THE JOURNEYOFAN ORDAINED ENGINEER
studentswouldfinishtheirmiddleandhigh schooleducation,andlaterwouldbeledinto seminary,wheretheywouldfinishtheirtheologicalstudies,andeventuallybecomepriests. Thepriestencouragedallinterestedstudents toreturntotheirparentsthatdayanddiscuss thisproposalwiththem.Khalidwasfascinatedandgotveryexcited.Hecouldnotwait toreturnhomeanddiscussthiswithhisparents.Thiswasthefirsttopicthatheopened withhismomduringlunch.
“NO”,wastheanswerfromhismother, whothreatenedtotellhisfather,whowasall againstanytypeofstudiesthatdoesnotput foodonthetable.Hisfatherhadhighhopes forKhalid,whowasatthetopofhisclass,he wantedhimtobecomeeitheradoctororan engineer,asmostparentsdreamedthattheir childrenbecomeintheMiddleEastregionof theworld.
“Butwhy?”askedKhalidwithatone ofdisappointmentmixedwiththetearsthat weremoisteninghischeeks.“Weneedyouto besuccessful”quippedhismother,“Andwe wantyoutogetmarriedandhavechildren,I wanttobeagrandmaoneday”...Khalidwas utterlysaddened.Hetriedtoconversewith themforthenextfewdays,butitwasalost cause.
Thiswasthefirstbig“NO”inKhalid’s self-planforhislife.Forsure,itwasnotthe last.
KhalidhadnochoicebuttofinishhismiddleschoolatDeLaSalle.Hishighschoolwas completedatoneofthehighschoolsthatwere newlyestablishedbytheQueenofJordanfor giftedstudents.DuringHighSchool,there weresomeAmericanteachers,andmanystudentstherewerefortunateandwelltodo. TheywouldvisittheUSinthesummerand returntotelltheirfriendsunlimitedstories aboutthebeauty,technology,andadvancementoftheUS.Itmadesensetoanyhigh achieverthattheUSisthelandofsuccess.So wasthecaseforKhalid.
Insenioryear,hegotascholarshiptofinishhisundergraduatestudiesatTexasTech University,hisparents,aswasthenormthen, werenotcomfortablesendingtheir17-yearoldtoacountrysofarthattheyknownothing about,andknownorelativeorfriendinthat statetohelphimifheneededwhilehewas there.Theanswerwasanother“NO”.This meantonething,thathehadtofacetheTExam.
ing,andsoon.Khalidwasabletosecurea gradethatwouldallowhimtogetintotheengineeringschoolattheUniversityofJordan, wherehestudiedElectricalEngineeringfor fiveyearsuntilhefinishedin2002.
Hereceivedamaster’sdegreeinComputerEngineeringfromtheUniversityof Massachusetts-Lowellin2004,andaPhD ininElectrical/BiomedicalEngineeringfrom TheGeorgeWashingtonUniversityin2011.
WhilethatwouldlookimpressiveonaresuméorLinked-Inprofile,therewasmoreto theactualstorythatwaslessglamorous.They saythatthedevilisinthedetails.Inreality, itwasGodwhowasgoverningallthedetails. Duringhisstudies,Godwasalwaysinthepicture.TheeffectofGod’spresencewasnot onlygrowing,butopposingmanyofthepaths andplansthatKhalidhadforhimself.
Asanygraduatestudentwhostudiesinthe US,Khalidwasalwayslookingforascholarshiptofinishhisstudies.Unfortunately,both Universitieswherehedidhisgraduatestudiesdidnotofferscholarshipsforinternational studentsattheSchoolofEngineering.Furthermore,internationalstudentswerenotable toworkfulltimeintheUS.Khalidwasunabletosupporthimselfbecausethelawrequiredhimtobeafull-timestudent.His part-timeworkoncampuswouldonlypayhis phoneandelectricbills.Thiswasanother huge“NO”thatlefthimfinanciallydependent onhisparentsuntilhefinishedschoolatthe ageof30.Alongwithachangeofhisthesisprojectbyhisadvisorthatcausedhimto losetwoyearsofworkandstartfromscratch, Khalidwentintomedicaldepression.Itlasted forayear.
However,GodWhoisallLove,andWho isbeyondLove,doesnotleavehischildren strandedinlifewithoutsupportandwithoutHisGrace.ThroughallthedisappointmentsinKhalid’seducation,Godarrangedfor KhalidtomeethisfuturewifeSara,anative JordanianandthedaughterofaGreekOrthodoxPriest,throughamiraculousmutualconnectioninJordan,whiletheywerebothstudyingintheStates.Themutualconnectionwas amanwhosenameliterallymeant“Grace”.
In1991,aCatholicpriestfromtheLatinPatriarchateofJerusalemrodehiscaranddrove forthreehoursintheHolyLandtovisitaclass of7thgradersatCollegeDeLaSalle(Fréres), aCatholicFrenchSchoolintheheartofAmman,thecapitalofJordan.Amongthese7th graderswasKhalid,whowasallearsforwhat thepriesthadtosay.TheCatholicFather cametopromoteaboardingschoolinBeit Jala,asmallcityintheHolyLand.There,the
TheT-Exam(Tawjihi)isthedreadedNationalHighSchoolExamthatwasarequirementforallhighschoolstudentsinJordan, thegradeofwhichwasthebasisfortheextremelycompetitiveuniversityadmission.It wasthenightmarethatallfamilieshadtoface atonepointintheirchildren’slives.Atthat time,therewereonlyfivepublicuniversities inJordan.Schooladmissionwasnotbased onthestudents’choice,butratherontheirTgrade.Topstudentswenttothelimitedseats ofMedicalSchool,thentheseatsofDentistryopened,thenPharmacy,thenEngineer-
Khalidwashopingthatupongraduation, hewouldworkinabigcompanythatwould makethehugeamountofinvestmentthat Khalid’sfamilyputlovinglyfromtheirheart andtheirownpocketallworthwhile.HeappliedtohundredsofpostsinDC.Mostof themrequiredsecurityclearance,whichwas impossibletogetasaninternationalstudent. Healsoappliedtomanypostsacrossthe country,buttheUSwasstillsufferingfrom recession.HisworkintheEngineeringfield wasnothappeningintheUS.Ashewascloser tograduation,andbeinginthenation’scapital,hewasabletogetconnectedtotwoindividualswhowereatthehighestrankofthe WorldBankGroup,thatpromisedtohelphim getemployedthere.Thisalsowastonoavail. Hisdreamsandhisowndefinitionofsuccess wereslowlyfadingaway...Godhadatotally
UniversityofMary
SUMMER2021 FREE WELCOME
VOL.III...No.4
!
differentdefinition.Theoutcomeofthoseinvestmentswouldnotbefinancial,butrather spiritual.
Thelightoftheendofthetunnelbecamea littleapparent,Khalidwasabletoworkasan academicadvisorattheUAEembassyinDC, whilehiswifewasworkingattheJordanian Embassy.Lessthanayearlater,thecouple movedwiththeirtwochildrentotheirhome countryofJordan.Theywerehopingtohave abetterchancetoservethechurchasworking professionalswhilebeingclosetotheirfamilies.Khalidwasappointedasanassistant professoratthefirstCatholicUniversityin Jordan,TheAmericanUniversityofMadaba, whichwasownedbytheLatinPatriarchateof Jerusalem.Thepastroadthatwasfilledwith “NO”signs,startedtoslowlyevolvetoshowingthe“YES”sign,andbothsignsweredirectingtothesamedestination.
In2013,Khalidandafriendconnected withthedirectorsoftheOrthodoxEducationalSocietywhichisthemainumbrellafor severalOrthodoxSchoolsinJordan.They foundeda“FocusGroup”andstartedplanningmanyactivitieswiththesolepurpose ofbringingtheOrthodoxChristiansinJordanclosertotheChurchandtoeachother. Theywereabletoplanmanyactivities,among whichvisitstodifferentchurchesacrossJordan,tourismtripstoreligiousandbiblical sites,soccertournamentforallthefellowships acrossthecountry,andlecturesandQandA sessionsinparishioners’homesbypriests.
KhalidalsoreceivedtheblessingfromSts. ConstantineandHelenparishpriestinAmmantoestablishafellowshipministryforcollegeandworkingprofessionals.Hewasresponsibleofgivingthemtheweeklylectures anddevotionalsaswellasorganizingactivitieswiththem.HewasalsoacommittedparticipantintheDivineLiturgyandchurchservicesasamemberofthechoir.Khalidhas alsocompletedthreeyearsofstudyingByzantinemusicnotationandchanting.
ItbecameclearthatKhalid’scareerwas notdestinedsolelyforacademiaorengineering.ThecallingtoservetheChurchwasclear asthesun.Khalidtooktheblessingfrom hisspiritualfathertopursueordinationtothe priesthood.Hisspiritualfatherwashappy tohearthenews,gavehimtheblessing,but urgedhimtostudyTheologyfirst.In2016, heenrolledintheAntiochianHouseofStudy, atheologyschoolinNewJerseyandCaliforniathatofferedaprogrambycorrespondence withcertainresidencyrequirements.HereceivedhisMasterofTheologydegreein2020.
KhalidwasinvitedtoserveastheofficedirectorforthenewlyelectedOrthodox BishopofJordan,tohelpwiththereorganizationoftheArchdiocese.Whilehewasserving there,afacultypositionopenedattheUniversityofMary,Khalidtookthechanceandapplied.Hewashiredandstartedworkingin Fall2019.
InHiswords,Khalidwouldsay:“Iknew thattheUniversityofMarywouldbegreat, butwhenIcamehere,itwasbeyondmyfarthestimagination.Thisisaplacelikeno other!”Headds:“Here,yourwholelifecan beformedtobecomeavocation,notjusta career.Here,bothstudentsandfacultyare formedtofulfilltheircallingbyGod,andthe
reasonoftheirlifeonearth,nomatterwhat theydoinlife”
KhalidandwasordainedintheAntiochian OrthodoxChurchinApril2021asDeacon Damian.ThepresidentoftheUniversity, MonsignorJamesP.Shea,thevicepresident, DianeFladelandandherhusband,aswellas severalofhisEngineeringcolleagueswere presentathisordination.
Thesepresentationsarebeingdevelopedtogetherwithhandsonexercisesforpossible deploymentasworkforcedevelopmentopportunitiesandcoverthesamecontentthatwill bepresentedinEME298,ourcourseonmanufacturingtechnology.Thetopicscovered includedshopsafety,metrology,machining, andwelding.WeintheEngineeringSchool areexcitedtohaveLelandjoiningusthisfall!
RECORD ENROLLMENT
WeattheUniversityofMarySchoolofEngineeringareblessedtohaveDamianasour friendandcolleagueandwefullysupporthis plantobecomeapriestandstartanOrthodox churchintheBismarck/Mandanareawhile hecontinuestodesignandteachcoursesand guidestudentsasaprofessorinourdepartmentofElectricalEngineering.
TheUniversityofMaryhasarecordnumberofnewfreshmenstudentscominginthe fallandthatrecordincludesarecordnumber ofnewEngineeringstudentswithit.Wehave 64newfreshmenjoiningusinthefallwhich isdividedintodisciplinesasfollows
LelandVetter,anexperiencedmachinist withmanyyearsofbothteachingandindustryexperience,isjoiningusthisfallasour newShopCzar.Lelandwillteachsafetyand theuseofthemachineshopequipmentas wellasoverseeingandguidingtheactivities ofourstudentsusingourmachineshop.LelandjoinedusinJulyandpresentedaseriesof topicsonmachineshopsafetyandfundamentalstoourMechanicalEngineeringfaculty.
Wehavesplitseveralofourfreshmancourses intomultiplesectionstoaccommodatethese newstudentssincewehaveapolicyofmaintainingsmallclasssizes.Itisfundamental toourprogramthatwehavenomorethan 20studentsinthemajorityofourcourses. Webelievethatitismucheasierforstudents tolearnwhentheclasssizesaresmallsince thisenablesmoreone-on-oneinteractionbetweentheprofessorandthestudent,encouragesactiveparticipationinclass,studentpresentations,andallowsustocombinesome ofourtheorycourseswiththeircorrespondinglaboratorycourses.Combiningtheoreticalstudyandlaboratoryexperienceenables thestudenttoimmediatelyapplytheirtechnicalknowledgetopracticalapplication,experimentation,andtesting.Thisiscrucialto solidifyingtheunderstandingoftheabstract mathematicsandtechnicalmaterialbyputting itinapracticalcontext.Asourenrollment continuestoincreasewewillcontinuetocalve offmultiplesectionsofcoursesuntilwereach ouroverallenrollmentcapof250students. Wehavedesignedourbuildingsothatthe classroomsandlaboratoriesareoptimizedfor 250studentsandourultimategoalistohave thatnumberasasteadystate.
VOL.III...No.4 EngineeringQuarterly SUMMER2021 2
NEW MACHINIST JOINSOUR TEAM ByJAMESCARRICO
Department New Total CivilEngineering 13 38 ElectricalEngineering 9 27 MechanicalEngineering 23 67 ComputerScience 11 30 ConstructionManagement 8 27 Total 64 189
NEW CONSTRUCTION MATERIALS LABORATORY
Thissummerwebeganconstructionofour newadditionforourConstructionManagementandCivilEngineeringprograms.
buildingwhichisscheduledforfallof2022. Upuntilthispointwehavebeenluckytohave localcompaniesallowingustousetheirlaboratoryandtestingfacilitiestoteachourstudents.Havingourownfacilitiesattachedto ourengineeringschoolwillmakethelogistics mucheasierforthestudentsanditwillalso allowustousethefacilitiesandequipmentat ourdiscretionwhichisnecessaryifwewant studentstobeabletoworkonprojectsaround theclockaswedowithourotherlaboratories intheEngineeringbuilding.
N
Wehavecompletedthedesignofournew ConstructionManagementdegreewhichhas beenindevelopmentsincespringof2019. ProfessorsMatthewScerbakandRichard Garmanhaveusedtheirindustryexperience aswellasthemissionandvaluesoftheUniversityofMarytodesignanoutstandingprogramwhichisuniqueinthenation.
CommonCoreRequirements (takenbyallmajors)
FYE122FirstYearExperienceSeminar (withPresident’sSeminar)
ENG121CompositionII
COM110OralCommunication
ART:SELECTONEOFTHEFOLLOWING
ART108IntroductiontoPhotography
ART116IntroductiontoFilm
ART121ArtofRomeandParis(Romecampus)
ART127IntroductiontoDrawing
ART210TopicsinTextileArts
COM200VisualCommunication
ENG140IntroductiontoNarrative
THR105ActingTechniqueI
MUS196IntroductiontoMusic
MUS211ConcertBand(3semesters)
MUS212ConcertChoir(3semesters)
GLOBALSTEWARDSHIP:
POL101ResponsibleCitizenship
andoneofthefollowing:
ANT171CulturalAnthropology
SOC107GeneralSociology
HIS103/104WesternCivilizationand
WorldHistoryIorII
ECN101EconomicsofSocialIssues
CTH/HIS330Catholicism&TheModernWorld
CLA/HIS311GrandeurofRome(Romecampus)
Language(any300levelorabove)
THEOLOGY:
THE120SearchforGod
THE/CTH234Benedict-yesterday&today
PHILOSOPHY:
PHI108SearchforTruth
andoneofthefollowing:
PHI208/308PhilosophicalEthics
PHI/CTH210SearchforHappiness: FaithandReasoninLife.
SENIORASSESSMENT:
HUM499seniorassessment
ConstructionManagement
DegreeRequirements
ART127IntroductiontoDrawing
BUS215PrinciplesofManagement
BUS454ProjectManagement
CHE111GeneralInorganicChemistryI
CHE111LGeneralInorganicChemistryLab
CMT257CMFundamentals
CMT321ConstructionMaterialsandMethodsI
CMT322ConstructionDetailingandAnalysisI
CMT343ConstructionCostEstimatingI
CMT345BldgMechandElecSystems
CMT360InternationalBuildingCode
CMT421ConstrMatandMethodsII
CMT422ConstrDetailingandAnalysisII
CMT430ConstructionSafety
CMT443ConstructionConceptualEstimating
CMT466CAPMCertificationSeminar
CMT470ConstrSchedulingandControl
CMT481SeniorCapstoneI
CMT482SeniorCapstoneII
COM414BusinessCommunication
ECI313GeneralSurveyingwithLab
ECI313LGeneralSurveyingLab
ECI444Contracts&Specifications
ENR101IntroductiontoEngineering
ENR200ComputingforMath&Engineering
ENR201EngineeringMechanicsI
ENR203EngineeringMechanicsII
ENR203LEngineeringMechanicsIILab
ENR460EngineeringEconomy
GLG203EarthDynamics&Geophysics
MAT209CalculuswithAnalyticGeometryI
PHY203IntroductiontoPhysics
PHY203LIntroductiontoPhysicsLab
HUM499SeniorCompetencyTesting
ChooseTwoConcentrationOptions:
BusinessLeadership
BUS326Management/LeadershipConcepts
BUS328OrganizationalBehavior
BusinessManagement
ACC101PrinciplesofAccountingI
BUS401OperationsManagement
EngineeringSystems
ENR210ComputerAidedMeasurement
ENR419EngineeringDataAnalysis
SoilMechanics
ECI412SoilMechanicswithLab
ECI414FoundationEngineering
StructuralMechanics
ECI351StructuralMechanicswithLab
ECI451SteelDesign
ENR445ReinforcedConcrete
AdditionalRequiredCourses:
ENR470iswaivedforstudentswhoselect theStructuralMechanicsconcentration.
CMT411InterdisciplinaryFluency
ENR470EngineeringEthics
Total:135-137SemesterCredits
Programlength:4academicyears/128weeks
CONFERENCE
TheWillistonBasinPetroleumConferencewashostedintheBismarckEventCenterfromMay11toMay13,2021.Wehada
booththerefortheUniversityofMaryandthe SchoolofEngineering.
Ourmainpurposeinbeingatthisconference istoraiseawarenessamongthecompanies aboutourengineeringprogramandourstudents.Hopefullythecontactsthatwehave madewillbeasourceofinternshipsandpossiblycareersforourstudentsandgraduates.
OnJune21-23,theUniversityofMary hostedthe2021RisingLeadershipNorth Dakotaforhighschoolstudentsenteringtheir freshmanthroughsenioryear.
Studentswhotakepartdiscover:
• Keynotetopicsofleadership,motivation,andattitude.
• Toursofvariousbusinessesinthe Bismarck-Mandancommunity.
• Acareerfairandnetworkingopportunities
Theeventincludedvisitstothedifferent academicschoolsoncampusandvisitstoarea businesses.
VOL.III...No.4 EngineeringQuarterly SUMMER2021 3
TheConstructionMaterialsLaboratorywas sponsoredbyMillerInsulationandwillcontainourwetlabsforconcreteandasphalt workaswellasacraneandtestingequipment.
OurCivilEngineeringandConstructionManagementdepartmentsarelookingforwardto thecompletionofthisnewadditiontoour
EW CONSTRUCTION MANAGEMENT PROGRAM
WILLISTON BASIN PETROLEUM
RISING LEADERS ACADEMY VISITS CAMPUS ByRODRIGODACOSTAAPARECIDO
WhenthestudentsvisitedtheEngineering Schoolwefirsttoldthemabitaboutourengineeringprogramandthetypesofcareers someonecangetwithanengineeringdegree. Thenwegaveeachofthemelectronicsbreadboards,wires,batteries,andLED’sandwe challengedthemtowireseveralcircuitsto lightuptheLED’s.
TheGoBabyGoprojecthereattheUniversity ofMarywasinitiatedfiveyearsagoasapartnershipbetweenPhysicalTherapyandEngineeringwhereEngineeringfacultyandstudentsworkside-by-sidewithPhysicalTherapydoctoralstudentstoadaptride-ontoys thathelpwiththeinclusionanddevelopment ofchildrenwithspecialneeds.
gineeringMechanicsII(Deformablematerials)+Lab,aswellastheUniversity’salgebrabasedphysicscourse PHY203-Introduction toPhysics
Theintentwastoshowthemhowelectricity worksandalsohowyoucanwirecircuitswith breadboards.
Theeventwentwellandthestudents seemedtoenjoythechallengeofbuilding electriccircuits.Ashowofhandsrevealed severalofthemplantogotocollegeforengineeringaftertheygraduate.
ThePTstudentswoulddecidehowtobest accommodatetheneedsofthechildandthe engineeringstudentswoulddesigntheframe andelectronicstomeetthoseneeds.
Allofthesecourses wereaccelerated7weekcourses.This wasthefirstsummer thattheentireEngineeringMechanics coursesequencewas offeredinonesummerandthateither coursewasoffered ina7-weekformat. Justlikeinthenormalacademicyear, studentsweretasked todohands-onassignmentsinaddition tothetraditionaltextbookcoursematerial.StudentsinENR201 (in-personandonline)successfullydesigned andbuiltcatapultsthatlaunchedaracquetballtohittheirprofessorintheface(ortheir target)10metersaway.
In2006,ColeGallowaystartedaninclusionmovementforchildrenwithmotorimpairments,called GoBabyGo,attheUniversityofDelaware’sDepartmentofPhysicalTherapy.Thisprogramincludesmodifyinganelectrictoycarinanywaynecessary forachildwithmotorordevelopmentaldelaystoaccesstheirenvironmentandinteract withtheirpeers.
Thestudentsworkedoverseveralweeks todesignthemodificationsthatwouldbenefit thechildrenandtheirfamilies.
Theyaddedelectronicfeaturesand modificationstothe frame,alongwith specialcompartmentstoholdbackpacksandfeeding equipmentwhennecessary,andaftera fewweeksofdesign andbuildthestudents hadthegreatpleasureofgivingthe carstothechildren andwatchingthemlearntousethecontrolsto moveontheirown.Itwasabeautifulexperience.
StudentsinENR203Lsuccessfullydesigned andbuiltapapertrussbridgeand3Dprinted cablebridgetomeetcertainweightanddeflectionrequirements.Thepapertrusspicturedspanneda2footgap,weighedlessthan threepounds,andcarried67.5lbsbeforefailing!
SUMMER COURSES ByERICGARCIA
Theengineeringbuildinghousedthree coursesthissummer.Thesewerethesophomorelevelengineeringmechanicscourseseries: ENR201-EngineeringMechanics(ParticlesandRigidBodies) and ENR203+L-En-
InadditiontotheEngineeringMechanics courses,Physics203wasofferedthissummerintheEngineeringfacilitiesandmight havebeenthefirstclassofstudentstobe hostedintheengineeringbuildingthatwas allwomen.Boththelectureandlabsections wereheldintheEngineeringfacilities.StudentsinPhysics203evenusedsomeofthe catapultsdesignedbystudentsinENR201in pastschoolyearstoanalyzeprojectilesand performcalculationstodeterminewheretheir
VOL.III...No.4 EngineeringQuarterly SUMMER2021 4
GO BABY GO! ByRODRIGODACOSTAAPARECIDO
professorshouldstandtohithimintheface. Thepicturedteamsucceeded.Itwasnota goodsummerforDr.E.Garcia’sface.
Inordertostealacomputerfilefroma securedvault,aspyandanaccomplicemust dropdownthroughanairventintheceilingtoaccessthecomputerwhilethevault islocked.Thespyislowereddowntothe computerusingaharnessandpulleysystem,whichisanchoredtotheventandby theaccomplice(asshowninthepicture).
Mytwo-year-olddaughtergotaheadstart. Shewasrunningataconstantvelocityof 1.5m/sandwas2maheadwhenmynephew begantorun.Mynephewstartedatrestand acceleratedataconstantrateuntilhecaught uptomydaughter6secondsafterhestarted running.
(a) Howfardidmynephewrunwhenhe caughtuptomydaughter?
(b) Whatwasmynephew’sacceleration?
(c) Howfastwasmynephewrunningwhen hecaughtuptomydaughter?
ENR203PROBLEM ByERICGARCIA
Therigidbeamshownispinnedto thetopofthethreesquare 1 5ft × 1 5ft columnsmadeofconcretethat hasacompressivestrengthof3500psi.
ΣFx =0 T fs =0
348N µs(84kg)(9 81m/s2)=0
µs =0 42
• PHY203Problem:
(a) 11m (b) 0 61m/s2 (c) 3 67m/s
• ENR203Problem:
FA =628 63kips
FB =586 67kips
FC =544 70kips
Oncethespyhasaccessedanddownloaded thenecessaryfiles,theaccomplicepullson theropeandraisesthespybacktothevent. Assumethemassoftheropeandharnessis negligible,thereisnofrictioninthepulley, andtheropeisalwayscompletelytaught.
(a) Determinethetensionforceintherope ifthespyhasamassof67kgandis loweredataconstantaccelerationof 0 4m/s2
(b) Determinethepullingforcetheaccomplicemustexerttoraisethespybackto theceilingventat 0 6m/s2
(c) Iftheaccomplicehasamassof84kg, whatistherequiredcoefficientofstatic frictionbetweentheaccomplicesclothingandtheventtonotslipwhentrying topullthespyupwiththeforcefound inpart(c)?
Determinetheforcesupportedbyeachcolumniftherigidbeamissubjectedtothe distributedloadshown.Assumethecalculatedforcesanddeformationsarelocatedat thecenterofeachsquarecolumn.
OnedayduringthesummerIandseveral oftheotherfacultywereintheofficeworking onourABETaccreditationrubricsandour lecturenotesforourfallcourseswhenIstumbledacrossaninterestingproblemfromthe internet.Imentionedittotheothersandwe endedupspendingacoupleofhourschatting aboutitandworkingoutthesolution.Supposeyoustartselectingrandomnumbersbetween0and1andaddingthemtogether.On average,howmanyselectionswillyouhave tomakebeforethesumexceeds1?Forexample,supposemyfirstpickis0.2andthenmy secondpickis0.9.Thesumis 0 2+0 9=1 1 andsinceitisalreadybiggerthan1Istopafter makingonlytwoselections.IfIdiditagain Imayget 0 13+0 54+0 21+0 89=1 77 whereIonlyexceeded1afterthefourthpick.
NoticethatinthefirstcaseIonlywentto onedecimalplaceandinthesecondIwentto twodecimalplaces.Weareassuminganinfinitenumberofdecimalplacesinourchoices sothatineachoftheaboveexamplesweare assuminganinfinitestringofzerosafterthe digitsIhaveshown.
SoinmytwoexampletrialsIfirstexceeded1afteronlytwoselectionsandthen Iexceeded1after4selections.Ifwestopat onlytwotrialsthentheaveragenumberofselectionsittakestoexceed1wouldbe:
Avg = 2+4 2 =3
Inotherwordsformysimpleexperimentwith twotrialsittakes,onaverage,threeselections ofnumbersbetween0and1beforetheirsum exceeds1.
Mytwo-year-olddaughterandthree-yearoldnephewdecidedtohaveafootracedown alongdriveway.
Nowthatyougettheidealet’sseewhat happensifweincreasethenumberoftrials.In ordertodoalargenumberoftrialstheeasiest methodistojustwriteacomputerprogramto doit.HereisaprogramwritteninCwhere theuserentersthenumberoftrialstoperform andthenthecomputerwilldothemand,when itisfinished,itwilloutputtheresultingaveragenumberofselectionstoexceed1among allthetrials.Hereistheprogram:
VOL.III...No.4 EngineeringQuarterly SUMMER2021 5
ENR201PROBLEM ByERICGARCIA
PHY203PROBLEM ByERICGARCIA
OLUTIONSTO PROBLEMS • ENR201Problem: (a) ΣFy = may 2T W = may 2T (67kg)(9 81m/s2)=(67kg)( 0 4m/s2) T =315N (b) ΣFy = may 2T W = may 2T (67kg)(9 81m/s2)=(67kg)(0 6m/s2) T =348N
S
(c)
CALCULATING e ByTERRYPILLING
e.c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define NUM20 int main( int argc, char ** argv){ if (argc!=2){ fprintf(stderr,"Usage%sTRIALS\n", argv[0]); fprintf(stderr,"TRIALS=numberof trialstoaverage\n"); fprintf(stderr,"Thecomputerpicks randomnumbers\n"); fprintf(stderr,"between0and1 untilthesumisgreaterthan 1.\n"); return 1; } double S,sum=0; int TRIALS=atoi(argv[1]); int iteration; int histogram[NUM]; long MAX=pow(2,31); for ( int j=0;j<NUM;j++)histogram[ j]=0; srand(time(0)); for ( int i=0;i<TRIALS;i++){
S=0;
iteration=0; while (S<=1){
iteration++; S=S+rand()/(1.0 *MAX); } if (iteration<NUM)histogram[ iteration]++;
} for ( int j=0;j<NUM;j++)sum=sum+j * histogram[j]; printf("%d%lf\n",TRIALS,sum/TRIALS) ; return 0; }
IfIcompilethecodeusing gcce.c and thenruntheprogramfor1000trialsusing ./a.out1000,hereistheoutputfromthe program:
10002.686000
whichmeansthatin1000trialstheaverage numberofselectionsthecomputerhadto makesothatthesumwasbiggerthan1was 2.686selections.
NowwhatifIincreasethenumberoftrialsfurther?Howabout5000trials?Hereis whatIget:
50002.713200
andfor10,000trialsIget:
100002.713100
Thisisveryinteresting.Itseemslike,asIincreasethenumberoftrials,theresultisgettingcloserandcloserto2.71andthisisavery interestingnumber.Thereisamathematical constantwhichisveryfamiliartoallcalculus studentscalledEuler’sNumber,or e,whichis thebaseofthenaturallogarithmandisalmost asfamousas π.Like π, e isirrationalandsoit hasinfinitelymanydecimalplaces.Thefirst 20digitsare:
e=2.7182818284590452353
Now,theresultofourlittlerandomnumber experimentisanumberthatlookslikeitcould be e.Thiscouldjustbeacoincidenceandso whatcanwedototestthepossibility?Tobe absolutelycertainoneshoulddevisea mathematicalproof toshowthattheresultofourexperimentwillapproach e asthenumberoftrialsgoestoinfinity.However,beforewespend abunchoftimeandeffortfindingamathematicalproofweshouldfirsttrytogiveourselves abitmoreconfidencethatitreallyistrue.
Let’swritea Bash shellscriptwhichwill startatasmallnumberoftrials(128inthe casebelow)anditwillrunthesimulationand outputtheresult.Thenitwilldoublethenumberoftrialsandrunthesimulationagain.It willcontinuetodoublethenumberoftrials overandoveruntilitreachesahugenumber oftrials(229 inthecasebelow)outputting theresulteachtime.Thenwewillgraphthe resultingnumberversusthenumberoftrials andseeif,asthenumberoftrialsgetslarger andlarger,theresultseemstoconvergeon e Hereisour Bash script:
e.sh
#!/bin/bash i=128; MAX=$( echo "2^29"|bc l) if [ ee.dat]; then rm fe.dat fi while [$i le$MAX]; do let i=i * 2; ./a.out$i>>e.dat done gnuplot pe.gnuplot&
NoticethatthatitusesourCprogramtodo eachsimulationanditoutputsalloftheresults toafilecalled e.dat forlatergraphingand whenitisfinisheditgraphstheresultusing Gnuplot.Hereisa Gnuplot scriptwhich willgraphtheresults.
e.gnuplot
set termx11 settitle "Iterationstoe" setxlabel "Trials" setlogscale x2 setformat x"%.1tx10^{%T}" setformat y"%.3f" plot "e.dat"u1:2 with lines, 2.7182818wl
YoumightwanttotypeintheCprogram,the Bash script,andthe Gnuplot scriptonyour Linuxcommandterminalandplaywiththem. WhenIrunthe Bash scripthereisthegraph thatpopsup:
atruthistrue,and why afactisafact,is whatscienceandmathematicsareallabout. Inmaththereasonwhysomethingistrueis calleda mathematicalproof andinsciencethe reasonwhysomethingisafactiscalleda scientifictheory
DERANGED CARDS ByTERRYPILLING
Ican’thelpbutshow youanothercoolfind. Asmostengineeringstudentsknow, LeonardEuler(pronounced“oiler”the sameastheEdmontonOilershockey team)wasamathematicianwhodida hugeamountofmathematicalworkthatis usedthroughoutengineering.Infact,Euler wasbornin1707,oneyearafterBenjamin Franklin,andlivedfor76years.Hisparents wantedhimtobeapriest,butafterregisteringinTheologyattheUniversityofBasel, Switzerlandattheageof14hequicklydiscoveredaloveformathematicsanddecidedto switchmajors.Hewouldvisitmathematician JohannBernoulliintheeveningsandwork oninterestingmathematicsproblemsandhe quicklybecameoneofthegreatestmathematiciansofalltime.Heeventuallytooka professorshipinRussia,gotmarried,had13 children,andproducedsomanypapersand booksthathis OperaOmnia,orcollected works,isstillbeingcompiledover300years laterwhere,atpresent,itconsistsof73volumeswithmanymoreyettoappear.Tosay hewasprolificisanunderstatementsincehe wasthemostprolificmathematicianofall time.Hewascalled“AnalysisIncarnate”by mathematicalbiographerEricTempleBell1
, NoticethatIhaveindicatedtheexactvalueof e asahorizontallineonthegraph.Indeed, itlooksfromthegraphthatasIincreasethe numberofiterationstheresultingvalueapproaches e!
Soitseemsthatifyouselectrandomnumbersbetween0and1itwilltakeyou,onaverage, e picksbeforethesumexceeds1.Whyis that?Theremustbesomereason!Well,that iswhatmathematicsisfor!Nowthatyouhave confidencethatitistrue,youshouldgoabout findingout why itistrue.Thisisexactlywhat findinga mathematicalproof means.Truths andFactsarefuntoknow,butthereason why
ThestoryIwanttorelateinthisarticlebeginswithacardgamethatwasplayedbackin the1600’scalled‘coincidence’whereaplayer betsthatasthecardsaredealtfromashuffled deckacoincidencewilloccurwhereacard willcomeoutintheexactsamespotthatit wasoriginallyintheunshuffleddeck.Inother words,thedealertakes13cardsfromAceto King,shufflesthem,andthendealsthemout oneatatime.Asthecardsaredealttheplayerscount“one”,“two”,etc.andif,forexample,theycount“eight”atthesametimethe8 isdealtthenitisacoincidenceandthedealer losesandplayerwins.Ifall13cardsaredealt withnocoincidenceoccurringthedealerwins andtakestheplayersmoney.
Obviously,wheneverthereismoneyinvolvedinanygame,theplayer,andespecially thedealer,wanttofigureouttheoddsofwinning.Sointheearly1700’sitwasabitofa challengeinthemathematicalcommunityto figureouttheprobabilityofacoincidenceoccurring.ThisiswhenEulerheardaboutit.He thenproceededtosolveitandtheresulthegot wasabitsurprising.Letmeshowyouhowhe didit.
Thefirstthinghedidisisolatewhathe waslookingfor.Hethoughtaboutwhathad
VOL.III...No.4 EngineeringQuarterly SUMMER2021 6
1See TheMenofMathematics byEricTempleBell.
tohappeninorderforacoincidenceto not occur.Fornocoincidencetooccur,eachofthe shuffledcardshastoresideinadifferentpositionfromitsoriginalone.Eulerknewthat ifyoutook13objectsandyoupickedthemat random,thereare13!(i.e.13factorial)differentwaystodoit.Thisisbecausethereare13 choicesforyourfirstpick,then12remaining foryoursecondpick,etc.Thetotalnumberof differentarrangementsistherefore 13!=13× 12×11 ···×2×1=6227020800.Thatisalot ofdifferentorderings!WhatEulerwantedto findoutwashowmanyofthesehadnocards thatareinthesamespottheystartedinbeforethedeckwasshuffled.Inotherwordshe wantedtoknowhowmanyofthedifferentarrangementswere“derangements”–meaning nocardsremained“arranged”.Heinvented thesymbol Π(n) todenotethenumberofderangementsof n objects.Togetafeelforthis let’slookatacoupleofexamples.Suppose youhadonly1object.Thenobviouslyitwill bethefirstoneyoupicksinceitistheonlyone youpick.Thusitwillbeinthesameposition itstartedinandhenceitisnotaderangement.
Hencetherearenoderangementsof1object and Π(1)=0.Whatabouttwoobjects, a and b.Theoriginalorderis ab andifyouchoose themoneatatimethereareonlytwopossible ordersyoucanget.Either ab againorelse ba Thesecondcasehasneither a or b inthesame spotitstartedinandsoitisaderangement.
Hence Π(2)=1.Whataboutthreeobjects withoriginalorder abc?Herearethe 3!=6 possiblewaystopickthem:
abc bcacab
cbaacbbac
ofthese,onlythetwoinboldfacearederangementsandso Π(3)=2.Eulerwenton tocomputeafewmoreandfound Π(4)=9, Π(5)=44, Π(6)=265,andsoon.However,ifyoutrytodothisyourselfyouwill finditexcruciatinglytediousandprettymuch impossibletodoforthe13cardsweareafter.Thenumberofpermutations, 13!,isjust toomanytowritedownandthentrytosift outtheonesthatarederangements.SoEuler neededtofigureoutaformulainstead.Here iswhathedid:
Startwith n objectsinorder: a1a2 ...an andlookatwaystoderangethem.First,in anyderangement, a1 cannotappearinthefirst spotoritwouldn’tbeaderangement.Sothere aretwopossibilities.Either a1 endsupin thesecondspot,oritendsupsomewhereelse downtheline.
Case1: If a1 isinthesecondspotthenone oftheother n 1 objectsmustbein thefirstspot.Let’sjustassumethat a2 istherefornowbutmultiplyby n 1 attheendtoaccountforthesamething withanyoftheothersinthatspot.Our sequencethusstartsout a2a1 andthen followedbyaderangementof a3 ...an However,thenumberofderangements of a3 an is Π(n 2).Andsointhe casewhere a1 endsupinthesecond spotwehave (n 1)Π(n 2) possible derangements.
Case2: Inthiscase a1 doesnotendupin thefirstorsecondspot.Inthiscase oneoftheother (n 1) objectsarein thefirstspot(againwewilljustassume
it’s a2 andthenmultiplyby (n 1) attheendtoaccountforalltheother choices.Sincewealsodon’twant a1 in thesecondspoteither,weneedtheremainingobjectstobeaderangementof a1a3a4 ...an andthereare Π(n 1) of those.
Hencethetotalnumberofderangementsof n objectsisgivenbyaddingupthenumberswe foundinthetwocasesabove
Π(n)=(n 1)[Π(n 1)+Π(n 2)] Eulerfoundthisrecursionrelation.Sincewe knowthat Π(1)=0 and Π(2)=1 wecanuse theformulatogenerate Π(3)
Π(3)=(3 1)[Π(3 1)+Π(3 2)] =2[Π(2)+Π(1)]=2[1+0]=2 Wecannowhappilywriteacomputerprogramusingthisrecursionrelationandfindout what Π(13) is.However,itwouldbemore convenienttohaveaformulaintermsof n ratherthanarecursionrelationsowedon’t havetocomputeallthepreviousonesinordertogetthenextone.Youcandothisby workingoutafewofthemfromtherecursion andtryingtodetectthepattern.Eulerdidthis andfoundthat
Pi(13)=2290792932
Probability=0.367879
Sotheprobabilitythatthedealerwillwinis justoverathird.Soitlookslikeaprettygood betfortheplayerthatoneofthecardswill comeoutinitscorrectspot!
Thisisnottheendofthestoryhowever.If youtaketheinverseoftheprobabilityabove youwillfindaveryinterestingnumberappears.Tryit!Euleraskedhimselfthefollowingquestion:“whathappensif n becomes reallylarge?”Dothingsgetbetterorworse forthedealerandbyhowmuch.Wellitis easytofigurethisout.Juststartwithhisformulaandtakethelimitas n →∞.Let’sdo it.Theequationfortheprobabilityis
probability(n)= Π(n) n! = n k=0
andtakingthelimitgives
probability(∞)= ∞ k=0
( 1)k k!
( 1)k k!
Nowrecallthepowerseriesrepresentationthe exponentialfunction
Π(n)= n! n k=0
( 1)k k! Youcanprovethisformulabyinductionby knowingitistruefor n =1 and n 2 Π(1)= 1
Π(2)=2 2 k=0
1)k k! =1 1=0
( 1)k k! =2(1 1+1/2)=1
andshowing,usingourrecursionrelation,that beingtruefor Π(n 2) and Π(n 1) implies itistruefor Π(n)
Inanycase,nowwehaveaformulasuch that,given n,wecaneasilyfindthenumberof derangements Π(n).WecanwriteasimpleC programwitha for looptofindthat
Π(13)=2290792932
Nowwecometotheprobability.The probabilitythatyouwillgetaderangement outofarandomlyshuffled13cards–i.e.the probabilitythatthedealerwillwin(sinceno cardisinitsoriginalspot)isgivenbythetotal numberofderangementsdividedbythetotal numberofpossiblearrangementsincluding thederangements.WewillincludethiscomputationinourCprogramasfollows
derange.c
#include <stdio.h> #include <stdlib.h> int main( int argc, char ** argv){ if (argc!=2){printf("usage:%sN\n", argv[0]); return 1;} int N=atoi(argv[1]); int a=1; double k=1; double n=1; for ( int i=1;i<=N;i++){
a= 1*a;
n=n * i;
k=k+a/n; }
printf("Pi(%d)=%.0lf,Probability= %lf\n",N,n *k,k); return 0; }
Runningthiswith n =13 givesthefollowing output
ex = ∞ k=0
xk k!
Weseethatourprobabilityequationisnothingbutthisseriesevaluatedat x = 1.Hence
probability(∞)= e 1 = 1 e
andinsertingthedecimalvalueofEuler’sfamousnumber e =2 71828 wefindthat forlarge n theprobabilitythatanarbitrarysequenceofcardswillbeaderangementis
probability(∞)=0 367879 whichisexactlywhatwegottosixdecimal placesalreadywith n =13.Soclearlytheseriesconvergesveryquickly.Itisremarkable thatacombinatoricsproblemaboutthenumberofderangementsindealingcardsresults in 1/e.Itonceagainshowshowthesestrange irrationalnumberslike e and π tendtopopup inthemostunexpectedplaces.
ReadEuler,readEuler.Heisthe masterofusall.
–Laplace
ChallengefortheReader
Writeagamewhichdealsout13cards andcheckswhetherornotitisaderangement.Thenhavethecomputer playagainstitselfafewhundredthousandtimesandseeifyougetthepredictedprobabilityascalculatedhere.
ContactInformation
Formoreinformationaboutourengineeringprogramemail:Engineering@umary.edu
Nextissue:November,2021
VOL.III...No.4 EngineeringQuarterly SUMMER2021 7
k=0 (
VOL.III...No.4 EngineeringQuarterly SUMMER2021 8