THE DORSAL COLUMN
VOLUME 1 // ISSUE 1
showed the ability of a microglial cell to perform phagocytosis relies heavily on the presence of nitric oxide, an inflammatory molecule produced by microglia. “Nitric oxide is an interesting molecule, because in the past it has been looked at as solely detrimental. It’s not that this molecule is negative, but there needs to be a balance.” Think back to our city. Microglia work to keep our neuronal ‘roads’ clean and debris-free. An abundance of nitric oxide results in microglia working overtime – over-modifying neuronal structures until they are rendered ineffective. A lack of nitric oxide leads to excessive clutter, again rendering neurons ineffective at transporting signals.
microglia, respectively. “What we essentially discovered was that two individual processes already known to affect microglia phagocytosis – endogenous nitric oxide production, and a specific calcium ion channel – are actually part of the same signaling pathway,” said Maksoud. “Phagocytosis is such an important part of brain function and dysfunction, so discovering a new mechanism of action can hopefully uncover new ways to modulate microglia function in health and disease.” This new mechanism behind phagocytosis is just the start of emerging microglia research. With a solid foundation underlying the relationship between nitric oxide and calcium ion channels, Maksoud hopes to see this research field progress using a disease model. “From the literature we also see similar trends with nitric oxide and calcium ion channels in diseases such as brain tumors. Examining this pathway with respect to this type of pathology could be beneficial in uncovering new, potent therapeutic treatments.”
Using various microscopic cellular imaging methods, Maksoud examined phagocytosis in microglia that were unable to produce nitric oxide. Interestingly, microglia lacking nitric oxide production were not as successful in removing bacterial debris compared to normal microglia. Less phagocytosis was not only attributed to decreases in nitric oxide, but also decreased levels of calcium ion channels, which are proteins on the surface of microglia. These calcium ion channels transport calcium in and out of the cell and are LOSING BEHAVIOURAL FLEXIBILITY necessary for cleaning up those BY ARIEL FRAME potentially harmful bacteria.
ALZHEIMER’S DISEASE
If microglia act as city workers, calcium ion channels work to provide essential resources to microglia, such as the ability to change shape and structure in order to better clean up debris within their environment. Just like nitric oxide, too much or too little calcium ion channel function can overwork or underwork
On board game night, you embark on a
night of fun, moving tiny figurines around a table, picking up various playing cards, and trying to outcompete your friends. This is a familiar setting. Every week the same friends join you to play the same three games you happen to
SOCIETY OF NEUROSCIENCE GRADUATE STUDENTS
5