Telematics Wire Magazine- Feb 2021

Page 36

Perspective

Virtual Scenario Generation for ADAS Testing – Tools, Methodologies and Benefits Darshan Rajagopal Xitadel CAE

1. Introduction Advanced driver assistance systems (ADAS) can defined as a vehicle based intelligent safety system which could improve road safety in terms of incident avoidance, incident intensity mitigation and protection and can also include post- incident phases. It is an integrated in-vehicle or infrastructure based system. For example, intelligent speed adaptation and advanced braking systems have the potential to prevent an incident or mitigate the severity of the incident. In recent years, automotive active safety systems have become more prevalent. Furthermore, these systems will be used as the stepping stones for the imminent fully Autonomous Driving (AD). With the rising level of automation onboard vehicles, intelligent systems have to deal with an increasing amount of complex traffic scenarios. In turn, the intelligent systems themselves are also becoming more complicated. They consist of a plethora of different sensor technologies as well as increasingly advanced algorithms for sensor fusion, object tracking, classification, risk estimation, driver status recognition and vehicle control. As a result, it is rapidly becoming infeasible to check the performance of each new sensor or system in the traditional way by 36 | Telematics Wire | February 2021

manually driving around, storing data, manually labeling the data for reference, and evaluating the results. This is where an integrated Virtual Scenario Generator can be leveraged for ease of testing and validation.

2. Prevalent ADAS Features and Themes 2.1. Features There are a variety of features that encompass active safety including: Adaptive Cruise Control (ACC), Forward Collision Warning (FCW), Lane Departure Warning (LDW), Automatic Emergency Braking (AEB), Electronic Stability Control (ESC), Lane Keeping Assistance (LKA), Pedestrian Avoidance (PA), Adaptive Headlights (AH), Automatic Park Assist (APA), Seat belt reminders (SBR), Blind Spot Monitoring (BSM). 2.2. Themes Driver safety is a key theme used in addressing road casualty reduction targets through ADAS. Vehicle safety addresses the safety of all road users and currently comprises measures for incident avoidance and injury prevention (primary safety); reduction of injury in the event of an incident (secondary safety) and systems which assist with post impact care (to reduce consequences of the injury).

2.2.1. Incident avoidance systems There is a large scope for casualty reduction from driver assistance systems, as long as development is prioritized to provide maximum casualty reduction. Since driver behavior can modify the performance of safety systems which aims for incident avoidance, assessment of the regional driving patterns, human-machine interface (HMI), while complex, is essential. 2.2.2. Incident mitigation systems These refer to active onboard systems which aim to mitigate the severity of the incident. Examples include intelligent speed adaptation and advanced braking systems. 2.2.3. Incident protection systems Substantial improvements have been made in the recent past for the scope of enhanced vehicle safety from improved crash protection which aims to reduce injury severity during the impact phase. Examples include improvements in occupant restraint systems which better reflect the different human tolerance thresholds of male and female occupants and a range of age groups. 2.2.4. Post- Incident response systems A new development is the deployment of


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.