G Mocnik - Woodsmoke - optical detection of an important ambient pollutant - PP97- FineDust 2009

Page 1

Wood‐smoke Wood smoke ‐ optical detection of optical detection of an important ambient pollutant “Fine!Dust‐Free” Congress Klagenfurt, 1 October 2009 g , Griša Močnik Aerosol d.o.o. grisa mocnik@aerosol si grisa.mocnik@aerosol.si


Aerosol Black Carbon Aerosol Black Carbon • BC is a product of incomplete combustion

dpp=20 nm

• BC not automatically related to CO2 emission • BC emissions can not be predicted: must be measured • BC particles from different sources can have different characteristics that produce different effects in the atmosphere:

dpp=46 nm

dm=472 nm

( (Coal/Diesel/Biomass, USA/Asia/Europe) l/ l/ / / ) Note change in scale

2


Climate Change Effects of Black Carbon Climate Change Effects of Black Carbon BC is inert, long range transport! range transport! 2nd most important important warming agent: 15% ‐ 40% contribution to global warming

Haze over Asia: up to 40% of sunlight absorbed. Crop yields reduced ; local rainfall changed. S. Menon, J. Hansen et al., Climate Effects of Black Carbon Aerosols in China and India, Science (2002) 2250‐2253 3


Why are atmospheric aerosols important? Why are atmospheric aerosols important? • Public Health: loss of life in months due to PM2.5 (CAFE baselines, RAINS 2004)

2000

2010 2020 E Even with reduced emissions: statistical life loss ith d d i i t ti ti l lif l still around 5 months average in EU in 2020! 4


Health Effects Health Effects THE “HARVARD 6‐CITIES” STUDY Dockery et al., N. Engl. J. Med. 329: 1753 (1993) • Longitudinal cohort study of 8111 adults, 1974 – 1977 Steubenville, OH (S) Harriman, TN (H) St. Louis, MO (L) Watertown, MA (W) Topeka, KS (T) Portage, WI (P) • 1401 death certificates after 14‐16 yr follow‐up Smoking‐adjusted mortality rates (deaths/1000 population)

Mortality

Mortality Ratio Highest vs. g Lowest PM

All causes Lung cancer Other cardiopulmonary

1.26 (1.08 – 1.47) 1.37 (0.81 – 2.31) 1.37 (1.11 – 1.68)

Non‐cardiopulmonary

1.01 (0.79 – 1.30)

5


Wood is a major energy source • wood/biomass is a sustainable fuel – trees recycle CO2 • burning biomass is a major energy source in the Alps • various combustion regimes: high‐efficiency distric heating ovens – individual wood‐stoves • possible extreme emissions of particulate matter • local and regional air quality issue – up to 40% of all particulate matter is wood‐smoke

6


Wood‐smoke Wood smoke – part of PM10 part of PM10 • urban areas (Vienna, Graz, Salzburg, Kl Klagenfurt): f ) WS annual average g

5 ‐ 16%

winter

8 ‐ 22%

WS + HULIS 9 ‐ 20% 13 ‐ 28%

• rural rural areas areas (small villages in Lower (small villages in Lower Austria, Styria, Carinthia, Burgenland and Salzburg): WS annual average winter

8 ‐ 21%; 14 ‐ 32%

WS + HULIS 15 ‐ 28% 19 ‐ 42%

Aquella, TUW; A. Caseiro et al. / Atmospheric Environment 43 (2009) 2186–2195

7


Advantages / Attributes of Optical Analysis Advantages / Attributes of Optical Analysis Typical chemical speciation time resolution – Typical chemical speciation time resolution hours, day! hours day! Optical methods – minute! • • • • •

Instantaneous Non‐destructive Mobile / Portable Added dimension ‐ time Added dimension – wavelength

8


Analytical Instrument : Aethalometer™ • Collect sample continuously. • Measure optical absorption continuously Measure optical absorption continuously : optical wavelengths from 370 nm to 950 nm. Convert optical absorption to mass of BC. to mass of BC. • Convert optical absorption • Determine increment of mass in each time period. • Measure air flow rate; convert mass to concentration. • Real‐time data: 1 s / R l ti d t 1 / 1 min / 1 i / 5 minutes 5 i t – Dynamical, real‐time measurement, updated each period

9


Aethalometer ‐ Measurement Principle Aethalometer Measurement Principle • Convert optical absorption p p to mass concentration. – BC (g/m3) = Diff. absorption (g/cm2) * Spot Area (cm2) / Volume (m3) – Diff. absorption ~ ATN @ sample spot / ATN @ reference spot

• • • •

Measurement precision: <5% Measurement precision: <5% Lower limit of detection: down to 100 picograms Real‐time data: 1 second // 5 minute // 1 hour Mass flow measurement and control

10


Aethalometer Models : Continuous rack mount instruments Continuous rack mount instruments AE22 Dual beam – Ambient Air Quality Monitoring AE22 Dual beam – Ambient Air Quality Monitoring 9 9 9 9 9

Dual wavelength (880, 370nm) Local source identification Human health exposure Air quality monitoring network locations Roadside emissions studies

AE31 Spectrum Ambient Air Quality Monitoring AE31 Spectrum – Ambient Air Quality Monitoring 9 9 9 9 9

Seven wavelength (370, 470, 520, 590, 660, 880, and 950 nm) Local source identification Regional, Continental, Global Atmospheric studies Particle size distribution, radiative transfer Climate change, albedo, cloud modification


Project • Source apportionment on a short timescale – measurement of BC BC, wood burning vs. traffic. db i ffi • Instrumentation – PM10, gases (network), BC, absorption; site ,g ( ), , p ; pairs: urban, rural, background. • D Data processing t i – methodology, real‐time and off line data th d l l ti d ff li d t acquisition, relay and processing. • Partners: Carinthia, Klagenfurt, Aerosol...

12


Aethalometer Installations in and around Klagenfurt

urban/roadside background

rural


Aethalometer installations in and around Klagenfurt

background

Voelkermarkterstr. / Enzenbergerstr. urban/roadside rural


PM10 and BC at the urban site BC diurnal profile ‐ KLAGENFURT

PM10 PM10 diurnal profile diurnal profile ‐ urban PM10 diurnal profile ‐ KLAGENFURT

90000

BC diurnal profile ‐ p urban

14000

80000

weekday Sunday

12000

70000

10000

60000 50000

8000

40000

6000

30000

4000 20000 weekday Sunday

10000

2000

0

30000

6000

25000

5000

PM10 data ‐ Carinthia

22 2:00

20 0:00

18 8:00

16 6:00

14 4:00

22:00

15

20:00

18:00

16:00

14:00

12:00

22:00

20:00

18:00

16:00

14:00

0 12:00

0 10:00

1000 8:00

5000 6:00

2000

4:00

10000

2:00

3000

0:00

15000

10:00

4000

8:00

20000

12 2:00

6:00 6

6:00

7000

10 0:00

4:00 4

4:00

8:00 8

2:00 2

BC “Weekday‐Sunday” ‐ urban BC "weekday ‐ y Sunday" ‐ y KLAGENFURT

2:00

8000

0:00 0

35000

PM10 “Weekday‐Sunday” PM10 Weekday Sunday ‐urban urban

0:00

PM10 "weekday ‐ Sunday" ‐ KLAGENFURT

222:00

220:00

118:00

116:00

114:00

112:00

110:00

8:00

6:00

4:00

2:00

0:00

0


PM10 and BC at the rural site BC Diurnal profile ‐ ZELL

PM10 diurnal profile PM10 diurnal profile ‐ p ‐ ZELL rural

90000 80000

14000

BC Weekday

12000

weekday Sunday

70000

BC diurnal profile ‐ p rural BC Sunday

10000

60000 50000

8000

40000

6000

30000

4000

12 2:00

14 4:00

16 6:00

18 8:00

12:00

14:00

16:00

18:00

22 2:00

10 0:00

10:00

22:00

8:00 8

8:00

20 0:00

6:00 6

6:00

20:00

4:00 4

4:00

5000

15000

4000

10000

3000

5000

2000

22:0 00

20:0 00

18:0 00

16:0 00

14:0 00

12:0 00

10:0 00

8:0 00

6:0 00

4:0 00

2:0 00

0:0 00

0

‐15000

2:00 2

6000

20000

‐10000

Sunday" ‐ ZELL ‐ rural BC BC "Weekday ‐ BC “Weekday‐Sunday” Weekday Sunday

7000

25000

‐5000

8000

2:00

PM 10 "weekday ‐ Sunday" ‐ ZELL PM10 PM10 “Weekday‐Sunday” Weekday Sunday ‐rural rural

0:00 0

22:00 2

20:00 2

18:00 1

16:00 1

14:00 1

12:00 1

8:00

10:00 1

30000

6:00

0 4:00

0

2:00

2000

0:00

10000

0:00

20000

1000 0

16


PM10 and BC in urban and rural sites

BC diurnal profile ‐ KLAGENFURT

PM10 diurnal profile ‐ p urban

90000

BC diurnal profile ‐ urban

14000

PM10 diurnal profile ‐ KLAGENFURT PM10 diurnal profile

80000

weekday Sunday

12000

70000

10000

60000 50000

8000

40000

6000

30000

4000 20000 weekday Sunday

10000

2000

0

80000

weekday Sunday

70000

10000

50000

8000

40000

22:00 2

20:00 2

18:00

16:00

14:00

BC Diurnal profile ‐ ZELL BC diurnal profile ‐ rural BC Weekday

12000

60000

12:00

10:00

8:00

6:00

4:00

2:00

14000

0:00

PM10 diurnal profile ‐ rural

22:00

20:00

18:00

16:00

14:00

12:00

10:00

8:00

6:00

4:00

2:00

0:00

90000

0

PM10 diurnal profile ‐ ZELL

BC Sunday

6000

30000 4000

20000

20:00

17

18:00

16:00

14:00

12:00

10:00

8:00

6:00

4:00

2:00

22:00

20:00

18:00

16:00

14:00

12:00

10:00

8:00

6:00

4:00

2:00

0:00

0:00

0

0

22:00

2000

10000


PM10 and BC at the rural site ‐ Diurnal profile ‐ ZELL weekdays 80000 BC Weekday

70000

PM10 Weekday

60000 50000 40000 30000 20000 10000

22:00

20:00

18:00

16:00

14:00

12:00

10:00

8:00

6:00

4:00

2:00

0:00

0

18


From Black&

to Color

19


Wood‐smoke Wood smoke vs. diesel vs. diesel • measure attenuation with the Aethalometer • calculate absorption coefficient – p b, or mass • for completely black sample: b~1/λ • aromatic aromatic substances increase absorption: more at substances increase absorption: more at lower wavelengths!

20


Wood‐smoke Wood smoke vs. diesel vs. diesel ‐ 7λ • measure attenuation with the A h l Aethalometer • calculate absorption coefficient ‐ b • for pure black carbon: b~1/λ • generalize Angstrom exponent: b 1/λα b~1/λ diesel: α ≈ 1 diesel: α ≈1 wood‐smoke: α ≈ 1.2 to 3.7 J. Sandradewi et al., A study of wood burning and traffic aerosols in an Alpine valley using a multi‐wavelength Aethalometer, Atmospheric Environment (2008) 101–112

21


Angstrom coefficient Angstrom coefficient diurnal profile Angstrom coefficient 370 nm ‐ 520 nm diurnal profile ‐ KLAGENFURT urban

2.60

Angstrom coefficient

Angstrom coefficient diurnal profile diurnal profile ‐ rural 370 nm ‐ 520 nm ZELL

2.60

2 0 2.40

2.40

2.20

2.20

weekday Sunday

2.00

2.00

1 80 1.80

1 80 1.80 1.60

22

22:0 00

20:0 00

18:0 00

16:0 00

14:0 00

12:0 00

10:0 00

8:0 00

6:0 00

weekday Sunday

4:0 00

22:0 00

20:0 00

18:0 00

16:0 00

14:0 00

0.80

12:0 00

0.80 10:0 00

1.00

8:0 00

1.00 6:0 00

1 20 1.20

4:0 00

1 20 1.20

2:0 00

1.40

0:0 00

1.40

2:0 00

traffic

0:0 00

1.60


Wood‐smoke vs. diesel in PM10 2.60

PM10 diurnal profile ‐ p urban PM10 diurnal profile ‐ KLAGENFURT PM10 diurnal profile

90000 80000

2.40

WS

70000

2.20

traffic

weekday Sunday

2.00

60000

1 80 1.80

50000

WS

1.60

40000

traffic

1.40

30000

1.20

20000 weekday Sunday

80000

weekday Sunday

70000

2.20

WS

2.00

60000

22:00

18:00

16:00

14:00

12:00

8:00

10:00

2 40 2.40

Angstrom coefficient diurnal profile Angstrom coefficient 370 nm ‐ 520 nm diurnal profile ‐ p rural ZELL 6:00

2.60

2:00

PM10 diurnal profile ‐ rural

22:00

20:00

18:00

16:00

14:00

12:00

10:00

8:00

6:00

4:00

2:00

0:00

PM10 diurnal profile ‐ ZELL

0:00

0.80

0

20:00

1.00 4:00

10000

1.80

50000

1.60

40000 30000

WS traffic

traffic

0

16:00

14:00

12:00

10:00

8:00

6:00

4:00

2:00

22:00

20:00

18:00

16:00

14:00

12:00

10:00

8:00

6:00

4:00

2:00

0:00

0.80

23

22:00

1.00 20:00

10000

weekday Sunday

1.20

18:00

20000

1.40

0:00

90000

Angstrom coefficient diurnal profile Angstrom coefficient 370 nm ‐ 520 nm diurnal profile ‐ KLAGENFURT urban


Quantification • measure attenuation with the Aethalometer • calculate absorption coefficient b, and Angstrom coefficient α b = b(wood) + b(traffic) b(470 nm) / b(950 nm) = (470 nm / 950 nm) ‐α

• measure Total Carbon TC 1 b(wood) + c2 TC = c1 b( d) 2 b(traffic) + c3 b(t ffi ) 3

J. Sandradewi et al., Using Aerosol Light Absorption Measurements for the Quantitative Determination of Wood Burning and Traffic Emission Contributions to Particulate Matter, ETS (2008) 3316–3323.

24


Quantification (2) Quantification (2)

J. Sandradewi J. Sandradewi et al., Using Aerosol Light Absorption et al., Using Aerosol Light Absorption Measurements for the Quantitative Measurements for the Quantitative Determination of Wood Burning and Traffic Emission Contributions to Particulate Matter, ETS (2008) 3316–3323.

25


Conclusions • we can measure Black Carbon and Wood‐Smoke with the Aethalometer • time resolution is 5 min • we we can investigate time evolution of BC and WS during can investigate time evolution of BC and WS during the day • qualitative qualitative Wood Wood‐Smoke Smoke determination determination – no additional no additional measurements, minimal postprocessing • quantitative Wood‐Smoke determination – q TC, C14, levoglucosan • all this and more automatically in AE‐33, coming 2010 26


AE‐51 AE 51 micro Aethalometer micro Aethalometer – personal exposure personal exposure • • • • • •

Dimensions: 14 cm x 6 cm x 3.5 cm W i ht 275 g Weight: 275 Run time: more than 24 hrs. Fast recharge: 2 ~ 4 hrs. Flow rate: 50 – 150 ml/min Sample filter: Pallflex ‘T60’ media housed in protective strip • Data storage: on‐board flash memory • Data transfer and setup: USB Data transfer and setup: USB • Sample collection: 3 mm spot

27


16000

14000

Start driving from Hamburg

Arrive harbour, d i i driving off car

Heavy d iesel fumes from a mo bile h ome enter

12000

Sho rt stop open d oor, smo ker behind the

Stop at g as

Sh ort drive within harbour 3 min utes

8000

500m roadtunnel

6000 Stop at h arbour, o ut from the car to 18.25

4000

Drive in to car d eck on ferry

2000

16000

14000

21:03::00

20:49::00

20:35::00

20:21::00

20:07::00

19:53::00

19:39::00

19:25::00

19:11::00

18:57::00

18:43::00

18:29::00

18:15::00

18:01::00

17:47::00

17:33::00

17:19::00

17:05::00

16:51::00

16:37::00

16:23::00

16:09::00

15:55::00

15:41::00

15:27::00

15:13::00

0

14:59::00

y = 1.042x R² = 0 0.995 995

12000

10000

side‐by‐side comparison id b id i of two AE51

BC, ng/m3, s/n 109

BC (ng/m3)

S1 109 S1-109 Arrive parking

Enter autobahn

10000

6 hour drive from Hamburg to Sweden

S1-110

8000

6000

4000

2000

0 -2000

0

2000

4000

6000

8000

-2000

BC, ng/m3, s/n 110

10000

12000

28

14000

1600


Many thanks to: Dr. Wolfgang Hafner, Franz Weghofer, Mag. Sandra Habib, Dr. Erich Staudegger, many others (Klagenfurt), Dipl.Ing. Gerhard Heimburger, Johannes Maurer, Franz Hohenwarter, many others (Carinthia), , y ( ), Prof. Dr. Hans Puxbaum, Prof. Dr. Heidi Bauer (TUW), Dipl. Ing. Tanja Dobovičnik, Ing. Primož Vidmar, Damjan Zore, Petra Klavčič (Aerosol), everybody proposing PMinter AT‐SI project.

29


Thank you for your attention! y y Questions?

Aerosol d.o.o. Kamniška 41 SI 1000 Ljubljana SI‐1000 Ljubljana Slovenia

tel: +386 59 191 220 fax: +386 59 191 221

grisa.mocnik@aerosol.si

30


Wood‐smoke Wood smoke is a major local/regional AQ issue is a major local/regional AQ issue Wood‐smoke in winter – largest single contributor to PM! single contributor to PM! 15% to 40% of PM

Don Bosco – Don Bosco urban urban location in Graz

31 source: Aquella, TUW


Wood‐smoke Wood smoke vs. diesel vs. diesel ‐ 7λ

J. Sandradewi et al., A study of wood burning and traffic aerosols in an Alpine valley using a multi‐wavelength Aethalometer, Atmospheric Environment 42 (2008) 101–112

32


33


Examples of ‘Micro’ Examples of Micro Aethalometer data Aethalometer data • Vertical profile from tethered balloon – Milano, Italy Black Carbon Concentration Vertical Profile 500 Ascent

400

Descent

300 200 100 0 0

5000

10000

15000

20000

BC concentration [ng/m3]

. Balloon operations courtesy of Dr. Luca Ferrero & Prof. Ezio Bolzzachini, . Dept. of Environmental Science, University of Milano – Bicocca, Italy

34


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.