THE DORSAL COLUMN day-to-day (hopefully not too familiar!), like when work deadlines are approaching. For the stress imitating stroke, brain cell cultures were deprived of glucose and oxygen, two essential elements to sustain life, which led to cell death. In the second form of stress, the cultured cells were exposed to a protein that is typically associated with Alzheimer’s disease, which also led to cell death.
VOLUME 1 // ISSUE 1
SMALL RNA MOLECULES MAY EXPLAIN A HALLMARK OF ALS BY DIKA OJIAKOR
Amazingly, the tracer labelled dying cells in all three conditions. This led the researchers to try it in models of stroke and Alzheimer’s disease. Again, the tracer allowed clear identification of the loss of brain cells in areas that are typically associated with these disorders. Taken together, the results of this teams’ work hold promise for applications to many human conditions, including earlier diagnosis of neurodegenerative diseases based on the location of cell death or to measure the effect of treatments on apoptosis. For example, the authors suggested that this tracer could be used to see the impact of cancer treatments on tumours, where an increase in signal from the tracer would indicate that the cancer cells are dying as hoped. However, despite the tracer not showing any negative side effects in the brain cells or in this study, it will be very important to ensure safety in humans before we can hope to use it. This important work brings us much closer to seeing that reality.
In
the summer of 2015, a year after millions of people dumped buckets of ice water over their heads to promote awareness of amyotrophic lateral sclerosis or ALS, Zachary Hawley made the decision to join a lab at Western University focused on understanding the cellular biology of ALS. Nearly five years later, Hawley is the lead author on a recent study published in Brain Research that might explain the molecular origins of the disease. ALS is a progressive neurodegenerative disease caused by the death of motor neurons – long and stringy brain cells that control some of our most basic operations, such as the ability to breathe, walk, speak or swallow. Perhaps no statistic to do with ALS is more telling than that the life expectancy of a person with the disease ranges from 2-5 years after diagnosis. One of its major hallmarks is the formation of sticky, microscopic aggregates caused by changes in the abundance of specific proteins, called intermediate filaments. These proteins are needed to maintain the structure and integrity of motor neurons. “The question to us became why do we see these changes in intermediate
SOCIETY OF NEUROSCIENCE GRADUATE STUDENTS
9