4 minute read
Getting Ahead of the Game
Engineering partners with Athletics on performance-related projects
In 2022, the College of Engineering established a seed grant program to initiate collaborative research and development projects with Villanova Athletics. The seed grants enable the application of engineering principles to address problems in sports and performance. Projects supported through this program pair Villanova Engineering faculty, graduate and undergraduate students with coaches, trainers, medical staff and student-athletes to address an issue (or opportunity) confronting their sports team. After conducting background research, the project team will design and build a prototype or system to resolve the issue. The intent is not only for some of these projects to mature into commercial products, but also to give Villanova’s student-athletes and student-researchers a competitive advantage in their respective fields.
Sensors For Force Recording
Associate Professors of Mechanical Engineering Gang Feng, PhD, and Bo Li, PhD—two experts in advanced functional materials and manufacturing at the nanoscale— partnered with Villanova’s Baseball and Golf teams to design and manufacture a low-cost device to record striking locations and forces. Specifically, the coaches were looking for a low-profile device to be affixed to the head of a golf club or the barrel of a baseball bat.
During the first phase of the project, the team created a proof-of-concept demonstration of a lightweight, power-free sensor that indicates magnitude and rate of the applied force. For the second phase, the team will further explore the utility of two novel sensors still under development.
A Computational Model for ACL Injuries in Female Soccer Players
When compared with their male counterparts, female soccer players are 2–8 times more likely to suffer ACL injuries, after which they will undergo 6–8 months of recovery before returning to practice, let alone competition. After a rise in ACL injuries among Villanova Women’s Soccer team players, Coach Samar Azem approached Villanova Engineering with a complex problem to address: How can we best enhance player and team performance, while minimizing—if not eliminating—player injuries?
While the question is straightforward, huge knowledge gaps remain in the field of injury mechanics. For Professor C. Nataraj, PhD, an expert in dynamic systems and machine learning, the solution may be found in the data collected from the soccer players themselves. During the 2023–2024 season, Dr. Nataraj and his collaborators are collecting biometric data for all 27 players on the Villanova Women’s Soccer team, during both practices and game play, in hopes of identifying relevant data points for predicting injury. The eventual goal is to create a tool coaches can use to monitor individual player and team performance, while predicting the incidence of injury before it happens.
Virtual Reality Penalty Shot Simulation for Goalies
Branching out from his work on the PITCHvr platform, Assistant Professor of Electrical and Computer Engineering Mark Jupina, PhD, is working with Villanova students on a similar training simulator for soccer goalkeepers. The project is motivated by the low penalty kick save rate across all levels of soccer, and the intent is to increase both the confidence and reaction time of goalkeepers using the VR training environment. Dr. Jupina worked with an Electrical and Computer Engineering senior capstone design team to build the digital platform, where they replicated the complex physics of a kicked soccer ball by calculating the trajectory of its motion.
In the first phase of the project, the capstone team integrated the virtual assets, kicker animations, ball physics and user interactions using the Unreal Engine (UE) 5 Platform. The beta version of the system recognizes saves vs. misses for physics-accurate shots in real time. A second senior capstone team has continued the project.
Detection and Monitoring of Student-Athletes' Cognitive State and Performance Metrics
Over the past two years, Associate Professor Meltem Izzetoglu, PhD, and Assistant Professor Xun Jiao, PhD, of Electrical and Computer Engineering have collaborated to advance the wireless capability of functional near-infrared spectroscopy (fNIRS) to detect and monitor an individual’s cognitive, emotional and physical state. The result is a novel synthesis of wearable technologies, machine learning models and a series of standardized neurocognitive tasks.
Partnering with Field Hockey, and working with student-athletes across multiple intramural and club sports, the team used fNIRS to assess cognitive activity, a wireless wristband to monitor heart rate and electrodermal activity for stress, and a force plate to monitor balance and postural stability. The data was then used by Dr. Jiao to construct machine learning models, refining the platform’s detection and monitoring capabilities. Dr. Izzetoglu’s primary motivation is to determine whether it’s possible to positively influence a student-athlete’s mental wellness through mechanisms like meditation and thereby boost their overall performance.