Anti Derivative Of Trig Functions

Page 1

Anti Derivative Of Trig Functions Anti Derivative Of Trig Functions In mathematics, the trigonometric functions (also called circular functions) are functions of an angle. They are used to relate the angles of a triangle to the lengths of the sides of a triangle. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.

The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see lists of integrals. See also trigonometric integral. Generally, if the function is any trigonometric function, and is its derivative.

Know More About:­ 3 Digit subtraction with regrouping

Tutorcircle.com

Page No. : ­ 1/4


The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle with radius 1, where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (rise) of the triangle, the cosine gives the length of the x-component (run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers. Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year. In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.

Read More About:­ Adding and subtracting rational numbers worksheet

Tutorcircle.com

Page No. : ­ 2/4


Proofs of Derivative of Trig Functions Proof of sin(x) : algebraic Method Given: lim(d->0) sin(d)/d = 1. Solve: sin(x) = lim(d->0) ( sin(x+d) - sin(x) ) / d = lim ( sin(x)cos(d) + cos(x)sin(d) - sin(x) ) / d = lim ( sin(x)cos(d) - sin(x) )/d + lim cos(x)sin(d)/d = sin(x) lim ( cos(d) - 1 )/d + cos(x) lim sin(d)/d = sin(x) lim ( (cos(d)-1)(cos(d)+1) ) / ( d(cos(d)+1) ) + cos(x) lim sin(d)/d = sin(x) lim ( cos^2(d)-1 ) / ( d(cos(d)+1 ) + cos(x) lim sin(d)/d = sin(x) lim -sin^2(d) / ( d(cos(d) + 1) + cos(x) lim sin(d)/d = sin(x) lim (-sin(d)) * lim sin(d)/d * lim 1/(cos(d)+1) + cos(x) lim sin(d)/d = sin(x) * 0 * 1 * 1/2 + cos(x) * 1 = cos(x) Q.E.D.

Tutorcircle.com

Page No. : ­ 2/3 Page No. : ­ 3/4


Thank You

TutorCircle.com


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.