4 minute read

SMART, CLEAN AND AUTONOMOUS

The economic importance of shipping

The bulk of the things we use on a daily basis have, at some point or another, been transported by ship.

Advertisement

For the European Union, shipping represents around 80% of the total imports and exports in volume

Every year, about 11 BILLION TONS of goods are transported globally by ship, an average of no less than 1.4 TONS per world citizen

Above

Below left Quay wall construction

Amaliahaven. Container quay construction requires sustainable, smart choices so we can minimise the impact on the environment. Below right Shoretension mooringsystem

Imagine ships navigating completely autonomously with sensors continuously measuring their energy consumption and emission levels. Imagine, too, ships communicating with one another to determine the most economical routes and with the surrounding infrastructure to optimise every single logistics operation to ensure that the processes involved are perfectly streamlined and all the goods are at the right place at precisely the right time. That would be the ideal scenario for realising climate-neutral transport by ships in ports and waterways by 2050, which is the target date of the European Green Deal.

TU Delft is already working on each of these technological challenges to enhance the sustainability of transport by water now. Professor Rudy Negenborn, Frederik Schulte and their colleagues at the Faculty of Faculty of Mechanical, Maritime and Materials Engineering (3mE), for example, are researching how sensors, data, and AI and communication technology can make ports, such as that of Rotterdam, more sustainable. They are, furthermore, investigating how alternative fuels can replace diesel and fuel oil and to make heavy maritime transport sustainable.

At the Faculty of Civil Engineering and Geosciences, Professor Mark van Koningsveld, lecturer Alex Kirichek and their staff are looking into the infrastructural modifications required for the energy transition and how to improve the climate robustness of the water transport infrastructure. They are developing a digital twin of the waterway network, with the objective of testing the effectiveness of combinations of measures in advance.

➝ Smart ships

To make ships navigate more efficiently and sustainably, Professor Negenborn is researching interactions between control and optimisation algorithms. Negenborn: “At the drive level, we can use smart control techniques to bring about a more efficient injection of fuel into engines that are combined with fuel cells. At the ship level, we can optimise the energy supply on board. If, moreover, we introduce the environment to this mix, we can optimise the route planning as well – although the fastest route is not necessarily the most sustainable one. Among other things, we are investigating the mutual interaction between ships and that between ships and the surrounding infrastructure, such as bridges, locks and machines in container or bulk terminals.”

The core idea is that many processes in the transport chain can become more sustainable if the links in this chain automatically communicate with one another about their intentions. Cooperative navigation is an important element here. Imagine two ships approaching a waterway crossroad or lock; a lot of fuel will be wasted if both ships try to reach the crossroad or lock first. Less fuel will be consumed if the ships agree that one of them will travel more slowly and the other will maintain its normal speed or that they will jointly travel in a specific formation.

➝ Emission-free inland shipping

The 6-year-long research project

PATH2ZERO, to be led by lecturer Alex Kirichek and Professor Mark van Koningsveld, will start slightly earlier, in January 2023. The ultimate goal of this project is to realise fully emission-free inland shipping. Van Koningsveld: “To this end, we are choosing a holistic approach to the transport system. What ships navigate on what waterways? What is the state of the infrastructure along the network? What new fuels and energy carriers are envisaged? What is the impact of low water or, on the other hand, high water? Transport by water is a complex system. If we take a particular measure to enhance sustainability for one waterway, how will that affect another? To find answers to questions like these we need new tools that will combine the data from all these different elements in a simulation model: a digital shipping twin.”

➝ Twin model of the waterways

In the coming years, the digital twin model that is key to the PATH2ZERO project will focus on three different waterways: the transport corridor from Rotterdam to Duisburg, the transport corridor from Rotterdam to Ghent and the greater Rotterdam port area. “In recent years, our team has already built a successful prototype in close collaboration with inland shipping companies”, says project manager Alex Kirichek. “We will continue to improve and expand this prototype. With a digital twin model, we can try out various actions, compare scenarios and calculate the most effective sustainability measures. How effective is it, for example, to have ships that are in port for a while use onshore renewable electricity for their energy supplies and what infrastructure is needed for this? How effective are investments in engine innovation and traffic measures? The digital twin model can become an important tool for making new knowledge accessible to policymakers and decision-makers.”

➝ Smart ports

How can you use AI-driven data analysis to have a port operate such that it is fully climate neutral? This is the central question of the NetZero AI Port research initiative being set up by lecturer Frederik Schulte, Professor Negenborn and their colleagues. Schulte: “The current approach by ports to reduce emissions of greenhouse gases, such as by introducing cleaner fuels, focuses on separate components of these ports. NetZero AI Port looks at the port as a whole and the operational logistics processes that take place there. This provides many more opportunities for climate-neutral operation. If one port component has to release higher emissions for a while, we can look at whether we can have another component temporarily release lower emissions (a comparable quantity) so that we meet important climate targets on time.”

➝ Clean shipping using ammonia

Global emissions by maritime vessels are approximately equivalent to those from a large country, such as Germany. Liquid ammonia (NH3) that is produced using renewable energy can, in theory, form a good alternative for the heavily polluting diesel and fuel oil currently used by large maritime vessels. Ammonia has a big advantage over other alternative fuels, such as green hydrogen, in that it contains a lot of energy in a relatively small volume, so that ships do not have to be enlarged to accommodate it.

However, before green ammonia can actually be used on ships, research will have to be carried out to determine how a combination of fuel cells and an engine can be made as efficient as possible, how and where the ammonia can best be produced and we must look into the economic and safety aspects. Professor Rudy Negenborn and his colleagues are going to investigate these questions in the Dutch Research Council (NWO) project AmmoniaDrive, which is to be launched in February 2023. ■

This article is from: