5 minute read

Sustainability in Support of Public Health

Suzanne Wood

The health of our environment is one of the foundations of public health. This is the central idea that drives the facilities team at the University of Massachusetts Medical School (UMMS) to create a more sustainable campus and enable the vital missions of our students and faculty.

UMMS has had a formal sustainability program since 2004. Our initiatives focus on three areas: buildings, processes, and people. We can influence the built environment and operating processes directly, and we promote awareness to encourage people in our community to make more sustainable choices in their daily lives, such as recycling and greener commuting options.

Our first Leadership in Energy and Environmental Design (LEED) certified building opened in 2010. The Ambulatory Care Center (ACC) earned a Silver designation for numerous sustainable features, including a white roof to diminish the “heat island effect” by reflecting rather than absorbing heat; a tight exterior building envelope with tinted, reflective, and insulated glass; and an east-west building orientation to minimize the number of south-facing windows. Water use in the ACC is approximately 30 percent less than a conventional building because of automatic low-flow/ low-flush plumbing fixtures. Electricity consumption is reduced by sophisticated controls for heating, cooling, and lighting.

In 2013, a larger and more ambitious building, the Albert Sherman Center (ASC) opened and achieved LEED Gold certification. The combination of efficient design, sustainable building practices, and advanced technologies integrated at the ASC enables the building to operate 25 percent more efficiently, consuming 4.1 million fewer kilowatt hours of electricity, using 30 percent less water, and cutting carbon dioxide emissions by 4.5 million pounds annually, as compared to similar buildings of standard design.

Among the key technologies used in the ASC are occupancy sensors for lighting, heating, and cooling of offices and conference rooms; heat recovery wheels which allow the building to exhaust stale air and draw in fresh air while retaining most of the heat in the building; variable speed fans, with sash sensors, on the fume hoods in the laboratories; daylight harvesting sensors that adjust interior lights based on the available sunlight; and an automation system that monitors building operations every 15 minutes and adjusts systems for maximal efficiency.

Today, there are two buildings under construction on campus that are also designed to LEED standards. A four-story medical building is being built on the site of the former Massachusetts Highway Department District 3 headquarters to house the new VA Central Western Massachusetts Healthcare System’s community-based outpatient clinic for veterans. On the campus quad, site work is underway for a nine-story building that will significantly expand our research and academic programs. We have set the green bar high for that project, seeking not only LEED certification but with aspirations for net-zero energy use.

Our sustainability efforts also extend to the rest of the campus. Plumbing retrofitting projects completed in the past 10 years have helped reduce the annual usage of potable water by 23 million gallons. Electrical consumption has been reduced by several LED lighting upgrade projects, replacing thousands of bulbs and fixtures across the campus. LED fixtures consume 40 to 60 percent less energy than legacy fluorescent or incandescent lighting.

Recently, we redesigned the air-handling system used to heat and cool a clinical pharmacy unit, which needs to operate 24/7. The new system is segregated from other areas of the building which are not in continuous use. This will save 316,000 kilowatt hours and 107,000 therms (of natural gas) annually.

Because of projects like these, even though the UMMS campus has grown by several million square feet of built space in the past 15 years, energy use per-square-foot of building space has dropped almost 30 percent.

The way we power our campus has also grown much more efficient. In 2012, we installed a high-efficiency gas-fired combustion turbine and an associated heat recovery system that improves our capacity to generate electricity and steam. Since natural gas burns more cleanly than oil, and the new jet turbine is highly efficient, the expanded power plant has lower greenhouse gas emissions, despite its added energy capacity: producing electricity on-site is approximately 30 percent more efficient than using electricity from the regional distribution network, due to the losses that occur when electricity travels long distances on distribution lines.

These improvements were recognized by the U.S. Environmental Protection Agency, which recently chose UMMS as one of four institutions in the country to earn the Energy Star Combined Heat and Power Award for the superior performance of its combined heat and power systems.

On the process improvement side, UMMS went paperless in 2016 for procurement and contracting. In a typical year, UMMS processes about 500 contracts for products and services used by the campus community. An average contract has 15 pages and is executed in triplicate: one copy each for the vendor, the contracting school department, and the UMMS Financial Services files. In addition to the contracts, the school must handle bid documents, summaries, invoices, and other reports for the various contracts.

Previously, that meant moving a mountain of paper from place to place for reviews, edits, and signatures then managing seemingly endless rows of filing cabinets. The new electronic cloud-based contract management system has reduced annual paper consumption by some 60,000 sheets.

The glass washing and sterilization process for laboratory equipment is an essential aspect of our research program and can be resource-intensive. Last summer, our facilities team completed a five-month project to upgrade all of the glass washing and sterilization systems in the LRB. The new equipment uses less electricity and will save an estimated 3.3 million gallons of water a year.

With more than 10,000 people using our academic medical center campus on an average day (pre-pandemic) the decisions each person makes will have a large collective impact on our carbon footprint. So, we have an active communications program to promote green choices.

For example, we promote the reuse of supplies and equipment through a “Swap Shop” on campus. We are increasing our electric vehicle charging capacity on campus, and we have held several information sessions and a test-drive event to promote use of electric vehicles. Recycling remains a priority, as well as encouraging people to power down their computers and office devices when not in use.

UMMS is a large institution. We have mission-critical programs that run 24/7 and, by their nature, require more energy than a typical commercial complex. Nevertheless, by working together, we are reducing our impact on the environment, through more sustainable practices. +

Suzanne Wood LEED AP, is an associate director of the facilities management department at UMass Medical School and leads the campus’s sustainability programs. Email: Suzanne.Wood@ umassmed.edu

This article is from: