2 minute read
TECHNOLOGY
“The excitement for our customers about NASA’s return to the moon has trickled down to every one of our four hundred employees in Indianapolis,” said Danny Antle, Major Tool & Machine’s vice president of business development. “We’re honored to be a part of the industry team.”
Long hopes this project raises the visibility of the UH nanofabrication facility and brings the world of nanoscale research and engineering to a larger audience. His team of scientists, engineers and technicians provides a wide range of services and support to ensure anyone can use the lab and succeed.
Advertisement
“It’s not just microchips were making here,” Long said. “We have people working on solar cells, sensors for cancer diagnostics, microscopic electronic and mechanical devices, biocompatible materials and superconductor materials. There’s a really wide application for this technology with no limit on the creativity of the person using it.” minds at Cage Elementary School through a discussion about the science they learned the previous week. For this session, Lam served University of Houston Cullen College of Engineering 53 as the main facilitator.
As the St. Elmo Brady STEM Academy celebrates its 10th anniversary of improving outcomes for fourth and fifth graders, we look at the organizers, student volunteers and corporate sponsors that have made the program a success.
The question rings out at the front of the classroom from Nghi Lam, a Cullen College of Engineering junior majoring in Chemical and Biomolecular Engineering. Almost immediately, she's met with a chorus of “Yes!” from the 16 students participating in this eight-week session of the St. Elmo Brady STEM Academy at Cage Elementary School, located in Eastwood of the Greater Third Ward area.
As part of this week's curriculum, the students are tasked with designing rescue baskets – constructed from pipe cleaners, toothpicks, tape and similar con struction material – to be dangled from a helicop ter (their hands) to retrieve someone from a snowy mountain crash. For the purposes of this activity, the “person” to rescue is a small potato.
Lam leads them through the scenario, while two other UH student volunteers –Alejandra Sanchez – look on, occasionally nudging some of the students on task. When the students are told to break into groups, it's a cacophony of excite ment as they set about their engineering task.
As the exercise is concluding, there is a similar ener gy in the air two miles away at Blackshear Elementa ry School on Holman Street, and about a mile and a half away at David G. Burnet Elementary School on Canal Street.
At Burnet, the group of about 20 young students is over seen by four UH student volunteers –Utienyin Pemu, Shaik Younus
The young engineers frantically try to implement last second improvements to their rescue baskets as a countdown clock on the whiteboard ticks down, with Pemu finally telling everyone to stop what they're do-
To get their attention, she uses a call-and-response.
“Solid, liquid...”
The classroom of students practically screams out,
Over the next five minutes, each group tests their device – with varying levels of success – and each member of the winning group gets a small prize. They're reminded that their next class – the Thursday on the week before Thanksgiving – will be their last session of the semester, and to sign up for the next eight-week session in February.
All of this comes on the heels of the first portion of the day, when they had a 20-minute presentation followed by a Q&A with a computer scientist from the Chevron Phillips Chemical Company. And before each student leaves, they have to share one thing they learned with one of the UH student mentors as