LLMAISecurity& GovernanceChecklist FromtheOWASPTop10 forLLMApplicationsTeam
RevisionHistory
Revision Date
Author(s) Description
0.1 2023-11-01 SandyDunn initialdraft
0.5 2023-12-06 SandyDunn, OWASPLLM
AppsTeam publicdraft
Version:0.5
Published:December6,2023
Theinformationprovidedinthisdocumentdoesnot,andisnotintendedto,constitutelegaladvice. Allinformationisforgeneralinformationalpurposesonly.
Thisdocumentcontainslinkstootherthird-partywebsites.Suchlinksareonlyforconvenience andOWASPdoesnotrecommendorendorsethecontentsofthethird-partysites.
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1ResponsibleandTrustworthyArtificialIntelligence 6 1.2WhoisThisFor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3WhyaChecklist? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 LargeLanguageModelChallenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1LLMThreatCategories 10 2.2ArtificialIntelligenceSecurityandPrivacyTraining 10 2.3 IncorporateLLMSecurityandgovernancewithExisting,EstablishedPracticesandControls10 2.4FundamentalSecurityPrinciples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.6VulnerabilityandMitigationTaxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 DeterminingLLMStrategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1DeploymentStrategy 13 4 CheckList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1AdversarialRisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2AIAssetInventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.3AISecurityandPrivacyTraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.4EstablishBusinessCases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.5Governance 15 4.6Legal 16 4.7Regulatory 17 4.8UsingorImplementingLargeLanguageModelSolutions 18 5 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 A Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Overview
Everyinternetuserandbusinessshouldpreparefortheimpactofasurgeinpowerfulgenerative artificialintelligence(GenAI)applications.GenAIholdsenormouspromiseandopportunitiesfor discovery,efficiency,anddrivingcorporategrowthacrossmanyindustriesanddisciplines.However, aswithanystrongnewtechnology,itintroducesnewchallengestosecurityandprivacy.
ArtificialIntelligence,MachineLearning,LargeLanguageModels,andDiffusionModelshavebeen indevelopmentandthefocusofacademicresearchformanyyears.Recentimprovementsin trainingdataavailability,computerpower,GenAIcapacity,andthereleaseofsolutionssuchas ChatGPT,ElevenLabs,Midjourney,alongwiththeirbroaderavailabilityoutsideofwhatpreviously wasarelativelyisolatedandspecializedfield,haveledtoitseruptivegrowth.Theseadvancesin artificialintelligence(AI)emphasizetheimportanceoforganizationsdevelopingplanstomanage theirengagementanduseofAIwithintheirorganization.
• Artificialintelligence isabroadtermthatencompassesallfieldsofcomputersciencethat enablemachinestoaccomplishtasksthatwouldnormallyrequirehumanintelligence.Machine learningandgenerativeAIaretwosubcategoriesofAI.
• Machinelearning isasubsetofAIthatfocusesoncreatingalgorithmsthatcanlearnfrom data.Machinelearningalgorithmsaretrainedonasetofdata,andthentheycanusethatdata tomakepredictionsordecisionsaboutnewdata.
• GenerativeAI isatypeofmachinelearningthatfocusesoncreatingnewdata.Often,GenAI reliesontheuseoflargelanguagemodelstoperformthetasksneededtocreatethenewdata.
• A largelanguagemodel(LLM) isatypeofAIprogramthatusesmachinelearningtoperform naturallanguageprocessing(NLP)tasks.LLMsaretrainedonlargedatasetstounderstand, summarize,generate,andpredictnewcontent.
ThediagrambelowshowstherelationshipofLLMtothefieldofAIgenerally:
Figure1.1:ImageofLLMrelationshipwithinthefieldofArtificialIntelligence
OrganizationswillfacenewchallengesdefendingandmanagingGenAIsolutions.Additionally,there issignificantpotentialforacceleratedthreatsfromthreatactorswhowilluseGenAItoaugment attacktechniques.
Manyapplicationswithinabusinessemployartificialintelligenceapplications,suchashuman resourcehiring,SPAMdetectionforemail,behavioralanalyticsforSIEM,andMDRapps.Theprimary focusofthisdocumentisonLargeLanguageModelapplications,whichcanproducecontent.
ResponsibleandTrustworthyArtificialIntelligence
AschallengesandbenefitsofArtificialIntelligenceemerge-andregulationsandlawsarepassedtheprinciplesandpillarsofresponsibleandtrustworthyAIusageareevolvingfromidealisticobjects andconcernstoestablishedstandards.
TheOWASPAISecurityandPrivacyGuideworkinggroupismonitoringthesechangesandaddressing thebroaderandmorechallengingconsiderationsforallaspectsofartificialintelligence.
Figure1.2:ImagecreditMontrealAIEthicsInstitute
WhoisThisFor?
Executive,technology,cybersecurity,privacy,compliance,andlegalleadersmustpaycloseattention tothefastGenAItechnologicaltransformationanddeviseastrategytobenefitfromopportunities whilefightingagainstthreatsandmanagingrisks.
Thischecklistisdesignedtoassistthesetechnologyandbusinessleadersinquicklyunderstanding therisksandbenefitsofusingLLM,allowingthemtofocusondevelopingacomprehensivelistof essentialareasandtasksrequiredtodefendandprotecttheorganizationastheycreateaLarge LanguageModelstrategy.
Scenariospresentedhereincludethosethatpertaintointernaluseofmodelsreleasedcommercially orthosethatareopensourced,aswellasscenariosfororganizationsthatconsumeLLMservices providedbythird-parties.ResourcesfromMITREEngenuity,OWASP,andothersarereferenced.
Thediagrambelowshowshowtheseresourcescanbeusedtocreateathreatinformeddefense strategy.
Figure1.3:ImageofintegratingLLMSecuritywithOWASPandMITREresources
ItisthehopeoftheOWASPTop10forLLMApplicationsteamthatthislistwillhelporganizations improvetheirexistingdefensivetechniquesanddeveloptechniquestoaddressthenewthreatsthat comefromusingthisexcitingtechnology.
WhyaChecklist?
Checklistscanhelpwithstrategydevelopmentbyensuringthoroughness,clarifyinggoals,fostering consistency,andallowingforfocused,deliberateeffort,allofwhichmayresultinfeweroversights. Followingthelistcanbuildconfidenceinapathtosecureadoptionwhilesparkingideasforfuture businesscasesmovingforward.Itśaveryforwardandverypracticalwaytoachievecontinuous improvement.
NotComprehensive
Whilethisdocumentisintendedtosupportorganizationsindevelopingan initialLLMstrategyinarapidlychangingtechnical,legal,andregulatoryenvironment,itdoesnot covereveryusecaseorobligation.Organizationsshouldextendassessmentsandpracticesbeyond thescopeoftheprovidedchecklistasrequiredfortheirusecaseorjurisdiction.
LargeLanguageModelChallenges
LargeLanguagemodelsfaceanumberofseriousanduniqueissues.Oneofthemostimportantis thatwhileworkingwithLLMs,thecontrolanddataplanescannotbestrictlyisolatedorseparable. AnothersignificantchallengeisthatLLMsarenondeterministicbydesign,yieldingadifferent outcomewhenpromptedorrequested.Itisnotalwaysachallenge,butLLMsemploysemantic searchratherthankeywordsearch.Thekeydistinctionbetweenthetwoisthatthemodel’salgorithm prioritizesthetermsinitsresponse.Thisisasignificantdeparturefromhowconsumershave traditionallyusedtechnology,andithasanimpactontheconsistencyandreliabilityofthefindings. Hallucinations,emergingfromthegapsandtrainingflawsinthedatathemodelistrainedon,are theresultofthismethod.
Therearemethodstoimprovereliabilityandreducetheattacksurfaceforjailbreaking,model tricking,andhallucinations,butthereisatrade-offbetweenrestrictionsandutilityinbothcostand functionality.
LLMuseandapplicationsincreaseanorganization’sattacksurface.Somerisksassociatedwith LLMsareunique,butmanyarefamiliarissues,suchastheknownsoftwarebillofmaterials(SBOM), supplychain,datalossprotection(DLP),andauthorizedaccess.Therearealsoincreasedrisksnot directlyrelatedtoGenAI,butGenAIincreasestheefficiency,capability,andeffectivenessofattacks.
AdversariesareincreasinglyharnessingLLMandGenerativeAItoolstorefineandexpeditetraditional methods.Theseenhancedtechniquesallowthemtoeffortlesslycraftnewmalware,potentially embeddedwithnovelzero-dayvulnerabilitiesordesignedtoevadedetection.Theycanalsogenerate sophisticated,unique,ortailoredphishingschemes.Thecreationofconvincingdeepfakes,whether videooraudio,furtherfacilitatestheirsocialengineeringploys.Additionally,thesetoolsenablethem toexecuteintrusionsanddevelopinnovativehackingutilities.Itisverylikelythatinthefuture,more “tailored”andcompounduseofAItechnologybycriminalactorswilldemandspecificresponses anddedicatedsolutionsforappropriatedefenseschemas.
LLMThreatCategories
ArtificialIntelligenceSecurityandPrivacyTraining
Employeesthroughoutorganizationsbenefitfromtrainingtounderstandartificialintelligence, generativeartificialintelligence,andthefuturepotentialconsequencesofbuilding,buying,orutilizing LLMs.Trainingforpermissibleuseandsecurityawarenessshouldtargetallemployeesaswellas bemorespecializedforcertainpositionssuchashumanresources,legal,developers,datateams, andsecurityteams.
Fairusepoliciesandhealthyinteractionarekeyaspectsthat,ifincorporatedfromtheverystart, willbeacornerstonetothesuccessoffutureAIcybersecurityawarenesscampaigns.Thiswill necessarilyimplytheuser’sknowledgeofthebasicrulesforinteractionaswellastheabilityto separategoodbehaviorfrombadorunethicalbehavior.
IncorporateLLMSecurityandgovernancewithExisting,EstablishedPractices andControls
WhileAIandgeneratedAIaddanewdimensiontocybersecurity,resilience,privacy,andmeeting legalandregulatoryrequirements,thebestpracticesthathavebeenaroundforalongtimearestill thebestwaytofindrisks,testthem,fixthem,andlowerthem.
• Themanagementofartificialintelligencesystemsisintegratedwithexistingorganizational practices.
• Applyexistingprivacy,governance,andsecuritypractices.
Figure2.1:ImageoftypesofAIthreats
FundamentalSecurityPrinciples
LLMcapabilitiesintroduceadifferenttypeofattackandattacksurface.LLMsarevulnerable tocomplexbusinesslogicbugs,suchaspromptinjection,insecureplugindesign,andremote codeexecution.Existingbestpracticesarethebestwaytosolvetheseissues.Aninternalproduct securityteamthatunderstandssecuresoftwarereview,architecture,datagovernance,andthird-party assessmentsThecybersecurityteamshouldalsocheckhowstrongthecurrentcontrolsaretofind problemsthatcouldbemadeworsebyLLM,likevoicecloning,impersonation,orgettingaround captchas.
Accountingforthespecificskillsandcompetencesdevelopedinthelastfewyearsaroundmachine learning,NLPandNLU,deepLearningandlately,LLMsandGenAI,itisadvisedtohaveskilled professionalswithpractice,knowledge,orexperienceinthesefieldstosidewithsecurityteamsin adopting,atbest,andevenshapingnewpotentialanalysesandresponsestothoseissues.
Risk
ReferencetoriskusestheISO31000definition:Risk="effectofuncertaintyonobjectives."LLM risksincludedinthechecklistincludeatargetedlistofLLMrisksthataddressadversarial,safety, legal,regulatory,reputation,financial,andcompetitiverisks.
VulnerabilityandMitigationTaxonomy
Establishedmethodsofvulnerabilityclassificationandthreatsharingareinearlydevelopment,such asOval,STIX,threatsharing,andvulnerabilityclassification.Thechecklistanticipatescalibrating withexisting,established,andacceptedstandards,suchasCVEclassification.
DeterminingLLMStrategy
TheaccelerationofLLMapplicationshasraisedthevisibilityofallartificialintelligenceapplications’ organizationaluse.Recommendationsforpolicy,governance,andaccountabilityshouldbeconsidered holistically.
TheimmediateLLMthreatsaretheuseofonlinetools,browserplugins,third-partyapplications,the extendedattacksurface,andwaysattackerscanleverageLLMtoolstofacilitateattacks.
Figure3.1:ImageofstepsofLLMimplementation
DeploymentStrategy
Thescopesrangefromleveragingpublicconsumerapplicationstotrainingproprietarymodelson privatedata.Factorslikeusecasesensitivity,capabilitiesneeded,andresourcesavailablehelp determinetherightbalanceofconveniencevs.control.Butunderstandingthesefivemodeltypes providesaframeworkforevaluatingoptions.
Figure3.2:Imageofoptionsfordeploymentstrategy
CheckList
AdversarialRisk
AdversarialRiskincludescompetitorsandattackers.
□ Scrutinizehowcompetitorsareinvestinginartificialintelligence.AlthoughtherearerisksinAI adoption,therearealsobusinessbenefitsthatmayimpactfuturemarketpositions.
□ ThreatModel:howattackersmayaccelerateexploitattacksagainsttheorganization, employees,executives,orusers.
□ ThreatmodelspotentialattacksoncustomersorclientsthroughspoofingandgenerativeAI.
□ Investigatetheimpactofcurrentcontrols,suchaspasswordresets,whichusevoice recognition.
□ UpdatetheIncidentResponsePlanandplaybooksforLLMincidents.
AIAssetInventory
AnAIassetinventoryshouldapplytobothinternallydevelopedandexternalorthird-partysolutions.
□ CatalogexistingAIservices,tools,andowners.Designateataginassetmanagementfor specificinventory.
□ IncludeAIcomponentsintheSoftwareBillofMaterial(SBOM),acomprehensivelistofallthe softwarecomponents,dependencies,andmetadataassociatedwithapplications.
□ CatalogAIdatasourcesandthesensitivityofthedata(protected,confidential,public)
□ EstablishifpentestingorredteamingofdeployedAIsolutionsisrequiredtodeterminethe currentattacksurfacerisk.
□ CreateanAIsolutiononboardingprocess.
□ EnsureskilledITadminstaffisavailableeitherinternallyorexternally,inaccordancetothe SBoM
AISecurityandPrivacyTraining
□ Trainallusersonethics,responsibility,andlegalissuessuchaswarranty,license,andcopyright.
□ UpdatesecurityawarenesstrainingtoincludeGenAIrelatedthreats.Voicecloningandimage cloning,aswellasinanticipationofincreasedspearphishingattacks
□ AnyadoptedGenAIsolutionsshouldincludetrainingforbothDevOpsandcybersecurityfor thedeploymentpipelinetoensureAIsafetyandsecurityassurances.
EstablishBusinessCases
SolidbusinesscasesareessentialtodeterminingthebusinessvalueofanyproposedAIsolution,balancing riskandbenefits,andevaluatingandtestingreturnoninvestment.Thereareanenormousnumber ofpotentialusecases;afewexamplesareprovided.
□ Enhancecustomerexperience
□ Betteroperationalefficiency
□ Betterknowledgemanagement
□ Enhancedinnovation
□ MarketResearchandCompetitorAnalysis
□ Documentcreation,translation,summarization,andanalysis
Governance
CorporategovernanceinLLMisneededtoprovideorganizationswithtransparencyandaccountability. IdentifyingAIplatformorprocessownerswhoarepotentiallyfamiliarwiththetechnologyorthe selectedusecasesforthebusinessisnotonlyadvisedbutalsonecessarytoensureadequate reactionspeedthatpreventscollateraldamagestowellestablishedenterprisedigitalprocesses.
□ EstablishtheorganizationśAIRACIchart(whoisresponsible,whoisaccountable,whoshould beconsulted,andwhoshouldbeinformed)
□ DocumentandassignAIrisk,riskassessments,andgovernanceresponsibilitywithinthe organization.
□ Establishdatamanagementpolicies,includingtechnicalenforcement,regardingdata classificationandusagelimitations.Modelsshouldonlyleveragedataclassifiedforthe minimumaccesslevelofanyuserofthesystem.Forexample,updatethedataprotection policytoemphasizenottoinputprotectedorconfidentialdataintononbusiness-managed tools.
□ CreateanAIPolicysupportedbyestablishedpolicy(e.g.,standardofgoodconduct,data protection,softwareuse)
□ PublishanacceptableusematrixforvariousgenerativeAItoolsforemployeestouse.
□ Documentthesourcesandmanagementofanydatathattheorganizationusesfromthe generativeLLMmodels.
Legal
ManyofthelegalimplicationsofAIareundefinedandpotentiallyverycostly.AnIT,security,and legalpartnershipiscriticaltoidentifyinggapsandaddressingobscuredecisions.
□ Confirmproductwarrantiesareclearintheproductdevelopmentstreamtoassignwhois responsibleforproductwarrantieswithAI.
□ ReviewandupdateexistingtermsandconditionsforanyGenAIconsiderations.
□ ReviewAIEULAagreements.End-userlicenseagreementsforGenAIplatformsarevery differentinhowtheyhandleuserprompts,outputrightsandownership,dataprivacy, complianceandliability,privacy,andlimitsonhowoutputcanbeused.
□ ReviewexistingAI-assistedtoolsusedforcodedevelopment.Achatbotśabilitytowritecode canthreatenacompanyśownershiprightstoitsownproductifachatbotisusedtogenerate codefortheproduct.Forexample,itcouldcallintoquestionthestatusandprotectionofthe generatedcontentandwhoholdstherighttousethegeneratedcontent.
□ Reviewanyriskstointellectualproperty.Intellectualpropertygeneratedbyachatbotcould beinjeopardyifimproperlyobtaineddatawasusedduringthegenerativeprocess,whichis subjecttocopyright,trademark,orpatentprotection.IfAIproductsuseinfringingmaterial,it createsariskfortheoutputsoftheAI,whichmayresultinintellectualpropertyinfringement.
□ Reviewanycontractswithindemnificationprovisions.Indemnificationclausestrytoputthe responsibilityforaneventthatleadstoliabilityonthepersonwhowasmoreatfaultforitor whohadthebestchanceofstoppingit.Establishguardrailstodeterminewhethertheprovider oftheAIoritsusercausedtheevent,givingrisetoliability.
□ ReviewliabilityforpotentialinjuryandpropertydamagecausedbyAIsystems.
□ Reviewinsurancecoverage.Traditional(D&O)liabilityandcommercialgeneralliability insurancepoliciesarelikelyinsufficienttofullyprotectAIuse.
□ Identifyanycopyrightissues.Humanauthorshipisrequiredforcopyright.Anorganization mayalsobeliableforplagiarism,propagationofbias,orintellectualpropertyinfringementif LLMtoolsaremisused.
□ EnsureagreementsareinplaceforcontractorsandappropriateuseofAIforanydevelopment orprovidedservices.
□ RestrictorprohibittheuseofgenerativeAItoolsforemployeesorcontractorswhere enforceablerightsmaybeanissueorwherethereareIPinfringementconcerns.
□ AssessandAIsolutionsusedforemployeemanagementorhiringcouldresultindisparate treatmentclaimsordisparateimpactclaims.
□ MakesuretheAIsolutionsdonotcollectorsharesensitiveinformationwithoutproperconsent orauthorization.
Regulatory
TheEUAIActisanticipatedtobethefirstcomprehensiveAIlawbutwillapplyin2025atthe earliest.TheEUśGeneralDataProtectionRegulation(GDPR)doesnotspecificallyaddressAIbut includesrulesfordatacollection,datasecurity,fairnessandtransparency,accuracyandreliability, andaccountability,whichcanimpactGenAIuse.IntheUnitedStates,AIregulationisincludedwithin broaderconsumerprivacylaws.TenUSstateshavepassedlawsorhavelawsthatwillgointoeffect bytheendof2023.
FederalorganizationssuchastheUSEqualEmploymentOpportunityCommission(EEOC),the ConsumerFinancialProtectionBureau(CFPB),theFederalTradeCommission(FTC),andtheUS DepartmentofJusticeśCivilRightsDivision(DOJ)arecloselymonitoringhiringfairness.
□ DetermineStatespecificcompliancerequirements.
□ Determinecompliancerequirementsforrestrictingelectronicmonitoringofemployeesand employment-relatedautomateddecisionsystems(Vermont)
□ DeterminecompliancerequirementsforconsentforfacialrecognitionandtheAIvideoanalysis required(Illinois,Maryland)
□ ReviewanyAItoolsinuseorbeingconsideredforemployeehiringormanagement.
□ ConfirmthevendorścompliancewithapplicableAIlawsandbestpractices.
□ AskanddocumentanyproductsusingAIduringthehiringprocess.Askhowthemodelwas trained,howitismonitored,andtrackanycorrectionsmadetoavoiddiscriminationandbias.
□ Askanddocumentwhataccommodationoptionsareincluded.
□ Askanddocumentwhetherthevendorcollectsconfidentialdata.
□ Askhowthevendorortoolstoresanddeletesdataandregulatestheuseoffacialrecognition andvideoanalysistoolsduringpre-employment.
□ Reviewotherorganization-specificregulatoryrequirementswithAIthatmayraisecompliance issues.TheEmployeeRetirementIncomeSecurityActof1974,forinstance,hasfiduciaryduty requirementsforretirementplansthatachatbotmightnotbeabletomeet.
UsingorImplementingLargeLanguageModelSolutions
□ ThreatModel:LLMcomponentsandarchitecturetrustboundaries.
□ DataSecurity:Verifyhowdataisclassifiedandprotectedbasedonsensitivity,including personalandproprietarybusinessdata.(Howareuserpermissionsmanaged,andwhat safeguardsareinplace?)
□ AccessControl:Implementleastprivilegeaccesscontrolsandimplementdefense-in-depth measures
□ TrainingPipelineSecurity:Requirerigorouscontrolaroundtrainingdatagovernance,pipelines, models,andalgorithms.
□ InputandOutputSecurity:Evaluateinputvalidationmethods,aswellashowoutputsare filtered,sanitized,andapproved.
□ MonitoringandResponse:Mapworkflows,monitoring,andresponsestounderstand automation,logging,andauditing.Confirmauditrecordsaresecure.
□ Includeapplicationtesting,sourcecodereview,vulnerabilityassessments,andredteamingin theproductionreleaseprocess.
□ ConsidervulnerabilitiesintheLLMmodelsolutions(RezilionOSFFScorecard).
□ LookintotheeffectsofthreatsandattacksonLLMsolutions,suchaspromptinjection,the releaseofsensitiveinformation,andprocessmanipulation.
□ InvestigatetheimpactofattacksandthreatstoLLMmodels,includingmodelpoisoning, improperdatahandling,supplychainattacks,andmodeltheft.
□ SupplyChainSecurity:Requestthird-partyaudits,penetrationtesting,andcodereviewsfor third-partyproviders.(bothinitiallyandonanongoingbasis)
□ InfrastructureSecurity:Howoftendoesthevendorperformresiliencetesting?Whataretheir SLAsintermsofavailability,scalability,andperformance?
□ UpdateincidentresponseplaybooksandincludeanLLMincidentintabletopexercises.
□ IdentifyorexpandmetricstobenchmarkgenerativecybersecurityAIagainstotherapproaches tomeasureexpectedproductivityimprovements.
Resources
OWASPResources UsingLLMsolutionsexpandsanorganization’sattacksurfaceandpresentsnew challenges,requiringspecialtacticsanddefenses.Italsoposesproblemsthataresimilartoknown issues,andtherearealreadyestablishedcybersecurityproceduresandmitigations.IntegratingLLM cybersecuritywithanorganization’sestablishedcybersecuritycontrols,processes,andprocedures allowsanorganizationtoreduceitsvulnerabilitytothreats.Howtheyintegratewitheachotheris availableattheOWASPIntegrationStandards.
OWASPResource Description WhyItIsRecommended&Where ToUseIt
OWASPSAMM
OWASPAISecurityand PrivacyGuide
SoftwareAssurance MaturityModel
OWASPAIExchange
OWASPProjectwitha goalofconnecting worldwideforan exchangeonAIsecurity, fosteringstandards alignment,anddriving collaboration.
OWASPAIExchangeis theintakemethodforthe OWASPAISecurityand PrivacyGuide.
Providesaneffectiveand measurablewaytoanalyzeand improveanorganization’ssecure developmentlifecycle.SAMM supportsthecompletesoftware lifecycle.Itisinterativeand risk-driven,enablingorganizations toidentifyandprioritizegapsin securesoftwaredevelopment soresourcesforimproving theprocesscanbededicated whereeffortshavethegreatest improvementimpact.
TheOWASPAISecurityandPrivacy Guideisacomprehensivelistof themostimportantAIsecurityand privacyconsiderations.Itismeant tobeacomprehensiveresourcefor developers,securityresearchers, andsecurityconsultantstoverify thesecurityandprivacyofAI systems.
TheAIExchangeistheprimary intakemethodusedbyOWASPto drivethedirectionoftheOWASPAI SecurityandPrivacyGuide.
OWASPMachine
LearningSecurity Top10
OpenCRE
OWASPThreatModeling
OWASPMachine LearningSecurity Top10securityissues ofmachinelearning systems.
OWASPCycloneDX
OpenCRE(Common Requirement Enumeration)is theinteractive content-linkingplatform forunitingsecurity standardsandguidelines intooneoverview.
Astructured,formal processforthreat modelingofan application
OWASPCycloneDX isafull-stackBill ofMaterials(BOM) standardthatprovides advancedsupplychain capabilitiesforcyberrisk reduction.
TheOWASPMachine LearningSecurityTop10isa community-drivenefforttocollect andpresentthemostimportant securityissuesofmachinelearning systemsinaformatthatiseasy tounderstandbybothasecurity expertandadatascientist.This projectincludestheMLTop10 andisaliveworkingdocument thatprovidesclearandactionable insightsondesigning,creating, testing,andprocuringsecureand privacy-preservingAIsystems.It isthebestOWASPresourcefor AIglobalregulatoryandprivacy information.
Usethissitetosearchfor standards.Youcansearchby standardnameorbycontroltype.
LearneverythingaboutThreat Modelingwhichisastructured representationofallthe informationthataffectsthe securityofanapplication.
Modernsoftwareisassembled usingthird-partyandopensource components.Theyareglued togetherincomplexandunique waysandintegratedwithoriginal codetoachievethedesired functionality.AnSBOMprovides anaccurateinventoryofall componentswhichenables organizationstoidentifyrisk, allowsforgreatertransparency, andenablesrapidimpactanalysis. EO14028providedminimum requirementsforSBOMforfederal systems.
WhyItIsRecommended&Where ToUseIt
OWASPResource Description
OWASPSoftware ComponentVerification Standard(SCVS)
OWASPAPISecurity Project
Acommunity-driven efforttoestablisha frameworkforidentifying activities,controls,and bestpracticescanhelpin identifyingandreducing riskinasoftwaresupply chain.
APISecurityfocuses onstrategiesand solutionstounderstand andmitigatethe uniquevulnerabilities andsecurityrisks ofApplication ProgrammingInterfaces (APIs)
UseSCVStodevelopacommon setofactivities,controls,and best-practicesthatcanreduce riskinasoftwaresupplychain andidentifyabaselineandpath tomaturesoftwaresupplychain vigilance.
APIsareafoundationalelement ofconnectingapplications,and mitigatingmisconfigurationsor vulnerabilitiesismandatoryto protectusersandorganizations. Useforsecuritytestingandred teamingthebuildandproduction environments.
OWASPApplication SecurityVerification StandardASVS
OWASPThreatand SafeguardMatrix (TaSM)
ApplicationSecurity VerificationStandard (ASVS)Projectprovides abasisfortestingweb applicationtechnical securitycontrols andalsoprovides developerswithalistof requirementsforsecure development.
Anactionorientedview tosafeguardandenable thebusiness
Cookbookforwebapplication securityrequirements,security testing,andmetrics.Useto establishsecurityuserstoriesand securityusecasereleasetesting.
DefectDojo
Anopensource vulnerability managementtoolthat streamlinesthetesting processbyoffering templating,report generation,metrics,and baselineself-service tools.
Thismatrixallowsacompanyto overlayitsmajorthreatswiththe NISTCyberSecurityFramework Functions(Identify,Protect,Detect, Respond,&Recover)tobuilda robustsecurityplan.Useitasa dashboardtotrackandreporton securityacrosstheorganization.
UseDefectDojotoreducethe timeforloggingvulnerabilities withtemplatesforvulnerabilities, importsforcommonvulnerability scanners,reportgeneration,and metrics.
Table5.1:OWASPResources
WhyItIsRecommended&Where ToUseIt
OWASPResource Description
Figure5.1:ImageofOWASPTop10forLargeLanguageModelApplications
OWASPTop10forLargeLanguageModelApplications
Figure5.2:ImageofOWASPTop10forLargeLanguageModelApplicationsVisualized
OWASPTop10forLargeLanguageModelApplicationsVisualized
MITREResources TheincreasedfrequencyofLLMthreatsemphasizesthevalueofaresilience-first approachtodefendinganorganization’sattacksurface.ExistingTTPSarecombinedwithnew attacksurfacesandcapabilitiesinLLMAdversarythreatsandmitigations.MITREmaintainsa well-establishedandwidelyacceptedmechanismforcoordinatingopponenttacticsandprocedures basedonreal-worldobservations.
Coordinationandmappingofanorganization’sLLMSecurityStrategytoMITREATT&CKandMITRE ATLASallowsanorganizationtodeterminewhereLLMSecurityiscoveredbycurrentprocesses suchasAPISecurityStandardsorwheresecurityholesexists.
MITREATT&CK(AdversarialTactics,Techniques,andCommonKnowledge)isaframework,collection ofdatamatrices,andassessmenttoolthatwasmadebytheMITRECorporationtohelporganizations figureouthowwelltheircybersecurityworksacrosstheirentiredigitalattacksurfaceandfindholes thathadnotbeenfoundbefore.Itisaknowledgerepositorythatisusedallovertheworld.The MITREATT&CKmatrixcontainsacollectionofstrategiesusedbyadversariestoachieveacertain goal.IntheATT&CKMatrix,theseobjectivesareclassifiedastactics.Theobjectivesareoutlinedin attackorder,beginningwithreconnaissanceandprogressingtotheeventualgoalofexfiltrationor impact.
MITREATLAS,whichstandsfor"AdversarialThreatLandscapeforArtificialIntelligenceSystems,"is aknowledgebasethatisbasedonreal-lifeexamplesofattacksonmachinelearning(ML)systems bybadactors.ATLASisbasedontheMITREATT&CKarchitecture,anditstacticsandprocedures complementthosefoundinATT&CK.
MITREResource Description WhyItIsRecommended&Where ToUseIt
MITREATT&CK
Knowledgebaseof adversarytacticsand techniquesbasedon real-worldobservations
MITREAT&CK Workbench
CreateorextendATT&CK datainalocalknowledge base
TheATT&CKknowledgebase isusedasafoundationforthe developmentofspecificthreat modelsandmethodologies. Mapexistingcontrolswithinthe organizationtoadversarytactics andtechniquestoidentifygapsor areastotest.
Hostandmanageacustomized copyoftheATT&CKknowledge base.Thislocalcopyofthe ATT&CKknowledgebasecanbe extendedwithneworupdated techniques,tactics,mitigation groups,andsoftwarethatis specifictoyourorganization.
MITREATLAS
MITREATLAS
(AdversarialThreat Landscapefor Artificial-Intelligence Systems)isaknowledge baseofadversary tactics,techniques, andcasestudiesfor machinelearning(ML) systemsbasedon real-worldobservations, demonstrationsfromML redteamsandsecurity groups,andthestate ofthepossiblefrom academicresearch
UseittomapknownML vulnerabilitiesandmapchecks andcontrolsforproposedprojects orexistingsystems.
MITREATT&CKPowered Suit
TheThreatReport ATT&CKMapper(TRAM)
ATT&CKPoweredSuitis abrowserextensionthat putstheMITREATT&CK knowledgebaseatyour fingertips.
AutomatesTTP IdentificationinCTI Reports
Addtoyourbrowsertoquickly searchfortactics,techniques, andmorewithoutdisruptingyour workflow.
MappingTTPsfoundinCTIreports toMITREATT&CKisdifficult, errorprone,andtime-consuming. TRAMusesLLMstoautomatethis processforthe50mostcommon techniques.SupportsJuypter notebooks.
AttackFlowv2.1.0
MITRECaldera
CALDERAplugin: Arsenal
AttackFlowisa languagefordescribing howcyberadversaries combineandsequence variousoffensive techniquestoachieve theirgoals.
Acybersecurityplatform (framework)designed toeasilyautomate adversaryemulation, assistmanualred-teams, andautomateincident response.
Aplugindevelopedfor adversaryemulationof AI-enabledsystems.
AttackFlowhelpsvisualizehow anattackerusesatechnique,so defendersandleadersunderstand howadversariesoperateand improvetheirowndefensive posture.
PluginsareavailableforCaldera thathelptoexpandthecore capabilitiesoftheframeworkand provideadditionalfunctionality, includingagents,reporting, collectionsofTTPsandothers
ThispluginprovidesTTPsdefined inMITREATLAStointerfacewith CALDERA.
WhyItIsRecommended&Where ToUseIt
MITREResource Description
MITREResource Description WhyItIsRecommended&Where
AtomicRedTeam Libraryoftestsmapped totheMITREATT&CK framework.
MITRECTIBlueprints AutomatesCyberThreat Intelligencereporting.
Usetovalidateandtestcontrols inanenvironment.Securityteams canuseAtomicRedTeamto quickly,portably,andreproducibly testtheirenvironments.Youcan executeatomictestsdirectlyfrom thecommandline;noinstallation isrequired.
CTIBlueprintshelpsCyberThreat Intelligence(CTI)analystscreate high-quality,actionablereports moreconsistentlyandefficiently.
Table5.2:MITREResources
ToUseIt
AIVulnerabilityRepositories
Name Description
AIIncidentDatabase
OECDAIIncidentsMonitor(AIM)
ArepositoryofarticlesaboutdifferenttimesAIhas failedinreal-worldapplicationsandismaintainedbya collegeresearchgroupandcrowdssourced.
Offersanaccessiblestartingpointforcomprehending thelandscapeofAI-relatedchallenges.
ThreeoftheleadingcompaniestrackingAIModelvulnerabilities
HuntrBugBounty:ProtectAI BugbountyplatformforAI/ML
AIVulnerabilityDatabase(AVID):Garak Databaseofmodelvulnerabilities
AIRiskDatabase:RobustIntelligence Databaseofmodelvulnerabilities
Table5.3:AIVulnerabilityRepositories
AIProcurementGuidance
Name Description
WorldEconomicForum:AdoptingAI Responsibly:GuidelinesforProcurementof AISolutionsbythePrivateSector:Insight ReportJune2023
Thestandardbenchmarksandassessmentcriteriafor procuringArtificialsystemsareinearlydevelopment. Theprocurementguidelinesprovideorganizations withabaselineofconsiderationsfortheend-to-end procurementprocess.
Usethisguidancetoaugmentanorganization’sexisting ThirdPartyRiskSupplierandVendorprocurement process.
Table5.4:AIProcurementGuidance
Team
ThankyoutotheOWASPTop10forLLMApplicationsCybersecurityandGovernanceChecklist Contributors.
ChecklistContributors
SandyDunn
SteveWilson
BobSimonoff
EmmanualGuilhermeJunior
HeatherLinn
FabrizioCilli
DavidRowe
AndreaSucci
JohnSotiropoulos
AubreyKing
RobVanderveer
JasonRoss
TableA.1:OWASPLLMAISecurity&GovernanceChecklist v.0.5Team