Challenges of the Cyber Physical Systems

Page 1

CYBER PHYSICAL SYSTEMS RESEARCH CHALLENGES An Academic presentation by Dr. Nancy Agnes, Head, Technical Operations, Tutors Group India utorsindia.co w Email: m orsindia.com


OUTLINE

Introduction CPS Research Challenges Functionality Of Cps Domains Conclusion

Today's Discussion


INTRODUCTION

In recent years, Cyber-Physical Systems (CPSs), which combine physical and computer components, have grown in popularity. CPSs are commonly employed in complicated applications like smart power grids, transportation systems, and economic structure since they are difficult problems in and of themselves. Due to the widespread use of CPSs in applications, security is a significant and demanding component that requires more consideration throughout CPS design.


CPS are changing the way we interact with the physical environment. This revolution, of course, is not free. Because even old embedded systems must meet higher standards than general- purpose computers, we must pay close attention to the physical-aware designed system needs of the next generation if we are to fully trust them.



CPS RESEARCH CHALLENGES

REAL-TIME SYSTEM ABSTRACTION Because of the large number of sensors and actuators, as well as computers that interchange various forms of data, developing a new framework that allows us to abstract the salient aspects of systems in real time is crucial. The network topology of CPS, for example, may vary dynamically as a result of physical conditions.


As a result, there is a need for research into novel distributed real-time computing and communication mechanisms that can accurately reflect the important interactions among CPS elements and, in turn, provide the requisite level of performance, such as safety, security, resilience, and dependability.


ROBUSTNESS, SAFETY, AND SECURITY Unlike logical computing in cyber systems, interactions with the physical world are inevitably fraught with uncertainty due to issues like as unpredictability in the environment, mistakes in physical devices, and potential security threats. As a result, overall system robustness, security, and safety are crucial in CPS. To this aim, the inherent character of CPS can be exploited by utilizing the physical information about the system's location and timing. HYBRID SYSTEM MODELLING AND CONTROL The primary distinction between physical and cyberspace is that the former evolves in real time, whilst the latter changes in response to discrete logic.


As a result, for CPS design, a rigorous hybrid system modelling and control mechanism that integrates both the physical and cyber aspects is required. For example, to close the feedback control loop, a new theoretical framework is required that can combine continuous-time systems with event-triggered logical systems. Both temporal scales (from microseconds to months or years) and dimensional orders (from on-chip to possibly planetary scale) should be carefully considered in this framework . CONTROL OVER NETWORKS Time-driven and event-driven computing, time-varying delays, transmission failures, and system reconfiguration are all obstacles in the design and implementation of networked control in CPS.


The following challenges face CPS researchers when designing network protocols: ensuring mission-critical quality-of-service over wireless networks, balancing control law design and real-time computation constraints, bridging the gap between continuous and discrete time systems, and ensuring the reliability and robustness of large-scale systems. SENSOR-ACTUATOR NETWORKS For more than a decade, wireless sensor networks have been widely researched. Nonetheless, wireless sensor-actuator networks (WSAN) are a new field that hasn't received enough attention, particularly from the perspective of CPS. In the design of sensor-actuator networks, the interaction between sensors, actuators, physical systems, and computing elements should be carefully considered.


Physical details and effects of actuators on the whole system, in particular, have not been adequately considered in system design thus far. VERIFICATION AND VALIDATION To ensure the overall CPS requirements are met, hardware and software components, operating systems, and middleware must go through comprehensive compositional verification and testing. CPS, in particular, must go above existing cyber infrastructure terms of reliability. For instance, is well known in the aviation industry that the certification process consumes more than half of the resources required to build new systems. Overdesign is the most well-known process for developing safe system certification in this industry.


However, with today's large-scale complex systems, merely using the overdesign technique is becoming intractable. As a result, we need new models, methods, and tools that can include compositional verification and validation of software and other parts throughout the design stage. CONTROL AND SCHEDULING CO-DESIGN. Co-designing control and scheduling is a embedded systems community. However, with the introduction of CPS, codesign number of ways.

the real-time and being reassessed in a


Because CPS are often networked control systems, the impact of network delay on system stability has been investigated in terms of the trade-off between system stability and real-time schedulability. This research yielded a non-periodic control strategy that can ensure overall system stability while using the least amount of computer resources possible. COMPUTATIONAL ABSTRACTION Programming abstractions should represent physical qualities such as physics and chemistry laws, safety, real-time and power restrictions, resources, resilience, and security in a compostable manner. ARCHITECTURE At the meta-level, CPS architectures must be consistent and capture a wide range of physical data.


For large-scale CPS, new network protocols will be required. The concept of being "globally virtual, locally physical" can be paradigm.

develop new


FUNCTIONALIT Y OF CPS DOMAINS

The table below summarises the CPS applications in terms of their functionality.


CONCLUSION Thus CPS development is no longer a resource optimization challenge, but rather a matter of general design and implementation. The embedded platform (cyber space) and the controllers (physical space) are built separately and then integrated in the traditional design paradigm. Despite efforts to improve resource efficiency for CPS, there are still a number of issues to be resolved [13]


CONTACT US UNITED KINGDOM

+44-1143520021 INDIA

+91-4448137070 EMAIL info@tutorsindia.com


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.