Simplify Algebraic Expressions

Page 1

Simplify Algebraic Expressions The algebraic expressions have the variables and the constants. The algebraic expressions are the finite combination of the symbols that are formed according to the rules of the context. The algebra is an expression which is used to designate the value for the given values in the expression. The expression might be depending on the values assigned to the values assigned in the expression. The expression is the syntactic concept in the algebra. The online provides the connectivity between the tutors and the students. This article has the information about learn online algebraic expressions. Simplifying Algebraic Expressions Below are the examples on Simplifying algebraic expressions Example 1 Know More About Multiplying and Dividing Fractions Worksheets


Compute the factors for the expression x2+ 56x+ 768. Solution: The given expression is x2+ 56x+ 768. Step 1: x2+ 56x+ 768 = x2+24x+ 32x+ (24x 32) Step 2: x2+ 56x+ 768 = x(x+24) + 32(x +24) Step 3: x2+ 56x+ 768 = (x+24) (x+32) Step 4: x+24 and x+32 The factors for the given expression x2+ 56x+ 768 are (x +24) and (x +32). Example 2 Compute the factors for the expression x2+ 76x+ 1440. Solution: The given expression is x2+ 76x+ 1440. Step 1: x2+ 76x+ 1440 = x2+36x+ 40x+ (36x 40) Step 2: x2+ 76x+ 1440 = x(x+36) + 40(x +36) Step 3: x2+ 76x+ 1440 = (x+36) (x+40) Step 4: x+36 and x+40 Learn More About Multiplying Polynomials Worksheet


The factors for the given expression x2+ 76x+ 1440 are (x +36) and (x +40). Example 3 Simplify the expression 24xy + 10 x2y + 14 x y + 16 x2y + 10 x y. Solution: The given expression is 24xy + 10 x2y + 14 x y + 16 x2y + 10 x y. Step 1: 24xy + 10 x2y + 14 x y + 16 x2y + 10 x y = x y (24 +14 +10) + x2y (10+ 16) Step 2: 24xy + 10 x2y + 14 x y + 16 x2y + 10 x y = 48 x y + x2y (10+ 16) Step 3: 24xy + 10 x2y + 14 x y + 16 x2y + 10 x y = 48 x y + 26 x2y The value for the given expression 12xy + 13 x2y + 16 x y + 20 x2y is 48 x y + 26 x2y.


Polynomial Factoring Factoring Polynomials refers to factoring a polynomial into irreducible polynomials over a given field. It gives out the factors that together form a polynomial function. A polynomial function is of the form xn + xn -1 + xn - 2 + . . . . + k = 0, where k is a constant and n is a power. Polynomials are expressions that are formed by adding or subtracting several variables called monomials. Monomials are variables that are formed with a constant and a variable of some degree. Examples of monomials are 5x3, 6a2. Monomials having different exponents such as 5x3 and 3x4 cannot be added or subtracted but can be multiplied or divided by them. Any polynomial of the form F(a) can also be written as F(a) = Q(a) x D (a) + R (a) using Dividend = Quotient x Divisor + Remainder. If the polynomial F(a) is divisible by Q(a), then the remainder is zero. Thus, F(a) = Q(a) x D(a). That is, the polynomial F(a) is a product of two other polynomials Q(a) and D(a). For example, 2t + 6t2 = 2t x (1 + 3t).


Variables, Exponents, Parenthesis and Operations (+, -, x, /) play an important role in factoring a polynomial. Factorization by dividing the expression by the GCD of the terms of the given expression: GCD of a polynomial is the largest monomial, which is a factor of each term of the polynomial. It involves finding the Greatest Common Divisor (GCD) or Highest Common Factor (HCF) of the terms of the expression and then dividing each term by its GCD. Therefore the factors of the given expression are the GCD and the quotient thus obtained. Example 1: Factorize : 2x3 – 6x2 + 4x. Solution: Factors of 2x3 are 1, 2, x, x2, x3,2x, 2x2, 2x3 Factors of 6x2 are 1, 2,3, 6, x, x2, 2x, 2x2 ,3x, 3x2 ,6x, 6x2 Factors of 4x are 1,2,4,x,2x,4x. Thus the GCD of the above terms is 2x. Read More About Ratio and Proportion Worksheets


Dividing 2x3 , -6x2 and 4x by 2x, we get x2 - 3x + 2 Then the GCD becomes one factor and the quotient is the other factor. 2x3 – 6x2 + 4x = 2x .(x2 - 3x + 2) Therefore the factors of 2x3 – 6x2 + 4x are 2x and (x2 - 3x + 2) Thus, 2x3 – 6x2 + 4x = 2x .(x2 - 3x + 2) Factorization by grouping the terms of the expression: Grouping the terms of the expression in such a way that there are common factors among the terms of the groups so formed. Example: Factorize 3x + xy + 3y + y2 Hint: Notice that there is no factor common to all the terms. So regroup the terms of the expression. In this expression, there is a common factor for the first two terms. Similarly the last two terms have a common factor.


Thank You

TutorVista.com


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.