Central Tendency Definition Central Tendency Definition Definition of Measures of Central Tendency A measure of central tendency is a measure that tells us where the middle of a bunch of data lies. The three most common measures of central tendency are the mean, the median, and the mode. More about Measures of Central Tendency Mean: Mean is the most common measure of central tendency. It is simply the sum of the numbers divided by the number of numbers in a set of data. This is also known as average. Median: Median is the number present in the middle when the numbers in a set of data are arranged in ascending or descending order. If the number of numbers in a data set is even, then the median is the mean of the two middle numbers. Mode: Mode is the value that occurs most frequently in a set of data. Examples of Measures of Central Tendency For the data 1, 2, 3, 4, 5, 5, 6, 7, 8 the measures of central tendency are Know More About Frequency Distribution Table Math.Tutorvista.com
Page No. :- 1/5
Measure of central tendency is measure of location of the middle (center) of a distibution. Common measures of measures of central tendency are Mean, Median and Mode. Compare Dispersion. Definition The mean, median and mode of a set of data are measures of central tendency, i.e. they measure where the 'middle' of the data is. Also called centrality. the range of a given data set is the difference between the largest number and the smallest number in the data set. For example, in the data set {6, 6, 7, 8, 11, 13, 15}, the range is 15 – 6, which equals 9. The median is the middle number in the data set when the numbers are written from least to greatest. So in the data set above, the median is 8. If there is no middle number in the data set, the median is the average of the two middle numbers. The mode is the number in a data set that appears most often. So in the data set above, the mode is 6. Median (Q2): the number that divides the data into two equal halves. The piece of data that is exactly in the middle, when arranged in numerical order. Lower Quartile (Q1): the number that divides the lower half of the data into two equal halves. Upper Quartile (Q3): the number that divides the upper half of the data into two equal halves.
Learn More What is a Frequency Table
Math.Tutorvista.com
Page No. :- 2/5
Poisson Distribution Examples Poisson Distribution Examples Definition : In statistics, poisson distribution is one of the discrete probability distribution. This distribution is used for calculating the possibilities for an event with the given average rate of value(λ). A poisson random variable(x) refers to the number of success in a poisson experiment. Template:Probability distribution In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a number of events occurring in a fixed period of time if these events occur with a known average rate and independently of the time since the last event. The Poisson distribution can also be used for the number of events in other specified intervals such as distance, area or volume. The distribution was discovered by Siméon-Denis Poisson (1781–1840) and published, together with his probability theory, in 1838 in his work Recherches sur la probabilité des jugements en matières criminelles et matière civile ("Research on the Probability of Judgments in Criminal and Civil Matters"). The work focused on certain random variables N that count, among other things, a number of discrete occurrences (sometimes called "arrivals") that take place during a time-interval of given length. Math.Tutorvista.com
Page No. :- 3/5
If the expected number of occurrences in this interval is 位, then the probability that there are exactly k occurrences (k being a non-negative integer, k = 0, 1, 2, ...) is equal to where e is the base of the natural logarithm (e = 2.71828...) k is the number of occurrences of an event - the probability of which is given by the function k! is the factorial of k 位 is a positive real number, equal to the expected number of occurrences that occur during the given interval. For instance, if the events occur on average every 4 minutes, and you are interested in the number of events occurring in a 10 minute interval, you would use as model a Poisson distribution with 位 = 10/4 = 2.5. As a function of k, this is the probability mass function. The Poisson distribution can be derived as a limiting case of the binomial distribution. The Poisson distribution can be applied to systems with a large number of possible events, each of which is rare. A classic example is the nuclear decay of atoms. The Poisson distribution is sometimes called a Poissonian, analogous to the term Gaussian for a Gauss or normal distribution. The Poisson distribution is appropriate for applications that involve counting the number of times a random event occurs in a given amount of time, distance, area, etc. Sample applications that involve Poisson distributions include the number of Geiger counter clicks per second, the number of people walking into a store in an hour, and the number of flaws per 1000 feet of video tape. The Poisson distribution is a one-parameter discrete distribution that takes nonnegative integer values. The parameter, 位, is both the mean and the variance of the distribution. Thus, as the size of the numbers in a particular sample of Poisson random numbers gets larger, so does the variability of the numbers. Read More About Frequency Tables
Math.Tutorvista.com
Page No. :- 4/5
Thank You
Math.TutorVista.com