test test tes

Page 1

POST-HUMANMATHEMATICS.

Abstract: Presentdaymathematicsisahumanconstruct,wherecomputersareused moreandmorebutdonotplayacreativerole.Thissituationmaychangehowever: computersmaybecomecreative,andsincetheyfunctionvery differentlyfromthehuman braintheymayproduceaverydifferentsortofmathematics.Wediscusswhatthisposthumanmathematicsmaylooklike,andthephilosophicalconsequencesthatthismay entail.

† Math.Dept.,RutgersUniversity,andIHES,91440BuressurYvette,France.email: ruelle@ihes.fr

arXiv:1308.4678v1 [math.HO] 21 Aug 2013
1

1.Introduction:vitalism.

Thepurposeofthisnoteistolookintowhatmaybethemathematicsoftomorrow,ifandwhencomputerprogramshavegainedamathematicalcreativitythattheyare currentlylacking.

Beforethathoweveritwillbeilluminatingtodiscussbrieflyanaspectofthebiology andchemistryofyesterday,namelyvitalism.Vitalismisthenotionthatlivingmatter containsavitalprinciplewhichisabsentfromnon-livingentities,sothatlivingmatter obeysdifferentlawsfromthosethatrulenon-livingmatter. Thisisanoldidea,anditisby nomeansridiculous.Thisideahasledinchemistrytoadistinctionbetweenorganicand inorganicsubstances.ThegreatSwedishchemistJ.J.Berzelius(1779-1848)suggestedthat organicchemicalcompoundscontainedavitalforce,absent frominorganiccompounds. Indeed,itdidnotappearpossibletosynthesizeorganiccompoundsfrominorganicones. ThatwasuntilthesynthesisofureabyF.W¨ohlerin1828,followedbythesynthesisof aceticacidbyA.Kolbein1845,andthesynthesisofmoreandmoreorganiccompounds afterthat.

Organicsynthesisinthelabhasdifferentfeaturesfromorganicsynthesis invivo,but thereappearstobenolimittowhatcanbesynthesized.Eventhepossibilityofcreating lifeinthelabisnolongerataboosubject;manyscientistsbelievethatitwillbedone, althoughwhatkindoflifeandwhenthiswillbeachievedremaindebatedquestions.

2.Theuniquenessofhumanintelligence.

Althoughvitalismhaslargelybeenabandonedbyscientists,thereisabeliefrelated tovitalismwhichremainsquitepopular,thisconcernsthehumanmindandhumanintelligence.Alotofpeople,andthisincludesveryrespectedscientists,believethatthehuman mindhasuniquecreativeabilitieswhichneitheranimalsnorcomputerscanduplicate.We shallleaveanimalsoutofthepresentdiscussion,andconcentrateononeaspectofcreativity:mathematicalcreativity.Iseetwosignificantargumentsinfavoroftheuniqueness ofhumanmathematicalcreativity.Thefirstargumentisthat wehaveanintrospective feelingofbeingabletothink(inthepresentcasetothinkaboutmathematicalproblems) whichwewoulddenycomputersbecausetheyarejustmachines.Thesecondargumentis thelackofseriousexamplesofmathematicalcreativitybycomputers.Letmenowdiscuss andquestionthesetwoarguments.

2.1Canacomputerthink?

WhenIspeakofacomputerinwhatfollows,Ialwaysmeanhardwareplussoftware, i.e.,acomputerrunningasuitableprogram.Thefeelingthatwecanthinkwhilecomputers cannothasbeenconsideredbyAlanTuring[7].Hediscussedthepossibilityofatestwhich ahumanwouldpass,butwhichamachinewouldfail.Theconsensusatthistimeisthat nosuchtestcanbedevised.Adiscussionofintelligencebasedontheintrospectivefeeling thatonlywecanthinkisthusoflimitedinterest.Wecanhoweversaythatifpresentor futurecomputersthink,theirthinkingmustbeofaverydifferentnaturefromours:this questioncanbeobjectivelyanalyzed,andhasbeendiscussedbyJohannvonNeumann inaremarkablelittlebookcalled ThecomputerandtheBrain [3].Boththecomputer

2

andthebrainareinformationprocessingsystems,andadetailedcomparisonmadebyvon Neumannshowsthattheyfunctionverydifferently.Thebrain isslow,pronetoerror,has limitedmemory,andisveryhighlyparallel(itisaconnectedmany-channelsystem).By comparison,computersareveryfast,reliable,havelargememory,andareusuallynotvery highlyparallel.Computerintelligence,ifitexists,isthusexpectedtobequitedifferent fromhumanintelligence.

Bothcomputersandhumanshaveseveraltypesofmemories.Forthetaskofputting astringofdigitsinshorttermmemory,acomputerisfarsuperiortoahuman(whocan rememberonlyaboutsevendigits).Butourbrainalsopreservesalifetimeoflongterm memories:anapparentlylimitlessamount.Bycomparison,earlycomputersdidn’tdo thatwell,butthingshavechanged:progressintranslation bycomputersshowsthatthey areprogressivelybecomingabletomasterthehugecorpusof datacorrespondingtothe knowledgeofahumannaturallanguage.

Ineverydaylifewenowfrequentlyhavetointeractwithcomputerprograms,andthis influencestheopinionwemayhaveontheirintelligence.WhenIuseGoogle,Ihavethe feelingofavastintelligencesomehowpresentthere.(This isbecauseGooglehasrapidand intelligentaccesstoahugeamountofdata.)Bycontrast,whenIrecentlytriedtosubmit apaperforpublicationinacoupleofscientificjournals,andhadtofightovertheInternet withtheireditorialprograms,IwasconvincedthatIwasfacingsomethingviciously unintelligent.Youknowhowitis:thethingdemandsthatyou pleaseenterdigital certificateofvirginityofgrandmother,orsomesuchnonsense.Whateveryou answeris,thestupidmachinereplies certificateinvalidpleasetryagain.Letus trytoovercometheirritationproducedbysuchexperiences,andproceedwithaserene discussion.

Ourconclusionforthemomentwillbethis:wecannotexclude thatcomputersthink, butifandwhentheydoitwillprobablybeinamannerverydifferentfromthatofhumans. Thesituationisabitsimilartothatoforganicchemicalsynthesis:artificialsynthesisof organiccompoundsisnotimpossible,farfromthat,butitis generallyachievedquite differentlyfromchemicalsynthesisinlivingorganisms.

2.2Ismathematicalcreativitybycomputerspossible?

Wecomenowtothesecondpointofourdiscussion:thecomputer’scurrentlackof mathematicalcreativity.Computershaveactuallygainedquiteabitofimportancein mathematics.JustthinkthatthegreatBernhardRiemanntestedsomemathematical ideasbylongnumericalcalculations;hismoderncolleaguesoftenworkinasimilarway butdotheircalculationsbycomputerratherthanbyhand.Computersarealsousedinan essentialwaytoprovidepartsofrigorousproofs:theyperformheavylogicalornumerical taskswhicharebeyondhumancapabilities.(Anexamplehere istheproofofthefour colortheorembyKennethAppelandWolfgangHaken[1]).Letmealsomentionthat somedefinitemathematicalcreativityhasbeenobtainedusingWilf-Zeilbergerpairs[4]to producenewidentitiesinvolvinghypergeometricfunctions.

However,atthistime,theclosestthatcomputershavecometoreallydoingmathematicsisincomputer-verifiedproofs(so-called formalproofs).Inbrief,ahumanmathe-

3

maticiantransformsahumanproofofatheorem(likethe primenumbertheorem)intoa sequenceoflemmasinaformallanguage,andthe(nontrivial)proofthatthelemmasare correctislefttoacomputer.FordetailswerefertoaHales[2]andfurtherpapersina specialissue(December2008)oftheAMSNotices(vol. 55)onthesubject.Letmejust makeafewremarks:

(a)nontrivialtheoremsliketheprimenumbertheoremnowhaveacomputer-verified proof,

(b)computer-verifiedformalproofsarealotmorereliablethanhumanproofs,which alwayscontainsomewhatimpreciseformulations,andsometimesbigmistakes(thishas becomeamajorconcernwithverylongmodernproofs),

(c)partofthecomputer-verifiedformalproofs(theproofof lemmasbyacomputer program)nowescapesintuitivegraspbythehumanmind:theseproofsarenolonger completelyhuman,

(d)nevertheless,thecreativeroleofcomputersincomputer-verifiedproofsisminimal, beinglimitedtoacombinatorialsearchforproofsoflemmas alonglinesprogrammedby humans.

3.Whatismathematicalcreativity?

Thisisnottheplaceforapoeticdiscourseoncreativityingeneral.Rather,Iwantto seewhatcreativityimpliesinthecaseofmathematics,howitisimplementedbyhumans, andhowitmighthaveanon-humanimplementation.

Itisconvenienttoassumethatsomebasisofmathematicshas beenaccepted:logical rulesofdeductionandbasicaxioms.TheaxiomsmaybetheZermelo-Fraenkel-Choice axiomsofsettheory,orsomethingsimilarasimplementedin aprogramforcomputerverifiedproofs.Inbriefweassumethatacommonbasisformathematicsisacceptedby humansandcomputers.Doingmathematicsisthenfindingandprovingtheoremsonthe basisoftheaxioms,usingacceptedrulesoflogic.

Thereisagenerallimitationindoingmathematicsthatappliesbothtohumansand tocomputers:atheoremwithashortformulationmayhaveanextremelylongproof.This fact,notedbyG¨odel,isoflogicalorigin,andrelatedtotheincompletenesstheorem.

Aswehaveseen,thehumanbrainhaslimitedmemoryandispronetoerror.A humanmathematicaltextisthuscomposedofsmallunits(afewlines,whereacomputer couldhandle105 pages).Agreathelpinobtainingsmallunitsistheuseof definitions (for instancethedefinitionofacompactgroup,orthatofcomplex numbers)whichareagreed uponbeforemakingamathematicalstatement.

Letmesaythisagain:thehumanwayofdoingmathematicsisto writeamathematical text,consistingofshortpieceswhichmaybedefinitionsortheorems.Typicallythereisa maintheoremwithalongproof,thelongproofconsistingofdefinitionsandlemmas(the lemmasarelittletheoremswhichfolloweasilyfromwhatisalreadyknown).

MathematicianslikeHadamardandPoincar´ehavenotedthat doingmathematicsis acombinatorialtask:puttingpiecestogethertoobtainaninterestingtheorem.There

4

aremanychoicesinvolvedinconjecturingan interesting theoremandputtingtogetherthe piecesofaproof.Toguidethesechoiceswehaveabackground ofresultsinthepublished literature,andoftheoreticalideaswhichmaybemoreorlessvagueorprecise.Thepublishedliteratureincreaseswithtime,andthebackgroundoftheoreticalideas(whichdefine whatisaninterestingtheorem)alsochanges.Forinstancemathematiciansareguidedby ideasonthenaturalstructuresofmathematics;suchideashavebeenformulatedprecisely byBourbaki,orhavebeenlaterembodiedinthetheoryofcategoriesandfunctors.Structuralideasnowplayamajorroleincertainareasofmathematics,wheresomequestions willappearnaturalforstructuralreasons,andbesystematicallyaskedandinvestigated. Lessprecisetheoreticalideasconsistofanalogies,suchastheanalogybetweenthetheory ofC∗ -algebrasandthetheoryofcompactspaces(thisanalogycomesfromthefactthatan abelianC∗ -algebraispreciselythealgebraofcomplexcontinuousfunctionsonacompact space–butthisdoesnotsayexactlyhowtoperformthegeneralizationfromtheabelian tothenon-abeliansituation).

Tosummarize,doingmathematicsmaybeviewedasasuccessionofguessesand routineverifications.Theguessesareguidedbytheoreticalideasthatevolvewithtime. Foramoredetaileddiscussionofthesequestionsseemybook TheMathematician’sBrain [5].

Theabovewasadescriptionofhumanmathematics.Inthecase ofcomputer-verified mathematics(formalproofs)apartoftheguessesishuman,buttheroutineverifications aremadebycomputer,andthisinvolvesanontrivialcombinatorialpart,i.e.,makingmany lowlevelguesses.Whatremainsofhumancreativityarethemanyhigherlevelguesses, basedontheoreticalideaswhicharenoteasilyformalizedtopermittheirsystematicuse.

4.Limitstomathematicalcreativity.

Theabilitytodomathematicsisarecentdevelopmentintheevolutionofthehuman brain.Mathematicalabilityisrelated(amongotherthings)totheacquisitionoflanguage,whichispoorlyunderstood.Theabilitytospeakwasclearlyfavoredbyevolution, andthesamemightbesaidoftheabilitytocountfrom1to10.Buttheabilitytodo highermathematics(likestudyingGaloistheory)isanothermatter,andmostpeopleget alongsuccessfullywithoutthisability.Onethingthatstrikesmeisthegreatdisparityof performancesofthebestmathematicians:ifonetriestoassessquantitativelythecontributionsofRiemann,G¨odel,orGrothendiecktomathematics,onecouldsaythatitisten toahundredtimesgreaterthanthatofa“normal”high-level mathematician.Inother words,thecontributionofoneofthe“great”mathematiciansmentionedaboveisworthas muchasthecontributionoftentoahundredmembersofthemathematicalsectionofa goodacademyofsciences(sayFrench,orUS).Ithinkthatmostmathematicalcolleagues wouldagreewiththisquantitativeestimate(althoughperhapswithoutenthusiasm).This isquitedifferentfromthesituationfor100mrunningwheretheperformancesofthebest racersarequitesimilar.Tounderstandthedifference,onemayappealtonaturalselection, whichisclearlynotthesameforrunningandfordoingmathematics,butnaturalselection argumentsaretricky*,andweshallnotgofurtherinthisdirection.

*IamindebtedtoHenriKornforadiscussionofthismatter.

5

Note,bytheway,thatagreatmathematicianisonewhodoessomethingnew,not onewhoisgoodatdoingagainthingsthathavebeendonebefore.Weexpecttherefore thatgreatmathematiciansarequitedifferentfromeachother,sothattheycantackle problemsindifferentmanners.Thisisindeedthecase;forexamplewhileoneslimvolume containsthecompleteworksofRiemann,theworkofGrothendieckcoversmanythousands ofpages.Anywayonelooksatthings,thegreatestmathematiciansarethusverydissimilar people*:theyarenotclusteredagainstsomenaturallimitofwhatcanbedonebyhumans inmathematics.Wehaveseenearlierthattherearelimitsto humancreativityimposed bylogicandbythestructureofthehumanbrain,butnowitalsoappearsthatindividual mathematiciansarenotclosetoauniversallimit.Thedifficultytoputalimitonhuman mathematicalperformancesuggeststhatitwillalsobedifficulttoputalimittocomputer mathematicalperformance,oncecomputersstarttobecreative.

5.Post-humanmathematics.

Ihavepointedoutthattheintellectualabilitytodomathematicsisarecentdevelopmentfromthepointofviewofthebiologicalevolutionofthe humanbrain.Ifindithardto believethatthisrecentdevelopmenthasproducedsomethingsouniquethatitcannotbe successfullyimitatedbycomputers.Ithinkthatthesituationofmathematicalcreativity todayislikethatoforganicsynthesisbeforeW¨ohler:itis onestageinanevolution,and therewillbelaterstages.Thebigquestionisthen:whatkindofmathematicscouldbe producedbyartificialmathematicalcreativity?Whatifwehaveacomputerwithaccess tosomesortofmathematicalliterature,theabilitytoperformroutineproofs,butalsothe abilitytomakeintelligentguessesbecauseitwouldhavebeentaughtaproperbackground oftheoreticalideas?Whatifitdevelopeditsownnon-human backgroundoftheoretical ideas?

Letmeinterruptmyselfhereforabriefpsychologicaldigression.Iamnoteagerto seecomputersreplacehumanmathematicians.Itwould,orwill,beasadthinginsome respects,butIdon’twanttoshutmyeyestothepossibility. Thinkoftheenormous effectsthatindustrialorganicsynthesishashadonmankind,somehavebeenniceand someterrible,butthereiscertainlynowaybacktothepre-W¨ohlertimes.Similarly, mathematicsisprobablyenteringsoonacompletelynewera, andwemightaswelltryto guesswherethiswillleadus.

Ifweassumethatacomputerhasbeentaughttobemathematicallycreative,we canthenimaginethatitcouldbeathumanmathematiciansattheirowngame.This meansthatitcouldgiveproofsofconjectures,orinterestingnewtheorems,whichhuman mathematicianscouldunderstandandperhapsadmire.Butit ismorelikelythat,once acomputerbecomescreative,itwilldothingsquitedifferentlyfromhumans.Herearea coupleofpossibilities:

(a)Thecomputercouldproveaninterestingresult,butwith aproofimpenetrableto humans,becauseitwoulduselongdevelopmentinsomeformal languagewithnoreason-

*Theintellectualdiversityofpeopleisofcoursenotlimitedtomathematics.Aglimpse intononstandardintellectualabilitiesisprovidedbysomeautists,see[7].

6

ablybrieftranslationintofamiliarhumanlanguage.(TheAppel-Hakenproofofthefour colortheorem,orthecomputerverificationsusingformalproofs,areexamplesofthis).

(b)Thecomputercouldproveanimportanttheorem,butwitha statementimpenetrabletohumans(againbecauseitwouldhavenoreasonablybrieftranslationtohuman mathematicallanguage).Thecomputermightconvinceusthatthistheoremisimportant, becauseitimpliesanumberofinterestingconjecturesthat wecanunderstand.Butour braincouldnotmakesenseofthetheoremitself.

Theabovepossibilitiesraisebigquestionsonthenatureof mathematics.Wecan seetoday’smathematicsasareasonablywellstructuredlandscape,withbigdomainslike algebraicgeometryorsmoothdynamics,andimportanttheoremsliketheprimenumber theorem.Thisstructuredmathematicallandscapeisrelatedtothepossibilitiesofthe humanbrain.Isthereastructuretomathematicswhichisindependentofthehuman brain?Couldanintelligentcomputerdevelopanewmathematicallandscapesimilarto theoneweknow?Todiscussthesequestions,rememberthelogicalfactthatatheorem withashortformulationmayhaveanextremelylongproof.To developmathematical knowledgeinaneconomicalway,oneavoidsrepeatingsimilarverylongproofs.Onetries insteadtoobtainnewresultsbyarelativelyshortproofusingalreadyknownresults. Thehumanwayofdevelopingmathematicsproducesthusanetworkofresultsrelatedby “understandable”proofs(nottoolong,butalsonot“inhumanly”formal).Thenetwork isconstantlybeingreworkedandimprovedbyhumanmathematiciansto“revealnatural underlyingstructures”.Thisishowthestructurallandscapethatweknowforhuman mathematicshasbeenobtained.Aswehavepointedout,there isalogicalreasonbehind thisstructurallandscape,buttherearealsospecificallyhumanreasons(notanalyzed indetailbut,inbrief:thehumanbrainfavorsshortformulations,“understandable”,and “interesting”arguments).Dowebelievethatlogicalfactorsprevailoverhumanspecificities inproducingthesortofstructuralmathematicallandscape thatweknow?

Ifearthatwemustconsideranotherpossibility:perhapscomputerswilldevelop mathematicalabilitiessothattheycananswerefficientlyquestionsthatweaskthem,but perhapstheirefficientwayofthinkingwillhavenostructuralbasisrecognizablebyhumans. Ifthishappens,thesuperiorityofourhumanintelligencewillbestronglychallenged: weshallwatchanintelligentcomputerdoingmathematicsin muchthesamewayasa chimpanzeecouldwatchahumanscientistreadingabookonGaloistheory.*

Thegutfeelingofmanyloversofmathematicswillbethattheycan’tbelievemy chimpanzeestory.JustasBerzeliuscouldnotbelievethatorganiccompoundswould everbesynthesizedinthelab.Togobeyondsuchvisceralreactions,Iwouldliketo comparemathematicsandmusic.Mathematiciansoftenlovemusic:thereisharmony, beauty,andasenseofinfinityinbothmathematicsandmusic. Thereisalsotheuse offractionstodescribemusicalintervals(approximately)butthisisasomewhatlimited relation.Infact,mathematicsandmusicareconceptuallyverydifferentthings,butitis importantforourdiscussionthattheyevokesimilarestheticreactions,probablybecause

*Inthisrespect,Jean-PierreEckmannremindedmeofFredHoyle’snovel TheBlack Hole [],whichdescribeshumancontactwithasuperiorintelligence.

7

theyinvolverelatedactivitiesofthebrain.Herewemustrememberthattherearetwosides tomathematics:oneisnon-humanlogicalnecessity,theotherishumanbrainactivity.The non-humanlogichaslittletodowithmusic,butitcouldbeaccessibletocomputers.Asa humanbrainactivity,mathematicsisrelatedtootherbrain activities,andhasapparently aprivilegedrelationwithmusic.Theinterplaybetweenthe humanandnon-humansides ofmathematicsisbeingmodifiedbytheirruptionofcomputersintothegame.Howthis modifiedinterplaywilldevelopintheyearstocomewillbefascinatingtoobserve.

Protagorashassaidthat“manisthemeasureofallthings:of thingswhichare,that theyare,andofthingswhicharenot,thattheyarenot”.This remainstrueforusin thesensethateverythingweknowisknowntousthroughourownhumanbrain.This remainstrueeventhoughweunderstandtodaythattheplanet Earthonwhichweliveisan infinitesimalspeckofdustinthephysicaluniverse.Thiswillremaintruetomorroweven ifwefindthathumanmathematicaldiscoveriesaredwarfedandhumbledbycomputer mathematics.

Thepresenttextisaslightlyreworkedversionofapresentationmadeatthe20-th anniversaryconferenceoftheESIinVienna,29April2013

References.

[1]K.AppelandW.Haken. EveryPlanarMapisFour-Colorable. AMS,Providence, 1989.

[2]T.C.Hales.“Formalproof.”AMSNotices 55,1370-1380(2008).

[]F.Hoyle. TheBlackCloud. WilliamHeinemann,London,1957.

[3]J.vonNeumann. TheComputerandtheBrain. YaleU.P.,NewHaven,1958.

[4]M.Petkovsek,H.WilfandD.Zeilberger. A+B. AKPeters,1996.

[5]D.Ruelle. TheMathematician’sBrain. PrincetonU.P.,Princeton,2007.

[6]D.Tammet. BornonaBlueDay. HodderandStoughton,London,2006.

[7]A.Turing.“Computingmachineryandintelligence.”Mind 59,433-460(1950).

8

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.