Math 54 - LE 5

Page 1

MATH 54 5TH EXAM EXERCISES 1.

Determine the domain of the following functions. a. , =

2.

c.

4 = cos

d.

, , = cos − 1

d.

3=

1.05,2.1 , approximate the change in . 12. Use differentials to estimate the amount of tin in a closed tin can with diameter 8cm and height 12cm if the tin is 0.04cm thick.

, → !,! % + %

13. Use differentials to estimate the amount of metal in a closed

Determine the type of discontinuity at 0,0 .

a. , =

d.

â„Ž , = , = ) , =

(

* #

,

, = ( + ;

d.

0, 1, 2, 3, 4, 5 = 30 12 + 12 4 − 2234 −

+ 4 + 9 ; /

Find the partial derivatives by holding all but one of the variables constant and applying ordinary differentiation techniques. a. 0, 9, : = 40 sin 9 + 5< = cos 9 sin : − 2 cos : ;

c. d. e.

8. 9.

A3 tan 5 ; A5

0, 9 =

0 cos 9

− 20 tan 9 ; B

%

3 = < ; = tan 012 ; = ln 301 +

, = 2 − 3 + ; , 3

A 5 A A A

5 = + + ;

g.

, , = ln cos 3 − 4 ; CC8 , 8C8

h.

) , , = sin ; ) , ) % , )%

Find an equation of the tangent plane to the given surface at the specified point. a. = + + 3 ; 1,1,5 = ( − ; 5,1,2

Find the linearization (or equation of the linear approximation) of the following at the given point. a. , = ( ; 1,4

b.

, = ; 6,3

c.

, = tan + 2 ; 1,0

Approximate 1.95,1.08 given that , = (20 − − 7 . Approximate 6.9,2.06 given that , = ln − 3 .

H

512 ;

A3 A3 A3 , , A0 A1 A2 A3 A3 , A2 A1

c.

3 = sin ; = 2 < G ; = 2 < ;

d.

J = K ; = cos sin 2 ; = < G ;

,L ,

15. Find the indicated (total or partial) derivative.

b. c. d.

3 = ln + ; = < G ; = < G ; 3=

G N O

N P

; = 3 sin 2 ; = ln 2 ;

3 = ln + + 2 % + % = 8 ; %

%

MG

MC MG

; = 2 sin 2 ; = cos 2

M M

2 + 3 = 5;

f.

cos + = sin ;

MC

M

e.

M M

M

A A + sin ; ,

g.

=

h.

< + 2 < − 4< = 3;

f.

b. 7.

, , = < sinh 2 − < cosh 2 ; 3=

b.

a.

245 + 335 ; 8

A3 A0

3 = ; = ; = 0< H ; = 0< H ;

, , =

=

a.

,,

c.

b.

metal in the top and bottom is 0.1cm thick and the metal in

14. Find the indicated partial derivatives.

%

cylindrical can that is 10cm high and 4cm in diameter if the

the sides is 0.05cm thick.

Apply the definition to find the partial derivative. ,a. , = ; b.

= H G

11. If = 5 + ^2 and , changes from 1,2 to

lim

c.

6.

5 = ln ( + +

, = ln 4 − − +

b.

5.

b.

c.

4.

3 = < G sin 9

, , =

# ". lim , → !,! # + #

3.

a.

b.

Determine the existence of limits. . lim , → !,! +

$.

10. Find the total differential of the following functions.

A

A A A , A A

-EAArances


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.