Solutions Manual for A First Course in the Finite Element Method 5th Edition by Logan

Page 1


Your paragraph text


Full Solution manual at https://testbank4textbook.com/product/solutions-manual-for-a-first-course-in-the-finite-element-method-5th-edition-by-logan/

Chapter 2

2.1 (a)

k1 0 –k1 0 0000

(1)

[k ] =

–k1 0 k1 0 0 0 0 0 0 0 0 0 0 0 0 0 (2) [k ] = 0 0 k2 –k2 0 0 –k2 k2 0 0 0 0 (3)

[k 3 ] =

0 k3 0 – k3 0 0 0 0 0 –k3 0 k3

(3) (1) (2) [K] = [k ] + [k ] + [k ]

[K] =

0 – k3 – k2 k 2 k3

k1 0

– 0 k1 k 3 0 k10 k2 –k1 0 –k3 – k2

(b) Nodes 1 and 2 are fixed so u1 = 0 and u2 = 0 and [K] becomes

k k–

[K] = 12

k2 – k 2 k 2 k3

{F} = [K] {d}

k =1 –

Fx 3 x F 0 k1= 23 2– 4 P – 2 k2 3 4

{F} = [K] {d}

k2

k2

k2 –k2 k3

k

k

k

u 3 u u 4 u

k

⇒ [K–1] {F} = [K–1 ] [K] {d}

⇒ [K–1 ] {F} = {d}

Using the adjoint method to find [K–1 ] C + = (– 1)311 =k2k3C21 (– k2) C= (– 1)1 + 212 (– k2) = k2 C22 = k1 + k2 3 © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


Full Solution manual at https://testbank4textbook.com/product/solutions-manual-for-a-first-course-in-the-finite-element-method-5th-edition-by-logan/

k2 k1 k

k2 k3 k2 k2 k1k 2 2 det [K ] = | [K] | = (k1 + k2) (k2 +k3) – ( –k 2) (– k2) | [K] | = (k1 + k2) (k2+ k3) – k22 k k3 [C] = 2 k

T

and C =

2

T

[K–1 ] = [ C ] det K

k2k3 k2 k2 k3 k 2 k2 k1k2 k2 k1 k –1 2 [K ] = = 2 k2)(k2 k3) – k k1 k2 k1 k3 k k (k1 2 3 2

k2 0 u k1k k2 2 P = 3 k1 k2 k1 k3 k 2k3 u k2P 4 u3 = k1k2 k1k k2 k3 3 k k P ( u 12)4 = k k 2k k 3 k k 1 2 1 3 (c) In order to find the reaction forces we go back to the global matrix F = [K] {d} 2k

k3

⇒ ⇒

k1

Fx 1x

=

Fx 2x

0 k3

0 k1

0 k3

0

F

k1 0 k1 k 2 k2

0 k3 k2 k2

u 1 u k

3

2

u k2P k1k2 k1 k3 k k 3 2 3 u k1 k2 P 1

3 F1x = – k1 u3 = – k F

⇒4 F x = k1k2 k1 k3 k2 k3

4

1

(k F2x = – k3 u4 = – k3 1 k k1k2 k1k

k2) P ⇒ F x = k1k k (k1 k1 k3 k2 k3 2

2 )P 3 k

2

k3

3

2

2.2

k1 = k2 = k3 = 1000

lb in.

(1) (2) (2) (3)

(1) k k (1) (2) k k (2) [k] = ; [k] = (2) kk kk (3) By the method of superposition the global stiffness matrix is constructed. 4 © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Full Solution manual at https://testbank4textbook.com/product/solutions-manual-for-a-first-course-in-the-finite-element-method-5th-edition-by-logan/


(1) (2) [K] =

k k 0

Node 1 is fixed {F} = [K] {d}

1x 0 Fx ? 2

k k k k

0(1) k(2) k(3)

0 k

u

0

1

?

k

u

⇒ u1 = 0 and u3 = δ k

?

Fx

(3)

=

k 0

0

⇒F F3x = 2 kk ⇒3 u k

k 2k k

k k

0

20

u2

2ku 2 ku

u F3x 3

1in. 2 = = = u2 = 0.5″ 2k2 2 F x = – k (0.5″) + k (1)″

k k

[K] =

k 2k k

0 k k

k k 2

lblb (– 1000 ) (0.5) +″ (1000 ) (1″) 3 xin.=in.

= 500 lbs F3x Internal forces 3 Element (1) F f1x (1)

k u 0 1 0.5 u lb f (1)1x = (– 1000 )2(0.5) ″ in.

f2x(2)

=

k k

f (1)2x= (1000

k

lb ″ ) (0.5) in.

⇒f

⇒ fx

1x

2

(1)

(1)

= – 500 lb

= 500 lb

Element (2)

f 2x(2) f 3x

(2)

=

k k

2.3

k u k 2 u 3

0.5 1

⇒ ff

2x 3x

(2)

– 500 lb

(2)

500 lb

(1) (2)

= [(3)] = [(4) k k (a) [k] = [k]kk] = k k By the method of superposition we construct the global [K] and knowing {F} = K [ ] {d} we have Fx

?

1x

0

Fx 2x

P = 0

Fx

?

k k 0 0 0

k 2k k 0 0

0 k 2k k 0

0 0

0 0

u

k 2k k

0 k

u

3 F

5

k

0

1 2 u 0 3 u

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

4

4

F

u

5

5

Full Solution manual at https://testbank4textbook.com/product/solutions-manual-for-a-first-course-in-the-finite-element-method-5th-edition-by-logan/


(b)

0 u 2ku2 ku3 k 2 P ku2 2ku3 ku4 u ku3 2ku4 0 3 2k u u3u32 = ; u4 = 2 2 u 4 in the middle Substituting in the equation

0 2k P = k 0 0

k 2k k

0

P = – k u2 + 2k u3 – k u4

u u P = – k 3 + 2k u – 3 2 3k 2

⇒ P = k u3 ⇒ u3 = ⇒

P k

P P k k (c) In order to find the reactions at the fixed nodes 1 and 5 we go back to the global equation {F} = [K] {d} P P k F1x = – ku2 = – F1x = k 2 2 P ku F5 P x= F5x = – 4 = –k 2 2k Check u2 = ; u4 = 2 2

⇒ ⇒

ΣFx = 0

⇒ F1x + F5x +P = 0 ⇒ P P +P=0 + ⇒ 2 2 0=0

2.4

(a) [k(1)] = [k(2)] = [k(3)] = [k(4)] =

k k

k k

By the method of superposition the global [K] is constructed.

Also {F} = [K] {d} and u1 = 0 and u5 = δ 0 u 1 ? k 0 Fx = 0 u ? 0 2 ? 2k k 0 0 2x 0 u k 0 0 Fx k 3 3 ? u F 6 4 © 2012 Cengage Learning.4 All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. u F 5 5

Fx

? 1x 0

k k

k 2k k

0 k 2k k 0

0 0

0 0

Full Solution manual at https://testbank4textbook.com/product/solutions-manual-for-a-first-course-in-the-finite-element-method-5th-edition-by-logan/


(1)

(b) 0 = 2k u2 – k u3 0 = – ku2 + 2k u3 – k u4

(2)

0 = – k u3 + 2k u4 – k δ

(3)

From (2) u3 = 2 u2 From (3)

2u u = 24

2

Substituting in Equation (2)

2 x ⇒– k (u2) + 2k (2 u2) – k 2 ⇒ – u2 + 4 u2 – u2 – = 0 ⇒ u2 = 2

4

2

⇒ u 3 =2 ⇒ u3 = 4 2 ⇒ 2 4 ⇒

3 4

u4 = u4 = 2

(c) Going back to the global equation {F} = [K]{d}

F1x = – k u2 = k

4

⇒ F1x

F5x = – k u4 + k δ = – k

3 4

=

k 4 +kδ

⇒ F x = k4 5

2.5 2 1

1

2

kip 1

(1)

[k ] =

(3)

[k ] =

(5)

[k ] =

kip in. 2 3

4 kip 4 in.

in.

5

4 5

d1 d2 1 1 ; [k 1 1

d2 d4 2 2 (2) ]= 2 2

d2 d4 3 3 ; [k 3 3

d2 d 4 4 4 4 4

d 4 5 5

(4)

]=

kip in.

3

kip

3

x

in.

d3 5

5 7

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Full Solution manual at https://testbank4textbook.com/product/solutions-manual-for-a-first-course-in-the-finite-element-method-5th-edition-by-logan/


Assembling global [K ] using direct stiffness method

[K] =

1 1 0 0

1 1 2 3 4 0 2 3 4

1 1 0 0

1 10 0 9

0 2 3 4

0 0 5 5

5 234 5

Simplifying

[K] =

0 0 5 5

0 9kip 5in. 14

2.6 Now apply + 2 kip at node 2 in spring assemblage of P 2.5.

∴ F2x = 2 kip [K]{d} = {F}

[K] from P 2.5

1 10 0 9

u 0 0 F1 9 1 = 2 5 u 0 F3 1 2 0 4 u where u1 = 0, u3 = 0 as nodes 1 and 3 are fixed. 3 of (A) Using Equations (1) and (3) u 2 u 10 9 4 = 9 14 2 0 1 1 0 0

Solving

0 0 5 5

u 4

u2 = 0.475 in.,

(A)

u4 = 0.305 in.

2.7

conv.

f1x = C, f2x = – C f= – kδ = – k(u2 – u1)

f1x = – k(u2 – u1) f2x = – (– k) (u2 – u1)

f2x

k –k

[K] =

k –k

f1x =

u 1 u same as for 2 –k tensile element k – k k

8 © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


2.8 k = 500in. lb

k = 500in. lb

k1 = 500

1 1

1 ; k2 = 500 1

[K] = 500

1 1 0

1 2 1

500 lb

1 1

1 1

So

0 1 1

{F} = [K] {d} 1

⇒ 3

F 2F F

? 0 = 500 1000

0 u 1 ? u ? 2 u 3

1 1 0 1 1 2 0 1 1

0 = 1000 u2 – 500 u3 500 = – 500 u2 + 500 u3 From (1)

500 1000

u2 = u3

(1) (2)

⇒ u2 = 0.5 u3

(3)

Substituting (3) into (2)

⇒ 500 = – 500 (0.5 u3) + 500 u3 ⇒ 500 = 250 u3 ⇒ u3 = 2 in. ⇒ u2 = (0.5) (2 in.) ⇒ u2 = 1 in. Element 1–2

f1x (1) f2x (1)

= 500

1 1

Element 2–3

f 2x(2) f 3x (2)

1 1

= 500

F1x = 500 [1 – 1 0]

in . in . 1 1in. 1 2in.

f

1 0 1 1

f

f f

0 1in. F 2in. 1x

(1)

500 lb

(1)

500 lb

(2)

500 lb

(2)

500 lb

1x 2x

2x 3x

500lb

2.9 lb in.

lb in.

lb in.

9 © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


(1)

[k ] =

(2)

[k

]=

(3)

[k ] =

[K] =

Fx

?

1x

1000

Fx

0

2x

4000

F 3

=

(1) 1000 1000

(2) 1000 1000

(2) 1000 1000 (3) 1000 1000

(3) 1000 1000 (4) 1000 1000

(1) 1000 1000 0 0

(2) 1000 2000 1000 0

(3) 0 1000 2000 1000

(4) 0 0 1000 1000

1000 1000

1000 2000

0 1000

0 0

u 0

0 0

1000 0

2000 1000

1000 1000

u

4 Reactions

Element forces Element (1)

f1x (1) f2x (1) Element (2) f 2x(2) f 3x (2) Element (3) f 3x (3)

2.10

f

4x

(3)

=

=

=

100 0 100 0 100 0 100 0 100 0 100 0

2 u

u = 0 in. 1 = 3 in. = u 7 in. 2 = 11 in. u 3 u F41x = [1000 – 1000 0 0]

F

1

3 u 4

u 0 1 3 u 7 2 1 u 1 3 1 000 0 u f1x (1) 1000 3 4 f (1) 2x

1 000 3 1000 7

⇒ ff

1000 1000

⇒ ff

7 11

2x 3x

⇒ F1x = – 3000 lb

3000 lb 3000 lb

(2) (2)

3x 4x

4000lb 4000 lb

(3) (3)

4000 lb 4000 lb lb in.

lb in.

lb in. 10 © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


(1)

[k ] = (2)

[k ] =

100 0 100 0

500 50 [k(3)] = 500 0 {F} = [ K ]50{d} 0 ? 1000 – 4000 1000 = ? 0 ? 0

Fx 1x Fx 2 x F 3 F Reactions 4

u2 =

Fx 1x Fx

Element (1) F 3 f1x (1) F f2x4(1)

f 3x

(2)

f 4x 2.11

(3)

500 500

1000 2000 500 500

=

2000 4000 1000 1000

lb

=

=

=

0 500 500 0

100 0 100 0 50 0 50 0 50 0 50 0

1000 1000

0

u

0 500 0 500

1

?

u

0

2 0 u

4000 = – 2 in. 2000

=

Element (3)

f 2x (3)

500

1000 2000 500 500

Element (2)

f 2x(2)

500

1000 1000 0 0

2x F Fx 3 1x F Fx 4 2x

1000 1000

3 u 4 0 0 2 500 0 0 0 500

0 500 500 0

0 –2

⇒ ff

1x 2x

2 500 500 0

⇒ ff

2 500 500 0

⇒ ff

N m

N m

2x 3x

2x 4x

(1)

=

(1)

(2) (2)

(3) (3)

=

2000 lb 2000

–1000 lb 1000

1000 lb 1000

d = 20 mm

11 © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


20 00 (2) ; [k ] = 2000

200 0 {F} = [ K ]200 {d} 0 Fx ? 2000 2000 1x 0 = 0 Fx ? [k(1)] =

2

u2 = 0.01 m

F Reactions 3

F1x= (– 2000) (0.01)

Element (1)

f

1x

ˆ Element (2)

f

2x

ˆ f

2x

ˆ f

2.12

=

3x

2000 2000

u 1 u 2 u 3 F1x = – 20 N

2000 0 4000 20 00 2000 2000

2000 2000

0 0.01

20 00 200 2000 0 200 0 0 ? 0 . 0 2 m

f

⇒ ˆ f

=

2000 –2 00 –2 00 0 0 2000

0.01 0.02

1x

=

2x

ˆ f

⇒ ˆ

2x

f

ˆ

=

3x

ˆ N m 2

[k(2)] = 10000

2 2

2

1 1 0 0

1 3 2 0

N

3

1

1 1

(1) (3) [k ] = [k ] = 10000

N

N m

N m

1

2 0 2 0 2 0 2 0

1

2

{F} = [K] {d}

Fx 1x Fx 2 x F 3 F 4

? 4500 N = 10000 0 ?

0 = – 2 u2 + 3 u3

0 0 2 0 3 1 1 1

⇒ u2 =32u3 ⇒

450 N = 30000 (1.5 u3) – 20000 u3

⇒N 450 N = (25000 ) u ⇒ = 1.8 × 10–2 3u3m m ⇒ u = 1.5 (1.8 × 10–22) ⇒ u2 = 2.7 × 10–2 m

0

u 1 ? u ?

2 0 u u23= 1.5 u3 u 4

Element (1) = 10000 2

f

1x

ˆ f

2x

ˆ

1 1

1 1

0 2.7 10

ˆ

⇒ ˆff

1x 2x

(1) (1)

270N 270N

12

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


Element (2)

f

2x

ˆ

= 20000

3x

Element (3) f ˆf

3x

ˆ f

Reactions

= 10000

4x

1 1

1 1

1 1

2.7 10

f

2

⇒ˆ

1.8 10 2

1 1

f

f

ˆ 0 {F1x} = (10000 N ) [1 – 1] m 2.7 10 2

2.13

⇒ F4x = – 180 N kN m

kN m

3x 4x

[k(1)] = k[(2)] = [k(3)] = [k(4)] = 20

180N

(2)

180N (3)

180N

(3)

180N

ˆ

⇒ F x= – 270 N 1

kN m

5 kN

(2)

2

1.8 10 0

N {F 4x} = (10000 ) [–1 1] m

3x

⇒ˆ

2

1.8 10 0

2x

kN m

1 1

1 1

{F} = [ K] {}d

Fx ? 1 1 0 0 0 1x 0 1 2 1 0 0 F x 10kN = 20 0 1 2 1 0 2 0 0 0 1 2 1 x F ? 0 0 0 1 x 1 3 0 2u – u u 0.5 u F = u4 u 0 –u 2 u2323 u u20.5 3 4 44 3 F 5 kN = – 20 u2 + 40 (2 u2) – 20 u2 5 5 = 40 u2 u2 = 0.125 m

0 u ? 1 u ? 2 ? u 0 3 u 4 u 5

⇒ ⇒ ⇒ u4 = 0.125 m ⇒ u3 = 2(0.125) ⇒ u3 = 0.25 m Element (1)

f

1x

ˆ Element (2)

f

= 20

2x

ˆ f

2x

ˆ f

3x

ˆ

1 1

1 1

0 0.125

⇒ fˆ

1x 2x

(1) (1)

2.5 kN 2.5 kN

f

= 20

1 1

1 1

0.125 0.25

ˆ f

⇒ˆ f

13

2x 3x

(2) (2)

2.5 kN 2.5 kN

ˆ

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


Element (3)

f3x = 20 f4x

1 1

1 1

0.25 0.12 5

⇒ ff

f

1 1

1

0.125

⇒ ffˆ

Element (4) 4x

= 20

ˆ f

5x

ˆ

1 0

2.5 kN

(3)

ˆ

4x

(4)

2.5kN 2.5kN

(4)

2.5kN

⇒ F1x = – 2.5 kN

0.125

⇒ F5x = – 2.5 kN

0.125

F5x = 20 [–1 1]

4x

(3)

5x

0

F1x = 20 [1 –1]

3x

0

2.14 N m

4000 NNm/m

1000 N

1 1

[k(1)] = k[(2)] = 400

2000 N

1 1

{F} = [ K]d}{

0 u 1 ? u ? 2 u 3

Fx ? 1 1 0 1 1 x 100 = 400 1 2 Fx 0 1 200 1 2 100 = 800 u2 – 400 u3 F – 2003= – 400 u2 + 400 u3 – 100 = 400 u2 u2 = – 0.25 m

= 400

f

1 1

1x

ˆ

Element (2) f f̂

2x

2x

ˆ Reaction

100 = 800 (– 0.25) – 400 u3 u3 = – 0.75 m

Element (1)

f

3x

= 400

1 1

0 0.25

1 – –1 1 1

0.25 0.75

fˆ (1) 100N 1x

ˆ (1) f2x f

⇒ˆ f

ˆ {F1x} = 400 [1 –1]

0 0.25

2x 3x

100N

(2)

200N

(2)

200N

⇒ F1x ˆ= 100 N

2.15 kN

500 m

kN

1000 m kN 500 m

14 © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


(1) [k ] =

500 (2) ; [k ] = 500

50 0 50 500 00

500 (3) ; [k ] = 500

50 0 050 00

u Fx ? 0 500 0 1 0 1x ? 500 500 = u F x 2kN 500 500 2000 1000 ? 2 2 ? 0 0 1000 1000 x u 0 F u3 = 0.001 m 3 3 Reactions u F F1 = (– 500) (0.001) F1x = – 0.5 kN 4 4 x = (– 500) (0.001) = F2x = – 0.5 kN x = – 1.0 kN F4 F2 (– 1000) (0.001) Element (1) x f f F4 50 50 0 0.5 kN 1x 1x = = ˆ ˆx 0 0 0 .0 01 0.5 kN

100 0 100 0

10 00 1000

⇒ ⇒ ⇒

Element (2) f

3x

fˆ 2x

=

ˆ Element (3) f f̂

3x

3x

=

ˆ 2.16

f

4x

50 050

500

0 50 0 1000 1000

f 0 0 .0 01

3x

⇒ ˆfˆ

2x

f 1000 1000

0.001 0

⇒ ˆ fˆ

3x

F 1x 100 = 100 F4 x

100 100

=

4x

1kN 1kN

–100 lb

2

lb

=

ˆ

100 lb 100 in.

0.5 kN 0.5 kN

=

3x

f

ˆ 1

50 0 500

3

lb

100 in.

100 100 0 0

100 100 100 100 0

200 100

100 200

1 u2 = in. 3 1 u3 = – in. 3

0 100 100 100 100

4

lb

100 in.

0 0 100 100

u 2 u 3

0 u 2 u0 3

2.17 300

400

500 300 1

1000 N 3

400 4

2 15

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


F1x ? 0 1000

=

400 300

500

500 300 –300–300 –400

0

N F4x?

–500

500

0

0

0

–300–300

–400

(300 300 400)

–400

–400

400 400

0 = 1500 u2 – 600 u3

u 0 1 u 2 0 u 3

1000 = – 600 u2 + 1000 u3

u

1500 u3 = u2 = 2.5 u2 600

4

1000 = – 600 u2 + 1000 (2.5 u2) 1000 = 1900 u2

1000 u2 1= = mm = 0.526 mm 1900 1.9 1 1.9

u 3 = 2.5

F1x = – 500

mm = 1.316 mm

1 1.9

= – 263.16 N

1 F4x= – 400

1.9 – 400

2.5

1 1.9

1 2.5 = – 400 = –736.84 N 1. 1.9 9 ΣFx = – 263.16 + 1000 – 736.84 = 0 2.18 (a) 1000 lb

lb

2000 in.

x

As in Example 2.4 πp = U + Ω 1 k x2, Ω = – Fx U= 2 Set up table 1 (2000 x– 1000 x π )2 p= 2

= 1000 x2 – 1000 x

Deformation x, in.

πp, lb⋅in. 6000 3000

– 3.0 – 2.0 16

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


– 1.0 0.0 0.5 1.0 2.0 p

x

1000 0 – 125 0 1000

= 2000 x– 1000 = 0

⇒ x = 0.5 in. yields minimum πp as table verifies. pp, lb.in.

–3

–2

x, in. 1 2

–1

3

M i n i m u m

(b) xx lb

500 in .

πp =

1000 lb

1 2 2 kx – Fx = 250 x – 1000 x 2

x, in. πp, lb⋅in. – 3.0 11250 – 2.0 3000 – 1.0 1250 00 1.0 – 750 2.0 – 1000 3.0 – 750 p = 500 x – 1000 = 0

x

= 2.0 in. yields πp minimum x

(c)

N mm

x

– 400 kg ¥ 9.81 m s2= 3924 N

17 © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


πp =

1 2 (2000) x2– 3924 x = 1000 x – 3924 x 2

p

= 2000 x – 3924 = 0 x

x = 1.962 mm yields πp minimum

1 πp min 2

= (2000) (1.962)2 – 3924 (1.962)

⇒ πp =min– 3849.45 N⋅mm 1 x2 – 981 x π (400) p= 2

(d)

p

= 400 x – 981 = 0

x

x= 2.4525 mm yields πp minimum

1 (400) (2.4525)2 – 981 (2.4525) πpmin= 2

⇒ πp = – 1202.95 N⋅mm min

2.19 F = 1000 lb

x

Now let positive x be upward k = 500 lb in.

π p= π

1 = (500) x2 p– 1000 x 2

π

p = 250 x2 – 1000 x p

x

1 2 kx – Fx 2

= 500 x – 1000 = 0

⇒ x = 2.0 in. ↑ 2.20 1000 lb in. F = 500 lb

F = kδ2

(x = δ)

dU= F dx 18 © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


x

U=

0

F

2

(kx) dx 4000

kx3

U=

1000

3

Ω = – Fx

πp = p

x

F = Kd

1

2

2

d

1 3 kx – 500 x 3 2

= 0 = kx – 500

0 = 1000 x2 – 500

x = 0.707 in. (equilibrium value of displacement)

1 (1000) (0.707)3 –500 (0.707) 3

πp min =

π lb⋅in. p min = – 235.7 2.21 Solve Problem 2.10 using P.E. approach

lb

500 in. lb

1000 in.

4000 lb

lb

500 in.

πp =

3

1 1 1 (e) ) πp = 2 k1(u2 –u2)+1 2 k2(u3 – u2)+2 2 k3(u4 – u22 e 1 – f1x(1)u 1 –f2x (1) u2 –f2x (2) u2

– f3x p

u 1

u

p 2

p

u3 p

u4

(2)

u3 –f2x

(3)

u2 –f4x (1)

= – k1 u2 +k1 u1 – f1x

(3) 4

u

=0

(1)

=ku2 1 – k1 u1 – 2k 3u+ 2 xk u2– k3 u4 +k3 u2 – f2x(1)–

f (2) 2–

f (3) 2x = 0

(2)

(2)

=0

(3)

(3)

=0

(4)

= k2 u3 – k2 u2 – f3x = k3 u4 – k3 u2 – f4x

19 © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


In matrix form (1) through (4) become

k1 k1

k

1

0 k2

k1 k 2 k 3 k 2 k

0 0

0

0 k 3 0 k3

0 500 500 0

0 –500 0 500

k2

3

f 1x (1) u f (1)2x f 2x(2) 1 = u f (2) 3x 2 f (3) 4x u 3 u 0 F 1x u 1 4000 4 u 0 = Fx 2 0 3 x F u 4 3

or using numerical values

1000 1000 0 0

1000 2000 500 500

Solution now follows as in Problem 2.10

f (3)2x

(5)

(6)

Solve 2nd of Equations (6) for u2 = – 2 in. For reactions and element forces, see solutionuto Problem 2.10 4 Solve Problem 2.15 by P.E. approach 2.22 kN

500 m

kN

1000 m kN

500 m

πp =

3 e 1

πp

(e)

=

1 1 k 2(u– u232) k1(u3 –u2)+1 2 2 1 + k22 3 (u4 – u3 )–

(1)

f1x

u1

–f(1)(2)3x u3 – f2xu 2 – f3x(2) u3 4 –f(3)(4)3x u3 – f3xu

=0=–

k1 u3 +k1 u(1)1 – f1x

p

u1 p

u2

(2)

p

= 0 = k1 u3 +k2 u3 –k2 u2 –k3 u4 +k3 u3 – f3x – f3x

p

= 0 = k3 u4 –k3 u3 – f3x

u3 u

= 0 = – k2 u3 +k2 u2 – f2x

(2)

(3)

(1)

– f3x – k1 u1

(4)

4

In matrix form

k1

k

u F1x 0 k2 1 k F2x = 2 k 1 k2 k u F3x k 2kN 3 3 1 k2 k 2 F4x k3 0 0 k 3 u For rest of solution, see solutions of Problem 2.15. 3 20 u © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 4 0

1

0 0


2.23 I =a +a2 x I(0) = 1 = I1 I()L= a2

a + a2L =I

2

=1 I2 I 1 a L

∴ I2 I = 11+

II1 L x

Now V = IR V = – V1 = R (I2 – I1) V = V2 = R (I2 – I1)

V =R 1

1 1

1 1

I1 I2

V 2

21 © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.