallstudents.

142. Somecoursesarebeingtakenbynostudents.

143. Nostudentistakinganycourse.

In144–154supposethevariable x representsstudents, F (x)means“ x isafreshman,”and M (x)means“ x isa mathmajor.”MatchthestatementinsymbolswithoneoftheEnglishstatementsinthislist:

1. Somefreshmenaremathmajors.

2. Everymathmajorisafreshman.

3. Nomathmajorisafreshman.

144. ∀x (M (x) →¬F (x))

145. ¬∃x (M (x) ∧¬F (x))

146. ∀x (F (x) →¬M (x))

147. ∀x (M (x) → F (x))

148. ∃x (F (x) ∧ M (x))

149. ¬∀x (¬F (x) ∨¬M (x))

150. ∀x (¬(M (x) ∧¬F (x)))

151. ∀x (¬M (x) ∨¬F (x))

152. ¬∃x (M (x) ∧¬F (x))

153. ¬∃x (M (x) ∧ F (x))

154. ¬∀x (F (x) →¬M (x))

In155–158let F (A)bethepredicate“ A isafiniteset”and S(A,B)bethepredicate“ A iscontainedin B .” Supposetheuniverseofdiscourseconsistsofallsets.Translatethestatementintosymbols.

155. Notallsetsarefinite.

156. Everysubsetofafinitesetisfinite.

157. Noinfinitesetiscontainedinafiniteset.

158. Theemptysetisasubsetofeveryfiniteset.

In158–163writethenegationofthestatementingoodEnglish.Don’twrite“Itisnottruethat .... ”

159. Somebananasareyellow.

160. Allintegersendinginthedigit7areodd.

161. Notestsareeasy.

162. Rosesareredandvioletsareblue.

163. SomeskiersdonotspeakSwedish.

164. Astudentisaskedtogivethenegationof“allbananasareripe.”

(a) Thestudentresponds“allbananasarenotripe.”ExplainwhytheEnglishinthestudent’sresponseis ambiguous.

(b) Anotherstudentsaysthatthenegationofthestatementis“nobananasareripe.”Explainwhythisis notcorrect.

(c) Anotherstudentsaysthatthenegationofthestatementis“somebananasareripe.”Explainwhythis isnotcorrect.

(d) Givethecorrectnegation.

165. Explainwhythenegationof“Somestudentsinmyclassusee-mail”isnot“Somestudentsinmyclassdo notusee-mail.”

166. Whatistheruleofinferenceusedinthefollowing: Ifitsnowstoday,theuniversitywillbeclosed.Theuniversitywillnotbeclosedtoday.Therefore,itdidnot snowtoday.

167. Whatistheruleofinferenceusedinthefollowing: IfIworkallnightonthishomework,thenIcanansweralltheexercises.IfIansweralltheexercises,I willunderstandthematerial.Therefore,ifIworkallnightonthishomework,thenIwillunderstandthe material.

168. Explainwhyanargumentofthefollowingformisnotvalid:

169. Determinewhetherthefollowingargumentisvalid:

170. Determinewhetherthefollowingargumentisvalid:

171. Showthatthehypotheses“IleftmynotesinthelibraryorIfinishedtheroughdraftofthepaper”and“I didnotleavemynotesinthelibraryorIrevisedthebibliography”implythat“Ifinishedtheroughdraftof thepaperorIrevisedthebibliography.”

172. Determinewhetherthefollowingargumentisvalid.Nametheruleofinferenceorthefallacy. If n isarealnumbersuchthat n> 1,then n2 > 1.Supposethat n2 > 1.Then n> 1.

173. Determinewhetherthefollowingargumentisvalid.Nametheruleofinferenceorthefallacy. If n isarealnumbersuchthat n> 2,then n2 > 4.Supposethat n ≤ 2.Then n2 ≤ 4.

174. Determinewhetherthefollowingargumentisvalid: SheisaMathMajororaComputerScienceMajor. Ifshedoesnotknowdiscretemath,sheisnotaMathMajor. Ifsheknowsdiscretemath,sheissmart. SheisnotaComputerScienceMajor. Therefore,sheissmart.

175. Determinewhetherthefollowingargumentisvalid. Rainydaysmakegardensgrow. Gardensdon’tgrowifitisnothot. Italwaysrainsonadaythatisnothot. Therefore,ifitisnothot,thenitishot.

176. Determinewhetherthefollowingargumentisvalid. Ifyouarenotinthetennistournament,youwillnotmeetEd. Ifyouaren’tinthetennistournamentorifyouaren’tintheplay,youwon’tmeetKelly. YoumeetKellyoryoudon’tmeetEd. Itisfalsethatyouareinthetennistournamentandintheplay. Therefore,youareinthetennistournament.

177. Showthatthepremises“Everystudentinthisclasspassedthefirstexam”and“Alvinaisastudentinthis class”implytheconclusion“Alvinapassedthefirstexam.”

178. Showthatthepremises“Jeanisastudentinmyclass”and“NostudentinmyclassisfromEngland”imply theconclusion“JeanisnotfromEngland.”

179. Determinewhetherthepremises“Somemathmajorsleftthecampusfortheweekend”and“Allseniorsleft thecampusfortheweekend”implytheconclusion“Someseniorsaremathmajors.”

180. Showthatthepremises“Everyonewhoreadthetextbookpassedtheexam,”and“Edreadthetextbook” implytheconclusion“Edpassedtheexam.”

181. Determinewhetherthepremises“Nojuniorsleftcampusfortheweekend”and“Somemathmajorsarenot juniors”implytheconclusion“Somemathmajorsleftcampusfortheweekend.”

182. Showthatthepremise“MydaughtervisitedEuropelastweek”impliestheconclusion“Someonevisited Europelastweek.”

183. Supposeyouwishtoproveatheoremoftheform“if p then q .”

(a) Ifyougiveadirectproof,whatdoyouassumeandwhatdoyouprove?

(b) Ifyougiveaproofbycontraposition,whatdoyouassumeandwhatdoyouprove?

(c) Ifyougiveaproofbycontradiction,whatdoyouassumeandwhatdoyouprove?

184. Supposethatyouhadtoproveatheoremoftheform“if p then q .”Explainthedifferencebetweenadirect proofandaproofbycontraposition.

185. Giveadirectproofofthefollowing:“If x isanoddintegerand y isaneveninteger,then x + y isodd.”

186. Giveaproofbycontradictionofthefollowing:“If n isanoddinteger,then n2 isodd.”

187. Considerthefollowingtheorem:“if x and y areoddintegers,then x + y iseven.”Giveadirectproofof thistheorem.

188. Considerthefollowingtheorem:“if x and y areoddintegers,then x + y iseven.”Giveaproofby contradictionofthistheorem.

189. Giveaproofbycontradictionofthefollowing:If x and y areevenintegers,then xy iseven.

190. Considerthefollowingtheorem:If x isanoddinteger,then x +2isodd.Giveadirectproofofthistheorem

191. Considerthefollowingtheorem:If x isanoddinteger,then x +2isodd.Giveaproofbycontrapositionof thistheorem.

192. Considerthefollowingtheorem:If x isanoddinteger,then x +2isodd.Giveaproofbycontradictionof thistheorem.

193. Considerthefollowingtheorem:If n isaneveninteger,then n +1isodd.Giveadirectproofofthis theorem.

194. Considerthefollowingtheorem:If n isaneveninteger,then n +1isodd.Giveaproofbycontraposition ofthistheorem.

195. Considerthefollowingtheorem:If n isaneveninteger,then n +1isodd.Giveaproofbycontradictionof thistheorem.

196. Provethatthefollowingistrueforallpositiveintegers n : n isevenifandonlyif3n2 +8iseven.

197. Provethefollowingtheorem: n isevenifandonlyif n2 iseven.

198. Prove:if m and n areevenintegers,then mn isamultipleof4.

199. Proveordisprove:Forallrealnumbers x and y , x y = x − y

200. Proveordisprove:Forallrealnumbers x and y , x + x = 2x

201. Proveordisprove:Forallrealnumbers x and y , xy = x · y .

202. Giveaproofbycasesthat x ≤|x| forallrealnumbers x

203. Useaproofbycasestoshowthat27isnotthesquareofapositiveinteger.

204. Supposeyouareallowedtogiveeitheradirectprooforaproofbycontrapositionofthefollowing:if3n +5 iseven,then n isodd.Whichtypeofproofwouldbeeasiertogive?Explainwhy.

205. Provethatthefollowingthreestatementsaboutpositiveintegers n areequivalent: (a) n iseven; (b) n3 +1isodd; (c) n2 1isodd.

206. Givenany40people,provethatatleastfourofthemwereborninthesamemonthoftheyear.

207. Provethattheequation2x2 + y2 =14hasnopositiveintegersolutions.

208. Whatiswrongwiththefollowing“proof”that 3=3,usingbackwardreasoning?Assumethat 3=3. Squaringbothsidesyields( 3)2 =32 ,or9=9.Therefore 3=3.

AnswersforChapter1

1. Abbyhasfewerthan301friendsonfacebook.

2. AllisadoesnotownmorequiltsthanFederico.

3. Amessagingpackageforacellphonecostsatleast$20permonth.

4. 4.5+2.5 =6

5. True 6. True 7. True

8. True

9. False

10. pqr ¬(r →¬q) ∨ (p ∧¬r) TTTT

11. (a) ¬p ∧ q (b) ¬(p ∨¬q)

12. p ∧¬q ∧ r

13. (p ∧¬q ∧¬r) ∨ (¬p ∧ q ∧¬r) ∨ (¬p

14. (p ∧¬p) ∨ (q ∧¬q) ∨ (r ∧¬r)

15. ¬(¬p ∨ q) ∨¬(p ∨¬q)

16. p ∨ q

17. ¬p ∨ q

18. Notequivalent.Let q befalseand p and r betrue.

19. Notequivalent.Let p , q ,and r befalse.

20. Bothtruthtablesareidentical: pq (p → q) ∧ (¬p → q) q TTTT

21. ¬(¬p ∧ q)

22. ¬(p ∨ q)

23. Bothpropositionsaretruewhen“itishot”istrueandbotharefalsewhen“itishot”isfalse.

24. ¬p ∨ q

25. ¬(p ∧¬q)

26. Truthvaluesdifferwhen p istrueand q isfalse.

27. Truthvaluesdifferwhen p isfalseand q istrue.

28. No

29. Yes

30. (q ∧

31. No

32. Yes

33. If x iseven,then y isodd.

34. If A ,then B

35. Ifitissunny,thenitishot.

36. Ifyoudon’tstudy,thenyoudon’tgetagoodgrade(equivalently,ifyougetagoodgrade,thenyoustudy).

37. Ifyoustudy,thenyoupass.

38. Ifthequarterbackcanpass,thentheteamwins.

39. Ifyouarenotregistered,thenyoucannotcheckoutlibrarybooks(equivalently,ifyoucheckoutlibrary books,thenyouareregistered).

40. Contrapositive:Ifyouwillnotwin,thenyoudonottryhard.Converse:Ifyouwillwin,thenyoutryhard. Inverse:Ifyoudonottryhard,thenyouwillnotwin.

41. Contrapositive:Ifyoudonotsleeplate,thenitisnotSaturday.Converse:Ifyousleeplate,thenitis Saturday.Inverse:IfitisnotSaturday,thenyoudonotsleeplate.

42. ItisnotThursdayoritisnotcold.

43. Iwillgototheplayandreadabook,orIwillnotgototheplayandnotreadabook.

44. Itisrainyandwedonotgotothemovies.

45. Bothpropositionscanbefalseatthesametime.Forexample,AlcouldbepresentandBillabsent.

46. ¬c ∧¬d

47. ¬c → r

48. w → c

49. r → (w ∧ c)

50. “Itisrainyoritisdry,butitcannotbeboth.”

51. (r ∧ t) → h

52. Using m , n , k ,and i ,therearethreerowsofthetruthtablethathaveallfivepropositionstrue:therows TTTT,FFTT,FFFTfor m,n,k,i .

53. U.S. AND NATIONAL AND FOREST AND (NOT ALASKA) AND (NOT HAWAII)

54. A isaknight, B isaknave.

55. A isaknave, B isaknight.

56. A isthespy, B istheknight,and C istheknave.

57. A istheknave, B isthespy,and C istheknight.

58. A istheknight, B isthespy,and C istheknave,or A istheknave, B isthespy,and C istheknight.

59. ¬(¬p ∨ q) ∧ r

60. ¬(p ∧¬q) ∧ (q ∨ r)

61. p q p r

62. p q r p q r

63. Setting p = F and q = T makesthecompoundpropositiontrue;thereforeitissatisfiable.

64. Setting q = T and p = F makesthecompoundpropositiontrue;thereforeitissatisfiable.

65. False

66. False

67. True

68. True

69. True

70. True

71. False

72. False

73. False

74. False

75. False

76. ∃x((x ≤−1) ∧ (x ≥ 1))

77. ∀x((3 ≥ x) ∨ (x> 7))

78. True.Foreveryrealnumber x wecanfindarealnumber y suchthat x +2y =5,namely y =(5 x)/2.

79. False.Ifitweretrueforsomenumber x0 ,then x0 =5 2y forevery y ,whichisnotpossible.

80. True

81. False

82. True

83. True

84. True

85. False

86. True

87. False

88. False

89. T (Eric,MTH281)

90. ∀xF (x)

91. ∀x (F (x)→B(x))

92. ∀y (M (y)→¬U (y))

93. ∀x∃yT (x,y)

94. ∃x∀y [A(x) ∧ (M (y) →¬T (x,y))]

95. ∀x∃y [(F (x) ∧ A(x)) → (U (y) ∧ T (x,y))]

96. Mikkoisafreshman.

97. Joeisnottakinganycourse.

98. Somepart-timestudentsarenotfreshmen.

99. Everystudentistakingacourse.

100. Somestudentistakingeverycourse.

101. Everyfull-timefreshmanistakingamathcourse.

102. 7 < 3.

103. Thereisnolargestnumber.

104. Nomatterwhatpositivenumberischosen,thereisalargerprime.

105. ∀x (I(x)→E(x))

106. ∀x∀y (L(x,y)→¬Q(x,y))

107. ∀x∃yL(x,y)

108. ∃x ¬G(x)

109. ¬∃x (I(x) ∧ E(x) ∧¬E(x)])

110. ∃x ¬A(x)

111. ∀x (T (x)→F (x))

112. ∀x (F (x)→¬A(x))

113. ∃x (T (x) ∧ A(x) ∧ F (x))

114. ∀x (F (x)→¬A(x))

115. Billisangry.

116. Nooneistallandangry.

117. Somefriendlypeoplearenotangry.

118. ∃y∀x (F (x)→T (x,y))

119. ¬∃x (F (x) ∧ S(x)]

120. ∃x∃y (F (x) ∧ A(y) ∧ T (x,y))

121. ¬∃x∀y (A(y)→T (x,y))

122. ∀x (F (x)→P (x,calculus))

123. WisteriadidnotpassMAT100.

124. Thereisacoursethatallstudentsaretaking.

125. Everystudentistakingatleastonecourse.

126. ∀y (C(y)→¬A(y))

127. S(Lois,Casablanca) ∧¬L(Lois,Casablanca)

128. ∃x∀y [C(y)→S(x,y)]

129. ¬∃x∀y [S(x,y)→L(x,y)]

130. ¬∃y [A(y) ∧ S(Ben,y)]

131. ThereisamoviethatMargaretdidnotsee.

132. Thereisamoviethateveryoneliked.

133. Everyonelikedatleastonemovie.

134. 6

135. 1,10

136. 12

137. 2

138. 3

139. 7

140. 5,8,11

141. 9

142. 7

143. 4

144. 3

145. 2

146. 3

147. 2

148. 1

149. 1

150. 2

151. 3

152. 2

153. 3

154. 1

155. ∃A ¬F (A)

156. ∀A ∀B [(F (B) ∧ S(A,B))→F (A)]

157. ¬∃A ∃B (¬F (A) ∧ F (B) ∧ S(A,B))

158. ∀A (F (A)→S(∅,A))

159. Nobananasareyellow.

160. Someintegersendinginthedigit7arenotodd.

161. Sometestsareeasy.

162. Rosesarenotredorvioletsarenotblue.

163. AllskiersspeakSwedish.

164. (a) Dependingonwhichwordisemphasized,thesentencecanbeinterpretedas“allbananasarenon-ripe fruit”(i.e.,nobananasareripe)oras“notallbananasareripe”(i.e.,somebananasarenotripe).

(b) Bothstatementscanbefalseatthesametime.

(c) Bothstatementscanbetrueatthesametime.

(d) Somebananasarenotripe.

165. Bothstatementscanbetrueatthesametime.

166. Modustollens

167. Hypotheticalsyllogism

168. Setting p falseand q trueyieldtruehypothesesbutafalseconclusion.

169. Notvalid: p false, q false, r true

170. Notvalid: p true, q true, r true

171. Useresolutionon l ∨ f and ¬ l ∨ r toconclude f ∨ r

172. Notvalid:fallacyofaffirmingtheconclusion

173. Notvalid:fallacyofdenyingthehypothesis

174. Valid

175. Valid

176. Notvalid

177. Universalinstantiation

178. Universalinstantiation

179. Thetwopremisesdonotimplytheconclusion.

180. Let R(x)bethepredicate“ x hasreadthetextbook”and P (x)bethepredicate“ x passedtheexam.”The followingistheproof:

1. ∀x (R(x) → P (x))hypothesis

2. R(Ed) → P (Ed)universalinstantiationon1

3. R(Ed)hypothesis

4. P (Ed)modusponenson2and3

181. Thetwopremisesdonotimplytheconclusion.

182. Existentialgeneralization

183. (a) Assume p ,prove q (b) Assume ¬q ,prove ¬p (c) Assume p ∧¬q ,showthatthisleadstoacontradiction.

184. Directproof:Assume p ,show q .Indirectproof:Assume ¬q ,show ¬p .

185. Suppose x =2k +1, y =2l .Therefore x + y =2k +1+2l =2(k + l)+1,whichisodd.

186. Suppose n =2k +1but n2 =2l .Therefore(2k +1)2 =2l ,or4k2 +4k +1=2l .Hence2(2k2 +2k l)= 1 (even=odd),acontradiction.Therefore n2 isodd.

187. Let x =2k +1, y =2l +1.Therefore x + y =2k +1+2l +1=2(k + l +1),whichiseven.

188. Suppose x =2k +1and y =2l +1,but x + y =2m +1.Therefore(2k +1)+(2l +1)=2m +1.Hence 2(k + l m +1)=1(even=odd),whichisacontradiction.Therefore x + y iseven.

189. Suppose x =2k and y =2l ,but xy =2m +1.Therefore2k · 2l =2m +1.Hence2(2kl m)=1(even= odd),whichisacontradiction.Therefore xy iseven.

190. Let x =2k +1.Therefore x +2=2k +1+2=2(k +1)+1,whichisodd.

191. Suppose x +2=2k .Therefore x =2k 2=2(k 1),whichiseven.

192. Suppose x isoddbut x +2iseven.Therefore x =2k +1and x +2=2l .Hence(2k +1)+2=2l .Therefore 2(k +1 l)= 1(even=odd),acontradiction.

193. Let n =2k .Therefore n +1=2k +1,whichisodd.

194. Suppose n +1iseven.Therefore n +1=2k .Therefore n =2k 1=2(k 1)+1,whichisodd.

195. Suppose n =2k but n +1=2l .Therefore2k +1=2l (even=odd),whichisacontradiction.

196. If n iseven,then n =2k .Therefore3n2 +8=3(2k)2 +8=12k2 +8=2(6k2 +4),whichiseven.If n is odd,then n =2k +1.Therefore3n2 +8=3(2k +1)2 +8=12k2 +12k +11=2(6k2 +6k +5)+1,which isodd.

197. If n iseven,then n2 =(2k)2 =2(2k2),whichiseven.If n isodd,then n2 =(2k +1)2 =2(2k2 +2k)+1, whichisodd.

198. If m =2k and n =2l ,then mn =4kl .Hence mn isamultipleof4.

199. False: x =2, y =1/2

200. False: x =1/2

201. False: x =3/2, y =3/2

202. Case1, x ≥ 0:then x = |x| ,so x ≤|x| .Case2, x< 0:here x< 0and0 < |x| ,so x< |x|

203. Weprovethestatementbycases.Thetwocases1 ≤ x ≤ 5or x ≥ 6areexhaustive.Inthefirstcase,if 1 ≤ x ≤ 5,then x2 ≤ 25so x2 =27.Inthesecondcase,if x ≥ 6,then x2 ≥ 36and x2 =27.So x2 =27 forallpositiveintegers x andweconcludethat27isnotaperfectsquare.

204. Itiseasiertogiveacontrapositionproof;itisusuallyeasiertoproceedfromasimpleexpression(suchas n ) toamorecomplexexpression(suchas3n +5iseven).Beginbysupposingthat n isnotodd.Therefore n isevenandhence n =2k forsomeinteger k .Therefore3n +5=3(2k)+5=6k +5=2(3k +2)+1,which isnoteven.Ifwetryadirectproof,weassumethat3n +5iseven;thatis,3n +5=2k forsomeinteger k . Fromthisweobtain n =(2k 5)/3,andititnotobviousfromthisformthat n iseven.

205. Provethat(a)and(b)areequivalentandthat(a)and(c)areequivalent.

206. Ifatmostthreepeoplewerebornineachofthe12monthsoftheyear,therewouldbeatmost36people.

207. Giveaproofbycases.Thereareonlysixcasesthatneedtobeconsidered: x = y =1; x =1, y =2; x =1, y =3; x =2, y =1; x = y =2; x =2, y =3.

208. Thestepsinthe“proof”cannotbereversed.Knowingthatthesquaresoftwonumbers, 3and3,areequal doesnotallowustoinferthatthetwonumbersareequal.

QuestionsforChapter2

Foreachofthepairsofsetsin1–3determinewhetherthefirstisasubsetofthesecond,thesecondisasubsetof thefirst,orneitherisasubsetoftheother.

1. ThesetofpeoplewhowerebornintheU.S.,thesetofpeoplewhoareU.S.citizens.

2. Thesetofstudentsstudyingaprogramminglanguage,thesetofstudentsstudyingJava.

3. Thesetofanimalslivingintheocean,thesetoffish.

4. Proveordisprove: A (B ∩ C)=(A B) ∪ (A C).

5. Provethat A ∩ B = A ∪ B bygivingacontainmentproof(thatis,provethattheleftsideisasubsetof therightsideandthattherightsideisasubsetoftheleftside).

6. Provethat A ∩ B = A ∪ B bygivinganelementtableproof.

7. Provethat A ∩ B = A ∪ B bygivingaproofusinglogicalequivalence.

8. Provethat A ∩ B = A ∪ B bygivingaVenndiagramproof.

9. Provethat A ∩ (B ∪ C)=(A ∩ B) ∪ (A ∩ C)bygivingacontainmentproof(thatis,provethattheleftside isasubsetoftherightsideandthattherightsideisasubsetoftheleftside).

10. Provethat A ∩ (B ∪ C)=(A ∩ B) ∪ (A ∩ C)bygivinganelementtableproof.

11. Provethat A ∩ (B ∪ C)=(A ∩ B) ∪ (A ∩ C)bygivingaproofusinglogicalequivalence.

12. Provethat A ∩ (B ∪ C)=(A ∩ B) ∪ (A ∩ C)bygivingaVenndiagramproof.

13. Proveordisprove:if A , B ,and C aresets,then A (B ∩ C)=(A B) ∩ (A C).

14. Proveordisprove A ⊕ (B ⊕ C)=(A ⊕ B) ⊕ C

Inquestions15–18useaVenndiagramtodeterminewhichrelationship, ⊆ ,=,or ⊇ ,istrueforthepairofsets.

15. A ∪ B , A ∪ (B A)

16. A ∪ (B ∩ C),(A ∪ B) ∩ C

17. (A B) ∪ (A C), A (B ∩ C)

18. (A C) (B C), A B

Inquestions19–23determinewhetherthegivensetisthepowersetofsomeset.Ifthesetisapowerset,givethe setofwhichitisapowerset.

19. {∅, {∅}, {a}, {{a}}, {{{a}}}, {∅,a}, {∅, {a}}, {∅, {{a}}}, {a, {a}}, {a, {{a}}}, {{a}, {{a}}}, {∅,a, {a}}, {∅,a, {{a}}}, {∅, {a}, {{a}}}, {a, {a}, {{a}}}, {∅,a, {a}, {{a}}}}

20. {∅, {a}}

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.