UNDDiscovery AUTUMN 2013
THEN and
NOW The constant – and changing – face of UND research
The more things change, the more they stay the same One of the key missions of a research university is the creation of new knowledge. The National Academies of Science issued a report last year concluding that research universities, and their strong partnerships with government and industry, are critical to the nation’s prosperity and national goals. Whether it’s finding better ways to treat cancer or developing methods for more accurate weather prediction, universities are important places for advancing knowledge and then finding ways to use knowledge for the benefit of society. The University of North Dakota has been in the knowledge creation business for a long time. In this issue, we’ve taken a look at some “then-and-now” stories to illustrate the ways in which UND has been at the cutting edge of research over time. The kinds of research we do and the knowledge we create often change, but the focus on doing research doesn’t change. Looking back after a long hike to the top of a hill, we can be amazed at how far we have come. So too can we be amazed by how much has been accomplished when we look back on what was novel research decades ago. Future generations will take for granted many of the things we are just now discovering in the same way that we take for granted that it’s a good thing for kids to know how to type (of course, now we call it keyboarding). Back in the 1950s, when I participated in an experiment to teach kids typing, many folks predicted dire consequences for our school achievement. The research showed they were wrong. Some research done years ago continues to be important in its own right. Professor Elwyn Robinson’s seminal History of North Dakota is still considered the definitive work on our state’s history, even though it was published in 1966. Dr. Kim Porter has done a muchneeded update of North Dakota history — after all, a few things have happened in the last 50 years — but that doesn’t change the importance of Robinson’s earlier work. I think you will enjoy these peeks into the past and some glimpses of the future that UND research is helping to create. Phyllis E. Johnson, Vice President for Research and Economic Development
Respect the past and change the world When the idea was first broached for this issue of UND Discovery (conceived by a huddle of University & Public Affairs and Research & Economic Development folks months before the magazine went to print), it instantly got my creative juices flowing. “UND Research: Then and Now” was the tagline assigned as our working theme. Our goal was to find a sample of stories about UND researchers and creative thinkers of the past and align them with campus scholars who are doing similar, semi-related or 180-degree opposite research now. What could be more fun than writing about the life and research of individuals throughout UND history juxtaposed with fascinating people of today? I think you’ll like some of the interesting stories we’ve been able to tell. The whole idea got me thinking about Bill Nye the Science Guy. Yes, that guy. The Cornell University engineer who gave up a career at Boeing to become the most famous (and wacky) TV scientist in the world. Nye addressed the graduates of Lehigh University in Pennsylvania last May, urging them “to change the world.” Not an earth-shattering message by any measure when it comes to grad speeches. But it was Nye’s underlying message on the importance of past knowledge combined with new discoveries that resonated with me — as I am sure was Nye’s intention. Nye told his graduating audience that they knew more physics than Isaac Newton and Albert Einstein, and they knew more about the universe than Galileo or Copernicus. In just his lifetime (roughly 50 years), Nye observed that humans have learned how the dinosaurs really died, the existence of plate tectonics, that the races actually originate from a common source in Africa, and that Mars was once a very wet place. And, “I can guarantee you that significant discoveries will be made in your lifetime that will change the world,” he told the Lehigh graduates. Nye wasn’t discounting the work of Newton, Einstein or anyone else who has contributed to the bank of human knowledge. He was reminding those graduates that they are equipped with unprecedented smarts and resources, and are poised to take on the world like no generation before. “Respect their knowledge and learn from them,” Nye said of our predecessors. “It will bring out the best in them and you.” That is exactly what we tried to do with this issue of Discovery. It is a nod of respect to UND’s research past and an eye to new discoveries that will be made possible by UND researchers today. Maybe together we can change the world! David Dodds, Editor, UND Discovery
IN THIS ISSUE OF
UNDDISCOVERY AUTUMN 2013 2 THEN and NOW: Instructional technology Phyllis Johnson recalls an early study of teaching typing to elementary school students, and Richard Van Eck discusses resistance to new teaching technologies. 4 THEN and NOW: Arctic explorations and culture Vilhjalmur Stefansson blazed a path to a culture that Timothy Pasch works to preserve. 6 THEN and NOW: Antarctic ventures John Reid delivered a lesson on the value of basic research, and Jaakko Putkonen shows how it’s still valid. PHOTO BY CHUCK KIMMERLE
In memoriam We are honored to dedicate this issue of UND Discovery to the memory, life and research of Robert William Lewis, UND Chester Fritz Distinguished Professor of English, who died Aug. 26, 2013. Lewis was a man of varied background: a star athlete on the basketball court, an avid scholar of classic American literature, a champion in the local arts community, a veteran of the Korean War, and a professor of peace studies. But he’s probably more widely remembered as an authority on Ernest Hemingway, serving three terms as president of the international Hemingway Society and serving as chairman of the Hemingway Foundation board, at the behest of Hemingway’s wife, Mary, a native of Walker, Minn. Lewis dedicated his scholarship to Hemingway’s writing. In 2007, he co-edited and published the award-winning Under Kilimanjaro, a tale based on journals from Hemingway’s last African safari. Two months before his passing, Lewis completed the manuscript for a book titled Reading Hemingway’s A Farewell to Arms. Lewis came to UND in 1969 to be chair of the English Department. He helped create the Indian Studies Department and Peace Studies program, and was instrumental in launching UND’s Writers Conference. As Hemingway put it: “Every man’s life ends the same way. It is only the details of how he lived and how he died that distinguish one man from another.” Bob Lewis lived his life like Hemingway wrote: richly and incisively. He definitely stood out. UND Discovery is published by the Office of the Vice President for Research & Economic Development, with assistance from the Division of University & Public Affairs. Editor: David Dodds. Contributors: Juan Miguel Pedraza, David Dodds, Kate Menzies, Jan Orvik, Brian Johnson, Timothy Pasch, Alyssa Wentz, and Marti Elshaug. Principal photography by Jackie Lorentz and Shawna Widdel. Please send inquiries and comments to the Office of the Vice President for Research & Economic Development, University of North Dakota, 264 Centennial Drive Stop 8367, Grand Forks, ND 58202-8367. The University of North Dakota is an equal opportunity/affirmative action institution.
UND.edu/research
8 THEN and NOW: Robinson’s legendary state history Elwyn Robinson’s History of North Dakota set a standard, refreshed and updated by Kim Porter. 10 THEN and NOW: UND research on the national map Robert Nordlie’s work helped establish UND’s reputation for health sciences research, one that is being continued in the emerging field of epigenetics. 12 THEN and NOW: Music UND professors expand the field from the Renaissance to electronic and experimental. 14 THEN and NOW: Pushing the frontiers From “ocean depths” to outer space, UND is there. 17 Igniting a spark for prospective scientists Nuri Oncel looks for connections to spark scientific curiosity among high school students. 18 Building better, more efficient turbines Forrest Ames’ work seeks to improve efficiency in turbines ranging from small to huge. 19 Catch and release – the CO2 way A novel technology seeks cheaper and more effective carbon capture. 20 Collaborative Energy Complex will bridge programs The new building would unite UND’s engineering facilities. 21 Decoys and the “birds-eye” view A new paint formula helps waterfowl decoys do their job. 22 The human side of “the Bakken” While good for the economy, the oil boom has also been accompanied by an uptick in domestic violence. 23 Focus on Faculty 24 Spotlight on Students Inside Back Cover: Boom (and bust) economics The economic picture is never as simple as it seems.
ON THE COVER: Space Studies professor Pablo de León looks on as graduate student Tiffany Swarmer, wearing the latest version of UND’s NDX spacesuit system, manipulates an instrument package. Photo by Jackie Lorentz.
UND Discovery n Autumn 2013 n 1
THEN A novel “type” of experiment garnered national attention
Readin’, writin’ – and typin’ By Brian Johnson The keyboard is now a basic appliance. It’s as essential to the Millennial college student as a hammer is to a carpenter. Generation Y can’t remember when typing was not required in high school, but Phyllis Johnson, UND’s vice president for research and economic development, grew up in a different era. “There was a lot of fear that if kids learned to type, they wouldn’t learn efficiently because they weren’t writing by hand,” said Johnson. “People wondered if it would affect their academic achievement.” John L. Rowe, chair of UND’s Business Education Department, challenged that idea in 1958 with an eight-week study. He believed typing should be taught at an
2 n UND Discovery n University of North Dakota
elementary school level and could enhance a child’s reading comprehension and vocabulary skills. Rowe thought the three standards of education ought to be “read’n, typ’n, and ‘rithmetic.” The device that enabled Rowe to move ahead was the electric typewriter, which was coming on the market. Prior to that, children weren’t taught to type because manual typewriters required too much finger strength. The Smith-Corona Typewriter Company provided UND with portable electric typewriters for the study, which were perfectly suited for children. For the study, UND recruited 28 of the best third- and fourth-grade students they could find from local schools. Johnson was one of them. “Don’t I look studious here?” Johnson said with a laugh as she skims through her old newspaper clippings. “Today, the whole idea that ‘teaching kids to type is a negative’ is foreign to us. UND was really a pioneer in something that became important many years later when the computer age arrived.” Twenty-eight children were selected to go through Rowe’s typing classes during UND’s summer term. While Johnson’s group was learning to type, 28 other kids in a control group spent the summer doing what kids do on summer days. During the study, media coverage expanded throughout the country, and eventually reached one of the longest-running American TV shows on the air. The NBC Today show,
with original host Dave Garroway, shot footage of the study at UND. Johnson never saw the episode run. At that time, the TV signal from the NBC station in Fargo didn’t reach Grand Forks. There was no way for Johnson to see herself on television. After the study, the team started collecting the data. “They tested us — I.Q. test, reading, spelling, capitalization, punctuation, everything you could think of — before and after the Phyllis Johnson study,” said Johnson. The results showed that teaching kids how to type came with a predictable drawback. “The only thing they found was that learning to type made our handwriting worse,” said Johnson. “Otherwise, changes in your level of academic achievement didn’t occur. I think my handwriting never recovered,” she added with a laugh. When the eight weeks were up, the University hosted a cap-and-gown “graduation” for the kids. “I think it’s pretty cool that UND was at the cutting edge of this stuff: the question of how you use technology in education,” said Johnson. “These days, technology in education is the SCALE-UP (StudentCentered Active Learning Environment for Undergraduate Programs) classroom, iPADs, clickers to respond to questions in the classroom — there’s a whole range of things.” And just like the John L. Rowes of the University’s past, UND faculty members such as Richard Van Eck in the College of Education & Human Development have continued to research the good and the bad that comes with new technologies in the classroom. “Everyone today takes the fact that you can type for granted. It’s fundamental,” Johnson said. “But at one time, it was a revolutionary idea. I think it’s part of how UND has always been exceptional. People were willing to ask these wild and crazy questions.” n
UND Business Education Professor John Rowe looks on as Phyllis (Lanes) Johnson (now UND’s vice president for research and economic development) taps the keys on a new Smith-Corona portable electric typewriter in this picture that was distributed nationally to news media.
PHOTO BY JACKIE LORENTZ
Richard Van Eck: “New technology always offers some benefits and will end up being used whether we think it should be or not.”
NOW New ideas and technologies for teaching usually meet with some skepticism and resistance
The one constant: CHANGE (and how to live with it or even love it) By Juan Miguel Pedraza Many a Baby Boomer recollects high tech back in the day: flickering 16 mm projectors, typewriters and tests produced with hand-cranked mimeograph machines. And just like it is today, tech was viewed askance by many back then. Old-timers from the days of the “Three Rs” — readin’, ‘ritin’, and ‘rithmetic — believed technology such as typewriters deprived youngsters of the opportunity to learn the “old-fashioned” way. Today such arguments persist, only now they’re about the noiseless digital tech gadgets and games that permeate the Millennial culture — the so-called “BYOD,” or Bring Your Own Device. How does today’s technology and the questions we’re asking about it compare and contrast to previous tech encounters in the classroom, for example, mechanical film projectors and typewriters? “Change is always viewed with suspicion, whether considering the shift from analog to digital clocks, from shoelaces
to Velcro, or from copper phone lines to wireless phones,” said Richard Van Eck, a University of North Dakota educator and global expert in digital game-based learning and other digital tech. “I think we are biologically predisposed to dislike change, because our ancestors knew that once you had a way to survive, any change meant a potential threat to survival,” he observed. “No matter that some changes could help you; they always come at some price.” The same is true for technology.
An instinct for the negative “When technology comes out, we often focus on the negatives, and there are always negatives,” said Van Eck, who served as graduate director in the multidisciplinary Instructional Design & Technology (IDT) program in the Department of Teaching & Learning (part of the College of Education & Human Development) until this fall. “The trick is to figure out both the posi-
tives and the negatives and to push for a balance between them, rather than denying the benefits for fear of the negatives,” he said. “We perennially worry that a new technology will ‘replace the teacher’ or that we will lose something valuable in the process. “Usually, these things are valued because they are a part of our past, and nobody wants to see what they have cherished change.” Van Eck, a master of digital wizardry in the classroom, says he loves books. “I love the feel of paper books and own hundreds of them,” he said. “But I also appreciate the value of searching for text, bookmarking and highlighting key phrases in a nondestructive way that I can change, and carrying hundreds of books with me in my pocket.”
On the sidelines or in front? So the question becomes, how can we ensure that the new technology is used wisely? “New technology always offers some benefits and will end up being used whether we think it should be or not,” Van Eck said. “So we can sit on the sidelines and abdicate responsibility for its best use to younger generations, or we can lead the way in promoting its wise use.” Although digital simulations and games are still far from the norm in today’s K-12 schools, Van Eck says that acceptance of those media as teaching tools is growing. For kids, he noted, the gadget-saturated world is their reality, an ever-evolving electronically mediated transition from virtual to real. Today’s K-through-college students live life in the electronic lane. “They’re digital natives,” Van Eck says. n
UND Discovery n Autumn 2013 n 3
By Kate Menzies and Timothy Pasch
Blazing a new path in Arctic research THEN
Research based at the University of North Dakota ranges all across the world: from the High Arctic to Antarctica and almost everywhere in between. This year marks the centennial of the Canadian Arctic Expedition (CAE) of 1913. It was the first Canadian Government expedition to the Western Arctic and, at the time, the largest multi-disciplinary scientific Arctic expedition ever mounted. And it was all led by UND alumnus Vilhjalmur Stefansson. Born Nov. 3, 1879, in Arnes, Manitoba, Stefansson went on to become one of the most recognized Arctic researchers of all time. In 1881, the Stefanssons moved to a farm in Dakota Territory, near the town of Mountain, located in present-day Pembina County, N.D. Stefansson enrolled at UND in 1897 — just 14 years after the University was founded. During his time on campus, Stefansson edited the school newspaper, was very popular, and was voted the best orator. It was his constant pranks, however, such as parking the horse carriage of UND’s president in front of a local house of ill-repute, that got him into trouble with the administration and permanently suspended from UND in 1902. His dismissal caused Stefansson, as such uproar that a student at UND he was escorted to the train depot by well-wishers. Undaunted, Stefansson went on to graduate from the University of Iowa with a degree in liberal arts. From there he enrolled at Harvard and obtained a master’s degree, always with a focus on the North, inspired partly by his Icelandic heritage and long experience handling the frigid temperatures of Manitoba and North Dakota.
Research by “immersion”
From a checkered start at UND, Vilhjalmur Stefansson rose to become one of the continent’s most important explorer-scientists
4 n UND Discovery n University of North Dakota
Even a stalwart explorer such as Stefansson knew that Arctic survival required skills. So he sought out mentors among the Inuit natives of the region, studied the language, and honed his cold-weather survival abilities. This made Stefansson one of the first researchers to conduct a “total immersion” style of research, working and living in the North. Eschewing heavy supply cargoes, Stefansson followed Inuit example and undertook “ice trips” on which he and a handful of companions lived off the ice and the
land, relying on seals and caribou for food and fuel. Stefansson’s exploration method proved effective, and this “living off the ice” method allowed him to continue exploration despite limited supplies. During the winter, the Arctic is dark and freezing with few, if any, hours of daylight. Without proper equipment, explorers could suffer from snow blindness, frostbite and exposure. The summer, in contrast, was more accessible, but the season was short and had its own perils. A major plague was mosquitoes. One Expedition member recalled, “It is the astounding atmosphere of mosquitoes that envelops the whole face of the country in the summertime that is the real curse.” In total, 17 men lost their lives during the CAE. In a span of five years, the CAE covered more than 10,000 square kilometers of previously unknown territory and discovered five of the last six unknown Canadian Arctic islands. The scientists returned with thousands of specimens of animals, plants, fossils and rocks, and artifacts from the Copper Inuit and other Inuit cultures. Researchers also brought back more than 4,000 photographs and 9,000 feet of film.
A new view Stefansson offered a new way of thinking about the Arctic, not as a wasteland but as an area full of existing and potential value. He expressed concern about native peoples being “crushed by civilization’s juggernaut,” championing traditional Inuit ways and co-existing with the modern economic and strategic potential of the Arctic. He saw the Arctic as the crossroads of the world, “a hub from which the other oceans and continents of the world radiate like the spokes of a wheel.” Years later in 1930, past pranks were all forgiven when UND awarded Stefansson an honorary Doctor of Laws degree — then only the third such degree ever awarded by the school. He returned to the campus frequently to visit with students and faculty. After spending a lifetime working to uncover the mysteries of the Arctic North and share its beauty and grandeur, Stefansson died on Aug. 26, 1962. Stefansson’s legendary expedition lives on in an important aspect of Canada’s present-day Northern Strategy: http://www.northernstrategy.gc.ca/sov/ cae-eng.asp n
Modern technologies may be the key to preserving a largely oral tradition and identity
LEFT: An elder in the community of Arviat, an Inuit boy, and Timothy Pasch (left) with Kanaaq Anoee of the Department of Education for the Government of Nunavut. BELOW: A night watchman in Arviat. Photos courtesy of Timothy Pasch.
NOW
Reaching youth to preserve the past By Kate Menzies University of North Dakota Communication Professor Timothy Pasch did not spend his summer like most. He packed his bags and headed for the Canadian Arctic Circle with several digital media tools and his expertise in communication to help preserve the language and culture of the Inuit. With citizenship in two countries — Canada and the United States — Pasch understands the role communication plays within a culture. “I came to realize that the ability to speak different languages is a great treasure of life and that culture is inextricably linked to language,” said Pasch, who also speaks French and Japanese fluently. Pasch’s research was funded by a Foreign Language and Area Studies Fellowship grant, which he received while a Ph.D. student at the University of Washington. He was the first person to receive such a grant to study a “First Nations” language. First Nations is the Canadian equivalent term for Native Americans. Pasch practiced “total immersion” research, living with an Inuit family in the community of Inukjuak of Arctic Quebec. There he researched the effects of social networking on the Inuktitut language. Pasch discovered that communities across the Canadian Artic were experiencing dramatic changes: languages and cultural identities were vanishing. “Having seen how quickly language can be lost, and how challenging it can be to teach language, I became focused on adapting technologies for endangered-language learning through recording and broadcasting cultural knowledge and awareness,” Pasch said. For Pasch, communication is an important facet of cultural preservation. The loss of a language can result in loss of knowledge and wisdom accumulated over generations. In June, Pasch made high-definition recordings of two Inuit elders describing for young Inuit how to prepare for an extended hunt. Around that time, two young Inuit died on a snowmobile trek because they had not adequately prepared for the journey. “These elders have great concern for future generations of Inuit,” Pasch said. “However, as Inuktitut has principally been an oral language until recently, it has not always been preserved in writing.” Pasch created a model — Arctic New Media Convergence in the
Digital Humanities — to train and encourage young Inuit to use tools such as still image and video, audio, social media, Web and mobileapplication design to preserve and broadcast the voices of the Inuit elders, while sharing their own. “Seeing these students become so excited and animated while using technology to create new media forms in their own language was immensely rewarding on both scholarly and spiritual levels,” Pasch said. Pasch already has shared his research in the Kivalliq News, a major newspaper among the Inuit; the Canadian Broadcasting Corp.; and Twitter feeds across the Circumpolar Arctic. “I am exceedingly grateful for these connections and the ability to broadcast my thought that the Northwest Passage becoming navigable makes the Inuit voice more important and valuable than ever,” said Pasch. His work with our northern neighbors doesn’t stop there. Pasch recently was appointed to the Board of Directors for the Association for Canadian Studies in the United States as a representative for Communication and Arctic Affairs. He also co-authored a book with Kyle Conway, also a UND communication professor, titled Beyond the Border, which focuses on the growing importance of the international border between the U.S. and the Canadian Great Plains and prairie regions. Earlier this fall, Pasch, working with the Consulate General of Canada in Minneapolis, held an Arctic Symposium at UND to commemorate the centennial of the launch of the important Canadian Arctic Expedition of 1913-1918, which led to many new discoveries of land, scientific specimens and historic First Nation artifacts. The UND symposium attracted celebrated National Geographic explorer Will Steger and Canadian Museum of Civilization Director David Gray. A focus of the symposium was the life and work of UND alumnus Vilhjalmur Stefansson, who led the expedition. Pasch’s research and digital Arctic outreach efforts were inspired by Stefansson and his total immersion style of research 100 years earlier. In the classroom, Pasch hopes to use his experiences in the Canadian Arctic to inspire students to learn about different cultures by studying a foreign language, studying abroad, or taking part in international research opportunities. n UND Discovery n Autumn 2013 n 5
THEN Basic research done yesterday and today pays dividends in knowledge and applications
Lessons for the future frozen in time and ice By David Dodds John Reid wasn’t about to let it go. A critical editorial in the Harvey (N.D.) Herald got Reid’s dander up, and he ventured a friendly retort. The Herald had taken Reid to task on March 25, 1965, for apparently wasting taxpayer money after the University of North Dakota geologist had $10,000 worth of Antarctic glacial ice sent to his 5-degree-cold laboratory in Leonard Hall. Surely, there must have been sufficient ice for research in Grand Forks after the long winter, the paper suggested. How about refrigerator ice? Why go 10,000 miles to the bottom of the world to bring home North Dakota’s primary winter export? The irony was probably too great for the Herald’s writer to pass up. But this editorial was about more than slabs of ice from afar. That was just the attention-getter. It echoed a common indictment in scientific circles back then and that persists today: “What practical value is basic scientific research?” Reid, at the time a UND associate professor of geology who actually paid for the ice shipment out of pocket, could have lectured the editorial writer all day on the geological value of glacial ice versus what’s found in your everyday icebox, but he didn’t. His reply zeroed on the larger point. “Scientists are always pressured to justify their research,” he wrote. “Regardless of how often we explain that by far the greatest number of practical inventions [has] resulted from some form of basic research on the part of a scientist at a university, people will not readily accept this.” Reid pointed to the advent of the laser as a discovery that had no immediate practical application, and that Madam Curie’s notion to isolate radium was a study of the unknown rather than a conscious step toward atomic power or detection of pollution or cures for cancer. “If the researcher in the university is forced to find practical reasons for his research, science will be stifled,” Reid wrote. “It is only by searching beyond this boundary that technology will be advanced.” Fast-forward nearly 50 years: Reid, now 80 and long retired from UND, says the views he shared in his letter to the editor have not waned a bit. “Basic research may seem to be a waste of effort and time by many,” Reid said from his home in Fort Collins, Colo. “But even negative results are critical to understanding. Science progresses by trial and error. The desire for practical application of research is understandable, but no one can foresee the future, and the majority of practical discoveries has come from basic research and serendipity!” Words of wisdom from a longtime researcher who’s seen it all and done it all — mostly while at UND. But even more than a researcher, Reid is probably most proud of his legacy as a teacher. There’s an underlying sense, reading through Reid’s three-page response to the Harvey Herald, that rather than attacking the writer, he is teaching the writer — and by extension the 6 n UND Discovery n University of North Dakota
public — about the value of basic scientific research. He was always teaching. Reid, a giant in the field of geology with two major terrain features in Antarctica — a glacier and a mountain ridge — named after him, was a colossus in the classroom, too. For nearly 40 years, he was regarded as one of UND’s outstanding teachers and scholars. He was named North Dakota Professor of the Year in 1996, and received several other awards for teaching excellence during his career. “My greatest achievement as a faculty member, without a doubt, was mentoring my students,” Reid said. “I continue to hear from many, and am very proud of their achievements.” Teaching is in Reid’s blood. The Melrose, Mass., native’s childhood was strongly influenced by his mother, a former one-room school teacher. As he grew up, Reid’s life lessons were enhanced when his parents took in “roomers” for supplementary income. The roomers included professional men, unwed mothers, temporarily abandoned children, and war-separated families. These experiences would serve him well years later as a tough but fair teacher and mentor.
“I developed a strong sensitivity to people’s problems. As a result, students quickly learn that I care about them,” he once wrote in a paper about his contributions as an undergraduate teacher. Outside the classroom, Reid says his fondest memories were times spent with students on field research expeditions, especially those in the Martin River Glacier Area of south-central Alaska. Reid’s name may be stamped on Antarctica, but much of his geological reputation was earned at the other end of the planet in places such as Alaska, Arctic Canada, and Greenland. A much-hailed research discovery took place on a lake in the Martin River Glacier Area in the summer of 1963, when Reid and students began investigating a massive, 200-ton (100-feet-wide and three-football-fields-long) dirt-covered iceberg that suddenly “popped up.” The discovery suggested new mechanisms for the origin of icebergs and provided supporting evidence to existing theories on ice flow. Their research was published in the Journal of Glaciology. Reid said the work was more valuable for his students than anything that could be demonstrated in a traditional classroom. “They learned much and so did I,” he said. Reid actually only spent a few months in Antarctica in the winter of 1958-59. The conditions were brutal as his team camped 45 miles from the nearest shred of civilization. (John Reid, continued on Page 16)
Antarctica yields climate clues for Earth, beyond By Juan Miguel Pedraza In an era soaked in a digital deluge where online is the place to be, Jaakko Putkonen and his student teams blaze — or let’s say freeze — a totally different path. This University of North Dakota geomorphologist, a native of Finland, spends most of his field time in Antarctica and other frigid remote places. Most recently, Putkonen took himself and a team of UND graduate and undergraduate students to a remote interior desert — an ice-free valley — along the largest mountain range in Antarctica. They were chasing clues to how and why landscapes change. They also retrieved vital “data loggers” placed in that Antarctic desert by Putkonen and another student team a year earlier. “We wanted to collect data and more samples and to go to places this time that we couldn’t get the last time we were there (in December 2010 to January 2011),” said Putkonen. He’s conducted research in several of the remotest, highest and coldest locations in the world, including Antarctica, Greenland, Spitsbergen, Lapland, and in the Himalaya Mountains. “It’s a physically punishing trip because you’re working 2,500 meters above sea level in a truly rough landscape. And when I say rough, I mean boulders on top of boulders. After most days, we were mentally exhausted just because we had to plan every step, jumping from boulder to boulder, as falling down is not really an option in a location where the nearest medical help is 1,000 miles and several days away.” The data loggers and sensors were placed at various locations in the desert to gather a year’s worth of information. “All that equipment had to go through an Antarctic winter, which can be truly brutal,” Putkonen said. “We set all the sensors and data loggers up on plumbing-grade zinc pipe anchored with boulders.”
Rocks of ages Putkonen and one of his Ph.D. students, Theodore Bibby, are extracting scientifically usable information from the piles of data and
samples they gathered. Part of that work is being done in a unique lab at the Harold Hamm School of Geology & Geological Engineering, part of the College of Engineering & Mines. It’s basically about dating rocks. “We’re trying to understand how the Antarctic landscape evolved over both short and long time periods,” Putkonen said. “We ask some straightforward questions, such as how is the dirt moving around there like it does here (in North Dakota) in a big rainstorm or with North Dakota’s famous winds. The dirt that’s being eroded somewhere is being deposited somewhere else — the landscape changes.” Extracting usable data from all the samples requires using an analytical method that measures the rare radioactive isotopes in each specially prepared rock sample. “We know that rocks that are buried, for example, deep below the ice sheet don’t get bombarded by high-energy particles, and we can detect that,” Putkonen said. Rocks that are exposed on the Earth’s surface, on the other hand, accumulate rare isotopes as a result of particle bombardments from outer space. The isotopes’ effects can be studied in Putkonen’s lab. (Jaakko Putkonen, continued on Page 19
NOW
Jaakko Putkonen: The data generated by rock samples will provide an understanding not only of the evolution of the Antarctic landscape but also of similar environments beyond Earth, such as that of Mars. Photos courtesy of Jaakko Putkonen. UND Discovery n Autumn 2013 n 7
Elwyn Robinson’s masterwork remains relevant after half a century
scholarly work were not emphasized as much as they are today, and Robinson was able to spend more time on his masterwork. “His work was painstaking, almost plodding,” Iseminger said. “He spent 20 years on it, and it shows.” There are other state histories, Iseminger said, but they are not as comprehensive. Following Robinson is tough, he said, adding he would not want to write a more current history. Kim Porter, professor of history, stepped up to the challenge and produced a new volume, North Dakota: 1960 to the Millennium. “I give Dr. Porter a lot of credit,” he said. Iseminger “She has an agricultural history background, and she did well at summing up the 30 or 40 years of North Dakota’s history since Robinson’s book was published. It was a daunting task, but Dr. Porter, although from Iowa, has adapted to the state and to being a North Dakotan.”
Still relevant
THEN
Standing the test of time By Jan Orvik Not many textbooks are used for 50 years. But Elwyn B. Robinson’s History of North Dakota has stood the test of time. It’s the best state history ever written and it’s still relevant, said Gordon Iseminger, Chester Fritz Distinguished Professor of History. Iseminger, a long-time colleague of Robinson, has been at UND for 52 years. He is the longest-serving faculty member on campus and the longest-serving state employee. He is also one of very few faculty to have had children and grandchildren of former students in his classes. “Robinson absorbed North Dakota history,” Iseminger said. “I don’t see how we can not use the book. The themes are still mostly relevant. Circumstances have changed, but not so much the themes.”
Robinson identified six themes of North Dakota history that are mostly still relevant: remoteness, dependence, radicalism, economic disadvantage, the “too-much mistake,” and adjustment. Remoteness meant that the state was influenced by its distance from national centers. Dependence on external pricing for furs, grain, and other commodities defined profit and loss. Radicalism became the state’s answer to these themes, resulting in the birth of the Nonpartisan League and the establishment of the State Mill and state-owned Bank of North Dakota, both of which served to address the theme of economic disadvantage. The “too-much mistake” was that more towns, farms, schools, roads, colleges, churches, and governmental institutions were established than could be supported — all requiring adjustment, Robinson’s last theme.
More about the man: Elwyn B. Robinson, 1905-1985 Elwyn Burns Robinson, University Professor Emeritus of History at UND and a noted state historian, was born on a farm in Ohio and earned degrees from Oberlin College and Case Western Reserve University in Cleveland. In 1935, he was invited to join the UND faculty by Libby. He wrote and presented a series of popular radio talks titled “Heroes of Dakota.” This led to writing History of North Dakota, which even today is considered one of the best state histories in the nation. He remained active after his retirement in 1970. n
Libby and Robinson Iseminger, who is known for his high standards, is a historian’s historian. His research includes local history, Germans from Russia, and a series of essays on former UND history chair Orin Libby, one of UND’s “grand old men” and the man who brought Robinson to UND. “Libby retired in 1945, and his presence was still palpable in 1962,” said Iseminger. “He doted on maps, didn’t suffer fools gladly, and was influential in starting the State Historical Society, the State Library, the State Museum, and the State Park System.” When Iseminger joined the faculty in 1962, he said, research and 8 n UND Discovery n University of North Dakota
Elwyn Robinson lectures to his last class in the Department of History before retiring from the UND faculty in 1970.
PHOTO BY CHUCK KIMMERLE
Updating a classic NOW Kim Porter takes over where Robinson left off, all the way into the new millennium By Jan Orvik It needed to be done, said Kim Porter, professor of history, about her book, North Dakota: 1960 to the Millennium. It started when one of her North Dakota history students said her grandfather may have been a North Dakota governor. “Turns out it was her great-grandfather, and he was a senator,” Porter said. She teaches courses in North Dakota history, and knew an update was needed for the classic History of North Dakota, which is still used in state history courses across the state. Elwyn Robinson’s history, published in 1966 and still in print, essentially ended in 1950, and there was no current state history. “North Dakota is their home,” she said of her students. “Their grandparents read the same history book that students do today. They need to continue the history with current names and faces.” North Dakota’s role has changed, Porter said. When Robinson’s history ended with the 1950s, the Cold War was ongoing, the state had no interstate highways, no missile stations, and no oil boom. Garrison Dam was not yet built, and televisions were a luxury. Today, politics have changed, North Dakota has its first woman senator, and it is the only Great Plains state that is growing. Porter, who grew up on a farm in Iowa, was a bit nervous about being seen as an outsider. But Robinson himself was an Ohio native, and Porter has been in the state for 18 years, longer than most of her students have been walking. She joined UND in fall of 1996, “just in time for the 1997 flood,” and was attracted to the position because it was the only listing with “rural” and “agriculture” in the job title. “I understand what a piece of ground means and feel a connection to tradition.” Porter’s book connects North Dakota to the nation and focuses on politics, the economy, weather, and interesting aspects of the state, such as the “Zip to Zap,” the Poppers and their Buffalo Commons proposal, and more. “Focusing on a box of dirt is boring,” she said. Through feast and famine, boom and bust, flood and drought, the book details North Dakota and its connection to national politics and the larger world with a clear and affectionate eye.
“There’s nothing flat about North Dakota except the Red River Valley,” she said. Porter pursues other projects in addition to North Dakota history. She is currently working on a Grand Forks community oral history in which she interviews community elders, and is kicking off an oral history of World War I veterans by interviewing their children. She recently completed an oral history of the Synagogue in Grand Forks, which is now on the National Register of Historic Places, and is working on a book about Henry Field, a seedsman from Iowa who founded Field’s Seed and Nursery Catalog. “People don’t write books anymore like Elwyn Robinson did,” she said about the 20 years Robinson spent writing the book. “Academics are expected to produce more.” And Porter’s book already needs a new chapter, she said. Times are changing so fast that it’s out of date as soon as it’s printed. “If this is where you want to be, you can make your story here,” she said. “You become a person rooted in something greater than yourself.” n
Kim Porter: “There’s nothing flat about North Dakota except the Red River Valley.” UND Discovery n Autumn 2013 n 9
Robert Nordlie’s research helped put his department and UND “on the map” nationally and across the globe
THEN
Laying the foundation for a national reputation By Alyssa Wentz For 38 years, Dr. Robert Nordlie was dedicated not only to research at the University of North Dakota, but also to the success of the Department of Biochemistry & Molecular Biology. Fueled by the same National Institutes of Health grant for 35 years, Nordlie brought international recognition to UND with his research of glucose-6-phosphatase, an enzyme that regulates blood glucose levels. His research has proven helpful in the study of diabetes, cancer and other diseases. Before graduating from UND with a master’s degree in 1957 and a Ph.D. in biochemistry in 1960, he received his bachelor’s degree from St. Cloud State University in 1952. It was during his postdoctoral research fellowship in Dr. Henry Lardy’s Institute for Enzyme Research at the University of Wisconsin-Madison that Nordlie first pursued the topic he would spend the next four decades researching: glucose-6-phosphatase. “One of the great happenings of my life was going to the Institute for Enzyme Research and working with Dr. Henry Lardy,” Nordlie said. “Dr. Lardy was interested in gluconeogenic enzymes, and that is how I got introduced to carboxykinase and the biosynthetic activities of glucose-6-phosphatase.” In 1962, Dr. William Eugene Cornatzer, the founder of the UND Department of Biochemistry and chair of the department from 1951 to 1983, enticed Nordlie to come back to his alma mater as a full professor straight out of his postdoctoral research. “Becoming a full professor straight out of a post-doc is and was almost unheard of,” said Dr. John B. Shabb, associate professor in 10 n UND Discovery n University of North Dakota
the UND Department of Basic Sciences, who was hired by Nordlie in 1992. “Dr. Cornatzer knew this was somebody who was going to make a difference.” “Dr. Cornatzer was a very ambitious man and he wanted to set up a research-oriented facility,” Nordlie said. “Some people made fun of him, but we put North Dakota on the map nationally and internationally. He supplied the drive; I supplied the ideas and the research.” Though Nordlie retired 13 years ago, his passion for enzymes is still evident. “I am personally delighted, at age 83, with the veritable explosion in the glucose-6-phosphatase field. There is great potential there for clinical applications,” wrote Nordlie in his then-and-now review of his research, A Retrospective Review of the Roles of Multifunctional Glucose-6-Phosphatase in Blood Glucose Homeostasis: Genesis of the Tuning/Retuning Hypothesis. His publication outlines the transformation of his field from being solely biochemistry to both biochemistry and molecular biology. Nordlie took over as the chair of biochemistry when Cornatzer retired in 1983. He proposed renaming the department as “Biochemistry & Molecular Biology” and brought the first three molecular biologists to the University. “That’s the interesting thing. Even though he himself didn’t want to make that change, he recognized the need for the change in the department and he went out and did it,” said Barry Milavetz, a professor in the UND Department of Basic Sciences and associate vice president for research development and compliance. “That’s real leadership.” Milavetz worked alongside Nordlie after being hired by him in 1986. On July 1, 2013, the UND Department of Biochemistry & Molecular Biology changed to the UND Department of Basic Sciences as the School of Medicine & Health Sciences merged the basic science departments. “Bob retired 13 years ago, and even though the department no longer exists as an independent entity, his impact on basic science research and education at UND persists.” Shabb said. “Five current faculty members in the Department of Basic Sciences were hired and mentored by Bob Nordlie. They include a Chester Fritz Distinguished Professor, Roxanne Vaughan; an associate vice president for research, Barry Milavetz; and the last chair of the Biochemistry & Molecular Biology Department, Kathy Sukalski.” His impact on the department went beyond the research. “He was an outstanding lecturer for medical students,” Shabb said. “I still go over to Altru for a doctor’s visit, and when they find out I am a biochemist, they say, ‘Oh I remember when,’ and they will mention a specific lecture from 30-plus years ago given by Dr. Nordlie.” Nordlie spent 38 years teaching metabolism and was named the UND School of Medicine and Health Science’s first James J. Hill Research Professor, a position that was funded by the family of railroad executive James J. Hill. He also published more than 130 research papers around the world in publications such as The Journal of Biological Chemistry. “He spoke well with students and he spoke well with faculty,” said Sukalski, associate professor in the Department of Basic Sciences. “He really wanted to see the faculty he hired succeed.” “He has influenced me not only from the scientific perspective, but he also taught me how to run a meeting, how to interact with people, and how to be diplomatic,” Milavetz said. “For an administrator, those qualities are important.” The former UND Department of Biochemistry & Molecular Biology won the University Outstanding Research Award twice under Nordlie’s administration. “It was the type of people that were hired and the environment in which they were placed that led to the success of the department,” Sukalski said. n
A UND team scores a major award to study the role of epigenetics in human health – past, present and future
Roxanne Vaughan: This grant will support young investigators, enhance programs across multiple disciplines, and elevate the research capacity of the University. PHOTO BY JACKIE LORENTZ
NOW
Genes of our fathers, diseases of our children By Juan Miguel Pedraza Epigenetics — the hard science behind the mystery of whom each of us becomes — is gaining lots of international attention. In fact, so much that the federal government is putting a lot of cash behind programs that dig into the elusive mystery of this relatively new field. The National Institutes of Health (NIH) recently awarded the University of North Dakota $10.5 million in a five-year grant to support an Institutional Development Award (IDeA) Center of Biomedical Research Excellence (COBRE). The question of the epigenetic role in diseases is uppermost on the horizon for this new UND COBRE team. “Abnormal epigenetic regulation has been implicated in a variety of human diseases,” said Joyce Ohm, a core member of the new center that investigates, among other things, the abnormal epigenetic silencing events in the initiation of human cancers. “Those diseases include cancer, obesity, diabetes, infertility and neurodegenerative disorders such as Alzheimer’s disease or Parkinson’s disease.” UND researchers are working to understand the bases for these diseases and how epigenetics may play a role in the onset of diseases in future generations, and to develop new strategies for treatments or preventions. Ohm, an assistant professor of biochemistry and molecular biology, and her epigenetics research colleagues note, an individual’s overeating or cigarette smoking or cancer today might be a result of what his or her grandparents did and might have an effect on his or her children and grandchildren. Learning more about how that all happens is the key to UND’s new COBRE. Epigenetics relates to the biochemical machinery at the cellular level that switches specific genes on — or doesn’t — affecting what each of us does: for example, what we choose to eat, how we sleep, how we get sick, whether we get cancers or Alzheimer’s, and how we express a whole range of other behaviors. “This grant will significantly expand epigenetic research at UND by instituting a variety of programs that will support young investigators at early stages in their careers, establish core facilities and purchase major equipment, and assist with faculty mentoring and development,” said Roxanne A. Vaughan, principal investigator of the COBRE and a Chester Fritz Distinguished Professor of Biochemistry and Molecular Biology in the UND School of Medicine & Health Sciences. “Together these programs will enhance research across multiple disciplines and elevate the research capacity of the University.” As an established biomedical researcher, Vaughan’s participation in the grant proposal was crucial. The NIH expects that the principal investigator for a new COBRE must be able to ensure high-quality
research and have the experience to administer effectively and integrate all components of the program. Vaughan will help support the projects of the new center’s core team members, including Ohm, Lucia Carvelli, assistant professor of pharmacology, physiology and therapeutics; Archana Dhasarathy, assistant professor of biochemistry and molecular biology; and Sergei Nechaev, assistant professor of anatomy and cell biology. The team comprises researchers who are early career investigators or those with established research programs in other fields whose research has led them to the exciting area of epigenetics. The new center expands UND’s ongoing epigenetics research program, which includes a group of interested scientists from several different departments and colleges, as well as the U.S. Department of Agriculture Grand Forks Human Nutrition Research Center. The group has been meeting regularly on campus since 2010. n
UND Discovery n Autumn 2013 n 11
THEN
Renaissance (music) man
PHOTO BY CHUCK KIMMERLE
By Kate Menzies As a musician, historian and professor, one faculty member’s research of the musical past is an octave above the rest. Gary Towne, professor of music, has already published an extensive first volume (Masses) of the Collected Works of Gaspar de Albertis, and now he’s working on a second volume about the famous Renaissance composer from Bergamo, Italy. Towne doesn’t just waltz in to his publications; he goes all-out. He has reviewed and researched more than 60,000 pages of Latin documents to find about 6,000 significant ones during seven visits to Bergamo. Cataloguing is still in progress, having reached about 4,500 documents for a separate project he’s working on: a book titled Music and Musical Institutions in Medieval and Renaissance Bergamo. His six research visits, totaling more than a year, were funded by grants from the Gladys Krieble Delmas Foundation and a Fulbright grant. Towne currently is working on a volume of motets by Albertis, with two more volumes planned on Vespers and Holy Week music to go. Albertis, a priest, wasn’t just a virtuoso; he was an innovator. That’s why Towne chose him. Towne was intrigued that Albertis was one of the first composers ever to write polychoral music. He was also one of the first to have his portrait painted, which at the time was a rarity. Towne discovered Renaissance music as a child. After hearing a Renaissance work in the background of a Disney program, he was consumed with that music. “Nothing else has the same appeal for me,” Towne said. It is with this passion that he has written 12 articles about Bergamo on topics ranging from a 1519 organ contract for the Bergamo cathedral to pedagogical philosophy in 17th-century Spain. Towne also has the book in progress about music in medieval and renaissance Bergamo, and is continuing work on Albertis’ collected works. Towne’s credentials are impressive, with a bachelor’s degree in music theory from Yale and a doctorate in musicology from the University of California, Santa Barbara. His experience has enabled him to teach courses in music history, theory, world and American music, and interdisciplinary courses in the fine arts, the Italian Renaissance and early America. n
12 n UND Discovery n University of North Dakota
Gary Towne has searched through more than 60,000 pages of Latin documents while investigating music and institutions in medieval and Renaissance Bergamo, Italy.
NOW
Pushing boundaries in musical expression By Kate Menzies Step off the beaten musical path and you’ll find Michael Wittgraf producing a musical composition without a single instrument, just Wii remotes and a laptop. This is electronic music, and it’s what sets Wittgraf apart from the other music professors at the University of North Dakota. Considered an innovator in the field, Wittgraf loves to experiment with different music software and equipment to provide audiences with a truly unique experience. No wonder he was chosen as the first music professor at UND to be named a Chester Fritz Distinguished Professor, the school’s highest faculty honor. He also serves as chair of the Department of Music. Using both fixed media and live electronics, Wittgraf loves to interact with an audience and leave them speechless.
This past spring, while performing on tour in Japan and China with the Red River Trio (comprising a cellist, pianist and violinist), Wittgraf was able to give his Asian audiences a taste of his eccentric musical muse. Wittgraf ’s music has made its way to other parts of the globe as well, including presentations in Europe and Australia. Apart from electronic music, Wittgraf plays bassoon, piano, organ and electric bass. His compositions span multiple genres, including solo, chamber, orchestral, band, choral, and, of course, electronic. Wittgraf earned his master’s in music theory and composition from the University of Minnesota and his doctorate in music composition from Northwestern University. Perhaps a bit surprising is the bachelor’s degree in mathematics that he earned from Carleton College. But Wittgraf observes that having a firm grasp of arithmetic actually helps him in the digital world of electronic music. “I had an aptitude for math, but a passion for music,” said Wittgraf. About four years ago, Wittgraf decided to compose electronic music almost exclusively. But he’s not one to push the genre onto others, especially students. For Wittgraf, one of the most rewarding experiences is when he can sit back and watch students perform and find their own musical niches. He said, “I’ve been brought to tears more than once by student performances.” n PHOTO BY SHAWNA WIDDEL
UND Discovery n Autumn 2013 n 13
THEN Research at landlocked UND yielded discoveries about high-pressure environments
The “deep blue sea” of North Dakota By Brian Johnson The University of North Dakota wasn’t the obvious choice to conduct deep-sea research. The irony is inescapable, as the University is roughly 1,500 miles away from the nearest ocean. Rugby, N.D., just 150 miles to the west, has a stone cairn marking the geographical center of North America. But UND’s geography was irrelevant for faculty in engineering and medicine who looked to expand their research capabilities in the 1960s. They submitted proposals to the U.S. Department of Defense after the creation of “Project Themis,” a program established to develop centers of excellence at universities. Their second proposal was approved and, starting in 1968, the University received capital to construct a new kind of lab. It was known as the “Man-in-the-Sea” project. Funded by the Office of Naval Research for $2 million — a big amount today and even bigger then — the UND High-Pressure Life Laboratory was the only one of its kind in the western world. The 40-foot-long, 20-foot-wide, and 9-foot-high structure in Upson Hall consisted of two 7-foot spheres joined by a passageway and a gate valve. Each sphere had seven sub-chambers — animal living chambers — where atmospheric pressure was regulated by an IBM computer. During the dedication of the laboratory on Nov. 30, 1973, U.S. Navy Rear Adm. M.D. Van Orden noted that although humans have walked on the Moon, the oceans on our own planet were still a mystery to us. The Man-in-the-Sea project was a giant leap forward. “There is no other laboratory like this elsewhere in the world that can do the type of research that will be conducted here,” said Van Orden. Thomas K. Akers, a Brooklyn, N.Y., native and UND physiology and pharmacology professor, became the director of the Man-in-the-Sea project in 1972. Akers, a Navy veteran and founding member of the North Pacific’s chapter of the Underwater Medical Society, found that humans are fragile under extreme pressure. “Many of the physical laws we’ve always accepted don’t seem to hold in a high-pressure environment, and we are just beginning to discover some reasons why this is so,” Akers told the Grand Forks Herald. During the lifespan of the project, tests were run on the animals’ respiration, oxygen toxicity, nutrition, bone and calcium metabolism, 14 n UND Discovery n University of North Dakota
circulation, reproduction, drug metabolism, and renal function. The data collected helped researchers understand the effects of high atmospheric pressure on humans at sea depths of 1,300 feet. Naval Research hoped the results would eventually lead to humans having the ability to harvest food and resources off the continental shelf, an undersea plateau that forms 18 percent of Earth’s total area. Keeping humans healthy at those depths is challenging. It centers on finding the minimums and the maximums. Under pressure, nitrogen, argon and other gases become so dense it’s hard to breathe. An interdisciplinary team of UND researchers began substituting nitrogen in favor of helium, which was less dense under pressure. They learned nitrogen is an essential element, a fact they didn’t know before the study. Researchers had another good day at the office when they returned a group of lab rats to normal atmosphere after 84 days at 20 times the normal atmospheric pressure. The pressure maintained during the experiment simulated pressure below 660 feet of sea water — near the maximum depth of the continental shelf. It nearly tripled the longest span a human had spent in those conditions at the time. Though breakthroughs like these provided the Navy with essential information, the Man-in-the-Sea project had a shelf life. With rising equipment costs, once the Man-in-the-Sea project met all original objectives, it ended in 1977. The large pressure chamber was dismantled. The seven-foot spheres were given to the UND Park District and became playground equipment for children growing up far from any ocean. Akers drove past the new-use playground spheres every day on his way to work. “They remind me of the good days,” he told the Herald. “They were busy, long days, but it was lots of fun. It was one of the largest interdisciplinary projects ever done at UND, and the sense of teamwork we had was wonderful.” n Editor’s note: Thomas Akers retired from the UND faculty in 1991. In addition to his teaching and research accomplishments, he also was recognized as an artist.
This semi-fisheye view shows the primary chambers and supporting apparatus of the Man-in-the-Sea Project. The facility occupied a significant portion of UND’s Upson I engineering building. Photo courtesy of UND Special Collections.
NOW UND puts a total planetary exploration system to the test
The Moon and beyond, right on the campus A recent international test of three spacesuit systems locked in the University of North Dakota (UND) as a key player in planning for future long-term missions in space. UND was the only university on the planet invited to participate in the European test program held in October. UND’s Department of Space Studies team flawlessly showcased its ingenious, team-built NDX spacesuit system under the glare of media spotlights. “We specialize in spacesuits for surface exploration,” said Pablo de León, an aerospace engineer from Argentina and director of UND’s Human Spaceflight Laboratory, all part of the Space Studies program in the John D. Odegard School of Aerospace Sciences. “They’re specifically enhanced for locomotion: for walking and for manually manipulating objects, tools, etc., on a planet’s surface. We want to improve mobility, to allow freer walking and working on a planet with lower gravity than Earth’s.” The recent European test was part of an ongoing international effort to prepare for an eventual human expedition to Mars.
Well suited De León’s lab is the home of the NASA-funded NDX Planetary Exploration System. But we’re not just talking spacesuits; NDX is a whole system for the surface exploration of planets such as Mars. “We’re designing, planning and building the whole system, including the suits, the inflatable habitat, the air locks and rover,” de León said. “We developed the research infrastructure to simulate an entire planetary base scenario, and it puts us in the forefront of lunar and Mars mission planning.” De León, who spent many years in industry working on spacesuit design and who has penned several books about manned spaceflight, says UND is uniquely qualified for the work ahead. “We have in place the analog infrastructure that will allow planners of long missions to do tests right here at UND,” he said. The UND NDX team set up a trial run this fall, putting three specially selected students into the system’s pressurized inflatable habitat for 10 consecutive days. The trial, funded by NASA, was designed to simulate a surface exploration mission on the Moon or Mars. It included tests of the habitat’s life support and other engineering systems. Researchers also designed the trial to see how well the system components, including the habitat, rover, spacesuits and airlocks, worked together. This was a prelude to a much longer trial scheduled for spring 2014. De León added that NASA’s Jet Propulsion Laboratory, which has been involved in just about every U.S. space mission, recently sent other experiments to try out in UND’s pressurized, inflatable habitat.
PHOTOS BY JACKIE LORENTZ
By Juan Miguel Pedraza
ABOVE: Pablo de León, director of UND’s Human Spaceflight Laboratory, watches as Space Studies graduate student Josh Borchadt tests the suitport mechanism that supports the NDX-2AT spacesuit on a “rover” simulator. The system would use airlocks to eliminate or minimize the intrusion of surface dust, an issue encountered during the Moon missions of the 1970s. BELOW: Students Travis Nelson (left), Tim Buli and Erica Dolinar spent 10 days in a pressurized, inflatable “habitat” designed to simulate a surface exploration mission on the Moon or Mars. Funded by NASA, the trial tested life support and other engineering systems and received considerable media attention.
(NDX, NASA and UND, continued on Page 16 UND Discovery n Autumn 2013 n 15
NDX, NASA and UND
Then there’s the mobility issue, de León said, comparing the NDX suit with the current day “zero-g suit” worn by astronauts doing spacewalks while tethered to the International Space Station (ISS). “The ISS suits are almost immobile from the waist down because you don’t need any walking capabilities in that environment, even though it’s called a space ‘walk,’” de León said. “All they have to be able to do is attach their feet into a foot restraint located at various points on the ISS. “What we try to do is the inverse of that: we aim to develop suits where you can use your legs and arms in order to facilitate your work on a planet’s surface.” In addition, de León said that the NDX team is designing and building suits that can be serviced and repaired on the planetary surface. Most of the suits developed so far are Earth-servicing only, designed to be used in low-Earth orbit, such as on ISS, and then taken back to Earth after a couple of space walks. “But for a mission to Mars, which is expected to last at least three years, you can’t take your suits back for repairs or maintenance. You have to be able to do that right where you are — on Mars,” he said.
Continued from Page 15
De León foresees that UND will be testing and working a lot more with NASA, which has funded his team’s work, and with the space industry and international partners to make these missions a reality. “The idea is that as a university, we’re going to create useful knowledge,” de León said. “That includes producing prototypes such as our NDX system that are useful to NASA and the companies that will actually build the suits.” Proof of UND’s influence in the spacesuit system sphere is a recent second edition of U.S. Spacesuits, a book by Kenneth Thomas. He is a historian and engineer at Hamilton-Sundstrand (HS), one of the two primary builders of U.S. spacesuits. In that book, one of UND’s NDX suits is prominently featured in photos and text.
No ordinary spacesuit One of the key elements of equipment for a future human expedition to Mars will be a spacesuit that allows astronauts to roam the surface. Martian explorers will face a bitterly cold, dusty environment with a thin atmosphere of mainly carbon dioxide. They’ll have to rely on their spacesuits to provide oxygen to breathe and a comfortable temperature, pressure, and atmosphere in which to work.
An interesting place
PHOTO BY JACKIE LORENTZ
Space Studies graduate student Tiffany Swarmer puts one version of UND’s NDX spacesuit through an exercise to demonstrate its flexibility and range of motion.
16 n UND Discovery n University of North Dakota
De León sees space exploration, including a trip to Mars, happening relatively soon. “But we’re not going to do it one country at a time,” he said. “It’s not necessarily going to be done by the United States all by itself. Because of the cost and complexity of a crewed mission to Mars, you’ll see a consortium of partners that have already been successful in space, working together to get to that goal.” De León sees the NDX system as a key player in the development of future space missions. “This all puts us in a very interesting place,” he said. “We have a starting point to become a university known globally for having a unique system that we can offer organizations such as NASA.” De León said that for students on his team — both undergraduates and graduates — the work is highly participatory. “Ultimately, it’s about our students. Because we’re very hands-on oriented and because I have extensive experience in the space industry, I believe that our students should not just be working from a stack of texts and papers,” said de León. “Our students come to us from all over the world because they’re excited about the research we’re doing here.” n
John Reid
Continued from Page 6 “That was in the days when comfort and communication were more primitive,” he recalled. “Our tents, for example, had no floors, just the snow.” Still, it was a fruitful experience. It was here that he chiseled rare chunks of surface glacier ice from the Ross Ice Shelf, the largest mass of floating ice in the world (500 miles long by 500 miles wide, moving a half-mile per year — the “speed of light” for geologic time). It was this glacial ice that Reid would eventually have shipped to UND a few years later, making a splash in local and national media — and one aforementioned editorial. Reid and UND enjoyed the publicity that the exotic Antarctic ice brought. More practically, Reid used the samples to educate his students and to study geological theories of the time. “The formation of mountains is perhaps the most embarrassing problem that geologist have,” Reid wrote in 1965. “The pertinence of this analogy lies in the fact that ice is a rock, composed of the mineral, ice. Ice deforms plastically under very slight pressures. Hence, we can watch a mountain form in ice form in a very short period of time. To see the same amount of deformation in other types of rocks would require hundreds of thousands of years.” Reid retired from UND in 1999, but UND’s geomorphological research in high, cold places of the world didn’t end with his departure. Reid said he’s quite aware of the work that another UND faculty member and fellow geomorphologist, Jaakko Putkonen, is doing with his own students in Antarctica and the Himalayas. “I applaud Jaakko for his dedication to glacial geomorphology and to his willingness to involve students in his research,” Reid said. “Students learn best from direct participation.” In 2000, Reid and his wife of 57 years, Barbara, moved from Grand Forks to Fort Collins, close to the Rocky Mountain National Park, where they enjoy hiking. Ever the teacher, Reid continued working with his last Ph.D. student after retirement. He also volunteered for five years at local high schools in geoscience classes, organizing rock and mineral collections. Today, he assists three days a week in the computer labs of a nearby elementary school, and volunteers as an ombudsman at two nursing homes for the County Office on Aging. “So, even though I have turned 80 — I keep happily busy.” And, apparently, still happily teaching. n
UND physicist Nuri Oncel looks for connections to encourage prospective students to discover new interests within themselves
Making sparks to ignite a passion for science By Brian Johnson For ambitious teenagers looking to shape the world we live in, a career in science is a perfect fit. That’s what University of North Dakota physicist Nuri Oncel found as a boy growing up in Konya, Turkey, in the 1990s. An early interest in math and science sparked his eventual career in physics — a natural fit that has opened doorways to a world of discovery. “In high school, I had a great math teacher,” Oncel said. “After taking a couple semesters of his classes, I realized I should either be a mathematician or physicist. I love how your brain actually operates when you do mathematics. I loved the magic of that. “That teacher knew how to teach. He knew how to challenge the students and help students understand the concept: the real meaning of the mathematics.” Today, Oncel is the one doing the inspiring, getting local high school students to dabble in real research in hopes they might one day consider careers in science. Supported by a National Science Foundation grant, Oncel is researching advances in nanotechnology that could make electronic devices lighter, cheaper and more powerful. “One day, we will be using individual atoms to make a device,” Oncel said. “At that point, classical physics won’t be enough. Devices
Art teacher Betsy Thaden and Nuri Oncel hold paintings created by students in her class at Red River High School in Grand Forks. Oncel provided images of atoms and molecules to spur the students’ creative instincts — and perhaps more curiosity about science as well. PHOTO BY JACKIE LORENTZ
will be working under the laws of quantum physics. Then, everything we know of will be different.” As part of the research, he is reaching out to high schools and tribal schools across the region to get young people involved. In one initiative, Oncel is presenting images of atoms and molecules to local high school students; they, in turn, take inspiration from the images and create works of art for exhibition. “I can talk about quantum mechanics and how interesting this nano stuff is, but it won’t appeal to all of the students.” Oncel said. “I believe that if we use art to express science, it will be more attractive, because there is a human connection to that.” “After creating art or looking at a friend’s artwork, maybe one of the students will choose to become a scientist. Then I’m happy. Then the project is a success.” Betsy Thaden, an art teacher at Red River High School in Grand Forks, N.D., said the images provide her students with meaningful learning opportunities that link art with real-world applications. “The experience gave them insight into new possibilities and exposure to a science they may not have known about,” Thaden said. “It also opened their eyes to how the arts align and are connected to other curricular areas.” Oncel hopes the art also will attract attention in local communities when it goes on display; he wants as many people as possible learning about the innovative research happening at UND. Oncel knows that some students write off physics as a possible major, thinking that a physicist mainly works at a desk and tackles complicated equations. However, not all physicists work that way. “In the lab, we design and build special instruments to study physics of nanostructures. An important part of the work involves using wrenches, nuts and bolts — really basic instruments. It’s very hands-on work.” Oncel said. Oncel is also reaching out to American Indian communities. “You don’t find a lot of American Indian students in physics, chemistry or mathematics,” he said. “I’m a physicist and I’m kind of worried about that.” Oncel invites American Indian teachers and students to get involved. He realizes he can work with only a limited number of Native American high school students in the lab. “When I work together with a high school teacher on a research project related to nano science, I actually reach out to all the students in that school.” Oncel said. “Because the teacher carries that know-how back to the classroom, and that increases our chance to have a student major in science.” And what the influence of a good teacher can do is something that Oncel knows very well. n UND Discovery n Autumn 2013 n 17
Figuring out how to build better, more efficient turbines By Juan Miguel Pedraza Fuel starts as energy and ends up as exhaust. Scientists in UND’s College of Engineering & Mines work on both ends of that equation with research that aims to maximize fuel efficiency and minimize exhaust impacts. Forrest Ames, professor of mechanical engineering and an expert in gas turbine heat transfer, recently received another federal grant to improve the efficiency of these engines, from the new generation of small-sized turbines in small jet planes to the monster turbines in power plants. Ames’ current grant focuses on the big stuff: he works with scaled-up models of certain components of the industrial grade, natural gas-fired turbines that run in many power plants. The new $500,000 grant from the U.S. Department of Energy (DOE), titled “Thermally Effective and Efficient Cooling Technologies for Advanced Gas Turbines,” studies how to improve the internal efficiency of big gas turbines. “Basically, it’s about building new and better turbines and ultimately using less fuel,” he said To help understand the nature of what Ames is working on, here’s how the DOE defines what a turbine does: • The compressor draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. • The combustion system burns fuel at temps exceeding 2,900 degrees Fahrenheit with a ring of fuel injectors that spray a steady stream of fuel into combustion chambers. This produces a hot high-pressure gas stream that enters and expands through the turbine section. • The turbine is an intricate array of alternate stationary and rotating airfoil sections (they look sort of like airplane wings). • As hot combustion gas expands through the turbine, it spins the rotating blades, which (a) drive the compressor to draw more pressurized air, and (b) turn a generator to produce electricity. With his latest DOE grant, Ames is trying to figure out how to efficiently cool
18 n UND Discovery n University of North Dakota
turbine airfoils — the vanes — so they can survive that hot, high-pressure gas produced in the turbine’s combustion chamber. Cooling the components with less actual cooling air means Ames the turbine will run more efficiently, but with reduced stress and fatigue to the turbine vanes so they can run longer. A key to a turbine’s fuel-to-power efficiency is the temperature at which it operates: “Air temperatures (in gas turbines) rise rapidly, resulting in reduced ability to cool component surfaces adequately,” Ames said. According to Ames, higher temperatures generally mean higher efficiencies, which in turn can lead to more economical operation. Gas flowing through a typical power plant turbine can be as hot as 2,500 degrees, but some of the critical metals in the turbine can withstand temperatures only as hot as 1,600 to 1,850 degrees. One idea is that air from the compres-
sor would be used for cooling these key turbine components. Ames and his students, who comprise the Turbulent Transport in Turbines Group, run their research through several labs on campus: the Large-Scale Turbine Cascade Wind Tunnel, the Compressible Flow Facility, and the Internal Flow and Heat Transfer Rig. One of the major achievements of the DOE’s advanced turbine program was breaking through previous limitations on turbine temperatures, using a combination of innovative cooling technologies and advanced materials. The advanced turbines that emerged from the DOE’s research were able to boost turbine inlet temperatures to as high as 2,600 degrees, significantly hotter than in previous turbines, and achieve efficiencies as high as 60 percent. “Another way to boost efficiency is to install a heat-recovery steam generator (HRSG) to harness energy from the turbine’s exhaust,” Ames said. “An (HRSG) captures waste heat in the turbine exhaust system and uses the thermal energy to run a steam-powered cycle.” An HRSG generates steam by capturing heat from the turbine exhaust. A simple cycle gas turbine can achieve energy conversion efficiencies ranging between 30 and 44 percent. That’s an efficiency goal well worth aiming for. n
PHOTO BY SARAH KOLBERG
As members of the Turbulent Transport in Turbines Group, Forrest Ames and his students run their tests through several facilities on campus, including the Large-Scale Turbine Cascade Wind Tunnel, the Compressible Flow Facility, and the Internal Flow and Heat Transfer Rig.
Steve Benson is working on a carbon-capture technology for environmental improvement at a lower cost
Jaakko Putkonen Continued from Page 7 PHOTO BY JACKIE LORENTZ
Catch and release – the CO2 way By Juan Miguel Pedraza Steve Benson, a carbon catcher par excellence in the College of Engineering and Mines (CEM), is working on a novel technology for capturing carbon dioxide. Benson, a professor and chair of the Department of Petroleum Engineering, also is director of the UND Institute for Energy Studies (IES). Along with a team that includes fellow faculty, students and industry partners, he’s developing a carbon-capture technology that’s both more effective and cheaper than current methods. This could be a major breakthrough in the world’s ongoing carbon-capture strategies. Carbon dioxide (CO2) is one of the main gases resulting from burning fossil fuels such as coal, gasoline and fuel oil. CO2, a so-called greenhouse gas because it traps the sun’s heat, has been proven to be the leading cause of global warming. Thus efforts such as Benson’s are being developed to figure out new and improved ways to capture CO2 instead of releasing it all into the air. The CEM technology, called “CO2 Capture by Hybrid Sorption Using Solid Sorbents” (CACHYS, pronounced “catches”), eventually will be made available to power plants, including UND’s own Steam Plant. Benson and his team, well-known experts
in the field of flue-gas-emissions control, currently are testing this technology on a pilot scale at the UND Steam Plant. The project got underway with $3.7 million from the U.S. Department of Energy (DOE), industry partners ALLETE and SaskPower, and the North Dakota Lignite Energy Council. Benson also is collaborating with Srivats Srinivasachar, president of Envergex, a small research company in Massachusetts, to refine the CACHYS technology. Envergex and UND developed the original CACHYS concept with funding from DOE’s Small Business Innovation Research Program. Barr Engineering, an architectural and engineering firm, and Solex Thermal Sciences, an equipment manufacturer, round out the team. The CACHYS technology uses specially designed sorbents to capture CO2 from flue gas streams. The sorbent with CO2 is then transferred to another vessel where the CO2 is desorbed, or released. The desorbed CO2 is then pressurized and transported to a site for use. The sorbent is recycled for reuse to capture more CO2. “It looks promising and very efficient, Benson says. “ Best of all, it utilizes lowcost materials that won’t cause environmental challenges.” n
“We can measure the amount of the isotope and back-calculate how long that particular rock has been sitting there out in the open,” Putkonen said. “Some rocks from deep below the surface that are millions of years old have never been to the surface, but when a glacier plucks them up and then the ice melts, those rocks are exposed at the Earth’s surface.” The cosmogenic isotope analysis is a lot like the radio carbon-14 dating system that is routinely used to determine ages for old wood products such as furniture, paintings, old buildings and other man-made structures. “But the isotope analysis allows us to go much further back in time — millions of years — than can carbon-14 dating, which only goes back about 50,000 years,” Putkonen said. This National Science Foundationbacked research aims to describe changes in the Antarctic landscape over time, but it has also detected natural changes in climate. This could help scientists understand more about human-generated climate change, which also is impacting landscapes around the world in ways that aren’t clearly known. Putkonen’s research also extends to planetary studies. “When we look at Mars, for example, there are areas that look very similar to where we were recently in Antarctica,” Putkonen said. “And it turns out that it is much cheaper to go to Antarctica than Mars. We are building insights about the Martian environment by doing field research in Antarctica. “It is funny how basic research often works. The payoffs may not be obvious when you start, but eventually they come to light in a surprising and unexpected way.”
Inspiring leaders Last summer, Putkonen took UND students on a three-week trip to Nepal for a course on the basics of field geology high in the Himalayas. “To learn geology you have to go where the geology is, which is in the field,” said Putkonen, who started doing science trips to Nepal during his postdoctoral work. But Putkonen doesn’t discount the work he does in the traditional classroom. “My task is not just to deliver facts for the students in preparation for a skillful workforce,” he said. “My task is to unleash the imagination, and motivate the students to innovate and to become leaders instead of followers.” n
UND Discovery n Autumn 2013 n 19
Collaborative Energy Complex would bridge programs, facilities By David Dodds A state-of-the-art facility that would connect Leonard Hall on the University of North Dakota campus with the rest of UND’s engineering complex has been a dream of the College of Engineering & Mines for decades, according to its dean, Hesham El-Rewini. Thanks to private donations from generous alumni and friends, most recently from Grand Forks-based AE2S (Advanced Engineering and Environmental Services, Inc.), the College is nearly halfway to realizing that dream. “We have completed the planning phase and already started the fundraising phase of the project,” El- Rewini said. During the 2013 North Dakota Petroleum Council’s annual conference, held Sept. 16-18 in Grand Forks, UND President Robert Kelley announced that AE2S had utilized a match program authorized by the North Dakota Legislature to donate more than $1 million toward the Collaborative Energy Complex (CEC) proposal. AE2S, with offices in North Dakota, Montana, Minnesota, Wisconsin and Utah, was founded by President Charlie Vein and CEO Steve Burian, both alumni and longtime supporters of UND. “We see this as an investment not only in our potential workforce and UND, but as an investment in the future economic development of our state,” Burian said. “We are incredibly proud to be a part of this groundbreaking facility.” Other major support has come from two UND alumni families in Houston, Texas: Robert “Bob” Solberg and his wife, Kris; and Thomas “Tom” Hamilton and his wife, Carolyn. Bob currently is chairman of JDR Cable Systems, Ltd., and Kris works as a childbirth educator and community volunteer in Houston. Since 2003, Tom has co-owned Medora Investments, a private investment firm.
The CEC primarily will serve as a new headquarters for UND’s Institute for Energy Studies and the rapidly growing Department of Petroleum Engineering. Currently, the College is bursting at the seams with petroleum engineering students, fueled by booming oil and gas exploration in western North Dakota. The new facility will be more than just a building to house programs. El-Rewini stressed that the CEC — as its name suggests — will provide students and faculty with a place to interact with each other as well as with colleagues from other units on campus and beyond.
Room to grow Over the past 10 years, enrollment within the College of Engineering & Mines has nearly doubled to more than 1,600 students, driven by expanded program offerings and opportunities for students to learn and research new and exciting developments in engineering. One of those new opportunities is in petroleum engineering. From its start just three short years ago, UND’s Petroleum Engineering program has grown from a handful of pioneering students to more than 200 this fall. “We anticipate the classes that follow will likely have more than 20 graduates each year,” said Steve Benson, chair of the Department of Petroleum Engineering. “Our faculty also is increasing in size.” The UND Petroleum Engineering program is the only one of its kind in the state and is among a small number of accredited programs — about 20 or so — in the nation. n
Collaboration is key The $10 million, 30,000-square-foot Collaborative Energy Complex (CEC), as the new facility is being dubbed, will be set on the southeast part of campus between Upson I and the Harold Hamm School of Geology & Geological Engineering in Leonard Hall. The new CEC will bridge the two existing facilities, forming a major engineering education and research complex on campus that will include Upson I and II, Harrington Hall, and the nearby Wilson M. Laird Core and Sample Library.
“Seed Money” bears fruit in a big way By Juan Miguel Pedraza If Wall Street were as successful long term as the University of North Dakota’s Faculty Seed Money Program, folks would line up to invest their money. According to Phyllis Johnson, vice president for research and economic development, over the past eight years the University has given more than $1.8 million in research seed money grants to more than 60 faculty members. In return, UND has received external grant awards of more than $9.1 million (not including seed money used to attract a recent $10 million, five-year COBRE grant award for epigenetics research at the School of Medicine & Health Sciences). That’s a very respectable 5-to-1 return on investment, or $5 in external grant money for every $1 of faculty seed money. 20 n UND Discovery n University of North Dakota
Initial architect’s conception for the proposed Collaborative Energy Complex. Rendering courtesy of EAPC Engineers Architects of Grand Forks, N.D.
“By any standard, this is an exceptionally successful program, doing a lot more than it was ever expected to do,” said Johnson. Forrest Ames, professor of mechanical engineering, tapped into the program a couple years ago. Since then, he has been awarded more than $1.5 million in extramural funding, including a $750,000 federal grant for a collaborative project with Yilidirim Bora Suzen of North Dakota State University to develop an innovative jet engine airfoil test and analysis program. That doesn’t include Ames’ most recent award of a half-million dollars to boost the efficiency of big natural gas-fired turbines used to generate electricity. Launched in 2000, the seed money program was the idea of William Sheridan, Chester Fritz Distinguished Professor of Biology. The goal: to help faculty members to submit competitive research proposals to major funding agencies such as the National Science Foundation and the National Institutes of Health. n
It takes a new paint formula to catch the eye of waterfowl
The “birds-eye” view By Juan Miguel Pedraza A goose on the wing mostly doesn’t see the decoys arrayed on the water by hopeful hunters. At least, it doesn’t see them as real geese. That’s because most decoys traditionally are covered in paint that absorbs ultraviolet (UV) light. So birds, such as geese, don’t see the decoy as anything more than an object on the water. But Brian Tande, a University of North Dakota engineering faculty member, along with a couple of colleagues, developed a paint that reflects UV light. A decoy covered in this stuff really sticks out, as far as those geese are concerned. “We developed an idea for coatings for decoys — waterfowl decoys, turkey decoys and fishing lures — as a product based on some interesting science that has shown that birds can see ultraviolet light,” said Tande, who developed this business before coming to UND. “Humans can see light in the visible wavelengths, that is, from 400 to 700 nanometers, violet up to red. Birds can actually see ultraviolet, especially UV-A (which can cause sunburn and skin cancer).” The UV-reflective coating solves a problem: prior to 2005 all decoys absorbed UV and, therefore, didn’t match the reflectance of actual waterfowl. Bird feathers strongly reflect UV (even though humans can’t see it). “My business partner — a coatings scientist and graduate of North Dakota State — put these pieces together,” said Tande, who also is director of the Jodsaas Center for Engineering Leadership and Entrepreneurship in the UND College of Engineering & Mines. “He was the first person to connect the dots. He told me about this in fall 2005. So he, myself, and one other partner started this company. First, we did a proof of concept; we developed some UV imaging technology, and were able to demonstrate that waterfowl feathers reflect UV light, and that currently available decoys did not match that reflectance.” The groups that the trio contracted to do the testing came back and said there was a huge difference between how snow geese reacted to decoys painted with their new product and how they reacted to regular decoys. “Then we filed for a patent in 2006, launched our website, developed our brand, and started selling decoy paint online that I made in my basement,” Tande said. “We operated that way for about a year and then signed licensing agreements with a couple of different companies, including a company that has been making decoy paint for decades,” Tande said. “We taught them how to make our paint, and they’ve now incorporated our formulations into their coatings. The other company is one of the largest decoy manufacturers in the world. They now also use our technology for their decoys. In fact, a couple of years ago, they started a separate line of decoys that emphasizes the UV-reflective aspects.” Tande and his colleagues were awarded a patent for their special UV reflective coating in 2011, five years after the original application. “That’s my experience being an entrepreneur and that’s what got me interested in getting involved with the Jodsaas Center, which aims to provide engineering students opportunities to develop skills beyond the traditional engineering curriculum,” Tande said. “We’re not making the product in our basement any longer — my wife was rather annoyed with me when I was doing that,” Tande said. Tande and one of his original business partners now have their sights set on the health care market.
PHOTO BY JACKIE LORENTZ
“Our next venture is based on a patent-pending coatings technology aimed at health care applications,” Tande said. Specifically, they’re developing a product that will help hospitals and other health care facilities control hospital-acquired, or nosocomial, infections, such as MRSA, or methicillin-resistant staphylococcus aureus, also commonly called staph infection. MRSA affects close to 2 million patients, killing 50,000 to 100,000 annually. “These are infections that a patient did not bring into the hospital, but rather acquired while a patient (or visitor) in the hospital,” Tande said. “We’re working with several companies that are selling new devices to disinfect hospital rooms. It’s a robot that is basically a portable UV lamp. You roll this into a vacated room, the machine is turned on remotely, and it irradiates the room with ultraviolet light for anywhere from five to 45 minutes, depending on the size of the room and the microbes you are targeting.” “What we discovered is that if you use our coatings technology, you can dramatically reduce the amount of time it takes to kill the infectious microbes by means of UV irradiation,” Tande said. In one particular case, for example, with C. difficile, what would normally take 45 minutes takes nine minutes of UV irradiation; with MRSA, what would normally take 25 minutes now takes five minutes. “That is a new product that we’re just in the process of launching,” Tande said. “I use it as a real-time case study when teaching students about entrepreneurship.” n
UND Discovery n Autumn 2013 n 21
The human side of “the Bakken” By David Dodds Recently, the University of North Dakota has proven to be a critical partner to the oil and gas industry when it comes to petroleum engineering research and getting more of the valuable stuff out of the ground. But the University also is interested in the social impacts of oil above ground. This is especially true in the western North Dakota oil patch, the Bakken Formation, which extends into northeastern Montana. The area has rocketed the state to the No. 2 spot for oil and gas production in the nation. With increased oil activity have come more jobs and more people, and a need for more of pretty much everything else to sustain changing human dynamics in once sleepy rural communities. Unfortunately, with all the good has come some challenges, specifically an uptick in domestic and relationship violence. That’s where UND steps in again. An interdisciplinary UND team comprising faculty members from the Departments of Social Work, Criminal Justice, Sociology, and the College of Nursing & Professional Disciplines has received an award of nearly $500,000 from the National Institute of Justice (NIJ) for a three-year project to examine the impact of Bakken oil development on domestic violence, dating violence, sexual assault, and stalking in North Dakota and Montana. The exploratory study will focus on 33 oil-impacted counties in those states and affected tribal reservations. The findings will assist legal and criminal justice officials, domestic violence and sexual assault agencies, other health and human service agencies, government officials, policy makers, oil industry executives, and local communities in addressing interpersonal violence in the oil patch, according to Dheeshana Jayasundara, assistant professor of social work. 22 n UND Discovery n University of North Dakota
Jayasundara, a native of Sri Lanka, has a background in research on violence against women and domestic violence, including her initial training in sociology and criminology. “As my work looks at health, criminology, and social work aspects, it all ties in very well for the project,” she said. Jayasundara and co-principal investigator Thomasine Heitkamp, professor of social work, conducted a pilot study in 2012 regarding the impact of the oil boom on human service workers. Forty representatives of stakeholder groups were recruited to participate in focus groups and interviews. Heitkamp said that UND used the preliminary analysis to support its proposal to the NIJ. “It was not a funded study,” Heitkamp said of the preliminary work. “Rather, it was done because of our research commitment to UND.” Heitkamp, a former Social Work Department chair and a certified social worker with 40 years of experience, some of it as a child protection worker in western North Dakota, has seen firsthand the changes taking place in Jayasundara the oil patch and the need for the study. Rounding out the team are Tracy Evanson, associate professor in the graduate nursing department; Roni Mayzer, associate professor of criminal justice; and Liz Legerski, assistant professor of sociology. Evanson, a native of Arnegard, N.D., in the heart of the North Dakota oil patch, also brings a professional background and familiarity with the people, communities and culture of the oil patch. Her most recent research study examHeitkamp ined the experiences of rural nurses working with victims of domestic violence and identified the nurses’ training needs. Mayzer’s expertise is in corrections, criminological theory, and women in the criminal justice system. Legerski specializes in gender, social inequality, family, and health and social policy. Collectively, the team members bring extensive experience in qualitative research, mixed methodology and statistical analysis. They also have years of teaching experience in their varied fields of expertise. They know the issues they will be studying. But most of all they know the people of the area because they’ve lived and worked among them. “I just feel strongly that UND needs to have a presence in the oil patch,” Heitkamp said. “They value us for the service and scholarship obligation we bring to examine the impacts of the more complicated issues created in oil-impacted areas relative to human need.” n
Practice makes perfect Did you know? The new Doctor of Nursing Practice program at the UND College of Nursing & Professional Disciplines is educating professionals who will take health care and nursing-related research of today and put it to good use in actual practice tomorrow. “We’re not going to let it sit on the shelf for 17 years,” said Maridee Shogren, director of the UND DNP program. “We’re the people who are going to make it mean something by improving patient outcomes.” For more information on the UND DNP, go to: nursing.und/dnp
FOCUS ON FACULTY Bradley Myers, associate dean for academic affairs in the UND School of Law, and Yee Han Chu, a Ph.D. student in teaching and learning, were recognized for having the best research paper and presentation at the Second Annual International Conference on Law, Regulations and Public Policy (LRPP), hosted by the Global Science and Technology Forum in Singapore. Chu, a social worker who has been teaching at the UND Social Work Department for several years on a part-time basis, and Myers received the award for their coauthored paper titled “Leaving Gifted Students Behind: the Misplaced Public Policy of Deference to Local Officials in the Public Schools of the United States.” Myers has been invited back to be the keynote speaker at next year’s conference in Bangkok, Thailand. UND researcher Jyotika Sharma, a microbial immunologist, and her team have demonstrated for the first time that a molecule involved in the human body’s initial response to infection or trauma may be the key to preventing sepsis, a life-threatening medical condition with a high mortality rate. Combating sepsis costs hospital ICUs $17 billion a year. Ongoing research in Sharma’s lab suggests that this, and another similar molecule, may be involved in controlling inflammation in chronic lung diseases as well. Elizabeth Harris, associate professor of creative writing in the UND English Department, recently won a national prize for literary translation from the PEN American Center. Harris was awarded the PEN/Heim Translation Fund Award for her translation from Italian of Antonio Tabucchi’s novel Tristano Dies, which is forthcoming from Archipelago Books. According to award judges, Harris’ work was a “rich and textured translation” that rose “to the challenge of the complex, exuberant Italian text.” Tabucchi, who died in 2012, is considered one of Italy’s most important writers. Marcus Weaver-Hightower, associate professor and chair of the Department of Educational Foundations & Research, recently was awarded the 2013 “Anselm Strauss Award for Qualitative Family Research” from the National Council on Family Relations. The award recognizes scholarly works that creatively push the field forward though their method, methodology or theory of method. WeaverHightower was honored for his article, “Waltzing Matilda: An Autoethnography of a Father’s Stillbirth,” published in the Journal of Contemporary Ethnography in 2012. It explores Weaver-Hightower’s experiences as a father when his first child, Matilda, was stillborn in 2006. Described as “powerful, evocative, well-written, and moving,” displaying “rigor and courage,” the article uses a series of narrative vignettes alongside social science research to explore how experiences of stillbirth — particularly for fathers — are often hidden. The article uses a method known as autoethnography, which takes personal experience as an entry point for analyzing social and cultural phenomena. The National Institutes of Health is renewing the funding of a UND neuroscientist’s study of a vital molecular facilitator of learning and memory. Saobo Lei, an associate professor in the Department of Basic Sciences in the School of Medicine & Health Sciences, will receive a $1.04 million R01 grant over the next three years for his work on molecules found in cells of the central nervous system that activate learning and memory. The NIH’s grant renewal is recognition of the significance of Lei’s work in pursuing potential treatments for neurological diseases that affect learning and memory, such as Alzheimer’s, anxiety, epilepsy, and schizophrenia.
The American Chemical Society (ACS) has named Harmon Abrahamson, UND professor of chemistry, among its 2013 class of ACS Fellows, a prestigious honor bestowed upon 96 distinguished scientists who have demonstrated outstanding accomplishments in chemistry and made important contributions to ACS, the world’s largest scientific society. Abrahamson, along with the rest of the 2013 class, was recognized at an induction ceremony Sept. 9 during the Society’s 246th National Meeting & Exposition in Indianapolis. Rebecca J. Romsdahl, assistant professor in the UND Department of Earth System Science & Policy (ESSP), has earned a 20132014 Fulbright U.S. Scholar Award to conduct research in the United Kingdom. Her project is titled “Comparing Adaptation Planning for Climate Change at Local Government Levels in the United Kingdom and United States.” ESSP is part of UND’s John D. Odegard School of Aerospace Sciences. Romsdahl is the first UND Aerospace faculty member to get the U.S. State Department’s Fulbright Award, a program administered by the Council for International Exchange of Scholars, a division of the Institute for International Education. She will be hosted at Lancaster University on the coast northwest of London. The ongoing focus of Romsdahl’s research is global climate change and its policy implications. Romsdahl will analyze her findings in the U.K. with similar data collected in the U.S. to provide a comparative understanding of climate adaptation planning.
Myers
Chu
Sharma
Harris
Weaver-Hightower
Lei
Abrahamson
Romsdahl
UND Discovery n Autumn 2013 n 23
SPOTLIGHT ON STUDENTS Ph.D. student Richard Cochran attends Nobel Laureate meeting in Germany University of North Dakota Ph.D. candidate Richard Cochran is mastering the chemistry of success. A Denver, Colo., native and president of the UND Chemistry Graduate Student Association, Cochran parlayed his hard work in forensic science chemistry into a special invitation to the recent 63rd Annual Lindau Nobel Laureate Meeting in Lindau, Germany. PHOTO BY SHAWNA WIDDEL
In late June, Cochran, along with nearly 550 other young researchers from about 78 countries, attended the elite gathering in Lindau to discuss an array of chemistry topics. Students and researchers alike used the forum to voice their ideas and discuss various projects, all while building international networks. The meeting’s three themes — green chemistry, chemical energy storage and conversion, and biochemical processes and structures — all align with Cochran’s research interests. Cochran considers the Nobel Laureate Meeting a once-in-a-lifetime experience. “I have not only had the honor of hearing seminars given by various Nobel Laureates in chemistry, but I have also had many opportunities to have one-on-one conversations with them,” Cochran said. “This dialogue has provided me with wisdom not only on a scientific level, but on a personal and professional level as well. “This meeting has given me insight into the direct influences that great scientific discoveries can and will have on both the scientific community and general society.” Cochran just finished his third year of Ph.D. studies. “Richard has always been extremely motivated,” said Alena Kubatova, a UND associate professor and Cochran’s advisor. “He always wants to learn new things.”
Kirt Leadbetter scores prestigious Goldwater Scholarship Kirt Leadbetter is a little busy these days, and that’s the way he likes it. A native of Park Rapids, Minn., Leadbetter is pursuing a combined graduate and undergraduate degree in chemical engineering on a fiveyear program. He has already completed minors in biology, chemistry and mathematics. Leadbetter has not only done a lot with his time at UND, he’s excelled at it, too. He recently was selected to be a 2013 Goldwater Scholarship recipient. The Goldwater Scholarship is considered the most prestigious award that can be won by an undergraduate student in the sciences. Leadbetter earned his after writing several essays and receiving strong recommendations, in addition to his impressive academic and research achievements. “I have great appreciation and thanks for both my research advisor and academic advisor, Dr. Juergen Fischer and Dr. Mike Mann,” he said. “Without them, I would not be who I am today or where I am today.” After Leadbetter completes his master’s degree and thesis on the “electrodeposition of aluminum from ionic liquids,” he has no plans to be idle. In fact, his next goal is to enroll in a doctoral program. “I will focus on computational combustion chemistry applied to rocket engine design,” Leadbetter said. “So far, my goal dissertation
project specifically focuses on development of electrospray ionization propulsion systems. After this, I plan to teach and research at a university or research at a government lab, although I am watching and considering options in the private sector.” Leadbetter is the second Goldwater Scholarship winner from UND in less than two years. Jessica Greer, Grand Forks, was named a recipient in 2011.
PHOTO BY SHAWNA WIDDEL
Articles by Marti Elshaug and Kate Menzies 24 n UND Discovery n University of North Dakota
PHOTO BY JACKIE LORENTZ
Boom (and bust) economics By Kate Menzies
PHOTO BY SHAWNA WIDDEL
North Dakota: It’s more than just oil. That’s why folks like David Flynn, a University of North Dakota professor of economics, are jumping at the chance to study this booming state. As the head of the Bureau of Business and Economic Research, Flynn is researching the oil boom and other factors that could have long-lasting effects on the North Dakota economy, population and housing. “Economists have gotten the reputation of being the bearers of bad news,” said Flynn. He knows that the black gold won’t make the economy stay booming forever. Like all booms, Flynn predicts this too will eventually slow as a result of growing too much too fast. Most media attention is directed toward the oil boom; however, Flynn recognizes there are many subtle factors at play. The state’s agricultural growth and the expansion of the retail sector from Canadian traffic helped spur the economy. North Dakota also stayed above the red because it was one of the few states in which banks did not participate in subprime mortgage loans. These loans were deemed a major factor in the 2008 recession. There is no question that the oil boom has caused people to flock to the state in search of jobs. The question on economists’ minds is whether or not this population growth will be sustainable. That is precisely why Flynn has turned his attention to studying local businesses. He is curious to know if bringing additional services and businesses to towns near the oil fields will give these temporary residents a reason to stay. In another study, Flynn and a colleague from the University of Nebraska-Omaha picked South Dakota as a central meeting point to observe the survival of rural businesses there. Through their research, they found that rural businesses in South Dakota seem to survive more than urban businesses in particular sectors for reasons they are still investigating.
When not knee-deep in research, Flynn discusses the changes in North Dakota’s economy with his students. “The growth has made for an interesting case study for population and forecasting topics as a positive spot in the U.S. economy,” said Flynn. Flynn teaches courses in economic forecasting, statistics, banking and bank regulations, and population analysis. He enjoys being able to integrate lectures with topics he is currently studying. Because of Flynn’s research, UND is getting an up-close look at the state’s changes and students are getting hands-on experience in the field of economics. How long will North Dakota keep booming? That’s hard to say. Rest assured economists like Flynn have their nose to the grindstone, eager to find out. n
David Flynn: There are many subtle factors at play besides oil in the state’s current economic surge.
Non-Profit Org. U.S. Postage Vice President for Research and Economic Development Twamley Hall, Room 103 264 Centennial Drive Stop 8367 Grand Forks, ND 58202-8367
PAID Permit No. 10 Grand Forks, ND
ADDRESS SERVICE REQUESTED
Kim Fink, professor of art, acquired and restored this French Brisset Star Wheel Lithography Press, believed to have been built between 1825 and 1840. It may be one of only two such presses in the United States. The press will be available for use by intermediate and advanced students in the Department of Art & Design. Photo by Jackie Lorentz.