BLUE BOOK
A set of cybersecurity roadmaps and challenges for researchers and policymakers
December 2022
EDITORS
EvangelosMarkatos WP4Leader FoundationforResearchand Technology-Hellas
KaiRannenberg CyberSec4EuropeManager Goethe-UniversityFrankfurt
AUTHORS
EliasAthanasopoulos UniversityofCyprus
PanagiotisBountakas UniversityofPiraeus SunilChaudhary NTNU SaidDaoudagh CNR AntreasDionysiou UniversityofCyprus ChristosDouligeris UPRC AfonsoFerreira IRIT
SimoneFischer-Hübner KarlstadsUniversitet VasileiosGkioulos NTNU
LeonardoHornIwaya KarlstadsUniversitet MeikoJensen KarlstadsUniversitet WouterJoosen KULeuven
MarkoKompara UniversityofMaribor PanayiotisKotzanikolaou UniversityofPiraeus StephanKrenn AIT AntonioLioy PolitecnicodiTorino AlbertoLluchLafuente TechnicalUniversityofDenmark HarryManifavas FORTH EdaMarchetti CNR
ConstantinosPatsakis UniversityofPiraeus JoaoRobertoPeres KOMP&FaculdadeGetulio LaurensSion KULeuven SilviaSisinni PolitecnicodiTorino ChristosXenakis UniversityofPiraeus
i
Oum-El-KheirAktouf, GrenobleINP, France
SpirosAntonatos, AegisTechnologies,Singapore Antanas ˇ Cenys, VilniusGediminasTechnicalUniversity NabinChowdhury, NTNU
ChristoforosDadoyan, IonianUniversity ClaudiaDiaz, KULeuven
NikolajGoranin, VilniusGediminasTechnicalUniversity
DimitrisGritzalis, AthensUniversityof EconomicsandBusiness
StevenFurnell, UniversityofNottingham
MaritHansen, UnabhängigesLandeszentrumfürDatenschutzSchleswig-Holstein (ULDSH)
MarkoH˝olbl, UniversityofMaribor ThorstenHolz, CISPAHelmholtzCenter forInformationSecurity
Jaap-HenkHoepman, RadboudUniversity
AlexandrosKapravelos, NorthCarolina StateUniversity
MariekeHuisman, UniversityofTwente, Netherlands
MarcJuarez, UniversityofEdinburgh
NicolasKourtellis, TelefonicaI+D
GiuseppeLami, CNR,Italy
AlexiosLekidis,PublicPowerCorporation
NicolasMayer, LuxembourgInstituteof ScienceandTechnology
WeizhiMeng, TechnicalUniversityofDenmark
MarinoMiculan, UniversitàdiUdine
PanagiotisPapadopoulos, iProovLimited
JasonPolakis, UIC
LorenzoPupillo, CEPSandLUISS JoaoResende, NOVAuniversityofLisbon KonradRieck, TechnischeUniversität Braunschweig
VittorioRosato, ENEAandUniversity CampusBiomedicoofRome
AntonioF.Skarmeta, UniversityofMurcia
ThomasSchaberreiter, CS-AWARECorporation
StefanSchiffner, UniversityofMünster RobertoSettola, UniversitàCampusBioMedicodiRoma
MauriceH.terBeek, CNR,Italy
DenisTrˇcek, UniversityofLjubljana AndreaVandin, SSSUP,Italy LucaViganò, KingsCollegeLondon KimWuyts, imec-DistriNet,KULeuven ApostolisZarras, UniversityofPiraeus
AlejandroCabreraAldaya, Networkand InformationSecurity(NISEC)Group,TampereUniversity ArttuPaju, NetworkandInformationSecurity(NISEC)Group,TampereUniversity JuhaNurmi, NetworkandInformationSecurity(NISEC)Group,TampereUniversity MuhammadOwaisJaved, Networkand InformationSecurity(NISEC)Group,TampereUniversity
NicolaTuveri, NetworkandInformationSecurity(NISEC)Group,TampereUniversity
AlbertoCarelli, LINKSFoundation,Italy
AndreaVesco, LINKSFoundation,Italy
CONTRIBUTORS
ii
ListofAcronyms
Explanation 3D ThreeDimensions 2FA Two-FactorAuthentication AI ArtificialIntelligence API ApplicationProgrammingInterface APT AdvancedPersistentThreat ATM AutomatedTellerMachine AV Antivirus C2 CommandandControl CCC ConfidentialComputingConsortium CI CriticalInfrastructure CI/CD ContinuousIntegrationandContinuousDelivery CIoT ConsumerInternetofThings CPU CentralProcessingUnit CVE CommonVulnerabilitiesandExposures CWE CommonWeaknessEnumeration DDoS DistributedDenialofService DevOps Softwaredevelopment(Dev)andIToperation(Ops) DL DeepLearning DNS DomainNameService DP DifferentialPrivacy ECCC EuropeanCybersecurityCompetenceCentre EDR EndpointDetectionandResponse ENISA EuropeanUnionAgencyforCybersecurity ESG Environmental,Social,andGovernance EU EuropeanUnion ETSI EuropeanTelecommunicationsStandardsInstitute FIDO FastIdentityOnline GAN GenerativeAdversarialNetwork GDPR GeneralDataProtectionRegulation HTTP HypertextTransferProtocol HW Hardware KPI KeyPerformanceIndicator ICS IndustrialControlSystem IIoT IndustrialInternetofThings IoEdT InternetofEducationThings IoET InternetofEnergyThings IoFT InternetofFarmingThings iii
Acronym
IoHT InternetofHealthcareThings
IoMT InternetofMedicalThings
IoP InternetofPeople IoT InternetofThings
IoTT InternetofTransportationThings
iv
IoV InternetofVehicles ISP InternetServiceProvider IP InternetProtocol IT InformationTechnology KLoC KiloLinesofCode LOLBin LivingOftheLandBinary MFA Multi-FactorAuthentication MIA MembershipInferenceAttack ML MachineLearning MLaaS MachineLearningasaService NCC NationalCoordinationCentres NFT Non-FungibleToken NIS NetworkandInformationSystems NIS2 NetworkandInformationSecurityDirective2 NIST NationalInstituteofStandardsandTechnology NLP NaturalLanguageProcessing OES OperatorsofEssentialServices OS OperatingSystem OTP One-timePassword OWASP OpenWebApplicationSecurityProject OPCC OrganisationalPrivacyCultureandClimate PbD PrivacybyDesign PC PersonalComputer PETs Privacy-EnhancingTechnologies RAM RandomAccessMemory ROM Read-onlyMemory SCADA SupervisoryControlandDataAcquisition SDL SoftwareDevelopmentLifecycle SDK SoftwareDevelopmentKit SEV SecureEncryptedVirtualization SGX SoftwareGuardExtensions SIM SubscriberIdentificationModule SME SmallandMediumEnterprise SMS ShortMessageService
SNP SecureNestedPaging
SystemsofSystems SSO SingleSignOn SW Software TC TrustedComputing TCB TrustedComputingBase TCG TrustedComputingGroup TDX TrustedDomainExtension TEE TrustedExecutionEnvironment TLS TransportLayerSecurity TPM TrustedPlatformModule VM VirtualMachine VR VirtualReality XR ExtendedReality v
SoS
Preface
Afterthecompletionofitsthirdyearofoperationin2022,theCyberSec4Europe1 pilotproject(https://cybersec4europe.eu/)producedthis”BlueBook”(and delivereditasDeliverableD4.7)toserveasaHorizonResearchRoadmapin theareaofcybersecurity.Tomakethisbookareality,theprojectputtogether a”TaskForce”ofyoungandseniorresearchersintheareaofcybersecurity. TheTaskForceproposedaninitialsetoftopicsandreferredbacktoitsconstituency,whichiscomposedoftopcybersecurityresearchers,askingthem whattheimportantresearchproblemsshouldbeinrelationtothesetopics. Theresultofthisconsultationwasadescriptionofeachtopicthatcontained thefollowingaspects:
• Whatisthetopic?Describethetopicandhowitinteractswithcyber security.
• Whoisgoingtobeaffected bycyberattacksinthisarea?ordinary people?organisations?thegovernment?who?
• Whatisexpectedtohappen ifwearesubjectedtosuchcyberattacks? financialloss?lossofproductivity?lossoflife?what?
• Whatistheworstthing thatcanhappenifthingsgoreallywrong? massivelossoflife?awar?financiallossesintherangeofbillionsof euros?what?
• Whatarethemainresearchgaps? Whatdoweneedtodofroma researchpointofviewinordertodealwiththisproblem?Whatarethe importantresearchquestionsthatneedtobeaddressed?
• Exampleproblems.ProvidespecificresearchproblemsthatcanbeaddressedinasinglePhDthesisorinasmallnumberoftheses.
1CyberSec4EuropeisfundedbytheEuropeanUnionundertheH2020ProgrammeGrant AgreementNo.830929.Thispublicationreflectsonlytheauthors’view.TheCommissionis notresponsibleforanyusethatmaybemadeoftheinformationitcontains.
Afterthisconsultation,thetaskforcealsoaskedtheexpertswhatthe GrandChallengesincybersecurity shouldbe.Thesewhouldbetopicsthat wouldneedhundredsofpeopleandseveralyearstosolve.However,ifsolved, theywouldfundamentallychangetheproblemofcybersecurity.
Wehopethatthisbookwillprovideusefuldirectiontoresearchers,will givegoodadvicetopolicymakersandwillproveusefultoallwhoreadit.
HowtoReadthisBook
Policymakers maywanttofocusonChapter 1 (page 1)whichprovidesa shortExecutiveSummaryofthebook,andonChapter 16 (page 111) whichdescribesGrandChallengeResearchProblemsinthearea,which canbesolvedonlywiththecollaborationofseveralresearchorganisationsandthesupportofleadingfundingagencies.
Youngresearchers whoareinterestedindoingaPh.D.insystemssecurity shouldreadatleastthefinalsectionofeachchapter,whichdescribes problemsthatareappropriatetobesolvedwithinthecontextofaPh.D. thesis.
Experiencedresearchers maywanttoreadallchaptersbutespeciallyChapter 16 (page 111),whichdescribesGrandChallengeResearchProblems inthearea.
viii
Contents
1
..........................
........................... 2
..............................
....................
....................
.............................
..............................
.............................
.........................
3.5.4NovelDataAnonymizationandDe-Anonymizationap-
3.5.5ResistCensorship .......................
3.5.6Developrobustanti-fingerprintingmethods .......
3.6Exampleproblems ..........................
13
..............................
....................
...............
.............................
1ExecutiveSummaryandMainRecommendations
1.1ResearchDirections
1 1.2GrandChallenges
2Introduction 3 3TheErosionofAnonymity 5 3.1Introduction
5 3.2WhoIsGoingtoBeAffected?
6 3.3WhatIsExpectedtoHappen?
7 3.4WhatIstheWorstThatCanHappen? 8 3.5ResearchGaps
9 3.5.1ProvideStrongAnonymousCommunicationatLarge Scale
9 3.5.2Provideonlinethesamelevelofanonymityyouexpect offline
9 3.5.3Measure/Monitorthescaleoftheproblem-Achieve Transparency
9
proaches 10
10
10
10 4MachineLearning
4.1Introduction
13 4.2WhoIsGoingtoBeAffected? 14 4.3WhatIsExpectedtoHappen?
15 4.4WhatIstheWorstThatCanHappen?
15 4.5ResearchGaps
16 4.5.1Exploringthesecurityandprivacyrobustnessofstateof-the-artMLmodelsunderdifferentadversarialscenarios 16
Contents
...............
.............................
....................
..........................
7.1Introduction ..............................
7.2WhoIsGoingtoBeAffected? ....................
x
4.5.2DesigningarchitecturesandtrainingalgorithmsforincreasingMLmodels’generalisationandrobustnessagainst security/privacyattacks 17 4.5.3OnthetransparencyandinterpretabilityofdeepML models ............................. 17 4.6Exampleproblems .......................... 18 5Authentication-BeyondPasswords 19 5.1Introduction .............................. 19 5.2WhoIsGoingtoBeAffected? 20 5.3WhatIsExpectedtoHappen? .................... 21 5.4WhatIstheWorstThatCanHappen? ............... 21 5.5ResearchGaps 22 5.5.1Improvepasswordlessauthenticationmethods ...... 22 5.5.2Measure/monitortheuseofinsecureauthenticationmethods ............................... 23 5.5.3Understandinguser’spsychologyrelatedtoauthentication ............................... 23 5.5.4EnhancingbiometricauthenticationmethodsusingAI methods 23 5.5.5Continuousauthentication ................. 23 5.5.6Trainingpeopleinauthenticationrelatedtopics ..... 24 5.6Exampleproblems .......................... 24 6SecurityAwarenessandTraining 27 6.1Introduction .............................. 27 6.2WhoIsGoingtoBeAffected? .................... 28 6.3WhatIsExpectedtoHappen? 29 6.4WhatIstheWorstThatCanHappen?
29 6.5ResearchGaps
30 6.5.1Cybersecurityawarenessandtrainingneedsacrosslevelsandfieldsofstudy
30 6.5.2Cybersecurityawarenessandtrainingneedsmultidisciplinaryapproachinvestigations 31 6.5.3Computer-basedcybersecurityawarenessandtraining needtheimplementationofAIandMLalgorithmsfor theirautomationpurposes 31 6.6ExampleProblems
32 7TrustedExecution 35
35
36
Contents
..............................
.........................
............................
xi
7.3WhatIsExpectedtoHappen? .................... 37 7.4WhatIstheWorstThatCanHappen? 37 7.5ResearchGaps 38 7.5.1AttackvectorsagainstTEEsecurityguarantees ..... 38 7.5.2ProtectionmechanismsagainstcompromisedTEEapplications ............................. 39 7.5.3TEEsandcloudcomputing:interoperabilityandmanagementchallenges 39 7.5.4TEEscryptographicprimitivesinthepost-quantumera 40 7.6Exampleproblems .......................... 40 8PrivacybyDesign 43 8.1Introduction .............................. 43 8.2WhoIsGoingtoBeAffected? .................... 44 8.3WhatIsExpectedtoHappen? .................... 44 8.4WhatIstheWorstThatCanHappen? 45 8.5ResearchGaps ............................. 45 8.5.1PrivacyGoalsvs.OtherGoals ............... 45 8.5.2BuildingtheTheoryofOrganisationalPrivacyCulture andClimate .......................... 46 8.5.3CounteringDeviceFingerprinting 46 8.5.4DataSubjectRightsEngineering .............. 46 8.6ExampleProblems .......................... 47 9CriticalInfrastructures 51 9.1Introduction
51 9.2WhoIsGoingtoBeAffected? .................... 52 9.3WhatIsExpectedtoHappen? .................... 53 9.4WhatIstheWorstThatCanHappen? ............... 54 9.5ResearchGaps 54 9.5.1Modelling,analysisandsimulationofnon-trivialthreats includingAPTs,cyber-physicalandclimate-changerelateddisasters
54 9.5.2Developriskassessmentandmanagementmethodologiesforsystemicandsupply-chainrisks 55 9.5.3ResilienceofCriticalInfrastructures 55 9.5.4ImprovedAI/MLassistedmodelsfor(inter)dependency analysis
55 9.5.5Eventpredictionbasedonalltypesofdependencies .. 56 9.5.6CollaborativesituationalawarenessfortheCIecosystem 56 9.6Exampleproblems 56
10Metaverses 59 10.1Introduction .............................. 59 10.2WhoIsGoingtoBeAffected? .................... 60 10.3WhatIsExpectedtoHappen? .................... 61 10.4WhatIstheWorstThatCanHappen? 63 10.5ResearchGaps 64 10.5.1Buildingtrustworthymetaverses .............. 65 10.5.2Metaversesandthephysicalworld ............ 65 10.5.3Compliancebydesign .................... 65 10.5.4Interactivityandimmersivetechnologies ......... 65 10.5.5Metaversesdesign ...................... 66 10.5.6Interoperabilitybetweenmetaverseplatforms 66 10.5.7MetaversesandEnvironmental,Social,andGovernance (ESG)issues 66 10.6Exampleproblems 67 11Malware 69 11.1Introduction .............................. 69 11.2WhoIsGoingtoBeAffected? .................... 70 11.3WhatIsExpectedtoHappen? .................... 71 11.4WhatIstheWorstThatCanHappen? 71 11.5ResearchGaps 72 11.5.1Provablysecuresystems ................... 72 11.5.2Malwaredetection ...................... 73 11.5.3Machinelearninginmalwaredetectionandclassification 73 11.5.4Extendtheplatformscope ................. 74 11.5.5Commandandcontrolservers ............... 74 11.5.6Post-infectionmanagement 75 11.6Exampleproblems 75 12SoftwareLifeCycle 77 12.1Introduction .............................. 77 12.2WhoIsGoingtoBeAffected? .................... 77 12.3WhatIsExpectedtoHappen? .................... 78 12.4WhatIstheWorstThatCanHappen? 78 12.5ResearchGaps 78 12.5.1VerifiableandAuditableSoftware ............. 79 12.5.2ContinuousSoftwareAssessment ............. 79 12.5.3Secure-by-designAgileSoftwareDevelopment ..... 79 12.5.4LightweightFormalMethods ................ 79 12.5.5DecentralisedSoftwareGovernance ............ 80 12.5.6TrustworthyAI-poweredSoftwareLifeCycle ...... 80
Contents
xii
Contents
xiii
12.5.7SoftwareSupplyChainSecurity .............. 80 12.5.8SecureArchitecturesandPlatforms ............ 80 12.5.9SecureEconomics ...................... 81 12.6Exampleproblems 81 13TestingandCertification 83 13.1Introduction .............................. 83 13.2WhoIsGoingtoBeAffected? 84 13.3WhatIsExpectedtoHappen? .................... 84 13.4WhatIstheWorstThatCanHappen? ............... 86 13.5ResearchGaps ............................. 88 13.5.1Human-centredTestingandCertification 88 13.5.2Integratedcybersecurityandfunctionalsafetycertification 88 13.5.3Quantitativeandqualitativetestingandcertification .. 88 13.5.4AutomationofTestingandCertification ......... 89 13.5.5Diversity,heterogeneityandflexibilityofenvironments 89 13.5.6Includinglegalaspectsinsidetestingandcertification . 90 13.6Exampleproblems .......................... 90 14IoTSecurity 93 14.1Introduction .............................. 93 14.2WhoIsGoingtoBeAffected? .................... 94 14.3WhatIsExpectedtoHappen? .................... 95 14.4WhatIstheWorstThatCanHappen? 96 14.5ResearchGaps 96 14.5.1ArtificialIntelligenceandMachineLearning ....... 97 14.5.2StrongandUniversalSecurityStandardsforIoTTechnology ............................. 97 14.5.3DevelopStrongandLightweightCryptographyforIoT 97 14.5.4EstablishTrustandTraceability 98 14.5.5IoTSecurityAwarenessandEducation .......... 98 14.5.6HardwareSecurity ...................... 99 14.5.7PrivacyinIoT ......................... 99 14.5.8Lifecyclemanagement 99 14.5.9IoTRegulationandPolicies ................. 100 14.6Exampleproblems .......................... 100 15EffectiveThreatModelling 103 15.1Introduction 103 15.2WhoIsGoingtoBeAffected? .................... 103 15.3WhatIsExpectedtoHappen? .................... 104 15.3.1Manualwork ......................... 105
Contents 15.3.2Prioritisation .........................
.................
15.4WhatIstheWorstThatCanHappen?
15.5ResearchGaps ............................. 107 15.5.1Automation .......................... 107 15.5.2Toolsupport .......................... 109 15.5.3Educationandtraining ................... 109 15.6Exampleproblems .......................... 109 16GrandChallenges 111 16.1Giveusersassuranceaboutthesecurityoftheirdevices 111 16.2Ifitcanbedoneanonymouslyintheofflineworld,itcanalso bedoneanonymouslyonline .................... 111 16.3MakeAISafeforPeople ....................... 112 16.4Makesystemsresilientunderattack ................ 113 16.5EnhanceGeneralPublicAwarenessofCybersecurity 113 xiv
106 15.3.3Ensuringuptodateresults
106
106
1
1.1
project,takingintoaccountinputfromtheproject’sassociatesandexternal experts,haveformulatedanumberofresearchdirectionsthatwillbeimportantforthefuture.Thesedirectionsinclude:
ExecutiveSummaryandMainRecommendations
• Privacyandanonymity • Emergingtechnologies:metaverses,IoT,machinelearning,etc. • Novelapproachestoauthentication:beyondpasswords,biometrics,etc. • Defences“by-design”:softwaredevelopment,threatmodelling,etc. • Strongtechnologies:securecommunications,testing,trustedexecution, etc. Foreachdirectionanumberofresearchprioritieshavebeendefined.Such prioritiesinclude: • Providestronganonymouscommunicationatlargescale • Buildtrustworthymetaverses • Improvepassword-lessauthenticationmethods • Developearlydetectionapproachesforarmouredmalware • ProvideprivacyinIoTenvironments • Realisemachine-learningmodelsthatremainsecureunderdifferentadversarialscenarios • Ensurethatcriticalinfrastructuresareresilienttocyberattacks • Support“by-design"testingandcertificationapproachesintegratingindustrial,socialandethicalvalues,sustainability,andtrustworthiness needs
ResearchDirections OverthelastyearoftheCyberSec4Europeproject,thebeneficiariesofthe
1.2 GrandChallenges
Althoughshort-termprojects1 mayhaveanimmediateimpactonthemarket, suchimpactisusuallyincrementalandmaynotbelong-lastingasitfocuses onanimmediateproblemthatmaynotbesorelevant,say,fivetotenyears downtheroad.Tomakefundamentalbreakthroughsintheareaofcyber security,wehaveproposedseverallong-term“GrandChallenge”problems. Toselectasmallnumberof“GrandChallenges”,themembersoftheTask Force,alongwiththemembersofthebroaderconstituencyproposedseveral such“GrandChallenges”,fromwhichthefollowingwereselected:
1Whenwesayshort-termprojectswemeanprojectsthatlasttwotothreeyearsandhavea fundingoftwotothreemillioneuros.
1.ExecutiveSummaryandMainRecommendations
• Giveusersassuranceaboutthesecurityoftheirdevices • Ifitcanbedoneanonymouslyintheofflineworld,itcanalsobedone anonymouslyonline • Makeartificialintelligencesafeforpeople • Makesystemsresilientunderattack • Enhancethegeneralpublic’sawarenessofcybersecurity
2
Introduction
Thepenetrationofcyberspaceintooureverydayliveshasreachedunprecedentedlevels.Although30yearsagotheInternetwasacuriositymostly usedamongacademics,todaymorethan92%ofthehouseholdsintheEuropeanUnionhaveaccesstotheInternet[2].TheEuropeansusetheInternet forseveralaspectsofeverydaylives:morethan50%useitforsocialmedia, around50%useitforInternetbanking,around66%useittofindinformation aboutgoodsandservices,and55%useittoseekhealthinformation[81].The COVID-19pandemicjustincreasedtheuseoftheInternet,asevenmoreeverydayactivitiesmovedonline.Forexample,duringthepandemic,schooling, shopping,andsocialisingcouldonlybedoneonlineforextendedperiodsof time.Althoughthepandemicisathingofthepast,thepenetrationofsome oftheseInternetactivitiesisheretostay.
Althoughmovingactivitiesonlinehascertainadvantages,itmayalsocreatethreatsforpeople.Indeed,asmoreandmoreactivitiesmovefromthe physicalworldtothedigitalworld,thisjustincreasesthe attacksurface.That is,cyberattackershavemoreopportunitiestoattack.Thisissimpletounderstand:ifpeopledotheirbankingonline,thieveswilltrytostealmoney online.Similarly,ifpeopledotheirtelephonecallsusingsomeonlinevideo conferencingsystem,eavesdropperswilltrytolistentotheseconversations onlineviaawidevarietyofoptions:theymayoffersuchasystemforuse forfree;theymaycompromiseoneofthosesystems;theymaybugthesoftwarewithavirusoftheirown;theymay“purchase”suchabuginorderto compromisethesystem.Heretheskyisthelimit.Themostimportantpoint isthatpeoplehavemovedtheirconversationstoonlineplatforms.Oncethis movehasbeenmade,attackerswillthinkofanumberofdifferentwaysto eavesdropontheseconversations.Thesameappliestoallotheractivitiesof oureverydaylives:oncewemoveanactivitytocyberspace,cyberattackers haveawealthofnewopportunitiestoattack.
Havingrealisedthisincreasingthreatintheareaofcybersecurity,thepartnersoftheCyberSec4Europeprojectputtogetheralistofcybersecurityareas thatweshouldfocusonoverthenextfewyears.Theyhaveexplainedthe securitythreatsintheseareasandtheyhaveelaboratedonwhatkindof
2
cybersecurityresearchneedstobedone.Theareastheyhavestudiedare: anonymity,authentication,criticalinfrastructures,effectivethreatmodelling, IoTsecurity,machinelearning,malware,metaverses,privacybydesign,securityawarenessandtraining,softwarelifecycle,testingandcertification,and trustedexecution.
2.Introduction
• Providestronganonymouscommunicationatlargescale • Buildtrustworthymetaverses • Improvepassword-lessauthenticationmethods • Developearlydetectionapproachesforarmouredmalware • ProvideprivacyinIoTenvironments • Realisemachine-learningmodelsthatremainsecureunderdifferentad-
• Ensurethatcriticalinfrastructuresareresilienttocyberattacks • Support“by-design"testingandcertificationapproachesintegratingin-
• Giveusersassuranceaboutthesecurityoftheirdevices • Ifitcanbedoneanonymouslyintheofflineworld,itcanalsobedone anonymouslyonline • Makeartificialintelligencesafeforpeople • Makesystemsresilientunderattack • Enhancethegeneralpublic’sawarenessofcybersecurity 4
Amongthemostimportantresearchareaswesee:
versarialscenarios
dustrial,socialandethicalvalues,sustainability,andtrustworthiness needs Tomakefundamentalbreakthroughsintheareaofcybersecurity,wehave alsoproposedseverallong-term“GrandChallengeproblems”including:
3 TheErosionofAnonymity
3.1 Introduction
Overthepastfewyears wehaveincreasinglybeen usingcyberspaceformost ofoureverydayactivities: shopping,working,watchingmovies,listeningtomusic,chattingwithfriends,entertaining,etc.Therecent COVID-19pandemicintensifiedthiseffectandforced ustodomostofouractivitiesonline:schooling,shoppingforgroceries,socialising,keepingintouch,almosteverythingwasdoneonline.Insomecases, thingsbecamesoextremethatdoingsomeoftheseactivitiesofflinewas completelyillegal.Indeed,duringthoselock-downperiods,face-to-facevisitstofriendswereillegalinsomecountriesandincurredheavyfines.Thus, duringsuchperiodstheonlywaytovisitfriendswasthroughsomeon-line videoconferencingtool.
Althoughsuchonlineactivitieswereconvenient(orevenabsolutelynecessaryduringthepandemic),theyusuallyrequiredstrongauthenticationand identificationforallpartiesinvolved.Forexample,onlineshoppingwasnot possiblewithanonymouscash,butrequiredtheuseofdebit/creditcardsand possiblyonlinebankaccounts.Deliveryofthepurchasedproductsrequired thedisclosureofthedeliveryaddress,thepresentationofsomeidentifying information,possiblythedisclosureofamobilephonenumber,etc.1 Thesituationwasnobetterforotherformsofinteraction,suchaskeepingintouch
1Althoughthisinformationisrequiredforsuchonlinetransactionsindependentofthepandemic,beforethepandemicpeoplehadachoice:Theycouldoptoutofsuchtransactions.During thepandemicthechoicewasnotthereanymore.
withfamily.Indeed,asaphysical“visit”tofamilywasalmostimpossible, theonlywayofinteractionwasthroughvideoconferencing,whichusually impliedtheinstallationofsomevideoconferencingsoftwarethatneededthe user’sname,theiraddress,andpossiblyacreditcardforpaymentpurposes. Andtomakemattersworse,thissoftwarehadtheabilitytotrackwhois talkingtowhom,andwhattheysay.
ThedisclosureofallthesepersonaldataisinsharpcontrasttothepreCOVIDerawherepeoplecouldcarryoutallthesekindsofinteractionswithouttheneedtodiscloseanykindofpersonalinformation.Thisdisclosure ofpersonalinformationusuallyleadstoalossofanonymity:peoplecannot visittheirparentswithoutinformingseveraldifferentcompaniesonline.The samelossofanonymityhappensinotherareasofourlives.Forexample, inthepastpeoplecouldpurchaseacanofsodafromtheirminimarket,pay cash,andstayrelativelyanonymous.Today,inordertopurchaseacanof sodaonlinetheyneedtodisclosetheirname,theiraddress,theircreditcard details,whiletheymayultimatelybetrackedbydozensofcookies,trackers andadvertisers,whichusetheirdataforallsortsofmarketingpurposes.
Onemightbetemptedtosay:“Itisnotnecessarytocarryouttheseinteractionsonline:wecanalwaysgobacktophysicalinteractions.”Althoughitis nicetohavesuchoptimisticpointsofview,weareafraidthatsoontheremay beno“back”togo“backto”.Onlineinteractionskeepincreasingandthere isnoindicationthattheyaregoingtosignificantlydecrease:onlineshopping isontherise,theuseofsmartphonescontinuestoincrease,andpeopleseem tospendevermoretimeonline.Asaresult,itseemsthatonlineinteractions areheretostayandwejustneedtodealwiththetrackingandtheerosionof anonymitythatcomeswiththem.
3.2
WhoIsGoingtoBeAffected?
Asitismoredifficulttostayanonymousonline(comparedtotheoffline world),mostlaw-abidingcitizenswhousetheInternetwithoutanyspecial anonymisationsoftwarearepotentiallygoingtobeaffectedbythiserosionof anonymity.Itseems,however,thatyoungerpeoplewillbeaffectedthemost, astheycanbeexpectedtospendalongerpercentageoftheirlivesonline. Inaddition,peoplewhohavesomerolethatisvisibletothepublic(such asactors,politicians,etc.)willalsobedisproportionatelyaffected,astheir (private)liveswillbeheavilyscrutinised.Unliketheftofphysicalproperty, erosionofanonymityismuchlikedatatheft:oncethedataaregonethereis usuallynowayofgettingthemback.Itisnotlikestolensilverware,which theownerwillgetbackiftheycatchthethief.Stolendatamaybecopied andgoneforever:thereisno“back”togobackto.Inadditiontopeople,
3.TheErosionofAnonymity
6
theircontactswillbeaffectedaswell.Exposingthepersonalinformationof asinglepersonnotonlyharmsthepersonherself,butmaypotentiallyharm anyonewhointeractsonlinewithher:herfriends,relatives,etc.
Inaddition,peoplewhoneedanonymityfortheirphysicalsafetywillbe severelyimpacted.Forexample,peopleinnon-democraticcountriesmayface immediatedanger.Evenpeopleindemocraticcountries,suchaswhistleblowersandjournalists,maybeseverelyimpactediftheycannotoperate anonymously.
Finally,organisationswillalsobesignificantlyaffected.Indeed,informationthatusedtobeconfidentialwithinabusiness(suchasnumberofcustomers,numberofsales,peaktimes,etc.)couldnowbefound(oratleast inferredwithhighaccuracy)bytrackersandadvertisersthatareinvolvedin theinteraction.Onemightthinkthatlargeorganisationswouldbeableto scrutinisetheirwebsitesanderadicateanytrackingdonebythirdparties. Thisisprobablytrue.Itisnotclear,however,whethersmallcompanieswill havetheexpertiseand/orthecapabilitytodosomethinglikethat.
3.3 WhatIsExpectedtoHappen?
Inaworldwhereanonymityisnoteasytoachieve,peoplewilljustnot beabletoactanonymously.Allaspectsoftheiractivitywillberecorded somewhereonlinebysomeonetheyprobablydonotknow:whattimethey wakeup,whattimetheygotowork,whatitemstheypurchase,whatbooks theyread,whatnotestheytake,whatnewstheyareinterestedin,wherethey eat,wheretheyspendthenight,whotheyspendthenightwith—everything isgoingtoberecordedonline.2 Peoplewillhavelittle(ifanyatall)private lifeanymore.Intheabsenceofastronglegalsystemthatheavilypenalises unauthorisedaccesstoinformation,weareafraidthatthisinformationmay eventuallyreachthewrongpeople.Indeed,althoughinitiallyinformation maybesharedwithatrustedentity(suchasourISPorouremailprovider), information,muchlikeanyotherdigitalcommoditymayeventuallybesold, acquired,orevenstolen.Theworstthingofallisthatwedonotreallyknow ifthiswillhappen,orevenifithasalreadyhappened.
Somepeoplemightsay“Ihavenothingtohide”,sotheymaythinkthatit isreasonabletodisclosealloftheiractivitiesonline.However,themainpoint hereisthatonceinformationisdisclosedonlineitmayeventuallyfinditsway tothewrongpeopleormayfallintothewronghands.Ifitfallsintothewrong hands,informationmaycausemajordamagetopeople.Imagine,forexample, organisedcrimesyndicates.Theywouldlovetoknowthewhereaboutsof
2EventhetimeofthedaywhenIamtypingthesecharactersandthetimeofthedaythereader readsthistextismaybebeingrecordedsomewhereonline.
3.3.WhatIsExpectedtoHappen?
7
people:whoisalone,whoisonvacation,whichhouseisempty,whichelderly peopleboughtjewellery,etc.Recentstudiessuggestthat78%ofburglarsuse socialmediatofindtheirtargets[3].Theseburglarsusesocialmediatofind picturesofhomes,orevenpicturesofhousekeys[33],toseewhetherpotential targetsareonvacation,tofindtheirdailyroutines,andtoseewhetherthey havecheckedinatarestaurant.Allthisinformationcanbeusedinorder tofindthemostpromisingtargetsandwhenisthebesttimetorobthem. Onemightbetemptedtothink“Oh!Idonotpostsuchinformationonline, thusIamsafe.”Weareafraidthatthisisfarfromtrue.Indeed,severalof theappsinoursmartphones(andespeciallythosethathaveaccesstoour GPScoordinates)knowwhereweare.Theyknowifweareonvacation, theyknowwhichrestaurantwearein,theyknowwhenweleavehome,they knowwhenwereturn,etc.Thefactthatwedonotpostsuchinformationin socialmediadoesnotmeanthatthisinformationisnotrecordedonlineby severaldifferentactorswhohaveaccesstoit.And,aswehavesaid,ifsome informationiscollectedonline,itmaylaterbeshared,sold,orevenstolen.
Itseemsthatmostpeoplearenotawareofthesedangers.Asaresult, theydonotseekanonymityandtheyexposethemselvestomaliciousactors outthere:burglars,robbers,orevenkillers!Forexample,recentresearch on350homicidessuggeststhatbeforemurderingtheirvictimskillersstalk theirvictimsinsocialmedia[198].Theseexamplessuggestthatthislackof anonymousinteraction,inwhichseveralpeopleengage,mayleadtoserious damage:theft,lossofproperty,andevenlossoflife!
3.4 WhatIstheWorstThatCanHappen?
Weareafraidthattheimpactonsocietywillbe muchgreaterthanwhathasbeendescribedsofar. Ifanonymityiscompletelylost,itwillbelikeliving inaworldwhereeachandeveryactivityofoursis beingmonitoredallthetime.Thiswillbelikeliving ina“BigBrother-like”dystopiansociety,whereeach andeveryactionwillbemonitoredandrecorded. Andtheworstpartofallisthatwedonotreally knowwhoisrecordingitandwhohasaccesstothis information.Isitanadvertiserwhowantstoknow whatcolourofshoeswelike?Isitacrimegangthat wouldliketoknowwhichelderlypeoplerecentlyboughtjewellery?Isitthe governmentofahostilecountrythatwouldliketoknowthedailyroutineof thepeopleinourcountryandpossiblybugthemwhentheyvisitonvacation? Wedonotreallyknow.
3.TheErosionofAnonymity
8
Weareafraidthatthiscompletelossofanonymitywillnotonlytransform thelivesofindividuals,butwilltransformentiresocieties.Peoplemaybecomeextremelyconservativeandmaybecomeafraidofeachandeveryaction theytake.Insuchanenvironmentpeoplemayrefrainfromexercisingtheir rightsoutoffearthatdoingsomayhaveconsequences;thiswouldseverely damagedemocracyitself.The1984-likedystopiansocietiesthatwemanaged toavoidwillcomeagaintohauntusthroughourownfaultsandourown negligence.
3.5 ResearchGaps
Toaddresstheproblemweneedacombinationoflegalandtechnicalactivitiesinthisarea.
3.5.1
ProvideStrongAnonymousCommunicationatLargeScale
Todaythereareveryfewopportunitiesforanonymouscommunication.The onionrouter(Tor)isoneofthebest-knownones[62].However,lessthan 1‰ofInternetusersuseit.Weneedtoprovideeasy-to-usesystemsthatgive strongprotectionandcanresistpowerfuladversariesunderavarietyofthreat models.
3.5.2
Provideonlinethesamelevelofanonymityyouexpectoffline
Today,anonymityhasbeenimplementedinonlyasmallportionofonline interactions,mostlyinanonymouswebbrowsing.Indeed,theTornetwork mentionedabovecomeswithabrowserthatmakesinstallationconfiguration mucheasierforusers.Thisanonymityshouldbeextendedtoallkindsof interactions,includinganonymousshopping,anonymousentertainment,etc. Theruleofthumbhereshouldbe:ifitcanbedoneanonymouslyoffline,we shouldtrytodoitanonymouslyonlineaswell.
3.5.3 Measure/Monitorthescaleoftheproblem-AchieveTransparency
Itisnotcleartomostpeoplewhatthescaleofthisproblemis:whatisthe amountofpersonalinformationthatisbeingshared.Thewebtrackerskeep inventingnewwaystotrackusersonlineandtodeprivethemoftheabilityto operateanonymously[181].Itisbasicallya“gameofcat-and-mouse”,where trackersinventnewwaysoftrackingandresearcherstrytodetecttheseways oftracking,possiblyviareverseengineering.Weneedtobetterunderstand thescaleandmechanismsoftrackingandlossofanonymity.Weneedto developmechanismsthatcontinuouslymonitorthiserosionofanonymityat alldifferentlevelsinallpossibledifferentways.Thesemechanismsshouldbe abletooperatefrequentlywithoutthecooperationofwebcontentproviders..
3.5.ResearchGaps
9
3.5.4
NovelDataAnonymizationandDe-Anonymizationapproaches
Weneedtodevelopnoveldataanonymizationmechanismsthatwillallow sharingofdataatalargerscale.Althoughsomedataanonymizationapproachesalreadyexist(see[226],and[68]),thereisstillalongwaytogo beforeanonymousdatacanbesharedonalargescale.Weneedtostudy attackstoexistingdataanonymizationapproachesthataimtode-anonymize thedata,anddevelopdefencesthatwillresultinbetteranonymizationapproaches.
3.5.5 ResistCensorship
SeveralcountriesallovertheglobecensorcommunicationsontheInternet. InsuchsettingsusershavelimitedaccesstotheInternetor,insomecases, noaccessatall.Weneedtodeveloprobustandpracticalsystemsthatbypass censorshipandenablepeopletosafely(andanonymously)publishandaccess information.
3.5.6
Developrobustanti-fingerprintingmethods
Tobreaktheanonymityoftheirusers,severalwebsitesusefingerprinting methods.Suchmethodstrytoidentifyvariousaspectsoftheuser’sbrowser (e.g.browsertype,fontssupported),ortheuser’scomputer(suchaslocallanguage,operatingsystemversion,screensize,etc.)inordertouniquelyidentifyusersastheybrowsetheweb.Althougheachofthesefeaturesalone(such asscreensize)isnotenoughtouniquelyidentifyauser,thecombinationof allofthemisusuallysufficient.Weneedtodevelopstronganti-fingerprinting approachesthatallowlittle(orno)informationtobecollectedabouttheusers astheyroamaroundtheInternet.
3.6 Exampleproblems
Tangibleexampleproblemsmightinclude:
Identityleaks. Monitorhowwebsitesuseallkindsofmechanisms(suchas cookies,URLarguments,URLheaderfields,etc.)totransferpersonal datafromonewebsitetoanother.Developdefencesagainstsuchmechanisms.
MakeAnonymizingNetworksmoreresistanttoattacks. Studypossibleattacksthatmaycompromiseanonymityinanonymizingnetworks.Explorethemagnitudeoftheseattacksandproposepossiblesolutions. InitiallyfocusonwebsitefingerprintingattacksonTor.
3.TheErosionofAnonymity
10
Operatewithanonymouspersonas. Developfakepersonasthatallowusers tousethewebwithoutrevealingtheirtrueidentity.Developasystem thatwillclearlyevaluatethetrade-offbetweenusabilityandprivacyin providingfakeinformationindifferentsettings.Explorethesituations wherepersonasprovideaddedutility.
UnderstandingofPrivacy. Improveusers’understandingoftheirprivacyrelateddecisions,suchasthecookieconsentformsthattheyagreeto. Develop(semi-)automatedtoolsthatimprovethisunderstandingand quantifythechoicesmadebytheusers.
DataProvenance. Developsystemsthatenableuserstodetecttheprovenance ofdataandthusdiscoverstolen/leakeddata.Addresstheproblem fordifferentkindsofdataincludingtimeseries,images,videos,multidimensionalsignals,etc.
3.6.Exampleproblems
11
4 MachineLearning
4.1 Introduction
MachineLearning(ML)hasbecomethe technologypoweringawide-rangeofapplicationsandservices.Theperformance andthegeneralisabilityofMLmodelsmade themagoodcandidatefortacklingaseriesofreal-lifeproblemsthatexhibithigh complexity.TakeforexampletherecentadvancesofGenerativeAdversarialNetworks (GANs)thatmanagetosynthesisehighlyrealistichumanfaceswithasmallnumberofreal-worldsamples[127].Generallyspeaking,ML-basedsystemsmanagedtoachievehighsuccessrateson problemswheretheclassicrule-basedapproachesdidnotperformwell.
Nowadays,MLhasbeendeployedinmanysectorsofoureverydaylives. Forexample,duringouronlineshoppingonEbayorAmazon,anML-based personalisedrecommendersystem,runninginthebackground,proposesproductsaccordingtodifferentparametersrelatedtotheuser,e.g.thehistoryof previouspurchasesandthetimespentlookingataspecificproduct.Inaddition,theautomotiveindustryhasincorporatedMLtechnologiesintotheir carstomakethemdrivethemselveswithoutanyhumansupervisionwhatsoever.Furthermore,ML-basedNaturalLanguageProcessing(NLP)techniques havebeendevelopedforimprovingthesafetyofonlinediscussionenvironments,e.g.todetecttoxic,sarcastic,harassingandabusivecontent[169].In general,MLtechnologieshavebenefitedvarioussectors,someofthembeing thefollowing:medicaldiagnosis[131],detectionofcreditcardfraud[146], stockmarketanalysis[41],bioinformatics[63],speechrecognition[99],object detection[40],androbotlocomotion[129].
TograspthepotentialofMLalgorithms,itisenoughtosaythatmany techgiants,suchasGoogleandAmazon,offerMachineLearningasaService (MLaaS)platforms,wheretheuserscanuploadtheirowndatatotraintheir ownMLmodelsandsolveaspecificclassification/predictiontask.Thus,the
users’data–whichinmanycasescontainsensitiveinformation,suchasmedicalrecords,photosandotherpersonaldescriptors–isusedasthetraining databytheMLaaSplatforms.Additionally,someMLaaSoperatorsmaygive dataownerstheoptiontosellaccesstotheirtrainedMLmodelstothegeneral public.
DespitethemassivesuccessofMLintacklingnumerousdifficultproblems,severalsecurityandprivacyvulnerabilitieshavebeenshowntocoexist withthesemodels[142, 182].Forexample,thinkofthecasewhereanNLP modelmisclassifiesamovie’sreviewas"excellent"insteadof"bad".This(misclassification)errorresultsinahigherscoreforthatparticularmovie.Thus, usersthatconsultaspecificsiteformovieratingswillbeluredtowatchthat moviebecauseofitshighrating.Afterwatchingthatmovieuserswillrealise thatitwasnotasgoodastheratingsitesuggestedand,asaconsequence, avoidusingthesamesiteagain.Onamoreseriousnote,thinkofthecase whereanimagerecognitionmodelisdeployedonanautonomousdriving vehicleforidentifyingroadsigns.Ifanattackerdeliberatelyperturbstheinput(video)totheimagerecognitionmodel,thenthemodelmightwrongly recognisea“stop”signasa“minimumspeedlimit”signandaccelerateinsteadofstoppingthecar.Asyoucaneasilyimagine,suchattackscanhave seriousconsequences,evencausingfatalities.Inconclusion,sinceMLhas dominatedacrossmanysectors,weneedtocomeupwithsolutionsforensuringitssecureoperation.
4.2 WhoIsGoingtoBeAffected?
SincethewidespreadadoptionofMLmodelsintoavarietyofservicesand applications,anyonewhohasaccesstoamoderndevice(e.g.asmartphone, apersonalcomputer,avehicle,orevenahomeappliance)canbeaffected.In general,anyindividualwhopossessesanelectronicdevicecanbeaffected. Nonetheless,youngstersareexpectedtobeaffectedtoalargerdegreecomparedtoolderindividuals,sincetheyoftenutilisenewertechnologiesand applicationsthatareoftenpoweredbyML[124].
AlargeportionofML-basedapplicationsareoftentrainedonpersonal (sensitive)data.Leaksofsuchdatamayleadtoseriousconsequencesforthe affectedindividuals.ThinkofthecasewhereanMLmodelistrainedtoassociateapatient’sinformationwithaspecificdiseaseclass.Ifanadversary knowsthatapatient’sdatawasincludedinthemodel’strainingdataset,they candrawconclusionsaboutthevictim’shealthstatus(knownasmembershipinferenceattacks[211]).Inasimilarfashion,ifanadversarymanages tosuccessfullygenerateinputsresemblingtheoriginalonesusedfortrainingthetargetmodel,thenthismightenablethede-anonymisationofusers
4.MachineLearning
14
andexposepersonalorsensitiveinformation(knownasmodelinversionattacks[85]).Finally,adversarialimagegenerationattacks,whereanadversary introducesslightmodificationstoanexistingimageinordertoconfuseor deceiveanimagerecognitionMLmodelintoperformingamisclassification, havebeenproposedintheliterature[96].
Finally,companiesthatprovideML-basedsolutionsmayalsobeimpacted, inadditiontoindividuals.Inparticular,disclosingthattheMLservicesofferedbyacompanyarevulnerabletotheaforementionedattackscanseriously harmthatcompany’sfinancesandreputation.
4.3 WhatIsExpectedtoHappen?
Thegeneralisationability(performance)ofML-basedapplicationsheavilydependsonthequantityofavailabletrainingdata.But,asthetraining datavolumegrows,sodoesthechancethatsensitivedatawillbepresent. Thus,itisrealistictoassumethattheattentionofpotentialadversariesand maliciousgroupsisgoingtobefocusedonattackingsystemsthatutiliseML components.
ThenumberofdatabreachincidentsthatexploitMLcomponentswill increaseinthenearfuture.ThisisbecauseMLmodels,runninginthebackgroundandcollectingsensitivepersonaldata,willbedeployedwithinmore andmoreapplicationsandservices.Thus,potentialadversarieswillhave accesstoawiderrangeofexploitabletargets.
MLmodelscanbedeployedinsectorswherewrongdecisionmakingimpliesseriousconsequences(e.g.inhealthcare).Thus,legislations/regulations willbedrawnupinordertoexplicitlystatetheliableentitiesincasesomethinggoeswrongornotasexpected.Inaddition,thesecurityandprivacy standardsthatmustbemetbydeployedMLmodelswillbereleased.These standardswillensurethatdeployedMLmodelsarerobustagainstspecific (known)threats.Finally,guidelinesforbestpracticeswillbeformedinorder tohelpnonML-expertdeveloperswhowishtoincorporateMLtechnologies intheirapplications.
4.4 WhatIstheWorstThatCanHappen?
Asalreadymentioned,itisexpectedthatthenumberofdatabreachincidentscausedbytheexploitationofMLcomponentswillincrease.Inordertopreventpotentialexploitsthatcouldhaveseriousrepercussions,relevantauthorities,suchastheEuropeanUnion(EU),shouldkeeptakingbold steps(e.g.seePupilloetal.[144]andENISApressreleasesonAI/MLsecurity[73, 74, 76])tostrengthenthesecurityandprivacyofML-basedsys-
4.3.WhatIsExpectedtoHappen?
15
temsandservices.Onlywithsuchconcreteregulations/policiesinplacewill thecommunityexperiencethefullpotentialofMLtechnologies.
Moreover,forcompaniesthatofferML-basedsolutions,potentialattacksontheirsystemsmayimply millionsofdollarsinfinancialdamageandlossofreputation.Inaddition,attackssuchasthosedescribed inSec.4.2mightmakealargeportionofML-basedsystemsunusable.
Last,butnotleast,thedegreeto whichpeopletrustML-basedsystemswillbegreatlydecreasedifappropriate securityandprivacymeasuresarenotconsidered.Thisisimportant,because thetraction(usage)ofsuchsystemswillbedecreasedaswell.Peoplewill behesitanttoprovidetheirvaluabledatafortrainingMLmodels.Thus, advancesinML,andartificialintelligence(AI)ingeneral,willdeclinesignificantly.Infact,peoplewillbecomesosuspiciousoftechnologythattheywill behesitanttouseit.Muchlikethe5Gcase,wemayevenseeuprisingsand protestmovementsagainstMLtechnologies.
4.5 ResearchGaps
InordertoimprovethesecureoperationofML-basedsystemsseveral actionscanbetaken.
4.5.1
Exploringthesecurityandprivacyrobustnessofstate-of-the-artML modelsunderdifferentadversarialscenarios
Sofar,thescientificcommunityhasidentifiedanumberofsecurity/privacy vulnerabilitiesthatcoexistwithstate-of-the-artMLmodels.Nonetheless,exposingthosemodelsindifferentadversarialscenariosmightrevealadditional vulnerabilitiesfromwhichtheymaysuffer.Discoveringthoseweaknesses willsignificantlyaidthecommunityindevelopinggenerallyapplicabledefencesordesigningimprovedarchitecturesintermsofprovidingspecificsecurity/privacyguarantees.Inthatsense,MLauditingframeworkscanbe developedthatwillbesolelyresponsibleforevaluatingtherobustnessofML modelsagainstspecificsecurity/privacythreats.
4.MachineLearning
16
4.5.2
DesigningarchitecturesandtrainingalgorithmsforincreasingML models’generalisationandrobustnessagainstsecurity/privacyattacks
AnumberoftheattributesofMLmodelsmightberelatedtotheirvulnerabilitytospecificsecurity/privacyattacks.Forexample,membershipinference attacks(MIAs)havebeenshowntobemoreeffectiveonoverfittedmodels (i.e.modelsthatdemonstratelowgeneralisation)ratherthanwell-generalised ones[211].Inaddition,thearchitectureofthemodelitselfhasbeenshown toplayanimportantroleinitsvulnerabilityagainstMIAs.Inthatsense,researchershavedemonstratedthatanaiveBayesmodelismuchmoreresilient toMIAscomparedtoadecisiontreeand,therefore,maybethepreferred modeltypeforaparticularMLservice[234].Thus,MLmodelarchitectures thatofferincreasedrobustnessagainstsecurityandprivacyattacksshouldbe developed.
Inasimilarfashion,thetrainingofMLmodelsshouldbeoptimisedtowardsofferingincreasedsecurityandprivacyguarantees.Forexample,DifferentialPrivacy(DP)[68]offersprobabilisticguaranteesabouttheprivacy ofindividualrecordsinadatabase.DPretainstheglobalstatisticaldistributionofadataset,anditscontributiontoanMLmodel’sweights,while atthesametimereducingtheinfluenceofeachtraininginstance.Similarly tok-anonymity[139]anddiversification[9],DPcanbeusedtomitigatethe riskagainstvariousprivacyattacks,suchasmembershipinferenceandreidentification.TheapplicationofDP,however,imposesatrade-offbetween securityandutility(usefulness).Inotherwords,thestrongerthesecurity guaranteesthatDPoffers,thelargerthenegativeimpactonthemodel’sperformance.Thus,noveltrainingalgorithmsandtechniquesthatmaximisethe security/privacyguarantees,whilealsosacrificingaslittleperformanceas possible,shouldbedeveloped.
4.5.3
OnthetransparencyandinterpretabilityofdeepMLmodels
MLmodelsareoftenviewedasblackboxesthatcanmakeadecisionbased onanypossibleinputvariant.ThecomplexnatureofMLmodelsmakes theirinnerworkingsdifficulttocomprehend.However,whatisdifficultto understandisalsodifficulttoaudit.Andwhatisdifficulttoauditisalso difficulttotrust.Generallyspeaking,thelevelofmodeltransparencydepends ontheknowledgerequiredtounderstandtheinternalmechanicsoftheML algorithm.
TherearequiteafewMLalgorithmsthatdirectlyorindirectlyproduce humancomprehensibleoutput,suchasalinearmodeloradecisiontree. Supposethatwecantracethechainofreasoningofeachdecisionthatan algorithmmakes.Canweclaimthealgorithmistransparent?Theanswer
4.5.ResearchGaps
17
isunfortunatelyno.Thechainofreasoningonlytellsus“how”adecision wasmadeforagiveninputbutnot“why”.Forexample,knowing“how” isnotsufficienttojustifythatthedecisionismadeconsistently,accurately, reliably,andvalidly.Thus,foralearningmodeltobetrulytransparentwe needtoknowboth“how”and“why”.Duetothehighcomplexityofdeep MLmodels,whichoftenincorporatehundredsoffully(orpartially)interconnectedlayers,apromisingapproachforincreasingtheirtransparencyand interpretabilityistoprovidejustificationsandinsightsforthedecisionsthat canbegaugedexternally.
4.6 Exampleproblems
Tangibleexampleproblemsmightinclude:
ExploringsecurityandprivacyattacksonMLmodels. AnimportantdirectionforenhancingthesecurityandprivacyofMLalgorithmsistoreveal additionalhiddenvulnerabilities.Apartfromthealreadyestablishedsecurity/privacyattacks,suchasmodelinversion,membershipinference, modelextractionandadversarialsamplegeneration,additionaleffortis requiredtodetermineotherpossiblethreats.Inaddition,weneedconceptsandtechniquestomeasurethevulnerability/robustnessofML.
Proposinggenerallyapplicabledefencestrategies. Anotherinterestingdirectionisthedevelopmentofgenerallyapplicabledefences,morespecifically,defencesthatcanbeappliedtoexistingtrainedMLmodelswithouttheneedforretraining,whichisatime-consumingprocessand wouldrequirelargecomputationalresources,oranymodificationsto theirarchitecture/trainingalgorithm,whichwouldrequiresignificant manualinterventionfromexpertsinthefieldofAIandML.
Applyingvulnerablelearningmodelsinasecureway. Onemightsaythat perfectlysecureMLisprobablyanillusion.Thus,insteadoffocusingon increasingtheirrobustness,analternativedirectionisfocusingonhow toapplytheminsuchasecurewaythatexploitingthoseMLmodels becomessignificantlyharder.
Developinghuman-friendlyinterpretabilitytechniques. Thisangleinvolves thedevelopmentofsystemsandservicesthatareabletoprovidehumanfriendlyexplanationsforthedecisionsofcurrentstate-of-the-artML models.Whenwereferto“human-friendlyexplanations”,wemean justificationsthatarepreferablysimpleenoughforpeoplewhoarenot expertsinthefieldsofAIandMLtounderstand.
4.MachineLearning
18
5 Authentication-BeyondPasswords
5.1 Introduction
Nowadays,theincreasinguseof cyberspacerequireseachpersonto haveseveralaccountsinorderto accessthesystemsandwebapplicationsnecessaryforeverydayactivities.Oneoftheoldestprotectionmechanismsofsystemsand webapplicationsistheauthenticationmethod,wheretheuserisasked toprovehis/heridentitytogainaccess.Themostcommonmethod ofauthenticationbyasystemor anapplicationisviatheso-called username-passwordmethod.Inthismethod,theuserhastoprovidetheusernameandthepasswordthatwerechosenduringtheaccountcreationprocess (registration).Despitethefactthatusername-passwordisoneoftheoldest authenticationmethods,itisstillusedbyalmosteverysystemandapplication(bothonlineandoffline).Forinstance,adoctorinahospitaldeploysthe username-passwordmethodtoaccessheraccountinboththehospitalandan onlineshop.Duringthepastfewyears,thenumberofaccountseachuser maintainshasgreatlyincreased;consequently,usersfinditdifficulttomemorizeandmanageallthesepasswords.ArecentstudybyNordPassshowed thatanaveragepersonhas100differentpasswordstoremember,leadingtoa problemcalledpasswordoverload[199].Moreover,theusername-password paradigmissubjecttovariouscyber-attacks,suchasrecoveringapassword fromitsleakedhashthroughbruteforce(passwordcracking),recoveringa passwordwhentransmittedthroughanuntrustedchannel(eavesdropping), trickingauserintoenteringhis/herpasswordonanuntrustedorcompromisedendpoint(phishingwebsites,ATMskimmers),orallowingtheuseof defaultpasswordsthatcanbeusedbyadversaries[28][174][8][83].
Henceinorderforapasswordtobeconsideredstrong,assuggestedby Microsoft,itshouldcontainatleast12characters,becomplex(i.e.contain alphanumericcharacters,numbers,symbols,andnon-dictionarywords),be differentfromotherpasswordstheuserusedinthepast,andbedifficult forotherstoguess[152].Alltheseconditionsalongwiththehighnumber ofdifferentaccountshaveaffecteduserswhofinditdifficulttomemorise (StrengthofMemorizedSecrets[173])andmanageallthesepasswords.To solvethispasswordoverloadproblem,usershavecomeupwithsolutions thatdirectlyaffectthesecurityoftheiraccountsandtheprivacyoftheirdata; theyeithersimplifytheirpasswordstobeeasytoremember,reusethesame passwordondifferentservices,orstoretheirpasswordsina“secure”place, forexampleonpaperorusingapasswordmanager.Butevenifthepassword isstrongandtheuserhandlesitappropriately,theserviceprovidersalso havetokeeptheirendofthedealandstoretheirusers’passwordssecurely. NISTprovidessuggestionsonhowtoproperlystorepasswordsondatabases (MemorizedSecretVerifiers[173]),thoughmanypopularopensourceserver softwaredonotofferadequatesecuritybydefault[170]andanumberofdata breachesexposedimproperlystoredpasswords[113].
Severalmethodshavebeenintroducedtoenhancetherobustnessofthe authenticationprocess,especiallyoncriticalsystemsandapplications;with thebestknownbeingtwo-factorauthentication(2FA),alsorecommendedby ENISAtoimprovepasswordsecurity[77][5].Duringa2FAmethod,the userhastoprovehis/heridentitybasedontwofactorsratherthanone.For instance,toaccessawebbankingaccount,apartfromprovidingtheusername andpassword,theuserisalsoaskedtoprovideaone-timepassword(OTP) thatisreceivedviaaShortMessageService(SMS)inordertobeauthenticated. Althoughthismethodimprovesthesecurityoftheauthenticationprocess,it lacksuser-friendliness[148],whichisanimportantfactorintheauthentication procedure,andcanalsobeexploitedthroughSIMswapattacks(wherethe adversarymanagestoclonetheSIMcardofthevictim,allowinghimtosteal theSMS)orbytrickingtheuserintorevealingtheOTPcodethroughafake call,websiteoremail(phishing).
5.2
WhoIsGoingtoBeAffected?
Anyonewhousesacomputerorsmartphoneisgoingtobeaffectedbythe weaksecurityofpassword-basedauthenticatedmethods.However,people withmoreaccountsaremorelikelytobeaffected,sincetheattacksurfaceis widerinotherwords,attackershavegreaterchancestocompromiseanaccount.Forexample,ifBobhasoneaccount(e.g.anemailaccount)andAlice hasthreeaccounts(e.g.email,onlineshopandstreamingaccounts),then
5.Authentication-BeyondPasswords
20
anattackercantargetBobononeapplication,whileAlicecanbetargeted onthreedifferentapplications.Apartfromindividuals,companies/organisationsmightalsobeaffected,sinceifanemployee’spassword-onlyprotected accountiscompromised,corporatedatacouldbestolenormalicioussoftware maybeplanted,resultinginjeopardisingthereputationofthecompany/organisation,whichwillleadtomoneyloss.Lastbutnotleast,governments andcriticalinfrastructureswillbeaffectedthemost,becauseifanattacker weretogainunauthorisedaccess,theirmaliciousactionsmightalsohavea seriouseffectonEuropeancitizens.Forexample,thecompromiseofapower gridwillsignificantlyaffectthepublic.
5.3 WhatIsExpectedtoHappen?
Inacasewhereasystem’sauthenticationiscompromised,notonlywill theuser’sdatabeatrisk,butalsotheattackerwillhaveaccesstothesystem toperformvariousmaliciousactions,suchasstealingpersonalinformation ordocuments,installingsometypeofmalware,orperforminganAdvanced PersistentThreat(APT)attack.Thus,theconsequenceswillvarydependingonthecriticalityofthesystemandtheattacker’sactions.Inmostcases, compromiseoftheauthenticationprocessleadstoadatabreachandmoney loss.However,whentheauthenticationprocessofacriticalinfrastructureis atstake,theconsequencesmightbemuchmoreseverethanthelossofmoney. Theworstthingisthatwecannotknowbeforehandthemaliciousactionsthat anattackerwillperform.
5.4 WhatIstheWorstThatCanHappen?
Mostofourdigitalservicesrelyuponsecureauthenticationoftheusers, andthuswehavetomakesurethatweuseadequatelysecureauthentication methods.Assumingthatwewillcontinuetobaseallofourauthentication methodsonpasswords,eventuallyeverysystemwillbecompromisedatleast once.Everycompanywillbeaffectedbyincidentsanddatabreaches,resultinginmillionsofeuroslost.Massiveamountsofpeople’sleakeddata (e.g.email,photos,residence,socialnumber,telephone,creditcardnumbers, financestatus,medicalrecords,etc.)willbeavailableonlinetothehighest bidder,thusaffectingprivacysignificantly.
Criticalinfrastructureswillalsobeaffecteddeeply.Suchinfrastructures (likethepowergrid,watersystems,hospitals,telephonecommunications) stillconnectedtotheinternetwillpossiblyposeathreatduetothehighrisk ofbeingcompromised.Cyber-attackswilltargetsuchsystems,creatingahigh riskofespionage,cyberterrorismorevenlossoflives.
5.3.WhatIsExpectedtoHappen?
21
5.5 ResearchGaps
Toensurewekeepauthenticationmodulesadequatelysecure,actionsneed tobetakeninthisarea.
5.5.1 Improvepasswordlessauthenticationmethods
Althoughpasswordlessauthenticationmethods—suchasthefingerprint unlockofourphones—arealreadyavailable(e.g.FIDO[6]andWebAuthn[110]),thereareanumberofpointsthatcanbeimproved.Tostartwith, weshouldmakesurepasswordlessauthenticationisaccessiblebyeveryone (thoughourpersonaldevicessuchasoursmartphonesorpersonalcomputers)inauser-friendlyyetsecureway,byincreasingtheadoptionofpasswordlessauthenticationmethods(e.g.increasethenumberofapplicationand websitethatsupportpasswordlesslogin)andimprovingtheinteroperability betweenauthenticatordevicesandservicesrequiringauthentication(e.g.use thefingerprintsensoronyoursmartphonetoauthenticateonyourlaptop).
Sinceseveralpopularpasswordlessauthenticationmethodsrelyonbiometrics (e.g.irisscan,fingerprintscan,facescan),lookingintoensuringthesecurity andtrustworthinessofbiometricauthenticationmethods(e.g.byreducing thefalsepositiveswhereanunauthorisedentitymaybefalselybeidentified asanauthorisedone)whilealsorespectinguser’sprivacy(e.g.securelystoringbiometrics’relateddatalocallyonlyforusetoauthenticatetheuser)isof highimportance,whilealsolookingintohowtheycanbeusedalongwith fuzzycryptography(wherebiometricdatacanbeusedasaninputtocryptographicfunctions).Furthermore,theusageofpasswordlessauthentication inadvanceauthenticationscenarios(e.g.multipartypasswordlessauthentication,wheretheauthentication/authorisationisperformedbymorethanone entities)shouldbeinvestigatedinordertomeetspecialisedneedsthatexisting methodsdonotcover(e.g.allowingtheauthorisationofatransactionorthe signingofadocumentby2ormorepeople).Weshouldalsolookintonovel passwordlessauthenticationapproachesforbothonline(e.g.loggingintoan onlinewebsite)andofflineusage(e.g.loggingintoyourlaptop).Lastbut notleast,thereneedstobeinvestigationintoimprovingtheauthenticationof usersbyleveragingexistingtechnologies(e.g.SingleSignOn)andnewdigital identityschemes(e.g.Self-sovereignidentity,DecentralizedIdentifiers[219], VerifiableCredentials[220])incombinationwithpasswordlessauthentication (whenneeded),aswellassecurerecoveryorfallbackmechanicsforusewhen themainauthenticationmechanicisnotavailable(e.g.incaseyouloseyour smartphoneoryourUSBsecuritykey).
5.Authentication-BeyondPasswords
22
5.5.2 Measure/monitortheuseofinsecureauthenticationmethods
ItisofhighimportancetomonitorthesecuritystateofauthenticationmethodsinEurope,bymeasuringboththeadoptionofpasswordlessauthenticationandtheuseofinsecurepassword-basedauthenticationmethods.With betterinsightintotheproblem,measurescouldbetakentoreducethesecurityrisk.Forinstance,wecanintroducenewregulationsorimproveexistingones,targetingcriticalsystemsaffectedbytheproblem,aswellasset minimumsecurityrequirements(e.g.appropriatecertification,securityassessmentsandauditing)toensureanappropriatelevelofsecuritytoprotect Europeancitizensandoursocietyasawhole.Researchcouldalsofocuson theeconomicsideoftheissueandinvestigatewhetherbetterandnewerauthenticationmechanicsareaffordablebyallkindsoforganisationsorwhether suchtechnologicalsolutionsdonotfitthebill.
5.5.3 Understandinguser’spsychologyrelatedtoauthentication
Animportantresearchgapisrelatedtothehumanpsychologyandauthentication.Furtherresearchintotheuser’spsychologyduringauthentication shouldprovidemoreinformationrelatedtodeceptionattacks(socialengineeringrelatedattacks)aswellasprovidingvaluableinformationabouttheuser’s perceptionregardingtheusabilityofanauthenticationmechanism.
5.5.4
EnhancingbiometricauthenticationmethodsusingAImethods
Biometricauthenticationmethods,suchasfingerprint,face,andvoicerecognition,areheavilyutilisedinsmartphonestologinuserswithoutpasswords. Yetthosemechanismscomewiththeirownlimitations.Tonameafew,dirty handswillaffectfingerprintrecognition,weatherconditionsfacerecognition, andloudenvironmentsvoicerecognition.Thus,furtherresearchisrequired toalleviatethoserestrictions.OneapproachcouldbetoemployAImethods, suchasmachinelearning(ML)anddeeplearning(DL),intheauthentication processtomakethebestoftheincomingdataincaseswheretheconditions arenotoptimal.
5.5.5 Continuousauthentication
Theuser’suniquecharacteristicscanbedeployedforauthenticationwithout needinghis/herinteraction.Forinstance,inthecaseofamobilephone, eachpersonholdshis/herphonedifferently,typesdifferently,swipesfrom differentangles,etc.Utilisingallthisdataregardingeachperson’sbehaviour andleveragingAIcanresultincontinuousauthenticationwithouttheuseof passwordsorbiometrics.Researchonthistopicshouldfocusonincreasing theaccuracyofthebehaviouralauthenticationmechanisms,atthesametime
5.5.ResearchGaps
23
reducingthefalsepositivesandfalsenegatives,whilealsolookingintohow topreserveuser’sprivacyanduser’scontrol.
5.5.6 Trainingpeopleinauthenticationrelatedtopics
Thereareseveral2FAmethodsthatcanbeusedtodayincombinationwith passwordstoprovideadequatesecuritytosystems,butmostusersoptnot tousethem.Theresearchcommunitywillhavetolookintothereasons whymanyusersdonotenablepasswordlessormulti-factorauthentication (MFA)anddevelopefficientusertrainingtotackletheissue.Furthermore, althoughvariousrecommendationsonhowtohandlepasswordsexist,both usersandsoftwareengineersstillfailtofollowthemresultinginhandling theminsecurely(e.g.userscontinuetosharepasswords,engineerscontinue tostorepasswordsinsecurely).Conductingrelatedtraining(orincreasing theirefficiency)willensurethateveryonehasaccesstoandknowshowtouse correctlyandeasilystrongauthenticationmechanics,minimisingtheriskof theiraccountsbeingcompromised.
5.6 Exampleproblems
Tangibleexampleproblemsmightinclude:
Userfriendliness. Researchshouldbeconductedonhowtheuserfriendlinessofpasswordlessauthenticationmethodscouldbeimproved.Apart frommakingthemethodseasiertouseforthegeneralpublic,neweasy tousemethodologiestotransferorbackupcredentialsusedbyauthenticatordevicesshouldbetested.
Transitionfrompassword-basedtopasswordless. Inmanycasesthetransitiontonewerpasswordlessauthenticationmethodsisnottrivialasmany systemsdonotsupportthemoutofthebox.Furthermore,usersnotfamiliarwithpasswordlesstechnologymayfacedifficultiesinpreparing theirenvironmenttousethenewauthenticationmethods.Furtherresearchinthetopicmaylookintohowtointroducepasswordlessauthenticationinauser-friendlywayandasasecuritylayerwrappinglegacy system.
Resistancetoattacks. Tosecureourfutureweshouldalsolookintohowattackscanbemitigatedandhowmeasurescouldbeintegratedintoour passwordlessauthenticationmethods.Inmanycasessuchproblems mayariseasaresultofinsecureconfigurationorfaultyimplementation,whileinothercasestheyareamongthedisadvantagesoftheselectedmethod(e.g.somepasswordlessauthenticationmethodsarenot phishing-resistant).
5.Authentication-BeyondPasswords
24
WeakauthenticationonIoTdevices.
TheintroductionofIoTdevicestoour livesandtheirinterconnectionandexposuretotheinternetcreateda newattacksurfaceforattackers,namelyattackersapartfromtargeting userauthentication,attackerscannowtargetthedeviceauthentication process.Novelpasswordlessauthenticationmethodsshouldbeintroducedforsuchsmallsmartdevices(e.g.remotelyaccessibleIPcameras) thatusuallyfeaturelimitedresources.
5.6.Exampleproblems
25
SecurityAwarenessandTraining
6.1 Introduction
Organisationalcybersecurityiswidelyacknowledgedtorelyonthreepillars: namely,technologies,processesandpeople.Additionally,transformingraw dataintoeligibleinformation,andinformationintoactionableintelligence,is anincreasinglysignificantcomponentofmaintainingsituationalawarenessof cybersecurity.
Peopleareoftenperceivedastheweakestlinkinthecybersecuritychain [32][164].Thoughthisnegativecharacterisationofhumannatureisdebatable [123],itisundeniablethatthehumanisamajorcontributingfactortothe majorityofcybersecuritybreaches[128].Cybercriminalsfrequentlyemploy techniques,suchassocialengineering,thatexploitinnatehumanweaknesses tocarryoutattacksandtoimprovetheirchancesofsuccess.
Cybersecuritycompetencedevelopmentfocusesonenablingpeopletoestablishtechnicalandoperationalbarrierstocybersecuritythreats,andtoconductthemselvesappropriately,throughthevigilantprocessingofactionable intelligence.Itisaniterativeprocessofcontinuousandincrementalimprovement[249]targetedtowardtransformingthehumanfactorfromapotential attackvectortoamultiplieroforganisationalpreparednesstoprotectagainst, detect,respondtoandrecoverfromcyber-attacks.Cybersecuritycompetence developmentisbasedonacontinuumthatexpandsformaleducationthrough addedvalueactivities,suchasi)hands-onexperience,ii)awarenessprogrammesandiii)trainingprogrammes,witheachofthesemultipliersserving particularfunctionsinmaintainingorganisationalcyberhygiene.
Leveraginghumanfactorsincybersecuritygoesbeyondtraditionaltrainingandawarenessmethods.Itcallsformodernapproachesthatdrawonunderstandingshumanbehaviourandimplementingtoolsthatprovidetargeted cybertrainingandawareness.Hands-onexperience(alsoknownaslearning bydoing)isanextremelyeffectiveapproachtoteachingandlearningcybersecurity[213].Itengagesthelearnersandimprovesknowledgecomprehension andretention,aswellasthepossibilityoftranslatingacquiredknowledgeinto action[90].Manysuccessfulstrategiesareusedforthispurpose,including exercisingcyber-attacksdetectionanddefenceskillsinacyberrangeenvi-
6
ronment[42],participatingincybersecuritycompetitions[162],participating inflagshipcybersecurityexercises[55],andlearningthroughgameplay(e.g., seriousgames)[207].However,integratingcybersecurityawarenessandtrainingonlyreduces,noteliminates,thepossibilityofhumanneglectanderrors, implyingthatsmarttechnicalinterventionstocheckandregulateemployees’ mistakesremainvitalforanorganisation’soverallcybersecurityposture[143].
6.2
WhoIsGoingtoBeAffected?
Asmentionedearlier,cybersecurityiswidelyacknowledgedtorelyonthree pillars:namely,technologies,processesandpeople.Humanscanbenegligent arepronetoerrors,andcanrepresent,eitherintentionallyorunintentionally, aweaklink[164].Therefore,technologiesandprocessesaimtoreducethe overallburdenorresponsibilitybyautomatinganddemarcatingprocedures, asweseethroughtheongoingdigitaltransformation[161].However,itis peoplewhodevelop,operationaliseandmaintaintechnologiesandprocesses. Thus,whiletechnologiesandprocessesconstituteessentialtoolsforcybersecurityhardening,thehumanfactorplaysthemostcriticalroleinensuring cyberhygiene.Regardlessofhowmanyexpensiveandsophisticatedtechnologicalsecuritysolutionshavebeendeployed,theycannotbeconsidered secureaslongashumanfactorsdonotworkandbehaveinasecuremanner. Moreover,technologicalsecuritysolutionsrequirehumaninputforproper andeffectivefunctioning:forexample,firewallsmustbeactivated,software mustbeupdated,andsecuritywarningsmustbeacknowledgedandacted upon.
Lackofemphasisonsecurityawarenessandtraininghaspersonal,organisational,andevennationalramifications,whileimprovedvigilance,or lackthereof,permeatesandspillsoverbetweenthepersonalandprofessional spheres.Weseetheripplingeffectsoflowawarenessandknowledgeacross nearlyallcybersecuritytopicsandsectors[179],fromprivacyimplicationsto criticalinfrastructuresecurity[43].Humanbehaviour,moreoftenthannot,is thesoftunderbellyofsecuritydesignsandarchitectures,presentingtopotentialattackersapathofleastresistance,ifnotaclearentrypoint,withalimited technicalthreshold.Therefore,thechallengeisnottodeterminewhowillbe affectedbylimitedcybersecurityawarenessandtraining,buttoidentifywho maynot.
Itmustalsobenotedthattheoverallimpactofdigitaltransformation highlydependsontheacceptanceofthenewlydevelopeddigitaltechnologies,referringtoboththosethataredevelopedwithacybersecurityfocus andthosethatarenot.Cybersecurityawarenessandtrainingcanfacilitate stakeholderacceptanceandadoptionofinnovativedigitaltechnologies,asit
6.SecurityAwarenessandTraining
28
enhancesunderstandingoftherelatedcybersecurityrisksanddevelopsactive barriersagainstthem.
6.3 WhatIsExpectedtoHappen?
Automatedandautonomoussystemshavebeendevelopedacrossseveralsectorsincludingcybersecurity[161]toassisthumansoreventoremovethem fromtheloop.Nevertheless,thisprocessisstillinitsinfancy,andevenin developingthosesystems,peoplearetheprincipalcontributors[221].Additionally,cybersecuritybestpracticeshavebeendevelopedacrossallthephases ofsecuresystemsengineering,fromplanningallthewaytodisposal.However,theseprocesses,whetherreferringtosystems,policiesorprocesses,oftenincludeinputsthatarebiasedbyqualitativeexpertknowledge[101],or requirecompromisestomeetrequirementsandconstraints.Limitedcybersecurityawarenessandtrainingrepresenttherootcausesofvulnerabilities introducedwithinthedeployedsystems,technologies,processesandpolicies. Thisoccursacrossallthestagesoftheirlifecycle,arisingfromseveralfactors, suchasdesignflaws,integrationmistakes,oroperationalnegligence.Theexactimpactandconsequencescanonlybeestimatedonacase-by-casebasis. However,itiscriticaltoacknowledgethatpromotingtargetedcybersecurity awarenessandtraininginaniterativeprocessofcontinuousdevelopmentis essentialforensuringcyberhygiene,preparednessandresilience.
6.4 WhatIstheWorstThatCanHappen?
Theextentofthepotentialimpactandconsequencesduetolimitedcybersecurityawarenessandtrainingcanonlybeestimatedonacase-by-casebasis.The majorconsiderationinthatrespecthastodowiththefactthatalackofrelevantcompetenceshasaknock-oneffectonthecybersecurityandresilienceof technologies,systems,processesandpolicies.Therefore,althoughtheimpact andconsequencesdependonthespecificsofanincident(e.g.sector,scope, objectives,attackercapabilities),limitationsincybersecuritycompetencesplay acriticalroleintheprobabilityofanincidentoccurring,andwillhaveanimpactontheeffectivenessoftheresponseandrecoveryactionstaken.Thus, itisnaturaltoconsidercybersecurityawarenessandtrainingasapositiveor negativemultiplieracrosstheoverallcyberhygiene.
Thebenefitsofcybersecurityawarenessandtrainingextendbeyondthe detectionandmitigationofcybersecurityissues[151].Tobegin,withskilled employeeswhoarefamiliarwithcybersecurityprinciplesandunderstand theirroleinkeepingthebusinesssecure,downtimeofcriticalbusinesssystemsduetosecuritybreachesorincidentscouldbeavoided.Thiswillsave organisationsfromthecostlyandtime-consumingprocessofrepairingand reinstatingnormalbusinessoperations.Next,employeeswhoarefamiliar
6.3.WhatIsExpectedtoHappen?
29
withcomplianceregulationsandhaveaclearunderstandingofhowtohandle sensitivedataandinformationcanhelptominimiseregulatorycomplianceinfractionsandtheirnegativereputationalandfinancialimpactonbusinesses. Finally,organisationsthatimplementproactivecybersecuritymeasuresand havedemonstratedcyberresilienceboostcustomerconfidence.
Letuslookattheimpactofdatabreachesinorganisationstohaveabetterideaoftheissuesthatcouldariseasaresultofalackofcybersecurity awarenessandtraining.Weconsidereddatabreachesastheexamplesimply because82%ofdatabreachesinvolvedahumanfactor[240].Thesebreaches occurredbecausepeoplefellvictimtosocialattacks,andeitherdeliberately (misuse)orinadvertently(errors)actedorfailedtoactwhennecessary.More importantly,theycouldhavebeenavoidedtoagreaterextentifthepeople involvedwereproperlyawareandtrainedinrelationtotheirsecurityoperationsandresponsibilities.Nowletusassesswhatcouldpotentiallyhappenif thereisadatabreachinsomeorganisation.Whenitcomestohospitaldata,a breachcouldjeopardiseandharmthepatient’shealthandsafety,i.e.endangerhumanlife.Inthecaseoffinancialservicedata,itsbreachcouldresult inahugefinancialloss.Andinthecaseofgovernmentdata,abreachcould compromisenationalsecurity.Lastbutnottheleast,irrespectiveoftheorganisationtype,adatabreachwouldcausealossofcustomers’andpartners’ trust,diminishedmarketreputation,lossinbusiness,andpenaltieslevied, whichmightleadtobankruptcy.
6.5 ResearchGaps
6.5.1
Cybersecurityawarenessandtrainingneedsacrosslevelsandfields ofstudy
Theongoingdigitalisationofproducts,services,supplyandvaluechains highlightstheneedfortheincreasedtechnicalliteracyofdigitalnatives.Therefore,inadditiontodedicatedstudyprogrammesforthedevelopmentofdedicatedprofessionalcompetences(e.g.computerscience,networkengineering), relevantmodulesareintegratedacrossmoststudyprogrammes,andlevels andfieldsofstudy[246].However,topicsrelatedtocybersecurityarescarcely introducedoutsideprogrammesthatareparticularlytargetedtowardsdevelopingcybersecurityprofessionals.
Accordingly,itisessentialtoidentifythecybersecurityskillsandcompetencesthatareneeded,aswellassuitabledeliverymethods,startingfromprimaryeducationallthewaytohighereducationandspecialisedfieldsofstudy. Thisrequiresexaminingtheuniversalcybersecurity-relatedcomponentsthat aretargetedatenhancingthecybersecurityawarenessofthebroaderpublic,
6.SecurityAwarenessandTraining
30
aswellasspecialisedtopicsthatarespecifictodistinctoccupations.Furthermore,itrequiresassessingdeliverymechanismsthatareadjustedand optimisedwithrespecttotheattributesoftherelevanttargetgroups.
6.5.2
Cybersecurityawarenessandtrainingneedsmultidisciplinaryapproachinvestigations
Itwasandisappropriateatthistimetoask,“Whyarecybersecurityawarenessandtrainingfailingtoyieldtheexpectedoutcomes?”[22]Thequestion hasbeenthesubjectofnumerousinvestigations,butnoclearanswerhasbeen foundyet.Thismaybearesultofthenarroworlimitedperspectivefrom whichweviewtheissue.
Cybersecurityawarenessandtrainingmostlyrevolvearoundcomprehendingandtransforminghumanthoughtandbehaviour,whichareundoubtedly complextopics.Therefore,aslongascybersecurityresearchersandprofessionalsattempttospecifyandcontrolhumanthinkingandbehaviourthrough asmallsetofdrivers,whichmostpsychologistsandsocialscientistswould considermisleading,thelikelihoodofsuccessfulcybersecurityawarenessand trainingwillprobablyremainlow[22].Thisalsoimpliesthataddressingthe issuewouldrequireamorecomprehensiveandholisticapproachthatutilises knowledgeandexpertisefrommultipledisciplines,includingengineering, pedagogy,behaviouraleconomics,marketing,andsocial,cognitiveandorganisationalpsychology,amongothers.
6.5.3
Computer-basedcybersecurityawarenessandtrainingneedtheimplementationofAIandMLalgorithmsfortheirautomationpurposes
Therearehardlyanydisciplinesthatarenotutilisingthecapabilitiesofartificialintelligence(AI)andML,oratleastattemptingtodoso.Cybersecurity awarenessandtrainingcannotbeanexception.Infact,therearenumerous waysthatAIandMLcouldbeusefultoraisethestandardandimpactof cybersecurityawarenessandtraining[207].
ByutilisingAIandMLalgorithms,manyactivitiesofcybersecurityawarenessandtrainingcouldbeautomated.Automationwouldhelptoachieve on-demandcybersecurityawarenessandtraining.Additionally,theycould facilitatethedesignanddeliveryofamorecustomised,personalisedandoptimisedawarenessandtrainingexperiencetotheaudience.Forexample,AI andML-assistedcomputer-basedtestscouldbedevelopedandusedtoidentifyvulnerablegroups.Furthermore,basedonthetestresults,andoncemore withtheapplicationofAIandMLalgorithms,morecustomised,personalised andoptimisedawarenessandtrainingresourcescouldbepreparedfortheaudience.
6.5.ResearchGaps
31
6.6 ExampleProblems
Tangibleexampleproblemsmightinclude:
IoTcybersecurityawarenessandtrainingmodules TheuseofInternetofThings (IoT)technologyisexpandingdailyinallspheresofbusinessandsociety,fromconsumer-focusedgoodsandservicestoindustrialIoT.This hasalsointroducedunprecedentedsafety,securityandprivacyrisks [23].ThemajorityofIoTsecuritydeploymentstakeplaceatthebusinessunitlevel,whereITdoesparticipate,albeitinsufficiently.Thisalso impliesthatanumberofkeystakeholdersinIoTsecurityareunfamiliar withtheITsecuritysideofthings.Furtherexacerbatingthesituation, IoT-relatedrisksareoftennotwellarticulated,resultinginlowawarenessamongusersandemployees.Thus,IoTsecuritycannotberobustif thepeopleinvolveddonothaveagoodunderstanding,andthisrequires themtohavetherelevantawarenessandtraining[134].
AwarenessofadversarialAIattacks ContrarytotheuseofAI/MLmethods tostrengthencybersecurity,threatactorsareleveragingAI/MLmethods formaliciouspurposes,forexample,toincreasethenumberofattack surfacesandbolstertheirattackingcapabilities[154].
AdversarialAImethodsareusedtocraftmisleadingdataorbehaviours withtheintentionofmanipulatinganddisruptingcriticalAIsystems. ThereisgrowingevidencethatadversarialAImethodshavebeenimplementedinreal-worldattacks.Inspiteofthis,theefforttodefend AIsystemsfromadversarialAIattacksisgenerallyanafterthought.It isunfortunatethatmanycompaniesstillremainunawareofadversarial AIattacksandthefailureofAIsystemstheattackscancause.Therefore,itisurgenttoraisecompanies’awarenessofadversarialAIattacks andmotivatethemtobealertandpreparedtodefendtheirAIsystems, especiallythoseusedincrucialsectors,againsttheattacks.
Cybersecurityawarenessandtrainingmodulesformobileusers Themobile phonehasgainedwidespreadacceptanceasacommonplacetoolforaccessingtheInternetanddoingsensitivejobs.Thesecouldbethecauses ofthedailyriseincyberattacksandcrimesaimedatmobilephone users[200][31].However,suitablecybersecurityawarenessandtraining formobilephoneusersarestillrare.Thereisacommonassumption thatmobilephoneuseissimilartousingadesktoporlaptop,which isonlypartiallycorrect.Indeedtheyshareacommonalityascomputingdevices;however,atthesametimetheyalsohavemanydifferences. Forexample,mobilephonespossessahigherriskfortheftorloss,authenticationusedtolockamobilephoneisoftenweakasaresultof
6.SecurityAwarenessandTraining
32
thehighfrequencyofloginstomobilephones,andthesmallerscreen sizeofmobilephonesoftenmakesitdifficulttonoticesecuritywarnings.Additionally,mobilephoneusersarefarmorediversethanthose oflaptopsordesktops.Peopleofvariousbackgrounds,fromurbanto rural,educatedtouneducated,white-collartoblue-collar,andsoon, usemobilephones.Therehavenotbeenmanyinvestigationsintowhy andhowthesediverseindividualsuseamobilephone,andwhattheir expectationsfromcybersecurityawarenessandtrainingmightbe.
Cybersecurityawarenessandtrainingevaluationfocusingonbehaviouralchange. Evaluationsofcybersecurityawarenessandtrainingarefrequentlyrestrictedtogaugingsecurityknowledgeandself-reportedattitudeshifts.
Indeed,improvementinknowledgeandattitudeisimportant,butthe evaluationshouldactuallymeasurethechangeincybersecuritybehaviour; afterall,behaviourchangeiswhattheawarenessandtrainingprogrammesareultimatelyaimingtoachieve[39].Studiesexaminingactual cybersecuritybehaviourareuncommon(moststudiesareoftenlimited toassessingintention),andthosethatdosoareoftenincomprehensible andincomplete.Regrettably,whilenumerouscomponentsofcybersecurityawarenessandtrainingarebeingdiscussed,thereisstillnoproper andreliablemethodtomeasurecybersecuritybehaviouralchange.
6.6.ExampleProblems
33
7 TrustedExecution
7.1 Introduction
Inthelasttwodecades,almosteveryaspect ofpeople’sdailylivesandallareasofhumanactivityhavebeenpervadedandrevolutionisedbydigitaltechnology.Sectorsvitaltosocietyandnations,suchastheeconomy,industry,culture,healthcare,socialand governmentactivities,nowadaysusemassiveamountsofsoftwaretodelivertheirservices,benefitingfromindisputableadvantagesintermsoftime,costandefficiency.
However,ITsystemsarevulnerabletoahugenumberofcyber-attacks,that areconstantlygrowinginbothnumberandseverity,thustrustedsoftware executionisthegoalthatindustryandacademiaarepursuingtoprotectIT systemsandtheirsensitivedatafromcybercrimeattacks.
Traditionally,hardwareisolationmechanismshavebeenintroducedtoprovidevariousprotectionmechanisms:virtualaddressspacesandmemorycontrolunitsprotectuserapplicationsfromeachother,privilegedinstructions protectsystemsoftwarefromuserapplications,andhardwarevirtualisation createsisolatedexecutionenvironmentsprotectedfromeachother.However, userapplicationsremainunprotectedbytheprivilegedsoftwareoftheoperatingsystemandhypervisor,consistingofmillionsoflinesofcodethathosta veryhighnumberofbugs[53, 88],exploitablebyattackerstogainprivileged accesstotheplatform[187].
Thisscenarioisfurthercomplicatedbytheadventofcloudcomputing, nowadaysincreasinglyusedbycompaniesduetoitsindisputableeconomic advantages.Inthiscase,theuserapplicationshavetotrustthehonestyofthe infrastructureprovider,theemployeeswithprivilegedaccountsorphysical accesstothecloudnodes,andtheothertenantsrunningtheirworkloadson thesameplatform.
TrustedExecutionEnvironments (TEEs)wereintroducedtoallowsecuritysensitiveuserapplications,orthemostcriticalportionsofthem,totrustonly
thehardwaresupportfortheTEEplusasoftwarelayerthatrunsinisolationandconstitutesthe TrustedComputingBase (TCB)fortheapplication.The smallertheTCBandthebetteritssecurity,becausethisreducestheattack surfaceandthelikleynumberofvulnerabilities.TEEsalsoprotectapplicationsfromphysicalattackers,forexamplethosethatcouldreadsensitivedata loadedinclearintotheRAMoftheplatform.Thisprotectionisachievedby meansofcryptographiclayersthatshielddatawhiletheyareprocessed.
Inthe2000stheTrustedComputingGroup(TCG)proposedthe Trusted PlatformModule (TPM)asasecureco-processortoperformparticularservices definedbytheTCG,mainlyaimedattheverificationoftheplatform’sintegritystatusandtheprotectionofprivatekeysfromunauthorisedaccess. However,theTPMisnotintendedtoexecutearbitraryapplicationsinitsisolatedenvironment,norcanitbeinstalledonanytypeofdevice.Tomeet theneedtoprotectarbitraryusercodeanddata,theindustryworldbeganto worktowardsthecreationofTEEssolutionsbasedonspecialsecuremodes ofthemainprocessor,thefirstofwhichwas TrustZone [17],proposedin2002 byARM,followedin2014byIntelwith SoftwareGuardExtensions (SGX)[119], andin2016byAMDwith SecureEncryptedVirtualization (SEV)[125].Atthe sametime,theacademyalsolookedforsuitablesoftwaresolutionstocreate TEEs,amongwhichwefind AEGIS [225],proposedin2003, Bastion [37]in 2010, Sanctum [54]in2016,and Keystone [138]in2020.
DespitetheimprovementsintroducedbyTEEsolutionstopursuetrusted softwareexecutionthroughsmallerTCBandstrongisolation,achievingsecuritydependsnotonlyontheTEEtechnologyadoptedbutalsoonthetrustworthinessoftheapplicationcodethatrunsinsideit.IdentifyingvulnerabilitiespresentinthecoderunningintheTEE,aswellasdetectingitscompromiseatrun-time,constitutechallengesthatcurrentstate-of-the-artTEEs donotaddressbutneedtobeconsideredbythescientificcommunityinnext years[166].
7.2
WhoIsGoingtoBeAffected?
AstheITsystemsarebecomingmorepervasive,distributed,andvitalinthe currentworld,thereisnosectorofoursocietythatcanlivewithouttrustin theexecutionofitssoftwarecomponentsandprotectionofthesensitivedata.
Ofcourse,thereisarelativescaleofimportance.Ifindividualsarenot offeredtrustedexecutionontheirpersonalsystems,thentherisksarelimited totheassetsofthatspecificindividual.Onanotherhand,iftheITsystemof acommercialcompanyoragovernmentbodydoesnotsupporttrustedexecution,thenthestakesaremuchhigher,dependingontheapplicationareaof theaffectedsystem.Inparticular,suchlargesystemsarethepreferredtargets forransomwareattacks(i.e.,amalwarethatencryptsdataandaskaransom
7.TrustedExecution
36
todecryptthem)andAPTinjection(AdvancedPersistentThreat,i.e.,apermanentmaliciousapplicationthatremainshiddentocontinuouslyexfiltrate informationorwaitingacriticaltimetoperformadestructiveattack).Recoveringfromransomwaremaytakeaverylongtime,fromdaystomonths(note thatpayingtheransomisnoguaranteetohaveallthedataback).APTare evenmoreinsidiousastheycangoundetectedforyears.
7.3 WhatIsExpectedtoHappen?
Ifsoftwarecomponentsareexecutedwithoutproperprotection,thentheresultsgeneratedcannotberelieduponforanypurpose.Henceanykindof damagecanbeexpected.
Ifusedinanindustrialcontrolsystem(ICS)thenproductioncanbeblocked orproductsmaybemanufacturedinthewrongway,eventuallyleadingtodefectsordamageinothersystemsusingtheseproductsascomponents.
Iftheattackedsoftwareelementisanapplicationhandling(directlyor indirectly)money(suchasanInternetbankingapporacompanypayment system)thenfinanciallosscanbeexpected.
Trustedexecutionisparticularlyimportantforcyber-physicalsystemsinteractingwithhumans.Forexample,thisisthecaseofrailwayorairtraffic controlsystemsorautonomousvehicles.Injectionofmalwareormodification oftheconfigurationofthesesystemsmayleadtophysicalharmtopersons, uptodeath.
Anotherpossiblescenarioconcernsthetheftofsensitiveuserdata,such asdigitalidentity,bankcredentials,orcommercialplans.Ifthisinformation isnotproperlyprotectedandusedwithintrustedexecutionenvironments,it isvulnerabletotheftbyanattacker,whocanuseittoimpersonateanother persontoobtainmoneyillegallythroughunauthorisedbankingtransactions, commitscams,discreditorputapersoninabadlightbycarryingoutillegitimateactionsonhisbehalf.
Inthefieldofcommercialespionage,companiescansufferconsiderable economicandimagedamageifattackersmanagetostealcustomerdataor confidentialinformation,relatedtoproductionprocessesornewprojectsupon whichthefuturedevelopmentofthecompanydepends,thusbringingillicit advantagetocompetingcompanies.
7.4
WhatIstheWorstThatCanHappen?
Theworstpossibleconsequencesdependontheapplicationcontrolledbythe systemtargetedbytheattacker.Therefore,itisobviousthatthemorecritical thesystemandtheworsttheeffectoftheattack.
Thestudy"CostofaDataBreachReport2022"[116]showsthatransomwareanddestructiveattacksrepresented28%ofbreachesagainstthe
7.3.WhatIsExpectedtoHappen?
37
criticalinfrastructuresexamined,highlightingthatattackersaimtointerrupt financialservicesandtodamageindustrial,transportationandhealth-care organisations.Thecriticalityoftheseinfrastructuresrequirestheadoption ofcutting-edgesecuritytechniques,suchasthecreationoftrustedexecution environmentsandthetimelydetectionofanytamperingwiththecodeand configurationofthesystems.
Forexample,intheeventthatagroupofattackerssucceedsinblockinga nation’selectricitygrid,millionsoffamilieswouldbeleftinthedark,companies’productionwouldbeblocked,communicationswouldbecut,banks wouldbeoffline,hospitalswouldnotbeabletoguaranteehealthcare,air andtraintrafficwouldstop.OnesuchattackhappenedinDecember2015in Ukraine,whenthreeutilitycompanieswereattackedsimultaneouslybythe BlackEnergymalware,leavinghundredsofthousandsofhomeswithoutelectricityforsixhours.AnotherattackofconsiderablegravityoccurredinIran in2010,whentheIraniannuclearprogramwasblockedduetosabotageof theNatanzenrichmentplantbymeansoftheStuxnetvirus,whichcausedthe destructionofthecentrifugesoftheplantwhilepreventingthedetectionof themalfunctioningofthesystemitself.Runningthecriticalapplicationthat supervisestheoperationofthecentrifugeswithinaTEEwouldhaveprotected itfromavirusthatinfectstheRichOS.
Thislastattackisaclearexampleofwhatistheworstscenario:theinjected maliciousapplicationdoesnotlimititselftoblockthenormalbehaviourofthe systembutcompletelysubvertsittoperformwrongoperationsthatwould directlydamagethesystemitselforpersonsthatuseit.
7.5 ResearchGaps
Overthepasttwodecades,alotofworkhasbeendonetobuildexecutionenvironmentsabletoguaranteeconfidentialityandintegritytoexecutionandto allowexternalentitiestoassessthetrustworthinesslevelofsystems.Nonetheless,theTEEsthemselvesposenewchallengesthatneedtobeaddressedby thescientificcommunity.
7.5.1
AttackvectorsagainstTEEsecurityguarantees
ATEEcanbeexposedtotypicalsoftwarevulnerabilities,withtheadditionof architecturalvulnerabilitiesnativetoaparticularTEEsolution.ATEEshould haveasmallTCBwithanarrowinterfacetominimisetheattacksurface.Over theyears,severalsoftwareandstructuralvulnerabilitieshavebeenfoundin specificTEEimplementations.However,moreexperiencedteamsaredevelopingsmallerandmoresecureTEEs,thankstothescrupulousadoptionof securesoftwaredevelopmentbestpracticesandrigorousvalidationofthe TEEdesignandcode.Thishascausedattackerstoshifttheirfocustomore
7.TrustedExecution
38
sophisticatedattacksattheedgebetweenhardwareandsoftware[197].An importantresearchareaforthenextyearswillconcernthestudyofmicroarchitecturalside-channelattacks,thatis,attacksthatexploitinformation leakagefromthehardwareinfrastructuretorevealsensitiveinformation,such asprivatekeys.
7.5.2 ProtectionmechanismsagainstcompromisedTEEapplications
TEEsrepresentavalidtechnologicalsolutiontoexecutesecuritysensitive workloadsinaprotectedenvironment.However,iftheapplicationcodedeployedwithinthemcontainsvulnerabilities,theycanbeexploitedbyanattackertocompromisethesecurityoftheentireTEE.Thisproblemisbecoming moreandmoreconcrete,anditssolutionmoreurgent,becausedevelopersbegintouseTEEstoruncomplexapplicationscontainingalargecodebase,thus increasingthelikelihoodthatexploitablebugsarepresentwithintheTEE.It hasalsobeenobservedthatthesecurityfeaturesoftheTEEsthemselvescan helpattackerstoinstallhigherlevelstealthyrootkitsthatareextremelydifficulttodetectthroughcurrentdefensemechanisms[166].Forexample,antivirustoolsrunningontheoperatingsystemcannotdetectmaliciouscode nestedinaTEEbecause,bydesign,theOScannotaccesstheTEEmemory, whichisoftenalsoencrypted.
Forwhathasbeensaid,thesecurityofaTEEcannotbegivenforgranted becauseit’sacomplexmatter,notguaranteedjustbyaperfectarchitectural designandimplementation.Thereforethecreationofsolutionsabletodetect bugsintheapplicationcodedevelopedforaTEEandmonitoritstrustworthinessatrun-timerepresentsanimportantresearcharea.
7.5.3 TEEsandcloudcomputing:interoperabilityandmanagementchallenges
SomeofthemajorcloudinfrastructureprovidershaveincludedTEEsintheir serviceoffering,sinceTEEsareabletoimprovethesecurityandprivacyguaranteesofcloudcomputing.However,twoconceptuallydifferentTEEsmodels canbeadoptedforcloudcomputing[94]:thevirtualmachine-basedmodel encryptstheentiresystemmemoryofavirtualmachine;theprocess-based modelselectivelyencryptsamemoryzoneofthedeployedapplication,delegatingtothedeveloperthedecisiontochoosewhichsectionofanapplication’scodetoprotect.Concreteimplementationsofthesemodelshavebeen developedfordifferentplatforms–SGXandthenew TrustedDomainExtension (TDX)forIntelplatforms,SEVandtheforthcoming SecureNestedPaging (SNP) forAMDplatforms,TrustZoneandRealmsforARM–andCPUarchitectures (x86,RISC-V,ARM).Thegreatvarietyofproposalsfieldedbyresearchand industrycausesinteroperabilityproblemsinmovingaservicefromonear-
7.5.ResearchGaps
39
chitecturetoanother,andcompatibilityproblemsindeployingapplications writtenfortraditionalsystemswithinTEEs.Animportantresearchareais thestudyanddevelopmentofframeworksthatofferalevelofabstraction capableofmakingtheheterogeneityofTEEsolutionstransparenttotheapplicationdeveloper,whilemaintainingthesamesecurityguaranteesoffered bytheunderlyingTEE.
AnotheraspectthatisgainingmoreandmoreimportanceisthedevelopmentofsolutionsthatallowtocombineTEEtechnologieswithcontainer technologies,inordertopromotetheuseofTEEsincloud-nativescenarios andfacilitatethedeploymentofTEEs-basedapplicationsinsidecontainers,at thesametimeofferingthesameuserexperienceasordinarycontainersanda smoothintegrationwiththeKubernetesecosystem.
7.5.4 TEEscryptographicprimitivesinthepost-quantumera
Inrecentyearswehavewitnessedremarkableadvancesinthefieldofquantumcomputers,whichallowustopushcomputationalcapabilitiesfarbeyondclassicalones.Thishasinevitablycausedimportantconsequencesin thefieldofcryptography,asquantumcomputersallowtheexecutionofalgorithmsthatofferquantumspeedtothesolutionofthemathematicalproblemsonwhichclassicalcryptosystemsarebased.Thisthreatwashighlighted withNIST’scall,in2016,topresentnewcryptographicalgorithmsresistant toquantumcomputerattacks.InJuly2022,NISTselectedthefirstfouralgorithmsthatwillbecomepartofNIST’spost-quantumcryptographicstandard[168]:CRYSTALS-Kyberforgeneralencryption,CRYSTALS-Dilithium, FALCONandSPHINCS+fordigitalsignatures.
TEEsbasetheirsecurityoncryptographicprimitivesimplementedinthe hardwarerootoftrustoftheplatform,currentlybasedonclassicalcryptosystems.Animportantresearchareaforthenextfewyearswillbethedesignand implementationofhardwarerootoftrustrelyingonpost-quantumcryptography,inordertowithstandquantumcomputationandquantumside-channel attacks.
7.6 Exampleproblems
Tangibleexampleproblemsmightincludethefollowingones:
DetectingacompromisedTEEapplication. AnapplicationrunninginaTEE couldbecompromisedbyanattackerduetothepresenceofvulnerabilitiesinitscode.Thestrongsecurityandisolationguaranteesoffered byTEEscanbeexploitedbyattackerstoimplementandinstallhardto-detectadvancedrootkitsinaplatform[166].Aimoftheresearch istodevelopsolutionsabletodetectcompromisedTEEapplicationsat run-time.
7.TrustedExecution
40
Technology-agnosticTEEsolutionsincloudcomputing. In2019,agroupof companies,includingIntel,Microsoft,GoogleandARM,foundedthe ConfidentialComputingConsortium (CCC)withtheaimofpromoting theadoptionofTEEsolutionsintheCloud.CCCsponsorsseveral open-sourceprojectsthatoffersolutionstothecompatibilityandinteroperabilityproblemsthatTEEtechnologiespose,suchasEnarx[70], Gramine[98],andOcclum[172].Theobjectiveofthisresearchistoanalysetheeffectivenessofcurrenttechnology-agnosticconfidentialcomputingsolutions,evaluatetheirperformance,studytheirpossiblesecurityshortcomings,applythemtothecloudcomputingdomain.
TEEapplicationsincloud-nativescenarios. Today,manyserviceproviders offertechnicalsolutionstofacilitatethedevelopmentandexecutionof TEEapplicationsinthecloud-Google’sAsylo[97]andAzure’sOpenEnclave[21]aretwoimportantexamplesofthem.However,whilethey simplifythedevelopmentofTEE-basedapplications,theystillrequire thedevelopertoacquirenewprogrammingskillsanddevelopthecode usingthecorrespondingSDKs.Furthermore,eventhoughthegoalof theseframeworksistosupportheterogeneousTEEsbyusingthesame API,theystillrelyprimarilyonIntelSGXtechnology.Theaimofthe researchistodesignanddevelopsolutionsthatallowuserstoruntheir servicesinside“TEE-basedcontainers”,withoutrequiringmodifications totheapplicationcode,whilesupportingheterogeneousTEEback-ends andprovidingeasyintegrationwiththeKubernetesorchestrator.
Trustedexecutioninlow-endIoTdevices. Nowadays,thesecurityofIoTdevicesisessentialastheyareincreasinglyusedinmultiplefields(e.g.vehicles,industry,smartcities,healthcare).However,IoTsystemspresent specialsecuritychallengesduetotheirheterogeneity,consideringnot onlytheembeddeddevicesbutalsothenetworks,themanagement anddataanalysisservices,andthestorage.Furthermore,whilehigh/middle-enddevicescanbenefitfromthesecurityguaranteesofferedby TEEs,low-enddevicestypicallydonothavehardwaresecuritymechanismstoprotectsecurity-sensitiveapplications.Aresearchareainthe IoTfieldconcernsthedesignofTEEarchitecturesthatmeetthechallengesposedbylow-costandlow-powerdevices,toensurethetrustworthinessofawiderrangeofIoTapplicationsandthedatatheyproduce. ThisshouldgoalongwiththedevelopmentofsolutionsforasecureremoteandautomatedmanagementoftheIoTdevices,ofteninstalledin uncontrolledenvironments.
TEE’ssecurityfunctionsintegrationinthenetwork. Goaloftheresearchis theintegrationofTEEstechnologieswithinthecommonnetworkop-
7.6.Exampleproblems
41
erationalmechanismsandtheenhancementoftheirsecuritythanksto TEE’shardwareandsoftwareguarantees.Forexample,animportant aspectconcernsthecreationofmutuallytrustedchannelsbetweenTEEbasedapplications,extendingtheTLSprotocolwithmechanismsthat allowtheverificationoftheintegrityandauthenticityoftheend-points ofthecommunicationchannel,portableforheterogeneousTEEs.
Quantum-resistantrootsoftrustforTEEs. OpenTitan[177]isanopen-source frameworkthatsupportsthedesignandintegrationofvendor-and platform-agnosticsiliconrootsoftrusttointegrateintoservers,storagedevices,peripheralsorothertypesofplatforms.Thegoalofthis researchistorealiseanOpenTitanextensioncapableofusingpostquantumcryptographyinsilicondesignandfirmwareimplementation ofarootoftrust,inordertosupportquantum-resistantTEEs.
Runtimedetectionofmanipulationofsystemconditions
Alteringthecorrect configurationinwhichachiphastooperatecanleadtounexpected softwarebehaviourorchangesintheexecutionflowofthecode;this istypicallyaccomplishedbyphysicallymodifyingthepowerofthedevice,theclock,theelectromagneticfieldorthephysicalinterfaces[197]. Theaimofthisresearchisthecreationofruntimemechanismscapable ofdynamicallysendingalertswhenachangeinsystemconditionsis detected.
7.TrustedExecution
42
8
PrivacybyDesign
8.1 Introduction
Inaworldthatisincreasingly digital,vastamountsofpersonal dataarecollectedandprocessed, oftenubiquitouslyandintransparently,andusedbygovernments and/orcommercialisedamongseveralserviceproviders,databrokers,andadvertisers.Thiscommoditisationofpersonaldatahas furthererodedindividuals’rights toprivacy.Formanydecades, researchershavelookedintothis growingOrwelliantrendofprofilingandsurveillance,attemptingto findabalancebetweentheadvances intechnologyandtheprotectionof privacy.Aimingattheverycoreof thesystems’design,AnnCavoukian coinedthetermPrivacybyDesign (PbD)backinthe’90s,proposinga seriesofsevenfoundationalprinciples,instillingprivacyassuranceasanorganisation’sdefaultmodeofoperation[35](seeFigure 8.1).Behindthese principlesisalsotheobservationthatprivacyisbestachievedwhenaddressed attheearlieststagesoftechnologydevelopment,i.e.intheconceptualdesign phase.
Figure8.1:Cavoukian’s7FoundationalPbDPrinciples[35]
Althoughacclaimedbymanyresearchersandpolicymakers,PbDisoftencriticisedasbeingtoovagueandhardtotranslateintoconcretesoftware engineeringpractices[239].Infact,today,thereisstillasignificantgapbetweenresearchandpractice,e.g.,translatinghigh-levelPbDprinciplesinto concreteengineeringpracticesthatsoftwarepractitionerscaneffectivelyand efficientlyadopt.Aimingtoclosethisgap,theemergingdisciplineofPrivacy
Engineeringhasbeenformedthatfocusesondesigning,implementing,adapting,andevaluatingtheories,methods,techniques,andtoolstosystematically captureandaddressprivacyissuesinthedevelopmentofsocio-technicalsystems[102].Therefore,furtherdevelopingthisareaofPrivacyEngineeringis asignificantchallengeforresearchersaswellasfororganisationsthatwant tointegrateandoperationalisePbD.Fororganisations,thischallengeisalsoa matterofregulatorycompliancenowthatthenotionsofdata-protection-bydesignanddata-protection-by-defaulthavebeenincorporatedaspartofthe EuropeanGeneralDataProtectionRegulation(GDPR),inforcesince2018.
8.2 WhoIsGoingtoBeAffected?
Asmentioned,theGDPRhasraisedthebarforprivacy,includingPbDas partofArticle25“Dataprotectionbydesignandbydefault”forprotecting thefundamentalrightsofindividualsinEurope.Thisregulationaffectsall organisationsthatcollectandprocesspersonaldataofEUcitizensandresidents,meaningthatitcanapplyevenifanorganisationisbasedoutsideEU. However,thelegislationleavesitopentowhichexacttechnicalandorganisationalprotectivemeasuresaretobetakentofulfiltherequirementsofPbD. This,ofcourse,createsfurtherchallengestoorganisations,butmorespecifically,tosoftwarearchitectsanddevelopers,whoareultimatelyresponsible fordesigningthesystems.
Besidesthat,largetechnologyorganisationshavestartedhiringprivacy engineersandestablishingprivacyredteamoperations,whichhelptoembedprivacyinthesystem’sdesignandproactivelytestprocessesandsystemstoidentifyprivacyrisks.However,notmanyorganisationshavethe resourcestohireprivacyengineers,letalonetomaintainanentireprivacy engineeringdepartment.Fromwhatwesee,thisisespeciallythecasefor smallandmedium-sizedenterpriseswhichcomprisethemajorityoforganisationsnowadays.EventhoughthepracticaleffectsofGDPRarebeneficial toindividualsandsocietyasawhole,theyposesignificantchallengesfororganisations,andinturn,totheresearchcommunitythataimstomakePbDa realityinanever-changingtechnologylandscape.
8.3
WhatIsExpectedtoHappen?
Inourdailyliveswearesurroundedbytechnology,withawiderangeof data-intensivesoftwaresystemsbeingusedforpersonalandprofessionalactivities.FailingtoaccomplishPbDintoday’sworkingsystemscanseverely jeopardiseindividualsandthedemocraticsocietyasawhole[205].Thelack ofprivacyhasnegativeimpactstoindividualsrangingfromembarrassment andreputationdamagetovariousformsofdiscriminationthatadverselyaffectindividuals’rightsandfreedomsandphysicalandmentalhealth.Ona
8.PrivacybyDesign
44
societallevel,privacyisalsoconsideredasanessentialcomponentforafunctioningdemocraticsociety[26, 69].Ifpeoplecannotfullyexercisetheirrights andfreedoms,suchasfreedomofassociation(e.g.,politicalandreligious) andfreedomofopinionandexpression(includingholdingbackone’sviews), therearenegativeimpactsontheindividualsdemocraticparticipation,also harmingtheirhumandignityandpersonalautonomy.
Forsuchreasons,itisexpectedthatorganisationswillresponsiblycreate andadaptsoftwaresystemsfollowingPbDprinciples,adheringtoprivacy rightsasenshrinedintoday’sregulations.Asaresult,peoplewouldbeable totakeprivacyforgranted,withthefullexpectationthatanydatathatiscollectedandprocessedhasbeenlawfullyacquired,thatthespecificpurposesfor processingaretransparentlycommunicatedandadheredto,andthatwheneverpossibleusersareabletoexercisevariousrightsovertheirdata,e.g., access,correction,deletion,objectprocessing,etc.
8.4 WhatIstheWorstThatCanHappen?
TheGDPRissometimesreferredasaregulationthathas“realteeth”,applyingmassivefinestoorganisationsthatviolateprivacyrights.Non-compliance withtheGDPRcanleadtofinesofupto20millioneurosorupto4%ofan organisation’sworldwideannualturnover,whicheverishigher.Studiesare showinganincreasingnumberoffinesbasedontheGDPRsinceitspublicationin2018[190,250],withthelargestfinesofarof746millioneurosimposed byLuxembourg’sDataProtectionAuthorityagainstthetechgiantAmazonin July2021[141].
However,arguably,thecollectivesocietalcostsofprivacyviolationscan bemuchhigherthananylegalfines.Asmentioned,thedeteriorationofindividualprivacyrightsincursintheweakeningofdemocracyinitself.Ifleft unchecked,organisationscanexploitadvancedtechnologiessuchasartificial intelligencetocarefullycraftandtargetadvertisements,generatingascenario ofsocialmanipulation[147].EvidencesforsuchexploitativeuseofAI-based profilingofusershavebeenseeninsocialmediamanipulation,spreading fakenewsandmisinformation,andtargetingvoterswiththeintenttotiltthe resultsofelections–theCambridgeAnalyticascandalprobablyasthemost widelyknowncase,butthereisalsoevidenceofinterferenceintheBrexit referendumandelectionsinBrazil,Sweden,andIndia[15].
8.5 ResearchGaps
8.5.1
PrivacyGoalsvs.OtherGoals
Solvingtrade-offsthatneedtobemadebetweenprivacyprotectionandother goalsconstitutesamajorchallenge,asillustratedin[104].Also,ourinter-
8.4.WhatIstheWorstThatCanHappen?
45
viewsconductedwithintherequirementelicitationphaseofCyberSec4Europe [82]conveyedthatforthedomainofprivacy-enhancingidentitymanagement systems,researchandpracticalchallengesforadequatelyaddressingtradeoffsthatneedtobemadebetweenprivacyprotection,usabilityandtrustneed tobeaddressed.Preferencesforprivacytrade-offpreferencesalsodiffersculturally,whichalsoneedstobeconsideredforachievingusableprivacyand identitymanagementsolutionsbydesign[121].
8.5.2 BuildingtheTheoryofOrganisationalPrivacyCultureandClimate
Asadvocatedby[24],organisationscanbeseenaslivinghumanentities,and asahumangroupstructure,theyhaveaculture.Thisgroupcultureisareflectionoftheconsciousnessofitsleaders.Therefore,thevaluesandbehaviours oftheleaderswilllargelyinfluencethecultureoftheentireorganisation.If acultureis“toxic”inoneormoreofitsfacets,itisimportanttolookclosely atthevaluesandbehavioursdisplayedbyleadersandtopmanagement.And thisincludesthefacetofprivacyandhowitisperceivedinsidetheorganisation.
Manyresearchershaveaddressedthetopicsoforganisationalprivacyculture[57]andclimate[16, 103],showingthatthesecomponentsstronglyinfluencetheemployees’perceptions,attitudes,andbehavioursconcerningprivacy.SuchresearchemphasisesthatleadersmustcreateaconduciveenvironmenttointegratePbDsuccessfullyintotheorganisationalprocesses.However,sincethisareaofOrganisationalPrivacyCultureandClimate(OPCC)is initsembryonicstage[122],therestillneedstobemoreprimaryresearchto solidlybuildthetheoryaroundthetopic,aswellastodefinewaystomeasure andembedprivacyinorganisationsreliably.
8.5.3
CounteringDeviceFingerprinting
Devicefingerprintingattacks,whichcanrecalladevicebycoincidentaldata thatthedeviceleaveswhilecommunicatinginanetwork,becomeserious threatforlocationprivacy.Networkdevicesbecomeincreasinglyheterogeneous,whichenablesadiversityoffingerprintsthatcanbeexploitedforattacks.Furtherresearchisneededforunderstandingandmeasuringtheaccuracyoffingerprintingattacks,e.g.,bymeasuringhowmuchentropyiscontainedinaspecificfingerprintingsourceforprovidingguidanceonachieving dataminimisationinaPbDprocess.
8.5.4
DataSubjectRightsEngineering
AccordingtoArt.15-21GDPR,Europeancitizenswhosepersonaldataisprocessedatanyorganisationgloballyhaveasetofrightstowardsthesedata processingorganisations.Forinstance,therightofaccessallowsthemto
8.PrivacybyDesign
46
beinformedaboutthenatureandpurposeofprocessing,aswellasabout thesetofdatastoredandprocessed.Tosomedegree,thisevenspreadsto sub-processorsthatareinvolvedinthedataprocessingaswell.Therightto erasure,oftenalsodubbedtherighttobeforgotten,allowsfordemanding deletionofall(orpartofthe)personaldatastoredatanorganisation–unlessotherexplicitreasoningrestrictsthis(e.g.,concerningpersonalrecords atlawenforcementagencies).Therighttorectificationenablestheindividualsconcernedtochangetheirdata,e.g.,tocorrectfalseinformationinadata record.
However,whenitcomestoenforcementofthesedatasubjectrightsgranted bytheGDPR,alotofopenissuesarise.Howcanthetransparencydemanded bytherightofaccessberealisedinamulti-organisational,distributedworkflow?HowcanrestrictionstoprocessingaccordingtoArt.18GDPRbe implementedintosuchaworkflow?Howcanarequestforerasureorrectificationbepropagatedthroughoutaprocessingchain,andwhichpartofthe processingconstitutethesameworkflowwithrespecttothespecificpurpose ofprocessing?Whendotwoprocessingactivitiesbelongtothesameworkflow,andwhendotheyinstantiateaseparatedataprocessinginstance,with separateneedsforuserconsentanddatasubjectrightsenforcement?
8.6
ExampleProblems
Whenaddressingtheseandotheropenresearchchallengesinthedomain ofPrivacybyDesignorPrivacyEngineering,thefollowingspecificproblem domainsneedtobeaddressedmoreclosely.
IdentifyingfactorsanddefiningconstructsintheOPCCarea. Organisations cangreatlybenefitfrompracticalinstruments,suchasquestionnaires [57],thatcouldhelpthemtomeasureorassessorganisationalaspects suchas“privacyculture”and“privacyclimate”.Todoso,researchers stillneedtounderstandandidentifythekeyfactorsthatformOPCC constructs,andtestinstrumentsintermsofvalidityandreliability.
Algorithmicfairnessvs.dataminimisation. Trade-offsbetweendataminimisationandfairnessformachinelearningmodelswasrecentlydiscussed [38]andisstilltoalargeextendanunsolvedissue.
Meteringrisksindevicefingerprinting. Furtherresearchisneededondefencemechanismsfordevicefingerprintingrisksthatcanbeavoided (e.g.basedonsoftware-definedbehavioursuchasAPIs)andonremainingrisksthatwillbehardtodefend(e.g.,fingerprintingattacksbased onphysicaldeviceproperties,suchasdriftofphysicalclocks).
Measuringthelevelofprivacyprotectionoffered. Itisoftenunclearwhat levelofprotectionisactuallyprovidedbyacertainprivacy-enhancing
8.6.ExampleProblems
47
technologyofprivacy-awaredesigndecision.Alongwiththisuncertaintycomesthequestionwhetheragivensetofprivacy-enhancing measureswassufficienttobeconsideredstateoftheartinthesense ofGDPR,orwhatotherlevelsofprotectionwouldhavebeenadequate. Hence,theselectionofPrivacy-EnhancingTechnologies(PETs)toapplyinagivencontextandscenario,alongwiththedeterminationof theprotectionachieved,isanopenresearchquestion.Earlymethodologiesexist(likethePrivacyDesignStrategies[111],LINDDUN[60],or theStandardDataProtectionModel[51]),butthesearenotsufficientin detailingthemeteringofthelevelofprotectionprovided.
Threatmodellingas“bydesign”enabler. Privacyneedstobecomeintegrated intoallstepsofsoftwaredevelopmentbydesign.AccordingtoGDPR’s risk-basedapproach,itiscrucialtofirstdeterminetheprivacyproblemsthatcanariseinordertoproperlyresolvethem.Threatmodelling isawell-knownapproachinthesecuritydomain1 andhasbeengainingmomentumintheprivacycommunityaswell.Privacythreatmodellingallowstosystematicallyidentifyandmitigateprivacyissuesat thearchitecturallevel.Byidentifyingtheseproblemsearly,theycanbe tackledatthesystem’scoreinamoreefficientway.Thethreatmodel shouldinformdecisionsinsubsequentdesign,development,testing, andpost-deploymentphases2 (e.g.determinethekeyverificationtargetsforsoftwaretesting).Riskassessmentshouldguideprioritisation. Threatmodellingautomationisthenextsteptofacilitateagrowing adoption.Developmentsinrun-timeandadaptivethreatmodellingwill alsostrengthentheincorporationinContinuousIntegrationandContinuousDelivery(CI/CD)settings.
Datacustodiansanddelegateddatasubjectrights. Utilisingdatasubjectrights againstadatacontrollerrequiresaspecifictypeofinteractionaccordingtotherulesoutlinedintheGDPR.DataControllershavetoprovide communicationmeansforsuchrequestsaccordingly,andmayhavea largeincentivetoautomateoratleaststructuresuchrequestsasfaras possible,e.g.tosaveworkforce.Atthesametime,theburdenofutilisingone’sdatasubjectsrightsovertimecaneasilybecomecumbersome, e.g.ifrequestsforerasureneedtobedonerepetitivelyduetodata collectionprocessesnotproperlycontrolledbythedatacontroller,orif rightofaccessrequestsmustbepreprocessedtobecomeunderstandable tohumanreaders.Insuchcases,theinstantiationofadedicateddata custodianthatenforcesdatasubjectrightsonbehalfofthedatasubject
1seee.g.OWASP’stop10: https://owasp.org/Top10/ 2seealso www.threatmodelingmanifesto.org
8.PrivacybyDesign
48
maybecomeessential.AsforeseenintheEuropeanDataGovernance Act,dataintermediariesthatenforcedatasubjectrightsmustfulfilspecialrequirements,andmaybetemptedtoautomatetheiroperationsas faraspossibleaswell.Here,openresearchchallengescanbeidentified intheseaspects,suchasdatasubjectrightsengineering,transparency bydesign,rightofaccessasaservice,ordatacustodiantrustdelegation models.
8.6.ExampleProblems
49
9
CriticalInfrastructures
9.1 Introduction
Althoughtheprotectionofcriticalinfrastructures(CIs)hasreceivedtheattentionoftheresearchcommunityformorethanadecade,securingCIsfrom emergingcyberandhybrid(cyber-physical)attacksisstillanopenchallenge. VariousdefinitionsofCIscanbefoundinthescientificliterature,internationalstandardsandregulatorydocuments.Insimpleterms,andinlinewith therelevantEuropeanCouncilDirective[64],CIsarelarge-scalesystemsor systems-of-systems,thatareessentialfortheproperoperationofvitalsocietal functionsandforpeople’swell-being.
Takeforexamplethe healthcare sector:thissector iscomprised,amongother things,ofhospitals,healthcarecentres,pharmaceutical labs,bloodsupplyfacilities, emergencyservicesandresearchfacilities.Thedisruptionordestructionofsuch facilities,especiallyifextensiveorforasignificantduration,mayhaveasevereimpactonpublichealth.Asanotherexample,considerthe transport sector:inthiscaseairports,ports,railwayinfrastructuresandroadtrafficcontrolsystemsplayasignificantrole inpeople’smobility,aswellasintheproperoperationofthesupplychain. OtherexamplesofCIsectorsinclude informationandcommunicationtechnology infrastructures,suchastelecommunicationnetworksandcloudinfrastructures; energyinstallations includingelectrical,gas,oilornuclearpowerproduction,storage,transmissionanddistributionnetworks; waterfacilities,including dams,waterstorage,managementandnetworks; finance,suchasbankingfacilitiesandinter-bankingcommunications; foodmanagement,includingfood production,foodsafetysystems,wholesalesupplychain,andmanymore.
Onemightarguethat,“sinceCIshavebeenarearoundforseveraldecades (orevencenturies),theymustalreadybematureenoughandadequatelyprotected".Unfortunatelythisisfarfrombeingtrue,forseveralreasons.Thefirst reasonistheincreasedaccessibilityofmodernCIsandtheirincreasedcouplingwithinformationandcommunicationsystems.Afewdecadesago,CIs usedtobeclosedsystems.Nowadays,InternetconnectivityoffersCIadministratorsmoreefficient,real-timeandremotemanagement,withoutrequiring physicalproximitytotheinfrastructure.Ontopofthat,CIshavealsobecome moreaccessibletoendusersandcloselyconnectedwithInternet-of-things (IoT)systems.Forexample,whilesomeyearsagomeasurementconsumption intheelectricgridrequiredphysicalaccesstotheend-usermeteringsystems, nowadayssmartmeteringsystemsallownotonlyremotemeasurement,but alsoremotecontrol.WhilechangesliketheonesdescribedabovehaveincreasedtheefficiencyofCIoperations,atthesametimetheyhaveincreased theirattacksurfaceandhaveenabledtheirexposuretoremotecyber-attacks.
Lastbutnotleast,theincreasedconnectivityofCIshasalsoincreasedthe dependencies betweenthoseinfrastructures.Differenttypesofinfrastructure dependenciesexist.Forexample,anenergyproviderwhoreceivescommunicationservicesfromatelecommunicationoperatorhasa cyberdependency.On theotherhand,thetelecomoperatorwillrequireelectricalpowertosupport itsnetworkoperations.Anydependencyonaphysicalresource,suchason theenergysupplyasdescribedabove,isa physicaldependency.Othertypes ofdependenciesinclude geographical (whentwoCIsdependoneachother becauseoftheirphysicallocation)and logical (whensomekindofdependency otherthanthoseabovecanbeidentified).
9.2 WhoIsGoingtoBeAffected?
Anyonewhoactsasa“consumer"oftheservicesprovidedbyaCIwillbe affectedifaCIiscompromised,includingpeople,companiesandotherorganisations.Unfortunately,thedependenciesbetweenCIprovidersincrease thesignificanceofpotentialattacks,aswellastheextentoftheorganisationsandpeoplethatwilleventuallybeaffected.Considerforexamplea cyber-attackagainstanelectricaldistributionnetwork,whichsupportsmany othernearbyCIs(geographicalandphysicaldependencies),suchastelecom providers,traffic-lightsystems,governmentservices,datafacilities,hospitals, datacentresorairports.Thedisruptionorthedegradationoftheelectrical supplywillconcurrentlyaffecttosomeextent,alltheCIsthatdependonthe specificelectricaldistributionnetworkunderattack.Suchtypesofconcurrent dependenciesofmultipleinfrastructuresonasingleCImayresultinwhatis knownas common-causefailures.Common-causefailureswillobviouslyaffect
9.CriticalInfrastructures
52
multipleorganisations,inboththepublicandintheprivatesector,aswellas manypeoplewho“consume"theaffectedservices.
Anothertypeofdependenciesthatmayconcurrentlyaffectaconsiderable numberofpeople,companiesandorganisationsarethosedependenciesthat cascadefromoneCItoanother.Oneofthemostfamousandwell-studied casesistheCaliforniablack-out[196],wherethefailureofapowerstation causedmultiple cascadingfailures,duetoaseriesofCIdependencies.For example,theenergyreductioncausedadecreaseintheamountofpetroleum thatwaschannelledtotheairportfacilities,thereforecausingsevereproblems totheairportservicesandultimatelytotheflightschedulesoftheairport operators.Atthesametime,thelossofelectricalpowerledtothedegradation ofthesteaminjectionunitsthatwereusedtopoweroilrecoveryunits.The latterledtoafeedbackeffect,sincetheproducedoilwasalsousedasafuelby theelectricalpoweroperatorthatwasinitiallyaffected!Finallytheelectrical powerreductionalsoaffectedthewaterpumpsthatwereusedincropfields.
9.3
WhatIsExpectedtoHappen?
AttacksagainstCIsmayleadtoallkindsofconsequences,suchaslossof life,financialloss,publicdisorderordisruptionofbusinessoperations[222]. Attacksagainsthospitalsmayaffectpatienttreatment.Forexample,aransomwareattackinaGermanhospitalcausedadelayonapatient’semergency treatment,whoeventuallylostherlife1.Althoughtherelevantpoliceinvestigationconcludedthat“thedelaywasofnorelevancetothefinaloutcome"2 , italsowarnedthatit’samatteroftimebeforehackinghospitalsleadsto tragicresults.Attacksagainstenergyinfrastructurescandirectlyleadtoloss ofproductivity,andtosevereeconomicloss,especiallyifcascadingeffectson otherinfrastructuresarealsoconsidered.Examplesofcyberattacksofthis kind,allegedlycausedbynation-stateadversaries,includetheattacksagainst Ukraine’selectricalgridin2015andin20163.Telecommunicationinfrastructuresarealsoveryattractiveattacktargets,sincetheyandenergyarethetwo sectorswiththehighestlevelofincomingdependenciesfromotherinfrastructures(almostanyCIdependsonenergyandtelecommunicationservices). Attacksagainstroadtrafficmanagementinfrastructuresordirectattackson
1Theuntoldstoryofacyberattack,ahospitalandadyingwoman: https://www.wired.co. uk/article/ransomware-hospital-death-germany
2RansomwareattackinGermanhospital.Areportontheinvestigationfindingsandwarningscanbefoundin: https://www.technologyreview.com/2020/11/12/1012015/ransomwaredid-not-kill-a-german-hospital-patient/
3HackerstriggeryetanotherpoweroutageinUkraine: https://arstechnica.com/ information-technology/2017/01/the-new-normal-yet-another-hacker-caused-poweroutage-hits-ukraine/
9.3.WhatIsExpectedtoHappen?
53
vehiclesofanykind(cars,shipsorplanes)mayleadtodisruptionoftrafficor eventolethalaccidents.
9.4 WhatIstheWorstThatCanHappen?
AsCIsarevitalforpeople’swell-beingandtheirdisruptioncouldleadto severesocietal,financialandsafetyconsequences,theyareveryattractivetargetsformaliciousattackers.
ThepreparationofcyberattacksagainstCIsrequireshighmotivation,usuallyhighresourcesandskillsandsomekindofcapabilityforinitialaccessby theadversaries.Unfortunately,varioussuchadversariesexistinthecurrent threatlandscape.Forexample,nationstateadversariesmaybesufficiently motivatedandmayhavetherequiredtime,resourcesandskillstodeploy AdvancedPersistentThreats (APT)againsttargetedCIs,withtheintentionof causingseveredamagetotheCIsofanenemystate.Thismaybeusedas anasymmetricattackoraspartofahybridcyber-physicalwar.Terrorists mayalsobemotivatedtocauseseveredisorderandlossofpublicconfidence. Finally,cybercriminalsmaybemotivatedtoattackCIs,aimingtoahigheconomicgain,e.g.throughransomwareandblackmailingattacks.
Theincreasednetworkconnectivityandtheinter-connectivityofCIsis increasingtheattacksurface,asitmayprovideadversarieswithseveralinitial pointsofentry.Inaddition,thelackofsecuritytrainingandawarenessmay alsobeexploitedbyadversariestogaininitialaccess.Forexample,spear phishingcampaignsaimedattargeteduserscanbeapreparatoryactionfor anAPT.
9.5 ResearchGaps
ObviouslytheprotectionofCIsfromattackssuchasthosedescribedabove isnotatrivialtask.CIprotectionisamulti-disciplinaryprocess.Froma technicalpointofview,itrequiresabetterunderstandingofthethreats,vulnerabilitiesandexposures,aswellasanefficientandeffectiveprotection. Fromasocialandbusinessperspective,itrequiresabetterunderstandingof thedependenciesbetweenCIsandtheimpactrelatedtothespecificattacks, aswellasincreasedtrainingandawarenessofthepeopleinvolved.
9.5.1
APTsareexpectedtobecomemorepowerful,evenmoresophisticatedand morefrequent.Thesameistrueforothertypesofman-madehybrid(cyberphysical)attacksorevenfornaturalandclimate-changedisasters.Becauseof theircomplexity[209],CIsarenotcurrentlyequippedwithadvancedmodellingtoolsthatwillallowthemtoadequatelypreparethemselvesforsuch
9.CriticalInfrastructures
Modelling,analysisandsimulationofnon-trivialthreatsincluding APTs,cyber-physicalandclimate-changerelateddisasters
54
non-trivialthreatsandtoeffectivelymanageanylikelyattack[242].Thereisa needfornovelapproachestosupportthemodelling,analysisandsimulation ofsuchthreats,e.g.[254],inordertobetterprepareCIstodealwiththemin therealworld,butalsotoproposefast,efficientandreliableresponsetactics.
9.5.2
Developriskassessmentandmanagementmethodologiesforsystemicandsupply-chainrisks
Aswashighlightedveryclearlythroughtheeventstriggeredbythewarin Ukraine,severalCIsectors,suchasenergyandtransport,maytriggersystemic,cross-sectorandcross-borderrisksforsocietyandtheeconomy(e.g.by disruptingenergyorfoodsufficiencyonaEuropeanorglobalscale).Given theirspecialcharacteristics[256],thereisaneedtodevelopnovelmethodsfor theearlyidentificationandproactivemanagementofsuchrisks,especiallyin across-sectorandcross-bordercontext.
9.5.3 ResilienceofCriticalInfrastructures
IncreasingtheresilienceofCIsisanongoingresearchgoal,atbotha“microscopic"andata“macroscopic"level[193].Fromacomponent-wisepoint ofview,thereisaneedforadditionalresearchinto resilientandfault-tolerant embeddedsystems,whichareessentialforthepropermonitoringandcontrol ofcriticalcyber-physicalsystems.Fromasystem-wiseview,assuringalevel of resilienceforcriticaloperations andservicesinacost-efficientwayisanopen challenge.Thereisaneedfor(re)designingresilient-by-designinfrastructures,bydevelopingnearlycost-optimalsolutionsthatassurethecontrolled redundancy,resourcefulnessandquickrecoveryofcriticaloperations[210]. Aresilientdesignshouldalsoconsidertheintegrationofcost-efficient(semi)automatedresponsecapabilitiestoeffectivelyminimisetheimpactofcyber attacksattheearliestpossiblestage.
9.5.4
ImprovedAI/MLassistedmodelsfor(inter)dependencyanalysis
Despitepastandrecentresearchefforts(e.g.[204, 208, 224, 243]),thereisstill aneedforimprovedmodelsfortheanalysisofCI(inter)dependencies,exploitingreal-timethreatandriskmonitoringsystemsassistedbyartificial intelligence(AI)andmachinelearning(ML).Forexample,thereisaneed todevelopmodelsforunderstandingtheperturbationfluxfromonesystem toanother,whichencompassnon-localeffectswithlargedifferenceintime scales.Asmodeltrainingshouldbebasedonrealdatafromactualsystems, thisrequiresamoredirectinvolvementoftheinfrastructureoperators.
9.5.ResearchGaps
55
9.5.5
Eventpredictionbasedonalltypesofdependencies
Althoughcyberandphysicaldependenciesaregenerallycapturedindepth incurrenteventpredictionmodels,geographicaldependenciesarenotadequatelycaptured.Becauseofthis,predictionofdisruptiveeventsisnotaccuratelymappedonaspecificterritory.Effortsshouldbemadeinthatdirection, forexampleusinggeographicinformationsystemstocapturethemaximum possiblelevelofspatialresolutionandtomapthisinformationontodata concerningdislocationofassets,alsoconsideringthemostimportantperturbationtypesforeachasset(e.g.ground-shaking,rain,wind,ortemperature).
9.5.6
CollaborativesituationalawarenessfortheCIecosystem
Asacontinuouslyincreasingamountofcybersecuritydata(e.g.emerging threats,zero-dayvulnerabilities)becomesavailableonadailybasis,itbecomesmoredifficulttoeffectivelyutilisethatdatatoimprovethecybersecuritysituationinanorganisation[11].Improvingsituationalawarenessfor CIoperatorsrequiresamulti-disciplinarysocio-technicalapproach,whichincludespeopleaspartofthesolution.Methodsandtoolsareneededtofacilitatecooperationandcollaboration within and between theCIoperatorsand therelevantsectoral,nationalandEuropeanauthorities.
9.6 Exampleproblems
Tangibleexampleproblemsmightinclude:
DigitaltwinsofCIs. Develop4-dimensionalmodelstocontinuouslymonitorthebehaviouroftheinfrastructure,byconstantlyreceivinginput fromIoTdevices.Thismaybeapriorityforinfrastructuressuffering fromageingproblems,inordertocontinuouslyanalysetheirexpected stateandtoperceivepossibledeviationsfromtheirnormalstructural behaviour.
SupplychainsecurityforCIs. CIoperatorsdependonvarioussupplychains todelivertheirservicestoend-users.Attackersareincreasinglyusing thewholesupply-chaintoperformattacks.Assupplychainsecurityis alsomandatedbytheNIS/NIS2,supplychainsecurityforCIsrequires furtherinvestigation.
Developtoolstosupporteffectiverecoveryfromcriticalall-hazardevents. Theincreasednumberofinterdependenciesrequiresthedevelopmentof innovativedecisionsupporttoolstoassistintheearlyidentificationof criticaleventsandinthemosteffectiverecoverystrategy,takinginto considerationtheirdependenciesandotherconstraints.
9.CriticalInfrastructures
56
Developmethodsandtoolsfortheearlydetectionofcyber-physicalevents. SinceCIsarecyber-physicalsystemswithstronglytightdimensions, thereisaneedtodevelopmethodsandtoolstodetectandassesscyberphysicalattacks,byconcurrentlyconsideringboththeircyberandphysicalvulnerabilitiesfromaholisticperspective.
Designimprovedmulti-disciplinaryregulatoryframework. Competentauthorities,asdefinedinNIS/NIS2,areplayingakeyroleinCIprotection.Itisnecessarytodevelopsustainableandcollaborativeregulatory frameworksthatcanconsiderallpertinentrisksandhandleincidents involvingvariousdimensionssuchastechnical,societalorlegalaspects.
9.6.Exampleproblems
57
10 Metaverses
10.1 Introduction
Despitewhatmanyreadersmaythink,themetaverseisnotaproduct,not evenabrandofsomesocialnetworkcompany,butanamegiventoasetof technologiesappliedinplatformsfortheWebontheInternet.Infact,the conceptofvirtualworldsdatesbackatleasttothe19th Century[27].Still,the termmetaversewasusedtonameafuturisticconcept,describedinascience fictionbookin1992,whichpopularisedit[223],andwasshowninavisual formatinamovie20yearslater(i.e.10yearsago)[159].Metaverseinpractice today,referstoanewtypeofWebplatform,whichissupportedthrougha comprehensivesetoftechnologies,someofwhichalreadyconsolidatedand othersinevolution,whichwillallowusersgreaterinteractivityandsocialisationinimmersive3Ddigitalenvironments,representedbyauniverseofnew digitalvirtualworlds,preferablymirroredinthephysicalworld.
Metaverseresearchwitnessedafirstwaveof"hype"betweentheyears 2000and2006,withmanyresultsandvisibility.Currently,in2022,itisgoing throughasecondwaveofinterest,nowbroughtaboutbycommercialplayers thatstartedtomarkettheirmetaversesandeventsheldinsidethem,butalso byawidelypublicisedmetaverse-relatedpublicannouncementbyoneofthe WesternBig-Techsinlate2021.
Today,itispossibletounderstandwhatmetaversesare,orcouldbe,by browsingthroughWebplatformssuchasSecondLife,Decentraland,SomniumSpace,TheSandbox,Roblox,HorizonWorlds,AvakinLife,Mesh,among others.
Theconceptsofdigitalvirtualworldsoftoday’smetaversesaretypically basedonWeb2.0technologiesthatinclude2Dand3DVirtualRealityspaces, withcomputergraphicsimagesrangingfromlowtohighresolution,and someplatformsusingAugmentedRealitytechnologiesinvariousactivities. Therepresentationofusersisalwaysthroughavatars,and,asaccesstoplatformsdependsonanexclusivelogin,thereisalackofinteroperability,as avatarsareconfinedtoasinglemetaverseanditsworlds,notbeingallowed
tomovefromonemetaversetoanother,onanotherplatform,withoutlogging inagaininthephysicalworld.
Themeansofaccessingtheplatformscanbedonethroughvariousdevices thatincludesmartphones,tablets,laptops,desktops,workstations,andeven head-mounteddisplaysorvirtualrealityglasses.Someplatformsalready usemonetisationthroughblockchainandcryptocurrencies,withtheadoption ofsmartcontractsandfungibleandnon-fungibletokens(NFTs)thatenable mercantileactivities.Note,however,thattodaytherearestillfewplatforms formetaversesthatuseWeb3.0technologies,theHTTP/3protocol,andother moreadvancedandsecuretechnologicalresources,butthisisclearlythepath forthefuture.
Tosupportthesefeatures,themostadvancedtechnologiessuchasWeb 3.0(latestInternetversion),ArtificialIntelligence,Brain-ComputerInterfaces, IoT(InternetofThings),Blockchains,andVirtual,Augmented,Extended,and MixedRealitywillusherinalargenumberofopportunitiesthatwillprobably impactlargepartsofoursocieties,justlikeSocialNetworksdid.
10.2 WhoIsGoingtoBeAffected?
Inordertoanalysetheplausibleimpactofmetaversesinfuture,let’sembraceinthischaptertheirfullvisionasdigitalworldsthataremassive,immersive,persistent,openandeconomicallydeveloped,asfollows[95].
• Massive: Theycanhostanunlimitednumber,oratleastaveryhigh numberofconcurrentusers,asthecomputingpoweroftheWebplatformsandoftheusers’machinesevolvesintermsofgraphicsprocessing andconnectivity.
• Immersive: Theyofferthree-dimensionalandembodiedexperiences, basedonVirtualReality(VR)andExtendedReality(XR).Imaginethat afterworkyougotoasmallroominyourhouseorneighbourhood, dressupinaconnected“sensorysuit”,andtellthecomputerthemetaverseofyourchoiceand,fromthere,youenterthesite,havingthesensationofbeingpresentandliving“inside”achosendigitalvirtualworld, controllingmanythingswithyourthoughts.Thisisincontrasttothe currentexperienceofmostgameuniverses,whicharetwo-dimensional, confinedtoscreens,andmediatedbyclicks,typing,andeitherscreenor mouse.
• Persistent: Metaverseswillneverstoporreset.Oratleastthatwillbe theperceptionoftheirusers.Thelifeandsocietyofametaversewill continuouslyevolve,evenifsomeavatarsarenotpresent,asithappens tonormallifeinourworld.
10.Metaverses
60
• Open: AnyonewithgoodInternetconnectivityandVR/XRcomputing powercangointometaverses,movewithinthemasanavatar,interact withotheravatars,socialise,trade,build,produceintellectually,andso on.
• Economicallydeveloped: Therewillbeextensivetradeingoodsand serviceswithinthemetaverses,whichmayormaynothaveanimpactin thephysicalworldoutsidethem.TheywilllikelybesupportedbyDecentralizedFinance(DeFi)architecturesanddigitalmonetarysystems thatencompassblockchaintechnologies,cryptocurrencies,smartcontracts,andfungibleandnon-fungibletokensthatwillenableproperty rightsassurancepractices.
Clearly,suchanambitiousvisionpointstoahighlikelihoodofarenewed collisionbetweenIndustrialAgeGovernanceandDigitalAgeGovernance, whichwouldaffectalllayersofthepopulation,fromsimplemetaverseusers topolicymakers.
Infact,governmentsarealreadynervous.IntheEUtheEuropeanParliamentisconcernedmainlyaboutCompetition,DataProtection,Responsibilities,FinancialTransactions,Cybersecurity,Health,Accessibility,andInclusion[145],whiletheEUCouncil’smainpointsofpreoccupationareGeopolitics,Economicgrowth,Jurisdiction,Health,Consumerprotection,Civiland Penalcodes,andClimatechange[19].Wenotethatmassiveintellectualinvestmentwouldberequiredinorderforpracticalsolutionstobefoundand implementedineachoftheseareas.Besides,therewillbethornyissues aroundreachingconsensusinanyofthesetopics.Thesearesomereasons whytheEuropeanCommissionhasjustincludedmetaversepolicyamongits priorities[44, 50].
10.3
WhatIsExpectedtoHappen?
Ananalysisoftheevolutionofmetaversesupporttechnologies,suchas thosedescribedabove,theInternet,andtheWeb–fromtheWeb1.0version andthecurrentWeb2.0,tothenewlevelofWeb3.0,especiallywhenthinkingaboutWebplatformswithgreatinteractivityandgreatersocialreach–, bringsmanyquestionandconcerns,especiallyregardingcybersecurity,privacyandprotectionof(personal)data,regulations,andvariousaspectsofthe governanceofsuchdigitalworlds[216].
Takegovernance inside ofmetaversesasanexample.Theconceptof“inside”ishighlightedbecauseitisdifferentfromtheconceptofinterfacebetweenthedigitalworldofametaverseandourphysicalworldsincesuchan
10.3.WhatIsExpectedtoHappen?
61
interfaceisbecomingregulated,atleastintheEuropeanUnion(EU),since 2016.
IntheEU,therule-of-lawisdominantanditsinstitutionsaremostlyfit forpurpose.However,inthisnewtechnologicalfrontierthataremetaverses, itisnotclearwhatwillberegulated,whowillestablishandenforcerules,or howthiswillbedone.Butanyplace,physicalordigital,atsomepointof populationdensitywillneedsomekindofordermaintenance,includingthe notionoffundamentalrights.
Indeed,thinkingofunregulatedparalleldigitaluniversesisworrisome. Andascommercewillbeubiquitous,products,transactions,propertyrights, andotherbusinesseswillneedsomekindofprotocolsformarketstothrive. Thenallkindsofconflictingsituationswillhavetoberesolvedbysomeform ofauthorities,police,andcourts.Aswell,theremustberulesoftrade,taxation,income,etc.Butthen,ifalargesetofruleshastobeestablished,another importantquestioniswhoisgoingtosetthem:Aretheygoingtobetheownersoftheplatformsofmetaverses,sincetheseuniversesareprivatelyowned? Willtheyputuserstohelpsetuplocalrules?Orarepublicauthoritiesfrom thephysicalworldstartingoutandexpandingtheirreachintothedigital worldaswell?Whosepublicauthoritiestostartwith?Orarelibertarians thinkingaboutcreativetechnologiestogovernthemetaverses,promotingthe ideologythat"codeislaw"?Likewise,whatformdoessuchabodyofrules take?Accordingly,wecanthinkofthefollowingformsofregulation.
• Signingofusagecontracts.However,theymaybeaslongasconstitutions.
• Replicationoflawsandregulationsfromthephysicalworld.However, thismayhinderinnovation,andgoodjustificationswouldbeexpected forthechoiceofonemodeloveranother.
• Distributedmodels,basedondigitaltechnologies,likeblockchain,bitcoins,NFTs,smartcontracts(i.e.,persistentscripts).
Inaddition,theverytechnologicalofferofinteractivityandimmersionof next-generationmetaverseswillheavilydependonwearabledevicesmonitoringbothbiometric(e.g.,gait,facialexpressions,temperature)andneurometric (e.g.,fear,satisfaction,attention)data,whichwillimplycontinuousandfull surveillanceofusers.InWesternsocieties,whereprivacyandprotectionof personaldataarefundamentalrights,commercialandpublicinterestswill haveaverydifficultrelationshipconcerningthistopic.
Tocompoundsuchissues,theattacksurfaceforsecuritybreachesandprivacyinvasionscanbecomeverylargeinthemetaverse,becauseitintegrates avarietyofolder,current,aswellasuntestednewtechnologiesandsystems
10.Metaverses
62
10.4.WhatIstheWorstThatCanHappen?
whoseintrinsicvulnerabilitiesandflawswillbeinheritedbythelargersystem.Asaconsequence,existingsecuritythreatswillbeamplified,withmore severeeffects.Theyincludethefollowing(nonexhaustive)[244]:
• Lackofsecurityculturefromthepartofusersinsuchnewenvironments,
• Mismanagementofmassivedatastreams,
• Widespreaduser-profilingactivities,
• UnfairresultsfromArtificialIntelligence(AI)algorithms,
• Digitaltwinssecurity,
• Securityofmetaversephysicalinfrastructures,
• Personaldatainvolvedinthemetaversewillbemoregranularandbiometric,includingemotional,etc.
Finally,theenlargementoftheattacksurfacebroughtbymetaverseswill facilitateexistingthreatsinphysicalandcyberspaces,likepersecution,harassment,andespionage,whichmayincreaseinfrequencyandimpact.The useofemergingtechnologieswillmakemorelikelysecurityincidents,like hijackingwearabledevicesorcloudstorage,virtualcurrencytheft,orAImisconducttoproducefakenewsautonomouslywithinmetaverses[67].
10.4 WhatIstheWorstThatCanHappen?
Manythingscangowrongifprovisionandusageofmetaversesrunamok infuture,andmostofthemarerelatedtothenotionoftrustinthem.
Itiscertainthatthevastmajorityofmetaverseusersareandwillbelawabidingcitizensandpeoplewhovaluecivilisedbehaviour.However,among theusersisalsocertainthattherewillbecheatersandotherlesshonestpersonswhowilljoininjusttotryandmakeeasymoneyoutofwhatwould bedefinedinmostpartsofthephysicalworldascriminalactivity.Suchan environmentwouldnotinvitetrustfromusers,andlicitcommercialreturns overinvestmentmayplungeasaconsequence,whileillicitundertakingsmay flourish.
Onanother,perhapsmoreimportantregistry,metaversesplacemajorchallengestoprivacyandgovernanceandtheymayhavethepotentialtoacceleratethegeopoliticalshiftofpowerfromNationStatestoprivatecompanies. Remindthatalreadytodaysomesocialnetworkcompanieshavepopulations thatarelargerthanthatofthelargestcountryonEarth.Ifnationalgovernmentscannottrustthatmetaverseswilltreattheircitizensinalegalmanner,
63
thengovernmentsmaydecidetoover-regulatemetaverses,hamperinginnovationandincreasingfragmentation.
Accordingly,thelackoftrustworthygovernanceandofsecurityandprivacyregulationsinsidemetaversesmayturnthishigh-techEldoradointoa 21st CenturyWild-West,wherefortuneswillbemadeandlawlessnesswillbe theruleratherthantheexception.
10.5 ResearchGaps
Asseenabove,thefieldforStateregulationofmetaversesisvast,ranging fromissuesatmacrolevels(e.g.,geopolitics)tomicrolevels(e.g.,sellingadigitalbraceletinthemetaverse).Inanutshell,themajorcurrentEUlegislation andpoliciesgoverningthedigitalsphereareasfollows.
• DigitalMarketsAct:Regulationofcompetitionforonlinemarkets.It establishesharmonisedrulesthatdefineandprohibitunfairpractices, suchastheuseofcompetitors’dataandlackofinteroperability,onthe partof“gatekeepers”oftheWeb.
• DigitalServicesAct:Duediligenceobligationsonalldigitalservices thatconnectconsumerstogoods,services,orcontent,includingproceduresforfasterremovalofillegalcontentaswellascomprehensive protectionforthefundamentalrightsofonlineusers[46].
• GDPR:Protectionofpersonaldata.Duediligenceandcybersecurity[49].
• DataGovernanceRegulationandDataAct:WhiletheDataGovernance Regulationcreatestheprocessesandstructurestofacilitatedata,the DataActclarifieswhocancreatevaluefromdataandunderwhichconditions.[48]
• Variousincybersecurity:CybersecurityAct(egcertification),NIS2,ENISA, ECCC/NCCs,JointCyberUnit,CyberResilienceAct,etc.[45]
However,fromagovernanceandpolicyviewpointsuchexistinglegislationareprobablynotsufficienttoinducetrustinthedomain,andperhaps notevensuitableformetaverses.Consequently,muchresearchisneededin theseareasinthenearfuture.Forinstance,therewillbeaneedtoregulate securityandprivacyinmultipleuniversesthatarebeingbuiltfromscratch.
Questionsmaybesimpleextensionsofexistingconcerns,likewhethermetaversesshouldbesubjecttoexistinglawsforthephysicalworldand,ifso,how nottohinderinnovationandcreativity.Ortheymaybeturnedmuchmore towardsfutureconcepts,likewhetheravatarsshouldbegivencitizenstatus.
10.Metaverses
64
Likewise,thetechnologiesneededtobuildmetaversesasenvisionedhere arejustemerging,andagreatdealoftechnologicalresearchwillberequired inthenextfewyears.Moreover,onelikelyresultofmarketforcesisthat severalmetaverseswillbecreated,representingparalleluniverses,notonly betweenthem,butalsotothephysicaloneweareusedtolivein.
Whatiscertainisthatanewgoldrushhasalreadybegun.Required researchareascanbepresentedinclusters,asfollows.
10.5.1 Buildingtrustworthymetaverses
Onegovernanceresearchareashouldanalyseallaspectswithinmetaverses thatwouldimpactindividualusers.TheseencompassinteraliaDataprotection,Liability,DigitalIdentities,Cybersecurityattheuserlevel,Mental andPhysicalHealth,Accessibility,Inclusion,Financialtransactions,andConsumerprotection.
10.5.2
Metaversesandthephysicalworld
Anothergovernanceresearchareashouldproposenewsocietalsystemsfor metaversesandtheirinterrelationwithexistingformsofgovernanceandgovernment.ThesewouldincludeCybersecurityatphysicalinfrastructureand atsystemslevels,Privacy,Competition,Globalgovernance,Jurisdiction,Civil rights,Penalcode,Climatechange,Innovation.
10.5.3
Compliancebydesign
Theemergenceofmetaversesraiseawiderangeofconcernsregardingtheir compatibilitywiththelaw,asseenabove.Therefore,itwillbenecessarytogo beyondthewell-knownconceptsofsecurity-by-designandprivacy-by-design towardsanencompassingcompliance-by-designparadigm,ifatallpossible. Forinstance,researchwillberequiredaboutadaptedtechnicalregulationsto guidehardwaremanufacturersandsoftwaredeveloperswithrespecttocompliance,includingdatagovernanceandoperationalgovernancerules.
Suchgovernancetopicsshouldbeaddressedtogetherwithresearchin thenewtechnologiesandsystemsintegrationthatwillbeneededinorder toachievethefullmetaverseconceptdescribedaboveinthischapter.Some technologicalandsystemsresearchareasareasfollows.Notethattheyare intrinsicallytransdisciplinary.
10.5.4
Interactivityandimmersivetechnologies
Makingthemetaversefullyinteractiveandimmersiveisanevolutionaryresearcharea.itshouldbefocusedonthemassivecaptureandfastanalysisofdata(telemetry,biometric,andneurometrictracking,amongothers)of
10.5.ResearchGaps
65
usersandtheiravatars.Datawillbecollectedthrough"wearableinterfaces" (wearabledevices)ofdifferenttypesthatwillgraduallybringtometaverse XRplatformsmoreandmoresensitivepersonalinformation,whichwillneed systemicprotection.
10.5.5 Metaversesdesign
Theareaofresearchontheestablishmentofstructuredprojectsanddesign ofdigitalvirtualworldsinametaverseenvironmentnowhasgreatpotential tostudyandestablishaminimumnecessaryarchitecture.Thesecanbeplatforminfrastructures,usualprotocolstandards,securitysystems,oreventhe constructiveandoperationalaspectsoftheapplicationofXRin3D.Theestablishmentofaminimumstandardshouldnotmakecreativityunfeasible,but encouragetheeffectiveconstructionofinteroperablemetaverseswithrulesfor socialcoexistenceamongavatars,whichareacceptableinethicalandmoral terms,universally,whetherindigitalorphysicalworlds.
10.5.6
Interoperabilitybetweenmetaverseplatforms
Interoperabilityofmetaversesneedstobeintensified,sothatitshouldbe possibleforavatars(users)whoareexperiencingadigitalvirtualworldona particularmetaverseplatformofacompany,tobeabletomove,withoutimpedimentsandinatransparentway,intoanotherplatformofmetaverse,from anothercompany,withouttheneedtoidentifythemselvesagaininthephysicalworld.Researchoninteroperabilityinmetaverseenvironmentswould touchupondigitalidentitiesandallowtheestablishmentofaseamlesscollectionofmetaverses,maybeusingtheconceptofself-sovereigndigitalidentities anddigitalpassports[248].
10.5.7
MetaversesandEnvironmental,Social,andGovernance(ESG)issues
Oneofthekeyresearchpointsconcerningmetaversesrelatestotheirimpact onclimatechange,becauseoftheirneedtorelyonhugedatacentres,high performancecomputing,andevenblockchainplatforms,allofwhichnecessitateveryhighelectricityconsumption.Thisareaofresearchrequiresadvancesinarchitecturesandalgorithms,butalsoinotherareassuchascooling techniques,thatcanenabletheuseofthosetechnologieswithoutmajorenvironmentalimpact.ESGconsiderationswillplayamajorroleintheprovision andadoptionofmetaversesinfuture.
It’sworthnoticingthatintheareasmentionedabove,isolatedandunconsolidatedactionsarealreadyongoing,whichaimtocovertheexistinggaps inmetaverseresearch.Wecanmentiontheactionsof:theWorldEconomic Forum[84],theMetaversesStandardsForum[150],theOpenMetaversesIn-
10.Metaverses
66
teroperabilityGroup[175],andtheMetaversesInteroperabilityCommunity GroupattheW3C[229],amongothers.
10.6
Exampleproblems
Tangibleexampleproblemsinclude:
Dataprotectioninsidethemetaverse. Personaldatacollectedinthemetaversewillbemoregranular,biometric,andneurometric.Thequestion isthenhowtoreconcilethefundamentalneedofmetaverseimmersion technologiestoimplementwidespreaduser-profilingandthefundamentalrighttodataprotection,includingbioethics.Notethatsucha questiontouchesuponprotectingthedatafromboththephysicaluser andthedigitalavatar.Morespecifically,itshouldbeinvestigatedhow toensurethatmetaverseswillnotmakeillegaluseofsuchdata,forexampleforsalesandmonetisation(suchassocialnetworksalreadydo), forpromotingmediainfluence,orintheeffectiveproductionofsubliminaladvertisements,amongotheraspectsofactiveandinteractive persuasion.
Protectingavatarsfromidentitytheft. Theprotectionofavatars’identityis averyimportantissuetobesolved.Althoughtherearealreadyseveral proposalsandstrategiesforapplyingsecurityindatabases,withthe useoftechnologiessuchasdistributedledgersandscatterorhashtree structures,suchasMerkleTrees(whichare,bytheway,keyelements ofBlockchain),thereisstillnoconsensusonhowtokeepavatars’digitalidentitieswithoutcompromisingtheirLifelogging(metaverseslife history).
Regulationofcreationofmetaverses. Thetechnologiescurrentlyappliedby manyWebplatformsalreadyprovideeasy-to-usetoolsthatallowusers tocreatetheirownmetaverses.Evenifthesearesimple,theyaretotally undertheusers’control.Theproblemhereiscentredontheimproper creationofmetaversesthatcamouflagedigitalworldsmeanttoharbour avatargangsforcriminalpractices,socialactivism,racism,andterrorism,amongotherunethicalandillegalpractices.
Equalopportunitiesinthemetaverse. Ensureaccessibilityandinclusionin themetaverseinordertosafeguardequalopportunities.TheWebplatformsthathostmetaverseswillbeabletosegregateavatarsbasedon theirphysicalusers’hardwarecharacteristics,computingcapacity,personalprofile,oraccordingtothegeographicregionoftheiraccess,givingmoreprivilegestosomethanothers.
10.6.Exampleproblems
67
CryptocurrenciesandNFTsusageinthemetaverse. Issuesofownership,misuse,interoperabilityandportability.AstheWebplatformsareproprietary,theymaintaincontroloverthedigitalassetsownedbyavatars,as wellas,determinethemonetarystandardsused.Someplatformshave theirowninternalcryptocurrencies,afactthatcanjeopardisetheportabilityandinteroperabilityofavatars’digitalassetsbetweenplatforms.
10.Metaverses
68
11 Malware
11.1 Introduction
Modernmalwarecomesindifferentforms:viruses,worms,spyware,adware,trojans,backdoors,andransomware,tonameafew.Although,computerviruseswerethemostfrequentformofmalwareacoupleofdecades ago,nowadays,itisransomwarethatseemstobethemostprevalent.This isbecauseransomwareprovidesahighlyprofitableanddirectwayformaliciousactorstomonetisetheinfectedsystems.Indeed,usingransomware theseactorsinfectvictimsystems,encryptalldata,andthenaskformoney (ransom)inordertoprovidethedecryptionkey.Withoutthedecryptionkey, thelegitimateownersofthevictimsystemscannotreallyusethemasall informationisencrypted.
Todefendagainstmalware,computersecuritypractitionersusuallyneedaway to detect itinthefirstplace. Detectingafilecontaining malwareusedtobeeasy: computersecuritycompaniescomputedahash(a summary)ofthemalicious fileandjusttriedtofind filesthatmatchedthishash value.Antivirussystems usedtobenothingmore thanasetofhashvalues (onehashvalueforeachpieceofmalware)andjustsearchedforfilesthat matchedanyofthesehashvalues.Toavoidthistypeof(static)detection, modernmalwaremutatessothattwo“copies”ofthesamemalwarearenot thesame.Forexample,ineach“copy”ofthemalwaretheyintroducesmall changesthat,whilenotchangingthemainfunctionalityofthesoftware,do changeitsappearance,andconsequentlyitshashvalue.Followingthisphi-
losophy,malwareauthorsobfuscatetheircodetodeteroratleastimpedethe reverseengineeringoftheirbinariesbutalsotoremovepossiblecodepatternsthatcouldbeusedtodetectthemalware.Thismaycomeintheform ofpackers,programsthattrytocompressand/orencryptthecodeofthe malwaresothatthemaliciouscodeisunpackedandexecutedafterseveral stepsthatwouldmakethelifeofamalwareauthordifficult.Finally,modern malwareisarmouredinthesensethatithasanti-analysisfunctionalitiessuch asanti-debugging,anti-hooking,andanti-VMtonameafew.
Settingasidethedifferencesofscopethatmalwaremayhave,e.g.worms, trojans,miners,itisimportanttohighlightsomedifferencesinthesophisticationandrangeoftargets.Practically,highlysophisticatedmalware,from PegasustoStuxnet,ismostlyfocusedonattackingaspecificindividualor craftedforasingleorganisation.Inthiscase,achainofexploitsisused, manyofwhichmaybezero-daysyettheattackerisnotfinanciallymotivated. However,thesophisticationofthemalwaresignificantlydecreaseswhenthe attackistargetedatgeneralinformationsystems.Thissophisticationiswhat canmakemalwarestaybelowtheradarandincreaseitsimpactonitsvictims.
11.2
WhoIsGoingtoBeAffected?
Commonpracticeprovesthatmalwarecaninfectalmostanycomputing device.Indeed,inthepastfewyearswehavewitnessedalonglistofhighprofileorganisationsbeingcompromised:e.g.theColonialPipeline[236], Uber[52],AXA[194]tonameafew,however,theransomwarecasesarethe onesthatsurfaceinthenewsmainlybecauseofthemonetisationmethodthat theransomwaregroupsadopt.Inessence,beyondencryptingthedataand askingforransominreturnforprovidingthedecryptionkey,theattackers alsoexfiltratethedatasothattheycanstillthreatenthevictimwithpublicationofthesensitivedata.Malwaremayalsotrytoexfiltratesensitiveuser informationviakeyloggers,compromisedrecordingmedia(e.g.,camerasand microphones),etc.
Attackersmayalsousemalwaretoinfectthousandsofhostsandusethem asanarmythatobedientlycarriesoutallthetasksthatitisassigned.The networkiscalledabotnetandmayalsobeusedfordenial-of-serviceattacks. Onestrikingexamplethatstandsoutinthiscategory,notbecauseofitssize butbecauseofthedevicesthatcomprisedit,isMirai.Mirai[14]isabotnet thatmainlyinfectsinsecureIoTdevicesandusesthemtoperformdenial ofserviceattacks.Thesizeoftheproducedbandwidthtargetedapopular DNSproviderDYNandasaresult,high-profilewebsitesandservicessuch asGitHub,Twitter,andNetflixwereinaccessible[34, 251].BeyondMirai, thereareseveralbotnetswhicharecurrentlyactive,e.g.Emotet[185]which
11.Malware
70
wasresurrected[117]afteritsshutdown[80]aftercompromisingahostused todeliverseveralothermalwaresuchasTrickbotandRyuk,Mozi[20],and Mantis[252].Notably,theyhavealsobeenusedbystateactorstolaunch attacksforcyberwarfare[237].
11.3 WhatIsExpectedtoHappen?
Theimpactofmalwareismultifaceted.Thereareseveraldirectcoststhat canberelativelyeasilyquantified,suchastheamountofransomrequested. However,therearealsocoststhataremoredifficulttoquantify,suchaslost customers,lostproductivity,etc.AccordingtoSophos,theaveragecostto recoverfromaransomwareattackisontheorderof$810,000fororganisations thatdidnotpayransomanddoublethatfororganisationsthatdidpay[218]. Thesecostscoveralltheoperationalcostsanddowntimecostscausedbythe ransomware.Infact,thedamagescausedbyransomwareareestimatedto reachthestaggeringamountof$265billionby2031[29].
EvenorganisationsthatarenotIT-orientedmaysufferfrommalware.Consider,forexample,thecaseofahotel.Whileitscorebusinessisnotdelivering ITproductsandservices,hotelsthathavesufferedaransomwareattack[160] havewitnessedtheirguestsbeinglockedoutoftheirrooms,andtheirbilling, reservations,check-in/outsystemsrendereduselesseffectivelyblockingany possiblebusinesstransaction.Similarly,severalhealthorganisationshavesufferedmalwareattacks,andwehavereachedapointwhereitisjustamatter oftimeuntiltherearecasualties[176].
Basedontheabove,thereareobviousmonetaryandreputationlosesfor organisationsandindividualswhosesystemsarecompromisedbymalware. Considerthatforindividuals,othermechanismssuchassextortionmaybe usedtoharmthevictimfurtheronthepersonallevel[183].
11.4
WhatIstheWorstThatCanHappen?
Ashighlightedinthepreviousparagraph,weareonthevergeofhaving casualtiesduetomalwareattacks.However,thisisnottheonlynefarious scenario.Stuxnet[137]wasawormtargetedtodisruptIran’snuclearprogram.Whilethismaybemorethanadecadeago,consideringthecurrent turmoilinthepoliticallandscape,malwareattacksareexpectedtobefurther utilisedasameanstoattackacountry’sdigitalinfrastructure.Inthisregard, malwareattackstocripplesmartcities,criticalinfrastructuresorbigservice providersareexpectedtoincrease,asprovedbytherecentcyberattackson HSE[191],theColonialPipeline,andtheDanishtrainoperator[195].Unfortunately,thisisalignedwiththemodusoperandiofseveraladvancedpersistent
11.3.WhatIsExpectedtoHappen?
71
threat(APT)groupswhicharenotnecessarilyfinanciallymotivatedbutare stateactorsorstate-supported.Infact,asrecentlyreportedbyENISA,APT groupswereresponsibleformorethanhalfofthesupplychainattacksthat wereinvestigated[75].Indeed,thisleadstoseveralunprecedentedattacks, e.g.therecentSandwormattackwhichtargetedaUkrainianagricultural firm’snetworktodisruptgrainproductionandexports[155].Thepresence ofAPTgroupsinconjunctionwiththeshiftstoIoTandremoteworkingis significantlyincreasingthepotentialimpactofacyber-attack.Indeed,using theZmapnetworkscanner[66],onecaneasilyseethatmillionsofvulnerabledevicesareconnectedtotheInternet.Tomakemattersworse,aquick searchinsearchengines,suchasShodan(https://shodan.io/)andCensys (https://censys.io/),revealssimilarresults.Suchtechniqueshavebeen usedby,e.g.APT41totargetU.S.StateGovernments[30],
Allthiscreatesadangerousmixwherestrategicallymotivatedthreatactorshaveaccesstoamyriadofvulnerabledevicesthatmayaccess,directlyor indirectly,systemsthatstore,exchangeandprocesssensitiveand/orcritical information.Therefore,inthecomingyears,cyberwarfareasanextension ofgeopoliticalturbulence,andtheresultinguseofmalware,isgoingtolead tolarge-scalecyber-attacksoncriticalinfrastructuressignificantlyimpacting sectorssuchasbanking,energy,telecommunicationstonamebutafew,or evenorganizationsinthedefenceindustry[92].Thelatterimpliesthatwe mayfaceunprecedentedattacksthatmayparalysemission-criticalsystems andservices,andimpactorganisations,individuals,andthesocialfabricin boththecyberandthephysicallayer.
11.5
ResearchGaps
11.5.1
Provablysecuresystems
Asdiscussed,malwareoftenexploitssystemvulnerabilities.Therefore,anobviousquestionishowdowebuildsystemsfreefromanyvulnerabilitiesthat malwarecanexploit?Whilethislineofresearchmightbetoobroad,there isstillplentyofsecuritytobehadfromimperviouscontainersorsandboxes. Forexample,whilesomemalwaremaycompromisetheunderlyingoperatingsystemorfirmwaretheresearchquestioniswhetherwecanbuildmicrokernelandsandboxingarchitecturesthatareprovablysecure.Ofcourse,this wouldstillleaveusvulnerabletomalwarethatcompromisesapplication-level software,butcontainingtheadversaryinasandboxwouldallowustokeep coresystemfunctionalitysecureandalsomaintainseparationbetweendifferentapplicationsandservicesrunningindifferentsandboxes.seL4(https:
11.Malware
72
//sel4.systems/)asmicrokernelandQubes(https://www.qubes-os.org/) asOScanbeconsideredwell-knownexamplesinthisdirection.
11.5.2 Malwaredetection
Currentlythereisanongoingarmsracebetweenmalwareauthorsandthe “defenders",whethertheyaremalwareanalysts,digitalforensicsinvestigators,SOCs,CERTs,CSIRTsetc.Asalreadydiscussed,modernmalwareis armouredtopreventanalysisandtobemorestealthy.Therefore,malware detectionisstillacoreissueinthisresearchfield.Althoughmodernantivirus (AV)softwaremaybefarmoreaccuratethaninthepast,itisnotenough topreventtheinfectionofmillionsofdevices,primarilybecauseAVsarefocusedonstaticfeatures.Anewstreamofanti-malwaremechanisms,namely endpointdetectionandresponsesystemshasemergedduringthepastfew years.These,alongwiththeirvariants,e.g.extendeddetectionandresponse systems(XDR),trytoexploitbehaviouralfeaturesandAI/MLmechanismsto detectandblockmalwareattacks.WhilemoreefficientthanAVsastheycan detectadvancedtechniquesandlateralmovement,EDRsarefarfrombeing consideredsilverbullets[126].Tothisend,acriticalresearchquestionishow todeterminethatafileismaliciousatruntime,andblockitonceitperforms amaliciousactionwithoutallocatingalotofresources.
Thisresearchquestionalsohasmanymoreextensions.Forinstance,when analysingmalwareweoftenexecuteitinsandboxestorecordandunderstand itscapabilitiesinahighlymonitoredenvironment.Thissandboxed-basedexecutionhastwomaindisadvantages:(i)itconsumesalotofresourcesand(ii) ifthemalwarerealisesthatitisbeingexecutedinasandbox,itmayalterits behaviourtoavoidbeingdetected.Therefore,theresearchhereliesinhowto performdynamicmalwareanalysiswithoutwastingpreciousresourcesand howthiscanbeperformedagainstevasivemalware[132, 133].Moreover, weneedtofindmethodstoautomaticallytriggerthemalwareappropriately withoutcreatinglongexecutionpathsandunlockitsfunctionality.Tothis end,binaryemulationandsymbolicexecutionmaycometotherescue.Finally,wehavetohighlightthatmanysystemcallsperformedbymalware,if treatedindividually,donotalwaysdiffermuchfromthoseissuedbybenign programs;thus,evasivemalwarecanstillbypassmanyclassifiersthatcannot seethewholepicture[171].
11.5.3
Machinelearninginmalwaredetectionandclassification
Thecontinuoususeofmachinelearningandartificialintelligenceincyber securityhasalsopavedthewayforitsapplicationinmalwaredetectionand analysis.Nevertheless,wehavetoconsiderthatitcanalsobeleveragedby malwareauthorstobypassthedetectionmechanisms.Hence,itisessentialto
11.5.ResearchGaps
73
considerthatmalwareauthorswilltrytoexploitfeatureselectionalgorithms tomaketheirmalwareundetectablebysomeclassifiers.Asaresult,machine learningandartificialintelligencecannotsimplybeusedandexpectedtoprovideexcellentresults.First,wehavetodevotemajorresearcheffortsinorder tounderstandhowtofillinthegapinimbalanceddatasetswhereamalware familymaybeunderrepresented.Next,wehavetostudyadversarialmachine learningandhowtomakeourmechanismsrobustagainstpossiblefeature injectionorblinding[255].Oneshouldalsoconsidertheexplainabilityand interpretabilityoftheresultsofmachinelearningandartificialintelligence algorithmsandhowfeatureengineeringcanimpactthemasmalwaresamplesmayhavethousandsofsparselydistributedfeatures.Finally,oneshould alsoconsidertherelevanceofthedatasetsandmodelsovertime.Usingolder datasetsandmodelsthatmightbestateoftheartnowmaysoonbeoutperformedorperformpoorlyduetotheevolutionofbothmalwareandICT systems.
11.5.4
Extendtheplatformscope
WhilemostusersofpersonalcomputersareusingWindowsandrepresent oneofthebiggesttargetsofmalwareattacks,theyarenottheonlyones. Similarly,inmobiledevicesAndroidmayhavethebiggestshareinsmart phones,butitisnottheonlyplatformformobiledevices.Moreover,weall knowthatasignificantpartoftheInternetisnotrunningononlythesetwo platformsandthatmalwarehasbeendevelopedfor,e.g.,IoTdevices,Linuxbasedhosts,andMacOS,amongothers,focusingresearchonlyonWindows andAndroidcreatesahugegapthatisexploitedbythreatactorswhofind manyoftheless-focusedplatformsunprepared.Forinstance,thebulkof researchfocusesonPE32files,overlookinge.g.ELFfilesthattargetUnix andLinuxhosts.EvenwhenresearcherstrytostudyELFfilesthedatasets arehighlyunbalancedasmostsamplescomefromasinglefamily,i.e.,Mirai, whichmayseverelybiastheoutcomes.Therefore,thereisadefiniteneed toextendthescopeofplatformsandarchitecturesthatareusedinmalware analysisresearchandtodevelopnewmethodsandtools.
11.5.5 Commandandcontrolservers
Finally,aratherthornyissueisthegradualintegrationofdecentralisedmechanismsbymalwaretocontrolthebotnetbutalsotodeliverpayloads.For example,blockchainsanddecentralisedstorage(e.g.IPFS)havebeenproven tobeaveryrobustmechanismstoactasCommandandControlserversbut alsotohostpayloads[12,184,188].Thecrucialpointhereisthatmostofthese decentralisedmechanismsarenotregulated(indeedsomeofthemcannotbe) andtakedownmechanismsmaynotbepossible,forexample,oncesomething
11.Malware
74
iscommittedinbitcoin’sblockchain,itcannotbeerased.Thus,thereisalot ofresearchonhowtoprotectagainstsuchmalwareandhowtominimisethe exploitationofsuchecosystems.
11.5.6 Post-infectionmanagement
Acknowledgingthatthereisno100%accuracyinmalwaredetectionandpreventionmeansthatinpracticeagivensystemwillbeinfectedwithmalware atleastonce.Naturally,onemaywonderwhatshouldbethenextstepswhen malwareisdetected.Mostoftheexistingantimalwaresolutionstrytothwart attemptsatinfectionandcleanup.Perhapsthereareotherthingswecan dopost-infectiontominimiseharmorfacilitatedigitalforensics.Thiscould involveautomaticallyrollingthesystembacktoastatejustbeforeinfection. Whileforstoragetheoptionofincrementalfilesystemsmayprovideasolution,thesamedoesnotapplyformemory.
11.6
Exampleproblems
Tangibleexampleproblemsmightinclude:
CommandandControl(C2)serversanddefencemechanisms
Tomanagethe compromisedhosts,manymalwareauthorsuseC2servers,someof whicharecommercial,e.g.CobaltStrike,whosecopieshavebeenleaked butarelegitimatelyusedinredteamscenarios.Regardlessoftheirorigin,C2serversallowthreatactorstocoordinatetheactionsoftheirbots, issuecommands,exfiltratedataandperformotherattacks.Currently, therearemanyC2servers,manyofwhichareopensource,anditwould beinterestingtostudyhowdifferentsecuritymechanisms,e.g.,AVs, EDRs,firewalls,treatthesebeaconsandwhethertheyaredetectedas malicious.Maliciouspatternsinmemoryandsystemcallscanbeleveragedthroughmemoryscannersandhookingtopromptlyblocktheir functionalities.
Malwareclassifiers Thesheeramountofmalwaresamplesonadailybasis imposesmanyconstraintsonresourcesandtiming.Binaryclassification (benignandmalware)isatraditionalprobleminthefield.Goingastep further,familyclassificationandclusteringareveryimportant.Regardlessofwhethertheseanalysesareperformedbasedonbinarysimilarity measures,staticordynamicfeatures,itiscrucialtodeterminetheiraccuracyandrobustness,especiallyinanadversarialscenariowherethe threatactorsmaywanttobypasssecuritymechanismsbutifthisfails, raiseafalseflag[25].
11.6.Exampleproblems
75
Anti-evasionmechanismsandtriggeringmechanisms
Malwaremaytryto evadedetectionandanalysisinvariousways.Automatingthebypassing ofsuchmechanismsandcollectingrobustresultsfrommalwarethrough thecorrelationofstaticanddynamicfeaturesisabigchallenge.How dowetriggerthemalwareproperlytoexhibititsbehaviourwhenstatic analysisindicatesthatafileismaliciousyetthedynamicanalysisfails todetectthemaliciousnessofthefileinquestion?
Covertcommunicationchannelsandmalware
Manymalwareinstanceswould trytohidetheircommunicationchannelsbymixingtheirinterventions withlegitimatetraffic,e.g.usingasocialnetworkoranotherlegitimate servicetocommunicatebetweentheC2serverandthecompromised host.However,malwaremayusesteganographyandothercovertchannelstoexfiltratedataortodisseminatecommands.Detectingpossiblemaliciouscovertcommunicationandstegomalwareisachallenging problem.
Abuseoflegitimateprocesses LivingOffTheLandBinariesandScripts(and alsoLibraries)1,commonlyreferredtoasLOLBin/Script/Libarefiles thatareshippedfromMicrosoftinWindowsandothertools(e.g.Office,VisualStudio),whichbearthesignatureofMicrosoftandcanexecuteadditionalfunctionalitiestothosewithwhichtheywereinitially designed,e.g.downloadfiles,executearbitrarycontent,etc.Because oftheirsignature,whenexecuted,theydonotrequestanyuserinteraction,arewhitelistedbymostsecuritymechanisms,andcanbefoundin almostallWindowsmachines.
Threatactorshaverepeatedlyusedthesefilesinmaliciouscampaigns totrojaniseMicrosoftOfficedocumentstoexecutemaliciouspayloads. Thisapproachhasgraduallybeenabusedbyothermalware,especially filelessmalwareattacks[230].Moreover,theyareabusedbyransomware todeleteshadowcopies,e.g. cmd tolaunch vssadmin anddeletethe shadowcopies[136].
Basedontheabove,theresearchproblemliesintofindingways,based on,forexampleAPIcallcontext,processparentsandchildren,andcall argumentstodeterminewhetheracalltoalegitimateprocess,API,library,orbinaryisbeingabusedbymalwareorwhetheritisinfacta benigncall.
11.Malware
1 https://lolbas-project.github.io/ 76
SoftwareLifeCycle
12.1 Introduction
Softwareisatthefoundationofalldigitaltechnologies,thusitisatthecoreof theinfrastructures,servicesandproductsthatdriveoursocieties.Thelifecycleofsoftwareconsistsofseveralphases,startingfromconception,andgoing throughdesign,realisation,deployment,operation,maintenanceand,eventually,decommissioning.Currentsoftwaredevelopmentapproachesprioritise fastdeploymentoversecurity,whichoftenresultsininsecure,expensiveto repair[202],applications.Securityconcernsare,unfortunately,stillnotfully andsuitablyintegratedwithinthelifecycleoftoday’sincreasinglycomplex softwaresystems[241].Moreover,softwareisusuallybuiltbyassembling componentsfromthird-partysources,whichraisestrustconcerns(e.g.asevidencedinsupplychainattacks[72]),makesithardtocomplywithsecurity requirementsandlegislation,andcompromisesdigitalsovereignty.Theraise ofartificiallysynthesisedsoftwareisexpectedtoaggravatethis.Last,security andprivacyregulationssuchastheGDPR[93]ortheCybersecurityAct[7],as wellascitizenexpectationschangefrequentlyandsoftwareissubjecttocontinuousupdate.Asaconsequence,softwarecompliancecannotbeassessed onceandforallandneedstobeaninherentpartofitslifecycle[135].The fieldhasseenadvancessinceearlyinitiativestobuildsecurityinsoftware systems[149]andeffortsinthisdirectionhavebeenmade,suchasNIST’sSecureSoftwareDevelopmentFramework[167],OWASP’sSoftwareAssurance MaturityModel[201],Microsoft’sSDL[153],andETSI’sstandard303645[78] (seealsoChapter12oftheCybersecurityBodyofKnowledge[56]).Nonetheless,manychallengesremain(seethelastpartofthischapterandalso[135], asexamples).
12.2
WhoIsGoingtoBeAffected?
Traditionally,ensuringhigh-qualitysoftwarewasconsideredtobemainlyrelevantforcriticalinfrastructures:finance,healthcare,energy,andsoon.However,softwareisbecomingmorepervasiveandintrinsic,uptothepointthat itcanbeseenasthecirculatorysystemofoursociety’sbody:youmaynot
12
noticethatitisthere,untilitsqualitystartstoaffectyourhealth.Nowadays,weusesoftwaretoregulatetheindoorclimateofourhouses,toplan ourcommutetoworkandschools,tocarryoutourdailyactivities,tocommunicatewithcolleagues,family,andfriends,toaccessmedicalservicesand treatments,andsoon.Ultimatelythequalityoflifeofeverysinglecitizenwill behighlydependentonthequalityofthelifeofthesoftwarefacilitatinghis orheractivities.
12.3 WhatIsExpectedtoHappen?
Softwarevulnerabilitiesincriticalsectorscanhavecatastrophicconsequences forourlives:companiesandindividualscanlosemoneybecauseofflaws infinancialsoftware,accesstotreatmentscanbedelayedbymalfunctionin softwareplatformsusedinhospitals,livescanbelostasaresultofsoftware bugsinmedicaldevicesorcarassistancesystems.Chapter 13 providesa representativesampleof(in)famouscasessuchastheAriane5disaster,and thelossoftheMarsclimateorbiter,andmanyotherscanbeadded.Justto mentionarecentexample,avulnerabilityinthePolyNetworksmartcontract leadtothelossof600MUSD[89].Butevenvulnerabilitiesincasesthatwe traditionallydonotconsiderascriticalcanhavesevereconsequencesforindividualcitizens:violationofpersonalprivacyisarguablythemostarchetypal example.
12.4 WhatIstheWorstThatCanHappen?
Softwarevulnerabilitiescanhaveallsortsofcatastrophicconsequences,and certainlyneedtobeaddressed.However,ensuringqualityofsoftwareisthe leastthingwecando.Softwarecanalsobeofhigh-qualityandadhereto themoststrictsecurityandprivacyregulationssuchasthehighestlevelsof theCommonCriteria[36],butharmcanstillbeobtainedifthereislackof trustworthinessinthewayitisdeveloped,acquired,used,maintainedand dismantled.Considerforexample,whatcanhappenifcitizensdonottrust thesoftwarebeingusedinthenextdemocraticelections.Eventheentire democraticsystemofacountrycanbeatrisk.
12.5 ResearchGaps
Securitymustbebetterintegratedintheentirelifecycleofsoftware,from conceptiontodismantlement.Weconsiderthefollowinggapsandpossible waysforwardtoaddressthis.1
12.SoftwareLifeCycle
1InspiredpartlybytheVERSENManifesto[241] 78
12.5.1
VerifiableandAuditableSoftware
Agreatportionofthesoftwarecomponentsthatconstituteasoftwareproduct orserviceisobtainedfromthirdparties;thusitispotentiallyuntrustworthty asitmaynotcomplywiththeexpectedsecurityrequirements.Toachieve digitalsovereignty,thereisaneedtobeabletorelyonsoftwarethatcan beverifiedandaudited.Thepotentialsecuritygainofusingopen-source softwareamenabletoautomatedanalysisshouldbefurtherexplored.
12.5.2
ContinuousSoftwareAssessment
Securityandprivacyregulationsandcitizenexpectationschangefrequently andsoftwareissubjecttocontinuousupdate.Thereforethecomplianceof softwaresystemscannotbeassessedonceandforall,andhencemethodsand toolingtoperformcontinuousassessmentsareneeded.Giventhehighcostof securityandsoftwareassessments,theuseofautomatedproceduresiscritical toensuresustainabilityandscalability.Ifthisisnotimplementedeffectively, thesoftwarebecomestoocomplex,andmaintenanceandevolutionbecome tooexpensive,untiltheyarenolongersustainable.Wemustbreakthisvicious cycle,andfindnewwaystocreatesoftwarethatislong-lastingandthatcan becost-efficientlyupgraded,assessedandmigratedtonewtechnologies.
12.5.3
Secure-by-designAgileSoftwareDevelopment
Thedominatingapproachestodevelopmentareagileandprioritisefastdeploymentoversecurityguarantees.Moreresearchisneededtoeffectively andefficientlydeveloptoolsandtechniquestosupportsecure-by-designtechniqueswithinagileapproaches,sothatcompetitivenessandfastdeployment arenotcompromisedbysecurityrequirementsandsothatchangesinthose requirementscanbeefficientlyreassessedatanypoint,evenwhilethesoftwareisrunning.
12.5.4
LightweightFormalMethods
Manyformalmethodstechnologieshavebeendevelopedtoimprovesoftwarereliability,suchasmodelchecking,theoremproving,andmonitoring systems,butapplyingthemonalargescaletomodernsoftwaresystemsremainsachallenge.Moreeffortsareneededtofurtherdevelopandpromote lightweight,accesibleformalmethodsthatcanbegraduallyappliedtoincreasethelevelsofassurancesobtained.Methodsmustbedevelopedtosupportaspectrumofguaranteelevels,eachprovidinggreaterassurance,ina waymoreapproachablethanthecommoncriteria.Eventualenforcementsin regulationsmustbegradualinordernottoclosetheopportunityforSMEsto deliversoftwareproductsandservices,andappropriatetoolsupportisneed.
12.5.ResearchGaps
79
12.5.5 DecentralisedSoftwareGovernance
Softwarewithdecentralisedgovernancesuchassmartcontracts,blockchain technologies,andcrypto-assets,poseseveralchallengestothemanagementof thesoftwarelifecycle.Inthosesystems,itisunclearwhetherandhowvulnerabilitiesshouldbereportedandrepairedinawaythatharmonisesconsensus andsecurityacrossthehistoryofthesystem.
12.5.6
TrustworthyAI-poweredSoftwareLifeCycle
Artificialintelligencetechniquesarealreadybeingusedtosynthesisesmall piecesofcode.Oneshouldexpectthatinthenearfutureallactivitiesofthe lifecycleofsoftware(requirementselicitation,codesynthesis,verification, monitoring,etc.)willbesupportedbyintelligentagents.Whilethiswill certainlybringhugeadvancesintermsofscalabilityandproductivity,itis stillunclearhowsoftwarecomponentsandmethodologieswithintelligent componentscanberigorouslyanalysed.
12.5.7
SoftwareSupplyChainSecurity
Nowadays,creationanddeploymentofsoftwareinvolestheintegrationof codeandcomponentsfromthirdparties,whosedevelopmentisoutsideour control.Thesecomponentscanbethetargetofcyberattacks(e.g.theSolarWindincident).Weneedtodefineamethodologyforreducingsupply chainsecurityrisks,bymeansofassessingandguaranteeingthetrustworthinessofcomponents.Thismethodologymustbebasedonformalmodelsof contract-basedsoftwarelinedevelopmentandintegration,inordertoenable theimplementationof(semi)automatictoolsfortheverificationofsecurity properties.Thedevelopmentofthesemodelsandthecorrespondingformal methodsareanimportantresearchpriority.
12.5.8
SecureArchitecturesandPlatforms
Forbuildingsafety-andsecurity-criticalsystems,itisnotenoughtohavea trustedsoftwaresupplychain:weneedtodeploythissoftwareontrusted platforms.Thisincludesthehardwarelevel,butinparticulartheoperating systemlevel.Therefore,animportantresearchpriorityistodevelopaverifiedplatformthatprovidesfine-grainedaccesscontrolthroughcapabilities, andcontrolscommunicationbetweencomponentsofthesystem.Thiskindof platformsishighlysoughtinoperationalscenarios(e.g.theSCADAofcriticalinfrastructures)butalsoindatacentresthatprovidecloudservices.This wouldhelptorecoverdatasovereignityintheEU.
12.SoftwareLifeCycle
80
12.5.9 SecureEconomics
Anotherinterestingresearchdirectionisrelatedtosecurityeconomics,i.e.,the studyoftheincentivesfacingdifferentplayers[71].Itisnowwellestablished thatpurelytechnologicalsolutionswillnotfitthebill.Accordingly,each alternativemechanismsmustbescrutinisedagainstmarketdynamics.
12.6 Exampleproblems
Tangibleexampleproblemsmightinclude:
Verificationatthescaleofpublicopensourcecoderepositories. Formalverificationtechniquesofferthehighestlevelofassuranceforsoftwaresecurity.Themainchallengesofcurrenttechniquesare,arguably,dueto scalabilityissuesintermsofthecomputationalandhumanexpertise needed.Howcanweraisesuccessfulverificationtechniquestothescale ofcodebasesofthesizeofaveragepopularpubliccoderepositories?
Formalmethods-poweredDevSecOps DevSecOpshasbeenadvocatedasan idealapproachtocombineDevOpsandsecurity,inordertoprovide asecurity-awareagileandfast-adaptingcontinuouslifecycle.Onthe otherhand,formalmethods,whichprovidethehighestpossiblelevel ofassuranceintermsofsecurity,safetyandperformance,havebeen traditionallyconceivedinawater-fallmind-set,rootedonformalspecificationsasthefirststep.CanwedevelopagileformalmethodmethodologiesinwhatcouldbecalledformalDevSecOps?
FormalAnalysisofSocio-TechnicalandCyber-PhysicalSoftwareSystems. Socio-technicalsystems,whosesecuritydependsintrinsicallyonhuman users,andcyber-physicalsystems,whereoneneedstoexplicitlyconsidertheunderlyingphysicalprocessesposeseveralchallengestoformalautomatedmodelling,analysisandtesting.Canwedevelopeffectiveandscalableformalandautomatedtoolsfortheanalysisandtesting ofsuchsystems?
VerificationofMLapplications. Probabilisticandrandomisedsoftwarecomponentsareatthecoreofmanysoftwareapplications,fromcryptographytomachinelearning(ML),toprivacyprotection.Recentyearshave seenadvancesinprobabilisticprogrammingtechniquesandverification techniquesforML.However,thefieldisstillinitsinfancy,while,onthe otherhand,theapplicationofMLhasbeenadvancingswiftly.Howcan weextendprobabilisticprogrammingtocopewithreal-worldML-based applications?
ResilientSmartContractRepair Ifasecurityvulnerabilityisdiscoveredina smartcontract,reportingit-ortryingtorepairit-couldtriggeraracefor
12.6.Exampleproblems
81
itsexploitationthatislikelytoendupwithfinancialgainformalicious agents.Canwedesigndisclosureandrepairtechniquesthataresilient w.r.t.maliciousagentstryingtakeprofit?
SecureandPrivacy-friendlyExplainability. ExplainablesecurityextendsexplainableAIwiththeneedtoconsidersecurityandprivacyaspectsof theexplanationprocessandoftheexplanationsthemselves.Howcan weadaptapproachestoexplainabilitytotakeintoaccountsecurityand privacyconsiderations?
12.SoftwareLifeCycle
82
13 TestingandCertification
13.1 Introduction
Informationtechnology(IT)is pervasiveinbothworkandsocial sectors.Home,industries,offices, cars,streetsandpublicbuildingsare fullofITdevices,systemsapps,or electronicequipment.Inourdaily lives,undernormalconditions,we areusuallynotworriedaboutthe technologyaroundus.Wearereasonablysurethatourmobilephone, PC,refrigerator,electronicdevice, car,orevenapps,cannotdamageourlife,stealdata,orcausesecurityor safetyissues,becausetheyshouldhavebeenbuiltaccordingtotherequired standards,properlytestedandfullycertified.
However,wehaverecentlywitnessedvariousexamplesofmalfunctioning orissueslikethefollowing:Teslahadafailureinaflashmemorydevice,causingasafetyriskinmorethan135,000vehicles[163];theNewJerseyhospital vaccineschedulingsystembugcaused10to11thousandduplicateappointments[65];theZoomappsufferedfromsecurityissuesduringthecoronavirus pandemicin2020[1].
AsreportedintherecentCybersecurityact,“Hardwareandsoftwareproductsareincreasinglysubjecttosuccessfulcyberattacks,leadingtoanestimatedglobalannualcostofcybercrimeof €5.5trillionby2021”[79]
Humansandsocietygenerallytrustindustriesandthebestpracticesthey adoptintestingandcertificationprocesses.However,consideringthatthe overallcostoftestingisaround40%ofthetotaldevelopmentcostsofatypicalsoftwareproject[91],ifnotstringentandwithoutconcretesafetyrisks, oftenverification,validationandassessmentproceduresarethefirsttobe reducedorskippedtosavecostandtime.Additionally,pressurefromthe needtoresearchnewproducts,thetimetomarket,andcompetitionforcesin-
dustriesanddeveloperstowardsmassivewidespreadintegrationandtheuse ofavailablethird-partyoropen-sourcecomponentsthatcouldsurreptitiously increasethecybersecurityrisksifnotproperlytestedandcertified.
InanITworldthatisgoingtobemorehuman-centricandfocusedonpeople’sneeds(suchastheInternetofPeople[IoP]manifesto[157]),thepresence ofevidenceofthetestingandcertificationactivityperformedneedstobecome acommonpractice.Weneedtoincreaseourawarenesstoavoid"poisoned"IT productsaswellaspoisonedfood.Therefore,theassessedorcertifiedquality levelmustbealabelforeachITproductinordertoestablishtrustandreduce riskstosecurityandprivacy.
Thequalityofdigitalproducts(combinationofsoftwareandhardware) mustbecomeaguaranteelabel,inthesamewayasthelabelwefindonthe foodwebuyinsupermarkets.
13.2 WhoIsGoingtoBeAffected?
Everyonedirectlyorindirectlyusingproductsortechnologiescanbeaffectedbythelackoftestingandcertificationprocesses.Forinstance,babies couldbedamagedbyatoygoingoutofcontrol,GenerationAlphaorZeta couldbeunconsciouslydeceivedbyappealingappsmaliciouslystealingtheir pictures,companiescanbeaffectedbyransomwarehiddeninusefulplug-ins orlibraries,organisationsandgovernmentscanbesubjectedtocybersecurity attacks.Ofcourse,testingandcertificationarenottheonlymeansofavoidingsuchcriticalsituations.Everythinghastobeexecutedcorrectlyatevery phaseofthedevelopmentprocess(seeChapter 12 fordetails).Conceiving anddeveloping(by-design)qualityproductsiscrucial,butnotsufficientper setomeetthefinalrequirements:buildingtheproductrightdoesnotguaranteebuildingtherightproduct[217].Testingandcertificationremainpivotal activitiesfortrustworthinessandcybersecurityassuranceandforguaranteeingthataproductisdesignedandmanufacturedwithqualityasaprimary objective.
However,aslongasstakeholders(ordinarypeople,companies,organisations,andgovernments)donotfirmlydemandtransparent,labelled,tested andcertifiedproducts,thesituationwillhardlychangeandcybersecurity riskswillstillbeontheagenda.
13.3 WhatIsExpectedtoHappen?
Whatistheexpecteddamageintheabsenceofanadequatetestingand certificationprocess?Unfortunately,therearemanyaspectstobeconsidered:
13.TestingandCertification
84
Hardware/softwarefailure: Ithasbeenestimatedthatnearly80%ofunexpecteddowntimecanbeascribedtoHW/SWfailuresandpoweroutages.Properstoragebackupscanbeanadhocsolutioninmostcases, butpreventingfailurewouldbelesscostlyandrisky.
Naturaldisastersandemergencysituations: Lackoftestingandcertification oftheprocessesandproceduresforresumingoperations/dataandsystemsincaseof(natural)disasteroremergencysituationscanbeextremelycostlyandcausethelossofbusinesscontinuity.
Humanfactor: Evennotintentionally,humansmayinevitablycausemistakes orexecutionofunexpectedprocedures.Testingbasedonuserprofiles orexploitingmachinelearningapproachescouldavoidorpredictpossiblemisbehaviouroraccidentalsituations.User-centredassessment processesandtrainingprogrammescouldbeessentialforminimising humandamageandavoidingpermanentlosses.
Cybersecurityattack: Becausesocietyandorganisationsincreasinglyrelyon digitalinformationfordailyoperations,cybersecurityattackscanbe moredangerous.Currently,95%ofcompaniesinvestintestingand certificationactivitiesonlyafteradisasterandthenactuatearecoveryplan(reactivebehaviour).Predictingvulnerabilitiesbeforehandand providingsolutionsbeforeacybersecurityattackis,therefore,mandatory(proactivebehaviour).Thepenetrationtestispivotalforavoiding andanticipatingcyberattacksbyhackerswhoaretryingtoexploitpotentialvulnerabilitiesinordertoaccesscompanynetworksandtosteal confidentialdataortoinjectmaliciouscodes.
Highexpectations: :Inourhyper-connectedworld,whereITproductsneed tobeavailable24h7dwithoutdisruptions,failuresandlossofservices arecostlydisastersforcompaniesandfavourtheircompetitors.Therefore,robusttestingandcertificationprocesses,whichcanassurethe qualityofservicesandmakeitpossibletoestablishasuitablerecovery plan,arepivotalactivities.
Trustorreputationdamage: Lossoftrustordamagetoareputationismostly translatedintoalossofcustomers,andhencealossofrevenue:trustand reputationarenearlyimpossibletoregain.Testingandcertificationare amongthemosteffectivemeansofavoidingthisproblem.
Compliancerequirements: Nowadays,businesscontinuityisnotjustamere desire:itisbecomingarequirement,especiallyforOperatorsofEssentialServices(OESs)[47].Allofthemmustfollowspecificandstrict regulationsandstandards.Thatmeansthatadoptingcertificationprocessesandmaintainingtheirproductcertificationisbecomingalegal
13.3.WhatIsExpectedtoHappen?
85
obligationandoffersacompetitiveadvantagewithinthereferencemarket.
13.4 WhatIstheWorstThatCanHappen?
Figuringoutwhatcouldhappenwithouttestingandcertificationshouldnot pointtothefuturebutsimplytothepast.Mostworst-casescenarioshave alreadybeencoveredinthenewspapers,thedefaultreportsanddisasterdocumentation.Theworst-casebugshistorystartedassoonasthefirstcomputer wasmassivelyusedandincluded:
• TheAriane5Disaster,4thJune,1996.DuringthelaunchoftheAriane 5spacecraft,37secondsafterthefirstrocketigniteditstartedflipping inthewrongdirection,andlessthantwosecondslaterthewholeworld observeditsself-destruction.Theproblemwasquicklyidentifiedas asoftwarebugintherocket’sinertialreferencesystemand,unfortunately,couldhavebeeneasilysolvedwithatrivialintegrationtesting procedure[247].
• TheMarsClimateOrbiter,23rdSeptember,1999.Duringitsdescent intotheMartianatmosphere,theMarsClimateOrbiterwasreoriented topassbehindMarsandsuccessfullyenteritsorbit.Unfortunately,this didnothappen:thecraftwasnotonthecorrecttrajectoryanditwasfinallylostwithoutatrace.Therootcauseanalysisofthiserroryieldeda longchainofwrongorunexpectedevents,whichincluded:theincidentalarrangementofsolarpanelsonthecraftduetothesolarsaileffect; theuseoftwodifferentunitsintheGroundControlsoftware(dataprovidedusingimperialunitsandpound-secondsonthesendersidebut expectedinmetricunitsonthereceiverside);andfinally,humanerrorsincommunications.Again,properintegrationtestingprocedures andcorrectuseofstandardsandassessmentprocedureswouldhave avoidedsuchacriticaldisaster[105].
• Therac-25 Duringtheperiodfrom1992to1998,thereportsaboutradiationoverdosescausedbythe80’scomputer-controlledradiationtherapywerepublished.Inparticular,sixdocumentedaccidentsoccurred, resultingindeathsorsevereinjuries.Thecauseswereidentifiedasthe applicationofincorrectproceduresbypersonnelandtheweaknesses ofthesoftwareusedforassuringsafety.Inparticular,allaccidentsinvolvingsoftwarehadresultedfromflawedsoftwarerequirements.Applicationofcertificationprocessesandapropersystemandacceptance testingprocesswouldhaveagainavoidedsignificantlossoflife[140].
• KnightCapitalGroup On1stAugust2012,duringasoftwareupdateof theproductionserver,anincorrectconfigurationofanold(2003)system
13.TestingandCertification
86
caused97emailnotificationsandtheexecutionof4millionunexpected trades.Thatledtoa$460millionlossandtheriskofbankruptcy.The post-analysishighlightedthattheprogrambelieveditwasinatestenvironmentandexecutedtradesasquicklyaspossiblewithoutworrying aboutlosingthespreadvalue.Asinthepreviouscases,thetesting processwouldhavediscoveredthatmisbehaviourandavoidedusing obsoleted,notalignedsoftware[189].
Itislikelythatpastmistakeshavebeenresolvedandlessonslearnt,but challenges,vulnerabilitiesandnewscenariosareconstantlyemerging.Who doesnotremembertheMillenniumbug[4]?Orthe2018cyberattackthat interruptedcommunicationsontheMidcontinentIndependentSystemOperator?Oreventhesix/sevenhoursoftheglobalunavailabilityofthesocial networkFacebookanditssubsidiariesinOctober2021[228]?Ortherecent ransomwareattacksontheITnetwork?
Thesmartandquickdiscoveryandprovisionofnewtechnologies,programminglanguagesandsystemsobligestestingandcertificationtocontinuouslyjump “BacktotheFuture” andprovidenewmeans,strategiesand processestopreventfutureworst-casescenarios.Indeed,historyteachesthat thepastcanalwaysturnintothefutureand vice-versa
WhatIstheWorstThatCanHappen?Alifewithouttestingandcertification,becauseitmeansalackofquality,efficiencyandtrustineverysystem andsoftwarepackage.
Indeed,testingandcertificationseektomitigatetherisksofsafety,security andprivacylossorabsenceforanyoneworldwide.Whowoulduseamachine withoutitbeingtested?Whowouldbewillingtosetupamedicalfacility withoutbeingcertified?Whocouldthinktogiveachildtoysthatputtheir lifeatrisk?
Unsafe,notsecureornottrustableHWorSWproducts,elements,components,andlibrariesmaketheworlddangerous:theycancauseenvironmental disasters;theycanplayaroleinthedefaultorbankruptcyofcompanies, industriesandevennations;theycanimpactessentialservices(i.e.energy, transport,financialandbanking,healthcare,drinkingwatersupply&distribution,anddigitalinfrastructures);theycancompromisehealthsystems ormedicaldevices.Thecurrentinternationalsituationcanalsopainteven moredramaticscenarios:HW/SWvulnerabilitiesandsecuritythreatscould beexploitedtoallowterroristattacksonnuclearpowerplantsandmilitary bases.
Luckily,inthiscatastrophicapocalypticscenario,learningfromthepast andfocusingonthefuture,researchandindustryarestartingtounderstand theimportanceofstrictcollaborationintestingandcertificationtoeffectively preventdisastersbeforetheyhappen.
13.4.WhatIstheWorstThatCanHappen?
87
13.5 ResearchGaps
Consideringthat“Programtestingcanbeusedtoshowthepresenceofbugs, butnevertoshowtheirabsence.(Dijkstra)“[61],exhaustivetestingisusually impossible,andissuesandproblemsintestingandcertificationarefarfrom beingexhausted.Newchallengesarecontinuouslyaddedinparallelwith thedevelopmentofnewtechnologies,features,languagesandapplication domains,andthediscoveryofnewvulnerabilitiesandthreats.Inparticular, thefollowingareasarerecenttrendsinresearchactivities.
13.5.1 Human-centredTestingandCertification
Supportinghuman-centredtestingandcertificationapproachesthatareable toguide,improveandassesstechnologicaldevelopmentinlinewithsocial andethicalvalues,sustainabilityandtrustworthiness.Additionally,increasinginclusivenessbysupportingthegenderanddiversitybalanceofdifferent stakeholdersinvolvedinthetestingandcertificationapproachcanensure trustworthypublicawareness,thebroadadoptionofITmethods,andthe adoptionofstandardstoincreasetransparencyandopenness.
13.5.2
Integratedcybersecurityandfunctionalsafetycertification
Besidesinterleavingandoverlappingseveralaspectsofcybersecurityand safety,thereisstillagapinprovidingacomprehensiveframeworkandtechnicalstandardsfortheirfullintegration.Indeed,safetyassurance/certification cannotbeachievedwithoutconsideringtheimpactofcybersecurityvulnerabilitiesandthreatsonthesystem.Thus,thereisaneedtoprovideafunctional safety/cybersecurityassurancerisk-basedintegratedapproach.
13.5.3
Quantitativeandqualitativetestingandcertification
Accountabilityandreplicabilityareessentialcharacteristicsofcybersecurity modelling,testingandcertificationapproaches,andrequiremethodsand meansforquantitativeandqualitativecollectionandtheanalysisofresults anddata.Thus,theavailabilityofopen-sourcedatasetsandconformance testsuitesasthefacilitiesforthesettingupandexecutionofcontrolledexperimentsshouldbeimproved.Inparticular,challengesfocuson: (1) Improving formalmethodsforquantitativesecuritymodellingandanalysisandtheir applicationtoriskmanagement,enrichingtheirdata-drivenaspects,e.g.synthesisingandrefiningmodelsfrom(possiblyunderspecified)attackscenarios andvalidatingthemconcerningdatafrompreviousattacks. (2) Realisationof modelling,testing,andcertificationapproachesdrivenbycybersecurityrisks (3) Makingdatacollection,quantificationapproaches/tools,andresultanalysismoreaccessibletopractitionersandopen-accesscommunities. (4) Improvingtheefficacyandefficiencyofthetestingandcertificationprocesses,
13.TestingandCertification
88
makingthemmorefocusedonqualitativeproperties. (5) Makingtestingand certificationbydesign,guidedbyuserstories,domain-specificneedsrequirements,andstandards. (6) Providingmetrics,guidelines,andapproachesfor securingproductsandservicesthroughouttheirlifetime.
13.5.4 AutomationofTestingandCertification
Testingandcertificationarecomplex,costlyandtime-consumingactivities. Reducingtheeffortandmitigatingthecybersecuritycostandriskisasignificantchallengeforattainableautomation.Importantdirectionsare:
1. Developingadvancedtechniques,findinginnovativesupportprocedures to(fully)automatethedifferentactivities,orprovidingmetrics,guidelinesandapproachesapplicablethroughouttheoverallprocesslifetime
2. Providingaholisticmethodologythatintegratesruntimeanddesigntimemethodsapplicableatdifferentspecificationlevels—suchasfirmware, communicationprotocols,stacks,operatingsystems(OSs),andapplicationprogramminginterfaces(APIs)—andthatconsiderstheintegration ofsoftwareandhardware.
3. Specifyinganddevelopingmanageableandhuman-centricKPIs,metrics,procedures,andtoolsfordynamicandautomaticcybersecurity certificationfromchiptosoftwareandservicelevels.
13.5.5 Diversity,heterogeneityandflexibilityofenvironments
Diversity,heterogeneity,andflexibilityarechallengingattributesoftesting andcertificationproposals.Inparticular,anyapproachesandsolutionsprovidedshouldmoveaccordingtoverticalandhorizontalresearchlevels.Indeed,ecosystemsandsystemsofsystems(SoS)relyonthecontinuousintegrationofcomponents,appsanddevicesdevelopedusingdifferentlanguages andoperatingsystems,andoncombiningandaccessingthousandsofdevicebrowser-platformcombinationssimultaneously.Toavoidtheriskofbecoming outdated,testingandcertificationneedhighlyflexibleandmodularschemes thatrapidlyadapttothechangesandupdatesofthetechnologicalenvironmentandelementsateachhorizontalorverticallevel.Additionally,tofollow therapidandpervasiveevolutionofthedifferentsupplychainenvironments (suchasthecriticalinfrastructuresdescribedinChapter 9),andnewtechnologies(likethemetaversesdescribedinChapter 10),holistic,modularproposals arenecessary,abletoeffectivelyandefficientlyvalidate,verifyandcertifythe differentHW/SWelementsunderrealuserconditionsandconsideringother interactingsystemsandapplicationdomains.
13.5.ResearchGaps
89
13.5.6
Includinglegalaspectsinsidetestingandcertification
TheinterplaybetweenHWandSWelementsincurrentsystemspromotesa newdirectionforcybersecuritytestingandcertificationresearch:toinclude legalaspectsintheverification,validationandassessmentprocedures.The legalframeworkandtechnicalstandardsmustbeconsiderednecessaryparametersduringthedevelopmentlifecycle(formoredetailsrefertoChapter 12).Indeed,cybersecurityvulnerabilitiesmaycauselegalviolations,especiallyinsensitiveapplicationssuchashealthcare.Thefuturedirectionisto ensurethatcybersecurity,safetyandlegalrequirementsaretestedandcertifiedasinseparableaspectsofthesameprocess.
13.6 Exampleproblems
Tangibleexampleproblemsmightinclude:
Testingtheunknown. SoSscontinuouslyintegratevariousnewdevicesand components;someofthemcouldbeuntestedandanyintrinsicflaws willbeinherited.Theresearchshouldpavethewaytonewtesting paradigmstoachieveself-adaptivetestingmethodologiesaimingatensuringthatunknownanduntestedcomponentsanddevicesaretrustable andhavegoodqualitybeforetheyjointheSoS.Inotherwords,thisresearchshouldpromote“FullQuality–positive-sum,notzero-sum.” 1
TestingofAI/ML/DL. Providetestingmethodologiesandtoolsthatcanbe suitableforrevealingbugsinartificialintelligence(AI),machinelearning(ML)ordeeplearning(DL)applications.Thestudyshouldconsider thefollowingthreemainaspects:therequiredconditions(correctness, robustness,securityandprivacy);theAI,MLorDLitems(e.g.thedata, thelearningprogram,ortheframeworkused);andtheinvolvedtesting activities(testcasegeneration,testoracleidentificationanddefinition, andtestcaseadequacycriteria).
UsingAI/ML/DLfortesting. ProvideAI/ML/DL-basedmethodologiesand toolsthatcanhelpperformmosttestingtasks,suchastest-casegeneration,test-caseclassification,oraclederivationormutationanalysis, tociteafew.Therefore,thisresearchaimstoleveragestate-of-the-art AI/ML/DLtechnologiestoaidsoftwareandhardwaretestersinachievingthedesiredqualitydrivenbytestingdata.
Understandingthetestabilityofthemetaverse. Improvetheunderstanding ofthechallengesoftestingthemetaversebyconsideringthreetesting
1Thistermisinspiredbythewell-knownprivacybydesignprinciple“Fullfunctionality: positive-sum,notzero-sum”[35].SeealsoChapter 8
13.TestingandCertification
90
pillars:cybersecurity,aimedatsecuritytesting;APItesting,crucialfor guaranteeinginteroperability,whichisafundamentalcharacteristicof themetaexperience;andinteractiveandimmersivetesting,whichputs thehumanatthecoreoftestingmetaexperiences.
Wearealltesters. Improvetheunderstandingoftheroleofhumansinthe testingprocess.Theresearchshouldprovidetheories,insights,and practicalsolutionsforengagingpeopleinthetestingandassessmentof digitalproductsandservices,consideringdifferentdimensionsof(digital)ethnography.Thestartingpointforthiskindofresearchshouldbe gamification,whichaimstoconverttestingtaskstogameplaycomponents,andcrowd-sourcedtesting(alsoknownascrowdtesting),which isanemergingapproachforinvolvingusersandexpertsintestingactivities.
13.6.Exampleproblems
91
14 IoTSecurity
14.1 Introduction
TheInternetofthings (IoT)isacollectionofdevices(i.e.things)thatcontainsensorsand/oractuators,software,andcommunicationcapabilitiestosend andexchangedatawith otherdevicesontheInternet.TheideaoftheIoThas beenwithusforquitesome timenow,anditssecurity hasalwaysbeenandstillis oneofitsmainchallenges.
Overtimethetypesandcapabilitiesofeverydaydevicesconnectedtoa networkcontinuetogrowquickly.IoTAnalytics[106]estimatedthenumber ofconnectedIoTdevicesfor2021tohavebeen12.2billionglobally.Meanwhile,Statista[238]hasestimatedamoremodest11.3billionconnectedIoT devicesin2021.Thepredictionisforthenumberofdevicestomorethan doubleby2030,withStatistaestimating29.4billionconnectedIoTdevices. IoTrepresentsoneofthebiggestsecurityconcernsatthepresenttimeandin thefuture,asthenumberofsuchdevicesisprojectedtogrowandpermeate allaspectsoflifeevenmoredeeply.ThisiscorroboratedbythefactthatIoT devices,onaverage,getattackedwithinfiveminutesofbeingconnectedto theInternet[158].
Whilemostmightthinkofsmartrefrigerators,robotvacuumsorsmart watcheswhentheyhearthewordIoT,therearemanymoresuchdevices thatsupportandsurroundusinourdailylivesaswellasinindustries.IoT canbeusedinmanyareastohelpoptimiseand/orautomateprocessesby gatheringlivedata.ThemostcommonapplicationsofIoTincludesmart homes,smartcities,wastemanagement,smartgridsandpowermanagement,
industry(i.e.Industry4.0),agriculture,smarthealthcare,smartwarehouses, smarttransportandlogistics,etc.Fromtheenvironmentwheretheyareused andtheirpurpose,wecanderivedifferenttypesofIoTs.Forexample,Internet ofIndustrialThingsorIndustrialInternetofThings(IIoT),ConsumerInternet ofThings(CIoT),InternetofMedicalThings(IoMT)orInternetofHealthcare Things(IoHT),InternetofAgriculturalThingsorInternetofFarmingThings (IoFT),InternetofEnergyThings(IoET),InternetofVehicles(IoV),Internetof TransportationThings(IoTT),InternetofEducationThings(IoEdT),etc.
ThereisaconsiderablelistofpropertiesthatmakeIoTdevicesandnetworksvulnerable.Forexample,theubiquityofIoTdevicesmakeitdifficult toprotectthemagainstphysicalaccess.Atthesametime,thediversityof devicesmakesitdifficulttodesign"one-size-fits-all"securityconstructsthat couldbefreelyappliedtothedevices.Evenmore,therapidlifecycle(ofthe devicesthemselvesandthedevelopmentprocess)alsomakesithardtotrack thedevicesonthemarketandapplysoftwarepatches.Discoveredvulnerabilitiescangounpatchedforanextendedamountoftime,andevenifthereis apatch,mostoftheusersfailtoregularlyupdateIoTdevices.
Tomakemattersworse,IoTdevicesareoftenleftwiththeirdefaultsecurityconfigurations(e.g.factorypasswords)whichleavesthemevenmore vulnerable.Andfinally,severalIoTdevicesarerathersmall,withlimited power,memoryandcomputationalcapabilities.Thisoftenmeanstheyare notcapableofrunningthebestsecuritymechanismsandprotocolsandmust insteaduselesscomputationallydemandingandresource-intensesolutions thataregenerallynotassecure.
AddressingcommonchallengesintheIoTecosystem,ofwhichsecurityis certainlyoneofthemostimportant,iskeytothefutureofIoT,especiallyas IoTbecomesmoreandmoreingrainedinourlivesandnolongerrepresents athreatonlytooursensitiveinformation,butalsotoourphysicalassetsand health.ForalloftheconvenienceandvaluethatIoTprovides,therisksare alsounparalleled.
14.2
WhoIsGoingtoBeAffected?
IoTdevicesaffectnearlyeverybody.Forexample,individualscanbeaffectedinmanyways.Ifasmarthomecomesunderattackandstopsfunctioningcorrectly,theinhabitantscanlosepower,heating,light,entertainment, etc.WebcamerasandbabymonitorsarealsoverycommonhouseholdIoT devicesthatregularlygetattackedandhavepreviouslybeenusedtospyon theirownersortoformpartofabotnet.Individualsmayalsobeindirectly affectediftheattacktargetstheirorganisation,theirgovernmentoranyother entitytheyarepartof.
14.IoTSecurity
94
IndustriesmayalsobenegativelyimpactedbyIoTattacks.Indeed,asuccessfulattackonsuchanIoTsystemwouldcauseoperationstocease.Any organisationinthesupplychainwouldalsosufferconsequences,especiallyif theattackwasaimedatpostal/transportorganisationsthatmanagethetransportationofgoods.Whilethisistruerfororganisationsorindustriesdealing withmanufacturing,onlineservicesaremorevulnerabletothingslikeDDoS (DistributedDenialofService)attacks,whichmakeonlineservicesinaccessiblebyoverloadingtheserviceproviderswithfakerequests.Someofthe largestsuchattackswerelaunchedfromhijackedIoTdevicesthatformeda botnet(alargecollectionofdevicesthatweresuccessfullyattackedandsubvertedtodotheattacker’sbidding:e.g.[178, 206]).
Forefficiencyandtransparency,manycriticalinfrastructuresandgovernmentalservices(e.g.power,water,andwastemanagement)arebecomingIoT supported.Anyattackthatwouldundermineanyofthemforanyextended amountoftimewouldcausehavocinthepopulationandresentmenttowards thegovernment.AttacksagainstIoTcouldalsobeusedtospyonpoliticians or,again,usingDDoSattacks,tomakedigitallysupportedgovernmentalservicesunavailable(e.g.eHealth).
14.3
WhatIsExpectedtoHappen?
AsIoTprogressestobecomepartofeverything,manythingscouldbe affectedwhensomethinggoeswrong.Webcameras,babymonitors,voice assistants,smarttoysandsimilartoolscanmonitorpeoples’activitiesand conversations(e.g.[108, 165, 192]).Medicaldevicescollecthighlysensitiveinformation,includingprotectedhealthdata.Smarttemperaturesensorscan tellpeoplewhensomebodyisathome,andsmartlockscanlettheminwhen theyarenot.IoTdevicesusedinmanufacturingcouldbeusedforindustrial espionagetoobtainsensitiveinformationaboutmanufacturingprocessesand procedures,orthewholemanufacturingprocesscouldbeshutdown.AttacksonIoTinsmarttransportandwarehousingwilldisturbsupplychains. Attackscanaffecttrafficwheresmarttrafficmanagementisused,andattackerscantakeoversmartcarsiftheycangainaccess(e.g.[100]).Byattacking smartwatermanagementandpowergrids,largeregionscanbeleftwithoutpowerandwater,whichbringsanyindustrytoastopandcausespeople theredifficultieswithcookingandkeepingwarminthewinter.Inagriculture,asuccessfulattackthatisnotnoticedquicklyenoughcanleadtoruined cropsordeadlivestock.HavingIoTdevicesexpandstheattacksurface,sowe canexpectmoresuccessfulattacksbyattackersgainingaccesstoprotected networksthroughseeminglyinconsequentialIoTdevices(e.g.[245]).Large amountsofsuccessfullycorruptedIoTdeviceswillbemergedintobotnets
14.3.WhatIsExpectedtoHappen?
95
thatwillthenbeusedforcryptominingortoperformlargeattacks,suchas DDoS,tocrippleonlineservicesorwholepartsoftheInternet(e.g.[58]).IoT attackswillregularlycomeintheformofransom,wheretheattackerswill demandmoneytostopanattackornotbeginitinthefirstplace.
Giventhesefewexamples,thepotentialdamagethatcouldbecausedby losingsecurityoverIoTsystemsisimmense.Consequencesincludelossof privacy,identitytheft,effectonhealthorevenlossoflives,stealingofintellectualproperty/competitiveadvantage,lossofproperty,goodsshortages, decreasedfoodproduction,unavailabilityofonlineservices,difficultieswith thesupplyofelectricityandotherenergysources,etc.
14.4 WhatIstheWorstThatCanHappen?
Intheprevioussection,wetriedtoshowhowmuchcouldgowrongif IoTsystemsgetcompromised.Inthissection,however,wewanttogivesome worst-caseescalationsofthoseexamples.Inthecaseoflosingprivacy,there aretworeallybadoutcomes.Thefirstisthelossofanonymity,whichwas alreadycoveredinapreviousbookchapter,whilethesecondisidentitytheft, whichisconsiderablyalarming,especiallyifithappensinlargenumbers.MaliciousmedicalIoTdevicescancausehealthdegradationorevendeath,but evenworsearedevicesimplantedinhumans(i.e.pacemakers).Ransomware onsuchdevicesisbasicallyremotekidnappingthatdoesnotleavethevictim withanynegotiationoptionsoralternativetopayingtheransom.Thelossof runningwaterandpowerisbad,butifalargeenoughareaisaffected,that wouldplungetheinhabitantsintoadarkage,whichinmoderntimeswould becatastrophic.Anattackonthewatersupplycannotonlystoptherunning water,butitcanalsomakeitpoisonousbyalteringthewatertreatmentat thewaterplant.Anywidespreadsuccessfulattackoncriticalinfrastructure wouldhavedevastatingconsequencesforgeneralsecurity(e.g.military),nationaleconomicsecurity,nationalpublichealthorsafety.Maliciousattackson manufacturingplantscanalsocausetheproductionmachinerytobreak,stoppingproductionforaverylongtimeorevencausinginjuriesordeathsamong employees.UsinglargeenoughbotnetstoperformDDoSorothertypesof attackcouldcripplelargesectionsoftheInternetand,withit,everythingthat reliesonthatinfrastructure(e.g.communications).
14.5 ResearchGaps
IoTsecurityisaproblem,anditwillgetworseasthepotentialattack surfaceexpandswithmanymoredevicesandwithmorecriticaldevices(e.g. medicaldevices).
14.IoTSecurity
96
14.5.1
ArtificialIntelligenceandMachineLearning
Artificialintelligence(AI)andmachinelearning(ML)promisetobeahuge helpinsecuringandidentifyingattacksinIoT[10, 114, 203].TheintroductionofAIandMLintotheIoTenvironmenthassomeassociateddifficulties, suchasdeploymentonconstrainedanddistributeddevicesandtheneedfor updatingAI/MLmodelsovertime,whichcanbeproblematicforreasonsof accessibilityandgeneralupdatingpractices-aswediscusslaterinthissection.Overcomingtheseissues,AIandMLcanprovideagreatdealinterms ofsecurityforIoTsystems.AIandMLcancopewithheterogeneousdataand gothroughlargevolumesofdataproducedbyIoTmuchmorequickly(i.e. inrealtime)thantraditionalmethods,enablingthemtodiscoverattacksas theyhappen.Suchsolutionscanbeutilisedforaccesscontrol,security,malwaredetectionandanalysis,riskassessment,threatanalysis,privacy,attack detection,andpotentiallytracingtheattacktroughthesystem.AI/MLisalso agoodfoundationforprovidingadditionalsystemresilience.Deeplearning hasalreadyshownpromisingresultsinidentifyingIPSpoofingandDDoS attacks,anddecentralisedmachinelearningcouldbeespeciallycompatible withIoT.Weneedsolutionsthatareabletoidentifythesubtletiesofsecurity breachesandmitigatethemwhileconformingtothelimitedresourcesofIoT devices.Thisincludesefficientlabellingofinputstreamsandlearningwith smallersetsoftrainingdata.Weneedmethodsforsuchsolutionstowork notonlyinenterprises,butpotentiallyalsoinmuchsmallerenvironments, regardlessofthetypeofdatatransmittedthroughtheIoTnetwork.
14.5.2
StrongandUniversalSecurityStandardsforIoTTechnology
SecuritystandardsinIoTandtheirapplication,ingeneral,needsomework [13].Thequickdevelopmentofsolutionsandtheheterogeneityofthedevices certainlydonotmakestandardisingIoTsecurityanyeasier.UniversalstandardsorguidelinesshouldbesetforIoTdevices,includingdataprotection atrestandduringcommunication,authenticationandauthorisationofIoT devices,maintenanceandmanagementofIoTdevices,auditingandlogging, andsecureinterfaces(web,applicationAPI,cloud,andmobile),andIoTsecurityincidentresponseprocesses.Ingeneral,moreIoTdevelopmentshould followthe"securityandprivacybydesign"paradigm,especiallyfordevices thatcollectpersonaldataand/orcanhaveasignificantimpactontheirowners’healthorassets(e.g.smartlock).
14.5.3
DevelopStrongandLightweightCryptographyforIoT
SomeIoTdeviceshaveseverelylimitedresources,andtoretainfullfunctionality,securityandusability,theyrequirelightweight(cryptographic)protocols. Lightweightsolutionsmustbeefficientintheircomputational,memoryand
14.5.ResearchGaps
97
14.IoTSecurity
powerconsumption.Forthispurpose,weneed(standardised)lightweight IoTsolutionsfordataencryption(atrestandintransit),keymanagement, routing,authentication,andaccesscontrol.Additionally,malwareisalsoa largeproblemforIoTsystemsandforthesamereasonsoflimitedresources, malwaredetectionsolutionsthatcanbeeffectiveinsuchenvironmentshave tobefurtherdeveloped.
14.5.4 EstablishTrustandTraceability
TakingintoaccountthesecurityconcernssurroundingtheIoT,establishing trustinthedevices,theirprocesses,andthecollectedandtransmitteddatais important.CurrentIoTsystemslacktransparency,makingitimpossiblefor ordinaryuserstoknowwhatisgoingon,whatdataisbeingcollectedand whathappenstoit.Thisincludeslivemonitoringthatcannotifyusersin realtimeofanymaliciousbehaviourinIoTsystems.Monitoringisalsovery importantforself-healingcybersecurityIoTsystemsthathavethepotentialto automatecybersecurity.
Datatraceabilityandintegrityarevitalforincreasingtrustindataand, consequently,thewholeIoTsystem.Distributedledgershavebecomethe primarysolutionfordatatraceability;however,somedevelopment,especially inscalability,isstillneededbeforetheycanbefreelyappliedtolargerIoT networks.Atthesametime,trustisalsorequiredamongstIoTdevicesina network.Thispreventsattackersfromjoiningthenetworkormasquerading asoneofthedevicesinthenetwork.Forthis,weneedbettersecuretrust managementsystems.
14.5.5
IoTSecurityAwarenessandEducation
IoTusersarecurrentlynotwellawareofthesecurityrisksandespecially theavailablemitigationcontrolstoreducetheserisks[115].Thisisespeciallytrueinpersonal/homeenvironmentsandsmallerbusinesses,butitis unfortunatelyalsooftentrueinenterpriseenvironments.Themostcommon problem,andonethathasbeenexploitedverysuccessfullyevenintherecent past,istheuseofthedefaultpasswordsthatthedeviceswereshippedwith ortheuseofweakpasswords.Moreeffortisrequiredforeffectiveawareness methodsandtoolsforinformingthepublicofthedangersofinsecureIoT(eitherinsecuredevicesorweakconfigurations).IoTproductsshouldcomewith clearerinstructionsfortheusersonhowtosetuptheirdeviceswithanemphasisontheimportanceofsecurityandprivacysettings(thiscouldbepart ofthemanualand/orashardwiredpolicies,e.g.defaultpasswordswould havetobechangedduringthesetuptoapasswordofsomeminimumquality).Reportedlythereisalsoalargeshortageofprofessionalstoimplement
98
IoTnetworksinbusinesses,includingcybersecuritytalent[118].Appropriate trainingandupskillingprogramsshouldbedesignedandputinplace.
14.5.6 HardwareSecurity
WithIoTdevices,itisimportanttorememberthattheycoverawiderange ofusecases,andinsomeofthem(e.g.whendevicesareinstalledoutside protectedenvironments),thephysicalorhardwaresecurityofthedeviceitself isasimportantasanythingelse[18].Thisaspectoftenseemstobeforgotten, andIoTdeviceslackhardwaresecurity,suchascryptographiccoprocessorsor anti-tamperingtechnologies.Therefore,weneedmorelow-cost,efficientand well-testedmodules,whichincludehardwaresecuritythatmanufacturerscan reliablyuseintheirIoTproducts,andwemustprovideincentivesforthemto beused.Inthissection,trustedgatewayscanalsobementionedasawayto minimisetheattacksurfaceandthedamagetoorganisations.
14.5.7
PrivacyinIoT
PrivacyisanimportantchallengeinIoT[107].Privacypreservationrestricts theprocessingofdatatoonlythestrictlynecessary,andinawaythatpreventsadditionalsensitivedatafrombeinginferredthroughoutthedata’slifecycle.Itmustalsostrikeabalancebetweendatautilityandprivacy.Weneed moreemphasisonprivacyduringthedesignanddevelopmentofIoTandbetterprivacy-preservingtechniques(e.g.anonymisation)thatcouldbewidely adoptedinIoT.
14.5.8
Lifecyclemanagement
Adevicecanbesecuretoday,butthisconditioncouldchangeduringitslife cyclebecauseofanewlydiscoveredvulnerability.Thesecuritymanagement shouldbescalableandasautomaticaspossibleifwewanttodealwithalarge numberofheterogeneousIoTdevices[109].However,thismightnotalways bepossible.SinceIoTdevicesarenotusuallyequippedwithtraditionalinterfaces,andupdatesarenotpushedtothedevices,usersdonotknowthereare newupdatesorpatchestheyshouldinstall.Weneedmethodsofnotifying deviceownerswhentherearecrucialupdatesorpatchestheyneedtoinstall withoutthemlosinganyfunctionalityofthesystemstheyhavesetup(ifupdatingmeanslosingdataordeviceconfiguration,manywillchoosenotto update).Finally,anadditionalchallengethatneedsfurtherresearchistodevelopefficientupdateproceduresforIoTdeviceswithverylimitedresources (e.g.notenoughmemorytodownloadanupdate).
14.5.ResearchGaps
99
14.5.9
IoTRegulationandPolicies
Attheendoftheday,evenifthetechnologyexiststhatcanmakeIoTsecure, itisstillimportantforthetechnologytobeimplemented.Asisoftenthe case,regulationtakessometimetocatchupwithtechnologicaladvances,and whilewehaverecentlyseensomemovementonregulatingIoTsolutionsand theexpectedlevelsofsecuritytheyshouldprovide,thereshouldbemore.We needsomewayofimposingminimumsecuritystandardsforIoTdevices(e.g. certification).
Onecrucialmatterthatcouldbealleviatedwithregulationisthelong-term supportofIoTdevices.Todayyoucanbuyadevice,andthemanufacturer willenditssupport(ifithadanyinthefirstplace)atanypointinthefuture, withoutevennotifyingthedeviceowners.Giventhecurrentpoliciesofsustainabledevelopment,minimumcriticalsecuritysupportcouldbeprescribed byregulation,ortherecouldbearequirementforproductstohaveaclearly markedsupportdurationontheirpackagingatthetimeofsale,whichthe manufacturerwillguarantee.
14.6
Exampleproblems
Tangibleexampleproblemsmightinclude:
Machinelearning-basedcybersecurityforIoT. StudyIoTattackpatternsand developIoT-friendlyrawdata-labellingmethodsfornewmachinelearningsolutionstorecogniseattacks.Createanomalydatasets.Develop newdeeplearningsolutionsfordetectingattacksand/ormalwareon IoTnetworks.
IoTdevicesecurityclassifications. ToalleviatetheproblemofIoTdeviceheterogeneity,developaclassificationschemeforIoTdevicesbasedontheir resourcelimitationsandpurpose(i.e.howcrucialissecurityforthe device,basedonwhatitismeanttodoandwhattypesofdataare involved).Theclassificationcouldbeusedtodeterminewhatarethe minimumsecurityfeatures(e.g.securityprotocols)thedevicehasto supportforittobeconsideredtohaveanacceptablelevelofsecurity, givenitssecurityclass.
SmarthoneypotsforIoT. EstablishemulationofIoTdevicesonuniversal computerplatforms.Enablemonitoringandcollectionofdatafromthe distributedIoThoneypotnetwork.
LightweightprotocolsforIoT. Findoradaptsuitableexistingprotocolsor developnewcryptographyprotocolsforIoT(potentiallyforeachIoT devicesecurityclassificationfromthepreviousexample).Theselection
14.IoTSecurity
100
14.6.Exampleproblems
ofprotocols(fordataencryption,bothfordataatrestandintransit,key management,routing,mutualauthenticationofdevicesinthenetwork, etc.)canbepromotedasgoodpracticesand/orstandardised.
Updateandpatchnotificationsforordinaryusers. CompileadatabaseofIoT devicesandhardwareusedandanyconsequentupdatesorpatchesreleasedfortheirsoftwareorfirmware.Giveusersoptionstofindtheir devicesinthedatabaseandsubscribetobenotifiedifupdatesorpatches areeveravailablefortheirdevices.Provideinstructionsonwheretoget themandhowtoinstallthem.
Improvedauthentication. IoTdevicessufferfromoveruseofdefaultand weakpasswords.Effortsshouldbeputintodevelopingconvenientways ofincorporatingmulti-factorauthenticationintoIoTdevicesanddevelopingandimplementingpasswordlessauthenticationforIoTdevices.
101
EffectiveThreatModelling
15.1 Introduction
Thereisgrowingtrendinsecurityofshiftingleft,thatisapplyingsecurityactivitiesearlierinthesoftwaredevelopmentlifecycle.Threatmodellingstarts fromanarchitecture-level(ordesign-level)descriptionofthesoftwaresystemorservicethatisbeingdeveloped,andstrivesforearlyimprovementsin termsofsecurityandprivacyby(1)identifyingthreats,(2)prioritisingthese threatsintermsofriskandpossibledamage,and(3)suggesting/offeringpossiblemitigationsatthearchitecturallevel.Suchanapproachisbeneficial,as itenablestheidentificationofsecurityflawsearlyontoreducetheimpactof changes[232].Therelevanceandusefulnessoftechniqueslikesecurityand privacythreatmodellingisdemonstratedbythegrowinginterestinthreat modelling.Indeed,organisationssuchasMicrosofthavemadegreatstrides inaddressingsecurityintheearlyphasesofthedevelopmentlifecycleaspart oftheirsecuritypushintheearly2000s[112, 130, 227],withtheintroduction ofsecuritythreatmodellingandthesecuritydevelopmentlifecycle.Therelevanceandimportanceofconsideringsecurityinthesephasescontinuestobe recognisedandisconfirmedwiththe2021releaseoftheOwasp top10[180] whichexplicitlyincludesinsecuredesignasatop10entryandspecifiesthe needtoperformmorethreatmodelling[212].Furthermore,ithasbeenappliedtomanysystemsinpractice.Forseveralofthese,concretethreatmodels areavailable,suchastheSecureDropwhistle-blowersubmissionsystem[86] andKubernetes[233].Suchasystematicandcomprehensiveanalysiscanbe anindispensabletooltoidentifyproblematicdataflowsinapplicationsthat arelaterleveragedaspartofransomwareattackstofurtherpropagatethemselves.
15.2
WhoIsGoingtoBeAffected?
Clearly,theactivityofthreatmodellinginvolvessoftwarearchitectsandsecurityexperts.Itintroducesanadditionalandpossiblycostlyactivitytothe developmentprocess,yettheyieldcanbearelativelyhighlevelofassurance: manyclassicalsecurityandprivacyflawscanbeavoided“byDesign”.Ifthis
15
Modelling Manual construction
Consistentwith implementation
Analysis Analysis effort
Traceabilityto implementation
Prioritisation
Identify keythreats
Explainable priorities
Figure15.1:Challengesineachthreatmodellingphase
werenotcovered,thesameflawscouldbehiddenandnotdiscovereduntil later,attheimplementationlevel.Thiswouldentailmuchlargerinvestments andeffortstodealwiththesespecificsecurityproblems.Ineffect,theserviceorsoftwareprovider(company)remainsinneedofacost-effectivethreat modellingprocess.Usersanduserorganisationsofthecorrespondingproductorservicemightnotbeawareofthismatter,yettheywouldstillhaveto paythebillattheendofthejourneyofsolvingstructuralsecurityproblems.
Whiletechniquesforthreatmodellinghavealreadyshowngreatpotentialinsupportingthedesignanddevelopmentofsecuresoftwaresystems, thebroaderapplicationofthesetechniquesasapartofthesoftwaredevelopmentprocessesintroducesanumberofchallenges(showninfigure 15.1)for practitionerswithregardtothecostofapplyingthesetechniquesincontemporarydevelopmentprocesses[214].First,theapplicationofthesetechniques istypicallyanactivitythatincludestheinvolvementofsecurityexperts,a scarceresourceinmanycompanies,whichhindersthebroaderandmorefrequentapplicationofthesetechniques[253].Second,theapplicationofthese techniquesentailssomemanualeffortincreatingandmaintainingarepresentationofthesystemandanalysingsucharepresentationtoidentifysecurity threats.Anymanualeffortaspartofanactivitythatis,ideally,frequently repeatedasasoftwaresystemisfurtherdevelopedandextended,introduces anon-trivialoverheadthatimpedesitsfrequentapplication.Furthermore, thecostofmaintainingandre-analysingthisrepresentationisexacerbatedin thecontextofcontemporarydevelopmentpracticesthatarecharacterisedby frequentiterationsandfast-paceddevelopment.
15.3 WhatIsExpectedtoHappen?
Thedrawbackofnotperformingthreatmodellinghasbeensuggestedabove. Yetthecurrentcostofthreatmodellingishigh,andtheresearchchallenges introducedinthischapterareofutmostimportancetoincreasethecosteffectivenessofcurrentandfuturethreatmodellingpractices.
15.EffectiveThreatModelling
104
Asmentionedabove,theapplicationofsecurityandprivacythreatmodellingcommonlyinvolvesamanualinputorassessmentsbythreatmodellers, suchasthecreationofamodelrepresentationofthesystemunderconsideration,theelicitationofthesecurityandprivacythreats,theprioritisationof thesethreatstodeterminethemostimportantonesand,finally,suggestingappropriatemitigationstoaddresstheidentifiedthreats.Practitionersencounter severalchallengeswhenapplyingthesethreatmodellingactivities:(i)acomprehensiveanalysisofasoftwaresystementailsasignificantamountofwork, inbothconstructingthemodelofthesystemandtheactualthreatelicitation; (ii)theanalysescanfrequentlyleadtolonglistsofthreats,buttheseresults lacksinformationontherelevanceofthesethreats,hinderingtheidentificationofthemostcriticalones;(iii)itisessentialtoensurethatthemodelused fortheanalysisremainsconsistentwiththeactualimplementationofthesystemunderdevelopment.Eachofthesechallengeswillbeexplainedinmore detailbelow.
15.3.1
Manualwork
Oneofthelargestchallengestothecost-effectivenessofsecurityandprivacy threatmodellingistherelianceonmanualeffortinboththecreationofthe modelsandtheanalysisforelicitingsecurityandprivacythreats.Sincethe threatmodellingreliesonusingadesignrepresentationofthesystem(typicallyadataflowdiagram[59,112])toanalyseforsecurityandprivacythreats, sucharepresentationmustberetrievedorconstructedbeforethethreatanalysiscanstart.However,frequentlysuchdesigndocumentationisnotavailable forthesystemsthathavebeenbuiltorarebeingextended.Becauseofthat, thedesignofthesystemunderanalysiswillhavetobereconstructedbyrelyingondocumentation(totheextentitisavailable)andgoingthroughthe implementationoftheapplication.Thisreconstructioneffortalreadyimposes additionalcostwhenperformingathreatmodellingexercise,andthiseffort mayhavetoberepeatedfrequentlyifthemodeldocumentationisnotkept uptodatewiththeapplicationasitisfurtherdeveloped.Asecondsource ofmanualeffortcanbetheanalysisitself.Theamountofeffortintroduced bythisstepdependsontheextenttowhichpractitionerscanrelyontool supportfortheanalysisorinsteadperformtheanalysismanually.Themore informalthesystemdescriptionsare,themoretheanalysiswillhavetorely onamanualassessmentbyathreatmodeller,asautomatedtoolsrequirea richermodelinput,includingmoreinformation,toenablethetooltomake thethreatelicitationdecisionsautomatically.
15.3.WhatIsExpectedtoHappen?
105
15.3.2 Prioritisation
Thesecondchallengeisrelatedtousingtheresultsofthethreatanalysis insubsequentphasestosupportdecisionsonapplyingsecurityandprivacy countermeasuresintheapplicationunderdevelopment.Astheavailableresourcestoaddresssecurityandprivacythreatsarelimited,practitionersneed tobeabletodeterminewhichthreatsarethemostrelevantandimportantto address.However,thesecurityandprivacythreatelicitationonlyrendersa (large)listofthreatsthatareapplicable.Itdoesnotprovideanysupportin identifyingthemostrelevantthreatsamongthemthatshouldbeaddressed first.Theseelicitedthreatscommonlylackinformationneededtoprioritise theresultingthreats.Asaconsequence,theprioritisationofthethreatsinvolvesamanualactivityinwhicheachthreathastobemanuallyassessed todetermineitsrelevance.Whilesuchanapproachmaybeappropriatefor asingle-shotanalysis,itisineffectiveifthethreatelicitationisfrequentlyrepeatedandtheresultinglistofthreatschangesaswell.Furthermore,support fortrackingthepriorityorimportanceofthreattypesisfrequentlylimitedto averycoarsegrainedclassification(e.g.low,medium,orhigh)thatdoesnot includeanykindoftraceabilityinformationwhensuchaclassificationdecisionwillhavetobereassessedlateron.Becauseofthelackofinformation, itisnotpossibletoassesswhythatparticularprioritywasassignedtothat threatatthetime.Ifcertainassumptionsunderlyingthatdecisionturnoutto beinvalid,itisnotpossibletoidentifyallrelevantthreatsthatwouldrequire areassessment.
15.3.3
Ensuringuptodateresults
Afinalchallengeforpractitionersistoensurethatthethreatanalysisresultsremainuptodateandrelevanttotheapplicationunderdevelopment. Especiallywithcontemporarydevelopmentpracticesthatinvolvefast-paced developmentandfrequentiterations,thedesignoftheapplicationcanchange frequently.Theresultisthatthethreatanalysisresultsfrompreviousversions ofthedesignarenolongerrelevant,assomethreatsmaynolongerbeapplicable(forexample,duetotheremovalofcertainelementsinthedesign).This introducesachallengeinkeepingthedesignrepresentationsofthesystemup todatewiththeimplementationasitevolvesduringdevelopmentleadingto additionalmaintenancecoststoensurethethreatresultsarecurrent.
15.4 WhatIstheWorstThatCanHappen?
Theprevioussectionoutlinedthedifferentchallengesandproblemsexperiencedbypractitionersintheapplicationofthreatmodelling,especiallyin termsofoverheadandcost-effectivenessoftheseapproaches.whileagreat numberofscenarioscanbeconstructedtoillustratetheimpactofvariousse-
15.EffectiveThreatModelling
106
Modelling
Model reconstruction Modelcompliance checking
Analysis
Automated elicitation Linkingto code
Prioritisation
Risk-driven prioritisation
Traceable riskresults
Figure15.2:Opportunitiesandimprovementsineachthreatmodellingphase
curityflawsbeingmissedinthedevelopmentofaconcretesoftwareproduct. Theworstcaseisactuallyunknown,astheactualimpactofnotperforming anyofthesesecurityanalysescannotbepredictedbecauseoftheuncertainties intheapplications,theorganisations,thecontextsinwhichtheapplications areused,thetypesofdataprocessed,etc.Hence,themainfocusisonthe roleofautomationinreducingoverheadandeffortasawaytoenablethe broaderuseandapplicationofthesetechniques.Thesuccessfulenhancement ofthreatmodelling,largelythroughautomation,willbenecessarytodriveto adoption,whichinitsturnwillenabletheavoidanceofexpensiveworst-case scenariosinthereengineeringandfixingofcomplexsoftwaresystemsand services.Itishardtoestimateworst-casescenariosintermsofdamage.
15.5 ResearchGaps
Theresearchagendathatisessentialtodrivethissubdomainofthesecure softwaredevelopmentlifecycleisrelativelystraight-forward.Itmainlyincludesactivitiesthatrelatetoreusableknowledge,automationandtoolsupport,etc.Theessentialresearchthemesandactivitiesaresummarisedbelow.
15.5.1 Automation
Akeyelementinthestrategytoaddressthesechallengesistostrengthen automationandapplyitinmanythreatmodellingactivitiestoreducethe manualstepsandenablefrequentreassessmentaspartofiterativedevelopmentpractices.Indeed,automationcanplayacrucialroleinreducingthecost ofthreatmodellingbyautomatingmanystepsthatinvolvecostlyandmanualinputsbydevelopersandexperts.Webrieflyoutlineeachofthephases (showninfigure 15.2)ofthethreatmodellingprocessesinwhichautomationcansignificantlyimprovecost-effectivenessbyreducingoreliminating manuallabour.
Modelling Oneofthefirststepswhereautomationcanbeappliedisinthe constructionofthemodelrepresentationthatservesastheinputforthethreat
15.5.ResearchGaps
107
modellingactivity.Thisisalsooneofthemostchallengingareastoapplyautomation.Therearetwomainapproachesthatcanbetakenthatprovide differentdegreesofreducedmanualeffort.First,aftertheconstructionofan initialmodelrepresentationofthesystem,modelcompliancechecking[186] orarchitecturaldriftanalysis[231]canbeusedtoverifywhetherthemodel representationactuallycorrespondswiththesourcecodeimplementationof thesystem.Suchanapproachstillrequiresaninitialmodel,butcanreduce thecostofkeepingthemodeluptodateasthesystemcontinuoustobe furtherdeveloped.Second,amorecomplexandmorefullyautomatedapproachistorelyonmodelconstruction.Thisapproachemploystoolingto automaticallycreateamodelstartingfromthesourceoftheapplication,thus eliminatingtheinitialeffortinmodelconstruction.Thesetechniquescanof coursebecombinedwiththecompliancecheckingtoverifytheaccuracyof thereconstructedmodels.
ThreatElicitation
Thesecondstepwhereautomationcanbeleveragedis duringthreatelicitation.Therearetwoareasinwhichautomationreduceseffortandmanualinput:theelicitationitselfandtheautomatedapplicationof expertknowledge.Forthethreatelicitationitself,theuseofautomationcan ensureacomprehensive,systematic,andrepeatableanalysisofthesystem. Manyexistingthreatmodellingtools[120, 156]doprovidethisfunctionality already,rangingfromsimplecriteriatomorecomplexmodelpatterns[235]. Automatedtoolscanconsistentlyapplycomplexrulesetstosystemdesignsto ensurerepeatablethreatelicitation.Thesecondbenefitofautomationinthe contextofthreatelicitationisthatitallowsexpertknowledgeaboutsecurity andprivacythreatstobeencodedintotoolsupport,enablingtheautomated applicationofthisknowledgewithouthavingtorelyonsecurityandprivacy expertstoassistintheassessments,asthesearescarceresourcesfororganisations.
Prioritisation
Thethirdstepwhereautomationintroducesbenefitsisinthe prioritisationoftheelicitedsecurityandprivacythreats.Giventhesubstantial numberofsecurityandprivacythreatsthatmaybeelicited,beingabletoprioritisethembecomesessential.Thelargenumberofthreatsmakesitincreasinglydifficulttoreviewthemforprioritisation,especiallyiftheanalysisis frequentlyrepeatedinresponsetochangestothesystemdesign.Automation providestwokeybenefitsinthiscontext.First,becausetheautomationwill relyonadditionalinformationintheinputmodelstodeterminethepriorities ofthethreat,itactuallyforcestheexplicitspecificationofthisinformationin theinputmodels.Whilethisintroducessomeoverheadtoprovideadditional input,italsoallowstraceabilityoftheresults,astheresultingprioritiescan beexplainedthroughtheinputsandrevisitedlater.Second,itremovesthe needformanualassessmentandprioritisationofthethreats,makingitmuch
15.EffectiveThreatModelling
108
moreeconomicaltofrequentlyreanalyseasystem.Suchautomationrequires theconstructionofriskmodels[87, 215]thatcanbesystematicallyapplied.
15.5.2 Toolsupport
Asillustratedabove,therearemanyopportunitiesforautomationtoreduce manualeffortandenableamorecost-effectthreatanalysisofasystem.Tool supportiscrucialforachievingautomationinthesedifferentphasesofthreat modelling.Thenecessarytoolsupportrangesfrom:(1)sourcecodeanalysis toolstoperformcompliancecheckingormodelreconstruction;(2)automated threatelicitation,leveragingencodedexpertknowledge;and(3)automated prioritisationofelicitedthreatsusingriskassessment.
15.5.3
Educationandtraining
Afinalareaofimprovementistoprovideeducationandtrainingtoenableall personneltoparticipateinthreatmodellingandfurtherreducetherelianceon securityandprivacyexpertsforthreatmodellingactivities.Togetherwithtool support,educationandtrainingfacilitatestheembeddingofthreatmodelling inexistingsoftwaredevelopmentprocesses.
15.6
Exampleproblems
Tangibleexampleproblemsmightinclude:
Creatingandmaintainingmodels. Anythreatmodellingactivityrelieson thecreationofaninitialmodelofthesystemtobeanalysed.Thecreationandmaintenanceofthesemodelscanintroducesignificantoverheadforthreatmodellershinderingthefrequentapplicationofthese techniquesduringdevelopment.Therehavebeenseveraladvances[186] thatmakeiteasiertodeterminewhetherthesemodelsarestillcompliantwiththecode,thusreducingtheeffortinvolvedinmaintenance.The analysisofsourcecodetoconstructmodelsthatarereadilyuseablein threatmodellinganalysisisstillachallengingproblem.
Automatingthreatknowledge. Therearemanypubliclyavailableresources withinformationaboutpreviouslyidentifiedsecuritybugs,weaknesses, andflaws(e.g. cves, cwes,etc.).Theseresourcesarehighlydynamic, astheyarefrequentlyupdatedwhennewissuesareidentified.While someoftheseresourceshavealreadybeensuccessfullyintegratedinto automatedanalysisactivities,suchasthedetectionofvulnerabledependencies,notallresourcesareeasilytranslatedandappliedinathreat modellingcontext.
Integrationindevelopmentprocesses. Theapplicationofthreatmodelling isusuallyanactivitythathappensinisolation.Thisintroducessome
15.6.Exampleproblems
109
additionaloverheadandcomplexityintranslatingthethreatsidentifiedinthesystem’sdesignintoveryconcreteandactionableitemsfor developerstoworkon.Thereareseveralchallengesinimprovingthe actionabilityoftheresultsofthreatanalysesbysupportingatighter integrationindevelopmentprocessesandrelatingthreatmodellingresultstoconcretesourcecodeartefacts,forexample,byguidingtowards startingpointswhenmitigatingtheidentifiedthreats.
15.EffectiveThreatModelling
110
16 GrandChallenges
Inthissectionwedescribesome“grandchallenges”thatwewillneedtoface inthenextfewyears.Thesechallengesrequirethecollaborationofhundreds ofpeoplefromseveraldifferentrealmsofscience.Mostofthesechallenges notonlyinvolvenovelresearch,butalsoneedappropriateregulationand possiblylegalframeworksinplace.Wehopethatthefundingagencieswill providesupporttotheseareasandthattheresearchcommunitywillstart workingtowardsthesechallenges.
16.1
Giveusersassuranceaboutthesecurityoftheirdevices
Mostcomputingdevicestodayofferlittle, ifany,assuranceaboutthelevelofsecurity theyprovide.Althoughsomeofthem(such asmedicaldevices)mayadhereto safety standards,mostofthemdonotadhereto any securitystandards atall.Asaresult, theyprovidenoguaranteestotheirusers: theymaycrashatanytime;theymayget compromisedatanytime;theymayturn hostileatanytime.Webelievethatwe shouldprovideuserswith(i)bettertransparencyand(ii)betterguarantees aboutthesecurityoftheirdevices.Althoughthissoundslikeataskthatcan beachievedthroughregulation,ithassignificantresearchanddevelopment dimensionsincludingcontinuousmonitoring,aggressivepenetrationtesting, andcontinuousbugdetectiontonameafew.
16.2
Overthepastyearswehavemovedseveralofoureverydayactivitiestocyberspace.TheCOVID-19pandemicintensifiedthistrendsothatatthepeak ofthepandemictheonlywaystointeractwithotherpeopleinvolvedthedigitalworldatsomelevel.Asaresult,westarteddoingallourshoppingonline,
Ifitcanbedoneanonymouslyintheofflineworld,itcan alsobedoneanonymouslyonline
ourvisitsmovedtoteleconferences,ourschoolingwasdoneviaZoom,severalaspectsofworkalsomovedonline,etc.Whatwedidnoteasilyrealise, though,wasthatinordertocarryouttheseactivitiesonlinewehadtoprovide agreatdealofpersonalinformation,andinthiswaysacrificeourprivacy.For example,inthepastitwaspossibletodomostofourshoppingpractically anonymously.Wecouldvisitstoresanonymously,browseforvariousproductsanonymously,wecouldevenpayanonymouslyusingcash.Atnopoint inthisprocessdidwehavetorevealourname,ouraddress,ourtelephone numberetc.Wecouldrevealthisinformation(ifwewantedto),butwedid nothaveto.Todayitisalmostimpossibletodoanyshoppingonlinewithout revealingagreatdealofpersonalinformationsuchasourname,ourtelephonenumber,ouraddress,etc.Suchpersonalinformationisrevealedtoa widerangeofdifferentactorsincludingthemerchant,onlineadvertisers,the couriercompany,etc.Webelievethatitisnowtimetoreclaimourprivacy andrevealaslittleinformationaspossible.The guidingprinciple hereisthat ifitcanbedoneanonymouslyoffline,itcanalsobedoneanonymously online.Thisisnotaneasytaskanditmayinvolveseveralaspectsbesides researchincluding,forexample,awarenessanddeployment.Itmaynoteven bepossibleinsomecasesandwithsomeproviders.However,havingthisasa guidingprinciplewillhelpustrimdownallthecaseswhereprivacyhasbeen unnecessarilysacrificed.
16.3
MakeAISafeforPeople
AIisspreadingwidelyandrapidly.For example,arecentwhitepaperbyDeloitte showedthattheworldwillseeAI-driven GDPgrowthof$15.7trillionby2030.ThecapabilityofAI,andMLmodelsinparticular, toextract/learncomplexfeaturesfrommassivevolumesof(often)unstructureddatais whatmakesthemapopularchoicefortacklingvariousproblems.Yet,asdiscussedin Chapter 4,ML-poweredapplicationsoffera wholenewspectrumofsecurityandprivacy exploitsforpotentialadversaries.
First,MLmodelsareoftenappliedtosectorswherewrongdecisionmakingcanhaveseriousimplications.Yetitmay oftennotpossibletoofferformalsecurityguarantees,giventhosemodels’ non-deterministicnature.Second,MLmodelsareoftentrainedonpersonal/sensitivedata,especiallymodelsdeployedinthehealthcarefield.Thus,
16.GrandChallenges
112
16.4.Makesystemsresilientunderattack
revealingtraininginstancesconstitutesaseriousviolationofindividuals’privacy.
Asaresult,weneedtodeveloptechniquesandmechanismsfor makingAI safeforpeople.Notethatdoingsoisnotaneasytaskandinvolvesbringing togetherresearchersandpractitionersfromawiderangeoffields,suchas mathematics,linguistics,informatics,etc.Infact,forspecificusecases,itmay notevenbepossibletoprovidethedesiredguaranteeswithoutsacrificingthe model’sperformance.However,workingtowardsthisdirectionwillsurely leadtosignificantimprovementsandnoveltechniquesofferingacceptable trade-offs.
16.4
Makesystemsresilientunderattack
Computersystemscanberemarkablyfragile.Indeed,awrong ifstatement,a wrong assignmentstatement,oranundefined globalvariable isallittakestocrash anapplicationoreventocompromiseacomputer.Tomakemattersworse,ifaprogram withthewrong ifstatement runsonmillionsofcomputers,allthesecomputersmay becompromisedinamatterofhoursoreven minutes!Thegrandchallengehereistodevelopcomputersystemsthatare abletotoleratecyberattacks.Wewouldliketohavesystemsthatfailgracefullywhenareattackedbycyberattackers.Wecannotavoidhavingmillions (orevenbillions)ofcopiesofaprogramrunningonvariousdevices.Indeed, therearebillionsofpeopleandtensofbillionsofdevicesrunningasmall numberofultra-popularapplications.Thechallengeinthisenvironmentis tomaketheseultra-popularprograms(andallcomputersingeneral)resilient tocyberattacks.Thereareseveraldifferentpathsonecanexploreinorderto achievethisresilience.Althoughthepathsmaybedifferent,mostofthem agreethatanapplicationshouldfailgracefullyunderattack.Thisgraceful failuremaymeanthatonlyasmallfractionofthecomputerswillbecompromised,orthatonlyatinypartofthefunctionalitywillbecompromised, orsomethingelse.Theunifyingpoint,however,istomakesystemsmore resilienttocyberattacks;onewrong ifstatement shouldnotbeabletocompromisemillionsofcomputers.Weshoulddomuchbetterthanthat.
16.5
EnhanceGeneralPublicAwarenessofCybersecurity
Peopleareoftenperceivedastheweakestlinkinthecybersecuritychain. Theyareamajorcontributingfactortothemajorityofcybersecuritybreaches, ascybercriminalsfrequentlyemploytechniquesthatexploitinnatehuman
113
weaknessestocarryoutattacks.Enhancingcybersecuritycompetencedevelopmentthroughtrainingandawarenessinitiativesfocusesonenablingpeopletoestablishtechnicalandoperationalbarrierstocybersecuritythreats,and tooperatethemselvesassuch,throughthevigilantprocessingofactionable intelligence.Boostingthepotentialimpactofsuchinitiativesrequiresthepersonalisationandtailoringoftheawarenessortrainingexperience.Thismust takeintoaccount,amongotherthings,personnelroles,knowledgefoundations,competences,andexperiences.Itshouldalsoincludetheoperational contextoftheinvolvedorganisations,includingpolicies,processes,andapplicableregulatoryframeworks.
Thefirstgrandchallengeherehastodowithcreatingamappingofthe competencebenchmarksthataretobeachieved,dependingonthedistinctorganisationalcontextsandthecorrespondingpersonnelroles.Thisalsoreflects onthepersonalspherewhenreferringtosocietalhardeningandawareness. Thesecondgrandchallengehastodowiththedeliveryofcompetencedevelopmentprograms,whichmeansstructuringtheappropriatemessageto achievethetargetedlearningobjectives,selectingasuitablemediumofcommunication,anddeterminingthetimeintervalsandotherparametersthatare dependentontheparticipantsandcansignificantlyaffectparticipationand retention.Addressingthesechallengesrequiresamultidisciplinaryapproach, involvingexpertisenotonlyinpedagogicalsciencesandcybersecurity,but alsopsychology,domain(i.e.sectorspecific)experience,andotherareas.Furthermore,socialsciencesanddataanalyticscanbecontributingfactorsthat canenhanceandfacilitatetheaforementionedmapping,whilealsocontributingtotailoreddelivery.
16.GrandChallenges
114
Bibliography
[1] 8zoomsecurityissuesyouneedtoknowabout. https://www.sigmundsoftware.com/ blog/zoom-security-issues-coronavirus/.Accessed:2022-11-119.
[2] Digitaleconomyandsocietystatistics-householdsandindividuals. https://ec.europa.eu/eurostat/statistics-explained/index.php?title= Digitaleconomyandsocietystatistics-householdsandindividuals.Accessed: 2022-11-119.
[3] Howdoburglarsusesocialmediatofindtargets? https://www.homewatchgroup.com/ how-do-burglars-use-social-media-to-find-targets/.Accessed:2022-11-119.
[4] Year2000problem. https://en.wikipedia.org/wiki/Year_2000_problem.Accessed: 2022-11-119.
[5] Securesme:Cybertipsforpasswords,Sep2021.
[6] Openauthenticationstandardsmoresecurethanpasswords,Nov2022.
[7] N.AchiagaandM.D.Mar.TheNIS2Directive:Ahighcommonlevelofcybersecurityin theEU. https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021) 689333.[Accessed:07November2022].
[8] A.AdamsandM.A.Sasse.Usersarenottheenemy. Commun.ACM,42(12):40–46,dec 1999.
[9] R.AgrawalandR.Srikant.Privacy-preservingdatamining. SIGMODRec.,29(2):439–450, may2000.
[10] R.AhmadandI.Alsmadi.Machinelearningapproachestoiotsecurity:Asystematic literaturereview. InternetofThings,14:100365,2021.
[11] C.AlcarazandJ.Lopez.Wide-areasituationalawarenessforcriticalinfrastructureprotection. Computer,46(4):30–37,2013.
[12] S.T.Ali,P.McCorry,P.H.-J.Lee,andF.Hao.Zombiecoin2.0:managingnext-generation botnetsusingbitcoin. InternationalJournalofInformationSecurity,17(4):411–422,2018.
[13] E.Andrukiewicz,S.Cadzow,andS.Górniak.Iotsecuritystandardsgapanalysis. = https://www.enisa.europa.eu/publications/iot-security-standards-gap-analysis,12019. [Accessed:07November2022].
[14] M.Antonakakis,T.April,M.Bailey,M.Bernhard,E.Bursztein,J.Cochran,Z.Durumeric, J.A.Halderman,L.Invernizzi,M.Kallitsis,D.Kumar,C.Lever,Z.Ma,J.Mason,D.Menscher,C.Seaman,N.Sullivan,K.Thomas,andY.Zhou.Understandingthemiraibotnet.In Proceedingsofthe26thUSENIXConferenceonSecuritySymposium,SEC’17,page 1093–1110,USA,2017.USENIXAssociation.
[15] S.AralandD.Eckles.Protectingelectionsfromsocialmediamanipulation. Science, 365(6456):858–861,2019.
[16] R.Arizon-Peretz,I.Hadar,G.Luria,andS.Sherman.Understandingdevelopers’privacy andsecuritymindsetsviaclimatetheory. EmpiricalSoftw.Engg.,26(6),nov2021.
[17] ARM.Buildingasecuresystemusingtrustzonetechnology.In ARMSecurityTechnology. ARM,April2009.[Accessed:16November2022].
[18] Arrow.Understandingtheincreasedimportanceofhardwaresecurityiniottechnologies. = https://www.arrow.com/en/research-and-events/articles/understandingthe-importance-of-hardware-security,52020.[Accessed:07November2022].
[19] ART.Metaverse:Virtualworld,realchallenges.Technicalreport,AnalysisandResearch TeamoftheCounciloftheEuropeanUnion,Mar.2022.[Accessed:07November2022].
[20] D.Atch,G.Regev,andR.Bevington. https://www.microsoft.com/en-us/security/ blog/2021/08/19/how-to-proactively-defend-against-mozi-iot-botnet/,2021.
[21] M.Azure.Openenclavesdk. https://openenclave.io/sdk/.[Accessed:17November 2022].
[22] M.Bada,A.Sasse,andJ.Nurse.Cybersecurityawarenesscampaigns:Whydotheyfail tochangebehaviour?In InternationalConferenceonCyberSecurityforSustainableSociety, pages118–131,012015.
[23] O.Barajas.Howtheinternetofthings(iot)ischangingthecybersecuritylandscape. https://securityintelligence.com/how-the-internet-of-things-iot-ischanging-the-cybersecurity-landscape/,092014.[Accessed:07November2022].
[24] R.Barrett. BuildingaValues-drivenOrganization:AWholeSystemApproachtoCulturalTransformation.Butterworth-Heinemann,2006.
[25] B.BartholomewandJ.A.Guerrero-Saade.Waveyourfalseflags!deceptiontacticsmuddyingattributionintargetedattacks.In VirusBulletinConference,pages1–9,2016.
[26] V.Boehme-Neßler.Privacy:amatterofdemocracy.whydemocracyneedsprivacyand dataprotection. InternationalDataPrivacyLaw,6(3):222–229,2016.
[27] T.Boellstorff.Themetaverseisn’thereyet,butitalreadyhasalonghistory.Technical Report186083,TheConversation,Aug.2022.[Accessed:07November2022].
[28] J.Bonneau,C.Herley,P.C.v.Oorschot,andF.Stajano.Thequesttoreplacepasswords: Aframeworkforcomparativeevaluationofwebauthenticationschemes.In 2012IEEE SymposiumonSecurityandPrivacy,pages553–567,2012.
[29] D.Braue.Globalransomwaredamagecostspredictedtoexceed$265billion by2031. https://cybersecurityventures.com/global-ransomware-damage-costspredicted-to-reach-250-billion-usd-by-2031,Jun2022.[Accessed:07November 2022].
[30] R.Brown,V.Ta,D.Bienstock,G.Ackerman,andJ.Wolfram.Doesthislookinfected? AsummaryofAPT41targetingU.S.stategovernments. https://www.mandiant.com/ resources/blog/apt41-us-state-governments,2022.[Accessed:07November2022].
[31] M.A.S.BubukayrandM.A.Almaiah.Cybersecurityconcernsinsmart-phonesand applications:Asurvey.In 2021InternationalConferenceonInformationTechnology(ICIT), pages725–731,2021.
[32] B.Bulgurcu,H.Cavusoglu,andI.Benbasat.Informationsecuritypolicycompliance:An empiricalstudyofrationality-basedbeliefsandinformationsecurityawareness. MISQ., 34(3):523–548,sep2010.
[33] M.BULL.Ex-burglarswarnhomeownersofsocialmediapoststhatputpropertyatrisk ofabreak-in. https://www.express.co.uk/life-style/property/1559309/burglartips-hacks-social-media-posts-break-ins-property.Accessed:2022-11-119.
[34] E.Bursztein.InsidetheinfamousMiraiIOTBotnet:Aretrospectiveanalysis. https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-aretrospective-analysis,Sep2021.[Accessed:07November2022].
[35] A.Cavoukianetal.Privacybydesign:The7foundationalprinciples. Informationand privacycommissionerofOntario,Canada,5:2009,2009.
Bibliography
116
[36] CC.Commoncriteriaforinformationtechnologysecurityevaluation. https://www. google.com/search?client=safari&rls=en&q=common+criteria&ie=UTF-8&oe=UTF-8. [Accessed:07November2022].
[37] D.ChampagneandR.B.Lee.Scalablearchitecturalsupportfortrustedsoftware.In HPCA -162010TheSixteenthInternationalSymposiumonHigh-PerformanceComputerArchitecture, pages1–12,2010.
[38] H.ChangandR.Shokri.Ontheprivacyrisksofalgorithmicfairness.In 2021IEEE EuropeanSymposiumonSecurityandPrivacy(EuroS&P),pages292–303,2021.
[39] S.Chaudhary,V.Gkioulos,andS.Katsikas.Developingmetricstoassesstheeffectiveness ofcybersecurityawarenessprogram. JournalofCybersecurity,8(1),052022.tyac006.
[40] G.Cheng,P.Zhou,andJ.Han.Learningrotation-invariantconvolutionalneuralnetworks forobjectdetectioninvhropticalremotesensingimages. IEEETransactionsonGeoscience andRemoteSensing,54(12):7405–7415,2016.
[41] R.ChoudhryandK.Garg.Ahybridmachinelearningsystemforstockmarketforecasting. WorldAcademyofScience,EngineeringandTechnology,39,012008.
[42] N.Chouliaras,G.Kittes,I.Kantzavelou,L.Maglaras,G.Pantziou,andM.A.Ferrag. Cyberrangesandtestbedsforeducation,training,andresearch. AppliedSciences,11(4), 2021.
[43] N.ChowdhuryandV.Gkioulos.Cybersecuritytrainingforcriticalinfrastructureprotection:Aliteraturereview. ComputerScienceReview,40:100361,2021.
[44] E.Commission.Commissionworkprogramme2023. https://ec.europa.eu/info/ sites/default/files/cwp_2023.pdf.[Accessed:07November2022].
[45] E.Commission.Cybersecuritypolicies. https://digital-strategy.ec.europa.eu/en/ policies/cybersecurity-policies.[Accessed:07November2022].
[46] E.Commission.Thedigitalservicesactpackage. https://digital-strategy.ec. europa.eu/en/policies/digital-services-act-package.[Accessed:07November 2022].
[47] E.Commission.Directive(eu)2016/1148oftheeuropeanparliamentandofthe councilof6july2016concerningmeasuresforahighcommonlevelofsecurityofnetworkandinformationsystemsacrosstheunion(NIS). = https://eurlex.europa.eu/eli/dir/2016/1148/oj.[Accessed:07November2022].
[48] E.Commission.Europeandatagovernanceact. https://digital-strategy.ec.europa. eu/en/policies/data-act.[Accessed:07November2022].
[49] E.Commission.Generaldataprotectionregulation. https://eur-lex.europa.eu/eli/ reg/2016/679/oj.[Accessed:07November2022].
[50] E.Commission.People,technologies&infrastructure–europe’splantothriveinthe metaverse. https://ec.europa.eu/commission/presscorner/detail/en/STATEMENT_ 22_5525.[Accessed:07November2022].
[51] ConferenceoftheIndependentDataProtectionSupervisoryAuthoritiesoftheFederationandtheLänder.Thestandarddataprotectionmodel–amethodfordataprotectionadvisingandcontrollingonthebasisofuniformprotectiongoals,version2.0b(englishversion). https://www.datenschutzzentrum.de/uploads/sdm/SDM-Methodology_ V2.0b.pdf,2020.[Accessed:07November2022].
[52] K.CongerandK.Roose.Uberinvestigatingbreachofitscomputersystems. https: //www.nytimes.com/2022/09/15/technology/uber-hacking-breach.html,Sep2022. [Accessed:07November2022].
[53] M.Corporation.Commonvulnerabilitiesandexposures(cve)details:Theultimatesecurityvulnerabilitydatasource. https://www.cvedetails.com/browse-by-date.php.[Accessed:20November2022].
Bibliography
117
[54] V.Costan,I.Lebedev,andS.Devadas.Sanctum:Minimalhardwareextensionsforstrong softwareisolation.In 25thUSENIXSecuritySymposium(USENIXSecurity16),pages857–874,Austin,TX,Aug.2016.USENIXAssociation.
[55] CyberSec4Europe.Flagship2:Thesuccessfulsecondcybersecurityexercisehostedbycybersec4europe. https://cybersec4europe.eu/flagship-2-the-successful-secondcybersecurity-exercise-hosted-by-cybersec4europe/,032022.[Accessed:07 November2022].
[56] CyBOK.Thecybersecuritybodyofknowledge. https://www.cybok.org.[Accessed:07 November2022].
[57] A.DaVeigaandN.Martins.Informationsecuritycultureandinformationprotection culture:Avalidatedassessmentinstrument. ComputerLaw&SecurityReview,31(2):243–256,2015.
[58] S.DangeandM.Chatterjee.Iotbotnet:Thelargestthreattotheiotnetwork. Advancesin IntelligentSystemsandComputing,1049:137–157,2020.
[59] T.DeMarco. StructuredAnalysisandSystemSpecification.YourdonPress,1979.
[60] M.Deng,K.Wuyts,R.Scandariato,B.Preneel,andW.Joosen.Aprivacythreatanalysis framework:Supportingtheelicitationandfulfillmentofprivacyrequirements. Requir. Eng.,16(1):3–32,mar2011.
[61] E.W.Dijkstraetal.Notesonstructuredprogramming. Section3OnTheReliabilityof Mechanisms,corollaryattheend,1970.
[62] R.Dingledine,N.Mathewson,andP.Syverson.Tor:Thesecond-generationonionrouter. In Proceedingsofthe13thConferenceonUSENIXSecuritySymposium-Volume13,SSYM’04, page21,USA,2004.USENIXAssociation.
[63] A.Dionysiou,M.Agathocleous,C.Christodoulou,andV.Promponas.Convolutionalneuralnetworksincombinationwithsupportvectormachinesforcomplexsequentialdata classification.InV.K˚urková,Y.Manolopoulos,B.Hammer,L.Iliadis,andI.Maglogiannis,editors, ArtificialNeuralNetworksandMachineLearning–ICANN2018,pages444–455, Cham,2018.SpringerInternationalPublishing.
[64] C.Directive.Councildirective2008/114/ecof8december2008–ontheidentificationand designationofeuropeancriticalinfrastructuresandtheassessmentoftheneedtoimprove theirprotection. OfficialJournaloftheEuropeanUnion.L,345:75–82,2008.
[65] J.Drees.Softwarebuginnewjerseyhospital’svaccineschedulingsystemcauses thousandsofduplicateappointments. https://www.beckershospitalreview.com/ healthcare-information-technology/software-bug-in-new-jersey-hospital-svaccine-scheduling-system-causes-thousands-of-duplicate-appointments.html Accessed:2022-11-119.
[66] Z.Durumeric,E.Wustrow,andJ.A.Halderman. {ZMap}:Fastinternet-widescanning anditssecurityapplications.In 22ndUSENIXSecuritySymposium(USENIXSecurity13), pages605–620,Washington,D.C.,2013.USENIXAssociation.
[67] Y.K.Dwivedi,L.Hughes,A.M.Baabdullah,S.Ribeiro-Navarrete,M.Giannakis,M.M. Al-Debei,D.Dennehy,B.Metri,D.Buhalis,C.M.Cheung,K.Conboy,R.Doyle,R.Dubey, V.Dutot,R.Felix,D.Goyal,A.Gustafsson,C.Hinsch,I.Jebabli,M.Janssen,Y.-G.Kim, J.Kim,S.Koos,D.Kreps,N.Kshetri,V.Kumar,K.-B.Ooi,S.Papagiannidis,I.O.Pappas,A.Polyviou,S.-M.Park,N.Pandey,M.M.Queiroz,R.Raman,P.A.Rauschnabel, A.Shirish,M.Sigala,K.Spanaki,G.Wei-HanTan,M.K.Tiwari,G.Viglia,andS.F. Wamba.Metaversebeyondthehype:Multidisciplinaryperspectivesonemergingchallenges,opportunities,andagendaforresearch,practiceandpolicy. InternationalJournalof InformationManagement,66:102542,2022.
[68] C.Dwork.Differentialprivacy:Asurveyofresults.InM.Agrawal,D.Du,Z.Duan, andA.Li,editors, TheoryandApplicationsofModelsofComputation,pages1–19,Berlin, Heidelberg,2008.SpringerBerlinHeidelberg.
Bibliography
118
[69] C.DworkandD.K.Mulligan.It’snotprivacy,andit’snotfair. Stan.L.Rev.Online,66:35, 2013.
[70] Enarx. https://enarx.dev/.[Accessed:07November2022].
[71] ENISA.Securityeconomicsandtheinternalmarket. https://www.enisa.europa.eu/ publications/archive/economics-sec.[Accessed:07November2022].
[72] ENISA.Understandingtheincreaseinsupplychainsecurityattacks. https://www.enisa.europa.eu/news/enisa-news/understanding-the-increase-insupply-chain-security-attacks.[Accessed:07November2022].
[73] ENISA.Artificialintelligencecybersecuritychallenges. EuropeanUnionAgencyforCybersecurity(ENISA),Aug2021.
[74] ENISA.Cybersecuritychallengesintheuptakeofartificialintelligenceinautonomous driving. EuropeanUnionAgencyforCybersecurity(ENISA),Aug2021.
[75] ENISA.ENISAthreatlandscapeforsupplychainattacks. EuropeanUnionAgencyfor Cybersecurity(ENISA),2021.
[76] ENISA.Securingmachinelearningalgorithms. EuropeanUnionAgencyforCybersecurity (ENISA),Dec2021.
[77] ENISA.Tipsforsecureuserauthentication,Aug2021.
[78] ETSI.Etsien303645. https://www.etsi.org/deliver/etsi_en/303600_303699/ 303645/02.01.00_30/en_303645v020100v.pdf.[Accessed:07November2022].
[79] EuropeanCommission.Cyberresilienceact. https://digital-strategy.ec.europa. eu/en/library/cyber-resilience-act.Accessed:2022-11-119.
[80] Europol.World’smostdangerousmalwareemotetdisruptedthroughglobalaction. https://www.europol.europa.eu/media-press/newsroom/news/world%E2%80% 99s-most-dangerous-malware-emotet-disrupted-through-global-action,2021.
[81] Eurostat.Individuals-internetactivities. https://ec.europa.eu/eurostat/ databrowser/view/isoc_ci_ac_i/default/table?lang=en.Accessed:2022-11-119.
[82] S.Fischer-Hübner,C.Alcaraz,A.Ferreira,C.Fernandez-Gago,J.Lopez,E.Markatos, L.Islami,andM.Akil.Stakeholderperspectivesandrequirementsoncybersecurityin europe. JournalofInformationSecurityandApplications,61:102916,2021.
[83] D.FlorencioandC.Herley.Alarge-scalestudyofwebpasswordhabits.In Proceedingsof the16thInternationalConferenceonWorldWideWeb,WWW’07,page657–666,NewYork, NY,USA,2007.AssociationforComputingMachinery.
[84] T.W.E.Forum.Definingandbuildingthemetaverse.Technicalreport,weforum.org,Jan. 2022.[Accessed28-Sep-2022].
[85] M.Fredrikson,S.Jha,andT.Ristenpart.Modelinversionattacksthatexploitconfidence informationandbasiccountermeasures.In Proceedingsofthe22ndACMSIGSACConference onComputerandCommunicationsSecurity,CCS’15,page1322–1333,NewYork,NY,USA, 2015.AssociationforComputingMachinery.
[86] FreedomofthePressFoundation.SecureDropThreatModel. https://docs. securedrop.org/en/stable/threat_model/threat_model.html,2022.[Accessed:07 November2022].
[87] J.FreundandJ.Jones. MeasuringandManagingInformationRisk:AFAIRApproach Butterworth-Heinemann,2014.
[88] J.E.Gaffney.Estimatingthenumberoffaultsincode. IEEETransactionsonSoftware Engineering,SE-10(4):459–464,1984.
[89] T.Gagliardoni.Thepolynetworkhackexplained. https://research. kudelskisecurity.com/2021/08/12/the-poly-network-hack-explained.[Accessed: 07November2022].
Bibliography
119
[90] B.GardnerandV.Thomas. BuildinganInformationSecurityAwarenessProgram:Defending AgainstSocialEngineeringandTechnicalThreats.SyngressPublishing,1stedition,2014.
[91] V.Garousi,A.Rainer,P.Lauvås,andA.Arcuri.Software-testingeducation:Asystematic literaturemapping. JournalofSystemsandSoftware,165:110570,2020.
[92] S.Gatlan.Chinesehackersusenewwindowsmalwaretobackdoorgovt,defenseorgs. https://www.bleepingcomputer.com/news/security/chinese-hackersuse-new-windows-malware-to-backdoor-govt-defense-orgs/,Aug2022.[Accessed: 07November2022].
[93] GDPR.GeneralDataProtectionRegulation. https://gdpr-info.eu.[Accessed:07 November2022].
[94] T.Geppert,S.Deml,D.Sturzenegger,andN.Ebert.Trustedexecutionenvironments: Applicationsandorganizationalchallenges. FrontiersinComputerScience,4,2022.
[95] S.Gilbert.Thepoliticaleconomyofthemetaverse.Technicalreport,Briefingsdel’IFRI, IFRI,June2022.[Accessed:07November2022].
[96] I.Goodfellow,J.Shlens,andC.Szegedy.Explainingandharnessingadversarialexamples. arXiv1412.6572,122014.
[97] Google.Asylo. https://asylo.dev/.[Accessed:17November2022].
[98] gramine.Gramine. https://gramineproject.io/.[Accessed:07November2022].
[99] A.Graves,A.-r.Mohamed,andG.Hinton.Speechrecognitionwithdeeprecurrentneural networks.In 2013IEEEInternationalConferenceonAcoustics,SpeechandSignalProcessing, pages6645–6649,2013.
[100] A.Greenberg.Hackersremotelykillajeeponthehighway—withmeinit. https: //www.wired.com/2015/07/hackers-remotely-kill-jeep-highway,72015.[Accessed: 07November2022].
[101] L.Grindstaff.Throughyourmind’seye:Whatbiasesareimpactingyoursecurityposture? https://www.mcafee.com/blogs/other-blogs/executive-perspectives/throughyour-minds-eye-what-biases-are-impacting-your-security-posture/,052021. [Accessed:07November2022].
[102] S.GürsesandJ.M.DelAlamo.Privacyengineering:Shapinganemergingfieldofresearch andpractice. IEEESecurity&Privacy,14(2):40–46,2016.
[103] I.Hadar,T.Hasson,O.Ayalon,E.Toch,M.Birnhack,S.Sherman,andA.Balissa.Privacy bydesigners:Softwaredevelopers’privacymindset. EmpiricalSoftw.Engg.,23(1):259–289, feb2018.
[104] M.Hansen,M.Jensen,andM.Rost.Protectiongoalsforprivacyengineering.In Proceedingsofthe2015IEEESecurityandPrivacyWorkshops,SPW’15,page159–166,USA,2015. IEEEComputerSociety.
[105] A.Harish.Whennasalostaspacecraftduetoametricmathmistake. https://www. simscale.com/blog/nasa-mars-climate-orbiter-metric/.Accessed:2022-11-119.
[106] M.Hasan.Numberofconnectediotdevicesgrowing18%to14.4billionglobally. https://iot-analytics.com/number-connected-iot-devices/,52022.[Accessed:07 November2022].
[107] N.Hasan,A.Chamoli,andM.Alam.Privacychallengesandtheirsolutionsiniot. Internet ofThings(IoT):ConceptsandApplications,pages219–231,12020.
[108] J.Haworth.Zero-dayflawsiniotbabymonitorscouldgiveattackersaccessto camerafeeds. https://portswigger.net/daily-swig/zero-day-flaws-in-iot-babymonitors-could-give-attackers-access-to-camera-feeds,92021.[Accessed:07 November2022].
Bibliography
120
[109] J.L.Hernández-Ramos,G.Baldini,S.N.Matheu,andA.Skarmeta.Updatingiotdevices:challengesandpotentialapproaches. GIoTS2020-GlobalInternetofThingsSummit, Proceedings,pages1–5,2020.
[110] J.Hodges,J.Jones,M.B.Jones,A.Kumar,andE.Lundberg.Webauthentication:Anapi foraccessingpublickeycredentialslevel2.
[111] J.-H.Hoepman.PrivacyDesignStrategies.InN.Cuppens-Boulahia,F.Cuppens,S.Jajodia, A.AbouElKalam,andT.Sans,editors, ICTSystemsSecurityandPrivacyProtection,pages 446–459,Berlin,Heidelberg,2014.SpringerBerlinHeidelberg.
[112] M.HowardandS.Lipner. TheSecurityDevelopmentLifecycle.MicrosoftPress,2006.
[113] T.Hunt.Pwnedwebsites.
[114] F.Hussain,R.Hussain,S.A.Hassan,andE.Hossain.Machinelearninginiotsecurity:Currentsolutionsandfuturechallenges. IEEECommunicationsSurveys&Tutorials, 22(3):1686–1721,2020.
[115] iSCOOP.Iotsecurityandtheconsumer:thechallengesandeducationquestion. = https://www.i-scoop.eu/iot-security-consumer-education/.[Accessed:07November 2022].
[116] IBM.Costofadatabreachreport2022. https://newsroom.ibm.com/2022-07-27-IBMReport-Consumers-Pay-the-Price-as-Data-Breach-Costs-Reach-All-Time-High, July2022.[Accessed:07November2022].
[117] J.Inclan.Emotetexposed:Alookinsidethecybercriminalsupplychain. https://blogs.vmware.com/security/2022/10/emotet-exposed-a-look-insidethe-cybercriminal-supply-chain.html,2022.
[118] Inmarsat.Industrialiotinthetimeofcovid-19. https://www.inmarsat.com/en/ insights/enterprise/2021/research-programme-2021-industrial-iot-covid19.html,2021.[Accessed:07November2022].
[119] Intel.In IntelSoftwareGuardExtensionsProgrammingReference.ARM,October2014.[Accessed:16November2022].
[120] IriusRisk.IriusRisk. https://www.iriusrisk.com/,2022.[Accessed:07November2022].
[121] L.Islami,S.Fischer-Hübner,andP.Papadimitratos.Capturingdrivers’privacypreferencesforintelligenttransportationsystems:Aninterculturalperspective. Computers& Security,123:102913,2022.
[122] L.H.Iwaya,G.H.Iwaya,S.Fischer-Hübner,andA.V.Steil.Organisationalprivacyculture andclimate:Ascopingreview. IEEEAccess,10:73907–73930,2022.
[123] J.Jalkanen. IsHumantheWeakestLinkinInformationSecurity?SystematicLiteratureReview. UniversityofJyväskylä,Jyväskylä,Finland,2019.
[124] S.V.Joshi,D.Stubbe,S.-T.T.Li,andD.M.Hilty.Theuseoftechnologybyyouth: Implicationsforpsychiatriceducators. AcademicPsychiatry,43(1):101–109,2019.
[125] D.Kaplan,J.Powell,andT.Woller.In AMDMemoryEncryption.AMD,April2016.[Accessed:16November2022].
[126] G.KarantzasandC.Patsakis.Anempiricalassessmentofendpointdetectionandresponsesystemsagainstadvancedpersistentthreatsattackvectors. JournalofCybersecurity andPrivacy,1(3):387–421,2021.
[127] T.Karras,S.Laine,andT.Aila.Astyle-basedgeneratorarchitectureforgenerativeadversarialnetworks.In 2019IEEE/CVFConferenceonComputerVisionandPatternRecognition (CVPR),pages4396–4405,2019.
[128] Kaspersky.Thehumanfactorinitsecurity:Howemployeesaremakingbusinessesvulnerablefromwithin. https://www.kaspersky.com/blog/the-human-factor-in-itsecurity/,112022.[Accessed:07November2022].
Bibliography
121
[129] N.KohlandP.Stone.Policygradientreinforcementlearningforfastquadrupedallocomotion.In IEEEInternationalConferenceonRoboticsandAutomation,2004.Proceedings. ICRA’04.2004,volume3,pages2619–2624Vol.3,2004.
[130] L.KohnfelderandP.Garg.Thethreatstoourproducts. MicrosoftInterface,Microsoft Corporation,33,1999.
[131] I.Kononenko.Machinelearningformedicaldiagnosis:history,stateoftheartandperspective. ArtificialIntelligenceinMedicine,23(1):89–109,2001.
[132] V.KoutsokostasandC.Patsakis.Pythonandmalware:Developingstealthandevasive malwarewithoutobfuscation.InS.D.C.diVimercatiandP.Samarati,editors, Proceedings ofthe18thInternationalConferenceonSecurityandCryptography,SECRYPT2021,July6-8, 2021,pages125–136.SCITEPRESS,2021.
[133] A.Küchler,A.Mantovani,Y.Han,L.Bilge,andD.Balzarotti.Doeseverysecondcount? time-basedevolutionofmalwarebehaviorinsandboxes.In 28thAnnualNetworkandDistributedSystemSecuritySymposium,NDSS2021,virtually,February21-25,2021.TheInternet Society,2021.
[134] I.Kuzminykh,B.Ghita,andJ.M.Such.Thechallengeswithinternetofthingsforbusiness. https://arxiv.org/abs/2012.03589,122020.[Accessed:07November2022].
[135] A.L.Lafuente,F.Nielson,S.Mödersheim,A.Schlichtkrull,A.Sforzin,C.Sorientea, L.Kamm,R.Martins,J.Soares,L.Antunes,L.Durante,M.Cheminod,E.Athanasopoulos,B.Hamid,A.Omerovic,K.Bernsmed,andR.S.PerHMeland.Researchchallenges andrequirementsforsecuresoftwaredevelopment. https://cybersec4europe.eu/wpcontent/uploads/2020/09/CS4E-D3.9-Research-challenges-and-requirementsfor-secure-software-development-v1.1-Submitted.pdf,2020.[Accessed:07 November2022].
[136] T.LAMBERTandB.DONOHUE.It’sallfunandgamesuntilransomwaredeletes theshadowcopies. https://redcanary.com/blog/its-all-fun-and-games-untilransomware-deletes-the-shadow-copies,2022.[Accessed:07November2022].
[137] R.Langner.Stuxnet:Dissectingacyberwarfareweapon. IEEESecurity&Privacy,9(3):49–51,2011.
[138] D.Lee,D.Kohlbrenner,S.Shinde,K.Asanovi´c,andD.Song.Keystone:Anopenframeworkforarchitectingtrustedexecutionenvironments.In ProceedingsoftheFifteenthEuropeanConferenceonComputerSystems,EuroSys’20,NewYork,NY,USA,2020.Association forComputingMachinery.
[139] K.LeFevre,D.DeWitt,andR.Ramakrishnan.Mondrianmultidimensionalk-anonymity. In 22ndInternationalConferenceonDataEngineering(ICDE’06),pages25–25,2006.
[140] N.G.Leveson.Thetherac-25:30yearslater. Computer,50(11):8–11,2017.
[141] M.N.Lintvedt.Puttingapriceondataprotectioninfringement. InternationalDataPrivacy Law,12(1):1–15,122021.
[142] B.Liu,M.Ding,S.Shaham,W.Rahayu,F.Farokhi,andZ.Lin.Whenmachinelearning meetsprivacy:Asurveyandoutlook. ACMComput.Surv.,54(2),mar2021.
[143] J.Lopez,C.Alcaraz,andR.Roman.Smartcontrolofoperationalthreatsincontrolsubstations. Computers&Security,38:14–27,2013.CybercrimeintheDigitalEconomy.
[144] P.Lorenzo,F.Stefano,A.Ferreira,andP.Carolina.Artificialintelligenceandcybersecurity:Technology,governanceandpolicychallenges. https://www.ceps.eu/wp-content/ uploads/2021/05/CEPS-TFR-Artificial-Intelligence-and-Cybersecurity.pdf, 2021.[Accessed:07November2022].
[145] T.Madiega,P.Car,andM.N.withLouiseVandePol.Metaverse:Opportunities,risks andpolicyimplications.TechnicalReportPE733.557,EuropeanParliamentaryResearch Service,June2022.[Accessed:07November2022].
Bibliography
122
[146] S.Maes,K.Tuyls,B.Vanschoenwinkel,andB.Manderick.Creditcardfrauddetection usingbayesianandneuralnetworks.In Proceedingsofthe1stinternationalnaisocongresson neurofuzzytechnologies,pages261–270,082002.
[147] K.ManheimandL.Kaplan.Artificialintelligence:Riskstoprivacyanddemocracy. Yale JL&Tech.,21:106,2019.
[148] K.Marky,K.Ragozin,G.Chernyshov,A.Matviienko,M.Schmitz,M.Mühlhäuser, C.Eghtebas,andK.Kunze.“nah,it’sjustannoying!”adeepdiveintouserperceptions oftwo-factorauthentication. ACMTransactionsonComputer-HumanInteraction,29(5),oct 2022.
[149] G.McGraw. SoftwareSecurity:BuildingSecurityIn.Addison-WesleyProfessional,2006.
[150] metaversestandards.org.Themetaversestandardsforum.Technicalreport,metaversestandards.org,June2022.[Accessed:07November2022].
[151] MicroAge.Thebenefitsofcybersecurityawarenesstraining. https://microage.ca/thebenefits-of-cybersecurity-awareness-training/,102022.[Accessed:07November 2022].
[152] Microsoft.Createandusestrongpasswords—support.microsoft.com. https://support.microsoft.com/en-us/windows/create-and-use-strongpasswords-c5cebb49-8c53-4f5e-2bc4-fe357ca048eb.[Accessed:07November 2022].
[153] Microsoft.Microsoftsdl. https://www.microsoft.com/en-us/securityengineering/ sdl/practices.[Accessed:07November2022].
[154] Microsoft.Applicationsforartificialintelligenceindepartmentofdefensecyber missions. https://blogs.microsoft.com/on-the-issues/2022/05/03/artificialintelligence-department-of-defense-cyber-missions/,052022.[Accessed:07 November2022].
[155] Microsoft.SpecialReport:Ukraine:AnoverviewofRussia’scyberattackactivityin Ukraine. https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4Vwwd, 2022.[Accessed:07November2022].
[156] MicrosoftCorporation.MicrosoftThreatModelingTool7. https://aka.ms/ threatmodelingtool,2022.[Accessed:07November2022].
[157] J.Miranda,N.Mäkitalo,J.Garcia-Alonso,J.Berrocal,T.Mikkonen,C.Canal,andJ.M. Murillo.Fromtheinternetofthingstotheinternetofpeople. IEEEInternetComputing, 19(2):40–47,2015.
[158] H.Modi.Netscoutthreatintelligencereport. https://www.netscout.com/ sites/default/files/2019-02/SECR_001_EN-1901%20-%20NETSCOUT%20Threat% 20Intelligence%20Report%202H%202018.pdf,2018.[Accessed:07November2022].
[159] Movie.Readyplayerone,2018.[Accessed:07November2022].
[160] P.Muncaster.Hotelguestslockedoutofroomsafterransomwareattack. https://www. infosecurity-magazine.com/news/hotel-guests-locked-out-rooms,Dec2021.[Accessed:07November2022].
[161] S.Muppidi,L.Fisher,andG.Parham.Aiandautomationforcybersecurity.Technical report,IBMCorporation,June2022.[Accessed07-November-2022].
[162] A.S.Namin,Z.Aguirre-Muñoz,andK.S.Jones.Teachingcybersecuritythroughcompetition:Anexperiencereportaboutaparticipatorytrainingworkshop.In InternationalConferenceonComputerScienceEducationInnovation&Technology(CSEIT).Proceedings,page98. GlobalScienceandTechnologyForum,2016.
[163] NationalHighwayTrafficSafetyAdministration.Part573safetyrecallreport. https: //static.nhtsa.gov/odi/rcl/2021/RCLRPT-21V035-4682.PDF.Accessed:2022-11-119.
Bibliography
123
[164] T.Ncubukezi.Humanerrors:Acybersecurityconcernandtheweakestlinktosmall businesses. InternationalConferenceonCyberWarfareandSecurity,17:395–403,032022.
[165] L.H.Newman.Millionsofwebcameraandbabymonitorfeedsareexposed. https: //www.wired.com/story/kalay-iot-bug-video-feeds/,2017.[Accessed:07November 2022].
[166] Z.Ning,F.Zhang,W.Shi,andW.Shi.Positionpaper:Challengestowardssecuring hardware-assistedexecutionenvironments.In ProceedingsoftheHardwareandArchitectural SupportforSecurityandPrivacy,HASP’17,NewYork,NY,USA,2017.Associationfor ComputingMachinery.
[167] NIST.Securesoftwaredevelopmentframework. https://nvlpubs.nist.gov/nistpubs/ SpecialPublications/NIST.SP.800-218.pdf.[Accessed:07November2022].
[168] NIST.Nistannouncesfirstfourquantum-resistantcryptographicalgorithms. https://www.nist.gov/news-events/news/2022/07/nist-announces-first-fourquantum-resistant-cryptographic-algorithms,July2022.[Accessed:07November 2022].
[169] C.Nobata,J.Tetreault,A.Thomas,Y.Mehdad,andY.Chang.Abusivelanguagedetection inonlineusercontent.In Proceedingsofthe25thInternationalConferenceonWorldWideWeb, WWW’16,page145–153,RepublicandCantonofGeneva,CHE,2016.InternationalWorld WideWebConferencesSteeringCommittee.
[170] C.Ntantogian,S.Malliaros,andC.Xenakis.Evaluationofpasswordhashingschemesin opensourcewebplatforms. Computers&Security,84:206–224,2019.
[171] M.Nunes,P.Burnap,P.Reinecke,andK.Lloyd.Baneorboon:Measuringtheeffectof evasivemalwareonsystemcallclassifiers. J.Inf.Secur.Appl.,67(C),jun2022.
[172] occlum.Occlum. https://occlum.io/.[Accessed:07November2022].
[173] N.I.ofStandardsandTechnology.Digitalidentityguidelines:Authenticationandlifecyclemanagement.Technicalreport,U.S.DepartmentofCommerce,Washington,D.C., 2017.
[174] L.O’Gorman.Comparingpasswords,tokens,andbiometricsforuserauthentication. ProceedingsoftheIEEE,91(12):2021–2040,2003.
[175] OMIGroup.Openmetaverseinteroperabilitygroup.Technicalreport,OMIGroup,Sept. 2022.[Accessed:07November2022].
[176] P.H.O’Neill.Ransomwaredidnotkillagermanhospitalpatient. https: //www.technologyreview.com/2020/11/12/1012015/ransomware-did-not-killa-german-hospital-patient,Nov2020.[Accessed:07November2022].
[177] opentitan.Opentitan. https://opentitan.org/.[Accessed:07November2022].
[178] C.Osborne.Miraisplinterbotnetsdominateiotattackscene. = https://www.zdnet.com/article/mirai-splinter-botnets-dominate-iot-attack-scene/, 12022.[Accessed:07November2022].
[179] M.Ovelgönne,T.Dumitra¸s,B.A.Prakash,V.S.Subrahmanian,andB.Wang.Understandingtherelationshipbetweenhumanbehaviorandsusceptibilitytocyberattacks:A data-drivenapproach. ACMTrans.Intell.Syst.Technol.,8(4),mar2017.
[180] OWASP.OWASPtop10-2021. https://owasp.org/Top10/,2021.[Accessed:07November2022].
[181] E.Papadogiannakis,P.Papadopoulos,N.Kourtellis,andE.P.Markatos.Usertrackingin thepost-cookieera:Howwebsitesbypassgdprconsenttotrackusers.In Proceedingsofthe WebConference2021,WWW’21,page2130–2141,NewYork,NY,USA,2021.Association forComputingMachinery.
Bibliography
124
[182] N.Papernot,P.McDaniel,A.Sinha,andM.P.Wellman.Sok:Securityandprivacyin machinelearning.In 2018IEEEEuropeanSymposiumonSecurityandPrivacy(EuroS&P), pages399–414,2018.
[183] M.Paquet-Clouston,M.Romiti,B.Haslhofer,andT.Charvat.Spamsmeetcryptocurrencies:Sextortioninthebitcoinecosystem.In Proceedingsofthe1stACMConferenceon AdvancesinFinancialTechnologies,AFT’19,page76–88,NewYork,NY,USA,2019.AssociationforComputingMachinery.
[184] C.PatsakisandF.Casino.Hydrasandipfs:adecentralisedplaygroundformalware. InternationalJournalofInformationSecurity,18(6):787–799,2019.
[185] C.PatsakisandA.Chrysanthou.Analysingthefall2020emotetcampaign. arXivpreprint arXiv:2011.06479,2020.
[186] S.Peldszus,K.Tuma,D.Strüber,J.Jürjens,andR.Scandariato.Securedata-flowcompliancechecksbetweenmodelsandcodebasedonautomatedmappings.In 2019ACM/IEEE 22ndInternationalConferenceonModelDrivenEngineeringLanguagesandSystems(MODELS),pages23–33,2019.
[187] R.P.Pires.Distributedsystemsandtrustedexecutionenvironments:Trade-offsand challenges. https://arxiv.org/pdf/2001.09670.pdf,December2019.[Accessed:20 November2022].
[188] S.Pletinckx,C.Trap,andC.Doerr.Malwarecoordinationusingtheblockchain:An analysisofthecerberransomware.In 2018IEEEConferenceonCommunicationsandNetwork Security(CNS),pages1–9,2018.
[189] N.Popper.Knightcapitalsaystradingglitchcostit$440million. https: //archive.nytimes.com/dealbook.nytimes.com/2012/08/02/knight-capitalsays-trading-mishap-cost-it-440-million/.Accessed:2022-11-119.
[190] W.PresthusandK.F.Sønslien.Ananalysisofviolationsandsanctionsfollowingthe gdpr. InternationalJournalofInformationSystemsandProjectManagement,9(1):38–53,Sep 2021.
[191] pwc.ConticyberattackontheHSE. https://www.hse.ie/eng/services/ publications/conti-cyber-attack-on-the-hse-full-report.pdf,2021.[Accessed: 07November2022].
[192] D.Reading.Populariotcamerasneedpatchingtofendoffcatastrophic attacks. https://www.darkreading.com/attacks-breaches/popular-iot-cameraspatching-catastrophic-attacks,92022.[Accessed:07November2022].
[193] D.Rehak,P.Senovsky,M.Hromada,andT.Lovecek.Complexapproachtoassessing resilienceofcriticalinfrastructureelements. Internationaljournalofcriticalinfrastructure protection,25:125–138,2019.
[194] Reuters.AXAdivisioninasiahitbyransomwarecyberattack. https://www.reuters. com/article/us-axa-cyber-idUSKCN2CX0B0,May2021.[Accessed:07November2022].
[195] Reuters.Danishtrainstandstillonsaturdaycausedbycyberattack. https: //www.reuters.com/technology/danish-train-standstill-saturday-caused-bycyber-attack-2022-11-03/,Nov2022.[Accessed:07November2022].
[196] S.Rinaldi,J.Peerenboom,andT.Kelly.Identifying,understanding,andanalyzingcritical infrastructureinterdependencies. IEEEControlSystemsMagazine,21(6):11–25,2001.
[197] riscure.Securitypitfallsinteedevelopment. https://www.riscure.com/publication/ security-pitfalls-in-tee-development/.[Accessed:07November2022].
[198] A.ROBERTSON.Mostkillersstalktheirvictimsonsocialmediabeforemurderingthem,saycriminologists. https://www.dailymail.co.uk/news/article-4439130/ Most-killers-stalk-victims-social-media-murder.html.Accessed:2022-11-119.
Bibliography
125
[199] A.Rowe.StudyRevealsAveragePersonHas100Passwords|Tech.co—tech.co. https: //tech.co/password-managers/how-many-passwords-average-person,2021.[Accessed:07November2022].
[200] P.RuggieroandJ.Foote.Cyberthreatstomobilephones. https://www.cisa.gov/ uscert/sites/default/files/publications/cyber_threats_to_mobile_phones.pdf, 2011.[Accessed:07November2022].
[201] O.SAMM.Softwareassurancematuritymodel. https://owaspsamm.org/model/.[Accessed:07November2022].
[202] Sanket.Theexponentialcostoffixingbugs. https://deepsource.io/blog/ exponential-cost-of-fixing-bugs/.[Accessed:07November2022].
[203] I.H.Sarker,A.I.Khan,Y.B.Abushark,andF.Alsolami.Internetofthings(iot)security intelligence:Acomprehensiveoverview,machinelearningsolutionsandresearchdirections. MobileNetworksandApplications,1:1–17,32022.
[204] T.Schaberreiter,K.Kittilä,K.Halunen,J.Röning,andD.Khadraoui.Riskassessmentin criticalinfrastructuresecuritymodellingbasedondependencyanalysis.In International WorkshoponCriticalInformationInfrastructuresSecurity,pages213–217.Springer,2011.
[205] P.M.Schwartz.Privacyanddemocracyincyberspace. Vand.L.Rev.,52:1607,1999.
[206] T.Seals.Mozibotnetaccountsformajorityofiottraffic. = https://threatpost.com/mozibotnet-majority-iot-traffic/159337/,92020.[Accessed:07November2022].
[207] F.T.Security.Boostengagementwithseriousgametraining. https:// terranovasecurity.com/serious-game/,102022.[Accessed:07November2022].
[208] R.Setola,S.DePorcellinis,andM.Sforna.Criticalinfrastructuredependencyassessment usingtheinput–outputinoperabilitymodel. InternationalJournalofCriticalInfrastructure Protection,2(4):170–178,2009.
[209] R.Setola,V.Rosato,E.Kyriakides,andE.Rome. Managingthecomplexityofcriticalinfrastructures:Amodellingandsimulationapproach.SpringerNature,2016.
[210] M.Shahraeini,P.Kotzanikolaou,andM.Nasrolahi.Communicationresilienceforsmart gridsbasedondependencegraphsandeigenspectralanalysis. IEEESystemsJournal,pages 1–11,2022.
[211] R.Shokri,M.Stronati,C.Song,andV.Shmatikov.Membershipinferenceattacksagainst machinelearningmodels.In 2017IEEESymposiumonSecurityandPrivacy(SP),pages 3–18,2017.
[212] A.Shostack. ThreatModeling:DesigningforSecurity.JohnWiley&Sons,Indianapolis, Indiana,2014.
[213] J.Sigholm,G.Falco,andA.Viswanathan.Enhancingcybersecurityeducationthrough high-fidelityliveexercises(hiflix).In HICSS,012019.
[214] L.Sion,D.VanLanduyt,K.Yskout,S.Verreydt,andW.Joosen.Automatedthreatanalysis andmanagementinacontinuousintegrationpipeline.In 2021IEEESecureDevelopment Conference(SecDev),pages30–37,2021.
[215] L.Sion,K.Yskout,D.VanLanduyt,andW.Joosen.Risk-basedDesignSecurityAnalysis. In Proceedings-2018IEEE/ACMFirstInternationalWorkshoponSecurityAwarenessfrom DesigntoDeployment,SEAD2018,page11–18,NewYork,NY,USA,2018.Associationfor ComputingMachinery.
[216] J.Smart,N.Cascio,andJ.Paffendorf.Metaverseroadmap–pathwaystothe3d web:Across-industrypublicforesightproject. https://metaverseroadmap.org/ MetaverseRoadmapOverview.pdf.[Accessed:07November2022].
[217] I.Sommerville.Softwareengineering10. Harlow:PearsonEducationLimited,2016.
Bibliography
126
[218] Sophos.Thestateofransomware2022. https://assets.sophos.com/X24WTUEQ/at/ 4zpw59pnkpxxnhfhgj9bxgj9/sophos-state-of-ransomware-2022-wp.pdf,2022.[Accessed:07November2022].
[219] M.Sporny,D.Longley,M.Sabadello,D.Reed,O.Steele,andC.Allen.Decentralized identifiers(dids).
[220] M.Sporny,G.Noble,D.Longley,D.C.Burnett,B.Zundel,andK.D.Hartog.Verifiable credentialsdatamodel.
[221] R.Steen.5reasonsautomationcan’ttakeovercybersecurity. https: //www.securitymagazine.com/articles/98396-5-reasons-automation-canttake-over-cybersecurity,92022.[Accessed:07November2022].
[222] I.Stellios,P.Kotzanikolaou,M.Psarakis,C.Alcaraz,andJ.Lopez.Asurveyofiotenabledcyberattacks:Assessingattackpathstocriticalinfrastructuresandservices. IEEE CommunicationsSurveys&Tutorials,20(4):3453–3495,2018.
[223] N.Stephenson. SnowCrash.BantamBooks,UnitedStatesofAmerica,1992.
[224] G.Stergiopoulos,P.Kotzanikolaou,M.Theocharidou,G.Lykou,andD.Gritzalis.Timebasedcriticalinfrastructuredependencyanalysisforlarge-scaleandcross-sectoralfailures. InternationalJournalofCriticalInfrastructureProtection,12:46–60,2016.
[225] G.E.Suh,D.Clarke,B.Gassend,M.vanDijk,andS.Devadas.Aegis:Architecturefor tamper-evidentandtamper-resistantprocessing.In Proceedingsofthe17thAnnualInternationalConferenceonSupercomputing,ICS’03,page160–171,NewYork,NY,USA,2003. AssociationforComputingMachinery.
[226] L.Sweeney.K-anonymity:Amodelforprotectingprivacy. Int.J.Uncertain.Fuzziness Knowl.-BasedSyst.,10(5):557–570,oct2002.
[227] F.SwiderskiandW.Snyder. Threatmodeling.MicrosoftPress,2004.
[228] J.Taylor.Facebookoutage:whatwentwrongandwhydidittakesolongtofixaftersocialplatformwentdown? https://www.theguardian.com/technology/2021/oct/ 05/facebook-outage-what-went-wrong-and-why-did-it-take-so-long-to-fix.Accessed:2022-11-119.
[229] W.C.D.Team.Metaverseinteroperabilitycommunitygroup.Technicalreport,w3c.org, Sept.2022.[Accessed:07November2022].
[230] W.Technologies.Newresearch:Filelessmalwareattackssurgeby900% andcryptominersmakeacomeback,whileransomwareattacksdecline. https://www.watchguard.com/wgrd-about/press-releases/new-researchfileless-malware-attacks-surge-900-and-cryptominers-make,2021.[Accessed:07 November2022].
[231] B.Tekinerdogan.Architecturaldriftanalysisusingarchitecturereflexionviewpointand designstructurereflexionmatrices.In SoftwareQualityAssurance,pages221–236.Elsevier, 2016.
[232] P.Torr.Demystifyingthethreatmodelingprocess. IEEESecurity&Privacy,3(5):66–70, 2005.
[233] TrailofBits.KubernetesThreatModel. https://github.com/kubernetes/community/ raw/683ec8f8a392522933b8950a052dfdce6da6a812/sig-security/security-audit2019/findings/Kubernetes%20Threat%20Model.pdf,2019.[Accessed:07November 2022].
[234] S.Truex,L.Liu,M.E.Gursoy,L.Yu,andW.Wei.Demystifyingmembershipinferenceattacksinmachinelearningasaservice. IEEETransactionsonServicesComputing, 14(6):2073–2089,2021.
Bibliography
127
[235] K.Tuma,L.Sion,R.Scandariato,andK.Yskout.Automatingtheearlydetectionof securitydesignflaws.In Proceedingsofthe23rdACM/IEEEInternationalConferenceonModel DrivenEngineeringLanguagesandSystems,MODELS’20,page332–342,NewYork,NY, USA,2020.AssociationforComputingMachinery.
[236] W.TurtonandK.Mehrotra.Colonialpipelinecyberattack:Hackersusedcompromisedpassword. https://www.bloomberg.com/news/articles/2021-06-04/hackersbreached-colonial-pipeline-using-compromised-password,Jun2021.[Accessed:07 November2022].
[237] U.S.DepartmentofJustice.JusticeDepartmentAnnouncesCourt-AuthorizedDisruptionofBotnetControlledbytheRussianFederation’sMainIntelligenceDirectorate (GRU). https://www.justice.gov/opa/pr/justice-department-announces-courtauthorized-disruption-botnet-controlled-russian-federation,2022.
[238] L.S.Vailshery.Numberofinternetofthings(iot)connecteddevicesworldwidefrom 2019to2021,withforecastsfrom2022to2030. https://www.statista.com/statistics/ 1183457/iot-connected-devices-worldwide/,82022.[Accessed:07November2022].
[239] J.vanRest,D.Boonstra,M.Everts,M.vanRijn,andR.vanPaassen.Designingprivacyby-design.InB.PreneelandD.Ikonomou,editors, PrivacyTechnologiesandPolicy,pages 55–72,Berlin,Heidelberg,2014.SpringerBerlinHeidelberg.
[240] Verizon.Databreachinvestigationsreport. https://www.verizon.com/business/ resources/reports/dbir/,062022.[Accessed:07November2022].
[241] Versen.Manifestoonsoftwareresearchandeducationinthenetherlands. https:// www.versen.nl/assets/manifesto/digitalfolder.pdf,2020.[Accessed:07November 2022].
[242] N.Virvilis,D.Gritzalis,andT.Apostolopoulos.Trustedcomputingvs.advancedpersistentthreats:Canadefenderwinthisgame?In 2013IEEE10thInternationalConferenceon UbiquitousIntelligenceandComputingand2013IEEE10thInternationalConferenceonAutonomicandTrustedComputing,pages396–403,2013.
[243] S.Wang,X.Gu,S.Luan,andM.Zhao.Resilienceanalysisofinterdependentcritical infrastructuresystemsconsideringdeeplearningandnetworktheory. InternationalJournal ofCriticalInfrastructureProtection,35:100459,2021.
[244] Y.Wang,Z.Su,N.Zhang,R.Xing,D.Liu,T.H.Luan,andX.Shen.Asurveyonmetaverse: Fundamentals,security,andprivacy. IEEECommunicationsSurveysandTutorials,pages1–1,2022.
[245] W.Wei.Casinogetshackedthroughitsinternet-connectedfishtankthermometer. https: //thehackernews.com/2018/04/iot-hacking-thermometer.html,42018.[Accessed:07 November2022].
[246] R.Weiss,X.Mountrouidou,S.Watson,J.Mache,E.Hawthorne,andA.Chattopadhyay. Cybersecurityacrossalldisciplinesin2020.In Proceedingsofthe51stACMTechnicalSymposiumonComputerScienceEducation,SIGCSE’20,page1404,NewYork,NY,USA,2020. AssociationforComputingMachinery.
[247] E.Weyuker.Testingcomponent-basedsoftware:acautionarytale. IEEESoftware,15(5):54–59,1998.
[248] Wikipedia.Self-sovereignidentity. https://en.wikipedia.org/wiki/Self-sovereign_ identity.[Accessed:07November2022].
[249] M.WilsonandJ.Hash.Sp800-50.buildinganinformationtechnologysecurityawareness andtrainingprogram.Technicalreport,NationalInstituteofStandardsandTechnology, Gaithersburg,MD,USA,2003.
[250] J.WolffandN.Atallah.Earlygdprpenalties:Analysisofimplementationandfines throughmay2020. JournalofInformationPolicy,11(1):63–103,2021.
Bibliography
128
[251] N.Woolf.DDoSattackthatdisruptedinternetwaslargestofitskindinhistory, expertssay. https://www.theguardian.com/technology/2016/oct/26/ddos-attackdyn-mirai-botnet,Oct2016.[Accessed:07November2022].
[252] O.Yoachimik. https://blog.cloudflare.com/mantis-botnet/,2022.
[253] K.Yskout,T.Heyman,D.VanLanduyt,L.Sion,K.Wuyts,andW.Joosen.Threatmodeling:frominfancytomaturity.In ProceedingsoftheACM/IEEE42ndInternationalConference onSoftwareEngineering:NewIdeasandEmergingResults,pages9–12.ACM,jun2020.
[254] K.Yu,L.Tan,S.Mumtaz,S.Al-Rubaye,A.Al-Dulaimi,A.K.Bashir,andF.A.Khan. Securingcriticalinfrastructures:Deep-learning-basedthreatdetectioniniiot. IEEECommunicationsMagazine,59(10):76–82,2021.
[255] F.Zhang,P.P.K.Chan,B.Biggio,D.S.Yeung,andF.Roli.Adversarialfeatureselection againstevasionattacks. IEEETransactionsonCybernetics,46(3):766–777,2016.
[256] E.Zio.Challengesinthevulnerabilityandriskanalysisofcriticalinfrastructures. ReliabilityEngineering&SystemSafety,152:137–150,2016.
Bibliography
129
CyberSec4Europe is a research and innovation pilot project for the European Cybersecurity Competence Centre in Bucharest and the network of National Coordination Centres.
As a research project, CyberSec4Europe is working towards harmonising the journey from the development of software components that fit the requirements identified by a set of short- and long-term roadmaps, leading to a series of consequent recommendations. These are tied to the project’s real-world demonstration use cases that address cybersecurity challenges within the vertical sectors of digital infrastructure, finance, government and smart cities, healthcare and transportation.
CyberSec4Europe’s main objective is piloting the cybersecurity capabilities required to secure and maintain European democracy and the integrity of the Digital Single Market. CyberSec4Europe has translated this broad objective into measurable, concrete steps through a set of policy, technical and innovation objectives.
CyberSec4Europe is funded by the European Union under the H2020 Programme Grant Agreement No. 830929