SOLUTIONS MANUAL for College Algebra Essentials 1st Edition by Julie Miller.

Page 1


Contents Chapter R

Review of Prerequisites

R.1

Sets and the Real Number Line

1

R.2

Models, Algebraic Expressions, and Properties of Real Numbers

8

R.3

Integer Exponents and Scientific Notation

13

R.4

Rational Exponents and Radicals

20

R.5

Polynomials and Multiplication of Radicals

28

Problem Recognition Exercises: Simplifying Algebraic Expressions

35

R.6

Factoring

36

R.7

Rational Expressions and More Operations on Radicals

45

Chapter R Review Exercises

59

Chapter R Test

67

Chapter 1

Equations and Inequalities

1.1

Linear Equations and Rational Equations

71

1.2

Applications and Modeling with Linear Equations

85

1.3

Complex Numbers

96

1.4

Quadratic Equations

102

Problem Recognition Exercises: Simplifying Expressions Versus Solving Equations

118

1.5

Applications of Quadratic Equations

120

1.6

More Equations and Applications

127

1.7

Linear Inequalities and Compound Inequalities

143

1.8

Absolute Value Equations and Inequalities

152

Problem Recognition Exercises: Recognizing and Solving Equations and Inequalities

160

Chapter 1 Review Exercises

164

Chapter 1 Test

180

Chapter 1 Cumulative Review Exercises

186


Chapter 2

Functions and Graphs

2.1

The Rectangular Coordinate System and Graphing Utilities

189

2.2

Circles

202

2.3

Functions and Relations

212

2.4

Linear Equations in Two Variables and Linear Functions

220

2.5

Applications of Linear Equations and Modeling

234

Problem Recognition Exercises: Comparing Graphs of Equations

244

2.6

Transformations of Graphs

246

2.7

Analyzing Graphs of Functions and Piecewise-Defined Functions

258

2.8

Algebra of Functions and Function Composition

271

Chapter 2 Review Exercises

283

Chapter 2 Test

296

Chapter 2 Cumulative Review Exercises

300

Chapter 3

Polynomial and Rational Functions

3.1

Quadratic Functions and Applications

303

3.2

Introduction to Polynomial Functions

318

3.3

Division of Polynomials and the Remainder and Factor Theorems

329

3.4

Zeros of Polynomials

342

3.5

Rational Functions

359

Problem Recognition Exercises: Polynomial and Rational Functions

385

Polynomial and Rational Inequalities

387

Problem Recognition Exercises: Solving Equations and Inequalities

412

Variation

417

Chapter 3 Review Exercises

424

Chapter 3 Test

439

Chapter 3 Cumulative Review Exercises

448

3.6

3.7


Chapter 4

Exponential and Logarithmic Functions

4.1

Inverse Functions

451

4.2

Exponential Functions

460

4.3

Logarithmic Functions

471

Problem Recognition Exercises: Analyzing Functions

482

4.4

Properties of Logarithms

486

4.5

Exponential and Logarithmic Equations

493

4.6

Modeling with Exponential and Logarithmic Functions

511

Chapter 4 Review Exercises

521

Chapter 4 Test

531

Chapter 4 Cumulative Review Exercises

537

Chapter 5

Systems of Equations and Inequalities

5.1

Systems of Linear Equations in Two Variables and Applications

541

5.2

Systems of Linear Equations in Three Variables and Applications

559

5.3

Partial Fraction Decomposition

587

5.4

Systems of Nonlinear Equations in Two Variables

605

5.5

Inequalities and Systems of Inequalities in Two Variables

628

Problem Recognition Exercises: Equations and Inequalities in Two Variables

652

Linear Programming

656

Chapter 5 Review Exercises

668

Chapter 5 Test

685

Chapter 5 Cumulative Review Exercises

697

5.6



Section R.1

Chapter R Review of Prerequisites Section R.1 Sets and the Real Number Line 1. set

2. whole

3. natural

4. integers

5. set-builder

6. roster

7. rational

8. irrational

9. left

10. absolute value

5 , which is the 1 ratio of 5 and 1, so it is an element of  . True.

d. 5 can be written as

22. a.   1, 2,3, does not include

b.    0,1, 2,3, does not include

11. a  b or b  a

1 . 3

False. c.    , 2, 1,0,1, 2, does not include

12. base; exponent or power

1 . False. 3

13. square 14. 0; undefined

d.

15. 3 is an element of the set of natural numbers. 16.

1 . False. 3

1 is the ratio of 1 and 3, so it is an 3 element of  . True.

23. a.   1, 2,3, does not include 0.25 . False.

2 is an element of the set of rational 5 numbers.

b.    0,1, 2,3, does not include 0.25 . False.

17. 3.1 is not an element of the set of integers. 18.  is not an element of the set of rational numbers.

c.    , 2, 1,0,1, 2, does not include

19. The set of integers is a proper subset of the set of real numbers.

d. 0.25 is a repeating decimal, so it is an element of  . True.

20. The set of rational numbers is a proper subset of the set of real numbers.

24. a.    , 2, 1,0,1, 2, does not include  . False.

0.25 . False.

21. a.   1, 2,3, does not include 5 . False.

b.  cannot be written as the ratio of two integers, so it is not an element of  . False.

b.    0,1, 2,3, does not include 5 . False.

c.  cannot be represented by a terminating decimal or by a repeating decimal, so it is an element of  . True.

c.    , 2, 1,0,1, 2, .This includes 5 . True.

d.  is an element of  , so it is an element of  . True.

1


Chapter R Review of Prerequisites 25. The set given can be written in roster form as  , 10, 5,0,5,10, . The number 25 is an element of this set. True.

35. a. The first set is not a subset of the second, because the set of whole numbers does not include negative integers. False. b. The first set is a subset of the second, because all whole numbers are also integers. True.

26. The set given can be written in roster form as 1, 2,3,,9 . The number 7 is not an element of this set. False.

n , so all 1 integers are also rational numbers. True.

36. a. Any integer n can be written as

27. The number 0.8 is a repeating decimal, so it is rational. It can be written as 0.88 , and 0.88  0.8 . False.

b. The first set is not a subset of the second, because there all elements in the set of rational numbers that are not integers. False.

45 , so it 100 is rational. The number 0.45 can be written as 0.4545 , and 0.45  0.4545 . True.

28. The number 0.45 can be written as

37. a. The first set is not a subset of the second, because irrational numbers are real numbers that cannot be represented as a ratio of integers, so a number cannot be both rational and irrational. False.

29. The set given can be written in roster form as  0, 2, 4,6, . The number 22 is an element of this set. True.

b. The first set is not a subset of the second, because irrational numbers are real numbers that cannot be represented as a ratio of integers, so a number cannot be both rational and irrational. False.

30. The set given can be written in roster form as  , 8, 4, 0, 4,8, . The number 24 is an element of this set. True.

38. a. The first set is a subset of the second, because the real numbers are made up of rational and irrational numbers. True.

31. Irrational numbers are real numbers that cannot be represented as a ratio of integers, so a number cannot be both rational and irrational. False.

b. The first set is a subset of the second, because the real numbers are made up of rational and irrational numbers. True.

n , so all 1 integers are also rational numbers. True.

32. Any integer n can be written as

39. a. 6

b. 6

c. 12 , 6

33. a. The first set is a subset of the second, because all of the elements in the first set are elements of the second set. True.

d. 0.3,0.33, 0.9, 12,

b. The first set is not a subset of the second, because 0 is in the first set but not in the second set. False. 34. a. The first set is a subset of the second, because all of the elements in the first set are elements of the second set. True.

e.

5,

f.

5, 0.3, 0.33, 0.9, 12,

6

40. a. 1

b. The first set is not a subset of the second, because NM and TX are in the first set but not in the second set. False.

c. 0, 4 , 1

2

11 ,6 4

11  , 6, 4 6

b. 0, 1 d. 0, 4, 0.48,1,9.4


Section R.1 

41. a  5

42. b  6

5? 9   3 5 5 5? 9 3     3 5 5 3 25 ? 27 False   15 15

43. 3c  9

44. 8d  16

55.  7,   ;  x | x  7

45. m  4  70

46. n  7  4

56.  2,   ;  x | x  2

e. f.

2

 2

,  13

54.

, 0, 4, 0.48,1,  13,9.4

47. 3.14   ?

57.  , 4.1 ;  x | x  4.1

?

3.14  3.141592654 True

58.  ,  2.93 ;  x | x  2.93

?

48. 7   7 ?

59.  6, 0 ;  x | 6  x  0

?

60.  2, 8 ;  x | 2  x  8

7   2.645751311 True

49. 6.7  6.7

6.7 ⱨ 6.7 True

61.

 , 6

62.

 ,  4

63.

 7 1   ,  6 3

64.

 4 7  ,   3 4

65.

 4, 

66.

 3, 

?

50. 2.1   2.1

2.1ⱨ 2.1 True ?

6.15  6.15

51.

?

6.151515  6.155555 False ?

2.93  2.93

52.

?

2.933333  2.939393 False

53.

9 ? 11  7 8 9 8 ? 11 7     7 8 8 7 72 ? 77 False   56 56 

3

67.  x | 3  x  7

68.  x | 4  x  1

69.  x | x  6.7

70.  x | x  3.2

 3 71.  x x    5 

 7 72.  x x   8 


Chapter R Review of Prerequisites 73. 6    6  6

74. 4    4  4

88. 8  2  10  10 or 2   8  10  10

75. 0  0

76. 1  1

89. 8  3  8  3 or

3 8  8 3

77.

2 2  

 2  2  2  2

90. 11  5  11  5 or

78.

6 6  

 6  6  6  6

91. 6  2  2  6 or 2  6  2  6

79. a.   3    3

92. 3      3 or   3    3

b. 3      3       3

93. a. 42  4  4  16 b.  4   4   4  16

80. a. for m  11, m  11  m  11

2

b. for m  11, m  11    m  11  11  m

c. 42    4  4  16 d.

81. a. for x  2, x  2  x  2

f.

82. a. for t  6, t  6    t  6  t  6

4 is not a real number.

94. a. 92  9  9  81

b. for t  6, t  6  t  6

b.  9   9   9  81 2

z 5 z 5  1 z 5 z 5

c. 92    9  9  81 d.

b. for z  5, z  5   z  5 z 5   1  1 z 5 z 5 z 5 84. a. for x  7,

42

e.  4  2

b. for x  2, x  2    x  2   x  2

83. a. for z  5,

5  11  11  5

93

e.  9  3 f.

7x 7x  1 7x 7x

9 is not a real number.

95. a. 3 8  2 b. 3 8  2

b. for x  7, 7x 7x 7x   1  1 7  x   7  x 7x

 

c.  3 8   3 8  2

85. 1  6  5  5 or 6  1  5  5 86. 2  9  7  7 or 9  2  5  7

d.

100  10

e.

100 is not a real number.

f.  100  10

87. 3   4  7  7 or 4  3  7  7

96. a. 3 27  3 b. 3 27  3

4


Section R.1

2 106. 5  4  6  2  8   31  

c.  3 27   3 27  3

d.

49  7

 5  4  6  6   31  

e.

49 is not a real number.

 5   4  6  36  31 

2

 5   4  6  5  

f.  49  7

 5   4  30   5   26   21

3

2 2 2 8  2 97.        3 3 3 3 27

107.

52  32  25  9  16  4

4 4 4 64  4 98.        5 5 5 5 125

108.

62  82  36  64  100  10

99.  0.2   0.2   0.2   0.2   0.2

109.

 9  16    3  4  7  49

110.

 8  125    2  5  7  343

3

2

4

 0.0016 100.  0.1   0.1   0.1   0.1   0.1

3

3

2

3

2

3

3

4

2

2 7  2 2 7  111. 4      4       5 10   2 5 10 

 0.0001 101.

169 13  25 5

121 11  36 6

102.

 4 7  4      10 10 

 3  4      10  9  4  100

103. 20  12 36  32  2  20  12  36  9  2

 20  12  4  2  20  12  2  20  24  4

25

 1  2  1  2   1 1 112. 6         6      9 4  3   2  

 200  4  48  200  192  8

 6  12  3  5  18   2

2

1

 200  22  48

2

4 9 9    1 100 25

1   104. 200  22  6   4  200  22 12  4  2 

2 105. 6  12  3 1  6  18  

2

 4 1 9 1  6      4 9 9 4 9  4  6    36 36 

 5  6    36 

 6   12  3  25  18   6   12  3  7    6   12  21  6  9  3

1   6 5 5    1  36  6  6 

5


Chapter R Review of Prerequisites

113. 9  6  3  7  8  25

 4000  118. Wh  175   4000  16.1

 9  6  4  8  25

 4000   175   4016.1

 9   6  4  8   25  9   6  4   25

119. V 

 9  10  5 927

 8  2 4  3  5  9  8  2  4  2   9  8  2  4  2  9  8  12  3

124. A bracket is used if an endpoint to an interval is included in the set.

2  8

144  25  3  10 28

125.  represents the set of integers. All integers belong to  (the set of rational numbers). Therefore,  is a subset of  . However,  1 contains fractions and decimals, such as 2 and 0.2, that are not integers. Therefore, .

169  13 6  13  13 6 Undefined  0 116.

 121 cc

123. A parenthesis is used if an endpoint to an interval is not included in the set.

84  4

122  52  3  10

3

122. All integers can be written as the integer itself over the integer 1.

 8  2  6  3

115.

 14.44  8

121. All terminating decimals can be written as a decimal fraction—that is, a fraction with a denominator that is a power of 10.

 8  24  3  5   9

11  13  4  2

3

 1.0   250  120. V  6.0   10.2 L  0.5   293 

114. 8  2 4  2  5  5  9

  3.8  8 2

2

 173.6 lb

 9   6  4   25

2

 4  92  22  32   5 2  4  9 7  4   12  4 3   12  4 

25  4  9 3   3

20 Undefined 0

 4000  117. Wh   200   4000  5.5   4000    200   4005.5 

126. The statement 1   indicates that the set containing the element 1 is a subset of  . However, the statement 1   does not make sense, because the number 1 (not written in set brackets) does not represent a set. A quantity that is not a set cannot be a subset of another set. 127. If n  0 , then n  n  n  n  0

2

128. If n  0 , then n  n  n    n   n  n  2n

2

129. If n  0 , then n  n  n  n  2n

 119.5 lb

6


Section R.1 130. If n  0 , then n  n  n    n   n  n  0

141.

131. If n  0 , then  n   n 132. If n  0 , then  n     n   n 133. b  0

134. a  0

135. b  0

136. a  0

6744.25 142.

137. a is negative, b is positive, and c is negative. ab 2 So the sign of 3 can be represented by c

     2         , which is positive.       3

37,741.81 143.

138. a is negative, b is positive, and c is negative. a 2c So the sign of 4 can be represented by b

  2            , which is negative.       4 0.58

139. a is negative, b is positive, and c is negative. The sum of a and c must be negative. So the

144.

b  a  c can be represented by a2     3         , which is negative.     2 3

sign of

0.18 140. a is negative, b is positive, and c is negative. The even power of any nonzero number is

145. There are missing parentheses around the denominator.

 a  b  b  c  can positive. So the sign of b      be represented by     . Also,   2

4

either  a  b  or  b  c  can equal zero. So the sign of the expression can also be  0    0 or    0  0 . represented by   The sign is positive or zero.

7


Chapter R Review of Prerequisites Section R.2 Models, Algebraic Expressions, and Properties of Real Numbers 1.  5, 2 ;  x | 5  x  2

b. m  0.04 x 2  3.6 x  49

m  0.04  50  3.6  50  49 2

2.  1,   ;  x | x  1

m  31 mpg c. m  0.04 x 2  3.6 x  49

2  9  9  2 or 9  2  9  2

3.

m  0.04  75  3.6  75  49 2

4.   6  6   or 6    6   5. True

6. False

7. False

8. True

12  9  9 9.

2

m  4 mpg The model breaks down. The value of 4 mpg is not possible. 26. a. P  1718t 2  82,000t  10,000

P  1718  22  82,000  22  10,000 2

  2  3

P  982,000 bacteria

7  1

b. P  1718t 2  82,000t  10,000

12   9  3   2  3 2

12   6   2  3 2

 

10.

P  1718  36  82,000  36  10,000 2

6 6 12   18  3 6

102  82

 16  4 

2

P  735,000 bacteria

12  36   2  3

c. P  1718t 2  82,000t  10,000

6 12   54 66    11 6 6

100  64

 4  2

2

36

 2

2

P  1718  48  82,000  48  10,000 2

P  12,000 bacteria The model breaks down. It is impossible to have 12,000 bacteria.

6 3  4 2

27. a. E  27.45t  704.6

E  27.45  3  704.6

11. dependent

12. breakdown

13. term

14. coefficient

15. commutative

16. 0

17. 1

18. identity

19.  x

20. distributive

21. reciprocal

22. associative

23.  a  b   c

24. 0

28. a. W  150  1.2t

25. a. m  0.04 x  3.6 x  49

W  142.8 lb

E  $622.25 b. E  27.45t  704.6

E  27.45 15  704.6 E  $292.85 c. No. Eventually, the model would produce a negative expenditure. This is not possible.

W  150  1.2  6

2

m  0.04  35  3.6  35  49 2

m  28 mpg

8


Section R.2 43. a. C  159n  0.11159n 

b. W  150  1.2t

W  150  1.2 12

C  159n  17.49n C  176.49n

W  135.6 lb c. No. Eventually the model would produce a negative weight or a weight too small to sustain life. This is not possible. 29. Tn  Ts  16

30. K  C  273.15

31. P  W  M

32. S  P  D

33. a. J  C  1

b. C  J  1

34. a. R  F  9

b. F  R  9

35. D  0.25P

36. t  0.20c

37. v  2 gh

38. h  8 t

b. C  176.49n

C  176.49  4 C  $705.96 44. a. C  149n  0.16 149n   40

C  149n  23.84n  40 C  172.84n  40 b. C  172.84n  40

C  172.84  2  40 C  $385.68 45. 12 x 2 y 5  xy 4  9.2 xy 3

 12 x 2 y 5   xy 4  9.2 xy 3

39. a. C  0.12k  14.89

Terms: 12x y ,  xy 4 , 9.2xy 3 ; coefficients: 12, 1 , 9.2 2

b. C  0.12k  14.89

C  0.12 1200  14.89 C  $158.89

5

46. 6c 2 d  6.4cd 5  d 6

 6c 2 d  6.4cd 5  d 6

40. a. C  3.58n  13.50

Terms: 6c d , 6.4cd 5 , d 6 ; coefficients: 6, 6.4 , 1 2

b. 5000  2000  3000 The family used 3 thousand gal over the 2000-gal base. C  3.58n  13.50

47.

C  3.58  3  13.50 C  $24.24 41. a. C  640m  200n  500

5 1  5 m m 5 Term: ; coefficient: 5 m

2 1  2  n n 2 Term:  ; coefficient: 2 n

48. 

b. C  640m  200n  500

C  640 12  200  3  500 C  $8780

49. x y  z  1x y  z

42. a. C  105n  35 L  40

Term: x y  z ; coefficient: 1

b. C  105n  35 L  40

50. m 3  n  1m 3  n

C  105 12  35  2  40

Term: m 3  n ; coefficient: 1

C  $1370

51. 7  x  x  7

9


Chapter R Review of Prerequisites 52. 9  z  z  9

b.

53. 3  w  w   3

5  4   1 4  5

The multiplicative inverse is 54. 11  p  p   11

7 7 64. a.    0 9 9

1 1 55. y   y 3 3 56. z 

The additive inverse is

5 5  z 2 2

The multiplicative inverse is 

58.  c  4  5  c   4  5  c  9

b. 0   ?  1 The multiplicative inverse is undefined.

4  9   4 9 60.    p       p  1 p  p 9  4   9 4

66. a. 1   1  0 The additive inverse is 1 .

61. a. 8  8  0 The additive inverse is 8.

b. 1 1  1 The multiplicative inverse is 1.

 1 b. 8      1  8

67. a. 2.1   2.1  0 The additive inverse is 2.1 .

1 The multiplicative inverse is  . 8

 1  b. 2.1    1  2.1

62. a. 9   9  0 The additive inverse is 9 .

The multiplicative inverse is

 1 b. 9     1  9

1 10 or . 2.1 21

68. a. 4.5   4.5  0 The additive inverse is 4.5 .

1 The multiplicative inverse is . 9

 1  b. 4.5   1  4.5  The multiplicative inverse is 1 10 2 or  . 4.5 45 9

5  5    0 4  4 The additive inverse is 

9 . 7

65. a. 0  0  0 The additive inverse is 0.

1 1  5w    5 w  1w  w 5 5

63. a.

7 . 9

7  9 b.       1 9  7

57.  t  3  9  t   3  9  t  12

59.

4 . 5

5 . 4

69. 14 w3  3w3  w3   14  3  1 w3  16w3

10


Section R.2 70. 12t 5  t 5  6t 5  12  1  6 t 5  5t 5

77.   4 x     1  4 x       4 x  

71. 3.9 x3 y  2.2 xy 3  5.1x 3 y  4.7 xy 3

 3.9 x y  5.1x y  2.2 xy  4.7 xy 3

3

3

 9 x 3 y  6.9 xy 3

3 2

4

3 2

 24 x 2  16 x  8

 0.004m n  0.01m n  0.005m n 4

4

3 2

80. 6 5 y 2  3 y  4

 0.007 m3n 2

81.

82.

 

3 12 p 5 q  8 p 4 q 2  6 p 3q 4 3 3 3   12 p 5 q   8 p 4 q 2  6 p 3q 4 4 4 9  9 p 5 q  6 p 4 q 2  p 3q 2

 8w  16  14w  28  12  22w 84. 3  2 z  4  8  z  9  84

 6 z  12  8 z  72  84  14 z 85.   4u  8v   3  7u  2v   2v

 4u  8v  21u  6v  2v  25u  16v

2

86.  10 x  z   2  8 x  4 z   3 x

 12 p 3  18.3 p 2  24 p  6.6 76. 2 5a 4  a 3  0.4a  0.8

 

 10 x  z  16 x  8 z  3x  29 x  9 z

87. 12  4  8  2v   5  3w  4v    w

 2  5a  2   a  2  0.4a   2  0.8 4

 12  4  8  2v  15w  20v   w

3

 12  4  8  22v  15w  w

 10a  2a  0.8a  1.6 4

83. 2  4w  8  7  2w  4  12

  3   4 p   3   6.1 p   3  8 p   3  2.2

75. 3 4 p 3  6.1 p 2  8 p  2.2

2 6 x 2 y  18 yz 2  2 z 3 3 2 2 2   6 x 2 y   18 yz 2  2 z 3 3 3 3 4  4 x 2 y  12 yz 2  z 3 3

1 4 3 4 3 yz  y z  yz 4  y 4 z 10 4 2 1 4 3 3  yz  yz 4  y 4 z  y 4 z 10 4 2 1 4 10 3 2 3  yz   yz 4  y 4 z   y 4 z 10 10 4 2 2 1 4 10 3 6  yz   yz 4  y 4 z  y 4 z 10 10 4 4 11 4 3 4  yz  y z 10 4

3

 30 y 2  18 y  24

1 1 2 73. c 7 d  cd 7  c 7 d  2cd 7 3 2 5 1 7 2 7 1  c d  c d  cd 7  2cd 7 3 5 2 5 1 3 2 1 2   c 7 d   c 7 d  cd 7   2cd 7 5 3 3 5 2 2 5 7 6 7 1 7 4 7  c d  c d  cd  cd 15 15 2 2 1 3   c 7 d  cd 7 15 2

 6  5 y 2  6   3 y   6  4

 0.006m 4 n  0.002m3 n 2

74.

 

79. 8 3 x 2  2 x  1  8  3 x 2  8   2 x   8  1

72. 0.004m n  0.005m n  0.01m n  0.007 m n 4

1 1  1  78.   k  7   1  k   7    k  7 2  2 2 

3

3

 12  32  88v  60 w  w  88v  59w  20

11


Chapter R Review of Prerequisites 88. 6  2  9 z  6 y   8  y  z    11

97. W  2 L  3

 6  2  9 z  6 y  8 y  8 z   11

98. L  3S  5

 6  2  2 y  17 z   11

99. E2009  E2008  489,000

 6  4 y  34 z  11  4 y  34 z  5

100. C2011  C2010  0.25

2   89. 2 y 2  13  6 y 2  9  10  9 3  

1 1 c h 15 25 1 1 G   240   500 15 25 G  16  20  36 gal

101. G 

   2 y   4 y  9  9

 2 y 2  13  4 y 2  6  10  9 2

2

 2 y2  4 y2  9  9  6 y2 3   90. 6  5t 2  12  8t 2  5  11t 2 4  

1 1 c h 22 32 1 1 G   220   512 22 32 G  10  16  26 gal

102. G 

   6  11t  4  11t

 6  5t 2  9  6t 2  5  11t 2 2

2

 6  11t 2  4  11t 2  10

103. The commutative property of addition indicates that the order in which two quantities are added does not affect the sum. The associative property of addition indicates that the manner in which quantities are grouped under addition does not affect the sum.

b   6 6    3 91. 2a 2  1 2 92.

b 2  4ac 

 6 2  4  2 4

 36  32  4  2 93.

104. For any nonzero number a, the multiplicative 1 inverse is defined as . If a  0 , this would a 1 be which is undefined. 0

 x2  x1  2   y2  y1  2 

 1  2 2  1   4

 32   52  9  25  34

2

105.

y  y1 3.7  3.1 6.8    2 94. 2 x2  x1 2   1.4 3.4 95.

96.

1 2 1  22  2  r h     7   6 3 3 7  22 6468   49 6   308 21 21

106.

4 3 4  22  3 88  9  792  r     3  27  3 3 7  7 21   7

12


Section R.3 Section R.3 Integer Exponents and Scientific Notation 1. 

2.

0

1 1  5 x  2 y  15   2 y  20 5 10 2 1 3  x  y  3  y  2  x  y 1 5 5 5

 2  d.   p  1  3  0

 3 16. a.     1  7

1 5  3a  2b  6  12a  2b 3 6 2 5 7  a  b  2  10a  b  9a  b  2 3 3 3

b. 

30 1 1 1    30   1   7 7 7 7

3 3 3 3 c.  w0    w0   1   7 7 7 7

3. a  6    a  6  6  a

0

 3  d.   w  1  7 

4. 2  t    2  t   t  2 5. t  w  1.93

6. L  D  3

7. 1

8.  n

9. scientific

10. magnitude

11. m  n

12. quotient

17. a. 82 

1 1  2 8 64

b. 8 x 2  8 

1 8  2 2 x x

c.  8 x  

1

2

13. a. 8  1 0

1 64 x 2

1 1 1 d. 82  1 82  1  2  1   8 64 64

b. 80  1 80  11  1 c. 8 x 0  8  x 0  8 1  8

18. a. 7 2 

d.  8 x   1 0

14. a. 70  1 b. 7 0  1 70  11  1

1 1  2 7 49

b. 7 y 2  7 

1 7  2 2 y y

c.  7 y  

1

2

c. 7 y  7  y  7 1  7 0

8x

2

0

d.  7 y   1

7 y

2

1 49 y 2

0

d. 7 2  1  7 2  1

1 1 1  1   2 7 49 49

0

 2 15. a.     1  3 b. 

19. a.

20 1 1 1    20    1   3 3 3 3

1 1 q2     q2 1 1 1 q 2 q2

b. q 2 

2 2 2 2 c.  p 0    p 0   1   3 3 3 3

13

1 q2


Chapter R Review of Prerequisites 1 5 p3  2 q2 q

30.

1 2 5q 2 q  3 p3 p

31.

c. 5 p 3 q 2  5  p 3  q 2  5  p 3  d. 5 p 3q 2  5  p 3  q 2  5 

20. a.

1 t

 4

1 t4  1  t 4 1 1 t4

1 b. t 4  4 t

32.

1 11u 2 c. 11t 4u 2  11 t 4  u 2  11 4  u 2  4 t t d. 11t 4u 2  11 t 4  u 2  11 t 4 

1 11t 4  2 u2 u

21. 25  27  257  212 33. 22. 43  48  438  411 23. x 7  x 6  x 2  x 76 2  x11 24. y 3  y 7  y 4  y 37 4  y 8



25. 3c 2 d 7 4c 5 d  3  4  c 25  d 71

34.

 12  c 3  d 8

72 1 1  7 24  7 2  2  4 7 7 49 18k 2 p 9 18 k 2 p 9    27 k 5 p 2 27 k 5 p 2 2 2   k 25  p 92   k 3  p 7 3 3 2 1 2 p7   3  p7  3 3 k 3k

10a 3b11 10 a 3 b11    25a 7b3 25 a 7 b3 2 2   a 37  b113   a 4  b8 5 5 8 2 1 2b   4  b8  4 5 a 5a 2m 6 n 4 2 m 6 n 4    6m 2 n 1 6 m 2 n 1 1 1   m 6 2  n 4 1   m 4  n5 3 3 5 1 1 n   4  n5  3 m 3m 4

4 p 7 q 5 4 p 7 q 5   2  2  2  p 7 2  q 5 2 2 2 2p q 2 p q  2  p 5  q 7  2 

1 12d 8  12  3  d 8   3 c c



  4 4

26. 7 m 3 n 8 3m 5 n   7   3  m 3 5  n 81

35. 42

 21 m 8  n 7 1 1 21  21 8  7   8 7 m n mn

36. 23

27.

29.

23

6

  2 2

37.

y 3 y 6 y 36 y 3  2  2  y 32  y1  y y2 y y z 8 z12 z 812 z 4  3  3  z 4 3  z1  z z3 z z

5

35

p   p

15

2 7

27

 p 14 

  q

42

 q 8 

38. q 4 28.

3

1 7 2q 7 q  5 p5 p

2

1 p14

1 q8

39.  2cd    2  c   d   8c3 d 3 3

65 1 1  658  63  3  8 6 6 216

3

3

3

40.  8mn    8  m   n   64m 2 n 2 2

14

2

2

2


Section R.3

 7a    7  a   72 a 2  49a 2  7a  41.     b b2 b2 b2  b2 2

2

2

 36a 6b9  50.   9a 2b 4 

2

2

 4a 4b13

  

4 4 p4 q4 pq  p4q4   pq  42.       4 256 256  4 4

  4 

43. 4 x 2 y 3

  4  x   y   16 x y  16yx 2

2 2

2

3 2

6

4

4

6

   3  w   z 

3 5 2

44. 3w z

3 2

2

5 2

 4 x 3 z 5  51.   12 y 2 

9 z10  9w z  6 w 6 10

 7k  45.  2  n 

2

 7 kn 

 5w  46.   v  5

   7 k n

2 2

2

2

3

4

 3 z 2 w1  52.   15 p 4 

5 3

3

1 3

3

2

 1    4

3

 4 a b 2

3

 1    5

3

8 26

0

53.  2 y 

 64  64  1  1

3

1 16a8b 26

3

x   y  z  3 3

2 3

5 3

27 z15 x9 y 6 3

z  w   p  2 3

1 3

 53 z 6 w3 p 12 

 1     8 2  43  1  2

13 2

 a 8b 26

1     z 2 w1 p 4  5 

1 1 v3  53 w15v3  3  15  v3  5 w 125w15  1 47.    8

4 2

 33 x 9 y 6 z15 

   5  w   v 

 5w v

2

1

 1    3

1 1 4 n  2 n  49 k 49k 2 5 1 3

 4 2

2

 a  b 

2

1

1     x 3 y 2 z 5  3 

4

3

 4a 62b9 4

4 3

125w3 p12 z 6

 6 y z    2 y  6  y   z  3

2 8 2

3

2

2 2

8 2

  2  62  y 3  y 4  z16 3

 1 48.    9

2

 1    3

4

0

 1     92  34  1  27 

  2  62  y 7  z16 3

 81  81  1  1  16m n  49.  5 2   8m n  2

7

2

 2m 25 n7 2

 2m 3 n9   2  

2

1

 2

2

54.  15 z 

2

5z w  4

 2 y

2

3

 7

36 z16 9 z16  7 7 8 y 2y

6 3

  w 

  15 z 2  53 z 4

m  n  3 2

2

62 z16

3

6 3

  15  53  w18  z 2  z12 2

9 2

  15  53  w18  z10 2

 m 6 n 18 2

m6

m6   22 n18 4n18

15

53 z10

125 z10 5 z10    152 w18 225w18 9w18


Chapter R Review of Prerequisites  1 1 1 55.      2 3 6

3

 

 3   1   2   1   1                  3   2   2   3   6  

3

3

3

 3 2 1      6 6 6  1 1 1 56.       3 4 2

 2    6

3

 x 3 4 x 2   61.  x 6  

1

 x12 x 2 x 6

 

 x16

 1    3

2

 4 3 6       12 12 12 

2

 1     12 

2

 y 12 y 3 y 4

 y 11

2

 1    3

3 2 2

 1    6

3

 1 58.     3

 1    4

2

 23  33  63

 1    2

2

  3  4  2 2

2

2

2

2

1

 31 a 2b 4 6 12

3 a b 3

1

 3 ab 2

5

v w x  15

10

20

x 32 16 x 32   v 21w28 16  1 v 21w28 2

3 2 3

5

3 2 1

3 6

9

6

1 5

3 2

4

1 4 4

4

16

4 16

 143 v 6 w9 x 6  211 v 5 w3 x 2   7 

4

v w x  16

4 16

 143  21  7   v 15 w2 x8 4

1

   3a b  3

1

14v w x   7v w x 64.    21v w x  14 v w x    7   v w x  21 v w x

16  y 4 2 y 4   7 8 x7 x 3

5

 4281 x 7 y 4

 1   3  60.  2 4   5 4   3a b   a b 

42 v 2 w6 x 4 5  1 v 15 w10 x 20 4 8 12 8  2 vw x

 42  24   1  v 21w28 x 32

1

  4 x 3 y 5   8 x13 y 14   2 6 10 1 13 14 4 x y 8 x y

4 5

2

 42 v 2 w6 x 4  24 v 8 w12 x8   1

 9  16  4  3  1   8  59.  3 5   13 14   4x y   x y 

1

3 2 4

2

 8  27  216  197 2

1

4vw x   v w x 63.    2v w x  3

 1 57.    2

 y11

2

3

1

1

 

 y 2 6 y 3   62.  y 4  

  12  144 3

1

 x 16 1  16 x

 33  27

 4   1   3   1   6   1                     4   3   3   4   6   2  

5 4 1

143  21 x8

 74 v15 w

65.  3 x  5

14

5 4

 2

24 x8 v15 w2

 3x  5 2   3x  514 2   3x  512

3 a b

66.  2 y  7 z 

8

9a b8

16

4

 2 y  7 z 13   2 y  7 z  413 9  2 y  7z


Section R.3 67.  6v  7     6v  7    10 9

109

68.  4 x  9    4 x  9   5 11

511 

  6v  7 

c. Move the decimal point 0 places. The exponent on 10 is 0. 2.71  2.71  100

90

  4 x  9

55

73. a. Move the decimal point 1 place. The number is between 0 and 1, so use a negative power of 10. 0.86  8.6  101

1 1  1 2  4 22 21 1 1   1 2  4 4 2 1 2 4 8 16      4 4 4 4 4 31  4

69. 22  21  20  21  22 

b. Move the decimal point 0 places. The exponent on 10 is 0. 8.6  8.6  100 c. Move the decimal point 1 place. The number is greater than 10, so use a positive power of 10. 86  8.6  101

1 1  1 3  9 32 31 1 1   1 3  9 9 3 1 3 9 27 81      9 9 9 9 9 121  9

70. 32  31  30  31  32 

74. a. Move the decimal point 1 place. The number is between 0 and 1, so use a negative power of 10. 0.792  7.92  101 b. Move the decimal point 0 places. The exponent on 10 is 0. 7.92  7.92  100 c. Move the decimal point 1 place. The number is greater than 10, so use a positive power of 10. 79.2  7.92  101

71. a. Move the decimal point 5 places. The number is greater than 10, so use a positive power of 10. 350, 000  3.5  105 b. Move the decimal point 5 places. The number is between 0 and 1, so use a negative power of 10. 0.000 035  3.5  10 5

75. Move the decimal point 10 places. The number is greater than 10, so use a positive power of 10. 29,980,000,000 cm/sec  2.998  1010 cm/sec

c. Move the decimal point 0 places. The exponent on 10 is 0. 3.5  3.5  100

76. Move the decimal point 10 places. The number is greater than 10, so use a positive power of 10. 149,000, 000 km  1.49  108 km

72. a. Move the decimal point 3 places. The number is greater than 10, so use a positive power of 10. 2710  2.71  103

77. Move the decimal point 5 places. The number is between 0 and 1, so use a negative power of 10. 0.000 01 cm  1.0  105 cm

b. Move the decimal point 3 places. The number is between 0 and 1, so use a negative power of 10. 0.002 71  2.71  10 3

78. Move the decimal point 12 places. The number is between 0 and 1, so use a negative power of 10. 0.000 000 000 001 sec  1.0  10 12 sec

17


Chapter R Review of Prerequisites 79. Move the decimal point 0 places. The exponent on 10 is 0. 4.2 L  4.2  100 L

c. 101 is greater than 10. Move the decimal point 1 place to the right. 1.87  101  18.7

80. Move the decimal point 0 places. The exponent on 10 is 0. 8.25 hr  8.25  100 hr

85. 1.67  1021 molecules

81. a. 10 6 is between 0 and 1. Move the decimal point 6 places to the left. 2.61  10 6  0.000 002 61

86. 3.0  1012 bytes  3, 000, 000, 000, 000 bytes

 1,670,000,000,000,000,000,000 molecules

87. 7.0  106 m  0.000007 m

b. 106 is greater than 10. Move the decimal point 6 places to the right. 2.61  106  2, 610, 000

88. 4.7  10 7  0.000 000 47



 

89. 2  10 3 4  108   2 4  103 108

c. 10  1 The decimal point does not move. 2.61  100  2.61 0

 8  10



5

 

90. 3  104 2  101   3 2  104 101

2

82. a. 10 is between 0 and 1. Move the decimal point 2 places to the left. 3.52  102  0.035 2

 6  10

b. 102 is greater than 10. Move the decimal point 2 places to the right. 3.52  102  352

91.

8.4  106  8.4   106       2   4  104 2  2.1  10  2.1  10

c. 100  1 The decimal point does not move. 3.52  100  3.52

92.

6.8  1011  6.8   1011    2  108  3.4  103  3.4   103 



3

  

93. 6.2  1011 3  104   6.2 3  1011 104

1

83. a. 10 is between 0 and 1. Move the decimal point 1 place to the left. 6.718  10 1  0.6718

 18.6  10

15

 1.86  101  1015  1.86  1016

b. 100  1 The decimal point does not move. 6.718  100  6.718



  

94. 8.1  106 2  105   8.1 2  106 105

c. 101 is greater than 10. Move the decimal point 1 place to the right. 6.718  101  67.18

 16.2  1011

 1.62  101  1011  1.62  10

12

84. a. 101 is between 0 and 1. Move the decimal point 1 place to the left. 1.87  101  0.187

95.

b. 100  1 The decimal point does not move. 1.87  100  1.87

3.6  1014  3.6   10 14     5   105  5  105  0.72  1019

 7.2  101  10 19  7.2  10 20

18


Section R.3

96.

3.68  108  3.68   108     4   102  4  102

101.

 0.92  10 10

8  1010 bytes  8   1010       6  songs  4   10  6 bytes 4  10 song  2  104 songs

 9.2  101  1010  9.2  1011

 6.2 10  4.4 10  5

97.

102.

22

2.2  1017 5 22  6.2  4.4   10 10  10    12.4  10  17  2.2   10 

103. 5 L 

 1.24  101   1010  1.24  10

 2.5  1013 red blood cells

 3.8 10  4.8 10  2

4

104. 4.3 light-yr 

5

2.5  10 4 2  3.8  4.8   10 10       5  2.5   10   7.296  10

 25.37  1012 mi

7

  2.537  101   1012 mi  2.537  1013 mi

365 days 24 hr 3600 sec   1 yr 1 day 1 hr  31,536,000 sec

105. In the expression 6 x 0 , the exponent 0

applies to x only. In the expression  6 x  , the exponent 0 applies to a base of (6x). The first expression simplifies to 6, and the second expression simplifies to 1. 0

 3.1536  107 sec  1.0  104 gal  7 b.   3.1536  10 sec 1 sec 

  

 1.0 3.1536  104 107 gal

106. Scientific notation is used to represent very large and very small numbers to eliminate the need to write numerous zeros. It is also helpful to keep track of the location of the decimal point when performing calculations.

 3.1536  10 gal 11

24 hr 60 min  1 day 1 hr

 1440 min  1.44  103 min  65 beats  1.44  103 min b.   1 min 

107. Yes;  4  16  0 2

108. Yes;  4  64  0 3

  651.44  103 beats

109. No

 93.6  103 beats

5.9  1012 mi 1 light-yr

  4.3 5.9   1012 mi

99. a. 1 yr 

100. a. 1 day 

1  106  L 5  106 red blood cells  1L 1 L

 25  1012 red blood cells

11

98.

6  1010 bytes  6   1010    videos bytes  5   106  5  106 video  1.2  104 videos

 9.36  101  103 beats

110. Yes; 100 1 

 9.36  104 beats

19

1 1 100


Chapter R Review of Prerequisites 111. F 

Gm1m2 d2 6.6726  10 11 5.98  1024 1.901  1027

   7.0  10  6.67265.981.901  10 10 10   7.0 10  

xm  x m8 8 x

123.

x 2 m 7  x 2 m7 m5  x 2 m7m5  x m 2 m 5 x

11 2

11

2

24

27

Gm1m2 112. F  d2 6.6726  1011 5.98  1024 8  101  2 6.371  106



 6.6726 5.98 8  10  6.3712

11



  x

125. x 4 m

3n

4 m3 n

  y

126. y 5 m

10 10  10  24

127.

1

2n

5 m2 n

 x12 mn  y10 mn

x 4 m 3 y 5 n  7  x 4 m3 m7 y 5 n7 3n 2 m  7 3 n 2 x y

6 2

 x 4 m3m7 y 5 n73n2  x 3m 4 y 2 n5

 7.96  102 N 128.

x 2 n4 y 5n  x 2 n4 n1 y 5 n 3n7 n1 3 n  7 x y

113. a. <

b. >

114. a. >

b. <

115. a. >

b. =

129. 6.284  106  6, 284,000

116. a. >

b. =

130. 9.128  104  0.0009128

117. x m x 4  x m 4

yn  y n 3 3 y

122.

y 3 n 5 124. 2 n4  y 3n5 2 n4  y 3n52 n 4  y n9 y

11 2

 1.55  1018 N

121.

 x 2 n4n1 y 5 n3n7  x n5 y 2 n7

118. y n y 7  y n7

131. 2.45  107  0.000000 245

119. x m9 x m2  x m9 m 2  x 2 m7

132. 1.78  1010  17,800,000,000

120. y n9 y n1  y n9 n1  y 2 n8

Section R.4 Rational Exponents and Radicals 1. a. c.

b.

36

36, 0

2.

36,  4, 0 9 ,  4, 0 49

d.

36,

e.

37

f.

37, 36,

t 3t 7  t 372  t 2 t2

4. 8 x 5 y 2



1

w4 v2 4 2 w v   v 2 w4

3.

  8  x 5 y 2  1

y2 8 x5

5. 3 x 5 y 2 2 x 3 y  6  x 53 y 21  6 x 2 y 3

 3x 2  6.  3  y 

9 ,  4, 0 49

20

2

 3x 2 y 3

   3 x y  9 x1y 2

2

4

6

4

6


Section R.4 7. n 9.

 a  or a n

m

n

m

8. radicand; index

b.  125

10. n a

c. 1251 3   3 125  5

11. x

12. x

13. n a  b

14. rationalizing

15. 4 81  3

16. 3 125  5

4 7  49 8

9 3  121 11

17.

0.09  0.3

19. 21

18.

4

20.

0.16  0.4

 121 31. a.   169 

12

 121 b.   169 

1 2

 49  32. a.   144 

12

 49  b.   144 

1 2

b. 16 3 4 

169 13  121 11

12

144 12  49 7

3

1  163 4

3

1

 16  4

3

1

 2

3

1 8

     2  8

d. 163 4  

64 4 26. 3   125 5

3

3

1 1 1 1   3  3 34 4 16 8  2 16

 

e.  16 is undefined because 4 16 is not a real number. 34

27. a. 251 2  25  5 b. Undefined

f.  16 is undefined because 4 16 is not a real number. 3 4

  25    5  5

 

28. a. 361 2  36  6

34. a. 813 4  4 81   3  27

b. Undefined c. 361 2   36    6  6

b. 813 4 

29. a. 271 3  3 27  3 b.  27 

 144    49 

c. 163 4   4 16

24.  4 625  1 4 625  1 5  5

13

12

49 7  144 12

23.  4 81  1 4 81  1 3  3

c. 25

 169    121

33. a. 163 4  4 16

22. 4 625 is not a real number

12

121 11  169 13

    2  8

81 is not a real number

1 1 25. 3    8 2

 3 125  5

13

3

1  813 4

3

1

 81

 

4

3

1

 3

3

1 27

c. 813 4   4 81    3  27

 3 27  3

d. 813 4  

c. 271 3   3 27  3 30. a. 1251 3  3 125  5

3

3

1 1 1 1   3  3 4 813 4 27 3 81

 

e.  81 is undefined because 4 81 is not a real number. 34

21


Chapter R Review of Prerequisites f.  81 is undefined because 4 81 is not a real number. 3 4

c.  8 z 

    4  16 2

35. a. 642 3  3 64 b. 64

2

1  23  64

2 3

1

1   2 2 3  4 16 64

41.

     4  16 2

c. 642 3   3 64 d. 642 3   e.  64 f. 64

 3 64

2 3

 

36. a. 82 3  3 8 b. 82 3 

2

1

64 2

1

 64 3

2

2

f.  8

2 3

2

1

4

2

1 16

1

 2

2

1 4

2

49.

3w2 3 3 y1 3  23 y 1 3 w

50.

8d 5 7 8c 3 4  57 c 3 4 d

51. 16 x 8 y1 5 

34

11

11

4

4

 

38. a. z 3 10  10 z 3 or 10 z

8 3 4

15 34

3

8 3 4

15 3 4

  2  x 24 4 y 3 20 3

1

 8 x 6 y 3 20  52. 125a 6b 7 5 

13

4

11

x   y 

34

  x   y  

4

11

 16 

 4 16

  b. 6 y  6 y or 6  y  c.  6 y    6 y  or 6  6 y  4 11

y 7 5 y 4 5 y 7 5 4 5 y11 5  1 5  1 5  y11 51 5  y10 5  y 2 y1 5 y y

1     23 2 2 3  8  2 4 8

13

48.

2

1

a 2 3 a 5 3 a 2 35 3 a 7 3  1 3  1 3  a 7 31 3  a 6 3  a 2 a1 3 a a

   2  4

37. a. y 4 11  11 y 4 or 11 y 4 11

15

47.

2

1

 

 3 8

12

44. 11 t  11t1 2

46. 3 m3  n3  m3  n3

2

1 1 1 1 d. 82 3   2 3    2  2 3 8 4  2 8 23

11t  11t 

42.

  4  16

     2  4

e.  8

12

 

1

c. 82 3   3 8

6 x   6 x

2

 8

3

40. 7 z 4  z 4 7

45. 5 a 5  b5  a 5  b5

23

3

10

43. 6 x  6 x1 2

  2  4

1  82 3

3

10

3

2

1 1 1 1   2  2 23 3 64 16 4 64

23

3 10

39. 5 a 3  a 3 5

1

 

    8 z  or  8 z 

b. 8 z 3 10  810 z 3 or 8 10 z

8 y 3 20 x6

 125 

13

 a  b  6 13

7 5 1 3

 3 125a 61 3b 7 51 3

4

 5a 6 3b 7 15  5a 2b 7 15

3

22

5a 2 b 7 15


Section R.4  2m 2 3   n1 5  212 m 2 312 n1 510 53.  3 4   1 2     n   2m  n 3 412 210 m1 210 12

63. 4  2 x  5  2 x  5

10

4

212 m8 n 2  n9 210 m5 2 2 m 3 4m 3  7  7 n n 

4

3

1 24

12

4

 3 z  2 2  3 z  2

65.

w12  w6

67. a.

1 23

 3x   y  3 x y 54.  3 8   4 3    3 84  3  4 33  y   3x  y 3 x 12

64.

66. 4 c32  c8

c 7  c 6  c  c6  c  c3 c

b. 3 c 7  3 c 6  c  3 c 6  3 c  c 2 3 c

34 x 2 y 3 2 3  3 4 2 32 y 3 x x

c. 4 c 7  4 c 4  c3  4 c 4  4 c3  c 4 c3 d. 9 c 7  9 c 7

1

 m2   m2  55.   m  n  m  n

m 21

12

m 21 2

 1

m  n m  n1 2 m 2

68. a.

m1

 1

b. 3 d 11  3 d 9  d 2  3 d 9  3 d 2  d 3 3 d 2

m  n m  n 12 m  n m 1    m m  n 1 2 2

 c2   c2  56.   c  d   c  d 

c 2 2

32

  

12

c. 4 d 11  4 d 8  d 3  4 d 8  4 d 3  d 2 4 d 3 d. 12 d 11  12 d 11

c 2 3 2

69. a.

 c  d  2  c  d 3 2 c 4

c  d 

 2

c 1

 c  d  1 2

d 11  d 10  d  d 10  d  d 5 d

24  22  6  22  6  2 6

b. 3 24  3 23  3  3 23  3 3  2 3 3

c3

 c  d 3 2 12 c  d  

70. a.

54  32  6  32  6  3 6

b. 3 54  3 33  2  3 33  3 3  3 3 2

c

71. 3 250 x 2 y 6 z11  3 53  2  x 2 y 6 z11

t 2  t for t  0

57. a.

t 2  t for all real numbers

b.



 3 53 y 6 z 9 2 x 2 z 2  3 53 y 6 z 9  3 2 x 2 z 2  5 y 2 z3 3 2 x2 z 2

58. a. 4  c  8  c  8 for c  8 4

72. 3 40ab13c17  3 23  5  ab13c17

b. 4  c  8  c  8 for all real numbers 4



 3 23 b12 c15 5abc 2 59.

y  y 2

61. 3 y 3  y

60.

4

y  y 4

 3 23 b12 c15  3 5abc 2  2b 4 c 5 3 5abc 2

62. 5 y 5  y

23


Chapter R Review of Prerequisites 73. 4 96 p14 q 7  4 24  6  p14 q 7

3



 4 24 p12 q 4 6 p 2 q 3

81.

3

 4 24 p12 q 4  4 6 p 2 q 3  2 p3q 4 6 p 2 q3 74. 4 243m19 n10  4 35 m19 n10

83.



 4 34 m16 n8 3m3 n 2

 3m n 75.

24

3

2m 2 n 7

16m14 n 4

3

5 x5 y x3 x 3   2 4 3 625 x y 125 y 5y

3

2m 2 n 7 n3 n 3   14 4 12 16m n 8m 2m 4

10  14  140  22  35

 22  35  2 35

 4 34 m16 n8  4 3m3n 2 4

625 x 2 y 4 3

82.

5 x5 y

6  21  126  32 14

84.

3 2

3m n

 32  14  3 14

84  y  2  22  21 y  2 3

3

85. 3 xy 2  3 x 2 y  3 xy 2  x 2 y  3 x3 y 3  xy

 22  y  2  21 y  2 2

 2  y  2  21 y  2

86. 4 a 3b  4 ab3  4 a 3b  ab3  4 a 4b 4  ab

 2  y  2 21 y  2

87. 3 4 a 3 5 4 a 3  3   5 4 a 3  a 3

2

2

76.

18  w  6  32  2  w  6 3



 15 4 a 6  15 4 a 4  a 2

3

 15 4 a 4  4 a 2  15a  a 2 4

 3  w  6  2  w  6 2

2

 15a  a1 2  15a a

 32  w  6  2  w  6 2

 

88. 7 6 t 5 2 6 t 5  7   2 6 t 5  t 5

 3  w  6 2  w  6

 14 6 t10  14 6 t 6  t 4 7

77.

78.

p  36 q11  4

79. 4 3

p

7

36 q11 4

p p  6

p  p p p  6 6

q10  q  2

q10  q q 5 q  2 2

6

6

3

 14 6 t 6  6 t 4  14t  t 4 6  14t  t 2 3  14t 3 t 2  1 4  89.   3 6a 2b 2 c   3 4a 2 c 2   2 3  2   3 6a 2b 2 c  4a 2 c 2 3 2   3 24a 4b 2 c 3 3 2   3 23 a 3c3  3ab 2 3 2   3 23 a 3c3  3 3ab 2 3 4   ac 3 3ab 2 3

w3 z 5 4 3 w3 z 5 4 3 w3 z 3  z 2  3  8 2 8  2 3 w3 z 3  3 z 2  2wz 3 z 2

c6 d 7 8 3 c6 d 7 8 3 c6 d 6  d 80. 8  3  64 4 64 3

 2 3 c 6 d 6  3 d  2c 2 d 2 3 d

24


Section R.4

 3 1  90.   3 9m 2 n5 p   3 6m 2 np 4   4 6  1   3 9m 2 n5 p  6m 2 np 4 8 1   3 54m 4 n6 p 5 8 1   3 33 m3n 6 p 3  2mp 2 8 1   3 33 m3n 6 p 3  3 2mp 2 8 3   mn 2 p 3 2mp 2 8

91. 5 x3 y 2  4 x  x 3 y

x

25

3 51 4

 y  y  15

13 4 1 5

95.

 

       x x   x   x  x

x x x  x  x  x1 2

12 12

34 12

 y  y4 9

13

13

13 9 1 3

 y13 27  27 y13

x

14

y 2 5  x12 205 20 y 2 5

97. 3 3 2 y 2  9 3 2 y 2  3 2 y 2   3  9  1 3 2 y 2

 5 3 2 y 2

2 13

98. 8 4 3z 3  4 3 z 3  2 4 3z 3   8  1  2 4 3 z 3

 9 4 3z 3

1 21 3 1 4 2 3

b

6 12 4 12 3 128 12

b

99.

 a10 12b11 12  12 a10b11 93.

6

m 3 m2  m  m2 3

  m   m  16

1 2 3 1 6

53 16

1 7 5 50  18  72 5 3 6 1 2 7 2 5 2 5 2  3 2  6 2  5 3 6 1 7 5  5 2  3 2  6 2 5 3 6

 2 7 2 5 2

 m5 18  18 m5

100.

8

 y 

 a1 2b1 4  a1 3b 2 3 a

78

13 13

43 13

    ab 

a

12 12

     y  y  

96. 3 y 3 y 3 y  y  y  y1 3

14

14

 x  x3 2

7 4 12

 x17 20 y 8 20  20 x17 y 8 92. 4 a 2b  3 ab 2  a 2b

7 4 15

 y 7 20  20 y 7

   x

2 15

x y 35

94. 5 y 4 y 3  y  y 3 4

 1  7  5 2   2

2 2 1 2 2 2 2 1 2 2 2 1 75  27  12  5 3  3 3  2 3  5 3  3 3  2 3 5 3 2 5 3 2 5 3 2

 2 3  2 3  3   2  2  1 3   3

101. 3 x 3 16 xy 4  xy 3 54 xy  5 3 250 x 4 y 4  3 x 3 23 y 3  2 xy  xy 3 33  2 xy  5 3 53 x3 y 3  2 xy

 6 xy 3 2 xy  3 xy 3 2 xy  25 xy 3 2 xy  28 xy 3 2 xy 102. 8 4 32a 5b 6  5b 4 2a 5b 2  ab 4 162ab 2  8 4 24 a 4b 4  2ab 2  5b 4 a 4  2ab 2  ab 4 34  2ab 2

 16ab 4 2ab 2  5ab 4 2ab 2  3ab 4 2ab 2  8ab 4 2ab 2

25

7


Chapter R Review of Prerequisites 103. 12 2 y  5 y 2 y  12  5 y  2 y

111. c  a 2  b 2

 322  482  1024  2304

104. 8 3w  3w 3w   8  3w 3w 105. 

 3328  162 13  16 13 in.  58 in.

1 3 8z3  98 z 2 7 1 2 2 3 2  2 z  2z  7  2z 2 7

112. c  a 2  b 2 2

 36   122     122  182  144  324  2

  z 2 z  3 2 z    z  3 2 z

106.

 468  62 13  6 13 ft  21.6 ft

2 1 2 2 1 2 2 45c  20c 3  3  5c  2 c  5c 3 2 3 2  2 5c  c 5c

113. L  r 2  h 2

 42  102  16  100

  2  c  5c 107. s 

 116  22  29  2 29 in.  10.8 in.

a  b  c 6  7  9 22    11 2 2 2

114. A   r r 2  h 2

 6 62  42  6 36  16

A  s  s  a  s  b  s  c 

 6 52  6 22 13

 1111  6 11  7 11  9 

 12 13 m 2  136 m 2

 11 5  4  2 

115. A   r 2

 440

    3  5  3 5

 2 110  2 110 in. 2

2

2

2

a  b  c 3  5  6 14   7 2 2 2 A  s  s  a  s  b  s  c 

108. s 

2

   9  5  45 in.2 116. A   r 2

 7  7  3 7  5  7  6   7  4  2 1

8 7    2 

 56  22 14  2 14 cm 2

 4 7

109. b  c 2  a 2

2

   42 

 7

2

2

  16  7  112 cm 2

 182  122  324  144  180  62  5  6 5 m

 S 117. r  1     C

110. b  c 2  a 2

1n

 11,500   1   22,990 

 162  82  256  64  192  82  3  8 3 m

14

 1  0.841  0.159  15.9%

26


Section R.4 118. t  0.84 x 3 5  0.84 15

35

 4.3 hr

125.

119. a. for n = 1: f  440  2n 12  440  21 12  466.2 Hz for n = 2: f  440  2n 12  440  22 12  493.9 Hz for n = 3: f  440  2n 12  440  23 12  523.3 Hz 126.

12 12

3

62  5 4 3

3

8  9 3

4

11  3 125 

81  3 1000  36  25

4

11  5  9  10  6  5

4

16  25  5

 12

 1.4  4 

12

 22  2  2 3

 1.4  2  2.8 $2.8 million

 r 127. Tp  0.7 Ts  273   d

b. P  450 x  2,800,000

 450 10,000  2,800, 000

12

 273

 1.26  106  Tp  0.7  7700  273   4.3  108 

 4,500,000  2,800, 000  1, 700,000

$1.7 million 121. In each case, add like terms or like radicals by using the distributive property.

12

 273

Tp  0.7  7973

1.26 106   273 4.3 108

Tp  0.7  7973

1.26 1   273 4.3 102

1.26  0.1  273  29.1 4.3 Yes; The model gives a mean surface temperature of approximately 29.1C . Tp  0.7  7973

122. The terms within each expression are not like terms or like radicals.

8.0  1012 8.0 1012   4 2.0  10 2.0 104

 r 128. Tp  0.7 Ts  273   d

12

8.0 10  2.0 104

12

 273

 7.0  105  Tp  0.7  5700  273   1.49  108 

 4.0  108  2.0  104 1.44  1016 1.44 1016   9.0  1010 9.0 1010 

 255

 1.4  0.3 10  1

124.

25  16  9

 8  22  2  2 2

120. a. C  1.4  0.3x  1

6  4 16 

 233

b. for n = 9 f  440  2n 12  440  2 9 12  261.6 Hz

123.

3

1.44 1016  9.0 1010

12

Tp  0.7  5973

7.0 105   273 1.49 108

Tp  0.7  5973

7.0 1   273 1.49 103

 273

7.0 1  0.1  273  13.6 1.49 10 Approximately 13.6C . Tp  0.7  5973

 0.16  106  0.4  103  4.0  102

27


Chapter R Review of Prerequisites Section R.5 Polynomials and Multiplication of Radicals 13.  a  b 

14. 3  x

15. a. Yes

b. Yes

c. No

d. No

1  4x  6 y 2  11 y  77 x  2 x  3 y

16. a. No

b. Yes

c. No

d. Yes

 79 x  8 y

17. 18 x 7  7.2 x 3  4.1 ; Leading coefficient 18 ; Degree 7

1 15 x  6 z  3  24  12 x  5 x  2 z

1. 3  8  4 x  

 7 x  2 z  24 2. 11 y  7 x  

 5  5 2

3.

2

5. 3x y

1 4

4.

 x  x 5

5

3

18. 1.7 y 8  9.1y 5  4.6 y 2 ; Leading coefficient 1.7 ; Degree 8

3

1 3 9  1 3 4 8 4    xy   3 x y     x y 2 2 11

1 y; 3 Leading coefficient 1 ; Degree 2

19.  y 2 

5

81x y 8 81x11 y 5  8 

3 2 3

6. 4a b

2

4 20. c 5  c 2 ; Leading coefficient 1; Degree 5 5 2

 1 5 3 9 6  1  2 10  ab   4 a b    a b 3 3

21. 11

22. 8

 

23. 8 p 7  4 p 4  2 p  5  2 p 7  6 p 4  p 2

64a11b 4  9

 8 p 7  2 p 7  4 p 4  6 p 4  p 2  2 p  5

7. polynomial

8. descending

9. leading

10. coefficient

 6 p 7  2 p 4  p 2  2 p  5

 

 7 w5  9w5  3w3  5w3  4w  6  3  2 w5  2w3  4 w  9

 

25. 0.05c 3b  0.02c 2b 2  0.09cb3  0.03c 3b  0.08c 2b 2  0.1cb3

 0.05c b  0.03c b  0.02c b  0.08c b  0.09cb  0.1cb 3

3

2 2

2 2

3

3

 0.08c 3b  0.06c 2b 2  0.01cb3

24. 7 w5  3w3  6  9 w5  5w3  4w  3

11. binomial; trinomial 12. perfect

 

26. 0.004mn5  0.001mn 4  0.05mn3  0.003mn5  0.007 mn 4  0.07 mn3

 0.004mn5  0.003mn5  0.001mn 4  0.007 mn 4  0.05mn3  0.07 mn3  0.001mn5  0.008mn 4  0.12mn3

28


Section R.5



5 3 1  1  27.  x 2  x  5 2    x 2  x  2  4 8 2 4     1 2 1 2 5 3  x  x  x x5 2  2 4 2 8 4 1 11   x2  x  6 2 4 8

35. 4u 2  5v 2 2u 2  3v 2

1 7 2   3  28.  y 3  y  7    y 3  y  5 7  5   10  10 5

36. 2 z 3  5u 2 7 z 3  u 2

2

 

2

 8u 4  12u 2 v 2  10u 2v 2  15v 4  8u 4  2u 2 v 2  15v 4



    5u  u 

 

 2 z 3 7 z 3  2 z 3 u 2  5u 2 7 z 3 2

2

 14 z 6  2u 2 z 3  35u 2 z 3  5u 4  14 z 6  33u 2 z 3  5u 4

1  29. 6a 5b  a 2b 2   2a 7b3 3 

1  37.  3 y  6  y 2  5 y  4 3  1   3 y  y 2   3 y  5 y   3 y  4 3 

1  30. 10c 2 d 5  cd 7   5c 3 d 12 2 

       5v  3v 

 4u 2 2u 2  4u 2 3v 2  5v 2 2u 2

2 3 1 7  y3  y3  y  y  7  5 7 5 10 10 5 1 3 3  y  y4 7 10 2

1   6  y 2   6  5 y   6  4 3 

 7 m 2 2m 4  7 m 2  3m   7 m 2  4

 y 3  15 y 2  12 y  2 y 2  30 y  24

31. 7m 2m  3m  4 2

4

 y 3  13 y 2  42 y  24

 14m6  21m3  28m 2

1  38. 10v  5  v 2  3v  1 5 

32. 8 p 5 2 p 2  5 p  1

 8 p 5 2 p 2  8 p 5  5 p   8 p 5  1

1   10v  v 2   10v  3v   10v 1 5 

 16 p  40 p 6  8 p 5 7

1    5  v 2    5 3v    51 5 

33.  2 x  5  x  4 

 2 x  x   2 x  4    5  x    5  4 

 2v3  30v 2  10v  v 2  15v  5

 2 x 2  8 x  5 x  20

 2v3  31v 2  25v  5

 2 x  3 x  20 2

39.  a  b    a  b  a  b  2

34.  w  7  6w  3

 a  a   a  b  b  a   b  b

 w  6 w  w  3  7  6w  7  3

 a 2  ab  ab  b 2  a 2  2ab  b 2

 6w  3w  42 w  21 2

40.  a  b  a  b   a  a   a  b   b  a   b  b 

 6w2  39w  21

 a 2  ab  ab  b 2  a 2  b 2 41.  4 x  5 4 x  5   4 x    5  16 x 2  25 2

29

2


Chapter R Review of Prerequisites 42.  3 p  2  3 p  2    3 p    2   9 p 2  4 2



2

 

43. 3w2  7 z 3w2  7 z  3w2

  7z 2

52.

2

 9 w4  49 z 2



     2u  2

44. 9v3  2u 9v3  2u  9v3

2

 p  23   p  2 p  22   p  2  p 2  2  p2  22    p  2  p 2  4 p  4  p  p 2   p  4 p  p 4   2  p 2    2 4 p   24  p3  4 p 2  4 p  2 p 2  8 p  8

 81v 6  4u 2

 p 3  6 p 2  12 p  8 2

2  1 2  1  2  1 45.  c  d 3   c  d 3    c   d 3  5 3 5 3  5  3 

2

53.  u  v   w  u  v   w

  u  v    w  u 2  2uv  v 2  w2

1 2 4 6 c  d 25 9

2

54.  c  d   a   c  d   a 

4 1 4  1 46.  n  p 4   n  p 4  6 5 6 5  2

  c  d    a   c 2  2cd  d 2  a 2 2

47.  5m  3   5m   2  5m  3   3 2

2

55. I  45.58 x  460.1

 45.58  8  460.1  $824.74 billion

2

56. P  10.86 x  191.5

 25m 2  30m  9

 10.86  5  191.5  $245.8 billion

48.  7v  2   7v   2  7v  2   2 2

2

2

57. a. I  P  45.58 x  460.1  10.86 x  191.5

 49v 2  28v  4

2

2

1 2 16 8 1  4  n  p   n   p 4   6  5  36 25

49. 4t 2  3 p 3

2

 56.44 x  651.6 b. The polynomial I  P represents the total amount of health-related expenditures made by individuals with private insurance.

   4t   2  4t  3 p    3 p  2

2 2

2

3 2

3

 16t 4  24t 2 p 3  9 p 6 50.  2a 2  11b3 

c. I  P  56.44 x  651.6

2

  2a 2   2  2a 2 11b3   11b3  2

 56.44  6  651.6  990.24 $990.24 billion; In the year 2006, a total of $990.24 billion was spent on healthrelated expenses by individuals with private insurance.

2

 4a 4  44a 2b3  121b6 51.  w  4   w  4 w  4 3

2

  w  4  w2  2  w 4  42 

  w  4 w2  8w  16

 

58. a. I  45.58 x  460.1

 45.58 10   460.1  $915.9 billion

 

 w w2  w  8w  w 16  4 w2

b. P  10.86 x  191.5

 4  8w  4 16

 10.86 10   191.5

 w3  8w2  16 w  4 w2  32w  64

 $300.1 billion

 w3  12 w2  48w  64

30


Section R.5 66. A  lw   2 y  x  z   2 yz  xz or xz  2 yz

c. I  P  56.44 x  651.6

I  P  56.44 10  651.6

67. A  lo wo  li wi

I  P  $1216 billion or $1.216 trillion

  2 x  3 x  7    x  3 x  2

59. P  2  3x  4  x  3  x  4

 2 x  x   2 x  7  3 x   3 7

 2  5 x  11  10 x  22

  x  x   x  2  3  x   3  2 

 2 x 2  14 x  3x  21  x 2  2 x  3x  6

60. P  2  y  y  1  2 y  3  2  4 y  4  8 y  8 61. A  lw

  5 y    2 x  3  25 y 2  4 x 2  12 x  9 2

2

68. A  lo wo  li wi

  5 y  6 3 y  1   2 y  4 y  1

 25 y 2  4 x 2  12 x  9

 5 y  3 y   5 y 1  6  3 y   6 1

62. A  lw  6v   x  2  6v   x  2 

  6v    x  2  36v 2  x 2  4 x  4 2

2

  2 y  y   2 y 1  4  y   4 1 

 15 y 2  5 y  18 y  6  2 y 2  2 y  4 y  4 2

 13 y 2  17 y  2

63. V  lwh   x  4 x  4 x  6

69. a. x  1

  x  4   x  6

b. x   x  1  2 x  1

2

 x  8 x  16  x  6

c. x  x  1  x 2  x

 x  x   x  6  8 x  x   8 x  6  16  x  2

2

d. x 2   x  1  x 2  x 2  2 x  1  2 x 2  2 x  1 2

 16  6  x 3  6 x 2  8 x 2  48 x  16 x  96

70. a. x  2

 x 3  14 x 2  64 x  96

b. x   x  2  2 x  2

64. V  lwh   2 x  3 x  1 x  1

c. x  x  2  x 2  2 x

  2 x  3 x  1

d. x 2   x  2   x 2   x 2  4 x  4  2

2

  2 x  3 x 2  2 x  1

 

 x2  x2  4 x  4  4x  4

 

 2 x x 2  2 x  2 x   2 x 1  3 x 2  3  2 x   3 1

71.  y  7   2  y  3 2

 2 x3  4 x 2  2 x  3x 2  6 x  3

2

 y 2  14 y  49  2 y 2  6 y  9

 2 x  7 x  8x  3 3

 15 y  23 y  6  2 y  6 y  4 2

 36v 2  x 2  4 x  4

2

2

 x 2  6 x  27

 5 y   2 x  3  5 y   2 x  3 

 2 x  11x  21  x  5 x  6 2

2

 y 2  14 y  49  2 y 2  12 y  18

65. A  lw   a  b  c   ac  bc

  y 2  26 y  31

31


Chapter R Review of Prerequisites 72.  x  4  6  x  1 2

    5 2  2 2    5 2  6 3    5 2   4

81. 5 2 2 2  6 3  4

2

 x 2  8 x  16  6 x 2  2 x  1

 x 2  8 x  16  6 x 2  12 x  6

 10 4  30 6  20 2

 5 x 2  20 x  10

 10  2  30 6  20 2

73.  x n  3 x n  7 

 20  30 6  20 2

 x n  x n   x n  7   3  x n   3  7 

    5 7  3 7    5 7  2 5    5 7   3

82. 5 7 3 7  2 5  3

 x  7 x  3x  21 2n

n

n

 x 2 n  4 x n  21

 15 49  10 35  15 7

74.  y n  4  y n  5 

 15  7   10 35  15 7

 y  y   y  5   4  y   4  5  n

n

n

n

 105  10 35  15 7

 y  5 y  4 y  20 2n

n

n

    3 6  5 3    3 6  4 2    3 6   6 

83. 3 6 5 3  4 2  6

 y 2 n  y n  20

   z   2w z   w  2

75. z n  wm

n 2

m 2

m n

 z 2 n  2 wm z n  w 2 m

76. w  y n

 15 18  12 12  3 36

   w   2w y   y 

m 2

n 2

n

 15 32  2  12 22  3  3  6

m 2

m

 45 2  24 3  18

 w 2 n  2 wn y m  y 2 m



    5  a  25



  

77. a n  5 a n  5  a n 78. b n  7 b n  7  b n

2

2

2

    4 10  10 

 56 5  60 2  40

 60 x  50

    2 y  4 y    2 y   5   3  4 y 

85. 2 y  3 4 y  5

80.  2 y  7  2 y  7    2 y  7 

 28 22  5  12 52  2  40

 36 x 2  25  36 x 2  60 x  25

2

  2 y   7 2  4 y 2  28 y  49

 3  5

 4 y  49  4 y  28 y  49 2



 28 20  12 50  4 10

2

  6 x   52  36 x 2  60 x  25

2



 4 10 7 2  4 10 3 5

 7 2  b 2 n  49

79.  6 x  5 6 x  5   6 x  5 2

84. 4 10 7 2  3 5  10

2n

2

 8 y 2  10 y  12 y  15

 28 y  98

 8 y  2 y  15

32


Section R.5

    5 z  3 z    5 z   6   4  3 z 

86. 5 z  4 3 z  6

93. 6 z  5

94. 2v  17

 15 z  30 z  12 z  24 2

2

   2v  2  2v  17    17  2

2



   4 3  6 3    4 3  5 5    2 5  6 3    2 5  5 5 

2

2

2

2

2

3

 8 15  22

2

2

3

3



   3 11 2 11   3 11 9 2    7 2  2 11   7 2  9 2 

 x  1  5 x  1  5   x  1  5 2

97.

 y  2  4 y  2  4   y  2   4 2

 66  13 22  126

98.

    7 2

2

 4  3  7  12  7  5



     11 2

99.

   4x y    2 y x  2

   5u v    6v u  2

2

 y  2  4   y  2   2  y  2   4  4 2

100.

2

2

 y  2  8 y  2  16  y  8 y  2  18 101.

 5  2 x  5  2 x   5  2 x  5  2 x   5   2 x   25  4 x 

2

2

 25u  v  36v  u  25u v  36uv 2

2

 x  10 x  1  26

2

92. 5u v  6v u 5u v  6v u 2

2

 x  1  10 x  1  25

 16 x 2  y  4 y 2  x  16 x 2 y  4 xy 2

 x  1  5    x  1   2  x  1   5  5

2

 25  2  11  50  11  39 91. 4 x y  2 y x 4 x y  2 y x

2

 y  2  16  y  14

 13 22  60 89. 2 3  7 2 3  7  2 3 

2

 x  1  25  x  24

 6 121  27 22  14 22  63 4

3

 4c 6 d  12c 3 d 3 cd  9cd 6

88. 3 11  7 2 2 11  9 2

90. 5 2  11 5 2  11  5 2

2

2

  2c d   2 2c d 3d c   3d c 

96. 2c 3 d  3d 3 c

 72  8 15  50

2

 25a 4b  70a 2b 2 ab  49ab 4

 24 9  20 15  12 15  10 25



2

  5a b   2 5a b 7b a   7b a 

95. 5a 2 b  7b 2 a

87. 4 3  2 5 6 3  5 5

2

 4v 2  4 17v  17

 15 z  18 z  24

2

 36 z 2  12 5 z  5

 4  6

  6z  26z  5    5 

2

33

2

2


Chapter R Review of Prerequisites

102.

 7  3 z  7  3 z 

107. A polynomial consists of a finite number of terms in which the coefficient of each term is a real number, and the variable factor x is raised to an exponent that is a whole number.

 7  3 z  7  3 z   7   3 z   49  9 z 

2

2

108. In the expression x  7 , the exponent on x is 1 which is a whole number. The expression x  7 is equivalent to x1 2  7 . The exponent on x is 12 , which is not a whole number.

 x  y  x  y   x  y   2  x  y  x  y   x  y 2

103.

2

2

109. In each case, multiply by using the distributive property.

 x  y  2  x  y  x  y   x  y

110. Both expressions involve a product of conjugates  a  b  a  b  . In each case, the

 2 x  2 x2  y 2

 a  2  a  2   a  2   2  a  2  a  2    a  2 

product is a 2  b 2 .

2

104.

2

111. False

2

 a  2  2  a  2 a  2  a  2

112. True

 2a  2 a 2  4

113. True

1 bh 2 1  2 5 6 2 5 6 2 2 2 1 2 5  6    2 

114. False

105. A 

    

115.  a  b    a  b   a  b  3

    a   a    a   b    2ab  a    2ab  b    b   a    b   b   a 2  2ab  b 2  a  b  2

 a 3  3a 2b  3ab 2  b3

 a  b 3   a  b  2  a  b 

    a   a    a   b    2ab  a    2ab  b    b   a    b   b   a 2  2ab  b 2  a  b 

106. A 

   

2

 a 3  a 2b  2a 2b  2ab 2  ab 2  b3

116.

2

2

1   4  5  6 2 1  14  7 m 2 2 1 bh 2 1  4 7 2 4 7 2 2 2 2 1  4 7  2   2 

2

2

2

2

2

 a 3  a 2b  2a 2b  2ab 2  ab 2  b3  a 3  3a 2b  3ab 2  b3

1 16  7   2 2 1  110  55 ft 2 2 

34


Problem Recognition Problem Recognition Exercises: Simplifying Algebraic Expressions

1. a. 641 2  64  8 13

b. 64

d. 2 x 4  y

 64  4

 

d. 64 1 

2

 42  16

1 64

e. 641 2   64  8 f.  64 g.  64 h.  64

23

 3 64

   4  16

   4

2 3

  25a b

2. a. 5ab3

2

b. 5a  b3

2

 3 64

b.

2

2

2

2

   

2

1

2

 5ab 

3 2

 

3. a. 2 x y

1 x2

1 x15

4

b. 3 x8  3 x 6 x 2  x 2 3 x 2

1 25a 2b6

c. 5 x8  5 x5 x3  x 5 x3

 

6. a. 3a  4b 2  2a  b 2  3a  4b 2  2a  b 2

 a  5b 2

 5a  2  2  5a   b 3    b 3 

2

  b 

 4b

2x y

2

   

2

 6a 2  3ab 2  8ab 2  4b 4

2

4

  3a  2a    3a  b 2  4b 2  2a 

1 25a  10ab3  b 6 2

1



b. 3a  4b 2 2a  b 2

2

 

 2 2 x4  y   y 

 6a 2  5ab 2  4b 4

2

4

2

 

7. a. a 2  b 2  a 2  b 2  a 2  b 2  a 2  b 2

 4x  4x y  y2

 

12

1

 2 x4

2

  x

x8  x8

d. 9 x8  9 x8

   2

8

1 4 x  4 x4 y  y 2 8

3

3 2

8

2

x5  x 5 3  x 2 3 x

5. a.

2

 5a  b 

  4x y 2

b. 2 x 4  y

c. 2 x 4 y

4

3

1

2

4

 2x   2 2x   y   y

d.  x5   x5 3  x 15 

 25a  10ab  b 6

d. 5a  b3

1

c. x 5 x 3  x 53  x 2 

1  16

  5a   2  5a  b 3  b 3

 

2

4 2

2 6

2

c. 5ab3

 2x  y 4

4. a. x5 x3  x53  x8

 64 Undefined

12

1

2

3

c. 642 3  3 64

 

 2a 2

1 4 x8 y 2



    b   a  b

b. a 2  b 2 a 2  b 2  a 2

35

2

2 2

4

4


Chapter R Review of Prerequisites c.  a  b    a  b  2

2

 a 2  2ab  b 2  a 2  2ab  b 2  a  2ab  b  a  2ab  b  4ab 2

2

d.  a  b   a  b  2

2

c.

2

d.

 x  y  x  y    x    y  2

2

 x y

2

     a  a    a   2ab    a  b    2ab   a    2ab  2ab    2ab   b    b  a    b   2ab    b  b  2

2

2

11. a. 3 2 x  3 2 x  3 4 x 2

2

b. 3 2 x  3 2 x  2 3 2 x 2

2

2

2

2

2

12. a. 4 y  3 y   y    y  14

2

 y 3 12 4 12  y 7 12

 a 2b 2  2ab3  b 4

 12 y 7

 a 4  2a 2b 2  b 4

b. 4 y  3 y  4 y  3 y

8. a. for a  b, a  b    a  b   b  a b. for a  b, a  b  a  b

13. a. 36  12  6  2  3  6  2 

9. a. for x  2, x  2  x  2

 x  y  x  y

b.

x2  y 2  x2  y 2

1 1 2 2 4

b. 36  12  6  2  36  2  2  18  2  9

b. for x  2, x  2    x  2   x  2 10. a.

13

 y 1 41 3

2

 a 4  2a 3b  a 2b 2  2a 3b  4a 2b 2  2ab3

2

2

 x  2 xy  y

2

 a 2  2ab  b 2 a 2  2ab  b 2 2

 x  y    x   2  x  y    y 

c. 36  12   6  2  36  12  3  3  3  1 d.  36  12   6  2  3  3  1

2

62  82  36  64  100  10

14. a.

62  82  6  8  14

b.

Section R.6 Factoring

  4x y

   2 x   2  2 x  y    y 

1. a. 2 x 4 y 2

2

b. 2 x 4  y 2

8

2

4

  25a b

   5a   2  5a  b    b 

2. a. 5a 3b 2 4 2

4

2

2 2

2

b. 5a 3  b 2

 4 x8  4 x 4 y 2  y 4

6 4

2

3 2

3

2

 25a 6  10a 3b 2  b 4

36

2 2

2


Section R.6



   3 x  2 x    3 x   5 y    4 y   2 x    4 y  5 y 

11. perfect;  a  b 

 6 x 2  15 xy 2  8 xy 2  20 y 4

13. 15c5  30c 4  5c3

3. 3x  4 y 2 2 x  5 y 2

2

2

2

12. squares;  a  b  a  b 

2

   5c  3c  6c  1

 5c3 3c 2  5c3  6c   5c3 1

 6 x 2  7 xy 2  20 y 4

3

    6a  a    6a   7 k    2k   a 

4. 6a 2  2k a 2  7 k 2

2

2

   3m  4m  5m  1

 3m 2 4m 2  3m 2  5m   3m 2 1

 6a  42a k  2a k  14k 2

2

 6a  40a k  14k 4

2

2

2

2

15. 21a 2b5  14a 3b 4  35a 4b

     7 a b  3b  2ab  5a  2

2

2

   9 p q 4 p q  2 p  3q 2

9 25 3  5    m5    np  m10  n 2 p 2 2  7  4 49

5

2

2

17. 5 z  x  6 y   7  x  6 y    x  6 y  5 z  7 

18. 4t  u  8v   3  u  8v    u  8v  4t  3

    3  4 x    3 6 x    3 9

  2 x  4 x   2 x  6 x    2 x  9 2

     3k  7 10k  5k    3k  7  5k  2k   5k 1   5k  3k  7   2k  1

19. 10k 2 3k 2  7  5k 3k 2  7

2

2

 8 x  12 x  18 x  12 x  18 x  27 2

3

 9 p 2 q 5 4 p 2 q 2  9 p 2 q 5 2 p  9 p 2 q 5 3q

2

4

16. 36 p 4 q 7  18 p 3 q 5  27 p 2 q 6

5 3 5  3 6.  m5  np  m5  np 2 7 2 7 

7.  2 x  3 4 x 2  6 x  9

2

2

2

 8 x3  27

2

    3 y   9 y    3 y 15 y    3 y  25   5  9 y    515 y    5 25

8.  3 y  5 9 y  15 y  25 2

20. 8 j 3  4 j  9  4 j 2  4 j  9

2

  4 j  9 8 j 3  4 j 2

2

  4 j  9  4 j 2  2 j   4 j 2 1 

 27 y 3  45 y 2  75 y  45 y 2  75 y  125

 4 j 2  4 j  9 2 j  1

 27 y 3  125

9. cubes;  a  b  a 2  ab  b 2

 

 7 a 2b 3b 4  7 a 2b 2ab3  7 a 2b 5a 2

1 9 1  3    c 4    ab  c8  a 2b 2 5  8  25 64

2

2

2

3  1 3  1 5.  c 4  ab  c 4  ab 5 8 5 8 

3

2

14. 12m 4  15m3  3m 2

2

  2k  7 k  4

2

10. difference;  a  b  a 2  ab  b 2

 b. 6 x  12 x  9  3  2 x  4 x  3

21. a. 6 x 2  12 x  9  3 2 x 2  4 x  3

2

37

2


Chapter R Review of Prerequisites

 b. 15 y  10 y  25  5  3 y  2 y  5

22. a. 15 y 2  10 y  25  5 3 y 2  2 y  5 2

32. w2  5w  66 

  w  11 w  6

2

23. 12 x3 y 2  8 x 4 y 3  4 x 2 y

Check:  w  11 w  6  w2  6 w  11w  66  w2  5w  66

 4 x 2 y 3xy  2 x 2 y 2  1

33. 2t 3  28t 2  80t  2t t 2  14t  40

24. 14a b  21a b  7a b 4 3

3 2

 2t

3

2

   2t  t  14t  40

 2a  4 x  9   5  4 x  9 

2

  4 x  9  2a  5 

 2t 3  28t 2  80t

26. 6ty  9 y  14t  21  3 y  2t  3  7  2t  3

34. 5u 4  40u 3  35u 2  5u 2 u 2  8u  7

  2t  3 3 y  7 

 5u

27. 12 x  9 x  40 x  30

 3 x  4 x  3  10  4 x  3 2

  4 x  3 3x  10

28. 30 z  35 z  24 z  28

 5 z  6 z  7  4  6 z  7

35. 25 z  6 z 2  14  6 z 2  25 z  14

29. cd  8d  4c  2d  cd  4c  2d  8d 2

2

Check:  2 z  7 3z  2  6 z 2  4 z  21z  14

  d  4 c  2d 

 6 z 2  25 z  14

30. 7t  6v  tv  42v  7t  tv  6v  42v 2

2

 t  7  v   6v  v  7 

36. 8  15m 2  26m  15m 2  26m  8

  v  7  t  6v 

p



p

 z   z  

  2 z  7  3z  2

 c  d  4   2d  d  4 

31. p 2  2 p  63 

2

 5u 4  40u 3  35u 2

2

 u   u  

   5u  u  8u  7 

2

  6 z  7 5z 2  4

Check: 5u 2  u  1 u  7   5u 2 u 2  7u  1u  7 2

3

2

 5u 2  u  1 u  7 

2

2

 t   t  

Check: 2t  t  4 t  10  2t t 2  10t  4t  40

25. 8ax  18a  20 x  45

3

 2t  t  4 t  10

 7 a b 2ab  3b  1 3

 w   w  

 m   m  

  3m  4 5m  2

Check:  3m  4 5m  2  15m2  6m  20m  8

  p  9 p  7 

Check:  p  9 p  7   p 2  9 p  7 p  63

 15m 2  26m  8

 p 2  2 p  63

38


Section R.6 37. 7 y 3 z  40 y 2 z 2  12 yz 3

 yz 7 y 2  40 yz  12 z 2  yz

43. 4c 4  20c 2 d 3  25d 6

 

 y  z  y  z 

 yz  7 y  2 z  y  6 z  Check: yz  7 y  2 z  y  6 z 

   2  3m  7n    7n    3m  7n 

38. 11a 3b  18a 2b 2  8ab3

 ab 11a 2  18ab  8b 2

a

b



b

    2 10u  3v 10u  3v 

3

39. t  18t  81   t   2  t  9   9   t  9 2

2

3

2

2

2

2

2

2

2

2

2

2

41. 50 x 3  160 x 2 y  128 xy 2

 2 x 25 x 2  80 xy  64 y 2

   1   9 z  1 9 z  1   9 z  1  3z   1      9 z  1  3z  1 3z  1

50. 81z 4  1  9 z 2

 2 x  5 x   2  5 x  8 y    8 y     2

2

2

2

2

2

2

2

2

2

2

51. y 3  64   y    4 3

2 2  3 y  4 y   2  4 y  3 z    3 z    

 3 y  4 y  3z 

2

    4   25 p  4 25 p  4   25 p  4  5 p    2      25 p  4  5 p  2 5 p  2

49. 625 p 4  16  25 p 2

2

40. p 2  8 p  16   p   2  p  4   4   p  4

 3 y 16 y 2  24 yz  9 z 2

    3  5m  3n  5m  3n  2

42. 48 y 3  72 y 2 z  27 yz 2

3

3

2

2

2 2  3  5m3  3n 2   

2

3

48. 75m 6  27 n 4  3 25m6  9n 4

 11a b  18a b  8ab

2 2  2  10u 2  3v 3    2

  ab 11a  18ab  8b 

 2 x 5x  8 y 

2

47. 200u 4  18v 6  2 100u 4  9v 6

 ab 11a 2  22ab  4ab  8b 2

2

2

2

Check: ab 11a  4b  a  2b 

2 2

4 2

46. 16t 2  49   4t    7    4t  7  4t  7 

 ab 11a  4b  a  2b 

3

4 2

4

2

a

2

2

45. 9 w2  64   3w   8   3w  8 3w  8

2

 7 y 3 z  40 y 2 z 2  12 yz 3

 ab

2

2

  yz  7 y  40 yz  12 z 

2

44. 9m 4  42m 2 n 4  49n8

 3m 2

 yz 7 y 2  42 yz  2 yz  12 z 2 2

     

2

 2c 2  2 2c 2 5d 3  5d 3  2c 2  5d 3

3

  y  4  y    y  4   4    2

2

  y  4 y 2  4 y  16

39

2

2


Chapter R Review of Prerequisites 52. u 3  343   u    7  3

58. 4 y 4  10 y 3  36 y 2  90 x

3

 2 y  2 y 3  5 y 2  18 y  45 

  u  7   u    u  7    7     2

2

  u  7  u 2  7u  49

53. c 4  27c  c c3  27

 2 y  y 2  2 y  5   9  2 y  5  

 2 y  2 y  5  y 2  9 

 2 y  2 y  5  y  3 y  3

 c  c    3    2 2  c  c  3  c    c  3   3    3

3

 c  c  3 c  3c  9

54. d 4  8d  d d 3  8

2

59. a 2  y 2  10 y  25  a 2  y 2  10 y  25

 a 2   y  5   a   y  5   a   y  5  2

  a  y  5 a  y  5

60. c 2  z 2  8 z  16  c 2  z 2  8 z  16

 d  d    2    2 2  d  d  2  d    d  2   2    3

3

 d  d  2 d 2  2d  4

2

  c  z  4 c  z  4

61. 30 x 3 y  125 x 2 y  120 xy

 5 xy 6 x 2  25 x  24  5 xy 3 x  8 2 x  3

      2a  5b   2a    2a  5b    5b       2a  5b  4a  10a b  25b  3

 2a 2  5b3 2

3

2

3

56. 27 m  64n

 c 2   z  4   c   z  4  c   z  4 

55. 8a 6  125b9

12

3

2 2

2

4

 6t v  5t  6 2t  5

3 2

3

2 3

62. 60t 4v  78t 3v  180t 2 v  6t 2 v 10t 2  13t  30 2

6

63. Let u  x 2  2 .

 x  2  3 x  2  28 2

2

9

 u 2  3u  28

     3m  4n  3m   3m  4n    4n      3m  4n 9m  12m n  16n  3

 3m 4  4n3 4

3

4

3

3

4 2

4

8

4 3

57. 30 x 4  70 x 3  120 x 2  280 x

 10 x 3x 3  7 x 2  12 x  28

  u  4 u  7 

3 2

3

     x  2 x  9   x  2  x  3 x  3  x2  2  4 x2  2  7

6

2

2

2

64. Let u  y 2  2 .

 y  2  5  y  2  24 2

2

 10 x  x 2  3x  7   4  3x  7    10 x  3x  7  x 2  4

2

2

 u 2  5u  24

  u  8 u  3

     y  10 y  1   y  10  y  1 y  1

 10 x  3x  7  x  2 x  2

 y2  2  8 y2  2  3 2

40

2

2


Section R.6

71. Let u  3n  1 . 2 9m 2  42m  3n  1  49  3n  1

2

65. x 3  12  16

    x  12  4 x  12  4   x  16 x  8   x  16 x  2    x  16  x  2  x  2 x  4 2

 x 3  12  42 3 3

3

3

3

  3m   2  3m  7u    7u  2

  3m  7u 

3

3

 9m 2  42mu  49u 2

3

2

 3m  7  3n  1 

2

  3m  21n  7 

2

2

2

2

72. Let u  7 y  1 .

66. y 3  34  49

4 x 2  36 x  7 y  1  81 7 y  1

    y  34  7 y  34  7   y  41 y  27   y  41 y  3    y  41  y  3  y  3x  9 2

 y 3  34  7 2 3

 4 x 2  36 xu  81u 2

3

3

3

3

3

  2 x   2  2 x  9u    9u  2

  2 x  9u 

3

3

2

2

  2 x  9  7 y  1 

2

  2 x  63 y  9

67.  x  y   z 2   x  y  z  x  y  z 

2

2

2

2

73.  c  3   2c  5 2

  c  3   2c  5   c  3   2c  5 

68.  a  5  y 2   a  5  y  a  5  y  2

69.  x  y   z 3

2

  c  3  2c  5 c  3  2c  5

  3c  8  c  2 or   3c  8 c  2

3

  x  y  z   x  y    x  y  z   z    2

2

  x  y  z  x  2 xy  y  xz  yz  z 2

2

2

74.  d  6   4d  3 2

2

  d  6   4d  3   d  6   4d  3    d  6  4d  3 d  6  4d  3

70.  a  5  b3 3

2   a  5  b   a  5   a  5 b   b 2   

  a  5  b  a 2  10a  25  ab  5b  b 2

  5d  3 3d  9 =3  5d  3  d  3 or  3  5d  3 d  3

75. p11  64 p8  p 3  64  p11  p 3  64 p8  64  p 3 p8  1  64 p8  1



 

        p  4  p  4 p  16 p  1  p   1      p  4  p  4 p  16 p  1 p  1 p  1   p  4  p  4 p  16 p  1 p  1  p  1 p  1

2  p 3  64 p8  1  p 3  43  p 4  12    2 4 4   p  4 p  4 p  16 p  1 p  1 2 2

2

4

2

4

2

2

4

2

41

2

2


Chapter R Review of Prerequisites 76. t 7  27t 4  t 3  27  t 7  t 3  27t 4  27

80. Let u  y 3 .

24 y 7  21y 4  3 y

 t 3  t 4  1  27  t 4  1

 3 y 8 y 6  7 y3 1

  t 3  27  t 4  1   t 3  33   t   12   

   7  y  1  3 y 8u  7u  1  3 y 8 y 

2 2

  t  3  t 2  3t  9  t 2  1 t 2  1

3 2

3

2

  t  3  t 2  3t  9  t 2  1  t  1 t  1

 3 y 8u  1u  1



 3 y 8 y 3 1 y 3  1

77. Let u  m . m6  26m3  27 3

 3 y 2 y  13  y 3  13   3

 

 3 y 2 y  1 4 y 2  2 y  1  y  1 y 2  y  1

  m3   26m3  27 2

 u 2  26u  27

81. x 2  y 2  x  y   x  y  x  y   1 x  y 

  u  27  u  1

  x  y  x  y  1

  m3  27  m3  1   m3  33  m3  13 

82. a 2  b 2  a  b   a  b  a  b   1 a  b 

  m  3  m 2  3m  9   m  1  m 2  m  1

  a  b  a  b  1

78. Let u  n . n 6  7 n3  8 3

83. a 2  ac  2c 2  c  a

  a  c  a  2c   1 a  c 

   7n  8

 n3

2

3

  a  c  a  2c  1

 u 2  7u  8   u  8 u  1

84. x 2  2 xy  3 y 2  y  x

     n  2  n  1    n  2  n  2n  4  n  1  n  n  1

  x  y  x  3 y   1 x  y 

 n  8 n 1 3

3

3

3

3

2

2

85. 2 x 4  7 x 3  x 2

 x 4 2 x 4  4   7 x 3 4   x 2  4

79. Let u  x 3 . 16 x 6 z  38 x 3 z  54 z

  x  y  x  3 y  1

3

 x 4  2 x 0  7 x1  x 2 

 2 z 8 x  19 x  27 6

3

 x 4  2  7 x  x 2  or

   19  x   27  2 z 8u  19u  27  2 z 8 x 

3 2

3

86. 5t 7  2t 6  t 5

2

 2 z 8u  27u  1



 t 7 5t 7  7   2t 6  7   t 5 7 

3

 2 z 2 x  33  x 3  13   3

 t 7  5t 0  2t1  t 2 

 2 z 8 x  27 x  1 3

x2  7 x  2 x4

 

 t 7  5  2t  t 2  or

 2 x 2 x  3 4 x 2  6 x  9  x  1 x 2  x  1

42

t 2  2t  5 t7


Section R.6 87. y 2  y 3  12 y 4

 y 4 y 2 4  y 3 4  12 y 4 4 y

4

89. 2c 7 4  4c 3 4  2c3 4 c 7 4 3 4  2c3 4 3 4

 y  y  12 y   y  y  y  12  2

1

4

0

 y 4  y  4  y  3 or

2

 y  4  y  3

 2c

34

 c  2c 

 2c

34

 c  2

 5 y 4 5 2 y1  3 y 0

 w5 w35  10w45  9 w55

 5 y 4 5  2 y  3

 w5  w2  10w1  9 w0   w5  w2  10w  9

 w  9 w  1

 w5  w  9 w  1 or

92. 7t  4t  1

23

34

93. x  3 x  2 

  3x  1

  4t  1

2 3

53

74

w5

5 x  3x  1 2 3 2 3  1 3x  15 3 2 3    23 0 1   3 x  1 5 x  3x  1  1 3 x  1      3 x  1

23

  3 x  1

23

 5 x  3x  1   3x  12 3 8 x  1

 7t  4t  13 4 3 4  1 4t  1 7 4 3 4    34 0 1   4t  1  7t  4t  1  1 4t  1      4t  1

34

  4t  1

34

  3x  2 

13

 7t  4t  1   4t  13 4 11t  1

 x  3x  2 2 3 2 3   3x  2 1 3 2 3    2 3 0 1   3x  2   x  3x  2    3x  2       3x  2 

2 3

  3x  2 

2 3

 x  3x  2    3x  2   4 x  2  2  2 x  1 2 3  2  3 x  2   2 x  1 or 23  3x  2  94. x  5 x  8

4 5

  5 x  8

15

2 3

 x  5 x  8 4 5 4 5   5 x  81 5 4 5    4 5 0 1   5 x  8   x  5 x  8   5 x  8       5 x  8

4 5

 x  5 x  8 4 5   5 x  8   6 x  8   5 x  8

4 5

 2  5 x  8

4 5

0

90. 10 y 9 5  15 y 4 5  5 y 4 5 2 y 9 5 4 5  3 y 4 5 4 5

y4

88. w3  10w4  9 w5

91. 5 x  3x  1

1

 3x  4 or

43

2  3 x  4

 5 x  8 4 5


Chapter R Review of Prerequisites

     z  6  z  6  z  6 

95. A  x 2  y 2   x  y  x  y 

109. z 4  36  z 2  6 z 2  6 2

96. A  d 2  4c 2  d 2   2c    d  2c  d  2c  2

     w  7   w  7  w  7 

110. w4  49  w2  7 w2  7

97. 2 r 2  2 rh  2 r  r  h 

2

98. P  Prt  P 1  rt 

 5   x   5    x  5

111. x 2  2 5 x  5   x   2 2

99.

4 3 4 3 4  R   r   R3  r 3 3 3 3 4    R  r  R 2  Rr  r 2 3

2

 3   c   3   c  3

112. c 2  2 3c  3   c   2 2

100.  R 2   r 2   R 2  r 2   R  r  R  r 

 b. x  1   x  1  x

102. 17  13  17  1317  13   30 4  120

n

103. Expand the square of any binomial. For

114. a. a 5  b5

example:  2c  3  4c 2  12c  9 . 2

  a  a   a  a b   a  a b   a  ab   a  b   b  a   b  a b  b  a b   b  ab   b  b  4

3

4

2 2

3

3

2 2

4

3

4

 a 5  a 4b  a 3b 2  a 2b3  ab 4  a 4b  a 3b 2  a 2b3  ab 4  b5  a 5  b5

5  4 x .

115. 36 p 2  33 p  12 106. In each case, factor out x to the smallest exponent to which it appears in both terms. That is, 6 x 5  5 x 2  x 2 6 x 3  5 and



107. x 2  5  x  5 x  5



b 2  4ac   33  4  36 12 2

6 x 5 3  5 x 2 3  x 2 3  6 x  5 .

 1089  1728  2817 No 116. 24 w2  25w  8

108. y 2  11  y  11 y  11

105. In each case, factor out x to the smallest exponent to which it appears in both terms. That is, 5 x 4  4 x 3  x3  5 x  4 and

5x  4 x  x

 x n  2  x n 3    1

b.  a  b  a 4  a 3b  a 2b 2  ab3  b 4

 a  b a  b  a 2  b2 .  a  b a  b  a 2  b2 .

4

n 1

  a  b  a 4  a 3b  a 2b 2  ab3  b 4

104. After exhausting all possible combinations of factors, no combination results in a 2  b 2 . That is,  a  b  a  b   a 2  b 2 .

3

113. a. x 5  1   x  1 x 4  x 3  x 2  x  1

2

4

2

2

101. 212  192   21  19 21  19   40 2  80 2

2

b 2  4ac   25  4  24 8 2

 625  768  143

No

44


Section R.7 117. 8 x 2  2 x  15

119. 18 y 2  45 y  48

b 2  4ac   2  4  8 15

b 2  4ac   45  4 18 48

2

2

 4  480  484  222

 2025  3456  5481

Yes

No

118. 6 x 2  7 x  20

120. 54 z 2  39 z  60

b 2  4ac   7   4  6 20

b 2  4ac   39  4  54 60

2

2

 1521  12,960  14, 481

 49  480  529  232

Yes

No

Section R.7 Rational Expressions and More Operations on Radicals

1. 30 x 3  65 x 2  25 x  5 x 6 x 2  13 x  5

 5 x  3 x  1 2 x  5

2. 40 y 3  132 y 2  28 x  4 y 10 y 2  33 y  7

 y 2  y  4 y 2  4 y  16

11. 2;1

12. 1

14. rationalizing

3. t 4  t  t t 3  1  t  t  1 t 2  t  1 4. y 5  64 y 2  y 2 y 3  64

10. zero

13. complex (or compound)

 47  2 y  7  5 y  1

9. rational

15.

 16.

5. 2 x 3  3 x 2  32 x  48

 2 x 3  32 x  3 x 2  48

     2 x  3  x  16   2 x  3 x  4 x  4  2 x x 2  16  3 x 2  16 2

17.

x4 : If 7 were substituted for x, then x7 7  7  0 and the denominator would be 0. So, x  7 . y 1 : If 10 were substituted for y, then y  10 10  10  0 and the denominator would be 0. So, y  10 . a a  : If 9 or 9 were a  81  a  9 a  9 2

substituted for a, then 9  9  0 or 9  9  0 and the denominator would be 0. So, a  9 , a  9 .

6. 3t 3  t 2  75t  25

 3t 3  75t  t 2  25

     3t  1  t  25   3t  1 t  5 t  5  3t t 2  25  1 t 2  25

18.

2

substituted for t, then 4  4  0 or 4  4  0 and the denominator would be 0. So, t  4 , t  4.

7. 25w4  40 w2u  16u 2

   2 5w   4u   4u  5w  4u

 5 w2

2

2

2

2

2

19. There are no values for a that make the denominator 0. So there are no restricted values for this expression.

8. 49v 4  42v 2 w  9 w2

 

 

 7v 2  2 7v 2 3w  3w  7v 2  3w 2

2

t t  : If 4 or 4 were t  16  t  4 t  4 2

2

45


Chapter R Review of Prerequisites

21.

22.

1

20. There are no values for t that make the denominator 0. So there are no restricted values for this expression.

3tu 5u 4 v

5

15tu v 28.  3   3t u 3tu t 2 1

u0

6c : If 0 were substituted for a or b, then 7 a 3b 2 the product in the denominator would be 0. So, a  0 , b  0 .

1

29.

 

5 2 6

10  5 6  15

5  3

   5u v ; t  0 , 4

t2

  2 6 3

1

11z : If 0 were substituted for x or y, then 8 x5 y the product in the denominator would be 0. So, x  0 , y  0 .

1

3 3 12  4 3 4 3  3   30. 2 8 4  2 1

5 5  and x3 x3 5 5 5 5     , so a and x  3   x  3  x  3 3  x

23. 

31.

1

b are equal to the original expression 24.

2 y 2  16 y 2 y  y  8  64  y 2 64  y 2

2 2  and ab ab 2 2 2   , so b and c are a  b   a  b  a  b

2 y  y  8

8  y  8  y 



2y ; 8 y

1

y  8 , y  8

81  t 2   81  t 2  32. 7t 2  63t 7t  t  9 

equal to the original expression

1

1

25.

 x  3  x  3 x  3 x2  9  ;  2 x  4 x  21  x  3  x  7  x  7

7t  t  9  1

1



x  3 , x  7

t 0, t 9

1

 y  8  y  8 y  8 y  64  ;  y 1 y  7 y  8  y  1  y  8 2

26.

9  t  9  t 

2

33.

1

9t ; 7t

4 b  a  4b  4a  ax  xb  2a  2b x  a  b   2  a  b 

y  1 , y  8

1

1

3ab  4ac  4ac 12a bc   4 ; a  0,  27.  5 4 b 3ab 3ab b 2

b0

1

 

4 b  a 

 a  b   x  2 1



a b, x 2

46

4 ; x2


Section R.7

34.

2 z  y  2z  2 y  xy  xz  3 y  3 z x  y  z   3  y  z 

m11n 2 18m9 n5  38. 2 m  n 2 9m 2  6mn  15n 2 m11n 2 9m 2  6mn  15n 2  2  m  n2 18m9 n5 3 3m 2  2mn  5n 2 m11n 2   18m9 n5  m  n m  n

1

2  z  y

 y  z   x  3 1

 y  z , x  3

35.

2 ; x3

3a 5b 7 2a  10b 3a 4b7  a 2  a  5b     a  5b 12a 4b10 a  5b 3a 4b 7  4 b3

m9 n 2  m 2

 m  n  m  n

3  3m  5n   m  n  m9 n 2  18 n3 6

m  3m  5n  6n3  m  n  2

2

a 2b3 xy 4  6 y 4

8 x  3 y 6 xy    x 3 y 4 24 x  9 y xy 4  x 2 3  8 x  3 y  2 y4  2 x

40.

c 2  d 2 8c 2  4cd  4d 2  37. cd 11 8c 4 d 10 2 2 c d 8c 4 d 10   cd 11 8c 2  4cd  4d 2 8c 4 d 10  c  d  c  d    cd 11 4 2c 2  cd  d 2

c  d  c  d  cd

10

d

 a  8b   a  8b  a b  8b  a   2a  b   a  8b  

2 c c  d 

 2c  3d   2c  3d  2  c c  3d  2c   2c  3d   c  d  2

c

x 3  64 2 x 2  8 x  32  2 41. x  2x  8 16 x  x 3 x 3  64 x2  2 x  8   16 x  x 3 2 x 2  8 x  32  x  4 x 2  4 x  16  x  4 x  2   x 16  x 2 2 x 2  4 x  16

 

cd 10  8 c 3 4  2c  d   c  d 

2c  c  d  d  2c  d 

1

3

a b  2a  b 

2c 2  2cd 4c 2  12cd  9d 2  3c 2 d  2c 3 2c 2  cd  3d 2 

2

2a 2b  ab 2 a 2  16ab  64b 2  8b 2  ab 2a 2  15ab  8b 2 

2

8x  3 y

8

36.

39.

 x  4  x 2  4 x  16  x  4  x  2   x  4  x  4  x 2  x 2  4 x  16 

47

x2 2x


Chapter R Review of Prerequisites

42.

3 y 2  21y  147 y 3  343  25 y  y 3 y 2  12 y  35  

49.

m2 6m  9 m 2  6m  9   m3 m3 m3

3 y 2  21 y  147 y 2  12 y  35  25 y  y 3 y 3  343

3 y  7 y  49 2

y 25  y

2



m3  m3

 y  7 y  5  y  7  y 2  7 y  49 50.

1

 y  7   y  5 y  5  y   5  y   y  7   y 2  7 y  49

3 y 2  7 y  49

7 n  10 n 2  7 n  10 n2   n5 n5 n5 

3  y 5  y 51.

10c 2 21  3 45c 45c 3 10c 2  21  45c 3

46.

47.

4

,

5y  7 y  2 y  5 y  6

,

52.

6

x3 x3  , x  20 x  100  x  10 2

53.

2

3 3  2 2 x  20 x 2 x  x  10 LCD = 2 x  x  10 48.

12 x 3  35 50 x 4

9   y 11  2 x  9 11  5 2 4  5 2 4 xy 2x y 2 x y   y  xy   2 x  

2

54.

z4 z4  , 4 z  20 z  25  2 z  5 2 2

9 y  22 x 2 x2 y5

2   n3  5   3m  5 2    3 2 4 2 4 3m n m n 3m3 n   n3  m n   3m  2n3  15m 3m3 n 4 2n3  15m  3m3 n 4 

5 5  12 z  30 z 6 z  2 z  5 2

LCD = 6 z  2 z  5

6 7 6 7   2  4 25 x 10 x 5 x 5  2 x4 6  2 x3 7   5  2  3 5  2 x 4   5 5 x  2x

   

 2 y  5 3  y  6  2 3 4 LCD = y  2 y  5  y  6 4

2 7 2 7   2  3 9c 15c 3 c 5  3c 3 2  5c 2 7   3  2  2 5  3c 3   3 3 c  5c 

 3t  4  t  2 t  3t  4 2  t  2 3 LCD = t  3t  4  t  2 3

n5

   

12 12 8 8  ,  2 2 3 44. 4 3 4 3 2 3 35b cd 7  5b cd 25b c d 5 b c d LCD = 52  7b 4 c 3d 3  175b 4 c 3 d 3 2t  1

 n  5  n  2 

 n2

7 7 3 3 , 43.   5 4 5 4 2 3 2 6 x yz 2  3x yz 20 xy z 5  2 xy 2 z 3 LCD = 22  3  5 x 5 y 2 z 4  60 x 5 y 2 z 4

45.

 m  3  m  3

2

48


Section R.7

55.

1 2  2 x  xy x  y 2 1 2   x  x  y   x  y  x  y 

58.

2

4  t 2  5  t  2 3   t  t  2   2   t   t  2   t  2    t 2  t   t  t  2 

1  x  y  2   x  x  x  y    x  y   x  y  x  y    x 

x  y  2x x  x  y  x  y 

x  y x  x  y  x  y 

5t  10  4t 2  3t 2  6t t 2 t  2

t 2  t  10 t 2 t  2



x y x  x  y  x  y 59.

1  x  x  y 56.

4 1  2 2 4a  b 2a  ab 4 1   2a  b2a  b a 2a  b 60.

3w 2w  4 3w  2w  4    1    w  4 4  w w  4  4  w    1

2 x  1 x  6 2 x  1  x  6    1    x  7 7  x x  7  7  x    1 2x 1  x  6 x7 x7 1  x7 

4a  2a  b  a 2a  b2a  b 2a  b a 2a  b 2a  b

1 1 27 x   1  1     27 x 9  61. 27 x 9  1 1 1 1   27 x      3 9x  3 9x

1  a 2a  b 5 2 6   2 y y 1 y

27 x 1 27 x 1    x 1 27 1 9  27 x 1 27 x 1    1 3 1 9x 1  3x  9x  3 1  3x 1   3  3 x  1 3

    5   y  y  1  2   y   6   y  1 

2  y2 5   y  y  1 6   y  1    2 2 y   y  y  1  y  1  y y   y  1 2

y 2  y  1

t 2 t  2

3w  2 w  4 w4 w4 1  w4

2

5   t  2   4   t 2   3   t  t  2 

4  a 1 2a  b   2a  b2a  b  a a 2a  b  2a  b

57.

5 4 3   2 t t2 t

5 y2  5 y  2 y2  6 y  6 7 y2  y  6  2 y 2  y  1 y  y  1

49


Chapter R Review of Prerequisites 1 1 8x   1  1     8x 4  62. 8 x 4  1 1 1 1   8x      2 4x  2 4x 8x 1 8x 1     1 8x 1 4 8x 1 8x 1    1 2 1 4x 1  2x  4x  2 1  2x  2  2 x  1 

2 1  2a 1  b 1 a b 65.  4 1 4a 2  b 2  a 2 b2  2 1 a 2b 2      a b   4 1 a 2b 2   2  2  a b 

a 2b 2 2 a 2 b 2 1    1 b  2 12 a a b 4 a 2b 2 1    1 a2 1 b2 2ab 2  a 2b  4b 2  a 2

1 2

x 5 x  14 6 x   x  5 x  14     6 6x  6x  63. 6 1 7 1 7   6x      6 6x  6 6x

ab 2b  a

1

u 2v 2 3 u 2v 2 1    2 2 1 v  3uv  u v  2 12 u u v 9 u 2v 2 1 9v 2  u 2  2  2 1 u 1 v

 x  2  x  7 

x7

 x2

uv 3v  u

3v  u 3v  u

uv 3v  u

3 3 3 3  67. 1  h  1 h 1 h h 3 3   1  h   1  h 1  1  h   h

x 2 x  3 3x   x  2 x  3    3 3x  3x  64. 3 1 1 1 1   3x      3 3x  3 3x 3x x 3x 2 x  3    3x  1 3 1 3x 1 3x 1    1 3 1 3x x2  2 x  3  x 1 

 2b  a   2b  a 

 3 1 3 1 u 2v 2       u v 3u  v 66.  u v  2 2 9 1 9 1 9u  v  2 u 2 v 2   2  2  2 u v  u v 1

6 x x 6 x 5 x  14    1 6 1 6x  6x 1 6x 7    1 6 1 6x x 2  5 x  14  x7 

ab  2b  a 

1  h   3   1  h   3  

 x  3  x  1 x 1

 x3

50

1

  1 h 1 1  h   h

3 h 3  3  3h  2 hh h 1  h 

3 3 or  1 h 1 h

  1


Section R.7 4 4 4 1  h   4  4    4   1 h 1 1  h 1  h 1   68. h h 1  h   h  1 h  4   1 h  4         1  1 h  1   1  1  h   h  

4  4 1  h  h 1  h 

4

71.

y 7

72.

4  4  4h h 1  h 

73.

4 4 4 h  or  1 h h 1  h  1  h

74.

7 7 x x  h   7  7       x  h x  x h x  69. h  x  x  h     h 

z

4 3

7 4

75. 3

 x  x  h   7 7  1    x  h  x     x  x  h     h 

7 x  7  x  h 7 x  7 x  7h  hx  x  h  hx  x  h 

7 h 7 7  or  x  x  h h x  x  h x  x  h

76. 3

77.

78.

8 8 8 h  or  x  x  h h x  x  h x  x  h

3

12w2 23 w3

3

50 p 2

3

53 p 3

3

y3

4 3 y2 y

3

12 w2 2w

8wx 2

27a 2b

12 x 1

3

50 p 2 5p

12  4 2 w3 x 2

51

4 3 y2

3 2  3 52 p 2 10 2 3  25 p 5 p 3 5 p  3 52 p 2

4

23 wx 2  4 2w3 x 2

12 4 2w3 x 2 4

2 4 w4 x 4

12 4 2w3 x 2 6 4 2w3 x 2  wx 2wx

 

79.

7 z z

3 18 3 3  3 2 2 w2 3  12 w 2 w 3 2 w  3 2 2 w2

12 4

4 y y

7 4 z3 7 4 z3   4 4 4 z z  4 z3 z

12 4

7 z

z2

2

7  4 z3

 x  x  h   8   x  x  h   8   1    x  h    1    x        x  x  h     h 

y  3 y2

3

 x  x  h   8 8  1    x  h  x     x  x  h     h 

8 x  8  x  h  8 x  8 x  8h  hx  x  h  hx  x  h 

4  3 y2

4 y y

z z

3

8 8 x x  h   8  8       x  h x  x h x 70.  h  x  x  h     h 

z

7 z

y y

 x  x  h   7   x  x  h   7   1    x  h    1    x        x  x  h     h  

y

4 y

12  4 3a 2b3 4

33 a 2b  4 3a 2b3

12 4 3a 2b3 4

34 a 4b 4

12 4 3a 2b3 4 4 3a 2b3  3ab ab 12  x  1 x 1 x 1

43  x 1

 x  12

2 3  x  1 2 3x  3  x 1 x 1


Chapter R Review of Prerequisites

80.

50 x2

25  2

x2

5 2 x2

x5

83.

x2 x2

x 5

5 2x  4

5 2x  4   x2  x  2 2

81.

8 15  11

 15  11  15  11 8  15  11 8  15  11    15   11 15 11 8  15  11   2  15  11 4 2

82.

2

85.

 x 5

2

y 3

84.

y 3

12 

2

x 5

 6  2 6  2  6  2  6  2 12  6  2  12  6  2    62  6   2 12  6  2    3 6  2  4 12

 x  5 x  5  x  5  x  5    x   5  x  5  x  5   2

8  15  11

 x  5   x  5 

 y  3   y  3 

 y  3 y  3  y  3  y  3    y    3  y  3  y  3   2

2

y 3

2

 y 3

2 10  3 5 4 10  2 5

 2 10  3 5   2 10  5    2 10  2 10    2 10   5    3 5  2 10    3 5   5  2  2 10  5    2 10  5  2  2 10    5     4 10  2 50  6 50  3 5 40  4 50  15 25  4 5  2 25  20 2 5  5  4 2  5  4 2      

2

2

2

2

2  40  5

86.

2

2  35

70

70

70

 3 3  6    5 3  2 6    3 3  5 3    3 3  2 6    6  5 3    6  2 6  5 3  2 6 5 3  2 6   5 3  2 6  5 3   2 6  3 3 6

2

2

15 32  6 18  5 18  2 62 45  11 18  12 57  11 32  2   75  24 51 51

57  33 2 3 19  11 2 19  11 2   51 51 17

52

14


Section R.7

87.

7 3x

3x 7  3x 3x   x x 3x  3x

88.

89.

4

11y

5 w 7

92. a. R 

7 3x 3x  3 10 3x   x3 3x 3x

b. R 

11y 4  11y 11y   y y 11y  11y 

4 11y 11y 11  11 y y 11

15 11 y 11y

7 5 7 7   w w 7 7 w

t 2

R1 R2 12 20  240  7.5   R2  R1 20  12 32

b. The concentration of the drug appears to be approaching 0 ng/mL for large values of t.

2 13  2 2   t t t 2 2

350 94. a. T  2 t  3t  10 At 3 hr: 350 350   12.5C T 2  3  3 3  10 28 At 24 hr: 350 350   0.5C T 2  24  3 24  10 658

13 2 2  2 11 2    t2 2t 2t 91. a. S 

R1 R2 1 RR  1 2  1 1  R2  R1 R1R2      R1 R2 

At 12 hr: 600 12 7200 C   3.9 ng/mL 3 12  125 1853

5 7 7 7  7w w7 2 7 2 7 or   7w 7w 13

1 1  R1 R2

600t 93. a. C  3 t  125 At 1 hr: 600 1 600 C 3   4.8 ng/mL 1  125 126 At 4 hr: 600  4 2400 C   12.7 ng/mL 3  4  125 189

90.

1

2d d d  r1 r2

r1r2   2d 

d d r1r2      r1 r2 

b. The temperature appears to be approaching 0C for large values of t.

2dr1r2 d d r1r2     r1r2     r1   r2 

5 2 6   x 1 x 1 x 6   x  1 7 x    x  1  x x   x  1

95. P 

2dr1r2 2 d r1r2 2r r  12  dr2  dr1 d  r2  r1  r1  r2

2  400 460 368,000 2r r b. S  1 2   400  460 860 r1  r2  427.9 mph

53

7x  6x  6 x  x  1

13 x  6 cm x  x  1


Chapter R Review of Prerequisites 6 2 1   2x  1 2x  1 x 1  2 x  1 8 x    2 x  1  x x   2 x  1

96. P 

100.

8x  2x  1  x  2 x  1 

97. A 

10 x  1 yd x  2 x  1

2x in.2 x

98. A 

99.

1

 y  7  y  5 3  y  5

1 1 or  6  y  7 6  y  7

4t  32  t 2t  1 3t  32  2t  1 1   2m 102.    2m  1  6m  3 m  4 

 2m 1      2m  1  3  2m  1 m  4   2m  1    2m  1     2m  1  m  4   3  2m  1    2m   m  4  2m  1  3   3   m  4  m  4  3

5y  5y 5 5y 5y 2  ft y 5y

2 x3 y x2  6 x  9   5 xy 4 2 2x  6 x y  3xy 

4 3  y

1

y 3

5 5y

2  y  5  y  5

  t  4  8  t        t  8  2t  1   2t  1  t  8 

1 bh 2

xy 2 x 2

4 3  y

y 3 1   y  7 y  5 3 y  15

 4  t     t  8  2t  1  2t  1 t  8 

 2  1  5  2     2  5  y    



t  4  101.   2  t  8  2t  1 2t  17t  8 

 2  1  1  4  2  2x     2  x  2 2x  2x   2 2x 2x

2 y 2  10 y  25

2

1 bh 2

2 y 2  20 y  50 y 3  2  3 y  15 12  4 y y  12 y  35

   x  3   x  3  1

xy  x  3

2  x  3

5 xy 4

x2 x   4 4 5 xy 5y

54

2 m 2  8m  6 m  3 3  m  4

2m 2  2m  3 3  m  4


Section R.7

103.

n  2 2n 2  15n  12 2n  5 n  2 2n 2  15n  12 2n  5      n4 n 2  16 n  4 n  4  n  4 n  4 n  4 

 n  2   n  4  2n2  15n  12   2n  5   n  4  n  4   n  4  n  4 n  4  n  4   n  4

n 2  2n  4n  8  2n 2  15n  12  2n 2  8n  5n  20  n  4 n  4

n 2  16  2 1 n  16 104.

c 2  13c  18 c  1 c  8 c 2  13c  18  c  1   c  3  c  8   c  3      c2  9 c  3 c  3  c  3 c  3  c  3   c  3  c  3   c  3 

c 2  13c  18  c 2  3c  c  3  c 2  3c  8c  24  c  3 c  3

c2  9 1 c2  9

1 6 1  2 1  a 1  6a 2 a a 105.  1  4a 1  3a 2 1  4  3 a a2  1 6 a 2  1   2   a a    4 3 a 2  1   2   a a 

1 12 1  2 1  t 1  12t 2 t t 106.  1  4t 1  3t 2 1  4  3 t t2  1 12  t 2  1   2   t t    4 3 t 2  1   2   t t 

a2  a  6 a 2  4a  3

t 2  t  12 t2  4  3

 a  2  a  3  a  3  a  1

 t  4  t  3 t  4   t  1  t  3 t  1

a2 a 1

107.

34 2 5 3

34  2 5  3

 2 5  3  2 5  3 34   2 5  3   2 5   3 34   2 5  3   2

2

20  3

2

55

34  2 5  3 17

 4 52 3


Chapter R Review of Prerequisites

108.

13 2 7 2

13   2 7  2 

45  9 x  5 x 2  x 3 113. 3 x  3 x 2  25 x  75 45  5 x 2  9 x  x 3  3 x  25 x  3x 2  75 5 9  x2  x 9  x2  x x 2  25  3 x 2  25

2 7  2 2 7  2 13  2 7  2   2 7    2 13  2 7  2   2

2

28  2

13 2 7  2

2 7 2

2



114.

  42 3

2

3

2

 x  3  x  3  x  5 x  3   x  5  x  5  x  3 x  5

98  49 x  2 x 2  x 3 7 x 2  x 3  28  4 x 98  2 x 2  49 x  x 3  7 x 2  28  x 3  4 x 2 49  x 2  x 49  x 2  7 x2  4  x x2  4

3

6

2

8  48 8  42  3  6 6 84 3  6 4 2 3

 9  x   x  5    x  9   x  5    x  25  x  3  x  25  x  3

2

109.

   

2

2

26

   

 49  x   2  x   x  4  7  x 

2

10  50 10  5  2 10  5 2   15 15 15 2

110.

 

5 2 2 15

2

1

  2 2

 7  x  7  x  2  x   x  2  x  2  7  x    x  7 x7 or  

3

3

111.

14 7x

7x 14  7 x 7x   x x 7x  7x 14 7 x   7x 7 7x   7x

112.

6y xy

x2

7x  7 x7 7x x

115.

10 xy 6 y  xy 10 xy   x x xy  xy  

6 y xy 10 xy  y  xy x y 16 y xy xy

x2

t6 t 4 2 1 t t6  t    t  4   t  6   t 4 t2  t  2  t t  t  6 t   t  2 4   t  2     1   t  2 1   t  2 t2 t 2  6t  t 2  2t  4t  8 t2 8 8 or   t2 t2 

16 xy x

56


Section R.7

116.

m4 m2 2 1 m m4  m    m  2   m  4   m2 m2  m  2  m m  m  4 m   m  2 2   m  2     m2 1  m  2 1  m  2

122. a.

15 4 60   6 2 5 10



123.

w3n  w  z  w3n1  w3n z  w n  2  wn z 2 wn w2  z 2

124.

2n x 2 n1  x 2 n y x  x  y   x n3  x n y 3 x n x 3  y 3

118. No. The expressions are equal for all real numbers except for x  2 and x  4 . The original expression is undefined for x  2 and x  4 .

, multiply numerator and

x to make a perfect square 1 in the radicand in the denominator. For 3 , x multiply numerator and denominator by

120. Multiplying the denominator by the conjugate of 5  3 will produce a rational number. That is

 5  3 5  3   5   3  5  3  2 2

To make a fraction equivalent to the original expression, multiply the numerator by 5  3 as well. 121. a.

127.

14 30 420    20 3 7 21



b. 5  5 5  5   5  2

 5

5 3

2

2

x2  y 2 x y m 3 m3 m3 m3

 m  3 m  3

2

xn x 2  xy  y 2

 x  y

m3  m3

126.

x n  x  y  x 2  xy  y 2

 x  y  x  y 

x to make a perfect cube in the radicand of the denominator.

xn  xn  x  y

x y x y

2

x y x y

x y  x y

125.

denominator by

3

w2 n   n w  w  z  w  z w  z

117. If x  y , then the denominator x  y will equal zero. Division by zero is undefined.

x

2

wn  w2 n  w  z 

m 2  4m  m 2  2m  2m  4 m2 4 4  or  m2 m2

1

2

 93 6

119. For

b. 3  3 3  3   3   3

 m  3

5  3 22

2

5  3 22

3 3 2  3 22 2 12 23 36 5 2 5  24 6   2 2 3

5  2   5 2 

2

4 16

3

2

 25  5  20

57

6

3 4

2

m2  9 m3


Chapter R Review of Prerequisites

128.

7 4

3

7  4 33 4

132.

3 3 4

3

 x  h  x   x  h  x  h  x  h  x   x  h  x  h x  h  x 

7  4 33

4

34 71 2  33 4  3 24 7  33 4  3  

129.

h

3 4

73 3

a3b

h

h 

 a  b   a  ab  b  3

 x  h  x

2 3

3

3

3

2

3

3

2

2

xhx

7  3 

ab 3

2

3 14

2

xh  x h

 x  h  x 1 xh  x

133.

a3b

 3 a 2  3 ab  3 b 2

130.

x y 3

x3 y

 x  y   x  xy  y  3

3

3

3

2

3

3

2

x3 y

 3 x 2  3 xy  3 y 2

131.

 4  h  2   4  h  2 h   4  h  2  4  h  2  h  4  h  2

4h 2  h

2

134.

2

4h4

 h

 4  h  2

The expression appears to approach 2 as x approaches infinity.

h

 h 

The expression appears to approach 6 as x gets close to 3.

 4  h  2 1 4h 2

58


Chapter R Review Chapter R Review Exercises 1. a.

9

d.

b. 0, 9

16  4

e.  16  4

c. 0,  8, 9 d. 0,  8,1.45, 9, 

2 3

f.

e.

6, 3

f.

2 6, 0,  8,1.45, 9,  , 3 3

9.

16 is not a real number. 25 5  4 2

 2  2  1  3   4 1 10. 72         72          2  9 8  3  4 8 1 9  72        9 8 8 9

2. a. The first set is a subset of the second, because all of the elements in the first set are elements of the second set. True.

 32 9   72      72 72 

b. The first set is not a subset of the second, because 2 is in the first set but not in the second set. False. 3. x  4

 23   23  72    72 

4. 6 y  8

5. a. 11.

 3, 7 ;  x | 3  x  7

2 12. 5  3 8  2 42   2  5   

b.

 2.1,  ;  x | x  2.1

2  5  3 8  2 42   3     5  3 8  2 16  9   5  3 8  2 25   5  3 8  2  5  

c.

 , 4 ;  x | 4  x 6. a. for w  4, w  4    w  4  4  w

 5  3  8  10   5  3  2   5  6  1

b. for w  4, w  4  w  4 7. a. 2  5 or

13. a. J  E  150

5 2

32  11  3 32   8 24 24    6 36  2  3  2 18  3  2 6  2 4

b. E  J  150

14. W  2 L  8

b. 2  5   2  5  5  2

15. a. C  3.6s  50 p  250n b. C  3.6s  50 p  250n

8. a. 162  16 16  256

 3.6  2100  50  4  250  2

b.  16   16   16  256 2

 7560  200  500  $8260

c. 162   16 16  256

59


Chapter R Review of Prerequisites 2  5x  z z  2  13x 2 z 4      5 x  z  z

b. m 5 

16. 13x 2 z 4 

d. 8m9 n 2  8  m9  n 2  8  m9 

 15.2c 2 d  8.7c 2 d  11.1cd  5.4cd  23.9c 2 d  16.5cd

32.

1   18. 8   2 x 2  6  4 x 2  3  13 x 2 2  

m 4 m10  m 4  m10  m 6  m 4106  m0  1 6 m

33. 12a 3b 4

   12  a   b  2

 144a 6b8

 8  4 x 2  13 x 2  7 x 2  8

20. h 22. i

23. e

24. g

25. a

26. f

 81x8 y 5  34.   9 x 6 y 8 

 x2  x1    y2  y1 

2

2

2

 2  5  3   6 

 7    9 

2

2

2

   9  x   y   9 x 2 y 3

 2 3

1

 9

 21 u 5v 2

29. a. 90  1

2

2 2

3 2

 x 4 y 6

y6 81x 4

 1   4  35.  5 2   3 2   2u v   u v 

2

 49  81  130

1

 2 u v  3

2

3 2 1

 23 u15v 6 22 u 3v 2

b. 90  1 90  11  1

 2u12 v 4

c. 9 x 0  9  x 0  9 1  9

d.  9 x   1 0

2u12 v4

36. a. Move the decimal point 3 places. The number is greater than 10, so use a positive power of 10. 4920  4.92  103

5

30. a.

 9 x86 y 58

 2

4 2

144b8 a6

2

27. b 28.

3 2

2

 8   2 x 2  3  2 x 2  3  13x 2

21. c

1 8m 9  2 n2 n

31. p 8  p12  p 1  p 8121  p 3

17. 15.2c 2 d  11.1cd  8.7c 2 d  5.4cd

19. d

1 2 8n 2 n  9 m9 m

c. 8m 9 n 2  8  m 9  n 2  8 

2 Terms: 13x 2 z 4 ,  , 5 x  z ; z coefficients: 13, 2 , 1

1 m5

1 1 m   1  m5 5 1 m 1 m5

60


Chapter R Review



  

38. 9.2  104 3.0  105  9.23.0  104 105

b. Move the decimal point 3 places. The number is between 0 and 1, so use a negative power of 10. 0.00492  4.92  10 3

 27.6  109

 2.76  101  109  2.76  10

10

c. Move the decimal point 0 places. The exponent on 10 is 0. 4.92  4.92  100

8.6 10 4.110    8.6  4.1  10 10  39. 3

8

3

  2.0   10 6 

2.0  10 6

37. a. 101 is between 0 and 1. Move the decimal point 1 place to the left. 9.8  101  0.98

8

 17.63  1011

 1.763  101  1011

b. 10  1 The decimal point does not move. 9.8  100  9.8 0

 1.763  10

12

c. 101 is greater than 10. Move the decimal point 1 place to the right. 9.8  101  98

40. 1 pt 

0.47 L 106 L 5  106 red blood cells    2.35  1012 red blood cells 1 pt 1L 1 L

 x b. 9 x  9 x or 9  x  c.  9 x    9 x  or  9 x 

41. a. x 2 7  7 x 2 or 27

27

7

7

2

7

b. 10, 0003 4 

  10  1000 3

3

1  10,0003 4

1

45. a. 10, 0003 4  4 10,000

2

7

2

7

2

2

1

10 

42. a. 12 w  12 w1 2

3

b. 12w  12 w

4

3

1 1000

c. 10,0003 4   4 10,000

12

 10, 000 

3

  10   1000 3

43. a.  256   4  4 4

4

4

d. 10,0003 4  

b. 4 256 is not a real number. 44. 3 

3 8 8 8 3 23 2 2 3  3  3   3 125 125 5 5 125 5

 e.  10, 000 4

61

34

1 1  3 34 10,000 4 10, 000

1

10 

3



1 1000

is undefined because

10,000 is not a real number.


Chapter R Review of Prerequisites f.  10,000 4

3 4



54. 5 5 a 3 6 5 a 4  5  6 5 a 3  a 4

is undefined because

10,000 is not a real number.

 30 5 a 7  30 5 a 5  a 2

p 7 3 p 2 3 p 7 32 3 p 5 3 46.   2 3  p 5 32 3  p 3 3  p p2 3 p2 3 p

47. 9m 4 n 2 3

 30 5 a 5  5 a 2  30a 5 a 2

   9  m   n  12

4 1 2

12

23 12

55. 4 cd 2  3 c 2 d   cd 2    c 2 d 

 3m 2 n1 3 

14

3n1 3 m2

 c1 4 d 1 2  c 2 3 d 1 3  c1 42 3 d 1 21 3  c 3 128 12b6 124 12

 3t  42  3t  4

48. a.

13

 c11 12 d 10 12  12 c11d 10

b. 3  3t  4  3t  4 3

56.

c. 4  3t  4  3t  4 4

49. 3 54 xy12 z14  3 33  2  xy12 z14



 3 33 y12 z12 2 xz 2

 3 33 y12 z12  3 2 xz 2  3 y 4 z 4 3 2 xz 2

1 3 1 125  20  80 5 2 4 1 2 3 2 1 2 5 5  2 5  4 5  5 2 4 1 3 1  5 5   2 5  4 5 5 2 4  5 3 5  5 3 5

57. 2c 3 54c 2 d 3  5cd 3 2c 2  10d 3 250c5

 2c 3 33 d 3  2c 2  5cd 3 2c 2

50. 4 32b3c15 d 8  4 24  2  b3c15 d 8



 4 24 c12 d 8 2b3c 3

 10d 3 53 c 3  2c 2

 6cd 3 2c 2  5cd 3 2c 2  50cd 3 2c 2

 2 c d  2b c 4

4 12

 2c d 3

51.

p13  9

p13 9

24

8

4

3 3

 51cd 3 2c 2

3 3

2b c

58. 3 5t  8t 5t   3  8t  5t

p12  p p 6 p  3 3

59. a. Yes b. No

3 xy 5

y3 y 3xy 5 3 52. 3   2 7 2 6 7 2 3 81x y 27 x 3x 81x y 3

53.

c. Yes 60. 2.5 y11  7.61 y 9  y 5 ; Leading coefficient: 2.5; Degree: 11

10  35  350  52 14  52  14  5 14

61. 8

62


Chapter R Review

62. a. R  E  14 x  156.67   x 2  8 x  130

c. R  E  x 2  6 x  26.67

  4  6  4  26.67 2

 14 x  156.67  x 2  8 x  130

 16  24  26.67  66.67 In the year 2010, the profit for cellular and wireless communications industries was approximately $66.67 billion.

 x 2  6 x  26.67 b. The polynomial R  E represents the profit for cellular and wireless communications industries x years since 2006.

 

63. 7.2a 2b3  4.1ab 2  3.9b  0.8a 2b3  3.2ab 2  b

 7.2a 2b3  4.1ab 2  3.9b  0.8a 2b3  3.2ab 2  b  8a 2b3  7.3ab 2  2.9b

1  64. 8uv 3  u 2 v  2u 3v 4 4 



65. 5w3  6 y 2 2w3  y 2

70. 6c 2  5d 3

3

3

 6 y2  y2

2

2

3

3 2

  2v  1  w2 2

  2v   2  2v 1  1  w2 2

 10w  7 w y  6 y 3

2 2

71.  2v  1  w  2v  1  w

 10w6  5w3 y 2  12w3 y 2  6 y 4 6

2

 36c 4  60c 2 d 3  25d 6

 5w 2w  5w  y 2  6 y 2 2 w3 3

   6c   2  6c  5d    5d 

2

 4v 2  4v  1  w2

4

    4 3  2 3    4 3  5 5    4 3  7 

72. 4 3 2 3  5 5  7

1  66.  4 p  6  p 2  p  4 2  1   4 p  p 2   4 p   p   4 p  4 2 

 8 9  20 15  4 21

1    6  p 2    6  p    6 4 2 

 24  20 15  4 21

 2 p 3  4 p 2  16 p  3 p 2  6 p  24 2

2

       2 3  5 3 

 12 25  30 15  4 15  10 9

1  1 1  1 68.  m  n3   m  n3  3   4 3 4  2

 60  26 15  30  30  26 15

2

1 1 1  1    m   n 3   m 2  n 6 3  4  9 16

   7 2    2 11

74. 7 2  2 11 7 2  2 11 2

69.  5k  3   5k   2  5k  3   3 2

2

 

 6 5 2 5  6 5 5 3  2 3 2 5

67.  9t  4 9t  4   9t    4  81t 2  16 2



73. 6 5  2 3 2 5  5 3

 2 p  7 p  22 p  24 3

2

2

 49  2  4 11  98  44  54

 25k 2  30k  9 63


Chapter R Review of Prerequisites

   2c d   2  2c d  5d c    5d c 

75. 2c 2 d  5d 2 c 2

2

82. t  12t 2  6  12t 2  t  6   4t  3 3t  2

2

2

83. 8 x 3  40 x 2 y  50 xy 2

2

 2 x 4 x 2  20 xy  25 y 2

2

2

2 2  2 x  2 x   2  2 x  5 y    5 y    

 4c 4 d  20c 2 d 2 cd  25cd 4

 x  2  4   x  2   2  x  2   4   4

 2x  2x  5 y

2

76.

2

2

    25  16a  2516a  25  16a  25  4a    5     16a  25  4a  5 4a  5

84. 256a 4  625  16a 2

2

2

2

2

 x  2  8 x  2  16  x  18  8 x  2

2

2

2

77. V  lwh

2

  x  3 x  2 2 x  5

   x  3  2 x  9 x  10

  x  3 2 x 2  5 x  4 x  10

   3k  k  3   3k  k  3  k  3k  9

85. 3k 4  81k  3k k 3  27

2

3

 2 x  9 x  10 x  6 x  27 x  30 3

2

2

86.  c  2  d 3 3

1 bh 2 1  3 2 1 3 2 1 2 2 1 2  3 2  1   2 

78. A 



2   c  2  d   c  2  d  c  2  d 2   

  c  2  d  c 2  4c  4  cd  2d  d 2

 

87. 25n 2  m 2  12m  36

1 1 17 2 9  2  1  17   ft 2 2 3

79. 80m 4 n8  48m5 n3  16m 2 n

2

7

3 2

 25n 2   m  6

2

 5n  m  65n  m  6

88. Let u  x 2  7 .

 x  7  8  x  7  15

80. 11 p 2  2 p  1  22 p  2 p  1

 25n 2  m 2  12m  36

 16m n 5m n  3m n  1 2

3

2

 2 x 3  15 x 2  37 x  30

2

2

2

 11 p 2  22 p  2 p  1

2

 u 2  8u  15   u  5 u  3

 11 p  2 p  1 p  2

     x  2 x  4   x  2  x  2 x  2

 x2  7  5 x2  7  3

81. 15ac  14b  10a  21bc

2

 15ac  10a  14b  21bc  5a  3c  2  7b  2  3c 

2

 5a  3c  2  7b  3c  2   5a  7b  3c  2

64

2


Chapter R Review 89.  2 p  5   4 p  1 2

91. x 4  6 x 2 y  9 y 2  x 2  3 y

2

  2 p  5   4 p  1  2 p  5   4 p  1

 ( x 2  3 y )( x 2  3 y )  x 2  3 y

 6 p  4 2 p  6

 2 3 p  2 2 p  3

92. 7 w8  5w7  w6

 w8 7 w8 8  5w7 8  w6 8

90. Let u  m3 . m6  9m3  8  u 2  9u  8

   w  7  5w  w  8

     m  1  m  2    m  1  m  2m  1  m  2  m  2m  4  m 3  1 m3  8 3

3

2

 w8 7 w0  5w1  w2

  u  1 u  8

3

2

 ( x 2  3 y )( x 2  3 y  1)

 4 3 p  2 p  3

3

 ( x  3 y ) ( x  3 y )  1 2

2

7  5 w  w2 w8

2

93. 12 x 7 2  4 x 5 2  4 x 5 2 3 x 7 25 2  x 5 25 2  4 x 5 2 3 x1  x 0  4 x 5 2  3 x  1 94. x  2 x  5

95. a.

3 4

  2 x  5

14

 x  2 x  5 3 4 3 4   2 x  51 4 3 4    3 4 0 1   2 x  5   x  2 x  5    2 x  5      2 x  5

3 4

  2 x  5

3 4

 x  2 x  5

  2 x  5

3 4

 3x  5 or

3x  5

 2 x  5 3 4

w2 w2  : If 2 or 2 were 2 w  4  w  2 w  2

97.

substituted for w, then 2  2  0 or 2  2  0 and the denominator would be 0. So, w  2 , w  2 .

m  4 , m  3

2 x  5 y x3 y  x 2 y 6 2x  5 y x5 y 7   98.  x 3 y 6 x  15 y 3  2x  5 y x3 y

b. There are no values for w that make the denominator 0. So there are no restricted values for this expression. 96. 

 m  4  m  4 m  4 m 2  16   ; 2 m  m  12  m  3  m  4 m  3

   

8c5 d 2 3a 2 24a 2 c 5 d 2 3a 2     ; 16c 6 d 7 2cd 5 8c 5 d 2 2cd 5

99.

c  0, d  0

x2 y6 3

4ac a 2  8ac  16c 2  8a  32c a 2  4ac 

 a  4c   a  4c  c  2 8  a  4c  a  a  4c  4 ac

2

65


Chapter R Review of Prerequisites

100.

5 x 2  25 x  125 x 3  125  16 x  x 3 x 2  9 x  20 5 x 2  25 x  125 x 2  9 x  20   16 x  x 3 x 3  125

104.

1

 x  5  x  4    x  4  x   4  x   x  5  x 2  5 x  25 5 x 2  5 x  25

101.

x 1 5 x 1 5 x 1 5     x6 6 x x6 x6 x6 x6  1 x6

1 1 16 x   1  1     16 x 8  105. 16 x 8  1 1 1 1   16 x      4 8x  4 8x

5 5 or  x  x  4 x  x  4

16 x 1 16 x 1    1 8  1 16 x 16 x 1 16 x 1    1 4 1 8x 1 1  2x 2x  1    4 x  2 2  2 x  1 2

7 2 7 2   2  4 20 x 15 x 2  5x 3  5x4 7  3x3 2   4  2  3 3  5 x 4   4 2  5 x  3x

   

21x 3  8  60 x 4 102.

6 1  2 2 9 x  y 3 x  xy 6 1   3x  y3x  y x 3x  y 2

  

103.

5 1  5m 1  n 1 m n 106.  25m 2  n 2 25  1 m2 n2  5 1 m2 n2      m n   25 1  m2n2   2  2  m n 

6   x 1 3 x  y  3x  y3x  y  x x 3x  y  3x  y

5 1  m2 n2  m n  25 1 m2n2  2  m2 n2  2 m n 2 2 5mn  m n  25n 2  m 2 m2 n2 

6 x  3x  y x 3 x  y3x  y 3x  y x 3 x  y 3x  y

1 x 3 x  y

4 3 2   2 x x3 x 4   x  3 2   x    x  3 3  x2  2   2 x   x  3  x  3  x x   x    x  3 

5

107.

4 x  12  3x 2  2 x 2  6 x x 2  x  3

x 2  2 x  12  2 x  x  3

108.

66

k

5 4

k

 5n  m   5n  m 

5 k

mn  5n  m 

k k

5 4 k3 4

k  4 k3

5 k

k

2

54 k 3 4

k4

5 k k

54 k3 k

mn 5n  m


Chapter R Test 6

109. 4

6

2

4

8x y

2 x y 6  2x y

4

2

x2

3

2 x2 y  4 2 x2 y3 2

6 2x y

3

24 x 4 y 4

3

112.

5y

5

2

5y 3 5y 5y   y y 5y  5y 

3 5y 5y  y 5y

3 5y 5y 5  y 5 5y

3 5y 5 5y  5y 5y

8 5y 5y

2

10  7

15

 x  2    x  2  x  4  x  2   x    2  x  4  x  2   x 2

 10  7  10  7  10  7    10  7  15  10  7    10    7  15  10  7   2

 x  4   x  2

x4

15 

2

6 4 2 x2 y3 34 2 x2 y3  xy 2 xy

15

110.

x4

3

4

4

111.

2

4

 

3

 10  7   5 10  7   3

Chapter R Test 1. a. 8

4. for t  5, 5  t    5  t   t  5

b. 0, 8

c. 0, 8,  3 5. a.

5 d. 0, 8,  , 2.1,  0.4,  3 7 e.

b.

 6

f. 0,

6. a.

5 , 8,  , 2.1,  0.4,  3 6 7

2. a. M  2 J

b. J 

2  2 or 2  2

2 2  

 2  2  2  2

2  y  11 2 y  22 :  y  9 y  22  y  2 y  11 2

If 2 or 11 were substituted for y, then 2  2  0 or 11  11  0 and the denominator would be 0. So, y  2 , y  11 .

1 M 2

3. a. C  12 A  40 L  30

b.

b. C  12 A  40 L  30

 12  80  40  2  30  960  80  30  $1070

67

2  y  11 2 y  22 2   y  9 y  22  y  2  y  11 y  2 2


Chapter R Review of Prerequisites

7.  6  4 9 x  2  3x  5   3

14.

  6  4  9 x  6 x  10  3    6  4  3x  10  3    6  12 x  40  3

  12 x  49  12 x  49 8.

9.

1 2 1 5 a b  ab 2  a 2b  4ab 2 3 2 6 1 5 1  a 2b  a 2b  ab 2  4ab 2 3 6 2 2 1 2 5 2 3 1 6   a b  a b   ab 2   4ab 2 2 3 6 3 2 6 2 5 3 24  a 2b  a 2b  ab 2  ab 2 6 6 6 6 3a 2b  21ab 2  6 1 7   a 2b  ab 2 2 2 7 2  4 8   2   42 2 4  6

 53 ab3  3b 22  5ab  52 b 2  5ab  3b  2 5ab  5b 5ab  6b 5ab  b 5ab 16. 3 x 2 y  xy  x 2 3 y1 3  x1 2 y1 2

 x 2 31 2 y1 31 2  x 4 6 3 6 y 2 6 3 6  x7 6 y5 6

1  17. 12n 2  4  n 2  3n  5 2 

49  40  16 4 7 7   4 4 10.  2a b

8 15

4 a b 0

3

0

1

13.

15 6

  3a  b   c 2 2

 9a 2  2  3a  b   b 2  c 2  9a 2  6ab  b 2  c 2 2

2 1 1  1  19.  z  p2   z  p2    z   p2 4 4  4 

80k m n  8 k n 10m n 3

18.  3a  b   c   3a  b   c 

1

3

 6n 4  36n3  58n 2  12n  20

10

2 7

 6n 4  36n3  60n 2  2n 2  12n  20

a8  15 b

 t2 5 t7 5  t 4  t14 1 12.    t 41430  t 12  12 3 30  t t  t  15

1    4  n 2    4 3n    4 5 2 

2 7

1 1 1 11.          1  33  4  2  3 4  1  27  4  32

3

1   12n 2  n 2   12n 2  3n   12n 2  5 2 

  4a b    4a b  4 a b  6 8

 x x1 6 y 5 6  x 6 xy 5

7 2  4 10  42  2 2

2 7 1

125ab3  3b 20ab

15.

3 4 2

34 2 3 4 3 3 8 p q  2 p q  4 8 p 2 q3  2 p3q 4 4 3  4 24 p 4 q 4  p 4 3   2 pq 4 p 4 3  pq 4 p 2

2

 2k 5 n 2 3 10m 2 n

68

1 z  p4 16

 


Chapter R Test

    5 x  3 x    5 x  2 2    2  3 x    2  2 2 

x 9  x 9 4x       4 4x  25. 4 4 x  1 3 1 3   4x      4 4x  4 4x x 9 4x   4x  2 4 4x  x  9  1 3 x3 4x   4x  4 4x  x  3  x  3  x3  x3

20. 5 x  2 3 x  2 2

 15 x  10 2 x  3 2 x  4  15 x  7 2 x  4

 x  6z   x   2 x  6z  6z 2

21.

2

2

 x  12 z x  36 z 2 3x 2 8x  4 22. 3  2 2 x  14 x  49 x 4 x  26 x  14 3x 2 4 x 2  26 x  14  3  x  14 x 2  49 x 8x  4 2 2 2 x 2  13 x  7 3x   4  2 x  1 x x 2  14 x  49

 

23.

x  3x x  x  7  x  7

26.

 27.

2  2 x  1  x  7  4  2 x  1 2

 x  5   x  5

2

 13  10  3

 13  10 

x5 28.

2

12  y 2  4 y  3 y

6

2

7

t 2

2 7 2 2 7 2 2 2     2t t t t2 t 2 2 

1 y 2  4 y

y y  4y

4x2 y xy

6

   3 y y  y  4 y y   y  4 y  y  4 y  y 

3

13  10

12 1 3 24. 3   2 2 y  4y y y  4y

2

2 xy

 13  10  13  10  13  10    13  10  6  13  10    13    10  6  13  10   6

2

 x5

23 x 3 y 3

2 3 4 x2 y

2

2

2 3 4 x2 y 3

x2 10 x  25 x2 10 x  25    5 x x5 x5 x5 2 x  10 x  25  x5

3 2  3 22 x 2 y 8 8   2 xy 2 3 2 xy 2 3 2 xy 2  3 22 x 2 y

3x 2  x  7

12

3

7 2 2 2 5 2  2t 2t

29. 30 x 3  2 x 2  4 x  2 x 15 x 2  x  2

2

 2 x  3x  1 5 x  2

y 2  y  12 y 2  y  4

30. xy  5ay  10ac  2 xc

 y  4  y  3 y  3  2  y y 2  y  4

 y  x  5a   2c  5a  x    x  5a  y  2c 

69


Chapter R Review of Prerequisites

    3u  v  9u  3uv  v 

33. 27u 3  v 6   3u   v 2

31. x 5  2 x 4  81x  162

3

 x 5  81x  2 x 4  162

 

2

 x x  81  2 x  81 4

4

      x  9  x  3 x  3 x  2

 x 4  81  x  2  x 2  9 x 2  9  x  2

 w6 4w0  2w1  7 w2

32. c  4a  44a  121

 c 2   2a  11

 w6 4  2w  7 w2 or

 c  4a  44a  121 2

2

4

 w6 4 w6 6  2 w5 6  7 w4 6

2

2

2

34. 4w6  2 w5  7 w4

2

2

3

7 w2  2 w  4 w6

2

 c   2a  11   c   2a  11    c  2a  11 c  2a  11

35. y  2 y  1

3 4

  2 y  1

14

 y  2 y  1 3 4 3 4   2 y  11 4 3 4    0 1 3 4   2 y  1  y  2 y  1   2 y  1      2 y  1

3 4

  2 y  1

3 4

 y  2 y  1   2 y  1 3 4  3 y  1 or

3

5

11 3  8.4  6.0   10 10     12  1013   4.2   105 

 1.2  101  1013  1.2  1014

 2 x  7 x  30  x  4 x  4 2

8.4  10  6.0  10   4.2  10  11

40.

2

 2 x 2  12 x  5 x  30  x 2  4 x  4

 2 y  13 4

39. 10 7 is between 0 and 1. Move the decimal point 7 places to the left. 8  107  0.000 0008

1 36. V   r 2 h 3 1 1 2    5 132  52   25 169  25 3 3 25 25   144  12  100 in.3 3 3

37. A   2 x  5 x  6   x  2

3y 1

2

 x 2  11x  34

41.  2.7,  

38. Move the decimal point 10 places. The number is greater than 10, so use a positive power of 10. 45,000,000,000  4.5  1010 Move the decimal point 6 places. The number is greater than 10, so use a positive power of 10. 1, 660,000  1.66  106

42.  x | 3  x  5

70


Section 1.1

Chapter 1 Equations and Inequalities Section 1.1 Linear Equations and Rational Equations 1. linear

2. first

3. solution

4. set

5. equivalent

6. addition

7. division

8. conditional

 48

9. identity

10. contradiction

d. Nonlinear

c. Linear;

e. Linear;

11. rational 12. empty (or null);   or 

8

13. a. Linear; 2 x  8

 4

2 x 8  2 2 x  4

6 x  24 x  4  4 16. 8 y  6  22

1  x8 c. Linear; 2  1  2   x  2  8  2 

8 y  16 y  2

 2

x  16

17. 4  7  3  4t  1

4  7  12t  3 4  4  12t 0  12t 0t  0

d. Nonlinear e. Linear;

x28 x 2 2  8 2 x  10

10

18. 11  7  2  5 p  2 

14. a. Linear; 12  4 x

3

12  4  x 12  4  4  x  4 8 x

15. 6 x  4  20

b. Nonlinear

 16

1 x 4 1  4 12  4  x 4  48  x 12 

11  7  10 p  4 11  11  10 p 0  10 p 0 p

12 4 x  4 4 3 x

 0

b. Nonlinear

71


Chapter 1 Equations and Inequalities 19. 6  v  2  3  9   v  4

25. 2  5 x  6  4  x  3  x  10 

10 x  12  4  x  3 x  30

6v  12  3  9  v  4 6v  15  5  v 5v  10 v2  2

10 x  12  4  2 x  30 10 x  12  8 x  120 18 x  132 132 22 x  18 3  22    3

20. 5  u  4  2  11   u  3

5u  20  2  11  u  3 5u  22  14  u 4u  8 u2  2 21.

26. 4  y  3  3  y  2  y  2 

4 y  12  3  y  2 y  4 4 y  12  3  3 y  4 4 y  12  9 y  12 5 y  0 y0

2.3  4.5 x  30.2 27.9  4.5 x 6.2  x  6.2

 0

22. 9.4  3.5 p  0.4

27.

9.8  3.5 p 2.8  p

 2.8 23. 0.05 y  0.02  6000  y   270

1 3 x 2 4 2 3 1 4  x    4  2 4 2 x68

14

0.05 y  120  0.02 y  270 0.03 y  120  270 0.03 y  150 y  5000

28.

5000

1 5 x  1 6 3 5 1 6  x    6 1 6 3 x  10  6

24. 0.06 x  0.04 10, 000  x   520

0.06 x  400  0.04 x  520 0.02 x  120

 6000

x  14

16

x  6000

72

x  16


Section 1.1

29.

1 3 2 w  w 2 2 4 3 3 1 2  12  w    12  w  2 2 3  4 6w  9  8w  24

32.

7  x  6  3x  7  x  1  42

2 w  33 w 

7 x  42  3x  7 x  7  42 10 x  42  7 x  49 3x  91 91 x 3  91   3

33 2

 33     2 30.

2 3 7 p  p 1 5 10 15 3 2 7  30  p    30  p  1 5  15  10  12 p  9  14 p  30

33.

2 p  21 p

n  3 n  2 n 1   1 4 5 10  n  3 n  2  n 1  20    20   1   4  10  5  5  n  3  4  n  2  2  n  1  20

21 2

5n  15  4n  8  2n  2  20 n  23  2n  18  n  41 n  41  41

 21   2

31.

x  6 x x 1   2 3 7 3  x  6 x  x 1  21    21  2  3    7 3

y 1 y y  3   1 5 4 2  y 1 y   y3  20     20   1  5  2  4

34.

4  y  1  5 y  10  y  3  20 4 y  4  5 y  10 y  30  20 9 y  4  10 y  50

t 2 t7 t4   2 3 5 10  t  2 t  7 t4  30    30   2   3  10  5  10  t  2  6  t  7   3  t  4  60

 y  54

10t  20  6t  42  3t  12  60 4t  62  3t  48

y  54

 54

110

t  110

1 1 35. a. Vs  Vt   50, 040  5560 m3 9 9

73


Chapter 1 Equations and Inequalities

b.

40. a. C  167.95 x  94

1 Vs  Vt 9 1 9000  Vt 9 81,000  Vt

C  167.95  9  94  $1605.55 b.

2445.30  167.95 x  94 2351.30  167.95 x 14  x 14 credit-hours

Vt  81,000 m3 36. a. E  0.78d  0.78  500  390 euros b.

41.

E  0.78d 800  0.78d 1026  d d  $1026 R  4.25  6  93.9  $119.4 billion

42.

4 x 2005  4  2009 In 2009

43. 2 x  3  4  x  1  1  2 x

38. a. R  17.5 x  138.5

2x  3  4x  4  1  2x 2x  3  2x  5 3  5 Contradiction

R  17.5  2  138.5  $173.5 billion R  17.5 x  138.5 226  17.5 x  138.5

44. 4  3  5n   1  4n  8  16n

87.5  17.5 x 5 x 2005  5  2010 In 2010

12  20n  1  4n  8  16n 20n  13  20n  8 13  8 Contradiction

39. a. T  1.83a  212

T  1.83  4  212  204.68F b.

E  13.7 x  338

475  13.7 x  338 137  13.7 x 10  x 2000  10  2010 In 2010

R  4.25 x  93.9 110.9  4.25 x  93.9 17  4.25 x

b.

E  46.2 x  446.2

862  46.2 x  446.2 415.8  46.2 x 9 x 2000  9  2009 In 2009

37. a. R  4.25 x  93.9

b.

C  167.95 x  94

45.   6  2w  4  w  1  2w  10

T  1.83a  212

6  2w  4 w  4  2w  10 6  2w  2 w  6 00 Identity; 

193  1.83a  212 19  1.83a 10.4  a 10.4  103  10, 400 Approximately10,400 ft

74


Section 1.1 46. 5  3x  3  x  1  2

52.

5  3x  3 x  3  2 5  3x  3 x  5 00 Identity; 

3x  1 1 x   , x  4, x  4 3

1 1 47. x  3  x 1 2 4 1  1  4  x  3  4  x  1 2  4  2 x  12  x  4

1 7   5 2y     2y    2 2y  y

2 1 48. y 5 y 4 3 6 2  1  6  y  5  6  y  4 3  6  4 y  30  y  24

17 54.

3y  6 y2

Conditional equation;  2

2 5 2   x 1 x  7 3 x  1 , x  7

t  4  21 t  25

w3 w5 1  4w w  w 3    w  5  1  4w  4w   4w   w 

w  3  4 w  4  w  5 5w  3  4w  20 w  23  23

3 1 1 51.   2 2 2 x  7 x  15 6 x  25 3 1 1    2 x  3 x  5 6  x  5 x  5 2x  3  0 2x  3

x

y  7  10 y  17

1 4 7   3 3t t 1 4  7 3t     3t    3 3t  t

 25

3 2 5   x5 x4 7 x  5 , x  4 55.

50.

1 7 5   2 2y y

53.

x  8 Conditional equation;  8

49.

6 1 1   2 3x  11x  4 3 x  16 6 1 1    3x  1 x  4 3  x  4 x  4 3x  1  0 2

56.

3 , x  5, x  5 2

x2 x7 1  6x x x  2    x  7 6x   1  6 x   6x   x 

x  2  6 x  6  x  7 7 x  2  6 x  42 x  44  44

75


Chapter 1 Equations and Inequalities

57.

c 3 3   c3 c3 4 3  c   3 4  c  3   4  c  3      c  3  c  3 4

58.

7 7 d   d 7 8 d 7 7  7  d  8  d  7     8  d  7   d  7 8  d  7 

4c  12  3  c  3

56  7  d  7   8d

4c  12  3c  9 7c  21

56  7 d  49  8d 15d  105 d 7

c3

  ; The value 3 does not check.

  ; The value 7 does not check.

1 3  2 t 1 t 1 1 3  t  1  t  1 t  1

59.

 t  1 t  1   2

  1  3     t  1 t  1  t 1   t  1 t  1  t 1  3 t2

1 5  2 w 2 w 4 1 5  w  2  w  2 w  2

60.

 w  2 w  2 

  1  5     w  2 w  2  w 2   w  2 w  2  w2 5 w7

 7

2 1 11   2 x  5 x  5 x  25 2 1 11   x  5 x  5  x  5 x  5

61.

 x  5 x  5 

 4

  2 1  11      x  5 x  5  x5 x5   x  5 x  5 

2  x  5  1 x  5  11 2 x  10  x  5  11 x  15  11 x  4

76


Section 1.1 2 1 10   2 c3 c3 c 9 2 1 10   c  3 c  3  c  3 c  3

62.

 c  3 c  3 

  2 1  10      c  3 c  3  c3 c3   c  3 c  3 

2  c  3  1 c  3  10

2c  6  c  3  10 c  9  10 c  19

19

5 2 4  2  2 x  x  2 x  4 x  3x  2 5 2 4    x  2 x  1  x  2 x  2  x  2 x  1

63.

2

   4    x  2 x  2 x  1     x  2 x  1  x  2 x  2    x  2 x  1  5  x  2  2  x  1  4  x  2 5

 x  2 x  2 x  1 

2

5 x  10  2 x  2  4 x  8 3x  8  4 x  8 16  x

16

4 1 2  2  2 x  2 x  8 x  16 x  6 x  8 4 1 2    x  4 x  2  x  4 x  4  x  4 x  2

64.

2

   2    x  4 x  4 x  2     x  4 x  2  x  4 x  4    x  4 x  2  4  x  4  1 x  2  2  x  4

 x  4 x  4 x  2 

4

1

4 x  16  x  2  2 x  8

 22

3x  14  2 x  8 x  22

77


Chapter 1 Equations and Inequalities 5 3m 2  2  m  2 m  2m  8 m  4 5 3m 2   m  2  m  4 m  2 m  4

65.

 m  4 m  2 

 5  3m 2       m  4 m  2  m2   m  4 m  2 m  4 

5  m  4  3m  2  m  2 5m  20  3m  2m  4 5m  20  m  4 4m  16 m  4   ; The value 4 does not check.

10 15n 6  2  n  6 n  2n  24 n  4 10 15n 6   n  6  n  6 n  4 n  4

66.

 n  6 n  4 

 10  15n 6       n  6 n  4  n6   n  6 n  4 n  4 

10  n  4  15n  6  n  6 10n  40  15n  6n  36 10n  40  9n  36 n  4   ; The value 4 does not check.

5x 1 3   3x  5 x  2 3x  1 2  x 5x 1 3    3x  1 x  2 3x  1 x  2

67.

2

5x 1   3      3x  1 x  2   x  2   3x  1 x  2 3x  1

 3x  1 x  2 

5 x  1 x  2  3  3x  1 5 x  x  2  9 x  3 4 x  2  9 x  3 13x  5 x

5 13

 5    13 

78


Section 1.1 3x 2 4   2x  x  3 2x  3 1  x 3x 2 4    2 x  3 x  1 2 x  3 x  1

68.

2

3x 2   4      2 x  3 x  1   x  1   2 x  3 x  1 2 x  3 

 2 x  3 x  1 

3x  2  x  1  4  2 x  3 3x  2 x  2  8 x  12 x  2  8 x  12 9 x  14 x

14 9

 14     9 69. A  lw for l

75. 7 x  2 y  8 for y

2 y  7 x  8

A lw  w w A A  l or l  w w

2 y 7 x  8  2 2 7 x  8 7 or y   x  4 y 2 2

70. E  IR for R

76. 3x  5 y  15 for y

E IR  I I E E  R or R  I I 71.

P  a  b  c for c P  a  b  c or c  P  a  b

72.

W  K  T for K W  T  K or K  W  T

73.

5 y  3x  15 5 y 3x  15  5 5 3 x  15 3 y or y   x  3 5 5 77. 5 x  4 y  2 for y 4 y  5 x  2

4 y 5 x  2  4 4 5x  2 5 1 y or y  x  4 4 2

s  s2  s1 for s1 s  s2   s1 s1  s2  s

74.

78. 7 x  2 y  5 for y

t  t f  ti for ti

2 y  7 x  5 2 y 7 x  5  2 2 7x  5 7 5 y or y  x  2 2 2

t  t f  ti ti  t f  t

79


Chapter 1 Equations and Inequalities

79.

2 S  n 2 d  nd  2an

1 1 x  y  1 for y 2 3 1  1 6  x  y   6 1 2 3  3x  2 y  6 2 y  3 x  6 2 y 3x  6  2 2 3x  6 3 y or y   x  3 2 2

2 S  n 2 d  nd 2an  2n 2n 2 2 S  n d  nd 2S  n 2 d  nd  a or a  2n 2n 83.

3V   r 2 h

1 2 80. x  y  2 for y 4 3 2  1 12  x  y  12  2 4 3  3x  8 y  24 8 y  3x  24 8 y 3 x  24  8 8 3x  24 3 y or y  x  3 8 8

81.

1 V   r 2 h for h 3 1  3 V   3   r 2 h 3  3V  r 2 h  r2 r2 3V 3V  h or h  2 2 r r

84.

1 Bh for B 3 1  3 V   3  Bh 3  V

3V  Bh

n  a  d  for d 2 n  2  S   2   a  d  2   2S  n  a  d  2S  na  nd 2S  na  nd 2 S  na nd  n n 2 S  na d n 2S  na 2S a d or d  n n

3V Bh  h h 3V 3V  B or B  h h

S

85.

6  4 x  tx for x 6  x4  t x4  t 6  4t 4t 6 6  x or x  4t 4t

86.

8  3x  kx for x 8  x 3  k 

n 82. S   2a   n  1 d  for a 2 n  2  S   2   2a   n  1 d   2 

x 3  k  8  3 k 3 k 8 8  x or x  3 k 3 k

2S  n  2a   n  1 d  2S  n  2a  nd  d  2S  2an  n 2 d  nd

80


Section 1.1 87. 6 x  ay  bx  5 for x

89.

6 x  bx  5  ay

A  P (1  rt )

x  6  b   5  ay

A P(1  rt )  1  rt 1  rt A A  P or P  1  rt 1  rt

x  6  b  5  ay  6b 6b 5  ay ay  5 or x  x 6b b6

90.

A 1  r  C  1 r 1 r C C  A or A  1 r 1 r

3x  cx  d  2 y x 3  c  d  2 y x  3  c d  2 y  3c 3c 2y  d d  2y or x  x 3c c3 2 5  2n  1 3n  4 5   2   2n  1 3n  4     2n  1 3n  4   2n  1 3n  4  5  3n  4  2  2n  1 15n  20  4n  2 19n  18 n

18 19

18    19  92.

C  A  Ar for A C  A 1  r 

88. 3 x  2 y  cx  d for x

91.

A  P  Prt for P

2 4  5z  3 4z  7  4   2   5 z  3 4 z  7     5 z  3 4 z  7    5z  3 4z  7  4  4 z  7   2  5 z  3 16 z  28  10 z  6 26 z  22 z

22 11  26 13

 11    13 

81


Chapter 1 Equations and Inequalities

6  12u  8  7u  14 5u  0 u0

93. 5  2 3  5v  3  v  7    8v  6  3  4v   61

5  2 3   5v  3v  21   8v  18  24v  61 5  2 3   8v  21   16v  43

 0

5  2  3  8v  21  16v  43

 0

5  2  24  8v   16v  43 5  48  16v  16v  43 16v  43  16v  43 32v  0 v0

95.

 x  7 x  2  x 2  4 x  13 x 2  2 x  7 x  14  x 2  4 x  13

 3

94. 6  4  2 8u  2  u  3   4u  3  2  u   8

96.

 m  3 2m  5  2m2  4m  3 2m 2  6m  5m  15  2m 2  4m  3

6   4  2  8u  2u  6   4u  6  3u  8 6   4  2  6u  6   7u  14 6   4  12u  12  7u  14

6  12u  8  7u  14

97.

x 2  5 x  14  x 2  4 x  13 9 x  27 x  3

 4

2m 2  m  15  2m 2  4m  3 3m  12 m  4

3 9 2  2  2 c  4c 2c  3c 2c  5c  12 3 9 2   c  c  4 c  2c  3  2c  3 c  4 2

 3    9 2 c  2c  3 c  4     c  2c  3 c  4    c  c  4 c  2c  3    2c  3 c  4  3  2c  3  9  c  4  2c 6c  9  9c  36  2c 3c  45  2c 5c  45 c9 9 98.

4 5 2  2  2 d  d 2d  5d 2d  3d  5 4 5 2   d  d  1 d  2d  5  2d  5 d  1 2

 4    5 2 d  2d  5 d  1     d  2d  5 d  1    d  d  1 d  2d  5    2d  5 d  1  4  2d  5  5  d  1  2d 8d  20  5d  5  2d 3d  25  2d d  25  25

82


Section 1.1

99.

1 1 1 1 x    x  1  x 3 2 2 6 1 1  1 1 6  x    6   x  1  x  3 2 6  2

101.

t 2  4t  4  t 2  8t  16 12t  12

2 x  3  3  x  1  x

1

2 x  3  3x  3  x 2x  3  2x  3 00

y2  6 y  9  y2  2 y  1 8 y  8 y 1

1 2 2 1 x    x  1  x 2 5 5 10 2 1  1 2 10  x    10   x  1  x  2  5 10  5

1

5 x  4  4  x  1  x 5x  4  4 x  4  x 5x  4  5x  4 00

103.

3 5  3a  4 5a  1 3   5   3a  4 5a  1     3a  4 5a  1   3a  4 5a  1 3  5a  1  5  3a  4 15a  3  15a  20

 104.

3  20

8 2  8x  3 2x  5 8   2  8 x  3 2 x  5     8 x  3 2 x  5   8x  3 2x  5 8  2 x  5  2  8 x  3 16 x  40  16 x  6



t 1

 y  32   y  12

102.

 100.

 t  2 2   t  4 2

40  6

83


Chapter 1 Equations and Inequalities 40  20 x 1  0.05 x 40  20 x 200  1  0.05 x

109. The value 5 is not defined within the expressions in the equation. Substituting 5 into the equation would result in division by 0.

P

105.

1  0.05 x  200  1  0.05 x  

40  20 x   1  0.05 x 

110. The equation is an identity. The solution set is all real numbers.

200  10 x  40  20 x

111. The equation cannot be written in the form 3 ax  b  0 . The term  3x 1 . Therefore, x 3 the term is not first degree and the x equation is not a first-degree equation.

10 x  160 x  16 yr 180t 2t  10 180t 60  2t  10 v

106.

 2t  10 60   2t  10 

112. The equation cannot be written in the form ax  b  0 . The term 2 x  2 x1 2 . Therefore,

180t   2t  10 

the term 2 x is not first degree and the equation is not a first-degree equation.

120t  600  180t 60t  600

113. The equation is a contradiction. There is no real number x to which we add 1 that will equal the same real number x to which we add 2.

t  10 sec 107.

1 1 c h 22 30 1 1 c  165 7 22 30 1 11 c 7 22 2 11  1 22  7   22  c    22 2 154  c  121 A

114. In each case, we can clear fractions by multiplying both sides of the equation by the x 1 LCD. For the equation   1 , the LCD is 3 2 3 1 6, whereas for   1 , the LCD is 2x. x 2 115.

ax  6  4 x  14 a  4  6  4  4  14

c  33 mi

4a  6  16  14

1 1 108. A c h 24 32 1 1 9   60  h 24 32 5 1 9  h 2 32 5 1  32  9  32   h  2 32  288  80  h

4a  6  30 4a  24 a6 116.

ax  3  2 x  9 a  3  3  2  3  9 3a  3  6  9 3a  3  15 3a  18

h  208 mi

a6

84


Section 1.2 a  2 x  5  6  5 x  7

117.

120. Let x  0.826 . 1000 x  826.26  10 x   8.26 990 x  818.00

a  2 16  5  6  5 16  7 a  32  5  6  80  7 27 a  6  87 27 a  81 a3

x

a  2 x  4  12 x  3  2  x 

118.

818 409  990 495

121. Let x  0.534 . 1000 x  534.534  x   .534 999 x  534.000

a  2  34  4  12  34  3  2   34  a  68  4  408  3  32 72a  408  96 72a  504 a  7

x

534 178  999 333

122. Let x  0.761 . 1000 x  761.761  x   .761 999 x  761.000

119. Let x  0.516 . 1000 x  516.16  10 x   5.16 990 x  511.00

x

511 x 990

761 999

Section 1.2 Applications and Modeling with Linear Equations 1. 5 x  2

2. 4 x  10

3. 0.06x

4. 0.6x

5. 40  x

6. 54  x

7. x  1

8. x  2

9. P  2l  2 w

10. 180

11. 90  x

12. 180  x

17. The length of the lot is l  128  2 x . The width of the lot is w  60  2 x . P  2l  2 w 440  2 128  2 x   2  60  2 x  440  256  4 x  120  4 x 440  8 x  376 64  8 x 8 x The width of the easement is 8 ft. 18. The length of the play area is l  78  2 x . The width of the play area is w  36  2 x . P  2l  2w 396  2  78  2 x   2  36  2 x  396  156  4 x  72  4 x 396  8 x  228 168  8 x 21  x The width of the border is 21 ft.

13. I  Prt

I  6000  0.075 2  $900 14. 0.08  2  0.16 L 15.

d r

16.

d t

85


Chapter 1 Equations and Inequalities 21. 90  x

19. a. The width of the kitchen is w. The length of the kitchen is l  w  4 . P  2l  2w 48  2  w  4  2 w 48  2w  8  2w 48  4w  8 40  4w 10  w l  w  4  10  4  14 The kitchen is 14 ft by 10 ft.

23. 180  131  x  or 49  x 24. 180   43  x  or 137  x 25. The angle between the ladder and the wall is x. The angle between the ladder and the ground is  x  22 .

x   x  22  90  180

2 x  112  180 2 x  68 x  34 x  22  34  22  56 The angle between the ladder and the ground is 56 and the angle that the ladder makes with the wall is 34 .

b. A  lw  0.1lw  1.1lw

A  1.11410  154 ft

22. 180  x

2

c. C  1.06 12154  $1958.88 20. a. The width of the porch is w. The length of the porch is l  2w  2 P  2l  2w

64  2  2w  2  2w

26. The angle that the rope makes with the tree is x. The angle that the rope makes with the ground is 1.5x. x  1.5 x  90  180

64  4w  4  2w 64  6 w  4 60  6 w

2.5 x  90  180 2.5 x  90 x  36 1.5 x  1.5  36  54 The angle that the rope makes with the ground is 54 , and the angle that the rope makes with the tree is 36 .

10  w l  2w  2  2 10  2  22 The porch is 22 ft by 10 ft. b. A  lw  0.1lw  1.1lw

A  1.1 2210  242 ft 2 c. C  1.075  5.85 242  $1521.88

27. Let x represent the amount borrowed at 3%. Then,  5000  x  is the amount borrowed at 2.5%.

Principal Interest (I = Prt)

3% Interest Loan

2.5% Interest Loan

x

5000  x

x  0.031

 5000  x  0.0251

x  0.03   5000  x  0.025  132.50 0.03x  125  0.025 x  132.50 0.005 x  125  132.50 0.005 x  7.50 x  1500 5000  x  5000  1500  3500 Rocco borrowed $1500 at 3% and $3500 at 2.5%.

86

Total

132.50


Section 1.2 28. Let x represent the amount borrowed at 4%. Then,  22,000  x  is the amount borrowed at 5.5%. 4% Interest Loan

5.5% Interest Loan

x

22,000  x

x  0.041

 22, 000  x  0.0551

Principal Interest (I = Prt)

Total

910

x  0.04   22, 000  x  0.055  910 0.04 x  1210  0.055 x  910 0.015 x  1210  910 0.015 x  300 x  20,000 5000  x  5000  1500  3500 Laura borrowed $20,000 from the bank charging 4% interest, and $2000 from the bank charging 5.5% interest. 29. Let x represent the amount invested in the 3-yr CD. Then,  x  2000 is the amount invested in the 18month CD.

Principal Interest (I = Prt)

3-yr CD

18-month (1.5-yr) CD

x

x  2000

x  0.044 3

 x  2000 0.031.5

Total

706.50

x  0.044 3   x  2000 0.031.5  706.50 0.132 x  0.045 x  90  706.50 0.177 x  90  706.50 0.177 x  796.50 x  4500 x  2000  4500  2000  2500 Fernando invested $4500 in the 3-yr CD and $2500 in the 18-month CD. 30. Let x represent the amount invested in the 5-yr Treasury note. Then,  x  5000 is the amount invested in the 10-yr bond.

Principal Interest (I = Prt)

5-yr Note

10-yr Bond

x

x  5000

x  0.028 5

 x  5000 0.03610

Total

5300

x  0.028 5   x  5000 0.03610  5300 0.14 x  0.36 x  1800  5300 0.5 x  1800  5300 0.5 x  3500 x  7000 x  5000  7000  5000  12, 000 Ebony invested $7000 in the Treasury note and $12,000 in the bond.

87


Chapter 1 Equations and Inequalities 31. Let x represent the amount of the 5% solution (in gallons). 5000 gal is the amount of the 10% solution. Therefore,  x  5000 is the amount of the resulting 9% solution. 5% Solution

10% Solution

9% Solution

x

5000

x  5000

0.05x

0.1 5000

0.09  x  5000

Amount of Solution Pure Ethanol

0.05 x  0.1 5000  0.09  x  5000 0.05 x  500  0.09 x  450 50  0.04 x 1250  x 1250 gal of E5 should be mixed with the E10. 32. Let x represent the amount of the 10% solution (in cubic centimeters). 60 cc is the amount of the 50% solution. Therefore,  x  60 is the amount of the resulting 25% solution. 10% Solution

50% Solution

25% Solution

Amount of Solution

x

60

x  60

Pure Saline

0.1x

0.5  60

0.25  x  60

0.1x  0.5  60  0.25  x  60 0.1x  30  0.25 x  15 15  0.15 x 100  x 100 cc of 10% saline solution should be mixed with the 50% saline solution. 33. Let x represent the amount of the pure sand (in cubic feet). 480 ft2 is the amount of the concrete mix that is 70% sand. Therefore,  x  480 is the amount of the resulting 75% sand mixture. 100% Sand

70% Sand

75% Sand

Amount of Mixture

x

480

x  480

Pure Sand

x

0.7  480

0.75  x  480

x  0.7  480  0.75  x  480 x  336  0.75 x  360 0.25 x  24 x  96 96 ft2 of sand should be mixed with the 70% sand mixture.

88


Section 1.2 34. Let x represent the amount of 50% antifreeze solution (in gallons) to be drained (and therefore the amount of 100% antifreeze solution to be added). 4 gal is the amount of the resulting 65% antifreeze solution. Therefore,  4  x  is the amount of 50% antifreeze solution that is not drained. 100% Solution

50% Solution

65% Solution

Amount of Solution

x

4 x

4

Pure Antifreeze

x

0.5  4  x 

0.65  4

x  0.5  4  x   0.65  4 x  2  0.5 x  2.6 0.5 x  0.6 x  1.2 1.2 gal of 50% antifreeze solution should be drained and replaced with 100% antifreeze. 35. Let x represent the speed of the plane flying to Los Angeles. Then,  x  60 is the speed of the plane flying to New York City. Distance

Rate

Time

Los Angeles Flight

3.4x

x

3.4

New York City Flight

2.4  x  60

x  60

2.4

3.4 x  2.4  x  60  2464 3.4 x  2.4 x  144  2464 5.8 x  2320 x  400 x  60  400  60  460 The plane to Los Angeles travels 400 mph and the plane to New York City travels 460 mph. 36. Let x represent the speed of the plane flying to Seattle. Then,  x  44 is the speed of the plane flying to Boston. Distance

Rate

Time

Seattle Flight

5.2 x

x

5.2

Boston Flight

2.5  x  44

x  44

37. Let x represent the distance from Darren’s home to his school. Distance

Rate

To School

x

32

To Home

x

48

2.5 x x   1.25 32 48 x  x 96     96 1.25  32 48  3x  2 x  120 5 x  120 x  24 The distance is 24 mi.

5.2 x  2.5  x  44  3124 5.2 x  2.5 x  110  3124 7.7 x  3234 x  420 x  44  420  44  376 The plane to Seattle travels 420 mph, and the plane to Boston travels 376 mph.

89

Time x 32 x 48


Chapter 1 Equations and Inequalities 38. Let x represent the distance of the loop. Distance

Rate

Running

x

8

Riding

5x

16

43. Let t represent the time it takes for the 1 runners to cover mile . 4 1 lap 1 lap 1 lap   66 sec 60 sec t sec 1  1  1 660t     660t    66 60   t

Time x 8 5x 16

10t  11t  660

x 5x   1.75 8 16  x 5x  16     16 1.75  8 16  2 x  5 x  28 7 x  28 x4 The loop is 4 mi.

21t  660 220 t  31.4 sec 7 44. Let t represent the time it takes Marta and her daughter to vacuum the house together. 1 job 1 job 1 job   40 min 60 min t min 1  1  1 120t     120t    40 60   t

39. a. S1  45, 000  2250 x b. S 2  48, 000  2000 x c.

3t  2t  120 5t  120 t  24 min

S1  S 2 45,000  2250 x  48,000  2000 x 250 x  3000 x  12 yr

45. Let t represent the time it takes the second pump to fill the pool by itself. 1 job 1 job 1 job   10 hr t hr 6 hr 1 1    1 30t     30t    10 t   6

40. a. S1  25, 000  0.16 x b. S 2  30, 000  0.15 x c.

S1  S 2 25,000  0.16 x  30,000  0.15 x 0.01x  5000 x  $500, 000

3t  30  5t 30  2t t  15 hr

41. a. C  7 x 46. Let t represent the time it takes Angelina to mow the lawn by herself. 1 job 1 job 1 job   50 min t min 30 min  1 1  1 150t     150t    50 t   30 

b. C  105 7 x  105 x  15 The motorist will save money beginning on the 16th working day. 42. a. C  2.25 x b.

3t  150  5t 150  2t t  75 min or 1 hr 15 min

C  89 2.25 x  89 x  39.6 The commuter will save money on the 40th ride.

90


Section 1.2 x  10  55  10  45 There were 55 Democrat and 45 Republican senators.

47. Let x represent the amount of cement and y represent the amount of gravel. 1 x  2.4 150 2.4 x  150

51. Let x represent the number of deer in the population. 30 5  x 80 5 x  2400

x  62.5 2.4 150  3.6 y 2.4 y  540 y  225 62.5 lb of cement and 225 lb of gravel

x  480 deer 52. Let x represent the number of bass in the lake. 24 4  x 40 4 x  960

48. Let x represent the property tax on a house that is $240,000. 180,000 240, 000  1296 x 180, 000 x  1296  240,000

x  240 bass

1296  240, 000 180,000 x  $1728

53. Let x represent the distance from the epicenter to the station.

x

49. Let x represent the patient’s LDL cholesterol level. The HDL cholesterol level is 60 mg/dL, and the total cholesterol is  x  60 .

x  60  3.4 60  x  60  60   60  3.4  60  x  60  204 x  144 x  60  144  60  204 LDL is 144 mg/dL and the total cholesterol is 204 mg/dL.

Distance

Rate

P Waves

x

5

S Waves

x

3

Time x 5 x 3

x x   40 3 5  x x 15     15  40  3 5 5 x  3 x  600 2 x  600 x  300 km

50. Let x represent the number of Democrats. Then,  x  10 represents the number of Republicans. x 11  x  10 9  x   11  9  x  10   9  x  10    x  10   9 9 x  11 x  10 9 x  11x  110 110  2 x 55  x

54. Let x represent the distance from the epicenter to the station.

91

Distance

Rate

P Waves

x

8

S Waves

x

4.8

Time x 8 x 4.8


Chapter 1 Equations and Inequalities 60. Let x represent the height of the light post.

x x   20 4.8 8 x  x    24  20 24   4.8 8 

light post x ft 40 ft 6 x  20 40  20 x 6  20 60 20 x  360 x  18 ft

55. Let x represent the price set by the merchant. x  0.25 x  180  0.40 180

0.75 x  180  72 0.75 x  252 x  $336

0.90 x  80  28 0.90 x  108 x  $120 57. a. C  110  60 x

C  350 110  60 x  350 60 x  240 x  4 hr

24 x  16 x  3 x  36 5 x  36 x  7.2 2 2 x   7.2  4.8 3 3 The pole is 7.2 ft long, and the snow is 4.8 ft deep.

58. a. C  2400  80 x b.

20 ft

61. Let x represent the height of the pole. Then, 1 x is the length of the pole that is in the 8 2 ground, and x is the length of the pole that 3 is in the snow. 2 1 x  1.5  x  x 3 8 2 1 x  x  x  1.5 3 8 2 1   24  x  x  x  24 1.5  3 8 

56. Let x represent the price set by the bookstore. x  0.10 x  80  0.35  80

b.

man

6 ft

5 x  3 x  480 2 x  480 x  240 km

C  5520 2400  80 x  5520 80 x  3120 x  39 hr

5  F  32 9 5 F   F  32 9 5  9  F   9   F  32  9  9 F  5F  160 4 F  160 F  40 40C  40F

62. C 

59. Let x represent the height of the Washington Monument. 5 x  4 444 4 x  2220

x  555 ft

92


Section 1.2 63. Let x represent the amount of 20% fertilizer solution (in liters) to be drained (and therefore the amount of water to be added). 40 L is the amount of the resulting 15% fertilizer solution. Therefore,  40  x  is the amount of 20% fertilizer solution that is not drained. 0% Solution

20% Solution

15% Solution

Amount of Solution

x

40  x

40

Pure fertilizer

0  x

0.20  40  x 

0.15  40

0  x   0.20  40  x   0.15  40 8  0.20 x  6 0.20 x  2 x  10 10 L should be drained and replaced by water. 64. Let x represent the amount of water (in liters) to be evaporated. Therefore,  200  x  is the amount of the final 25% salt solution. 0% Solution

5% Solution

25% Solution

Amount of Solution

x

200

200  x

Pure salt

0  x

0.05  200

0.25  200  x 

0  x   0.05  200  0.25  200  x  10  50  0.25 x 40  0.25 x 160  x 160 mL should be evaporated.

65. Let x represent the measure of one angle. Then,  5 x  18 is the measure of the other angle. x   5 x  18  180

66. Let x represent the measure of one angle. Then,  21x  24 is the measure of the other angle. x   21x  24  90

22 x  24  90 22 x  66 x3 21x  24  21 3  24  63  24  87 The angles measure 87 and 3 .

6 x  18  180 6 x  162 x  27 5 x  18  5  27   18  135  18  153 The angles measure 153 and 27 .

93


Chapter 1 Equations and Inequalities 67. Aliyah had 8000  0.28  8000  8000  2240  5760 to invest. Let x represent the amount she invested

at 11%. Then,  5760  x  is the amount she invested at 5%. 11% Investment

5% Investment

x

5760  x

x  0.111

 5760  x  0.051

Principal Interest (I = Prt)

Total

453.60

x  0.11   5760  x  0.05  453.60 0.11x  288  0.05 x  453.60 0.06 x  288  453.60 0.06 x  165.60 x  2760 5760  x  5760  2760  3000 Aliyah invested $2760 in the stock returning 11% and $3000 in the stock returning 5%. 68. Let x represent the amount Caitlin invested in the balanced fund. Then,  2x  is the amount she invested in the stock fund. Balanced Fund (3.5%)

Stock Fund (17%)

x

2x

x  0.0351

 2 x  0.171

Principal Interest (I = Prt)

Total

1125

x  0.035   2 x  0.17   1125 0.035 x  0.34 x  1125 0.375 x  1125 x  3000 2 x  2  3000  6000 Caitlin invested $3000 in the balanced fund and $6000 in the stock fund. 69. Let x represent the length of the shortest side. Then,  x  1 is the length of the middle side

70. Let x represent the length of the shortest side. Then,  x  9 is the length of the longest side

and  x  5 is the length of the longest side.

and  x  9  4   x  5 is the length of the

The perimeter is  4x  .

middle side. The perimeter is  5x  .

P  x   x  1   x  5

P  x   x  9    x  5

4 x  x   x  1   x  5

5 x  x   x  9    x  5

4 x  3x  6 x6 x 1  6 1  7 x  5  6  5  11 The lengths of the sides are 6 ft, 7 ft, and 11 ft.

5 x  3 x  14 2 x  14 x7 x  5  7  5  12 x  9  7  9  16 The lengths of the sides are 7 cm, 12 cm, and 16 cm.

94


Section 1.2

71.

7 x  8 12.8 8 x  89.6

8 12.8  y 12 12.8 y  96

x  11.2

y  7.5

78. Let x represent the smaller number. Then,  x  25 is the larger number.

x  25 1  4 x x 1  x  25   x  x4   x   x x  25  4 x  1

x = 11.2 ft and y = 7.5 cm 72.

1.2 x  0.96 1.04 0.96 x  1.248

0.5 1.2  y 0.96 1.2 y  0.48

x  1.3

y  0.4

24  3 x 8 x x  25  8  25  33 The numbers are 8 and 33.

x = 1.3 m and y = 0.4 in. 73. No. If x represents the measure of the smallest angle, then the equation x   x  2   x  4  180 does not result in an odd integer value for x. Instead the measures of the angles would be even integers.

79. Let x represent the tens digit of the number. Then, 14  x  is the ones digit.

10 14  x   1 x   10  x   114  x   18 140  10 x  x  10 x  14  x  18 140  9 x  9 x  32 108  18 x

74. No. If x represents the smaller of two consecutive integers, then the equation x   x  1  90 does not result in an integer value for x.

6 x 14  x  14  6  8 The original number is 68. 80. Let x represent the tens digit of the number. Then,  9  x  is the ones digit.

75. No. If x represents the number of each type of bill, then the solution to the equation 20 x  10 x  5 x  100 is not a whole number.

10  9  x   1 x   10  x   1 9  x   45 90  10 x  x  10 x  9  x  45

76. No. If this were true, then the sum of the lengths of the remaining sides would equal the length of the third side, and no triangle can be constructed.

90  9 x  9 x  36 126  18 x 7x 9 x 97  2 The original number is 72.

77. Let x represent the smaller number. Then,  x  16 is the larger number. 81.

x  16 2  3 x x 16 2  x     x3  x   x   x

m1 x1  m2 x2  0

 30 1.2   20 x2  0 20 x2  36 x2  1.8 m

x  16  3 x  2 14  2 x

82.

m1 x1  m2 x2  0

 64 x1  80 2  0

7 x x  16  7  16  23 The numbers are 7 and 23.

64 x1  160 x1  2.5 m

95


Chapter 1 Equations and Inequalities m1 x1  m2 x2  0

83.

m1 x1  m2 x2  0

84.

10 3.2  m2 8  0

m1  10   6 7   0

8m2  32

10m1  42

m2  4 kg

m1  4.2 kg

Section 1.3 Complex Numbers 1.  3x  2   5 x  1  3 x  2  5 x  1  2 x  1

18.

100  i 100  10i

2.  4 y  5  10 y  7   4 y  5  10 y  7

19.

98  i 98  7i 2

20.

63  i 63  3i 7

21.

19  i 19

22.

23  i 23

 6 y  2 3.  3a  4 5a  2  15a  6a  20a  8 2

 15a 2  14a  8 4.  2c  5 7c  1  14c 2  2c  35c  5

 14c 2  33c  5

23.  16  i 16  4i 2

2 1 2  1  2  1 5.  m  n  m  n   m   n 6   5 6 5  6  5  1 4  m2  n2 36 25 2

2 1 2  1  2  1 6.  x  y  x  y   x   y  2 3 2 3  2  3  

2

24.  25  i 25  5i

2

25.

4 9  i 4  i 9  2i  3i  6i 2  6  1  6

26.

1 36  i 1  i 36  1i  6i  6i 2  6  1  6

1 2 4 2 x  y 4 9

27.

10 5  i 10  i 5  i 2 50   1 52  2  5 2

7.  z  2  z 2  2  2 z   22  z 2  4 z  4 2

28.

6 15  i 6  i 15  i 2 90

8.  b  7   b 2  2  7  b   7 2  b 2  14b  49

  1 32 10  3 10

2

9. 1

10. i b

11. real; imaginary

12. imaginary

13. pure

14. form

15. complex

16. conjugate

17.

29.

6 14  i 6  i 14  i 2 84   1 22  21  2 21

30.

10 15  i 10  i 15  i 2 150   1 52  6  5 6

121  i 121  11i

31.

96

98 2

i 98 i 2

98  49  7 2


Section 1.3

32.

33.

34.

45 5 63 7 80 5

i 45

i 63

i 80

i 5

7

5

45  9 3 5

i

63  i 9  3i 7

i

80  i 16  4i 5

53.

54.

35. Real part: 3; Imaginary part: 7 36. Real part: 2; Imaginary part: 4 37. Real part: 0; Imaginary part: 19

1 ; Imaginary part: 0 4

40. Real part: 

4 ; Imaginary part: 0 7

10  125 10  5 5i  5 5 10 5 5i   5 5  2  5i or  2  i 5

55. a. i 20  1

38. Real part: 0; Imaginary part: 40 39. Real part: 

18  48 18  4 3i  4 4 18 4 3i   4 4 9 9    3i or   i 3 2 2

b. i 29  i 28  i1  1  i1  i c. i 50  i 48  i 2  1  i 2  1 d. i 41  i 44  i 3  1  i 3  i 56. a. i 32  1

41. a. True

b. False

42. a. False

b. True

b. i 47  i 44  i 3  1  i 3  i

43. a. True

b. True

c. i 66  i 64  i 2  1  i 2  1

44. a. False

b. True

d. i 27  i 28  i1  1  i1  i 57. a. i 37  i 36  i1  1  i1  i

45. 5  5  0i 46. 4  4  0i

b. i 37  i 40  i 3  1  i 3  i

47. 4 4  4  2i  8i  0  8i

c. i 82  i80  i 2  1  i 2  1 d. i 82  i 84  i 2  1  i 2  1

48. 2 144  2 12i  24i  0  24i

58. a. i103  i100  i 3  1  i 3  i

49. 2  12  2  2 3i or 2  2i 3

b. i 103  i 104  i1  1  i1  i

50. 6  24  6  2 6 i or 6  2i 6

51.

52.

c. i 52  1 d. i 52  1

8  3i 8 3 4 3   i  i 14 14 14 7 14

59.  2  7i    8  3i    2  8   7  3 i

4  5i 4 5 2 5   i  i 6 6 6 3 6

 10  10i

97


Chapter 1 Equations and Inequalities 60.  6  10i    8  4i    6  8   10  4 i

3 1   7 1  64.   i    i  5 8   10 6 

 14  6i

 3 7   1 1        i  5 10   8 6 

61. 15  21i   18  40i 

 15  18   21   40  i  3  61i

4  6 7  3        i  10 10   24 24 

62.  250  100i    80  25i 



  250  80  100  25 i  170  75i

1 7  i 10 24

65.  2.3  4i    8.1  2.7i    4.6  6.7i 

 1 2   5 1   1 5  2 1  63.   i    i         i  2 3   6 12   2 6  3 12

  2.3  8.1  4.6   4  2.7  6.7  i

 3 5  8 1       i  6 6  12 12

 1.2  0i

2 7 1 7   i  i 6 12 3 12 66.  0.05  0.03i    0.12  0.08i    0.07  0.05i    0.05  0.12  0.07    0.03  0.08  0.05 i  0.14  0i

67. 

73.  3  6i 10  i 

1 16  24i   2  3i 8

 3 10  3  i    6i 10   6i  i   30  3i  60i  6i 2  30  57i  6  1

1 68.   60  30i   10  5i 6

 36  57i 74.  2  5i  8  2i 

69. 2i  5  i   10i  2i 2  10i  2  1  2  10i

 2  8  2  2i    5i  8   5i  2i 

70. 4i  6  5i   24i  20i 2

 16  4i  40i  10i 2  16  36i  10  1

 24i  20  1

 26  36i

 20  24i 71.

3

75.  3  7i    3  2  3 7i    7i  2

 11  7   i 3  11  i 7 

2

 9  42i  49i 2  9  42i  49  1

 i 33  i 2 21

 9  42i  49  40  42i

 i 33   1 21

76. 10  3i   10  2 10 3i    3i  2

 21  i 33 72.

2

2

2

2

 100  60i  9i 2  100  60i  9  1

 13  5   i 2  13  i 5 

 100  60i  9  91  60i

 i 26  i 2 10  i 26   1 10   10  i 26

98


Section 1.3



77. 3  5 4  5

84. a. 4  5i

   3  4  3  i 5    i 5   4   i 5  i 5 

b.  4  5i  4  5i    4   5  16  25  41 2

 3i 5 4i 5

85. a. 0  8i b.  0  8i  0  8i    0   8  0  64  64

 12  3i 5  4i 5  5i 2

2

 12  i 5  5  1  17  i 5



78. 2  7 10  7

b.  0  9i  0  9i    0   9  0  81  81 2

   2 10  2  i 7   i 7 10  i 7  i 7   20  2i 7  10i 7  7i

2

 100  16  116 88.  3  9i  3  9i    3   9  9  81  90 2

90.  5i  5i    5  25 2

 11  7i 80. 3  8  3i   6i  2  i   24  9i  12i  6i 2

91.

 24  3i  6  1

 2  3i 2  3i   2    3  2

2

 23 5

 18  3i 92. 2

 5  7i 5  7i   5    7  2

2

 5  7  12

  2  2  2 i   i   2  2  2 i   i 2

2

2

2

 4  4i  i 2  4  4i  i 2

93.

 8  2i 2  8  2  1  6

6  2i  6  2i  3  i   3i  3  i  3  i 

 2

  3  2  3 2i    2i    3  2  3 2i  2

  2i 

2

89.  7i  7i   7 2  49

 24  7i  35  1

2

2

2

79. 4  6  2i   5i  3  7i   24  8i  15i  35i 2

82.  3  2i    3  2i 

2

87. 10  4i 10  4i   10   4

 20  12i 7  7  1  13  12i 7

2

2

86. a. 0  9i

 2  i 7 10  i 7

81.  2  i    2  i 

2

2

2

18  6i  6i  2i 2

 3  1 2

2

18  12i  2  1 9 1

16  12i 16 12 8 6   i  i 10 10 10 5 5

2

 9  12i  4i 2  9  12i  4i 2

94.

 18  8i 2  18  8  1  10

5  i  5  i  4  i  20  5i  4i  i 2   4  i  4  i  4  i   4 2  1 2 

83. a. 3  6i b.  3  6i  3  6i    3   6  9  36  45 2

2

99

20  9i  1 1 19  9i 19 9    i 16  1 17 17 17


Chapter 1 Equations and Inequalities

95.

8  5i 8  5i 13  2i   13  2i 13  2i 13  2i  

100.

104  16i  65i  10i 2

132   22 104  81i  10  1 94  81i   169  4 94 81   i 173 173 96.

101.

1 6  5i

 6   5 

2

98.

4  3i

 4   3  2

2

3i  3i

 3i  3i  3i 2 3  1

2 11i

2  11i 11i  11i

2 11i 11i 2

2 11i 2 11 2 11  i  0 i 11 1 11 11

 42  4  2 6  16  48

 52  4  510  25  200

 175  i 175  5i 7 b 2  4ac 

105.

 6 2  4  2 5  36  40

 4  i 4  2i b 2  4ac 

106.

 42  4  2 4  16  32

 16  i 16  4i

107. a.

 4  3i  4  3i  4  3i 4  3i    

99.

b 2  4ac 

6  5i 36  5

1 4  3i

1

1 3i

3i 3i  3i   0 3 3 3

b 2  4ac 

104.

6  5i 6 5 i    41 41 41 1

 32  i 32  4i 2

 6  5i 6  5i

2

3i

103.

1 6  5i

6  5i

11

2

121  16 98  73i 98 73 i    137 137 137 

2

102.

110  40i  33i  12i

1

3

1

 

11 2   4 2 110  73i  12  1 

97. 6  5i

1

173

10  3i 10  3i 11  4i   11  4i 11  4i 11  4i 

6 6  i  6i 6i 6 6      i  0 i 2 7i 7i  i  7i 7 7 7  1

x 2  25  0

 5i 2  25 ⱨ 0 25  1  25 ⱨ 0

4  3i 16  3

25  25 ⱨ 0 0ⱨ0 

4  3i 4 3   i 19 19 19

b.

x 2  25  0

 5i 2  25 ⱨ 0 25  1  25 ⱨ 0

5 5i 5i 5i 5i 5      i 2 13i 13i  i 13i 13  1 13 13

25  25 ⱨ 0

5  0 i 13

0ⱨ0 

100


Section 1.3 108. a.

x 2  49  0

x 2  6 x  11 = 0

b.

 3  i 2   6  3  i 2   11ⱨ 0

 7i 2  49 ⱨ 0 49  1  49 ⱨ 0

2

9  6i 3  2i 2  18  6i 2  11ⱨ 0

49  49 ⱨ 0

9  2  1  18  11ⱨ 0

0ⱨ0  b.

9  2  7ⱨ0 0ⱨ0 

x  49  0 2

 7i 2  49 ⱨ 0 49  1  49 ⱨ 0

111.  a  bi  c  di   ac  adi  bci  bdi 2

 ac   ad  bc  i  bd  1

49  49 ⱨ 0

  ac  bd    ad  bc  i

0ⱨ0 

112.  a  bi    a   2  a  bi    bi  2

x2  4 x  7 = 0

109. a.

2

 a 2   2ab  i  b 2i 2

 2  i 3  42  i 3  7 ⱨ 0 2

 a 2   2ab  i  b 2  1

4  4i 3  3i  8  4i 3  7 ⱨ 0 2

 a 2  b 2   2ab  i

4  3  1  8  7 ⱨ 0 4  3  1ⱨ 0 0ⱨ0 

113. The second step does not follow because the multiplication property of radicals can be applied only if the individual radicals are real numbers. Because 9 and 4 are imaginary numbers, the correct logic for simplification would be 9  4  i 9  i 4  i 2 36  1 6  6

x2  4 x  7 = 0

b.

2

 2  i 3  42  i 3  7 ⱨ 0 2

4  4i 3  3i 2  8  4i 3  7 ⱨ 0 4  3  1  8  7 ⱨ 0

114. The product  a  b  a  b  simplifies to

4  3  1ⱨ 0 0ⱨ0 

a 2  b 2 . The product  a  bi  a  bi 

simplifies to a 2   bi  , which simplifies to 2

x  6 x  11 = 0 2

110. a.

a2  b2 .

 3  i 2   6  3  i 2   11ⱨ 0 2

115. Any real number. For example: 5.

9  6i 3  2i 2  18  6i 2  11ⱨ 0

9  2  1  18  11ⱨ 0

116. Any complex number and its conjugate. For example: 2  5i and 2  5i . In general, for real numbers, a and b,  a  bi  a  bi  

9  2  7ⱨ0 0ⱨ0 

a 2  b 2 , which is a real number. 117. z  z   a  bi  a  bi   a 2  b 2

101


Chapter 1 Equations and Inequalities

   b. x  11   x  i 11 x  i 11

118. z 2  z 2

124. a. x 2  11  x  11 x  11

  a  bi    a  bi  2

2

2

2  a  2abi   bi    a 2  2abi   bi     2 2 2 2 2 2  a  2abi  b i  a  2abi  b i 2

2

125.

  4ab  i 119. a. x 2  9   x  3 x  3 b. x 2  9   x  3i  x  3i  126.

120. a. x  100   x  10 x  10 2

b. x 2  100   x  10i  x  10i  121. a. x 2  64   x  8 x  8 127.

b. x 2  64   x  8i  x  8i  122. a. x 2  25   x  5 x  5 b. x 2  25   x  5i  x  5i 

   b. x  3   x  i 3  x  i 3 

128.

123. a. x 2  3  x  3 x  3 2

Section 1.4 Quadratic Equations 9  27 9  3i 3 9 3i 3 3 3      i 6 6 6 6 2 2

1. 5t 2  7t  6   5t  3 t  2

6.

2. 4 y 2  y  5   4 y  5 y  1

7. quadratic

8. linear

9. a; b

10. 5 x  1 ; x  4

11.  k

12. 100

3. x 2  14 x  49   x  7  x  7    x  7  4. z 2  16 z  64   z  8 z  8   z  8

5.

2

2

13. x 

8  44 8  2i 11 8 2i 11 11     2 i 4 4 4 4 2

b  b 2  4ac 2a

14. b 2  4ac

102


Section 1.4 n 2  5n  24

15.

40 p 2  90  0

19.

n 2  5n  24  0

10 4 p 2  9  0

 n  8 n  3  0

10  2 p  3 2 p  3  0

n8 0

or

n  8

n3 0 n3

 8, 3

or 2 p  3  0 2 p  3

3 2

p

p y 2  18  7 y

16.

y  7 y  18  0

 y  9 y  2  0 y90

or

y  9

20.

y20 y2

32n 2  162  0 2 16n 2  81  0

2  4n  9 4n  9  0

 9, 2

4n  9  0

8t  t  3  2t  5

n

9 4

n

or

x40

2

9 9  ,  4 4

 2t  5 4t  1  0 or

4t  1  0

2t  5

4t  1

5 2

t

t

3x 2  12 x

21.

1 4

3x 2  12 x  0 3 x  x  4  0

 5 1  ,    2 4 18.

3x  0 x0

x4

 0, 4

6m  m  4  m  15 6m 2  24m  m  15

z 2  25 z

22.

6m 2  23m  15  0

z 2  25 z  0

 6m  5 m  3  0 6m  5  0 or 6m  5 5 m 6  5    ,  3  6 

4n  9  0 4n  9

8t  24t  2t  5 8t  22t  5  0

or

4n  9

2

2t  5  0

3 2

3 3  ,  2 2

2

17.

2p 3  0 2p  3

z  z  25  0

m3 0

z0

m  3

or z  25  0 z  25

 0, 25 23. x 2  81

x   81  9 9,  9

103

9 4


Chapter 1 Equations and Inequalities 31.  w  5  9

24. w2  121

2

w   121  11 11,  11

w5  9

25. 5 y 2  35  0

5 y 2  35 y2  7

8, 2

y 7

 7,  7 

w  5 9 w  53 w  5  3 or w8

32.  c  3  49 2

c  3   49

26. 6v 2  30  0

c  3  49 c  3 7 c  3  7 or c  10 10,  4

6v 2  30 v2  5 v 5

 5,  5

4u 2  64 u 2  16

t

u   16  4i 4 i ,  4 i 

1 17   2 4 t

28. 8 p 2  72  0

1 17 1 i 17     2 4 2 2

1 17  i 2 2  1 17  i   2   2 

8 p  72 2

p 2  9 p   9  3i

3i,  3i

2

1 47  34.  a       3 9

29.  k  2  28 2

a

k  2   28

c  37 c  4

2

17  1 33.  t      2 4

27. 4u 2  64  0

k  2  28  2  2 7

2  2 7

w 53 w2

1 47   3 9 1 47 1 i 47 a     3 9 3 3

1 47   i 3 3 47   1 i   3   3

30.  z  11  40 2

z  11   40 z  11  40  11  2 10

 11  2 10

104


Section 1.4 1  35. x  14 x  n  x  14 x   14  2  2

2

1  40. v  11v  n  v  11v    11  2  2

2

 x 2  14 x   7 

2

 x 2  14 x  49   x  7  n  49;  x  7 

 11  v 2  11v      2

2

2

 v 2  11v 

1  36. y  22 y  n  y  22 y    22  2  2

121  11 n ; v   4  2

2

2

 y 2  22 y  11

 y  22 y  121   y  11

1  37. p 2  26 p  n  p 2  26 p    26  2    p 2  26 p   13

1  38. u 2  4u  n  u 2  4u    4  2 

1  1 n  ;m  81  9

2

2

2 2  1  2  42. k 2  k  n  k 2  k      5 5  2  5 

2

2  1  k2  k     5 5

2

1  39. w  3w  n  w  3w    3  2 

1  1 n  ;k   25  5

2

2

 3  w 2  3w      2

43.

2

9  3  w 2  3w    w   4  2

2

2

2 1  1  k2  k   k   5 25  5

2

2

9  3 n  ;w  4  2

2

2 1  1  m2  m    m   9 81  9

2

 u 2  4u  4   u  2

2

2

2

 u 2  4u   2

2

2

2  1  m2  m     9 9

2

 p 2  26 p  169   p  13

n  4;  u  2

121  11  v   4  2

 1  2  2 2 41. m 2  m  n  m 2  m      9 9  2  9 

2

2

n  169;  p  13

2

2

2

n  121;  y  11

2

2

2

y 2  22 y  4  0 y 2  22 y  4 2

1  1  y 2  22 y    22   4    22  2  2  2 y  22 y  121  4  121

2

2

 y  112  125 y  11   125

 11  5 5

105

y  11  5 5

2

2

2


Chapter 1 Equations and Inequalities x 2  14 x  3  0 x 2  14 x  3

44.

2

1  1  x 2  14 x   14   3   14  2 2     x 2  14 x  49  3  49

48. 2

 x  72  52

 7  2 13

x  7   52 x  7  2 13

 5  i 10 

t 2  8t  24

45.

2

1  1  t  8t    8   24    8  2  2  2 t  8t  16  24  16  t  4 2  8 t  4   8 t  4  2i 2

2m 2  20m  70 2m 2 20m 70   2 2 2 m 2  10m  35 2 2 1  1  m 2  10m   10   35   10  2  2  2 m  10m  25  35  25  m  5 2  10 m  5   10 m  5  i 10

2

2

2 x  x  3  4  x

49.

2x2  6x  4  x 2 x2  7 x  4 2 x2 7 x 4   2 2 2 7 x2  x  2 2

 4  2i 2 46.

2

1  7  1  7  7 x  x     2    2  2  2   2  2 

p 2  24 p  156 2 2 1  1  2 p  24 p    24   156    24  2  2  2 p  24 p  144  156  144  p  122  12 p  12   12 p  12  2i 3

2

x2 

2

7 81   x    4 16 x

12  2i 3 47.

7 49 32 49   x 2 16 16 16

4 z 2  24 z  160 4 z 2 24 z 160   4 4 4 z 2  6 z  40 2 2 1  1  2 z  6 z    6   40    6  2  2  z 2  6 z  9  40  9  z  32  31 z  3   31 z  3  i 31

7 9  4 4 16 x 4 4 1  4,   2  x

 3  i 31

106

or

7 81  4 16 7 9 x  4 4 7 9 x  4 4 2 1 x  4 2

2


Section 1.4 5c  c  2  6  3c

50.

3 14 y  2 2

5c  10c  6  3c 2

14   3    2   2

5c 2  13c  6 5c 2 13c 6   5 5 5 13 6 c2  c  5 5

52.

2

13  1  13   6  1  13   c  c         5 5 2  5  2  5 

2

2

c2 

13 169 120 169   c 5 100 100 100

2 x 2  14 x  5  0 0 2 x 2 14 x 5    2 2 2 2 5 x2  7 x  2 2

5 1  1  x 2  7 x    7     7 2 2  2  49 10 49   x2  7 x  4 4 4

2

289  13   c    10 100 13 289  10 100 13 17 c  10 10 30 4 2 c  3 or c   10 10 5 2  3,   5 

2

7 59   x    2 4

c

4 y 2  12 y  5  0

51.

2

7 59  2 4

x

7 59  2 2 7 59 x  2 2

59   7    2   2

4 y 2 12 y 5 0    4 4 4 4 5 y2  3y  4 5 1  1  y  3 y    3      3  4 2  2  9 5 9 y2  3y    4 4 4

x

2

53. False

54. False

55. True

56. True

2

57. x 2  3 x  7  0

a  1, b  3, c  7

2

x

3 7   y    2 2

3 7 y  2 2 y

3 7 2  2 2 2

y

3 14  2 2

b  b 2  4ac 2a   3 

 32  4 1 7 2 1

3  9  28 3  37  2 2  3  37     2  

107

2


Chapter 1 Equations and Inequalities 58. x 2  5 x  9  0

t

a  1, b  5, c  9 b  b 2  4ac x 2a 

  5 

 52  4 1 9 2 1

b  b 2  4ac 2a   6 

6  36  40 6  4 6  2i    3 i 2 2 2  3  i 

5  25  36 5  61  2 2  5  61     2  

m  m  10  34

62.

m 2  10m  34  0 a  1, b  10, c  34

y  4 y  6 2

59.

m

y2  4 y  6  0

a  1, b  4, c  6 y 

b  b 2  4ac 2a   4 

5c 2  7c  3  0

z  8 z  19

a  5, b  7, c  3

z  8 z  19  0 2

a  1, b  8, c  19

c

b  b 2  4ac 2a   8 

8  4 119 8  64  76  2 1 2 2

  7  

 72  4  5 3 2  5

7  49  60 7  11 7  i 11   10 10 10  7  i 11     10 

8  12 8  2i 3   4  i 3 2 2 4  i 3

64.

t  t  6  10

61.

b  b 2  4ac 2a

102  4 1 34 2 1

7c  3  5c 2

63.

2

z

 10 

10  100  136 10  36  2 2 10  6i   5  3i 2  5  3i

4  8 4  2i 2   2  i 2 2 2 2  i 2

60.

b  b 2  4ac 2a

 4 2  4 1 6 4  16  24  2 1 2

 62  4 110 2 1

5d  2  6d 2 6 d 2  5d  2  0

t  6t  10  0 2

a  6, b  5, c  2

a  1, b  6, c  10

108


Section 1.4 b  b 2  4ac 2a

d

  5 

c

 52  4  6 2 2  6

5  25  48 5  23 5  i 23   12 12 12  5  i 23     12 

 6 x  5 x  3  2 x  7 x  5  x  12 6 x  18 x  5 x  15  14 x 2  10 x  x  12 6 x 2  13x  15  14 x 2  9 x  12 20 x 2  4 x  3  0 a  20, b  4, c  3

67. 9 x 2  49  0

b  b 2  4ac x 2a 

a  9, b  0, c  49

 4 2  4  20 3 2  20

x

4  16  240 4  256 4  16    40 40 40 4  16 4  16 x or x 40 40 20 1 3 12 x x   40 2 40 10 3 1  ,   2 10 

  0 

 02  4  9 49  1764  2  9 18

7 42i  i 18 3  7   i   3  68. 121x 2  4  0

a  121, b  0, c  4 x

10c  15c  14c  21  2c  30c  35 2

b  b 2  4ac 2a

 5c  7 2c  3  2c  c  15  35

66.

 292  4 1214 2 12

2

  4 

  29 

29  841  672 24 29  169 29  13   24 24 29  13 29  13 c or c  24 24 16 2 42 7   c c 24 3 24 4  2 7  ,    3 4

65.

b  b 2  4ac 2a

2

10c 2  c  21  2c 2  30c  35

12c 2  29c  14  0 a  12, b  29, c  14

b  b 2  4ac 2a   0 

 0 2  4 121 4  1936  2 121 242

2 44i  i 242 11  2   i   11  

109


Chapter 1 Equations and Inequalities

69.

1 2 2 5 x   x 2 7 14 2 1  5  14  x 2    14  x 2  14  7

y 

7 x  4  5x

b  b 2  4ac 2a   20 

 202  4  4 25 2  4

2

20  400  400 20  0 20 5    8 8 8 2 5   2

7 x  5x  4  0

2

a  7, b  5, c  4 x 

b  b 2  4ac 2a   5 

 52  4  7 4 2  7

72.

9n  42n  49 2

5  25  112 5  137  14 14  5  137     14 

9n  42n  49  0 2

a  9, b  42, c  49 n

1 2 7 3 x   x 3 6 2 1 7   3  6  x 2    6  x 3 2  6

2x  7  9x 2x  9x  7  0 a  2, b  9, c  7 b  b 2  4ac x 2a

2 y  4 4  2 y 2  2

 9 2  4  2 7 2  2

9  81  56 9  137  4 4  9  137    4  

74. Linear 3z  9  0

0.4 y  2 y  2.5 2

 42 2  4  9 49 2  9

73. Linear 2y  4  0

71.

  42 

42  1764  1764 42  0 42 7    18 18 18 3 7   3

2

b  b 2  4ac 2a

2

  9 

100 0.09n 2  100  0.42n  0.49

70.

0.09n 2  0.42n  0.49

3

10 0.4 y 2  10  2 y  2.5 4 y 2  20 y  25 4 y 2  20 y  25  0 a  4, b  20, c  25

110

3z  9 z3


Section 1.4 81.  3x  4  0

75. Quadratic 2 y2  4 y  0

2

3x  4  0 3x  4 4 x 3 4   3

2 y2 4 y 0   2 2 2 y2  2 y  0 y  y  2  0 y0

or

y20 y  2

82.  2 x  1  0

 0,  2

2

2x  1  0 2 x  1 1 x 2  1    2

76. Quadratic 3z 2  9 z  0

3z 2 9 z 0   3 3 3 z 2  3z  0 z  z  3  0 z0

 0, 3

or

z 3 0 z3

m 2  4m  2

83.

2

1  1  m  4m    4   2    4  2  2  2 m  4m  4  2  4 2

77. Linear 5 x  x  6  5 x 2  27 x  3

 m  2 2  2 m2  2

5 x 2  30 x  5 x 2  27 x  3 3x  3 x 1 1 

m  2  2

 2  2 84.

78. Linear 3 x  x  4  3x 2  11x  4

n 2  8n  3 2

1  1  n 2  8n    8   3    8  2  2  2 n  8n  16  3  16

3x 2  12 x  3x 2  11x  4 x  4 x  4  4

 n  42  13 n  4   13

 4  13

79. Neither 80. Neither

111

n  4  13

2

2


Chapter 1 Equations and Inequalities x2  4x 5x  1 6 3  x2  4 x 5x     6 1 6 3  6

85.

89.

3 2 1 1 x  x 5 10 2 1  3  1 10  x 2  x  10   5   2 10

x 2  4 x  10 x  6

6 x2  x  5

x 2  14 x  6

6 x2  x  5  0

2

1  1  x  14 x    14   6    14  2  2  2 x  14 x  49  6  49

 x  1 6 x  5  0

2

2

x 1  0 x 1

or

 x  72  55 x  7   55

5  1,   6 

x  7  55

7  55

90.

m  2m 9 m 3   7 14 2  m 2  2m 9m   3 14    14     2 7 14   2

86.

1 2 11 1 x  x 12 24 2  1 2 11   1 24  x  x  24     12  2 24 

2 x 2  11x  12 2 x 2  11x  12  0

2m 2  4m  9m  21

 2 x  3 x  4  0

2m 2  5m  21  0 a  2, b  5, c  21

2 x  3  0 or 2x  3 3 x 2

b  b 2  4ac m 2a 

  5 

6x  5  0 6 x  5 5 x 6

 52  4  2 21 2  2

x40 x4

3   , 4 2 

5  25  168 5  193  4 4  5  193    4   

91. x 2  5 x  5 x  x  1  4 x 2  1

x2  5x  5x2  5x  4 x2  1 x2  5x  x2  5x  1 0 1

87. 2  x  4  x 2  x  x  2  8



2 x  8  x2  x2  2 x  8 00

92. p 2  4 p  4 p  p  1  3 p 2  2

p2  4 p  4 p2  4 p  3 p2  2

88. 3  y  5  y 2  y  y  3  15

p2  4 p  p2  4 p  2 02

3 y  15  y 2  y 2  3 y  15 00 



112


Section 1.4 93.

 2 y  7 y  1  2 y 2  11

97. x 2  5  0

2 y 2  2 y  7 y  7  2 y 2  11

x2  5

2 y 2  9 y  7  2 y 2  11 9 y  18 y  2

x  4 5

  5 4

 2 94.

98. y 2  11  0

y 2  11

 3z  8 z  2  3z  10 2

y   4 11

3z  6 z  8 z  16  3 z 2  10 2

  11 4

3z 2  2 z  16  3 z 2  10 2 z  26 z  13  13

99. a. 3x 2  4 x  6  0

b 2  4ac   4  4  3 6  16  72  56 2

b. 56  0 ; there are two imaginary solutions.

95. 7 d 2  5  0

7 d 2  5 5 d2   7

100. a. 5 x 2  2 x  4  0

b 2  4ac   2  4  5 4  4  80  76 2

d  

b. 76  0 ; there are two imaginary solutions.

5 5 5  i  i 7 7 7

5 7 7 7

i

35 i 7

101. a.

2 w2  8w  3  0

 35  i   7 

b 2  4ac   8  4  2 3  64  24  40 2

b. 40  0 ; there are two real solutions.

96. 11t 2  3  0 11t 2  3

102. a.

t 

6d 2  9d  2 6d 2  9d  2  0

3 t  11 2



2w2  8w  3

6d 2  9d  2  0 2 b 2  4ac   9  4  6 2  81  48  33

3 3 3  i  i 11 11 11

3  11

11  11  33  i   11 

i

b. 33  0 ;, there are two real solutions.

33 i 11

103. a.

3x  x  4  x  4 3 x 2  12 x  x  4 3x 2  13x  4  0 2 b 2  4ac   13  4 34  169  48  121

b. 121  0 ; there are two real solutions.

113


Chapter 1 Equations and Inequalities 2 x  x  2  x  3

104. a.

109.

2 x2  4 x  x  3 2 x2  5x  3  0 2 b 2  4ac   5  4  2 3  25  24  49

2 s  gt 2

b. 49  0 ; there are two real solutions.

1.4m  0.1  4.9m 2

105. a.

10  1.4m  0.1  10 4.9m 2

1 2 gt 2 1  2  s   2  gt 2  2  s

2s gt 2  g g 2s 2 t g

14m  1  49m 2

t

49m 2  14m  1  0 b 2  4ac   14  4  491  196  196

2s or t  g

2 sg g

2

0

110.

b. The discriminant is 0; there is one real solution.

3.6n  0.4  8.1n 2

106. a.

10  3.6n  0.4  10 8.1n 2

1 2 xh 3 1  3 V   3  x 2 h 3  V

3V  x 2 h

3V x 2 h  h h 3V  x2 h 3V 3Vh x or x  h h

36n  4  81n 2 81n 2  36n  4  0 b 2  4ac   36  4  81 4  1296  1296 2

0 b. The discriminant is 0; there is one real solution.

111. a 2  b 2  c 2

107. A   r 2

a2  c2  b2

r2   

a  c2  b2

A A

r

r 108.

112. a 2  b 2  c 2  d 2

2

c2  d 2  a 2  b2 A

or r 

A

c  d 2  a2  b2

 113.

A  r h 2

A  r 2h  h h A  r2 h A A h r or r  h h

114

L  c 2 I 2 Rt L c 2 I 2 Rt  2 c 2 Rt c Rt L  I2 c 2 Rt L LRt 1 L I 2  or c Rt c Rt cRt


Section 1.4 114.

I  cN 2 r 2 s I cN 2 r 2 s  cr 2 s cr 2 s I  N2 2 cr s I N cr 2 s N

at 2  2v0t  2s  0 a  a, b  2v0 , c  2s

Ics 1 I or N  r cs crs

t

kw2  cw  r

115.

t

kw2  cw  r  0 a  k , b   c, c   r w w

t

b  b 2  4ac 2a   c 

1 s  v0t  at 2 2 1   2  s   2  v0t  at 2   2  2s  2v0t  at 2

117.

t

 c 2  4  k   r  2k 

t

c  c  4kr w 2k 2

y y

2v0  4v0 2  8as 2a 2v0  2 v0 2  2as 2a v0  v0 2  2as a S  2 rh   r 2 h

r

b  b 2  4ac 2a   m 

 2v0 2  4  a  2s  2  a

 hr 2  2 hr  S  0 a   h, b  2 h, c   S

dy 2  my  p  0 a  d , b  m, c   p y

  2v0  

118.

dy 2  my  p

116.

b  b 2  4ac 2a

r

 m  4  d   p  2 d  2

 m  m 2  4dp 2k

115

b  b 2  4ac 2a   2 h  

 2 h 2  4  h  S  2  h

r

2 h  4 2 h 2  4 hS 2 h

r

2 h  2  2 h 2   hS 2 h

r

 h   2 h 2   hS h


Chapter 1 Equations and Inequalities

119.

126. 3a 2  2ab  b 2  0

1 0 C 1  C  LI 2  RI    C  0  C LI 2  RI 

 3a  b a  b  0 3a  b  0 3a  b b a 3

CLI 2  CRI  1  0 a  CL, b  CR, c  1 I I I

b  b 2  4ac 2a   CR  

 x  4 x  2  0

127.

 CR   4  CL 1 2  CL 

x  2x  4x  8  0

2

2

x2  2 x  8  0

CR  CR 2  4CL 2CL

 x  7 x  1  0

128.

x  x  7x  7  0 2

x2  6 x  7  0

A   r 2   rs

120.

 r 2   sr  A  0 a   , b   s, c   A r r r

2  1   x    x    0 3 4

129.

b  b 2  4ac 2a   s  

2  1  3  x    4  x    12  0    3 4

 s 2  4    A 2  

 3x  2 4 x  1  0 12 x 2  3 x  8 x  2  0

 s   2 s 2  4 A 2

12 x 2  11x  2  0 3  1   x    x    0 5 7

130.

121. The right side of the equation is not equal to zero.

3  1  5  x    7  x    35  0  5  7

122. Given ax  bx  c  0 , where a  0 , the discriminant is b 2  4ac . The discriminant indicates the number and type of solutions to the equation. 2

 5 x  3 7 x  1  0 35 x 2  5 x  21x  3  0 35 x 2  26 x  3  0

123. If the discriminant is negative, then the equation has two solutions that are imaginary numbers.



131. x  5 x  5  0

 x2   5   0 2

124. To derive the quadratic formula, solve the equation ax 2  bx  c  0 for x by completing the square. 125.

x 2  xy  2 y 2  0  x  2 y  x  y   0 x  2 y  0 or x  2y

or

x2  5  0



132. x  2 x  2  0

 x2   2   0 2

x y 0 x  y

x2  2  0

116

ab 0 a  b


Section 1.4 133.  x  2i  x  2i   0

3 139. x1  x2  2   5  3 , which is  . 1 10 x1 x2   2 5  10 , which is . 1

 x  2   2 2  0 x2  4  0 134.  x  9i  x  9i   0

140. x1  x2  1  2i  1  2i  2 , which is 

 x    9  0 2

2

135.  x  1  2i    x  1  2i    0

is

 x  1  2i  x  1  2i   0  x  1  2i   x  1  2i   0  x  12   2 2  0

x2  2 x  5  0

x 2  4 x  4  81  0

142. x 

x 2  4 x  85  0 b  b  4ac b  b  4ac  2a 2a

b  b 2  4ac   b   b 2  4ac 2a 2b b   2a a

2

2

 b  b 2  4ac   b  b 2  4ac  138. x1 x2      2a 2a    

4a

2

143.

2

  4ac  c 4a 2

 52  4  9 7 2  9

b  b 2  4ac 2a   7  

 7 2  4 11 6 2 11

7  49  264 7  313  22 22 7  313 7  313  or 22 22 or 0.4860  1.1224

  5 

5  25  252 5  277  18 18 5  277 5  277 or  18 18 or 0.6469  1.2024

 x  2  9i  x  2  9i   0  x  2  9i   x  2  9i   0  x  2 2   9 2  0

b  b 2  4ac 2a

136.  x   2  9i    x   2  9i    0

 b 2   b2  4ac    2a  2

2

5 . 1

141. x 

x2  2 x  1  4  0

b 2  b 2  4ac

1

x1 x2  1  2i 1  2i   1   2  5 , which

x  81  0

2

2

137. x1  x2 

 2 .

144.

a

117


Chapter 1 Equations and Inequalities Problem Recognition Exercises: Simplifying Expressions Versus Solving Equations 1. a. Expression  2 x  5 3x  1  6 x 2  2 x  15 x  5

b. Equation  2 x  5 3x  1  0

2x  5  0 2x  5 5 x 2

 6 x 2  13x  5

3x  1  0 3 x  1 1 x 3

or

 5 1  ,   2 3

2. a. Expression 5 1 2 5 1 2 5 x7 1 x3 2   2         x  3 x  7 x  4 x  21 x  3 x  7  x  3 x  7 x  3 x  7 x  7 x  3  x  3 x  7

5  x  7  1 x  3  2 5 x  35  x  3  2 4 x  36    x  3 x  7  x  3 x  7  x  3 x  7

b. Equation

5 1 2   2 x  3 x  7 x  4 x  21

 x  3 x  7 

  5 1  2     x  3 x  7    x3 x7   x  3 x  7  

5  x  7   1 x  3  2 5 x  35  x  3  2 4 x  38  2 4 x  36 x  9

 9 3. a. Equation

4. a. Equation 5  6  3  2  5  y  2   1  7

 2 x  3  8 2

5  6  3 2  5 y  10  1  7

2x  3   8 2 x  3  2 2

5  6  3 5 y  12  1  7

2x  3  2

5   6  15 y  36  1  7

x

3 2 2

5   15 y  43  7

 3  2     2 

5  15 y  43  7 15 y  38  7 15 y  45 y3

b. Expression

 2 x  32  8   2 x  2  2  2 x  3   3 2  8  4 x 2  12 x  9  8

3

 4 x 2  12 x  1

118


Problem Recognition b. Expression 5  6  3  2  5  y  2   1

b. Equation 3  x  9  20  x

3 x  27  20  x 4 x  7 7 x 4  7    4

 5  6  3 2  5 y  10  1  5  6  3 5 y  12  1  5   6  15 y  36  1  5   15 y  43  5  15 y  43  15 y  38

7. a. Equation 35  12  x  0 x  35  x   12  x  x  0  x 

5. a. Equation x 2  11x  28  0

 x  7 x  4  0

 7, 4

x7 0 x7

x40 x4

or

35  12 x  x 2  0 x 2  12 x  35  0

 x  7 x  5  0

b. Equation x 2  11x  28  0

a  1, b  11, c  28

 7,  5

b  b 2  4ac x 2a 

  11 

11  121  112 11  233  2 2 11  233    2   

x50 x  5

8. a. Equation

x 2 2   x2 3 x2 2  x  2     3  x  2  3  x  2   x  2 3  x  2 

6. a. Equation 3 x  x  9  20  x

3 x  2  x  2  6

3x 2  27 x  20  x

3x  2 x  4  6 5 x  10 x2   ; The value 2 does not check.

3x 2  28 x  20  0

 3x  2 x  10  0 or

or

b. Expression 35 35 x x  12  x   12   x  x x x x 2 35  12 x  x  x

 11 2  4 1 28 2 1

3x  2  0 3x  2 2 x 3

x70 x  7

x  10  0 x  10

b. Expression x 2 2 x2 2     x2 3 x2 x2 3 2 5  1   ; for x  2 3 3

2   ,  10 3  

119


Chapter 1 Equations and Inequalities Section 1.5 Applications of Quadratic Equations 1 bh 2

1. A 

16. x  1 4. a  b  c

3. V  lwh 5.

15. x  2

2. A   r 2 2

2

2

17. a. x  x  2  120

A  lw

b.

629   2 x  3 x  6.

x 2  2 x  120 x 2  2 x  120  0

A  lw

 x  10 x  12  0

1  252   x   x  2 4  7.

8.

x  10  0 or x  12  0 x  10 x  12 x  2  12 x  2  10 The integers are 10 and 12 or 10 and 12 .

A  r2 88    x 

x  x  2  120

2

A  r2 212    x 

18. a. x  x  2  35

2

b.

1 bh 2 1 50  x  x  8 2

x  x  2  35 x 2  2 x  35

9. A 

x 2  2 x  35  0

 x  5 x  7  0 x5 0

or

x70

x5 x  7 x27 x  2  5 The integers are 5 and 7 or 5 and 7 .

1 10. A  bh 2 1 220  x  x  4 2

19. a. x 2   x  1  113 2

11.

V  lwh 1  640  x  8  x 5 

12.

b.

2 x 2  2 x  112  0

V  lwh

2 x 2 2 x 112 0    2 2 2 2 2 x  x  56  0

a2  b2  c2

 x  7 x  8  0

 x  2   x  2 2   2 x  2 2 14.

2

x 2  x 2  2 x  1  113

312  x  2 x  1 4 13.

x 2   x  1  113

x7  0 x7

a 2  b2  c2

or

x8 0 x  8

x 1  8 x  1  7 The integers are 7 and 8 or 7 and 8 .

 x 2   x  3 2  100 2

120


Section 1.5 V  lwh

20. a. x 2   x  1  181 2

1728   x  x  12 6

x 2   x  1  181 2

b.

1728  6 x 2  12 x

x  x  2 x  1  181 2

2

1728  6 x  72 x

2 x 2  2 x  180  0

6 x 2  72 x  1728  0

2 x 2 2 x 180 0    2 2 2 2 2 x  x  90  0

6 x 2  12 x  288  0

 x  24 x  12  0

 x  9 x  10  0 x9 0

x  24  0 x  10

x  1  10 x  1  9 The integers are 9 and 10 or 9 and 10 .

2000   r 2 2000  r2

504  12 x  x  1

r

504  12 x 2  12 x 12 x 2  12 x  504  0

 25

24. Let r represent the radius (in miles) of the area in which the earthquake could be felt. A  r2

 x  7 x  6  0 x7

2000

The radius is approximately 25 yd.

12 x 2  x  42  0 x7  0

x  12  0

23. Let r represent the radius (in yards) of the region watered. A  r2

21. Let x represent the width of the cargo space. The length is 12 ft and the height is  x  1 ft. V  lwh

504  12 x 2  x

or

x  24 x  12 x  12  24  12  36 The dimensions of the cardboard sheet are 24 in. by 36 in.

x  10  0

or

x9

2

or

x60

46,000   r 2 46, 000  r2

x  6

x 1  7 1  6 The dimensions of the cargo space are 6 ft by 7 ft by 12 ft.

r

22. Let x represent the width of the cardboard sheet. Then  x  12 in. is the length of the cardboard sheet. The width of the box is  x  12 in. The length of the box is

46, 000

 121

The earthquake could be felt up to 121 mi from the epicenter. 25. Let x represent the height of the triangle (in feet) and  x  3 represent the base of the triangle. 1  lw  2  bh  A 2 

 x  12  12  x in. The height of the box is

6 in.

121


Chapter 1 Equations and Inequalities

 20 x   2   x  3 x   348

28. a. Let x represent the distance (in feet) from home plate to second base. a 2  b2  c2

1 2

 20 x  x  3x  348 2

 6 2   6 2  c 2

x 2  17 x  348  0

36  36  c 2

 x  29 x  12  0 x  29  0

72  c 2

x  12  0

or

c   72  6 2 in.

x  29 x  12 x  3  12  3  9 The base is 9 ft and the height is 12 ft.

 6 2    6  d 2

26. Let x represent the height of the triangle and 3x represent the base of the triangle. 1 lw  bh  A 2 1  3x  x  2   3x  x   336 2 3 3x 2  6 x  x 2  336 2 6 x 2  12 x  3x 2  672

d   108  6 3 in. 29. a. Let x represent the length (in feet) of the middle leg. a2  b2  c2

 x  2   x  2 2   x  2 2 x2  x2  4 x  4  x2  4 x  4 2 x2  4 x  4  x2  4 x  4

x 8  0

9 x  84

x2  8x  0

x8

x  x  8  0

84 x 9

x0 x282 6

x  2  8  2  10 The length is 24 ft and the height is 10 ft.

x  2  8  2  10 The lengths of the sides of the lower triangle are 6 ft, 8 ft, and 10 ft.

27. Let x represent the distance (in feet) from home plate to second base. a 2  b2  c2

 90   90   x  2

or x  8  0 x8

3x  3  8  24

2

2

108  d 2

 9 x  84 x  8  0 or

2

72  36  d 2

9 x 2  12 x  672  0 9 x  84  0

a 2  b2  c2

b.

b. A  AT  AB

1 1 1 bT hT   bB hB   bT hT  bB hB  2 2 2 1 1  10 4   8 6    40  48 2 2 1   88  44 2 The total area is 44 ft2. 

2

8100  8100  x 2 16, 200  x 2 x   16, 200  90 2  127.3 The distance is 90 2 ft or approximately 127.3 ft.

122


Section 1.5 b. 2.91 326  949

30. a. Let x represent the length (in feet) of the shorter leg. a 2  b2  c2

1.94  326  632 Using the rounded values from part (a), the screen is approximately 949 pixels by 632 pixels.

 x 2   x  7 2   2 x  1 2 x 2  x 2  14 x  49  4 x 2  4 x  1 2 x 2  14 x  49  4 x 2  4 x  1

32. Let x represent the width (in inches) of the display. Then 1.6x is the length of the display. a2  b2  c2

2 x 2  10 x  48  0 2 x 2 10 x 48 0    2 2 2 2 x 2  5 x  24  0

 x 2  1.6 x 2   152 x 2  2.56 x 2  225

 x  3 x  8  0 x3 0 x  3 x  7  8  7  15

or

3.56 x 2  225 225 x2  3.56 225  7.95 x 3.56 1.6 x  1.6  7.95  12.72 The length is approximately 12.72 in., and the width is approximately 7.95 in.

x 8 0 x8

2 x  1  2  8  1  17 The lengths of the sides of the triangle on the left are 8 ft, 15 ft, and 17 ft. b. Let x represent the length (in feet) of the unlabeled side. a 2  b2  c2

 x    9  15 2

2

33. Let n represent the number of players. 1 N  n  n  1 2 1 28  n  n  1 2 56  n 2  n

2

x 2  81  225 x 2  144 x   144  12 The lengths of the sides of the triangle on the right are 9 ft, 12 ft, and 15 ft.

n 2  n  56  0  n  8 n  7  0 n8 0

31. a. Let x represent the width (in inches) of the cell phone. Then 1.5x is the length of the phone. a2  b2  c2

or

n8 There were 8 players.

 x 2  1.5 x 2    3.5 2

34.

x 2  2.25 x 2  12.25 3.25 x 2  12.25 12.25 x2  3.25 12.25  1.94 x 3.25 1.5 x  1.5 1.94  2.91 The length is approximately 2.91 in. and the width is approximately 1.94 in.

n  7

1 n  n  1 2 1 171  n  n  1 2 342  n 2  n S

n 2  n  342  0  n  18 n  19  0 n  18  0 n  18 The value of n is 18.

123

n7 0

or

n  19  0 n  19


Chapter 1 Equations and Inequalities 35. Let t represent the time(s) at which the population was 600,000. P  1718t 2  82,000t  10,000

600,000  1718t 2  82,000t  10,000 0  1718t 2  82,000t  590, 000 0  1718t 2  82,000t  590, 000 b  b 2  4ac   82, 000   2a

t

 82, 000 2  4 1718 590, 000 82, 000  2, 669,520,000  2 1718 3436

 9 or 39 There were 600,000 organisms approximately 9 hr and 39 hr after the culture was started. 38. a. c  219 x 2  26.7 x  1.64

36. Let x represent the speed of the vehicle in mph. m  0.04 x 2  3.6 x  49

 219  0.22  26.7  0.22  1.64 2

 219  0.0484  5.874  1.64  10.5996  5.874  1.64  6.4 ng/mL

30  0.04 x 2  3.6 x  49 0  0.04 x 2  3.6 x  79

b. c  219 x 2  26.7 x  1.64 3  219 x 2  26.7 x  1.64 0  219 x 2  26.7 x  1.36

b  b 2  4ac x 2a 

  3.6 

 3.62  4  0.04 79 2  0.04

x

3.6  0.32  38 or x  52 0.08 The gas mileage will be 30 mpg for speeds of 38 mph and 52 mph. 

b  b 2  4ac 2a

  26.7  

 26.72  4  219 1.36 2  219

26.7  1904.25  0.16 or 0.04 438 16 % 

37. a. d  0.05v 2  2.2v

d  0.05  50  2.2  50 2

1 39. a. s   gt 2  v0t  s0 2 1 s    32 t 2  16 t  0 2 s  16t 2  16t

 0.05  2500  110  125  110  235 ft b.

d  0.05v 2  2.2v 330  0.05v 2  2.2v d  0.05v 2  2.2v  330 v 

b. 4  16t 2  16t 16t 2  16t  4  0

b  b  4ac 2a 2

  2.2 

4 4t 2  4t  1  0

 2.2  4  0.05 330 2  0.05 2

4  2t  1  0 2t  1  0 2t  1 1 t 2 It would take Michael Jordan 0.5 sec to reach his maximum height of 4 ft. 2

2.2  70.84  62 or 106 0.1 The car can travel at 62 mph and stop in time. 

124


Section 1.5 18  30  1.3 or 2.4 9.8 George will catch the bread 1.3 sec after release.

1 40. a. s   gt 2  v0t  s0 2 1 s    32 t 2  8 5 t  0  16t 2  8 5t 2

t

 

b. 5  16t 2  8 5t

L L W  W L L L 1  1 L  L  1 L  L  L   L 

43. a.

16t  8 5t  5  0 2

 4t  5   0 2

4t  5  0 4t   5

L2  L  1

5  0.56 4 It would take 0.56 sec to reach a height of 5 ft. t

L2  L  1  0 L

1 41. a. s   gt 2  v0t  s0 2 1 s    32 t 2   75 t  4  16t 2  75t  4 2

L L

b. 80  16t 2  75t  4 0  16t 2  75t  76

t t

b.

b  b  4ac 2a 2

  75 

 752  4 16 76 2 16

b  b 2  4ac 2a   1 

1 5  0.62 or 1.62 2

1.62 l  1 9 l  9 1.62  14.6 ft

44. Since the length of the sides of the square is 18 in., the length of the sides of the right  18  x  triangles shown in the figure is  .  2  Use the Pythagorean theorem. a2  b2  c 2

75  761  1.5 or 3.2 32 The ball will be at an 80-ft height 1.5 sec and 3.2 sec after being kicked. t

 18  x   18  x  2     x 2   2  2

1 42. a. s   gt 2  v0t  s0 2 1 s    9.8 t 2  18 t  1  4.9t 2  18t  1 2

t t

2

18  x  2  x 2

2

2 18  x 2  2 x 2

b  b 2  4ac 2a   18 

2

 18  x   x2 2  2 

b. 16  4.9t  18t  10  4.9t  18t  15 0  4.9t 2  18t  15 2

 1 2  4 1 1 2 1

324  36 x  x 2  2 x 2 x 2  36 x  324  0

 18  4  4.915 2  4.9 2

125


Chapter 1 Equations and Inequalities

x 

46. Let t represent the time when the ships are 100 nautical miles apart. Then the distance traveled by the first ship is 10t  and the distance traveled by the second ship is 15  t  2 .

b  b 2  4ac 2a   36 

 362  4 1 324 2 1

36  2592  7.46 or 43.46 2 The sides are approximately 7.46 in.

a2  b2  c2

10t  2  15  t  2  100 2 2 100t 2  15t  30  10, 000 2

45. a. 4 x  6 y  160 6 y  160  4 x 160  4 x 80  2 x or y  y 6 3

100t 2  225t 2  900t  900  10, 000 325t 2  900t  9100  0 13t 2  36t  364  0

b. A  lw

t

 80  2 x  A  x  3 

 80  2 x  A  x  3 

c.

  36 

 36 2  4 13 364 2 13

36  20, 224  6.85 or 4.09 26  85   60 min  6.85 hours  6 hours   min    100   1 hr  

 80  2 x  250  x   3  750  80 x  2 x 2

 6 hours  51 min The ships will be 100 nautical miles apart at approximately 6:51 PM.

375  40 x  x 2 x 2  40 x  375  0  x  25 x  15  0 x  25  0 or x  25 80  2 x y 3 80  2  25 30 y   10 3 3 or

b  b 2  4ac 2a

x  15  0 x  15

80  2 15 50  3 3 Each pen can be 25 yd by 10 yd, or it can 50 yd. be 15 yd by 3 y

126


Section 1.6 Section 1.6 More Equations and Applications 1. x 3  27   x    3 3

3

12.

  x  3 x 2  3x  9

98t 3  49t 2  8t  4  0 49t 2  2t  1  4  2t  1  0

 49t  4  2t  1  0 2

2. 2 x 3  5 x 2  8 x  20  2 x3  8 x  5 x 2  20

    2 x  5  x  4 

 2x x  4  5 x  4 2

2

 7t  2 7t  2 2t  1  0

7t  2  0

2

t

  2 x  5 x  2 x  2 3.

13.

2x  5  0 2 x  5 5 x 2

5. 27

23

  3

3 2 3

3 23

 3

34

  2  x  4 x  4  0 2  x  2 x  2  x  4  0 x  2  0 or x  2  0 x2

x   4 x  2i

 2i,  2

3 9

4 3 4

14.

5m 4  5  0

  5  m  1 m  1  0 5  m  1 m  1  m  1  0 5 m4  1  0

3

n m

8.

9. quadratic; m1 3

10. 4 x 2  1

2 2

m  1  0 or m  1  0 or m 2  1  0 m 1

75 y 3  100 y 2  3 y  4  0 75 y 3  3 y  100 y 2  4  0

 

x 2  4

2

7. radical

or x 2  4  0

x  2

2

11.

2 2

   3    3  27

6. 813 4  34

2t  1  0 1 t 2

2 x 4  32  0

2

x5 0 x  5

and

or

2 x 4  16  0

2 x  15 2 x  15  4. 2 x  2 x  35  x  7  x  5 x7  0 x7

2 7

7t  2  0 2 t 7

 2 1  ,   7 2

2x  5 2x  5  2 4 x  25  2 x  5 2 x  5 2 x  5  0 and 2x  5 5 x 2

or

 i,  1

3 y 25 y 2  1  4 25 y 2  1  0

 25 y  1  3 y  4  0 2

 5 y  1 5 y  1 3 y  4  0 5 y  1  0 or 5 y  1  0 or 3 y  4  0 1 1 4 y y y 5 5 3 1 4    ,   5 3   127

m  1

m 2  1 m   1 m  i


Chapter 1 Equations and Inequalities 2 x 4  128 x

15.

2 x  128 x  0 4

 2 x  x  4  x  4 x  16  0 2 x x3  64  0

2

2 x  0 or x  4  0 or x  0 or x  4 or x 

  4 

 42  4 116 2 1

or

n   5

2 y  4 y  18  y 2 2 y 4  5 y 2  18  0 2 y2  9 y2  2  0



2

2 y2  9  0 2 y2  9 9 y2  2

2

10 x 2  0 or x  5  0 or x 2  5 x  25  0 x0 x  5 or

 5  4 1 25 2 1 2

5  75 5  5i 3  2 2 5  5i 3   0,  5,  2  

3x 5 2 x 2  14 x   2 x  2 x  4 x  2x  8 3x 5 2 x 2  14 x   x  2 x  4  x  2 x  4

19.

 x  2 x  4 

 2 x 2  14 x  3x 5      2 4 x x       x  2 x  4   x  2 x  4 

3x  x  4  5  x  2  2 x 2  14 x 3x 2  12 x  5 x  10  2 x 2  14 x x 2  3 x  10  0  x  2 x  5  0 x  2

or

x5

or

9 3 2  2 2  3 2  ,  i 2   2  y

5 ; The value 2 does not check.

128

n  i 5

4

 10 x  x  5  x  5 x  25  0

n2  5  0 n 2  5

2 y 2 y 2  2  18  y 2

18.

  5 



4 2 3  3 3  2 3  ,  i 5   3 

10 x5  1250 x 2 5 10 x  1250 x 2  0 10 x 2 x3  125  0

x

2

n

0,  4, 2  2i 3

2

3n  9n  20  2n 2 3n 4  11n 2  20  0 3n 2  4 n 2  5  0 4

3n 2  4  0 3n 2  4 4 n2  3

x 2  4 x  16  0

4  48 4  4i 3   2  2i 3 2 2

16.

3n 2 n 2  3  20  2n 2

17.

y2  2  0 y 2  2 y   2 y  i 2


Section 1.6 4c 1 3c 2  3   c  5 c  1 c 2  4c  5 4c 1 3c 2  3   c  5 c  1  c  5 c  1

20.

 c  5 c  1 

 3c 2  3  4c 1      c 5 c 1       c  5 c  1   c  5 c  1 

4c  c  1  1 c  5  3c 2  3 4c 2  4c  c  5  3c 2  3 c 2  3c  2  0

 c  1 c  2  0 c  1 21.

or

c  2

 2 ; The value 1 does not check.

m 2 1  m3 2m  1 m   2   1   2m  1 m  3   2m  1 m  3   m  3  2m  1  m  m  3  1 2m  1 m  3  2  2m  1 m 2  3m  2m 2  6m  m  3  4m  2 3m 2  12m  5  0 m

  12 

 122  4  3 5 12  204 12  2 51 6  51    2  3 6 6 3

 6  51     3  22.

n 3 2 n3 2n  1 n   3   2   n  3 2n  1   n  3 2n  1   2n  1 n3  n  2n  1  2  n  3 2n  1  3  n  3

2n 2  n  2 2n 2  7 n  3  3n  9 2n 2  n  4n 2  14n  6  3n  9 6n 2  18n  15  0 2n 2  6 n  5  0 n

  6 

 6 2  4  2 5 6  4 6  2i 3  i    2  2 4 4 2

3  i     2 

129


Chapter 1 Equations and Inequalities 2

23.

3 5  y y2

25.

  5 3 y2  2    y2  2  y  y 

 18   6  m  m  3   2  m  m  3    m  3  m  m  3  18  2m  m  3  6m

2 y2  3y  5 2 y2  3y  5  0

 2 y  5 y  1  0 2y  5  0 2y  5 5 y 2

18 6 2 m  3m m3 18 6 2 m  m  3 m3 2

or

18  2m 2  6m  6m

y 1  0 y  1

2m 2  12m  18  0 m 2  6m  9  0

 m  3 2  0

5   ;  1 2 

24.

m3 0 m3

  ; The value 3 does not check.

20 3  2 z z 20    3 z2  7    z2  2   z  z 7

26.

7 z 2  20 z  3 7 z 2  20 z  3  0

 48   12   3  m m  4  m m  4    m  4  m m  4  48  3m m  4  12m

 7 z  1 z  3  0 7z 1  0 7z  1 1 z 7

or

48 12 3 m  4m m4 48 12 3 m m  4 m4 2

z3 0 z  3

48  3m 2  12m  12m 3m 2  24m  48  0

1   ;  3 7 

m 2  8m  16  0

m  4 2  0 m4 0 m4

  ; The value 4 does not check.

130


Section 1.6 27. Let x represent the speed of the boat in still water. Distance (mi)

Rate (mph)

With current

72

x2

Against current

72

x2

Time (hr) 72 x2 72 x2

72 72  9 x2 x2 72 72    x  2 x  2     x  2 x  2 9 x  2 x  2

72  x  2  72  x  2  9 x 2  4

72 x  144  72 x  144  9 x  36 2

288  9 x 2  36 324  9 x 2 36  x 2 x   36  6 or 6 Jesse travels 6 km/hr in still water. 28. Let x represent the speed of the plane in still air. Distance (mi)

Rate (mph)

With wind

800

x  40

Against wind

800

x  40

Time (hr) 800 x  40 800 x  40

800 800   0.5 x  40 x  40 800 800    x  40 x  40     x  40 x  40 0.5 x  40 x  40 

800  x  40  800  x  40  0.5 x 2  1600

800 x  32, 000  800 x  32,000  0.5 x 2  800 64,000  0.5 x 2  800 64,800  0.5 x 2 129,600  x 2 x   129, 600  360 or 360 The plane travels 360 mph in still air.

131


Chapter 1 Equations and Inequalities 29. Let x represent the speed at which Jean runs. Then  x  8 is the speed at which she rides. Distance (mi)

Rate (mph)

Running

6

x

Riding

24

x8

50 15   1.5 x x  20 100 30  3 x x  20 30   100 x  x  20    x  x  203  x x  20

Time (hr) 6 x 24 x8

100 x  2000  30 x  3x 2  60 x 130 x  2000  3x 2  60 x

6 24   2.25 x x8 24 96  9 x x8 96   24  x  x  8 9 x  x  8    x x  8 

24  x  8  96 x  9 x  8 x 2

0  3x 2  190 x  2000 0  3x  40 x  50 3 x  40  0 or 3 x  40

24 x  192  96 x  9 x  72 x 120 x  192  9 x 2  72 x 0  9 x 2  48 x  192 0  3 x 2  16 x  64 0   3 x  8 x  8

x

31.

x 8 0 x8

2x  4  6

 2 x  4    6 2

2

2 x  4  36

8 3

2 x  40

x  8  8  8  16 Jean runs 8 mph and rides 16 mph.

 20

30. Let x represent the speed at which Barbara drives in clear weather. Then  x  20 is the speed at which she drives during the thunderstorm. Distance (mi)

Rate (mph)

Clear weather

50

x

Thunderstorm

15

x  20

x  50  0 x  50

40 1  13 3 3 1 2 x  20  13  20  6 3 3 x  20  50  20  30 Barbara drives 30 mph in the thunderstorm and 50 mph in nice weather. x

2

3 x  8  0 or 3x  8

100  x  20  30 x  3 x 2  20 x

32.

x  20

3x  1  11

 3x  1  11 2

3 x  1  121 3x  120

Time (hr) 50 x 15 x  20

 40

132

x  40

2


Section 1.6 33.

Check: n  10

m  18  2  m

2n  29  3  n

m  18  m  2

 m  18    m  2 2

2 10  29  3 ⱨ10

2

49  3 ⱨ10 7  3 ⱨ10 10 ⱨ10  true 10 ; The value 2 does not check.

m  18  m 2  4m  4 0  m 2  5m  14 0   m  2 m  7  m  2 Check: m  2

or

m7

35. 4 3 2 x  5  6  10

m  18  2  m

4 3 2 x  5  4

 2  18  2 ⱨ  2

2 x  5  1

3

16  2 ⱨ 2 4  2 ⱨ 2 6 ⱨ 2 false Check: m  7

 2 x  5    1 3

3

2 x  5  1 2x  4

m  18  2  m

x2

 2

 7  18  2 ⱨ  7 25  2 ⱨ 7 5  2ⱨ7 7 ⱨ 7  true  7 ; The value 2 does not check.

36. 3 5 4 x  1  2  8

3 5 4 x  1  6 5

4 x  1  2

 4 x  1   2 5

5

34.

2n  29  3  n

 2n  29    n  3

2

x

2n  29  n 2  6n  9 0   n  2 n  10 or

31 4

 31    4

0  n 2  8n  20 n  2 Check: n  2

5

4 x  1  32 4 x  31

2n  29  n  3 2

3

37. 4 5 y  3  4 2 y  1  0

n  10

4

2n  29  3  n

5y  3  4 2y 1

 5 y  3     2 y  1 4

2  2  29  3 ⱨ 2

4

4

5y  3  2y 1

25  3 ⱨ 2 5  3 ⱨ 2 8 ⱨ 2 false

3y  4 y

133

4 3

4


Chapter 1 Equations and Inequalities 4 3 4 5y  3  4 2y 1  0

39.

Check: y 

4

8  p  1

 8  p   1  p  5  2 p  5  2 p  2 p  5   p 1

 p  5     p  1

11 4 11 ⱨ0  3 3 0 ⱨ 0  true

2

0  p2  3 p  4 0   p  1 p  4 p  1

38. 6 y  7  6 4 y  5  0 6

6

6

6

or

p4

Check: p  1

y  7  6 4y  5

 y  7    4y  5

8 p  p 5 1 6

8   1 

 1  5 ⱨ1

y  7  4y  5

9  4 ⱨ1

2  3y

Check: p  4

2 y 3

3  2 ⱨ1  true

8 p  p 5 1

2 Check: y  3 6 y  7  6 4y  5  0

8   4 

 4   5 ⱨ1 4  9 ⱨ1 2  3 ⱨ1

 2  2    7  6 4    5 ⱨ 0 3 3 6

2

p  5  p2  2 p  1

4   3

6

2

8  p  1 2 p  5  p  5

20 9 4 8 3    ⱨ0 3 3 3 3 4

p5

2

 4  4 5   3  4 2  1ⱨ0  3  3 4

8 p  p 5 1

1ⱨ1 false  1 ; The value 4 does not check.  

2 21 6 8 15    ⱨ0 3 3 3 3

40.

23 6 23 6 ⱨ0  3 3 0 ⱨ 0  true

d  4  6  2 d  1

d  4  6  2d  1

 d  4    6  2d  1 2

2   3

2

d  4  6  2d  2 6  2d  1 2 6  2d  d  3

 2 6  2d    d  3 2

2

4  6  2d   d 2  6d  9 24  8d  d 2  6d  9 0  d 2  2d  15 0   d  3 d  5 or d  3 d 5

134


Section 1.6 Check: d  3 d  4  6  2d  1

k  2  2k  3  2

42.

 k  2    2k  3  2 2

 3  4  6  2  3 ⱨ 1

k  2  2k  3  4 2k  3  4

1  0 ⱨ 1

4 2k  3  k  9

1ⱨ 1 false

 4 2k  3    k  9 2

Check: d  5 d  4  6  2d  1

2

16  2k  3  k 2  18k  81

 5  4  6  2  5 ⱨ 1

32k  48  k 2  18k  81

9  16 ⱨ 1

0  k 2  14k  33

3  4 ⱨ 1

0   k  3 k  11

1ⱨ 1  true 5 ; The value 3 does not check.

k 3 Check: k  3

or

k  11

k  2  2k  3  2

3 y 3  2 y

41.

3  y  3    2  y  2

 3  2 ⱨ 2  3  3  2

2

1ⱨ 9  2 1ⱨ 3  2

96 y3 y3 2 y

1ⱨ1  true Check: k  11

6 y  3  10  2 y 3 y 3  5 y

3 y  3   5  y 2

k  2  2k  3  2 2

11  2 ⱨ 2 11  3  2

9 y  27  25  10 y  y

2

9 ⱨ 25  2

0 y  y2

3ⱨ 5  2

2

0   y  2 y  1 y  2

or

43. a.

3 y 3  2 y

34 43

5 

43

m  54 3

43

3  1ⱨ 2 2 ⱨ 2  true Check: y  1

b.

m2 3  5

 m     5 23 32

3 y 3  2 y

m  53 2

1  3 ⱨ 2  1

 5  32

3 4ⱨ 1 3  2 ⱨ1

 2,1

m3 4  5

 m    5

 2  3 ⱨ 2   2 3  1ⱨ 4

3

3 ⱨ 3  true

3,11

y 1

Check: y  2 3

2

1ⱨ1  true

135

32


Chapter 1 Equations and Inequalities n5 6  3

44. a.

 n    3 56 65

3 

65

n  36 5

65

  t2 3

n4 5  3

b.

  n4 5

   3

54

3

 1     125 

54

56

 t  2

56

 21

49.  2v  7    v  3 13

7

 t  2    7  6 5   t  2  76 5

3

4  y  3

34

 20

 y  3

34

5

50.  5u  6

15

  3u  1

0

 5u  6

  3u  1

15 15

 y  33 4    5 4 3   y  3  54 3 43

5

2u  7

43

u 7   2

1 8 1 p4 5  16

2 p4 5 

47.

p4 5

54

 1     16 

51. a. P  48t1 5

P  48  2

15

54

5

15

 5u  61 5    3u  11 5      5u  6  3u  1

y  54 3  3

5  3

3

v  10

 10

76 5  2

46.

0

 2v  7 1 3    v  31 3      2v  7  v  3

t  76 5  2

13

 2v  71 3   v  31 3

56 65

32

3  1  1  1 t          5 125  25 

 3 

3  t  2

 1     25 

32

54

n  35 4

45.

1 5 1 t2 3  25

5t 2 3 

48.

b.

 1 1  1 p   4        2 32  16  5

 55%

P  48t1 5 75  48t1 5 25 1 5 t 16

 1    32 

5

 25  15 5    t 16

 

t  9.3 hr

136

7 2

5


Section 1.6 52. a. h  16  t  4

13

V  r  1    C

b.

h  16 14  4

13

h  16 18

13

b.

 11, 000  0.15  1    C 

 42 in.

h  16  t  4

13

 11,000    C 

60  16  t  4

13

15

 0.85 5

3

13 3  15      t  4  4 3

3

 15  t     4  49 days  4

55. Let u  x 2  2.

 x  2   x  2  42  0 2

53. a. v  2 gh  19.6h

2

 u  7 u  6  0 u  7 or

v  19.6h

 h

h V  54. a. r  1     C

x2  4 x  2

56. Let u  y 2  3.

2

 y  3  9  y  3  52  0 2

2

26.8  36.6 m 19.6

2

2

u 2  9u  52  0

 u  4 u  13  0 u  4

or

u  13

y  3  4

or

y  3  13

y 2  1

or

y 2  16

y  i

or

y  4

1n 2

 12, 000  r  1   18, 000   2 r  1    3

2

x 2  9 or x  3i or  3i,  2

26.8  19.6  h 26.8  h 19.6 2

u6

x  2  7 or x  2  6 2

26.8  19.6h

 26.8     19.6 

2

u 2  u  42  0

v  19.6 10  14 m/sec b.

15

  11,000  1 5  5      0.85  C   11, 000 5   0.85 C 11, 000  $24,800 C  0.855

15 13   t  4 4

 15  t4   4

1n

13

 i,  4

13

 0.126 or 12.6% per year

137

2


Chapter 1 Equations and Inequalities 59. Let u  c1 5 .

3 57. Let u  2  . t

5c 2 5  11c1 5  2  0

2

3  3   2     2    12 t t

5u 2  11u  2  0

 5u  1 u  2  0

2

3  3   2     2    12  0 t t

1 5 1 c1 5  5 u

u2  u  2  0

 u  3 u  4  0 u  3 3 2   3 t 3  5 t 3 t 5 3 3    ,  2 5  

or or or or

u4 3 2  4 t 3 2 t 3 t 2

c 

15 5

c

c1 5  2

or

 c    2

or

c  32

5

1 3125

15 5

5

3d 2 3  d 1 3  4  0 3u 2  u  4  0

 3u  4 u  1  0 4 3 4 d1 3  3 u

2

2

5  5   y  3  6  y  3  8  0

  d1 3

u  6u  8  0 2

 u  2 u  4  0

y  1

or

60. Let u  d 1 3 .

5  5   y  3  6  y  3  8

5  3  2 y 5  5 y

u2

 1  , 32   3125 

5 58. Let u   3. y

u  2

 1    5

or

or or or or

3

 4    3

d

u  4

64 27

or

u  1

or

d 1 3  1

or

 d    1

or

d  1

3

13 3

3

 64   ,  1  27 

5  3  4 y 5  7 y 5 y 7

61.

x2 x2  5  7 x  5x  7  0 Let u  x 2 . 4

2

u 2  5u  7  0

5   1,   7 

u

138

  5 

 52  4 1 7 5  53  2 1 2


Section 1.6 64. Let u  q 1.

5  53 x  2 2

x

3q 2  16q 1  5  0

5  53 2

3u 2  16u  5  0

 3u  1 u  5  0

 5  53    2   62.

1 3 1 q 1   3 u

x 2 x 2  2  x 2  13

q  3

x 4  2 x 2  x 2  13 x 4  3 x 2  13  0 Let u  x 2 .

u

or

q 1  5

or

q

65. a. y  4 y  21

 3 2  4 1 13 2 1

4 y  21  y

 4 y    21  y  2

3  61  2 3  61 x2  2 x

u  5

 1    ,  3 5  

u 4  3u 2  13  0   3 

or

2

16 y  441  42 y  y 2 0  441  58 y  y 2 0   y  9 y  49

3  61 2

y9 Check: y  9

 3  61    2   

or

y  49

y  4 y  21

 9  4  9 ⱨ 21 9  12 ⱨ 21

63. Let u  k 1.

30k 2  23k 1  2  0

21ⱨ 21  true Check: y  49

30u 2  23u  2  0

y  4 y  21

10u  1 3u  2  0

 49  4  49 ⱨ 21

1 2 or u  u 10 3 1 2 or k 1  k 1  10 3 3 k  10 or k  2 3    , 10 2  

49  28 ⱨ 21

9

139

77 ⱨ 21 false

1 5


Chapter 1 Equations and Inequalities b. Let u 

Check: w  25 w  3 w  10

y.

y  4 y  21

 25  3  25 ⱨ10

y  4 y  21  0

25  15 ⱨ10

u 2  4u  21  0

 u  7 u  3  0 u  7

or

u3

y  7

or

y 3

 y    7 or  y    3 2

2

2

y  49

or

 25

b. Let u  w.

w  3 w  10

2

w  3 w  10  0

y9

u 2  3u  10  0

9 ; See checks in part (a). 66. a.

10 ⱨ10  true

 u  2 u  5  0

w  3 w  10 w  10  3 w

 w  10 2   3 w 

u5

w  2

or

w5

 w    2 or  w    5

2

2

or w4 25 ; See checks in part (a).  

w2  29 w  100  0

 w  4 w  25  0 67.

w  4 or w  25 Check: w  4 w  3 w  10

 4  3  4 ⱨ10

1 1 1   f p q  1  1 1 fpq    fpq     f  p q pq  fq  fp

4  6 ⱨ10 2 ⱨ10 false

pq  fp  fq p  q  f   fq p

1 1 1 1    R R1 R2 R3 1 1  1  1 RR1 R2 R3         R   R1 R2 R3  R1 R2 R3  RR2 R3  RR1R3  RR1 R2 R1 R2 R3  RR2 R3  RR1 R3  RR1 R2 R3  R1R2  RR2  RR1   RR1 R2 R3 

or

2

w2  20 w  100  9 w

68.

u  2

RR1 R2 R1 R2  RR2  RR1

140

fq q f

2

w  25

2


Section 1.6 69.

E  kT 4

74. 4  x 2  y 2  z

E T4 k E 4 4 4  T k

x2  y 2  z  4 2

x 2  y 2   z  4

2

2

E k

T4

 x  y    z  4 2

2

y 2   z  4  x 2 2

y    z  4  x 2 2

4 70. V  r3 3 3V  r3 4 3V 3 3 3  r 4 r3

71.

 PV   PV  T1T2  1 1   T1T2  2 2   T1   T2  T2 PV 1 1  T1 PV 2 2

3V 4

PV 1 1T2  T1 PV 2 2

kF m  kF  m  a  m    m ma  kF a

V

 t   t  s1v1s2v2  1   s1v1s2 v2  2   s1v1   s2 v2  t1s2 v2  t2 s1v1 t sv v2  2 1 1 t1s2

k P

k P V   P    P

77.

P

T  2

L g

 L T    2  g 

PV  k

2

2

k V

T2 

73. 16  x 2  y 2  z

 

2

 x  y    z  16

2

x 2  y 2   z  16

2

2

2

4 2 L g

 4 2 L  g T2  g  g 

x  y  z  16 2

2

t1 t  2 s1v1 s2 v2

76.

kF a

m

72.

PV PV 1 1  2 2 T1 T2

75.

gT 2  4 2 L g

x 2   z  16  y 2 2

x    z  16  y 2 2

141

4 2 L T2


Chapter 1 Equations and Inequalities

78.

t

2s g

 2s  t      g 2s t2  g

t 2

  5 

 52  4 1 3 2 1

5  37 2  5.5 or 0.5 t  1  5.5  1  6.5 It would take Joan approximately 5.5 hr working alone, and it would take Henry approximately 6.5 hr.

2

 g   2s   g  t2         2  g   2 t2g s 2

84. Let t represent the time it takes Antonio to complete one bathroom. Then  t  4 is the time it takes Jeremy to complete one bathroom. 1 job 1 job 1 job   t hr  t  4 hr 8 hr

79. An equation is in quadratic form if, after a suitable substitution, the equation can be written in the form au 2  bu  c  0 , where u is a variable expression.

1 1 1   t  t  4 8

80. Given a polynomial equation, set one side equal to zero and factor the other side into linear and quadratic factors. Then set each factor equal to zero and solve for the variable.

1  1  1 8t  t  4    8t  t  4     t t  4  8 8  t  4  8t  t  t  4

81. When solving a radical equation, if both sides of the equation are raised to an even power, then the potential solutions must be checked. This is because some or all of the solutions may be extraneous solutions.

8t  32  8t  t 2  4t 0  t 2  12t  32 t

82. If m is an even integer, then the mth root of k will be a root with an even index. All positive real numbers have two even-indexed roots: one positive and one negative.

  12 

 122  4 1 32 2 1

12  272 2  14.2 or 2.2 t  4  14.2  4  18.2 It would take Antonio approximately 14.2 hr working alone, and it would take Jeremy approximately 18.2 hr. 

83. Let t represent the time it takes Joan to fill 100 orders by herself. Then  t  1 is the time it takes Henry to fill 100 orders. 1 job 1 job 1 job   t hr  t  1 hr 3 hr 1 1 1   t  t  1 3

1  1  1 3t  t  1    3t  t  1    t t  1  3 3  t  1  3t  t  t  1 3t  3  3t  t 2  t 0  t 2  5t  3

142


Section 1.7 86. Let x represent the distance along the shoreline as shown in the figure.

85. Let x represent the distance along the shoreline as shown in the figure. Distance

Rate

Time

Row

4002  x 2

2.5

400  x 2.5

Walk

800  x

5

800  x 5

2

Distance

Rate

Time

Boat

482  x 2

20

482  x 2 20

Car

96  x

60

96  x 60

2

4002  x 2 800  x   300 2.5 5  4002  x 2 800  x  5    5  300 2.5 5  

482  x 2 96  x  4 20 60  482  x 2 96  x  60     60  4 20 60  

2 4002  x 2  800  x  1500

3 482  x 2  96  x  240

2 4002  x 2  x  700

 x  7002   2 4002  x 2 

x 2  1400 x  490, 000  4 4002  x 2

3 482  x 2  x  144

3 48  x    x  144

2

2

2

3 x  1400 x  150, 000  0

 3x  500 x  300  0 or

2

8 x 2  288 x  0

2

500 3

2

x  288 x  20,736  9 x  20,736

2

x

2

x 2  288 x  20,736  9 482  x 2

x  1400 x  490, 000  4 x  640, 000 2

2

8 x  x  36  0 x  0 or x  36 The marina is 36 mi up the coast.

x  300

2 Pam can row to a point 166 ft down the 3 beach or to a point 300 ft down the beach to be home in 5 min.

Section 1.7 Linear Inequalities and Compound Inequalities 1.  ,  5

2.  1,  

10. intersection

3.  4,  

4.  ,  5

11. a  x  b

5   5.  x |   x  4 6  

4  6.  x | 3  x   3 

7. union, A  B

8. inequality

12. union

13. 2 x  5  17

2 x  22 x  11 x | x  11 ;  ,  11 

9. intersection; A  B

143


Chapter 1 Equations and Inequalities 19. 5  6  c  4  7

14. 8t  1  17

8t  16 t  2 t | t  2 ;  2,  

5  6c  24  7 5  6c  17 12  6c 2  c or c  2  c | c  2 ;  , 2

4 15. 3   w  1 3 4 4   w 3 3  w or w  3  w | w  3 ;  , 3

16.

20. 14  3  m  7   7

14  3m  21  7 14  3m  14 0  3m 0  m or m  0  m | m  0 ;  0, 

5 y2 2 5 10   y 2 4  y or y  4 8 

21.

 y | y  4 ;  4, 

4 x x3 x   2 5 10  4  x x  3  x 10    10      2  10  5  5  4  x   2  x  3   x 20  5 x  2 x  6   x

17. 1.2  0.6a  0.4a  0.5

4 x  26

0.2a  1.7 1.7 a 0.2 a  8.5  a | a  8.5 ;  , 8.5

26 4 13 x 2 13   13    x | x    ;  ,    2 2  x

18. 0.7  0.3x  0.9 x  0.4

0.6 x  0.3 0.3 x 0.6 x  0.5  x | x  0.5 ;  0.5, 

144


Section 1.7

22.

25. 5  7  x   2 x  6 x  2  9 x

y  3 3y 1 1   4 6 12  y  3 3 y  1  1   12    12    4  12  6 

35  5 x  2 x  6 x  2  9 x 35  2



3  y  3  2  3 y  1  1 3 y  9  6 y  2  1

26. 2  3x  1  4 x  2  x  8  5

3 y  8

6 x  2  4 x  2 x  16  5 29

y

8 3



8  8   y | y   ;  ,  3  3 

27. 5  3  2  4  x  2   6 2   4   x  3 

5  3 2  4 x  8  6  2   4  x  3

5  3 4 x  10  6  2    x  7 

23.

5  12 x  30  6  2  x  7

1 5 1  x  4   x  3  x  1 3 6 2 5 1  1  6   x  4   x  3   6  x  1 2  6 3 

12 x  25  6  x  5 12 x  25  6 x  30 6 x  5 5 x 6 5  5    x | x    ;   ,  6  6  

2  x  4  5  x  3  3 x  6

2 x  8  5 x  15  3 x  6 6 x  17 x

17 6

17   17    x | x   ;  ,  6  6 

28. 8  6  10  x  1   2 1  3  2   x  4 

8   6  10 x  10  2 1  3 2  x  4

24.

8   10 x  16  2 1  3  x  2

1 4 3  t  6   t  2   t  2 2 3 4 4 1   3  12   t  6   t  2   12   t  2   2 3 4  

8  10 x  16  2 1  3 x  6 10 x  8  2  3x  7

10 x  8  6 x  14 4 x  22 11 x 2 11 11    x | x   ;  ,  2 2  

6  t  6  16  t  2  9t  24

6t  36  16t  32  9t  24 t  44 t  44 t | t  44 ;  ,  44

145


Chapter 1 Equations and Inequalities 29. 4  3k  2  k  3  k

34. a. M  N   y | y  3

4  3k  2k  6  k 4  6 ;  ,  

b. M  N   y | y  5 c. M  P   d. M  P   y | 3  y  0 e. N  P   y | y  0 or y  5

30. 2 x  9  6  x  1  4 x

2x  9  6x  6  4x 9  6 ;  ,  

f. N  P    35. A  B   1, 0,1, 2, 3, 4, 5 36. A  B   0, 1, 2, 3

31. a. A  B   0, 3, 4, 6, 8, 9,12 b. A  B   0,12

37. M  S  1

c. A  C   2, 0, 4, 8,12

38. M  S   3,  2,  1, 0,1, 2, 3, 4, 5

d. A  C   4, 8 e. B  C   2, 0, 3, 4, 6, 8, 9,12 f. B  C    32. a. X  Y   10,  9,  8,  7,  6,  4

39. a. x  4 and  2, 4

x  2

b. x  4 or  , 

x  2

40. a. y  2

b. X  Y   10,  8

and

y  5

or

y  5

 5,  2

c. X  Z

  10,  9,  8,  7,  6,  5,  4,  3,  2

b. y  2

 , 

d. X  Z    e. Y  Z   10,  8,  6,  5,  4,  3,  2 f. Y  Z   6,  4 33. a. C  D   b. C  D   x | 1  x  9 c. C  F   x | x  9 d. C  F   x | x  8 e. D  F   x | x  8 or x  1 f. D  F   

146

41. a. m  1  6

or

m5  , 5

or

b. m  1  6

and

m5  ,  6 

and

1 m  2 3 m  6

1 m  2 3 m  6


Section 1.7 42. a. n  6  1

or

n7

or

 7, 

3 n6 4 n8

and

n7  8, 

and

2 y  12 3 y  18

3 n6 4 n8

4 44. a.  m  8 5 m  10  2.5,  

and

2.08  0.65 y

and

y  3.2

4 b.  m  8 5 m  10  10,  

 , 3.2

45. a. 3  x  2  2  x  8

or

3x  6  2  x  8 2 x  4

or or

x  2

or

4  x  1  2  2 x  4 4 x  4  2  2 x  4 6 x  2 1 x 3

 ,  2    ,  1 3

b. 3  x  2  2  x  8

x  2

and

4  x  1  2  2 x  4 x

and



1 3

46. a. 5  t  4  2  3  t  1  3

or

2t  6  3  t  4  2

5t  20  2  3t  3  3 2t  18

or or

2t  6  3t  12  2 t  8

t9  ,  8   9,  

or

b. 5  t  4  2  3  t  1  3



2 y  12 3 y  18

or

2.08  0.65 y

or

y  3.2

and

0.85  0.34m

and

m  2.5

or

0.85  0.34m

or

m  2.5

 ,18

b. n  6  1

43. a. 

b. 

t9

and and

t 8

2t  6  3  t  4  2

t 8

147


Chapter 1 Equations and Inequalities 47. 2.8  y and y  5 48. 

54.

1  z and z  2.4 2

49. 3  2 x  1  9 4  2 x  8

10  5 x  6 2  x 

2  x  4 or  4  x  2  4, 2 50.

5 x  2 4 2 5x  2 4  4 2 8  5 x  2  8

4 

6 5

6   2,  5

6  3x  9  0 15  3x  9

55. 12.0  x  15.2 g/dL

5  x  3 or 3  x  5  3, 5

56. 18  a  25 yr 57. 90  d  110 ft

5x  4 3 51. 1  2 2  5x  4  6

58. 220  s  410 mph

6  5 x  10

59.

6  x2 5 6   , 2 5 

88  92  100  80  90  2.5 x  92 7.5 450  2.5 x  92 7.5 450  2.5 x  690 2.5 x  240 x  96 Marilee needs to score at least 96 on the final exam.

4x  1 5 3 6  4 x  1  15 5  4 x  16

52. 2 

60.

5  x4 4  5    4 , 4  

36  36.9  37.1  37.4  x  37 5 147.4  x  37 5 147.4  x  185 x  37.6 The child needs a score of at least 37.6.

2 x  1 4 3 6  2 x  1  12

53. 2 

61. Let t represent the time it takes for the car to be more than 16 miles ahead of the truck. 50t  40t  16

5  2 x  13

10t  16

5 13 x 2 2  5 13   2 , 2    

t  1.6 It will take more than 1.6 hr or 1 hr 36 min.

148


Section 1.7 62. Let t represent the time it takes for a tutor to make over $500 more than a student working in the library. 16.25t  10.75t  500

67.

A  P  Prt 5000  4000  4000  0.05 t 1000  200t 5t At least 5 yr is required.

5.5t  500 t  91 It would take 91 or more hours.

A  P  Prt

68.

10,000  P  P  0.04 8

63. Let l represent the length of the garden. Then the perimeter of the garden is  2l  200 200  2l  800

10,000  P  0.32 P 10,000  1.32 P

2l  600

7575.76  P or P  7575.76 At least $7575.76 is required.

l  300 The length must be 300 ft or less.

5  F  32 9 5 35   F  32 9 63  F  32

69. C 

64. Let x represent the length of the shortest side. Then the lengths of the other two sides are  x  1 and  x  2 .

x   x  1   x  2  24

95  F or F  95 Hypothermia would set in for a core body temperature below 95F .

3x  3  24 3x  21 x7 The shortest side may be 2 ft, 3 ft, 4 ft, 5 ft, 6 ft, or 7 ft.

70.

65. Let x represent the average scores that would produce a nonnegative handicap of 72 or less. 0  0.9  220  x   72

5  F  32 9 5 36.5   F  32  37.5 9 65.7  F  32  67.5 C

97.7  F  99.5 Normal body temperature is between 97.7F and 99.5F , inclusive.

0  220  x  80 220   x  140 220  x  140 or 140  x  220 An average score in league play between 140 and 220, inclusive, would produce a handicap of 72 or less.

71. a. Let s represent the amount of sales. 25,000  0.1s  30, 000  0.08s

0.02s  5000 s  250,000

66. a. 1.1 2015  1.1 300  330 ft 2

b. Job A

b. Let c represent the maximum cost per square foot of tile that Betty can afford. 1.06 6  2015  330c   5600

72. Let x represent the number of nights. 40  1.18 x 169  1.14 x 179

40  199.42 x  204.06 x

1.06 1800  330c   5600

40  4.64 x

1908  349.8c  5600

8.62  x or x  8.62 After 8 nights (9 or more), Hotel B will be less expensive.

349.8c  3692 c  10.55

149


Chapter 1 Equations and Inequalities T  1.83a  212

73.

79. a. 2 x  9  0

1.83a  212  200

2x  9

1.83a  12 a  6.6 Water will boil at temperatures less than 200F at altitudes of 6600 ft or more.

9 2  9 x x   2  x

E  46.2 x  446.2

74.

b. 2 x  9  0

46.2 x  446.2  1000

2x  9

46.2 x  553.8 x  11.987 For the year 2012 and later, the average per capita consumer expenditure for prescription drugs will exceed $1000.

9 2  9 x x   2  x

80. a. 3x  7  0

75. a. x  2  0 x2  x | x  2

3x  7 7 3  7 x x   3  x

b. 2  x  0

2  x or x  2

 x | x  2

b. 3x  7  0

76. a. x  6  0

3x  7 7 x 3  7 x x   3 

x6  x | x  6 b. 6  x  0 6  x or x  6 x |  x  6

81. cd  a False

77. a. x  4  0

82. ab  c True

x  4  x | x  4

83. If a  c , then ad  cd . True

b. 

84. If a  c , then ab  bc . False

78. a. x  7  0 x  7  x | x  7

85.  , 2   3, 4  1, 3  1, 2 86.  , 5   1,     0, 3   0, 3

b. 

87.  ,  2   4,      5, 3   5,  2 88.  , 6  10,      8, 12  10, 12

150


Section 1.7 89. 2 x  1  3 or 2 x  4 or x  2 or  ,  2   0,  

2x  3  3 2x  0 x0

96.

1 7   z  3 3 1 10   z 3 30  z or z  30  , 30

90. 4m  2  1 or 4m  2  1 4m  1 or 4m  3 1 3 m or m 4 4 1 3    ,    ,  4 4

97. 1 

91. 2  6d  4  2 2  6d  6 2  d 1 6 1  d 1 3 1   3 ,1  

98. 0 

92.

4 x 3 2 x4 1  3 2 2  x  4  6 2  x  10  2,10

6 x 2 4 x6 0 2 4 0 x68 6  x  14  6,14

8  3k  7  8 15  3k  1 1 5  k  3 1   5,  3

93. 11  6 y  7 18  6 y 3  y

99. The steps are the same with the following exception. If both sides of an inequality are multiplied or divided by a negative real number, then the direction of the inequality sign must be reversed.

and and and

6 y  7  5 6 y  12 y  2

100. The statement 8  x  2 is equivalent to 8  x and x  2 . No real number is greater than 8 and simultaneously less than 2.

 3,  2 94. 13  2c  3 10  2c 5  c  5, 4 95.

and and and

101. The statement 3  w  1 is equivalent to w  3 and w  1 . No real number is less than 3 and simultaneously greater than 1 .

2c  3  5 2c  8 c4

102. If the inequalities in a compound inequality are joined by the word “and,” then the solution set to the compound inequality is the intersection of the solution sets of the individual inequalities. If the inequalities are joined by the word “or,” then the solution set to the compound inequality is the union of the solution sets of the individual inequalities.

1 p4 2 1 2  p 2 4  p or p  4 6 

 ,  4 151


Chapter 1 Equations and Inequalities Section 1.8 Absolute Value Equations and Inequalities 1. x  4 or 4  x

14. a. w  2 w  2 or w  2  2,  2

2. x   1 or 1  x

b. w  0

3. 4  2 x  10  4 6  2 x  14

w  0 or w  0  0

3 x  7  x | 3  x  7 ;  3, 7

c. w  2



4. 1  5t  1  1 2  5t  0

15. a. x  3  4

2  t0 5  2   2  t   t  0  ;   , 0  5   5  or 5m  20 or m  4 m4  m | m  4 or m  4 ;  ,  4   4, 

9.  k ; k

10.  k ; 

11. 

12.  

x  3  4

x7  7,  1

or

x  1

x3 0

or

x  3  0

x3

or

x3

3

6. 7c  14 or 7c  14 or c  2 c2 c | c   2 or c  2   ;  ,  2 <  2,  8. u  w or u   w

or

b. x  3  0

5. 5m  20

7. absolute;  k ,  k 

x3 4

c. x  3  7

 16. a. m  1  5

m 1  5

or m  1  5

m4  4,  6

or

m  6

b. m  1  0

m 1  0

13. a. p  6

or m  1  0

m  1 or

p  6 or p  6

 1

 6,  6

c. m  1  1

b. p  0



p  0 or p  0

 0  c. p  6



152

m  1


Section 1.8 17. 2 3x  4  7  9

23.

2 3x  4  2

 1 1  1 6 4  w    6   2  2 3

3x  4  1 3x  4  1

or

3 x  4  1

3x  5

or

3x  3

5 3

or

x 1

2t  7  5

or

2t  7  5

2t  2

or

2t  12

t  1

or

t  6

x

1 1 1 4 w   2 3 2

24  3w  2  3 24  3w  5 24  3w  5 or 3w  19 or 19 w or 3 19 29   ,  3 3

5   ,1 3 

18. 4 2t  7  2  22

4 2t  7  20

24  3w  5 3w  29 29 w 3

2t  7  5

 1,  6 19.

24.

2

 1 7  1 6 2  p    6   2  3 6 12  2 p  7  3

3   c  7  1

12  2 p  10

4   c  7

12  2 p  10 2 p  2 p 1

4 c7 c7 4 c  11 11, 3 20.

or or

c  7  4 c3

1 z 8 or or

z  8  1 z  9

3y  5  y 1

or

2 y  4

or

y  2

or

3 y  5    y  1 4 y  6 3 y 2

3   2,   2 

26. 2a  3  a  2

2  8  11y  4 6  11y  4

 22.

12  2 p  10 2 p  22 p  11

25. 3 y  5  y  1

4   z  8  3

z 8 1 z  7  7,  9

or or or

1,11

1   z  8

21.

1 7 1 p   3 6 2

6  7  9z  3

2a  3  a  2

or

a5

or

 1 5,   3

1  9 z  3

 153

2a  3    a  2  3a  1 1 a 3


Chapter 1 Equations and Inequalities

27.

33. a. x  7

1 w  4w 4 1 w  4w 4 w0  0 1 z 3 1 3z  z 3 z0  0

x  7 or x  7  7,  7

1 w  4w 4 w0

or or

b. x  7

7  x  7  7, 7 c. x  7

28. 3z 

x  7 or x  7   ,  7   7, 

1 3z   z 3 z0

or or

34. a. y  8

y  8 or y  8

8,  8

29. x  4  x  7

x4 x7

or

4  7

or

x  4    x  7

b. y  8

2x  3 x

8  y  8

 8, 8

3 2

c. y  8

3   2 30.

y  8 or y  8

 ,  8  8,  

k 3  k 3 k 3 k 3

or

3  3

or

 0 31.

35. a. a  9  2  6

k  3    k  3 2k  0

a9  4

k0

a  9  4 or a  5 or  13,  5

2 p 1  1 2 p 2 p 1  1 2 p

or

2 p  1   1  2 p 

4p  2

or

00

p

b. a  9  2  6

a9 4 4  a  9  4 13  a  5  13,   5

1 2

c. a  9  2  6

32. 4d  3  3  4d

4d  3  3  4d

or

4d  3    3  4d 

8d  6

or

00

d

a  9  4 a  13

a9 4 a  9  4 or a  13 or  ,  13  13, 

3 4

154

a9 4 a  5


Section 1.8 36. a.

b 1  4  1

40. 5 x  1  9  4

b 1  5

5 x 1  5

b 1  5 b4  6, 4

or or

b  1  5 b  6

x 1 1 x  1  1 or x  2 or  ,  2   0, 

b. b  1  4  1

b 1  5

41.

5  b  1  5 6  b  4  6,  4

16  2 p  4 2 p  4  16 16  2 p  4  16 20  2 p  12 10  p  6

b 1  5 b 1 5 b4

 10, 6 42.

37. 3 4  x  2  16

18  6  3 z  3 24   3 z  3

3 4  x  18

24  3 z  3

4 x 6

3z  3  24

6  4  x  6 10   x  2 10  x  2 or  2  x  10

24  3z  3  24 27  3z  21 9  z  7  9,  7

 2,10

38. 2 7  y  1  17

43.

2 7  y  16

10  5c  4  2 8  5c  4

7 y 8

5c  4  8

8  7  y  8 15   y  1 15  y  1 or  1  y  15

5c  4  8 or 5c  4  8 5c  4 or 5c  12 4 12 c or c 5 5 12   4    ,     ,  5 5

 1,15 39. 2 x  3  4  6

2 x  3  10 x3 5 x  3  5 or x  8 or  ,  8   2,  

11  5  2 p  4 16   2 p  4

c. b  1  4  1

b  1  5 or b  6 or  ,  6   4, 

x 11 x0

x35 x2

155


Chapter 1 Equations and Inequalities 44.

15  2d  3  6

49. a. x  9

9  2d  3



2d  3  9 2d  3  9 or 2d  6 or d 3 or  ,  6   3,  45.

b. x  9

2d  3  9 2d  12 d  6

 c. x  9

 ;  ,  

y3 2 6 y3 2  2 6 12  y  3  12 15  y  9

50. a. y  2

 b. y  2

 c. y  2

 15, 9 46.

47.

 ;  ,  

m4  14 2 m4 14   14 2 28  m  4  28 24  m  32  24, 32

51. a.

14   y  7 14  y  7

 b.

14  y  7

1 p  6  0.01 2 1 p  6  0.01 2 1 p  5.99 2 p  11.98

 1 p  6  0.01 2 1 or p  6.01 2 p  12.02 or or

c.

18  4  y  7 14   y  7 14  y  7

 ;  ,   52. a.

1 q  2  0.05 4 1 q  2  0.05 4 1 q  1.95 4 q  7.8

18  4  y  7 14   y  7

 ,11.98  12.02,   48.

18  4  y  7

15  2  p  3 13   p  3 13  p  3

or or or

 , 7.8  8.2, 



1 q  2  0.05 4 1 q  2.05 4 q  8.2

b.

15  2  p  3 13   p  3 13  p  3

 156


Section 1.8 c.

15  2  p  3

55. a.

k4 0 k40 or k  4 or  4

13   p  3 13  p  3

 ;  ,  

b. k  4  0

53. a. z  0



z  0 or z  0  0

c. k  4  0



k40 k  4  4  

c. z  0

d. k  4  0

b. z  0

z0

k  4  0 or k  4  0 k  4 or k  4  k | k  4 or k  4 ;

 0

d. z  0

 ,  4   4,  

 z | z  0 or z  0 ;  , 0   0,  

e. k  4  0

e. z  0

 ;  ,  

 ;  ,   54. a. 2 w  0

2w  0 w0  0

k  4  0 k  4

56. a.

or or

c3  0 c3 0 c3 3

2 w  0 w  0

or or

c  3  0 c3

b. c  3  0

b. 2w  0





c. 2w  0

c. c  3  0

2w  0 w0  0

c3 0 c3 3

d. 2 w  0

d. c  3  0

c  3  0 or c  3  0 c3 c3 or  c | c  3 or c  3 ;  , 3   3,  

2w  0 or 2w  0 w0 w0 or  w | w  0 or w  0 ;  , 0   0,  

e. c  3  0

e. 2w  0

 ;  ,  

 ;  ,  

157


Chapter 1 Equations and Inequalities 64. y  L   or L  y  

57. a. x  4  6 or 4  x  6 b.

x4 6 x  4  6 x  2  2,10

or or

65. a. t  36.5  1.5 or 36.5  t  1.5

x46 x  10

b. t  36.5  1.5

1.5  t  36.5  1.5 35  t  38  35, 38 ; If the refrigerator is set to 36.5F , the actual temperature would be between 35F and 38F , inclusive.

58. a. x  3  8 or 3  x  8 b.

x3 8 x  3  8 x  5  5,11  

or or

x38 x  11

66. a. x  16  0.5 or 16  x  0.5 b. x  16  0.5

0.5  x  16  0.5 15.5  x  16.5 15.5,16.5 ; The boxes of cereal vary in weight between 15.5 oz and 16.5 oz, inclusive.

59. a. v  16  0.01 or 16  v  0.01 b. v  16  0.01

0.01  v  16  0.01 15.99  v  16.01 15.99,16.01

67. a. x  0.51  0.03 or 0.51  x  0.03

60. a. t  60  0.2 or 60  t  0.2

b. x  0.51  0.03

0.03  x  0.51  0.03 0.48  x  0.54  0.48, 0.54 ; The candidate is expected to receive between 48% of the vote and 54% of the vote, inclusive.

b. t  60  0.2

0.2  t  60  0.2 59.8  t  60.2  59.8, 60.2 61. a. x  4  1 or 4  x  1 b.

68. a. x  34  3 or 34  x  3

x  4 1 x  4  1 or x3 or  , 3   5, 

b. x  34  3

x  4 1 x5

3  x  34  3 31  x  37  31, 37 ; The motorist was traveling between 31 mph and 37 mph, inclusive. The motorist should receive a ticket because even at the lower end of the interval, the speed of 31 mph still exceeds the posted speed limit.

62. a. y  10  2 or 10  y  2 b.

y  10  2 y  10  2 y8

or or

y  10  2 y  12

 , 8  12,   63. 0  x  c   or 0  c  x  

158


Section 1.8 x  500

69. a.

250

1.96 

77.

 1.96

x  500 5 10

 1.96

1.96 5 10  x  500  1.96 5 10

78.

50

1.96

x  60 50

 50   x  60  1.96  50 

82. Taking the square root of both sides of the

b. No. It appears that the die lands on “1” at a lower rate than expected because 30 outcomes is below the “reasonable” range.

73. 2 z  4

74. 8 p  11

75.

3  x  7 3  2  x  2  7  2 5  x  5 x2 5

76.

2 x6 24 x464 2  x  2 x4 2

x  11 x  5  11  5 x5 6

81. The inequality x  3  0 will be true only for values of x for which x  3  0 (the absolute value will never be less than 0). The solution set is {3}. The inequality x  3  0 is true for all values of x excluding 3. The solution set is  x | x  3 or x  3 .

13  x  60  13 47  x  73  47, 73 ; After rolling a fair die 360 times, it is reasonable to expect a “1” to appear between 47 and 73 times, inclusive.

72. 7  y  1

or or or

80. The absolute value of any real numbers is greater than or equal to zero. Therefore, all real numbers have an absolute value greater than 5 .

 1.96

71. 3x  1  7

x  1 x  5  1  5 x  5  6

79. The absolute value of any nonzero real number is greater than or equal to zero. Therefore, no real number x has an absolute value of 5 .

 1.96

1.96 

x  10 x  7  10  7 x73

x5  6

b. Yes, because 560 is above the “reasonable” range.

x  60

or or or

x7 3

30  x  500  30 470  x  530 470, 530   ; In a group of 1000 jurors selected at random, it would be reasonable to have between 470 and 530 women, inclusive.

70. a.

x4 x7 47 x  7  3

equation x 2  4 results in x 2  4 or equivalently x  2 . The solution set for each equation is  2,  2 , indicating that the equations are equivalent. 83. x  x  11

x  x  11 2 x  11 11 x 2 11   ,  2

159

or or

 x  x  11 0  11


Chapter 1 Equations and Inequalities 84. x  x  10

88.

x  x  10 0  10

or or

 ,  5

 x  x  10 2 x  10 x  5

7  3x  5  13 7  3 x  5  13 12  3 x  18

or or

4 x6

or or

85. 1  x  9

1 x  9

 8 2   ,   <  4, 6 3 3

1 x  9 1  x  9 9  x  1

or

 9,  1 < 1, 9

p  pˆ  z

89.

86. 2  y  11

2  y  11

or or or

 11,  2 <  2,11

2   y  11 2  y  11 11  y  2

ˆˆ ˆˆ pq pq  p  pˆ  z n n

pˆ  z

ˆˆ ˆˆ pq pq  p  pˆ  z n n

x 

87. 5  2 x  1  7

 4,  3 <  2, 3

or or or or

5  2 x  1  7 6  2 x  8 3  x  4 4  x  3

ˆˆ pq n

z

90.

5  2x  1  7 4  2x  6 2 x3

7  3x  5  13 2  3x  8 2 8  x 3 3 8 2  x 3 3

x

z n z n

z n

x x

z n z n

Problem Recognition Exercises: Recognizing and Solving Equations and Inequalities 2. a. Absolute value inequality

1. a. Equation in quadratic form and a polynomial equation

b.

b. Let u  x 2  5

8  3t  1

 x  5  5  x  5  4  0 2

2

2

3t  1  8

u  5u  4  0

3t  1  8 or 3t  7 or 7 t or 3 7   ,   <  3,   3

2

 u  4 u  1  0 u4 x 5 4 2

x2  9

or x  5  1 2

or

x  3 or

 3,  6 

u 1

or

2  3t  1  6

x2  6 x 6

160

3t  1  8 3t  9 t3


Problem Recognition 3. a. Radical equation

4. a. Absolute value equation

b. 3 2 y  5  4  1

b. 9 3z  7  1  4

2y  5  3

9 3z  7  3

3

 2 y  5    3 3

3

3z  7  

3



2 y  5  27 2 y  32 y  16

1 3

16 5. a. Rational equation b.

2 5  1 w  3 w 1 2 5    w  3 w  1     w  3 w  11 w  3 w  1 2  w  1  5  w  3   w  3 w  1 2w  2  5w  15  w2  2w  3 7 w  13  w2  2w  3 0  w2  9w  10 w

  9 

 92  4 110 9  41  2 1 2

 9  41     2  6. a. Polynomial equation b.

7. a. Compound inequality

48 x 3  80 x 2  3x  5  0

b. 2  m  2   m  5

48 x 3  3 x  80 x 2  5  0

2m  4   m  5 m  9 m  9  9, 3

    3x  5 16 x  1  0

3x 16 x  1  5 16 x  1  0 2

2 2

 3x  5 4 x  1 4 x  1  0

and

6 m3

and and

3 m m3

8. a. Compound inequality

5 1 1 or x   or x  3 4 4 5 1    ,   3 4   x

b.

161

6  2c  8

or

2  2c

or

1 c  ,12

or

1 c22 3 1 c4 3 c  12


Chapter 1 Equations and Inequalities 9. a. Quadratic equation b.

13. a. Compound inequality

 2 p  1 p  5  2 p  40

6 x 7 5 x6 1  7 5 5  x  6  35

b. 1 

2 p 2  11 p  5  2 p  40 2 p 2  9 p  35  0

 2 p  5 p  7  0 p

5 2

1  x  41 1, 41

p  7

or

5   ,  7 2  

14. a. Radical equation

5  2  n  5  2n

b. 2 x  x  4  7  2 x 2  3  x  5   2  x  

 5  2  n    5  2n  2

2 x 2  8 x  7  2 x 2  3 x  5  2  x  8 x  7  3 3

2

25  10 2  n  2  n  5  2n

8 x  7  9

10 2  n  n  22

8 x  16

10 2  n    22  n 2

x2

 2

2

100  2  n   484  44n  n 2 200  100n  484  44n  n 2

11. a. Linear inequality b.

5  5  2n  2  n

b.

10. a. Linear equation

n 2  144n  284  0

 n  142 n  2  0

a  4 3a  1 a   2 4 8  a  4 3a  1  a 8    8     2 4 8

n  142 or n  2 Check: n  142 5  5  2n  2  n

4  a  4  2  3a  1   a

5 ⱨ 5  2 142  2  142

4a  16  6a  2   a

5 ⱨ 289  144

 a  18

5 ⱨ17  12

a  18

 18, 

5 ⱨ 29 false Check: n  2

12. a. Quadratic equation

5  5  2n  2  n

b. 3x 2  11  4

5 ⱨ 5  2  2  2   2 5ⱨ 9  4

3 x 2  7 x2  

5ⱨ3  2

7 3

5 ⱨ 5  true 2 ; The value 142 does not check.

7 7 7 3 21  i  i  i 3 3 3 3 3  21  i   3  x 

162


Problem Recognition 15. a. Absolute value equation

u  2

or

u6

4 x  5  3x  2

y  2

or

y 6

b.

4 x  5  3x  2

or

4 x  5  3x  2

x3

or

7x  7

 y    2 or  y    6 2

y4 Check: y  4

x 1

1, 3

or

2

y  36

y  4 y  12  0

 4  4  4  12 ⱨ 0

16. a. Rational equation b.

2

2

4  8  12 ⱨ 0 16 ⱨ 0 false Check: y  36

1 1 2d   0 d 2d  1 2 d  1 1 2d  1  0 d 2d  1 1 1  0 d 1  1 d d  1  1

y  4 y  12  0

 36  4  36  12 ⱨ 0 36  24  12 ⱨ 0 0 ⱨ 0  true 36 ; The value 4 does not check. 19. a. Radical equation

17. a. Absolute value inequality

b.

b.  x  4  8  3

 c    16 23 32

 x  4  5

 64

x4 5 5  x  4  5

 9,1

9  x  1

32

c  64

20. a. Absolute value inequality b. 2 z  14  8  4

2 z  14  4

18. a. Radical equation and an equation quadratic in form b. Let u 

c 2 3  16

z  14  2

 , 

y

y  4 y  12  0 u 2  4u  12  0

 u  2 u  6  0

163


Chapter 1 Equations and Inequalities Chapter 1 Review Exercises 1.

5. x  5  2  x  4  3  x  1  5

3 4 2   x  4 2x  7 3 3 4 2    x  2 x  2 2 x  7 3 7 x  2, x  2, x  2 2

x  5  2 x  8  3x  3  5 3x  13  3x  2 13  2



6. 0.2 x  1.6  x  0.8  x  2

2. 8  t  4  7  4 t  3 1  t    6

0.2 x  1.6  x  0.8 x  1.6 0.2 x  1.6  0.2 x  1.6 00 

8t  32  7  4  t  3  3t   6 8t  39  4  4t  3  6 8t  39  16t  12  6 8t  39  16t  6 45  24t 45 15  t 24 8

3.

4.

7.

y 2  8 y  16  y 2  6 y  9 7  14 y 7 y 14 1 y 2 1   2

4 2 7 x  x2 5 3 10 2 4 7  30  x    30  x  2 5  10  3 24 x  20  21x  60 3x  40 40 x 3  40     3

8.

x3 x4 2 x 5x  x3   x  4 5x   2  5 x   5x   x  x  3  10 x  5 x  20 11x  3  5 x  20 6 x  23 23 x 6  23     6

m  2 m  4 m 1   1 3 4 6  m  2 m  4  m 1    12   1 12    3  6  4  4  m  2  3  m  4  2  m  1  12 4m  8  3m  12  2m  2  12 m  20  2m  10

 40

 y  4 2   y  3 2

30  m

164


Chapter 1 Review 1 5m 3  2  m  1 m  3m  4 m  4 1 5m 3   m  1  m  1 m  4 m  4

9.

 m  1 m  4 

 1  5m 3      m  1 m  4   m 1   m  1 m  4 m  4 

1 m  4  5m  3  m  1 m  4  5m  3m  3 1 m   ; The value 1 does not check. 10. 4 x  3 y  6

13.

3 y  4 x  6 y

11.

4 x2 3

t t ta  1 2 2 2ta  t1  t2 2ta  t1  t2 or t2  2ta  t1

1 1 c h 41 36 1 1 11  c   288 41 36 1 11  c  8 41 1 3 c 41 123  c or c  123 mi A

12. 4 x  6 y  ax  c

4 x  ax  c  6 y x  4  a  c  6 y x

c  6y 6y  c or x  a4 4a

14. Let x represent the amount invested in the international fund. Then, 12, 000  x  is the amount invested in the real estate fund.

Principal Interest (I = Prt)

International Fund

Real Estate Fund

x

12, 000  x

x  0.0821

12, 000  x  0.0151

Total

749.50

x  0.082  12,000  x  0.015  749.50 0.082 x  180  0.015 x  749.50 0.067 x  180  749.50 0.067 x  569.50 x  8500 12, 000  x  12, 000  8500  3500 Shawna invested $8500 in the international fund and $3500 in the real estate fund.

165


Chapter 1 Equations and Inequalities 15. Let x represent the amount invested in the 10-yr Treasury note. Then,  x  4000 is the amount invested in the 15-yr bond. 10-yr Note

15-yr Bond

x

x  4000

x  0.03510

 x  4000 0.04115

Principal Interest (I = Prt)

Total

10,180

x  0.03510   x  4000 0.04115  10,180 0.35 x  0.615 x  2460  10,180 0.965 x  2460  10,180 0.965 x  7720 x  8000 x  4000  8000  4000  12, 000 Cassandra invested $8000 in the Treasury note and $12,000 in the bond. 16. Let x represent the amount of the 20% acid solution (in cubic centimeters). 100 cc is the amount of the 60% acid solution. Therefore,  x  100 is the amount of the resulting 25% acid solution. 20% Solution

60% Solution

25% Solution

Amount of Solution

x

100

x  100

Pure Acid

0.2x

0.6 100

0.25  x  100

0.2 x  0.6 100  0.25  x  100 0.2 x  60  0.25 x  25 35  0.05 x 700  x 700 cc of 20% acid solution should be mixed with the 60% acid solution. 17. Let x represent the amount of the pure sand (in cubic feet). 250 ft2 is the amount of the concrete mix that is 50% sand. Therefore,  x  250 is the amount of the resulting 70% sand mixture. 100% Sand

50% Sand

70% Sand

Amount of Mixture

x

250

x  250

Pure Sand

x

0.5  250

0.7  x  250

x  0.5  250  0.7  x  250 x  125  0.7 x  175 0.3 x  50 x  166 166

2 3

2 2 ft of sand should be mixed with the 50% sand mixture. 3

166


Chapter 1 Review 21. a. C  5 x

18. Let x represent the distance from Kevin’s place of work to his home. Distance

Rate

To Work

x

45

To Home

x

30

b. C  80

5 x  80 x  16 The dancer will save money on the 17th dance during a 3-month period.

Time

x 45 x 30

22. Let t represent the time it takes Petra and Dawn to typeset the 150-page manuscript (which is equivalent to three 50-page manuscripts) if they work together. 1 job 1 job 3 jobs   4 days 3.5 days t days

x x 50   45 30 60 x  x  50  180     180    45 30   60  4 x  6 x  150 10 x  150 x  15 The distance is 15 mi.

1 1   3  14t   14t    4 3.5  t 3.5t  4t  42 7.5t  42 t  5.6 days

19. Let x represent the speed of the boat traveling north. Then,  x  6 is the speed of the boat traveling south. Distance

Rate

Time

Northbound

3x

x

3

Southbound

3  x  6

x6

3

23. Let t represent the time it takes the second pump to drain the pond by itself. 1 job 1 job 1 job   22 hr t hr 10 hr  1 1  1 110t     110t    22 t   10 

5t  110  11t 110  6t 55 t  18.3 hr 3

3x  3  x  6  66 3x  3x  18  66 6 x  18  66 6 x  48 x8 x  6  8  6  14 The northbound boat travels 8 mph and the southbound boat travels 14 mph.

24. Let x represent the number of female officers. Then,  x  60 represents the number of male officers. x  60 10  x 7  x  60   10  7x   7x     x   7

20. a. C A  300  4 x b. C A  360  2 x c.

7  x  60  10 x

C A  CB 300  4 x  360  2 x 2 x  60 x  30 If Monique takes 30 classes during the year, the cost for each gym will be the same.

7 x  420  10 x 420  3 x 140  x x  60  140  60  200 There are 140 females and 200 males.

167


Chapter 1 Equations and Inequalities 34.  4  7i  5  i   20  4i  35i  7i 2

25. Let x represent the number of turtles in the pond. 12 3  x 36 3x  432

 20  31i  7  1  20  31i  7  27  31i 35.  4  6i    4  2  4 6i    6i  2

x  144 There are approximately 144 turtles in the pond.

2

 16  48i  36i 2  16  48i  36  1  16  48i  36  20  48i

26.  169  i 169  13i



 

28.

16  4  i 16  i 4  4i  2i  8i 2

 8  6i 2  2  1  6  6i 2

 8  1  8

37.  8  3i  8  3i    8   3  64  9  73 2

29. a. Real part: 3; Imaginary part: 7 b. Real part: 0; Imaginary part: 2

38.

30. a. i 35  i 32  i 3  1  i 3  i

12  13i  3 9  13i 9 13    i 9 1 10 10 10

39. 6  5i

1 6  5i    6 1 5i  6  5i 6  5i   

b. i  1 c. i 62  i 60  i 2  1  i 2  1

d. i  i  i  1  i  i 1

e. i 5  i 8  i 3  1  i 3  i

1

6  5i 6  5i 6  5i   62  5 36  5 41 6 5 i   41 41 

2 3  1 2  31.   i    i 3 5  6 5   20 18   5 12     i    i  30 30   30 30   20 5   18 12       i  30 30   30 30  

15 6 1 1  i  i 30 30 2 5

5

40.

7 7i 7i 7i 7   2  i 4i 4i  i 4i 4  1 4

41.

3y2  4 y  8  6 y 3y2  2 y  8  0

 3 y  4 y  2  0

32. 3i  7  2i   21i  6i 2  21i  6  1  6  21i 33.

3y  4  0 3y  4

 11  3   i 5  11  i 3   i 55  i

2

4  3i  4  3i  3  i  12  4i  9i  3i 2   3i 32  12  3  i  3  i 

56

1

 8  2i 2  4i 2  2i 2

12  i 12  2i 3

16



36. 2  2 4  2  2  i 2 4  i 2

27.

17

2

2

y

15

 i 55   1 15

4   ,  2 3 

  15  i 55

168

4 3

or

y20 y  2


Chapter 1 Review 45. x 2  5   x  2 x  4

42.  2v  3  1  6 2

x2  5  x2  4 x  2 x  8

 2v  3 2  7

x2  5  x2  2 x  8

2v  3   7

2 x  3

2v  3  7

x

3  7 v 2  3  7     2 

 3    2 46.

43. 10t  1210  0 2

10t 2 1210 0   10 10 10 2 t  121  0

44.

1 2 2 7 x   x 5 3 15 2 1 7  15  x 2    15  x 5   15  3

3x 2  10  7 x 3x 2  7 x  10  0

t 2  121

 3x  10 x  1  0

t   121  11i

 11i

3 2

3 x  10  0 3x  10

2d  d  3  1  4d

x

2d  6d  1  4 d 2

a  2, b  10, c  1

10 3

1  47. x 2  18 x  n  x 2  18 x   18  2  

b  b  4ac 2a 2

  10 

x  1

10   ,  1 3 

2d  10d  1  0 2

d

x 1  0

or

 x 2  18 x   9

 10  4  2 1 2  2 2

2

2

 x 2  18 x  81   x  9 n  81;  x  9

10  100  8 10  108   4 4 10  6 3 5  3 3   4 2  5  3 3     2 

48. x 2 

2

2

2 2  1  2  x  n  x2  x      7 7  2  7   x2 

2  1 x   7 7

2

2

2 1  1  x  x x  7 49  7 2

n

169

1  1 ;x   49 7

2

2


Chapter 1 Equations and Inequalities x 2  10 x  9

49. a.

2 x 2  3x  5  0 2 x 2 3x 5 0    2 2 2 2 3 5 x2  x  2 2

b.

x 2  10 x  9  0

 x  1 x  9  0 1, 9

x 1  0 x 1

or

x9 0 x9

2

3 5  1  3   1  3  x  x         2 2  2  2   2  2  2

x 2  10 x  9

b.

2

1  1  x 2  10 x    10   9    10  2 2     2 x  10 x  25  9  25

x2 

2

2

3 49   x    4 16

 x  52  16 x  54 x 1 1, 9

x

x  5   16 x  5 4 or x  5 4 x9

3 7  4 4 10 x 4 5 x 2 5   ,  1 2  x

x 2  10 x  9

c.

x 2  10 x  9  0 a  1, b  10, c  9 x 

b  b 2  4ac 2a   10 

x

10  100  36 10  64 10  8   2 2 2  5  4  1 or 9 1, 9

 2 x  5 x  1  0 or

x  1

b  b 2  4ac 2a   3 

 32  4  2 5 2  2

3  9  40 3  49 3  7   4 4 4 3 7 3 7 x  or x   4 4 4 4 10 4 x x 4 4 5 x x  1 2 5   ,  1 2  

2 x 2  3x  5  0 2x  5  0 2x  5 5 x 2 5   ,  1 2 

or

3 49  4 16 3 7 x  4 4 3 7 x  4 4 4 x 4

c. 2 x 2  3x  5  0 a  2, b  3, c  5

 102  4 1 9 2 1

50. a.

3 9 40 9 x   2 16 16 16

x 1  0 x  1

170

2


Chapter 1 Review 51. False

s  a0t 2  v0t  s0

58.

a0t 2  v0t  s0  s

52. True

a0t 2  v0t  s0  s  0

53. a. 4 x 2  20 x  25  0

a  a0 , b  v0 , c  s0  s

b 2  4ac   20  4  4 25 2

t

 400  400 0

  v0  

 v0   4  a0  s0  s  t 2  a0  v0  v0 2  4a0  s0  s 

b. The discriminant is 0; there is one real solution.

t

2 y 2  5 y  1

54. a.

b  b 2  4ac 2a

2a0

2 y  5 y  1  0 2

59. Let x and  x  3 represent the width and

b 2  4ac   5  4  21 2

length of the decorative area. Then  x  1

 25  8

and  x  4 are the width and length of the rug.  x  1 x  4  108

 33 b. 33  0 ; there are two real solutions. 55. a.

5t  t  1  4t  11

x 2  4 x  x  4  108

5t 2  5t  4t  11

x 2  5 x  104  0

5t  t  11  0 2 b 2  4ac  1  4  511

 x  8 x  13  0

 1  220

x8 x 1  8 1  9

2

x 8  0

 219

19.25  x 2  1.5 x  0.5 x  0.75 0  x 2  x  20 0   x  5 x  4

2

 y  k   r   x  h 2

x  13

19.25   x  0.5 x  1.5

HkRt kRt

57.  x  h    y  k   r 2 2

x  13  0

60. Let x and  x  2 represent the width and length of the finished tablecloth. Then  x  0.5 and  x  1.5 are the width and length of the cloth. A  lw

H  kI 2 Rt H kI 2 Rt  kRt kRt H  I2 kRt H or I  I kRt

or

x  4  8  4  12 The rug is 9 ft by 12 ft.

b. 219  0 ; there are two imaginary solutions. 56.

2

2

2

y  k   r 2   x  h

x5 0

x40

x5 x  4 x  0.5  5  0.5  5.5

2

y  k  r 2   x  h

or

2

x  1.5  5  1.5  3.5 The cloth is 3.5 ft by 5.5 ft.

171


Chapter 1 Equations and Inequalities 61. Let x and 1.6x  represent the width and length of the screen. a 2  b2  c2

64. a. d  0.048v 2  2.2v

 0.048  50  2.2  50 2

 0.048  2500  110

 x  2  1.6 x 2   502

 120  110  230 ft

x  2.56 x  2500 2

2

3.56 x 2  2500

b.

2500 3.56 2500  26.5 x 3.56 1.6 x  1.6  26.5  42.4 The width is 26.5 in. and the length is 42.4 in.

390  0.048v 2  2.2v

x2 

d  0.048v 2  2.2v  390 v 

x 2  x 2  5.4 x  7.29  49 2 x  5.4 x  41.71  0

b  b 2  4ac 2a

 5.42  4  2 41.71 2  2

b.

5.4  362.84 4  3.4 or 6.1 x  2.7  3.4  2.7  6.1 The length is 6.1 in. and the width is 3.4 in.

0  8t 2  100t  39 t 

1 S  n  n  1 2 1 4186  n  n  1 2 4186  n 2  n

 n  91 n  46  0 n  91 The value of n is 91.

or

b  b 2  4ac 2a   100 

 100 2  4 8 39 2  8

100  8752 16  0.4 or 12.1 The mortar will be at an 80-ft height 0.4 sec after launch. 

n 2  n  4186  0 n  91  0

s  16t 2  200t  2 80  16t 2  200t  2 40  8t 2  100t  1

63.

 2.22  4  0.048 390 2  0.048

1 65. a. s   gt 2  v0t  s0 2 1 s    32 t 2   200 t  2 2 s  16t 2  200t  2

2

  2.2 

 x 2   x  2.72   72

  5.4 

b  b 2  4ac 2a

2.2  79.72 0.096  70 or 116 The car was traveling 70 mph.

62. Let x and  x  2.7  represent the width and length of the screen. a 2  b2  c 2

x

d  0.048v 2  2.2v

n  46  0 n  46

172


Chapter 1 Review 66.

P  0.009t 2  2.05t  182

69.

k 7  3 k  2

0  0.009t  2.05t  118

 k  7    3  k  2

2

2

b  b 2  4ac t 2a t

  2.05 

2k  4 3  k

 2.05 2  4  0.009 118 2  0.009

 2k  2   4 3  k  4k 2  16  3  k 

2.05  8.4505  48 or 275 0.018 1950  t  1950  48  1998 The population reached 300 million in 1998.

4k 2  16k  48  0 k 2  4k  12  0

 k  2 k  6  0

4 x  20 x  6 x  30  0

2

    x  5  4 x  6   0  x  5  2 x  3  0

Check: k  2

4x x  5  6 x  5  0 2

2

2

 2   7  3   2 ⱨ 2

x

3 2

k 7  3k  2

 6  7  3   6 ⱨ 2

3x x  2  20  x

2

3x  6 x  20  x

2

2

4

k  6

9  1ⱨ2 3  1ⱨ 2 2 ⱨ 2  true Check: k  6

or 2 x  3  0

3   5,  2  68.

or

k 7  3k  2

x   5 or

2

k2

2

x2  5

2

4k 2  48  16k

4 x 3  6 x 2  20 x  30  0 3

2

k 7  3k  4 3k  4

67.

k 7  3 k  2

300  0.009t  2.05t  182 2

2

1  9 ⱨ2 1  3ⱨ 2 2 ⱨ 2 false  2 ; The value 6 does not check.

3x 4  7 x 2  20  0 Let u  x 2 . 3u 2  7u  20  0

 3u  5 x  4  0 5 3 5 x2  3 u

or

u  4

or x 2  4

x

5 3

x

15 or 3

or

x   4 x  2i

173


Chapter 1 Equations and Inequalities

70.

n 4 1  3n  2 n2 n   4   1   3n  2 n  2   3n  2 n  2    n  2  3n  2 n  n  2  1 3n  2 n  2  4  3n  2 n 2  2n  3n 2  4n  4  12n  8 4n 2  18n  12  0 2n 2  9n  6  0 n

  9 

 92  4  2 6 9  129  2  2 4

 9  129    4   71. Let u  v 1. 11v 2  23v 1  2  0

74.

51  14 x  x  6

 51  14 x    x  6

11u  23u  2  0 2

2

11u  1 u  2  0 1 u 11 1 v 1   11 v  11

u  2

or

0  x 2  2 x  15 0   x  5 x  3

or v 1  2

x  5 or Check: x  5 51  14 x  4  x  2

1 v 2

or

72.

51  70 ⱨ 11

4  x  2x  1  0 Check: x  3

4  x  3 2x  1

 4  x    2 x  1 3

3

3

51  14  3  4 ⱨ  3  2 51  42 ⱨ 3

3  3x

9 ⱨ 3

1 x

3 ⱨ 3 false

  ; The values 5 and 3 do not check.

73. 2 3m  4  3  5

2 3m  4  8



19 ⱨ 11 false

51  14 x  4  x  2

3

4  x  2x  1

1

x3

51  14  5  4 ⱨ  5  2

3

3

2

51  14 x  x 2  12 x  36

 1    ,  11  2  3

51  14 x  4  x  2

3m  4  4

174


Chapter 1 Review p2 3  7

75.

 p     7 23 32

1 3 1 d1 3   3 u

32

p  73 2

 7  32

d 

13 3

p3 4  7

76.

 p    7 34 43

7 

2  y  5

 y  5

54

78.

 11

27 8

2

v 2  10v  9  0

 v  1 v  9  0 v 1

or

v9

2u  1  1

or

2u  1  9

2u  2

or

2u 2  10

u2  1

or

u2  5

2

y  5  114 5

2

u  1 or

1 10 23 10 w  10 1 10 w2 3 

  5,  1

w2 3  10 2

81. Let u 

 w    10  23 32

d

or

2

2

45

d 

 3    2

 2u  1  10  2u  1  9  0

 22

 y  55 4   11 4 5   y  5  114 5

1 27

or

13 3

80. Let v  2u 2  1. 54

5  114 5

3

 1 27   ,   27 8 

p  74 3

43

77.

or

 1     3

d

43

3 2 3 d1 3  2 u

or

2 3 2

w  103  

2

u 5

4  1. w 2

4  4  2   1  10   1  0 w  w 

1 1000

2u 2  10u  0

1      1000 

u0

79. Let u  d 1 3 . 6d 2 3  7 d 1 3  3  0

4 1  0 w 4  1 w w  4 1,  4

6u 2  7u  3  0

 3u  1 2u  3  0

175

2u  u  5  0 or u5 4 1  5 or w 4 4 or w or w 1

3


Chapter 1 Equations and Inequalities 4v 10 4   v 5v  25 v  5 5 4v 10 4   v 5 v  5 v  5 5

82.

85.

a1t1 a2t2  v1 v2 at  a t  v1v2  1 1   v1v2  2 2   v1   v2 

 4v 10   4   5 v  5  v   5 v  5    5  5 v  5 v  5

v2 a1t1  v1a2t2 va t v2  1 2 2 a1t1

4v  5 10  v  55v  4 4v  50  5v 2  4v  25v  20 5v 2  25v  30  0

86.

v 2  5v  6  0

v  2v  3  0 v  2 or

 2, 3 83.

m

v3

 p | p  27 ;  , 27

1 2a 2  2b 2  2c 2 2

87. 0.6  0.2 x  0.8 x  1.8

2m  2a 2  2b 2  2c 2

 2m   2a  2b  2c  2

2

2

2

2 p  14 3 2 18   p 3 27  p or p  27 4  

1.2  0.6 x 2  x or x  2  x | x  2 ;  2, 

2

4m 2  2a 2  2b 2  2c 2 2m 2  a 2  b 2  c 2 a 2  2m 2  b 2  c 2 88.

a   2m 2  b 2  c 2 84.

1 1 1   a b c  1  1 1 abc    abc     a  b c bc  ac  ab bc  ab  ac

4  2  y   3  y  1  2 y 8  4 y  3y  3  2 y 11  y or y  11

 y | y  11 ; 11,  

b  c  a   ac b

2  y y 1 y   3 4 6  2  y y  1  y 12     12    3 4 6

ac ac or b   ca ac

176


Chapter 1 Review

89. 9  5  4  t  1   3 2  5   t  2 

9   5  4t  4  3  2   5  t  2

91. a. X  Y   b. X  Y   x | 2  x  7

9   4t  9  3  2   t  3

c. X  Z   x | x  7

9  4t  9  3  2  t  3

d. X  Z   x | x  3

4t  3  t  1 4t  3t  3 t  3 t | t  3 ;  3, 

e. Y  Z   x | x  3 or x  2 f. Y  Z   

90. a. A  B  10,11,12,13,14,16 b. A  B  10,12 c. A  C   7, 8, 9,10,11,12,13 d. A  C  10,11

92. a. t  2  8

or

t6  , 6 ;

or

b. t  2  8

and

t6

and

 ,  12 ;

e. B  C   7, 8, 9,10,11,12,14,16 f. B  C  10 93. a. 2  x  1  4  x  3

2 x  2  4  x  3 3x  3 x 1  ,  6< 1,  ; b. 2  x  1  4  x  3



x 1

or

5  x  2  3  4 x  1

or or or

5 x  10  3  4 x  1 x  6 x  6

and

5  x  2  3  4 x  1

and

x  6

3x  9 6 4 3x  9 0 6 4 0  3x  9  24 9  3x  33 3  x  11  3,11

95. 0 

94. 11  4 x  1  7

10  4 x  8 10  x  2 4 5 2  x  2 5   2, 2   

177

1 t  4 3 t  12

1 t  4 3 t  12


Chapter 1 Equations and Inequalities 96. 29, 000  a  31, 000

b. w  2  1  6

w 2  5

97. Let x represent the September rainfall. 8.54  5.79  8.63  x  7.83 4 22.96  x  7.83 4 22.96  x  31.32

 7, 3

c. w  2  1  6

w 2  5

x  8.36 More than 8.36 in. is needed.

w  2  5 or w  7 or  ,  7   3,  

98. Let p represent the price of sod. 400  2000t  850

2000t  450 t  0.225 She can afford sod that is $0.225/ft2 or less.

102. a.

3  7x 1  4 1  7 x  1



99. a. x  12  0

x  12  x | x  12

b.

3  7x 1  4 1  7 x  1

 , 

b. 12  x  0 12  x or x  12  x | x  12

c.

3  7x 1  4 1  7 x  1



100. a. 5 x  7  0

5 x  7 7 x 5 7  x | x    5 

103. a. y  5  3  3

y5 0 y5 0 y  5

 5

b. 

b. y  5  3  3

101. a. w  2  1  6

y5 0

w 2  5 w 2  5 w3  7, 3  

5  w  2  5 7  w  3

or or



w  2  5 w  7

c. y  5  3  3

y5 0 y5 0 y  5

 5

178

w 2 5 w3


Chapter 1 Review d.

y  5  3  3

106.

y5 0 y50 y  5

or or

1 2 1 x   1 2 3 6

2 1 1 6  x     6 1  2 3 6 3x  4  1  6 3x  4  7 3x  4  7 or 3x  3 or

y50 y  5

 ,  5   5,   e. y  5  3  3

y5 0

 ,  104. a.

x 1

b.

 2

x  1  3x  5 4 x  4 x  1

1 x 2 1 2x  x 2 4x  x 3x  0 x0  0

107. 2 x 

or or or

x 1  x  5 2 x  4 x  2

or or

x  1  1  x 00

5   5 x  1  4 1  5x  1 or or

x0

or

or or or

1 2x   x 2 4x   x 5x  0 x0

x  2 1 x  1

109. 0.5 x  8  0.01 0.01  0.5 x  8  0.01 7.99  0.5 x  8.01 15.98  x  16.02 15.98,16.02

1   5 x  1 5x  1  1 5x  0

or

108. 4 x  2  10  6 4 x2 4 x  2 1 x  2  1 or x  3 or  ,  3   1,  

x 1  1 x x 1  1 x 2x  x x 1  , 

105.

or or or

x 1  x  5 x 1  x  5 1  5

c.

11  1,   3 

x  1  3x  5 x  1  3x  5 2 x  6 x  3  3,   1

or

3x  4  7 3x  11 11 x 3

5 x  1  1 5 x  2 2 x 5

110.

2  0,   5 

179

9  4  2k  1 13   2k  1 13  2k  1 2k  1  13 13  2k  1  13 12  2k  14 6  k  7  6, 7


Chapter 1 Equations and Inequalities Chapter 1 Test 1.

25  4  5i  2i  10i 2  10  1  10

7. a.

x 2  10 x  25  0

2. a. i  i  i  1  i  i 89

88

1

b 2  4ac   10  4 1 25

1

2

b. i 46  i 44  i 2  1  i 2  1

 100  100  0 b. Because the discriminant is 0, there is one real solution.

c. i 35  i 32  i 3  1  i 3  i d. i120  1

8. a.

e. i 11  i 12  i1  1  i1  i

3x 2  10 x  2  0 2 b 2  4ac  10  4  3 2  100  24  76

 24  34i  14  1

b. Because 76  0 , there are two real solutions.

 24  34i  14  38  34i 2

3

2

9. 3 y  2 5  y  4  2  5 y  6  7  y   3

 9  30i  25i 2

3 y  2  5 y  20  2  5 y  42  6 y  3

 9  30i  25  1

3 y  2  5 y  22  11 y  39 3 y  10 y  44  11 y  39 13 y  44  11 y  39 2 y  83 83 y 2  83    2

 16  30i 5.

3 x  x  4  2 x  2 3x 2  12 x  2 x  2

3.  4  7i  6  2i   24  8i  42i  14i 2

4.  3  5i    3  2  3 5i    5i 

x 2  25  10 x

4  3i  4  3i  2  5i   2  5i  2  5i  2  5i  8  20i  6i  15i 2 2 2  52 8  26i  15  1  4  25 7  26i  29 7 26   i 29 29 

10.

6. a. b 2  4ac   4  4  2 7  2

 16  56  40 b. Because 40  0 , there are two imaginary solutions.

2  t 3t  1 2t  5   1 6 4 3  2  t 3t  1  2t  5  12     12 1    6 4 3  2  2  t   3  3t  1  12  4  2t  5 4  2t  9t  3  12  8t  20 7t  7  8t  32 t  25 25  

11. 0.4  w  1  0.8  0.1w  0.3  4  w 0.4 w  0.4  0.8  0.1w  1.2  0.3w 0.4w  1.2  0.4 w  1.2 00 

180


Chapter 1 Test 11 2 1   2 x  x  15 2 x  5 x  3 11 2 1    2 x  5 x  3 2 x  5 x  3

12.

2

11 2   1      2 x  5 x  3   x  3   2 x  5 x  3 2 x  5 

 2 x  5 x  3 

11  2  x  3  1 2 x  5 11  2 x  6  2 x  5 2 x  17  2 x  5

  ; The value 3 does not check.

12  4 x 3  x

13.  3x  4  2  11 2

6t  2t  1  5  5t

15.

12t 2  11t  5  0

 3x  4 2  13

 3t  1 4t  5  0

3x  4   13

3t  1  0

3x  4  13 4  13 x 3

2

1  1  y  10 y   10   4   10  2  2  2 y  10 y  25  4  25

16.

2

2

1 3

t

5 4

3x 2 1 x 4 2 2  3x   1  x  4    4  2  4  3x 2  4 x  2

 y  52  29

3x 2  4 x  2  0

y  5   29

 5  29 

4t  5

1 5   ,  3 4

y 2  10 y  4

14.

4t  5  0

3t  1 t

 4  13     3 

or

a  3, b  4, c  2

y  5  29

x 

b  b 2  4ac 2a   4 

 4 2  4  3 2 4  16  24 2  3 6

4  8 4  2i 2 2  i 2   6 6 3  2  i 2     3  

181


Chapter 1 Equations and Inequalities 12 y 3  24 y 2  3 y  6

17.

19.

12 y  24 y  3 y  6  0 3

12 y 3  3 y  24 y 2  6  0

    y  4 y  1  2  4 y  1  0  4 y  1  y  2  0

 2 d  7   8  d  2

 2 y  1 2 y  1 y  2  0 2y  1

1 2

y

y

4d  28  d 2  16d  64

2 y  1  0 or y  2  0

2 y  1

0  d 2  20d  36 0   d  2 d  18 d  2 or d  18 Check: d  2 2d  1  d  7

y  2

1 2

 1    ,  2  2 

2  2 ⱨ1 

18.  2 y  3   4 y  5 13

13

 2 y  31 3   4 y  51 3 3

3

2 18 ⱨ1 

8  2 y

 4 c 72 4 2 c6 c  36 c 72 4 c6  c  6 c  6

 c  6 c  6 

18  7

36 ⱨ1  25 6 ⱨ1  5 6 ⱨ 4 false   ; The values 2 and 18 do not check.

4  y

20.

 2  7

4 ⱨ1  9 2 ⱨ1  3 2 ⱨ 2 false Check: d  18 2d  1  d  7

0

 2 y  31 3    4 y  51 3      2y  3  4y  5

2

4  d  7   64  16d  d 2

2

or

2

2 d 7 8d

2

2y 1  0

 2d   1  d  7 

2d  1  2 d  7  d  7

3y 4 y2  1  6 4 y2  1  0 2

2d  1  d  7 2

2

  c 72   4   c  6 c  6   c6    c  6 c  6 

c  c  6  4  c  6 c  6  72 c 2  6c  4c 2  144  72 3c 2  6c  72  0 c 2  2c  24  0  c  6 c  4  0

c  6 or c  4  4 ; The value 6 does not check.

182


Chapter 1 Test 21. w4 5  11  0

26.

w4 5  11

 w    11 45 54

54

a2  b2  c

a 2  b2

w  11

11

b 2   a 2  c 2

b2  a 2  c2 b  a2  c2

2 22. Let u  5  . k

27. 16t 2  v0t  2  0

2

2 2    5    6  5    27  0 k k

16t 2  v0t  2  0

u 2  6u  27  0

a  16, b  v0 , c  2

 u  3 u  9  0

t

u  3

u9

or

2 5   3 k 2   8 k 2  8k

or

2 5  9 k 2  4 k 2  4k

or

k

or or

1 4 1 1    ,  4 2   k

23.

t t

1 2

b  b 2  4ac 2a   v0  

 v0   4 16 2 2 16 2

v0  v0 2  128 32

28. a. A  B   b. A  B   x | 0  x  2 c. A  C   x | x  2 d. A  C   x | x  1

2  x  3  6 4 x3 x3 4

or

x  3  4

x7  1, 7

or

x  1

e. B  C   x | x  1 or x  0 f. B  C    29.

24. 2v  5  2v  1

2v  5  2v  1

or

2v  5  2v  1

5  1

or

4v  4

or

v  1

 1 25.

2

a 2  b2  c2

54

54

   c 2

4 x 6 3 6  4  x  18 2 

10   x  14 10  x  14 or  14  x  10  14,10 30. 

aP  4  Pt  2 aP  Pt  6 Pa  t  6

4 y  24 3 y  18

10,  

6 6 P or P   at ta

183

or

y  7  2y  3

or

10  y


Chapter 1 Equations and Inequalities 31. 3  x  5  1  4  x  2  6

and

0.3x  1.6  0.2

3 x  15  1  4 x  8  6

and

0.3 x  1.8

0 x

and

x6

 6, 

2  1  4w  3

32.

b. x  13  4  4

x  13  0

3  4w  3



4w  3  3 4 w  3  3

or

4w  3  3

4w  0

or

4w  6

or

3 w 2

w0

c. x  13  4  4

x  13  0 x  13  0 x  13 13

 , 0   ,  3 2

d. 33.  8  v  6

x  13  4  4 x  13  0 x  13  0 or x  13 or  ,13  13, 

8v  6 6  8  v  6 14  v  2 14  v  2

e.

2  v  14

x  13  4  4 x  13  0 x  13  0 x  13  , 

 2,14

34. a. 7 x  4  11  2

7 x  4  9



or or

x  13  0 x  13

36. Let x represent the amount of 80% antifreeze solution (in gallons) to be mixed. 2 gal is the amount of the 50% antifreeze solution to be mixed. Therefore, (x + 2) is the amount of the resulting 60% antifreeze solution.

b. 7 x  4  11  2

7 x  4  9

 c. 7 x  4  11  2

Amount of Sol. Pure Antifreeze

7 x  4  9

 ,  35. a. x  13  4  4

80% Sol.

50% Sol.

60% Sol.

x

2

x2

0.8  x 

0.5  2

0.6  x  2

0.8  x   0.5  2  0.6  x  2 0.8 x  1  0.6 x  1.2 0.2 x  0.2 x 1 1 gal of 80% antifreeze should be used.

x  13  0 x  13  0

13

x  13  0 x  13

x  13

184


Chapter 1 Test 40. Let x represent the base of the triangular portions and  x  7  represent the height.

37. Let x represent the speed of the plane flying to Seattle. Then,  x  60 is the speed of the plane flying to New York City.

Seattle Flight New York Flight

Distance

Rate

Time

2.3x

x

2.3

3.3  x  60

x  60

3.3

1  A  2  bh  lw 2  1  276  2   x  x  7    18  x  7  2   2 276  x  7 x  18 x  126 0  x 2  25 x  150 0   x  30 x  5

2.3 x  3.3  x  60  2662

x  30 or x5 x  7  5  7  12 The base of the triangular portions is 5 ft and the height is 12 ft.

2.3x  3.3x  198  2662 5.6 x  198  2662 5.6 x  2464 x  440 x  60  440  60  500 The plane flying to Seattle flies 440 mph, and the plane flying to New York flies 500 mph.

1 41. a. s   gt 2  v0t  s0 2 1    32 t 2   60 t  2  16t 2  60t  2 2 b. 52  16t 2  60t  2

38. Let t represent the time it would take the second hose to fill the pool if it worked alone. 1 job 1 job 1 job   3 hr t hr 1.2 hr  1 1  1  6t     6t    3 t  1.2 

0  16t 2  60t  50 0  8t 2  30t  25 b  b 2  4ac t 2a

2t  6  5t 6  3t t2 The second hose can fill the pool in 2 hr.

  30 

 302  4 8 25 2  8

30  100 30  10  16 16 40 5 20 5 t   2.5 or t    1.25 16 2 16 4 The ball will be at a height of 52 ft at times 1.25 sec and 2.5 sec after being kicked. 

39. Let x represent the patient’s LDL cholesterol level. The HDL cholesterol level is 70 mg/dL, and the total cholesterol is  x  70 .

x  70  3.8 70  x  70  70   70  3.8  70  x  70  266 x  196 x  70  196  70  266 The LDL level is 196 mg/dL and the total cholesterol is 266 mg/dL.

42. Let s represent the score on the sixth round. 92  88  85  90  89  s  88 6 444  s  88 6 444  s  528

s  84 The golfer would need to score less than 84. 185


Chapter 1 Equations and Inequalities Chapter 1 Cumulative Review Exercises 1 3 5x   1  3    5 x 5  1  3x 5. 5 x 5   2 1 2 1  10  x   5x      x 5 x 5

1.  5 x  3   5 x  3   

2 2

2

  25 x 2  30 x  9  25 x 2  30 x  9 

 25 x 2  30 x  9  25 x 2  30 x  9

2

2

  60 x   3600 x 2 2

6.



    2

2. 4 3  2 2 4 3  2 2  4 3  2 2

2

 16  3  4  2

3x 2  x  4 3x  4  2 2 4 x  8 x  12 6 x  54 2 3x 2  x  4 6 x  9   3x  4 4 x2  2 x  3

2

2

 48  8  40 3.

 7  3 7  3  7  3  7  3  2 7  3   7    3 2 7  3  2

2

73

 3x  4 x  1  6  x  3 x  3  4  x  3 x  1 3x  4

2

 7  3 4 7 3 2

7. 3 81y 5 z 2 w12  3 27 y 3 w12  3 y 2 z 2

3

 3x  4  x  1 6  x  3  x  3   3x  4 4  x  3  x  1

 3 yw4 3 3 y 2 z 2

2

4.

3  x  3 2

8. a. 4  11 or 11  4 b. 4  11  4  11

6 5 x   2 x2 x2 x 4 x 6 5    x  2 x  2  x  2 x  2

    4  x  2 y  x  2 xy  4 y  

3 9. 4 x 3  32 y 6  4 x 3  8 y 6  4  x3  2 y 2    2

 x  2  6   x  2  5     x  2   x  2   x  2   x  2  

10.

x

 x  2 x  2 6  x  2  5  x  2  x   x  2 x  2 

6 x  12  5 x  10  x  x  2 x  2

2 x  22  x  2 x  2

3  7i  3  7i  2  5i   2  5i  2  5i  2  5i  6  15i  14i  35i 2 4  25 6  29i  35  1  29 29  29i  29  1  i 

186

2

2

4


Chapter 1 Cumulative Review 11. Let x represent the amount borrowed at 4%. Then,  8000  x  is the amount borrowed at 5%. 4% Interest Loan

5% Interest Loan

x

8000  x

x  0.041

8000  x  0.051

Principal Interest (I = Prt)

Total

380

x  0.04   8000  x  0.05  380 0.04 x  400  0.05 x  380 0.01x  400  380 0.01x  20 x  2000 8000  x  8000  2000  6000 Stephan borrowed $6000 at 5% and $2000 at 4%. 12.  4 x  1  3  6 2

14. Let u 

 4 x  12  3

2

x  x  2   1  5   1  12  0 3  3  2u 2  5u  12  0  2u  3 u  4  0

4x  1   3 4x  1  3 x

1 3 4

3 2 x 3 1  3 2 x 1  3 2 3 x 2 3   ,  15 2  u

1  3     4  2 x  x  4  2 x  5

13.

2 x2  8x  2 x  5 2 x 2  10 x  5  0 a  2, b  10, c  5 x 

b  b 2  4ac 2a   10 

x  1. 3

 102  4  2 5 2  2

15.

u  4

or

x  1  4 3 x  5 3

or or

x  15

or

x4 2 x x4  x2

 x  4    x  2

10  100  40 4 10  140  4 10  2 35 5  35   4 2  5  35     2 

2

2

x  4  x2  4 x  4 x 2  3x  0 x  x  3  0 x0

187

or

x  3


Chapter 1 Equations and Inequalities 18. a. A  B  

Check: x  0 x4 2 x

b. A  B   x | 4  x  11

 0  4  2 ⱨ  0 

c. A  C   x | x  11

2  2ⱨ0 0 ⱨ 0  true Check: x  3 x4 2 x

d. A  C   x | x  2 e. B  C   x | x  2 or x  4 f. B  C   

 3  4  2 ⱨ  3 1  2 ⱨ 3 1ⱨ 3 false

 0

19. 2 x  11  1  12

2 x  11  11

16.  5  x  6  4

 5  x  2

 0,11

5 x  2 5  x  2  x  7 x7

3, 7

or or or

5 x  2  x  3 x3

11  2 x  11  11 0  2 x  22 0  x  11

3 20.  y  15 5 y  25

 25,  x9

17.

72 x 8

 x  8 x  9   x  8 

72   x  8

x 2  17 x  72  72 x 2  17 x  0 x  x  17   0

 0,17

x0

or

x  17

188


Section 2.1

Chapter 2 Functions and Graphs Section 2.1 The Rectangular Coordinate System and Graphing Utilities 1. origin 3. d 

 x  x y  y2  b. M   1 2 , 1   2 2 

2. quadrants

 4   2 11  7  ,  2 2  

 x2  x1  2   y2  y1 2

 6 18    ,    3, 9  2 2

 x  x y  y2  4. M   1 2 , 1   2 2 

5. solution

6. 0

7. 0

8. 0; y

12. a. d 

 x2  x1 2   y2  y1  2

 3   1    7   3  2

9.

 42   42

 16  16  32  4 2  x  x y  y2  b. M   1 2 , 1   2 2   3   1 7   3   ,  2  2  2 10   ,  1,  5  2 2 

10.

13. a. d 

 x2  x1  2   y2  y1  2

  2   7    5   4  2

 9 2   9 2

 81  81  162  9 2

11. a. d 

 x2  x1 2   y2  y1 2

  4   2   11  7  2

 x  x y  y2  b. M   1 2 , 1   2 2   2   7  5   4   , 2 2  

2

 5 1   5 1    ,    ,   2 2  2 2

 22   4 2  4  16  20  2 5

189

2

2


Chapter 2 Functions and Graphs 14. a. d 

 x2  x1  2   y2  y1 2

17. a. d 

 4  32   1  6 2

 72   72

 4 5  5    7 2    2    3 5    6 2 

2

2

 45  72  117

 x  x y  y2  b. M   1 2 , 1   2 2 

 x  x y  y2  b. M   1 2 , 1   2 2 

 4  3 1  6  ,    2 2 

 4 5  5 7 2   2   ,  2 2  

 1 5   1 5    ,    ,   2 2  2 2

 5 5 8 2   5 5  , ,  4 2    2   2  2 

 x2  x1  2   y2  y1  2

 5.2  2.22   6.4   2.4

 32   4 2  9  16  25  5

2

 2 7  7    5   3 5    7    4 5   7  80  87 2

 6 2   82

 2 7  7 5  3 5    , 2 2  

 x2  x1  2   y2  y1  2

2

 x  x y  y2  b. M   1 2 , 1   2 2 

 7.4 8.8  ,     3.7,  4.4  2 2 

 31.1  37.1 2   32.7   24.7

2

2

 5.2  2.2 6.4   2.4  ,   2 2 

 x2  x1 2   y2  y1  2

18. a. d 

 x  x y  y2  b. M   1 2 , 1   2 2 

16. a. d 

2

2

 49  49  98  7 5

15. a. d 

 x2  x1 2   y2  y1  2

 3 7 2 5   3 7    , ,  5  2   2  2 

2

19. d1 

 36  64  100  10  x  x y  y2  b. M   1 2 , 1   2 2 

 3  1 2  1  32  4  4  2 2

d2 

 0  3 2   2  12  9  9  3 2

d3 

1  02  3   2  1  25  26 2

d12  d 2 2 0 d32

 31.1  37.1 32.7   24.7    ,  2 2 

 2 2    3 2  0  26  2

2

2

8  18 0 26

 68.2 57.4   ,    34.1,  28.7   2 2 

26 0 26  True Yes

190


Section 2.1 20. d1 

 3  1 2   0  2 2  4  4  2 2

d3  1   3    2   2  2

  2

16  17 0 1 10 1 False

2

No

 16  16  4 2 d12  d32 0 d 2 2 2 2

 42   17 0 1

 3  3 2   2  0 2  36  4  2 10

d2 

  2

2

 1  3      0 1 2 4 1 3  01 4 4 10 1  Yes

2

8  32 0 40 40 0 40  True Yes 21. d1  5   2    0  4  49  16  65 2

1  3   2 0 4

d3   2   5    4  1  9  9  3 2 2

d  d3 0 d 2 2 1

2

2

2  20 4

2

40 4 

 65    3 2  0  101 2

x3  y  4

24. a.

 5  52  1  0 2  100  1  101

d2 

x2  y  1

c.

 4 2 0 2 10

2

x2  y  1

b.

2

Yes

2

x3  y  4

b.

65  18 0 101

 2  3   3 0 4

83 0 101 False

5  30 4

No 22. d1 

 6  32   2  1 2  81  1  82

d2 

 3  1 2  1   2  4  9  13

d3 

 6  12   2   2

8 0 4 False No

2

 1  11     3     0 4 10 10

2

 49  16  65 d 2 2  d32 0 d12

 13    65  0  82  2

2

x3  y  4

c.

 1 11  10     3   0 10  4   10   10 1  30  110 40

2

29  110 40

13  65 0 82

40 0 40 

78 0 82 False Yes

No

25. x  3  0

x2  y  1

23. a.

x3  x | x  3

 2 2   3 0 1 4  30 1 10 1  Yes

191


Chapter 2 Functions and Graphs 26. x  7  0 x  7  x | x  7

32. y  x 2

x

3

27. x  10  0

x  10  x | x  10

y

y  x2

9

y   3  9

2

4

1

1

0

0

1

1

2

4

3

9

28. x  11  0

x  11 x | x   11

Ordered pair 2

y   2  4 2

y   1  1 2

y   0  0 2

y  1  1 2

y   2  4 2

y   3  9 2

 3, 9  2, 4  1,1  0, 0 1,1  2, 4  3, 9

29. 1.5  x  0  x  1.5

x  1.5  x | x  1.5 30. 2.2  x  0

 x  2.2 x  2.2  x | x  2.2 33. y  x

31. y  x x

y

y x

Ordered pair

3

3

y  3

2

2

y  2

1

1

y  1

0

0

y0

1

1

y 1

2

2

y2

3

3

y3

 3,  3  2,  2  1,  1  0, 0 1,1  2, 2  3, 3

192

x

y

y

x

Ordered pair

0

0

y 00

1

1

y  1 1

4

2

y 42

9

3

y 93

 0, 0 1,1  4, 2  9, 3


Section 2.1 34. y  x

36. y 

x

y

y x

3

3

y  3  3

2

2

y  2  2

1

1

y  1  1

0

0

y 0 0

1

1

y  1 1

2

2

y 2 2

3

3

y 3 3

1 x

Ordered pair

 3, 3  2, 2  1,1  0, 0 1,1  2, 2  3, 3

y

4

1 4

2

1 2

1

1

1  2

x

y

y x

2

8

y   2  8

1

1

0

0

1

1

2

8

Ordered pair 3

y   1  1 3

y   0  0 3

y  1  1 3

y   2  8 3

 2,  8  1,  1  0, 0 1,1  2, 8

193

1   4,   4

y

1 1   2 2

1   2,   2

y

1  1  1

 1,1

y

1  2  1    2

2

 1    ,  2 2

y

1 2  1   2

1   , 2 2

Ordered pair

1 2

2

1

1

y

1 1 1

1,1

2

1 2

y

1 1   2 2

 1  2,  2

4

1 4

y

1 1   4 4

 1  4,  4

35. y  x 3 3

1 x 1 1 y   4 4 y

x


Chapter 2 Functions and Graphs 37. y  x  2

38. x  y  3

y x 2

y  3 x

x

y

y x 2

3

5

y  3  2  5

2

4

y  2  2  4

1

3

y  1  2  3

0

2

y 0 22

1

3

y 1 23

2

4

y 2 24

3

5

y 3 25

Ordered pair

 3, 5  2, 4  1, 3  0, 2 1, 3  2, 4  3, 5

39. y 2  x  2  0 y2  x  2 y   x2

x

y

y  x2

Ordered pairs

2

1

y    2  2  0

1

1

y    1  2  1

2

2

y    2  2  2

 2, 0  1,1 ,  1,  1  2, 2 ,  2,  2

7

3

y    7   2  3

 7, 3 ,  7,  3

194

x

y

y  3 x

3

0

y  3  3  0

2

1

y  3  2  1

1

2

y  3  1  2

0

3

y  3 0  3

1

2

y  3 1  2

2

1

y  3 2 1

3

0

y  3 3  0

Ordered pair  3, 0

 2,1  1, 2  0, 3 1, 2  2,1  3, 0


Section 2.1 40. y 2  x  1  0 y2  x  1 y   x 1

41.

x

y

y   x 1

Ordered pairs

1

0

y   1  1  0

2

1

y    2  1  1

5

2

y    5  1  2

1, 0  2,1 ,  2,  1  5, 2 ,  5,  2

10

3

y   10  1  3

10, 3 , 10,  3

Ordered pairs

x  y 1 y  x 1 y    x  1

42.

x

y

y    x  1

1

0

y   1  1  0

2

1

y    2  1  1

3

2

y    3  1  2

1, 0  2,1 ,  2,  1  3, 2 ,  3,  2

4

3

y    4  1  3

 4, 3 ,  4,  3

5

4

y    5  1  4

 5, 4 ,  5,  4

x  y 3 y  x3 y    x  3 x

y

y    x  3

3

0

y    3  3  0

2

1

y    2  3  1

1

2

y    1  3  2

 3, 0  2, 1 ,  2,  1  1, 2 ,  1,  2

0

3

y    0  3  3

 0, 3 ,  0,  3

1

4

y   1  3  4

2

5

y    2  3  5

1, 4 , 1,  4  2, 5 ,  2,  5

Ordered pairs

195


Chapter 2 Functions and Graphs 45. x-intercepts:  1, 0 ,  9, 0 ;

43. y  x  1 x

y

y  x1

3

2

y   3  1  2

2

1

1

0

0

1

1

2

2

3

3

4

y   2  1  1

y   1  1  0

y   0  1  1

y  1  1  2

y   2  1  3 y   3  1  4

y-intercepts:  0,  3 ,  0, 3

Ordered pair  3, 2

46. x-intercepts:  16, 0 ,  4, 0 ;

y-intercepts:  0,  8 ,  0, 8

 2,1  1, 0  0,1 1, 2  2, 3  3, 4

47. x-intercept:  2, 0 ; y-intercept: none 48. x-intercept: none; y-intercept:  0,1 49. x-intercept:  0, 0 ; y-intercept:  0, 0 50. x-intercepts:  0, 0 ,  6, 0 ; y-intercept:  0, 0 51. x-intercept: none; y-intercept: none 52. x-intercept: none; y-intercept: none 53. x-intercept: 1, 0 ; y-intercept:  0,  2 54. x-intercept:  5, 0 ; y-intercept:  0, 4

44. y  x  2 x

y

y x2

2

4

y   2  2  4

1

3

0

2

1

1

2

0

3

1

4

2

y   1  2  3

y   0  2  2 y  1  2  1

y   2  2  0 y   3  2  1

y   4  2  2

Ordered pair  2, 4

55. Substitute 0 for y: 2 x  4 y  12

Substitute 0 for x: 2 x  4 y  12

2 x  4  0  12

2  0  4 y  12

2 x  12

4 y  12 y3

x  6

 1, 3  0, 2 1,1  2, 0  3,1  4, 2

x-intercept:  6, 0 ; y-intercept:  0, 3 56. Substitute 0 for y: 3x  5 y  60

Substitute 0 for x: 3x  5 y  60

3 x  5  0  60

3  0  5 y  60

3 x  60 x  20

5 y  60 y  12

x-intercept:  20, 0 ; y-intercept:  0, 12 57. Substitute 0 for y: x2  y  9

x 2   0  9

Substitute 0 for x: x2  y  9

 0 2  y  9

x2  9 y9 x  3 x-intercepts:  3, 0 ,  3, 0 ; y-intercept:  0, 9

196


Section 2.1 58. Substitute 0 for y: x 2   y  16

Substitute 0 for x: x 2   y  16

62. Substitute 0 for y: x  y2  4

x 2    0  16

 02   y  16

x   0  4

 0  y 2  4

x  4

4  y2 2  y

x 2  16

Substitute 0 for x: x  y2  4

2

y  16

x  4 x-intercepts:  4, 0 ,  4, 0 ; y-intercept:

x-intercept:  4, 0 ; y-intercepts:

 0,16

 0,  2 ,  0, 2

59. Substitute 0 for y: y  x5 2

63. Substitute 0 for y: x  y

 0  x  5  2 x5  2 x  5  2

or

x5 2

x3 or Substitute 0 for x: y  x5 2

x7

x   0

 0  y

x0

0 y

x-intercept:  0, 0 ; y-intercept:  0, 0 64. Substitute 0 for y: x  5y

y   0  5  2  3 x-intercepts:  3, 0 ,  7, 0 ; y-intercept:  0, 3

Substitute 0 for x: x  5y

x  5  0

 0  5 y

x 0

0 y

x0 x-intercept:  0, 0 ; y-intercept:  0, 0

60. Substitute 0 for y: y  x4 3

 0  x  4  3 65.

x4 3 x  4  3 or x  7 or Substitute 0 for x: y  x4 3

Substitute 0 for x: x  y

 x  3 2   y  4 2  1 4

9

  x  3  y  4 2  36     36 1 9   4

x43 x  1

2

9  x  3  4  y  4  36 Substitute 0 for y: 2

y   0  4  3  1

2

9  x  3  4  y  4  36 2

x-intercepts:  7, 0 ,  1, 0 ; y-intercept:

2

9  x  3  4  0  4  36 2

2

 0,1

9  x  3  64  36 2

61. Substitute 0 for y: x  y2  1

x   0  1  1 2

Substitute 0 for x: x  y2  1

9  x  3  28 2

 0  y 2  1

 x  3 2  

1  y2 1  y

28 9

x3  

x-intercept:  1, 0 ; y-intercepts:

 0, 1 ,  0,1

28 9

x  3  Not a real number.

197

28 9


Chapter 2 Functions and Graphs Substitute 0 for x:

67. d AC   4   6    8  10 2

9  x  3  4  y  4  36 2

2

 100  4  104  2 26

9  0  3  4  y  4  36 2

2

 4  6  2   8  0 2

d BC 

81  4  y  4  36 2

4  y  4  45

 4  64  68  2 17 Observation tower B is closer.

45 4

68. a. d  1   2    3  3

2

 y  4 2  

y4 

2

45 4

 2  1 3   3  , b. M   2   2

Not a real number. x-intercept: none; y-intercept: none

 1 0   1    ,     , 0  2 2  2 

 x  6 2   y  32  1 16

69. a. l  1   2    3  0 2

4

2

 9  9  18  3 2 ft

  x  6 2  y  3 2  16     16 1 4   16

w

 3  1 2  1  32

 4  4  8  2 2 ft

 x  62  4  y  3 2  16

b. P  2l  2 w

Substitute 0 for y:

     2  5 2   10 2 ft A  lw   3 2  2 2   6  2  12 ft

 x  6  4  y  3  16 2  x  6 2  4  0  3  16  x  62  36  16  x  6 2  20 2

2

 9  36  45  3 5 mi  6.7 mi

45 4

y  4 

66.

2

2

2 3 2 2 2 2

70. a. l  5   1    1  4

x  6   20

2

x  6  20

2

2

 36  25  61 ft

Not a real number. Substitute 0 for x:

w   1   2    4  3 2

 x  62  4  y  32  16 2 2  0  6  4  y  3  16 2 36  4  y  3  16 2 4  y  3  20  y  32  5

2

 1  1  2 ft b. P  2l  2 w

 61  2  2   2  61  2  ft A  lw   61 2   122 ft 2

2

y  3   5 y  3  5 Not a real number. x-intercept: none; y-intercept: none

198


Section 2.1  2  4 1  3   2 4  , 71. C      ,   1, 2  2 2   2 2

 4   2    3  1 d r  2 2 36  4 40 2 10     10 2 2 2 2

75. b

76. e

77. c

78. f

79. d

80. a

2

 1975  1995 68.8  72.5  81. M   ,   2 2  3970 141.3   ,   1985, 70.65  2 2  70.65 yr

Center: 1, 2 ; Radius: 10  5  2 3   1   3 2   3  ,   ,    ,1 72. C   2   2 2   2   2  2   5    1  3 d r  2 2 49  16 65   2 2 2

3  Center:  ,1 ; Radius: 2 

 10  2810 29  20  82. M   ,   2 2   2820 49  ,   1410, 24.5   2 2 24.5C

2

83. d AB 

65 2

d BC 

 4  2 2   3  2 2  4  1  5

8  4 2   5  32

 16  4  20  2 5

 7  1 6   2   8 4  ,   ,    4, 2 73. M   2   2 2   2 h

 4  0   2  5  16  9  25  5

b

 7  12  6   2

2

d AC 

 36  9  45  3 5 d AB  d BC 0 d AC

2

5 2 50 3 5

2

3 5 0 3 5  True Collinear

 36  64  100  10 1 1 Area  bh  10 5  25 m 2 2 2

84. d AB 

2

2

b   7   4   5   4 

8  42   3  22  16  1  17

d AC 

 2  82  1.5  3 2  36  2.25

0.5 17  17 0 1.5 17 2

1.5 17 0 1.5 17  True Collinear

 9  81  90  3 10 1  3 10  90 Area   3 10   22.5 m 2  2 2  4

d BC 

 38.25  2.25 17  1.5 17 d AB  d BC 0 d AC

81 9 90 3 10    4 4 4 2 2

 4  22   2  1.5 2  4  0.25

 4.25  0.25 17  0.5 17

  7    4 5   4   11 1  ,   ,  74. M   2 2   2 2    1  11   h   1        2    2   2 

 2  8 2   2  5 2

199


Chapter 2 Functions and Graphs 85. d AB  1   2    2  8 2

91. d 

2

 9  36  45  3 5

 4  1   3  2  9  25  34

d AC 

 2  4  8   3

2

2

92. d 

2

93. d 

3 5  34 0 157 False Not collinear

94. d 

2

2

 0  32   5  72  1   2

2

 1  5 2  5   13

 2  92  0   5  1   3 2

2

 49  25  16  90  3 10

 5  0 2   13  3 2

 25  256  281 d AC 

2

 9  144  9  162  9 2

86. d AB  0   1    3  5  1  4  5 2

 2  6 2  3   4  1   1

 16  49  4  69

 36  121  157 d AB  d BC 0 d AC

d BC 

2

 1  81  9  91

d BC 

2

 4  52  6   3   1  2 2

95. 2

 36  324  360  6 10 d AB  d BC 0 d AC 5  281 0 6 10 False Not collinear 87. The points  x1 , y1  and  x2 , y2  define the endpoints of the hypotenuse d of a right triangle. The lengths of the legs of the triangle are x2  x1 and y2  y1 . Applying the Pythagorean theorem produces 2

96.

2

d 2  x2  x1  y2  y1 , or equivalently

d

 x2  x1  2   y2  y1 2 for d  0 .

88. The midpoint formula results in an ordered pair. The x-coordinate of the midpoint is the average of the x-coordinates of the endpoints. The y-coordinate of the midpoint is the average of the y-coordinates of the endpoints.

97. 3  4i 

 32   42  9  16  25  5

98. 6  8i 

 6 2  8 2

 36  64  100  10

89. To find the x-intercept(s), substitute 0 for y and solve for x. To find the y-intercept(s), substitute 0 for x and solve for y. 90. The graph of the equation represents the set of all solutions to the equation graphed in a rectangular coordinate system.

200

99. 2  7i 

 2 2   72  4  49  53

100. 1  9i 

12   92  1  81  82


Section 2.1 101. The viewing window is part of the Cartesian plane shown in the display screen of a calculator. The boundaries of the window are often denoted by [Xmin, Xmax, Xscl] by [Ymin, Ymax, Yscl].

105.

102. 780 x  42 y  5460 42 y  780 x  5460 780 x  5460 y 42 130 y x  130 7

106.

107.

108.

Window d

103.

109.

110. 104.

201


Chapter 2 Functions and Graphs Section 2.2 Circles

 x2  x1  2   y2  y1 2

1. a. d 

  6   5    7  2 2

5. d  2r 10  2r 5r 5 ft

2

 121  25  146  x  x y  y2  b. M   1 2 , 1   2 2 

6. d  2r  2  4.2  8.4 in.

 5  6 2  7   1 9   ,   ,   2 2   2 2

2. a. d 

 x2  x1  2   y2  y1  2

 2  4   1   3 2

7. circle; center 9.  x  h    y  k   r 2 2

10. general 11.  x  2   y  7   4 2

2

 2  2 2   7  7  2 0 4

 x  x y  y2  b. M   1 2 , 1   2 2 

0  00 4 0 0 4 False

 4  2 3   1   ,  2  2

No

12.  x  3   y  5  36 2

 6 4    ,    3,  2 2 2 

2

 3  32   5  5 2 0 36 0  0 0 36

Substitute 0 for x: x 2  y 2  16

x 2   0  16

 02  y 2  16

x 2  16

y 2  16

x  4

y  4

2

2

2

 44  8  2 2

3. Substitute 0 for y: x 2  y 2  16

8. radius

0 0 36 False No

13.

x-intercepts:  4, 0 ,  4, 0 ; y-intercepts:

 x  1 2   y  3 2  25  4  1 2   7  3 2 0 25 9  16 0 25

 0,  4 ,  0, 4

25 0 25  True Yes

4. Substitute 0 for y: x 2  y 2  25

Substitute 0 for x: x 2  y 2  25

x 2   0  25

 02  y 2  25

 x  62   y  12  100  2  62   7  12 0 100

x 2  25

y 2  25

64  36 0 100

x  5

y  5

2

14.

100 0 100  True Yes

x-intercepts:  5, 0 ,  5, 0 ; y-intercepts:

 0,  5 ,  0, 5

15. r 2  81 r  81  9 Center:  4,  2 ; Radius: 9

202


Section 2.2 16. r 2  16

b.

r  16  4 Center:  3,1 ; Radius: 4

17. r 2  6.25

r  6.25  2.5 Center:  0, 2.5 ; Radius: 2.5 18. r 2  2.25 24. a.

r  2.25  1.5 Center: 1.5, 0 ; Radius: 1.5 19. r 2  20

 x  h2   y  k 2  r 2 2 2 2  x   3    y  2   4  x  3 2   y  2 2  16

b.

r  20  2 5 Center:  0, 0 ; Radius: 2 5 20. r 2  28

r  28  2 7 Center:  0, 0 ; Radius: 2 7 81 49 81 9 r  49 7 9  3 3 Center:  ,   ; Radius:  2 4 7

21. r 2 

25. a.

 x  h2   y  k 2  r 2  x   4    y   3   2

2

 11

2

 x  4 2   y  3 2  11 b.

25 22. r  9 25 5 r  9 3 5  1 3 Center:   ,  ; Radius:  7 5 3 2

23. a.

 x  h2   y  k 2  r 2 2 2 2  x   2    y  5  1  x  2  2   y  5 2  1

26. a.

 x  h2   y  k 2  r 2  x   5    y   2   2

2

 21

 x  5 2   y  22  21

203

2


Chapter 2 Functions and Graphs b.

r

 x2  x1  2   y2  y1 2

 2  2 2   4  1 2

 16  9  25  5

 x  h2   y  k 2  r 2  x  2 2   y  12   5 2  x  2 2   y  12  25 b.

27. a.  x  h    y  k   r 2 2

2

 x  0 2   y  02   2.6 2 x 2  y 2  6.76 b.

 x  x y  y2  30. a. C   1 2 , 1   2 2   7  5 3   1   12 2     ,    6,1 , 2   2 2   2

28. a.  x  h    y  k   r 2 2

2

r

 x  0 2   y  02   4.2 2

 x2  x1  2   y2  y1 2

 7  62   3  1 2  1  4  5  x  h2   y  k 2  r 2 

x 2  y 2  17.64

 x  62   y  1 2   5 

b.

 x  62   y  1 2  5 b.

 x  x y  y2  29. a. C   1 2 , 1   2 2   2  6 4   2   4 2  ,    ,    2,1 2   2 2   2

204

2


Section 2.2 31. a. r 

 x2  x1  2   y2  y1 2

 2  6 2   1  52

33. a. The circle must touch the y-axis at  0, 6 , at one side of a diameter. r

 64  36  100  10

 4  02   6  62  16  4  x  h2   y  k 2  r 2  x  4 2   y  6 2   4 2  x  4 2   y  62  16 

 x  h   y  k   r 2 2 2  x   2    y   1   10  x  2 2   y  1 2  100 2

2

 x2  x1  2   y2  y1 2

2

b. b.

32. a. r  

 x2  x1  2   y2  y1 2  3  6  1  5 2

34. a. The circle must touch the x-axis at  2, 0 , at one side of a diameter.

2

r

 9  16  25  5

 x  h2   y  k 2  r 2  x  3 2   y  12   5 2  x  3 2   y  12  25

 x2  x1 2   y2  y1 2

  2   2    4  0  16  4 2

2

 x  h2   y  k 2  r 2 2 2 2  x   2    y   4    4  x  22   y  4 2  16

b. b.

205


Chapter 2 Functions and Graphs 39.  x  1   y  5  0 The sum of two squares will equal zero only if each individual term is zero. Therefore, x  1 and y  5 .

35. a. The circle must touch the x-axis and the yaxis at a distance r from the center. Since the center is in quadrant IV, the center must be  5, 5 .

2

 x  h2   y  k 2  r 2 2  x  52   y   5   52  x  52   y  5 2  25

2

 1, 5

40.  x  3   y  12  0 The sum of two squares will equal zero only if each individual term is zero. Therefore, x  3 and y  12 . 2

b.

2

 3,  12

41.  x  17    y  1  9 The sum of two squares cannot be negative, so there is no solution. 2

2



42.  x  15   y  3  25 The sum of two squares cannot be negative, so there is no solution.

36. a. The circle must touch the x-axis and the yaxis at a distance r from the center. Since the center is in quadrant II, the center must be  3, 3 .

2

2



 x  h2   y  k 2  r 2 2 2 2  x   3    y  3   3  x  3 2   y  3 2  9

43.

x2  y 2  6 x  2 y  6  0

 x  6 x    y  2 y   6 2

2

2

2

1   2  6   9  

b.

1   2  2   1  

 x  6 x  9   y  2 y  1  6  9  1 2

2

 x  32   y  12  4 Center:  3,1 ; Radius: 4  2 44.

x 2  y 2  12 x  14 y  84  0

 x  12 x    y  14 y   84 2

37.

38.

 x  h   y  k   r 2 2  x  8 2   y   11   52  x  82   y  11 2  25 2

2

2

2

1   2 12   36  

2

1   2  14   49  

 x  12 x  36   y  14 y  49  84  36  49 2

2

 x  6 2   y  7  2  1 Center:  6, 7  ; Radius: 1  1

 x  h2   y  k 2  r 2 2 2 2  x   4    y  16   9  x  42   y  162  81 206


Section 2.2 45.

x 2  y 2  20 y  4  0

x 2  y 2  20 y

49.

4

2

2

2

Center:  0,10 ; Radius: 104  2 26 x 2  y 2  22 x  4  0

50.

 x  22 x   y  4

x 2  y 2  10 x  22 y  155  0

 x  10 x    y  22 y   155 2

2

2

2

2

2

2

2

 x  5 2   y  11 2  9 Degenerate case:  

 x  112  y 2  125 Center:  11, 0 ; Radius: 125  5 5

51. 4 x 2  4 y 2  20 y  25  0

47. 10 x 2  10 y 2  80 x  200 y  920  0 x 2  y 2  8 x  20 y  92  0

x2  y 2  5 y 

 x  8x    y  20 y   92 2

2

2

1   2  20   100  

2

2

25  25 25  x2   y 2  5 y       4 4 4

 x  4 2   y  10 2  24 Center:  4,  10 ; Radius: 24  2 6

2

5  x2   y    0  2

2 x 2  2 y 2  32 x  12 y  90  0

 5   Degenerate case (single point):  0,    2  

x 2  y 2  16 x  6 y  45  0

 x  16 x    y  6 y   45 2

2

   254

25 1   2  5   4  

 x  8 x  16   y  20 y  100  92  16  100

2

1   2  16   64  

25 0 4

x2  y 2  5 y

2

1   2  8   16  

1   2  22   121  

 x  10 x  25   y  22 y  121  155  25  121

 x  22 x  121  y  4  121

2

2

1   2  10   25  

2

1   2  22   121  

52. 4 x 2  4 y 2  12 x  9  0

1   2  6   9  

x 2  y 2  3x 

 x  16 x  64   y  6 y  9  45  64  9 2

2

 x  2 2   y  92  4 Degenerate case:  

2

2

2

1   2  18   81  

 x  4 x  4   y  18 y  81  89  4  81

x 2   y  10  104

48.

2

1   2  4   4  

x 2  y 2  20 y  100  4  100

2

 x  4 x    y  18 y   89 2

1   2  20   100  

46.

x 2  y 2  4 x  18 y  89  0

2

 x  3x

 x  8 2   y  3 2  28 Center:  8,  3 ; Radius: 28  2 7

2  y 2   2

9 1   2  3   4  

207

9 0 4 9 4


Chapter 2 Functions and Graphs 57.

2

9 9 9  2  x  3x    y    4 4 4 2

3  2  x    y  0 2  3   Degenerate case (single point):  , 0   2   3 3 y 0 2 4 3   3   y2  y     4 2

x2  y 2  x 

53.

x  x  2

The approximate location of the earthquake is  8, 7  . 58.

2

9  1  3   2   2    16  

2

1 1   2  1   4  

1  2 3 9 3 1 9  2  x  x     y  y      4 2 16 4 4 16 2

2

1  3 25   x     y    2 4 16  1 3 Center:  ,  ; Radius:  2 4

54.

25 5  16 4

The fire is located at approximately coordinate  2,1 .

2 5 5 x y 0 3 3 9 5   2  5    y  y   3 9

x2  y 2   2 2  x  x 3

2

59.

36  36  12 y  y 2  10 72  12 y  y 2  10

2

 1  2  1  2   3    9  

 1  5  25  2   3    36  

72  12 y  y 2  100 y 2  12 y  28  0

1  2 5 25  5 1 25  2 2  x  x     y  y      3 9 3 36 9 9 36 2

 y  2 y  14  0 y  2 or y  14 y  2 and y  14

2

1  5 49   x     y    3 6 36  1 5 Center:  ,  ; Radius:  3 6 55.  x  4   y  6  1.5 2

2

49 7  36 6

60.

2

56.  x   32    y  40   20 2

2

25  8 x  x 2  5 25  8 x  x 2  25 x2  8x  0 x  x  8  0 x  0 or x  8 x  0 and x  8

2

 x  32   y  40  400 2

 4  x 2   2   1  5 16  8 x  x 2  9  5

 x  4 2   y  62  2.25 2

 2  42   6  y  2  10

2

208


Section 2.2

 2  x2   4  x2  6

61.

b.

4  4 x  x 2  16  8 x  x 2  6 20  12 x  2 x 2  6 20  12 x  2 x 2  36 2 x 2  12 x  16  0 x2  6 x  8  0 x

  6 

 6 2  4 1 8 2 1

6  68 6  2 17   3  17 2 2 3  17, 3  17 and 3  17, 3  17

c.

 4  x 2  6    x   4 2

62.

 4  x  2   6  x  2  4

d.

16  8 x  x  36  12 x  x  4 2

2

52  20 x  2 x 2  4 52  20 x  2 x 2  16 2 x 2  20 x  36  0 x 2  10 x  18  0 x

 10 

102  4 118 2 1

64. a.

10  28 10  2 7    5  7 2 2

 5  7, 5  7  and  5  7, 5  7  63. a.

b.

209


Chapter 2 Functions and Graphs c.

d.

d.

66. a.

65. a.

b.

b.

c.

c.

d.

210


Section 2.2 67. A circle is the set of all points in a plane that are equidistant from a fixed point called the center. 68. The center and radius can easily be identified from an equation of a circle written in standard form. 69. The calculator does not connect the pixels at the ends of the semicircles because of limited resolution.

73.  14, 39, 5 by  30, 5, 5

70. The screen is rectangular and is longer horizontally than vertically. If the x and y intervals are the same, then the graph will be elongated horizontally because there is greater distance horizontally over which to spread the graph. 71.  15.1,15.1,1 by  10,10, 1

74.  0.28, 0.18, 0.02 by  0.1, 0.2, 0.02

72.  15.1,15.1,1 by  10,10, 1

211


Chapter 2 Functions and Graphs

Section 2.3 Functions and Relations 1.

 x2  x1 2   y2  y1 2

r

2

2 1    4    1   2   2

49 85 85 9   4 4 2

1  Center:  ,  2 ; Radius: 2 

85 2

5. Substitute 0 for y: y  x 3  5 x 2  4 x  20

2.

0  x 3  5 x 2  4 x  20 0  x 3  4 x  5 x 2  20

 

0  x x2  4  5 x2  4

0  x  4  x  5 0   x  2 x  2 x  5 x  2 or x  2 or x  5 Substitute 0 for x: y  x 3  5 x 2  4 x  20

 x  x y  y2  3. C   1 2 , 1   2 2 

y   0  5  0  4  0  20  20

 2   1 7  3   1 10   1   ,   ,    , 5 2   2 2   2   2 r

2

3

2

x-intercepts:  2, 0 ,  2, 0 ,  5, 0 ; y-intercept:  0,  20

 x2  x1  2   y2  y1 2 2

1 2    2     7  5  2

6. Substitute 0 for y: y   x3  3x 2  x  3 0   x3  3x 2  x  3

9 25 5  4   4 4 2 5 1  Center:  , 5 ; Radius: 2  2

0  x3  3x 2  x  3 0  x3  x  3 x 2  3

 

0  x x2  1  3 x2  1

0  x  1  x  3

 x  x y  y2  4. C   1 2 , 1   2 2 

2

0   x  1 x  1 x  3 x  1 or x  1 or x  3 Substitute 0 for x: y   x3  3x 2  x  3

 3  4 5  1  1 4   1     ,    ,  2 ,   2  2  2 2  2

y    0  3  0   0  3  3 3

2

x-intercepts: 1, 0 ,  1, 0 ,  3, 0 ;

y-intercept:  0,  3

212


Section 2.3 7. relation; domain; y

25. No vertical line intersects the graph in more than one point. This relation is a function.

8. A relation defines y as a function of x if for each value of x in the domain, there is exactly one value of y in the range. 9. does not

10.  2, 4

11. y

12. f  x 

13. 5

26. There is at least one vertical line that intersects the graph in more than one point. This relation is not a function. 27. No vertical line intersects the graph in more than one point. This relation is a function. 28. There is at least one vertical line that intersects the graph in more than one point. This relation is not a function.

14. 5

15. a. {(Tom Hanks, 5), (Jack Nicholson, 12), (Sean Penn, 5), (Dustin Hoffman, 7)}

29. This mapping defines the set of ordered pairs:  8, 3 ,  8, 4 ,  8, 5 ,  8, 6 . All

b. {Tom Hanks, Jack Nicholson, Sean Penn, Dustin Hoffman} c. {5, 12, 7}

four ordered pairs have the same x value but different y values. This relation is not a function.

d. Yes

16. a. {(Albany, 285), (Denver, 5883), (Miami, 11), (San Francisco, 11)}

30. This mapping defines the set of ordered pairs:  3,11 ,  6,13 ,  6, 9 . Two

b. {Albany, Denver, Miami, San Francisco} c. {285, 5883, 11}

ordered pairs have the same x value but different y values. This relation is not a function.

d. Yes

17. a.  4, 3 ,  2,  3 , 1, 4 ,  3,  2 ,  3,1 b.  4,  2,1, 3

31. This mapping defines the set of ordered pairs: 1, 4 ,  2, 5 ,  3, 5 . No two ordered

c.  3,  3, 4,  2,1

pairs have the same x value but different y values. This relation is a function.

d. No 18. a.  2, 2 ,  1, 0 ,  0,  2 , 1, 0 , 1, 2 b.  2,  1, 0,1

32. This mapping defines the set of ordered pairs:  5,  4 ,  6,  4 ,  7,  4 ,  8,  4 .

c.  2, 0,  2

No two ordered pairs have the same x value but different y values. This relation is a function.

d. No 19. False

20. True 33.  x  1   y  5  25 This equation represents the graph of a circle with center  1,  5 and radius 5. This relation is not a function because it fails the vertical line test. 2

21. No vertical line intersects the graph in more than one point. This relation is a function. 22. No vertical line intersects the graph in more than one point. This relation is a function.

2

34.  x  3   y  4  1 This equation represents the graph of a circle with center  3,  4 and radius 1. This relation is not a function because it fails the vertical line test.

23. There is at least one vertical line that intersects the graph in more than one point. This relation is not a function.

2

24. No vertical line intersects the graph in more than one point. This relation is a function.

213

2


Chapter 2 Functions and Graphs 35. y  x  3

Two or more ordered pairs have the same x value but different y values. This relation is not a function.

38. a. y  x y  x

No vertical line intersects the graph in more than one point. This relation is a function.

36. y  x  4 No vertical line intersects the graph in more than one point. This relation is a function.

b.

x y y x y  x

No vertical line intersects the graph in more than one point. This relation is a function.

37. a. y  x

b.

x

y

y  x

Ordered pairs

0

0

y  0

1

1

y  1

2

2

y  2

3

3

y  3

 0, 0 1,  1  2,  2  3,  3

2

Two or more ordered pairs have the same x value but different y values. This relation is not a function.

No vertical line intersects the graph in more than one point. This relation is a function.

39.  4,1

x  y2

40.  7,  5

y2  x

41. f  x   x 2  3x

y x x

y

y x

0

0

y 00

1

1

y   1  1

4

2

y   4  2

9

3

y   9  3

a. f  2   2  3  2  4  6  2

Ordered pairs  0, 0

2

b. f  1   1  3  1  1  3  2 2

1,  1  4,  2  9,  3

c. f  0   0  3  0  0  0  0 2

d. f 1  1  3 1  1  3  4 2

e. f  2   2  3  2  4  6  10 2

214


Section 2.3 42. g  x  

49. k  5 

1 x

 5  1 

4

Undefined

a. g  2 

1 1   2 2

50. f  5   5  3  5  25  15  40

b. g  1 

1  1  1

51. k  8 

2

52. f  5   5  3  5  25  15  10 2

1  1 c. g      2  2  1    2

53. g  t  

1  1 d. g    2  2  1   2

e. g  2 

1 1  t  t

54. f  a    a   3  a   a 2  3a 2

55. k  a  b  

1 1   2 2

 a  b  1  a  b  1

56. h  a  b   5

43. h  x   5 a. h  2  5

57. f  a  4   a  4  3  a  4 2

b. h  1  5

c. h  0  5

 a 2  8a  16  3a  12

d. h 1  5

 a 2  11a  28

e. h  2  5

58. f  t  3   t  3  3  t  3 2

44. k  x   x  1 a. k  2 

 t 2  6t  9  3t  9  t 2  3t

 2  1  1

1 0 Undefined

59. g  0 

Undefined b. k  1 

 1  1  0  0

c. k  0 

 0  1  1  1

d. k 1 

1  1  2

e. k  3 

 3  1  4  2

45. g  3 

 8  1  9  3

1 1   3 3

1  1 47. g    3  3  1    3

60. k  10 

 10  1 

9

Undefined

46. h  7   5

61. f  9  7

62. f  1  6

63. f  3  4

64. f  2  3

65. f  x   6 when x  1 66. f  x   7 when x  9

48. h  7   5

67. f  x   3 when x  2

215


Chapter 2 Functions and Graphs 68. f  x   4 when x  3

d  2  18  2  36 Joe rides 36 mi in 2 hr.

 12

75. Solve h  x   0 :

Evaluate h  0 : h  x  x  8

 2  2 d    18    12  3  3 12 mi

h  x  x  8

r  x   250  x

x  8 x-intercepts:  8, 0 ,  8, 0 ;

x 8

Evaluate k  0 :

0 x 2

k  0    0  2

k  x   x  2

x 2

2

x  2 x-intercepts:  2, 0 ,  2, 0 ;

C  225   225  0.06  225  0.18  225

y-intercept:  0, 2

 225  13.5  40.5  279 If the cost of the food is $225, then the total bill including tax and tip is $279.

77. Solve p  x   0 :

Evaluate p  0 :

p  x    x 2  12

P  x   1.075  x  0.40 x 

p  x    x 2  12 p  0    0  12  12

0   x 2  12

P  60  1.075  60  0.40  60 

2

x 2  12

 1.075  60  24  1.075  84  90.30 If the cost of the book from the publisher is $60, the cost to the student after the bookstore markup and sales tax is $90.30.

0  2x  4

76. Solve k  x   0 : k  x   x  2

C  x   x  0.06 x  0.18 x

f  x  2 x  4

 8

y-intercept:  0, 8

r  x   250  x

73. Solve f  x   0 :

h  0   0  8

0  x 8

r 122  250  122  128 128 mi

72.

g  0  3  0  12

x4 x-intercept:  4, 0 ; y-intercept:  0, 12

r  50  250   50  200 After having driven 50 mi, Frank still has 200 mi remaining.

71.

0  3x  12

g  x   3x  12

3 x  12

40 2 b. 40 min is  hr. 60 3 d  t   18t

b.

Evaluate g  0 :

g  x   3x  12

69. a. d  t   18t

70. a.

74. Solve g  x   0 :

x   12  2 3



x-intercepts: 2 3, 0 , 2 3, 0 ; y-intercept:  0,12

Evaluate f  0 :

78. Solve q  x   0 :

f  x  2 x  4

q  x  x  8 2

f  0  2  0  4

0  x2  8

2x  4

 4 x2 x-intercept:  2, 0 ; y-intercept:  0,  4

x2  8 x   8  2 2

Evaluate q  0 : q  x  x2  8

q  0   0  8  8 2



x-intercepts: 2 2, 0 , 2 2, 0 ; y-intercept:  0, 8

216


Section 2.3 79. Solve r  x   0 : r  x  x  8 0  x 8 x 8  0

84. Evaluate B  0 :

Evaluate r  0 : r  x  x  8

B  x   0.12 x 2  0.86 x  1.6

r  0   0  8

B  0  0.12  0  0.86  0  1.6  1.6 2

 0,1.6 ; The y-intercept means that for

8

x8 x-intercept:  8, 0 ; y-intercept:  0, 8

80. Solve s  x   0 : s  x  x  3 0 x3 x3 0

x  0 (the year 2002), the number of Botox injection procedures in the United States was 1.6 million.

Evaluate s  0 :

85. Domain:  3,  2,  1, 2, 3 ;

s  x  x  3

Range:  4,  3, 3, 4, 5

s  0    0  3

86. Domain:  4,  2, 0, 2, 4 ;

3

x  3 x-intercept:  3, 0 ; y-intercept:  0, 3

81. Solve f  x   0 :

Evaluate f  0 :

f  x  x  2

f  x  x  2

0 x 2 x2

f  0 

Range:  2, 0, 2, 4, 6

87. Domain:  3,   ; Range: 1,   88. Domain:  , 4 ; Range:  , 4

 0  2

89. Domain:  ,   ; Range:  ,  

 2

x4 x-intercept:  4, 0 ; y-intercept:  0,  2

82. Solve g  x   0 :

Evaluate g  0 :

g  x   x  3

g  x   x  3

0  x 3

g  0    0  3

x 3

90. Domain:  ,   ; Range:  ,   91. Domain:  ,   ; Range:  3,   92. Domain:  ,   ; Range:  , 2 93. Domain:  5,1 ; Range:  1,1, 3

3

x9 x-intercept:  9, 0 ; y-intercept:  0, 3

94. Domain:  4, 5 ; Range:  2,1, 4 95. x  4  0 x4  , 4   4, 

83. Evaluate f  0 :

f  x   9.4 x  35.7 f  0  9.4  0  35.7

96. x  2  0

 35.7 0, 35.7   ; The y-intercept means that for x  0 (the year 2006), the average amount spent on video games per person in the United States was $35.70.

x2  , 2   2, 

217


Chapter 2 Functions and Graphs 106. 6  x  0  x  6 x6  , 6

97. 2t  7  0 2t  7

t

7 2

7  7    ,      ,  2 2

107. There is no restriction on x.  , 

98. 3a  4  0 3a  4

a

108. There is no restriction on x.  , 

4 3

109. a. f  2  4

4  4    ,      ,  3 3

b. f  3  2 c. f  x   1 for x  3 , x  1 , x  1

99. The denominator x  4 is always positive.

 , 

d. f  x   4 for x  2 , x  2

 10  e. x-intercepts:  0, 0 and   , 0  3 

100. The denominator x 2  3 is always positive.  , 

f. y-intercept:  0, 0

101. a  15  0 a  15  15, 

g. Domain:  ,   h. Range:  4,  

102. c  12  0 c  12  12,  

110. a. f  2  1 b. f  3  3 c. There are no x-values where f  x   1 .

103. 3  x  0  x  3

d. f  x   4 for all x on the interval  0, 2

x3  , 3

e. x-intercept:  1, 0 f. y-intercept:  0,  4

104. 6  x  0  x  6 x6  , 6

g. Domain:  ,   h. Range:  4   0,   111. a. f  2  0

105. 3  x  0  x  3 x3  , 3

b. f  3  5 c. f  x   1 for x  3 , x  1 , x  1

218


Section 2.3 d. f  x   4 for x  4 , x  0

119. f  x   3x 2  2

4  e. x-intercepts:  2, 0 and  , 0 3 

120. f  x   x  3

f. y-intercept:  0,  4

121. If two points in a set of ordered pairs are aligned vertically in a graph, then they have the same x-coordinate but different ycoordinates. This contradicts the definition of a function. Therefore, the points do not define y as a function of x.

g. Domain:  4,   h. Range:  4, 5 112. a. f  2  3

122. To find the x-intercept(s), find the real solutions to the equation f  x   0 . To find

b. f  3  2

the y-intercept, evaluate f  0 .

c. f  x   1 for x  0 , x  2

123. a. P  s   4s

d. f  x   4 for x  3 , x  5 e. x-intercept: 1, 0

b. A  s   s 2

f. y-intercept:  0,  1

P2  P c. A  P     or A  P    4 16

2

g. Domain:  , 5

d. P  A  4 A

h. Range:  4, 0   3

e.  d  s    s 2  s 2  2 s 2 2

113. r  x   x  400

d  s   2s 2

r  x   400  x

d  s  s 2

114. w  x   x  200

f.  s  d     s  d    d 2 2

w  x   200  x

2

2  s  d    d 2 2

115. P  x   x  x  x

2 d2  s  d    2

P  x  3x 116. 2 A  x   x  180

2 A  x   180  x A x 

180  x 2

sd  

d2 2

sd  

d

 d 2 g. P  d   4    2 

117. C  x   x  90

C  x   90  x

P  d   2 2d

118. S  x   x  180

S  x   180  x

219

2

or s  d  

d 2 2


Chapter 2 Functions and Graphs  d 2 h. A  d      2 

2

d f. A  d       2 A d  

2d 2 A d   4 d2 A d   2

d 2 4

C g. A  C       2 

124. a. C  r   2 r b. A  r    r 2 c. r  d  

2

d 2

AC  

C 2 4 2

AC  

C2 4

h. C  A  2

d. d  r   2r

2

A

2A  C  A  2  A C  A  2

e. C  d    d

Section 2.4 Linear Equations in Two Variables and Linear Functions 1. a. No vertical line intersects the graph in more than one point. This relation is a function. b.  ,  

c.  ,  

d.  2, 0

e.  0, 3

c.  ,  

d.  3, 0

e.  0,1

c.  3

d. None

e.  0, 3

 x  x y  y2  5. a. M   1 2 , 1  2   2   3 2  2 5  4 5    ,   2 2  

2. a. No vertical line intersects the graph in more than one point. This relation is a function. b.  ,  

b.  ,  

 4 2 3 5  ,    2 2    3 5   2 2,    3  

3. a. No, a vertical line is not a function. b.  3

c.  ,  

d.  3, 0

e. None

b. d 

 x2  x1  2   y2  y1  2

 2  3 2    4 5  5    2 2    5 5  2

2

4. a. No vertical line intersects the graph in more than one point. This relation is a function.

 8  125  133

220

2

2


Section 2.4 20. 2 x  y  4

 x  x y  y2  6. a. M   1 2 , 1   2 2 

y  2x  4

 6  2 6 3  5 3 ,   2 2  

x 3 2 1 0

 3 6 6 3  3 6  , , 3 3    2   2  2 

b. d 

 x2  x1 2   y2  y1  2

 2 6  6   5 3  3   6    4 3 2

2

y 2 0 2 4

2

x-intercept:  2, 0 ; y-intercept:  0, 4

2

21. 2 y  5 x  2

 6  48  54  3 6

7. scatter

8. linear

5 y   x 1 2

9. vertical

10. horizontal

x

11. True

12. m 

y2  y1 x2  x1

1

13. zero

14. undefined

15. slope; intercept

16. mx  b

17. m 

f  x2   f  x1  x2  x1

0 2 5 2

18. horizontal

2

0 2

4

22. 3 y  4 x  6

4 y   x2 3

4 y  3x  12

x 4

0

2  x-intercept:  , 0 ; y-intercept:  0,1 5 

19. 3 x  4 y  12 y

y 7 2 1

3 x3 4

x 1

y 0 3 2 3

0 3 2 3

9 2

y 10 3 2

0 2

3  x-intercept:  , 0 ; y-intercept:  0, 2 2 

x-intercept:  4, 0 ; y-intercept:  0, 3

221


Chapter 2 Functions and Graphs 23. x  6 x 6 6 6 6

26. 3x  2  4 3x  6 x2

y 2 0 2 4

x 2 2 2 2

y 2 0 2 4

x-intercept:  6, 0 ; y-intercept: None x-intercept:  2, 0 ; y-intercept: None

24. y  4 x 2 0 2 4

27. 0.02 x  0.05 y  0.1 2 x  5 y  10 5 y  2 x  10 2 y   x2 5

y 4 4 4 4

x 5 0

x-intercept: None; y-intercept:  0, 4 25. 5 y  1  11

1

5 y  10 y2

5

x 2 0 2 4

y 4 2 8 5 0

x-intercept:  5, 0 ; y-intercept:  0, 2

y 2 2 2 2

28. 0.03x  0.07 y  0.21 3x  7 y  21 7 y  3x  21 3 y   x3 7

x-intercept: None; y-intercept:  0, 2

x 1

0 1 7

y 24 7 3 18 7 0

x-intercept:  7, 0 ; y-intercept:  0, 3

222


Section 2.4 29. 2 x  3 y 2 y x 3 x 3 0 3 6

y 2 0 2 4

36. m 

y2  y1 6  4 10 5    x2  x1 1   9 8 4

37. m 

y2  y1 39   52 13 1    22  30 52 x2  x1 4

38. m 

y2  y1 30   16 46 1    x2  x1 84   100 184 4

39. m 

y2  y1 3.7  4.1 7.8 26    x2  x1 9.5  2.6 6.9 23

40. m 

y2  y1 7.9  6.2 1.7 1    x2  x1 5.1  8.5 13.6 8

x-intercept:  0, 0 ; y-intercept:  0, 0

30. 2 x  5 y 2 y x 5 x 5 0

41. m 

y 2 0 2  5 2

1 5

42. m 

y2  y1 5 1   x2  x1 80 16

33. m 

y2  y1 2.5 1   x2  x1 100 40

34. pitch 

35. m 

43. m 

y2  y1 300 3   x2  x1 1000 10

32. m 

y2  y1 x2  x1

3 2 3 4 1    1 10 5 10 10 10     4   3 7 7 70

x-intercept:  0, 0 ; y-intercept:  0, 0

31. m 

y2  y1 1  6 5 5 20     5 3 10 3 7 x2  x1 7   2 4 4 4 4

44. m  

y2  y1 x2  x1 52 5 6 3 6

 5 2 6

5 6 2 6 6

y2  y1 5 3  3 3  x2  x1 11  2 11 2 3  11

2 3  11 11  11

2 33 11

45. Use points  1,1 and  0, 4 :

rafter rise 7  rafter run 12

m

y2  y1 1   7  6    3 x2  x1 2 24

4 1 3 y2  y1   3 x2  x1 0   1 1

46. Use points  2, 0 and  0,1 : m

223

y2  y1 1 0 1   x2  x1 0   2 2

30 12


Chapter 2 Functions and Graphs 47. Use points  0, 2 and  3,1 : m

59. a. 2 x  4 y  8

4 y  2 x  8 1 y x2 2 1 m  ; y-intercept:  0,  2 2

y2  y1 1  2 1 1    x2  x1 3  0 3 3

48. Use points  0, 3 and 1,  1 : m

y2  y1 1  3 4    4 x2  x1 1 0 1

b.

49. Use points  0,  4 and  2,  4 : m

y2  y1 4   4 0   0 x2  x1 20 2

3  3  50. Use points  ,1 and  , 3 : 2  2  y  y1 3  1 2 m 2   (undefined) x2  x1 3  3 0 2 2

51. Undefined

52. 0

53. 0

54. Undefined

55.

m

60. a. 3x  y  6 y  3x  6

m  3 ; y-intercept:  0,  6

b.

y2  y1 x2  x1

4 y2  y1  5 52 5  y2  y1   208 y2  y1  41.6 ft

56.

m

61. a. 3x  2 y  4 2 y  3x  4 3 y  x2 2 3 m  ; y-intercept:  0, 2 2

y2  y1 x2  x1

5 216  8 x2  x1

5  x2  x1   1728

x2  x1  345.6 m

b.

57. Change in population over change in time 58. Change in distance over change in time which is speed

224


Section 2.4 62. a. 5 x  3 y  6 3 y  5x  6 5 y  x2 3 5 m  ; y-intercept:  0, 2 3

65. a. 2 y  6  8 2 y  14 y7

m  0 ; y-intercept:  0, 7  b.

b.

66. a. 3 y  9  6 3 y  3 y  1

63. a. 3x  4 y 3 y x 4 3 m  ; y-intercept:  0, 0 4

m  0 ; y-intercept:  0,  1 b.

b.

67. a. 0.02 x  0.06 y  0.06 2x  6 y  6 6 y  2 x  6 1 y   x 1 3 1 m   ; y-intercept:  0,1 3

64. a. 2 x  3 y 2 y x 3 2 m   ; y-intercept:  0, 0 3 b.

b.

225


Chapter 2 Functions and Graphs 68. a. 0.03x  0.04 y  0.12 3x  4 y  12 4 y  3x  12

70. a.

3 y   x3 4

x y  1 3 4  x y 12     12 1  3 4 4 x  3 y  12 3 y  4 x  12 4 y   x4 3 4 m   ; y-intercept:  0, 4 3

3 m   ; y-intercept:  0, 3 4

b.

b.

69. a.

x y  1 4 7  x y 28     28 1  4 7 7 x  4 y  28 4 y  7 x  28 7 y   x7 4 7 m   ; y-intercept:  0, 7  4

71. a. Linear

b. Linear

c. Neither

d. Constant

72. a. Linear

b. Neither

c. Constant 73. a. y  mx  b

1 xb 2 1 9   0  b 2 9b 1 y  x9 2 y

b.

b. f  x  

226

1 x9 2

d. Linear


Section 2.4 74. a.

y  mx  b 1 y  xb 3 1 4   0  b 3 4  b 1 y  x4 3

b. f  x   75. a.

78. a.

1 x4 3

b. f  x  

y  mx  b y  3x  b

y  0x  b yb 5b y5

6  3  b 3  b y  3 x  3

b. f  x   5

b. f  x   3x  3

y  mx  b y  5 x  b

80. a.

8  5  2  b 8  10  b 2b y  5 x  2

81. a.

y  mx  b 2 y  xb 3 2 3   5  b 3 10 3    b 3 1 b 3 2 1 y  x 3 3

b. f  x  

y  mx  b y  0x  b yb 3  b y  3

b. f  x   3

b. f  x   5 x  2 77. a.

3 x4 2

79. a. y  mx  b

6  3 1  b

76. a.

y  mx  b 3 y  xb 2 3 2   4  b 2 2  6  b 4b 3 y  x4 2

y  mx  b y  1.2 x  b 5.1  1.2  3.6  b 5.1  4.32  b 0.78  b y  1.2 x  0.78

b. f  x   1.2 x  0.78 82. a.

2 1 x 3 3

y  mx  b y  2.4 x  b 2.8  2.4 1.2  b 2.8  2.88  b 0.08  b y  2.4 x  0.08

b. f  x   2.4 x  0.08

227


Chapter 2 Functions and Graphs y  mx  b

y2  y1 6  2 8   2 0  4 4 x2  x1 y  mx  b

83. a. m 

7 y   xb 3 7 3    1  b 3 2 b 3 7 2 y   x 3 3

y  2x  b 6  2  0  b 6  b y  2x  6

b. f  x   2 x  6

7 2 b. f  x    x  3 3

y  y1 3  1 4 1    84. a. m  2 x2  x1 0   8 8 2 y  mx  b 1 y   xb 2 1 3    0  b 2 3  b 1 y   x3 2

87. m 

88. m 

x2  x1 f  x2   f  x1  x2  x1

4 1 3  3 1 2

2  6 4   1 5 1 4

89. a. Average rate of change 

1 b. f  x    x  3 2

y2  y1 1   3 4 4    x2  x1 47 3 3 y  mx  b

4 y   xb 3 4 1    4  b 3 19 b 3 4 19 y   x 3 3

f  x2   f  x1  x2  x1

8244  6420 1824   $364.80/yr 10  5 5

b. Average rate of change 

85. a. m 

f  x2   f  x1  x2  x1

17,452  13,591 3861   $772.20/yr 25  20 5

c. Increasing 90. a. Average rate of change  

y2  y1 3   4 7 7    1  2 3 x2  x1 3

f  x2   f  x1  x2  x1

75  64 11   5.5F/month 53 2

b. Average rate of change 

4 19 b. f  x    x  3 3

86. a. m 

f  x2   f  x1 

f  x2   f  x1  x2  x1

64  79 15   7.5F/month 11  9 2

c. A positive rate of change means that average monthly temperature is increasing. A negative rate of change means that average monthly temperature is decreasing.

228


Section 2.4 f  t   0.009t 2  2.10t  182

91. a.

93. f  x   x 2  3

f  0  0.009  0  2.10  0  182  182

f  0   0  3  3

f 10  0.009 10  2.10 10  182

f 1  1  3  1  3  2

 0.9  21  182  203.9 f  x2   f  x1  Average rate of change  x2  x1

f  3   3  3  9  3  6

2

2

2

2

2

f  2   2  3  4  3  1 2

203.9  182 21.9   2.2 million/yr 10  0 10 f  t   0.009t 2  2.10t  182

b.

f  x2   f  x1 

a. Average rate of change  

f  40  0.009  40  2.10  40  182 2

 14.4  84  182  280.4

f 1  f  0 1 0

2   3

1  1 1

1

b. Average rate of change 

f  50  0.009  50  2.10  50  182

x2  x1

f  x2   f  x1  x2  x1

2

 22.5  105  182  309.5 f  x2   f  x1  Average rate of change  x2  x1 

3 1

6   2 2

c. Average rate of change 

309.5  280.4 29.1   2.9 million/yr 50  40 10

c. Increasing f  t   0.2t 2  86t  4450

92. a.

f  3  f 1

f  0  f  2 0   2

f  x2   f  x1  x2  x1

3  1 4   2 2 2

94. g  x   2 x 2  2

f  0  0.2  0  86  0  4450  4450

g  0  2  0  2  2

f 10  0.2 10  86 10  4450

g 1  2 1  2  2  2  4

 20  860  4450  5290 f  x2   f  x1  Average rate of change  x2  x1

g  3  2  3  2  18  2  20

2

2

2

2

2

g  2  2  2  2  8  2  10 2

5290  4450 840   84 million/yr 10  0 10

a. Average rate of change 

f  t   0.2t 2  86t  4450

b.

f  20  0.2  20  86  20  4450 2

 80  1720  4450  6090

g 1  g  0 1 0

2

 180  2580  4450  6850 f  x2   f  x1  Average rate of change  x2  x1

g  3  g 1 3 1

c. Decreasing

229

g  0  g  2 0   2 

x2  x1

g  x2   g  x1  x2  x1

20  4 16  8 2 2

c. Average rate of change 

6850  6090 760   76 million/yr 30  20 10

g  x2   g  x1 

42 2  2 1 1

b. Average rate of change 

f  30  0.2  30  86  30  4450

8 4 2

g  x2   g  x1  x2  x1

2  10 8   4 2 2


Chapter 2 Functions and Graphs 95. h  x   x 3

97. m  x   x

h  1   1  1

m  0  0  0

h  0   0  0

m 1  1  1

h 1  1  1

m  4  4  2

h  2   2  8

m  9  9  3

3

3

3

3

a. Average rate of change  

h  0  h  1 0   1

0   1 1

b. Average rate of change  

h 1  h  0 1 0

h  2  h 1 2 1

a. Average rate of change 

x2  x1 1  1 1

h  x2   h  x1  x2  x1

h  x2   h  x1  x2  x1

8 1 7  7 1 1

3

3

3

a. Average rate of change  k  0  k  1 0   1

1

1   2 1

c. Average rate of change  

k  x2   k  x1 

2   3

b. Average rate of change 

2 1

32 1  5 5

n 10  10  1  9  3

k  2   2  2  8  2  6

94

x2  x1

n  5  5  1  4  2

k 1  1  2  1  2  1

k  2  k 1

m  x2   m  x1 

n  2  2  1  1  1

k  0   0  2  0  2  2

1 0

m  9  m  4

x2  x1

2 1 1  3 3

4 1

m  x2   m  x1 

n 1  1  1  0  0

3

m  4  m 1

x2  x1

98. n  x   x  1

k  1   1  2  1  2  3

k 1  k  0

1 0

m  x2   m  x1 

1 0 1  1 1 1

c. Average rate of change 

96. k  x   x 3  2

m 1  m  0

b. Average rate of change 

1 0 1  1 1 1

c. Average rate of change  

h  x2   h  x1 

6   1 1

a. Average rate of change 

x2  x1

1  1 1

k  x2   k  x1 

n  2  n 1 2 1

1  1 1 k  x2   k  x1 

n  5  n  2  52

7  7 1

230

n 10  n  5 10  5

n  x2   n  x1  x2  x1

2 1 1  3 3

c. Average rate of change 

x2  x1

x2  x1

1 0 1  1 1 1

b. Average rate of change 

x2  x1

n  x2   n  x1 

n  x2   n  x1 

32 1  5 5

x2  x1


Section 2.4 99. a.  1

b.  ,  1

c.  1,  

100. a. 1

b.  ,1

c. 1,  

101. a.  2

b.  , 2

c.  2,  

102. a. 1

b. 1,  

c.  ,1

103. a.  5

b.  5,  

c.  ,  5

110. If C is zero, then the line passes through the origin. 111. The slope and y-intercept are easily determined by inspection of the equation. 112. The average rate of change of f on the interval  x1 , x2  is the slope of the secant line passing through the points  x1 , f  x1   and

 x , f  x  . 2

104. a.  9.5

b.  ,  9.5 c.  9.5,  

105. a. 14

b. 14,  

c.  ,14

106. a. 1.5

b.  ,1.5

c. 1.5,  

2

113.

107. a. {8}; The number of men and women in college was approximately the same in 1978.

The x-intercept of the line is  2, 0 . The base of the triangle is 2 units. The y-intercept of the line is  0, 4 . The height of the triangle is 4. 1 1 A  bh   2 4  4 units 2 2 2

b.  0, 8 ; The number of women in college was less than the number of men in college from 1970 to 1978. c.  8, 40 ; The number of women in college exceeded the number of men in college from 1978 to 2010.

114.

108. a. {14.7}; The per capita consumption of pork and chicken was roughly the same midyear, 1994. b. 14.7, 30 ; The per capita consumption of pork was less than the per capita consumption of chicken midyear 1994 to 2010.

The x-intercepts of the two lines are  6, 0

and  3, 0 . The base of the triangle is

3   6  9 units . The y-intercept of the two

c.  0,14.7  ; The per capita consumption of pork exceeded the per capita consumption of chicken from 1980 to midyear 1994.

lines is  0, 6 . The height of the triangle is 6. A

109. The line will be slanted if both A and B are nonzero. If A is zero and B is not zero, then the equation can be written in the form y  k and the graph is a horizontal line. If B is zero and A is not zero, then the equation can be written in the form x  k , and the graph is a vertical line.

231

1 1 bh   9 6  27 units 2 2 2


Chapter 2 Functions and Graphs 119. a. 3.1  2.2  t  1  6.3  1.4t

115.

3.1  2.2t  2.2  6.3  1.4t 2.2t  0.9  1.4t  6.3 3.6t  5.4 t  1.5

 1.5

The x-intercepts of the two lines are  4, 0

and  6, 0 . The base of the triangle is

6   4  10 units . The y-intercept of the

two lines is  0,  2 . The height of the triangle is 2. 1 1 A  bh  10 2  10 units 2 2 2

b.  ,  1.5

116. 120. a.

c.  1.5,  

11.2  4.6  c  3  1.8c  0.4  c  2 11.2  4.6c  13.8  1.8c  0.4c  0.8 2.8c  2.6  0.4c  0.8 3.2c  1.8

c  0.5625

 0.5625

The x-intercepts of the line are  0, 0 and

 4, 0 . The diameter of the half circle is 4

units, so the radius is 2 units. 1 1 2 A   r 2    2  2 units 2 2 2

117. a. Ax  By  C By   Ax  C y

b.  , 0.5625

A C x B B

c.  0.5625,  

121. a. 2 x  3.8  4.6  7.2

A b. m   B

2 x  3.8  11.8 2 x  3.8  11.8 or 2 x  3.8  11.8

 C c.  0,   B

 4, 7.8

A 5 5  118. a. m     B 9 9 2  C  6   b.  0,    0,    0,    B   9   3

232

2 x  15.6 or

2 x  8

x  7.8 or

x  4


Section 2.4 123. a. 2 4 z  3  14  0

2 4 z  3  14 4z  3  7 4 z  3  49 4 z  52 z  13

13

b.  ,  4   7.8,   c.  4, 7.8 122. a.

3  c.  ,13 4 

b. 13,  

x  1.7  4.95  11.15

124. a. 2 y  1  3  0

x  1.7  6.2

2 y 1  3

x  1.7  6.2 or x  1.7  6.2 x  7.9 or x  4.5  4.5, 7.9

3 2 9 y 1  4 5 y   1.25 4

y 1 

1.25

b. 1.25,   b.  ,  4.5   7.9,   c.  4.5, 7.9

233

c.  1,1.25


Chapter 2 Functions and Graphs 125.

126.

The lines are not exactly the same. The slopes are different.

The lines are not exactly the same. The y-intercepts are different.

Section 2.5 Applications of Linear Equations and Modeling 1. y  mx  b 3 y  xb 2 3 2   4  b 2 2  6  b 8b 3 y  x8 2

5. 2 x  1  11 2 x  10 x5 a. Vertical b. Slope is undefined. c. No y-intercept 6. 3 y  9  6 3 y  15 y  5

2. y  mx  b 5 y  xb 6 5 3   12  b 6 3  10  b 13  b 5 y  x  13 6

a. Horizontal b. m  0 7. y  y1  m  x  x1  9. 1 10. R  x   C  x 

3. 6 x  3 y  y  3 2 y  6x  3 3 y  3x  2

11. y  y1  m  x  x1 

y  5  2  x   3  y  5  2  x  3

 3 m  3 ; y-intercept:  0,   2

y  5  2 x  6 y  2 x  1

4. 2 x  3 y  1 3y  2x  1 2 1 y x 3 3 2 1  m  ; y-intercept:  0,    3 3

12.

y  y1  m  x  x1  y   6  3  x  4 y  6  3 x  12 y  3 x  18

234

c.  0,  5 8. parallel


Section 2.5 13. y  y1  m  x  x1 

18. m 

2  x   1  3 2 y   x  1 3 2 2 y  x 3 3

y0

y  y1  m  x  x1 

11  x   4  3 11 y  8   x  4 3 11 44 y 8 x 3 3 11 68 y  x 3 3 y 8

14. y  y1  m  x  x1 

3  x   4  5 3 y   x  4 5 3 12 y  x 5 5

y0

15.

y2  y1 3  8 11 11    3 x2  x1 7   4 3

19. m 

y2  y1 0  8 8 8    x2  x1 5  0 5 5

y  y1  m  x  x1 

8  x  5 5 8 y   x8 5

y  y1  m  x  x1 

y0 

y  2.6  1.2  x  3.4 y  2.6  1.2 x  4.08 y  1.2 x  1.48 20. m 

16. y  y1  m  x  x1 

y2  y1 0   6 6   x2  x1 11  0 11

y  4.1  2.4  x  2.2

y  y1  m  x  x1 

y  4.1  2.4 x  5.28 y  2.2 x  1.18

y0

17. m 

6  x  11 11 6 y  x6 11

y2  y1 1  2 1 1    x2  x1 3  6 9 9

y  y1  m  x  x1 

21. m 

1  x  6 9 1 2 y2 x 9 3 1 4 y  x 9 3

y2  y1 3.7  5.1 1.4    3.5 x2  x1 1.9  2.3 0.4

y  y1  m  x  x1 

y2

y  5.1  3.5  x  2.3 y  5.1  3.5 x  8.05 y  3.5 x  2.95 22. m 

6  4.8 1.2 y2  y1    1.5 x2  x1 0.8  1.6 0.8

y  y1  m  x  x1 

y  6  1.5  x  0.8 y  6  1.5 x  1.2 y  1.5 x  7.2

235


Chapter 2 Functions and Graphs 23.

y  y1  m  x  x1 

35. m1 0 

y   4  0  x  3

1 1  2 2 0 2  True Perpendicular

y40 y  4

20 

24. y  y1  m  x  x1 

y  1  0  x   5  y 1  0 y 1

36. m1 0 

26. A line with an undefined slope is a vertical line. Every coordinate has the same x-value, 4 so the equation is x   . 7

29. a. m 

3 11

b. m  

1 7  6 6 7

31. a. m  6

b. m  

1 1  6 6

32. a. m  10

b. m  

1 1  10 10

33. a. m  1

1 b. m    1 1

34. a. m is undefined

5 y  8 x  3 8 3 y x 5 5

1 11  3 3 11

6 7

30. a. m 

37. 8 x  5 y  3

28. 0 b. m  

1 m2

4 1 0  3 3  4 4 4 0  True 3 3 Perpendicular

25. A line with an undefined slope is a vertical line. Every coordinate has the same x-value, 2 so the equation is x  . 3

27. Undefined

1 m2

2x 

5 y 1 4

5 y  2x  1 4 8 4 y x 5 5

m1  m2 ; Parallel 38. 2 x  3 y  7

3 y  2 x  7 2 7 y   x 3 3 m1  m2 ; Parallel 39. 2 x  6 x3 m  undefined Perpendicular

5 y y5 m0

40. 3 y  5

x 1 m  undefined

5 3 m0 Perpendicular y

b. m  0

236

4 x  6 y  2 6 y  4 x  2 2 1 y   x 3 3


Section 2.5 41. 6 x  7 y 6 y x 7

44. 3 x  y  4 y  3x  4; m  3

7 x  3y  0 2

y  y1  m  x  x1 

7 3 y   x 2 7 y x 6

y   1  3  x  3 y  1  3x  9 y  3x  10 or 3x  y  10

m1  m2 m1 0 

45. x  5 y  1 5 y   x  1 1 1 1 y x ; m 5 5 5 1 1     5 1 m 5 y  y1  m  x  x1 

1 m2

6 1 0  7 7 6 6 6 0  False 7 7 Neither 42. 5 y  2 x 2 y x 5

y   4  5  x  6 y  4  5 x  30 y  5 x  26 or 5 x  y  26

5 x y0 2 5 y   x 2 5 y x 2

46. x  2 y  7 2 y   x  7 1 7 1 y x ; m 2 2 2 1 1     2 1 m 2 y  y1  m  x  x1 

m1  m2 m1 0 

1 m2

2 1 0  5 5 2 2 2 0  False 5 5 Neither

y  4  2  x  5 y  4  2 x  10 y  2 x  14 or 2 x  y  14

47. 3x  7 y  5 7 y  3x  5 3 5 3 y x ; m 7 7 7 y  y1  m  x  x1  3 y  8   x  6 7 3 18 y 8 x  7 7 3 38 or y  x 7 7

43. 2 x  y  6

y  2 x  6; m  2 y  y1  m  x  x1  y  5  2  x  2 y  5  2 x  4 y  2 x  9 or 2 x  y  9

237

7 y  3x  38 3 x  7 y  38


Chapter 2 Functions and Graphs 48. 2 x  5 y  4

53. A line that is perpendicular to the y-axis is a horizontal line with slope 0. Every coordinate has the same y-value, so the 3 equation is y   . 4

5 y  2x  4 2 4 2 y  x ; m 5 5 5 y  y1  m  x  x1  2  x  7 5 2 14 y6 x 5 5 2 44 y x 5 5

54. A line that is perpendicular to the x-axis is a vertical line with undefined slope. Every coordinate has the same x-value, so the 7 equation is x   . 9

y   6 

or

5 y  2 x  44 55. A line that is parallel to a vertical line is also a vertical line with undefined slope. Every coordinate has the same x-value, so the equation is x  61.5 .

2 x  5 y  44 49. 2 x  4  y y  2 x  4; m  2 1 1 1     0.5 m 2 2 y  y1  m  x  x1 

56. A line that is parallel to a horizontal line is also a horizontal line with slope 0. Every coordinate has the same y-value, so the equation is y  0.009 .

y  6.4  0.5  x  2.2 y  6.4  0.5 x  1.1 y  0.5 x  5.3 or

57. a. S  x   0.12 x  400 for x  0 b. S  x   0.12  8000  400

10 y  5 x  53 5 x  10 y  53

 960  400  1360 S  8000  1360 means that the sales person will make $1360 if $8000 in merchandise is sold for the week.

50. 4 x  9  y

y  4 x  9; m  4 1 1 1     0.25 m 4 4 y  y1  m  x  x1 

58. a. P  t   1.5t  2 for t  0 b. P 1.6  1.5 1.6  2  2.4  2  4.4

y  1.2  0.25  x  3.6 y  1.2  0.25 x  0.9 y  0.25 x  0.3 or

P 1.6  4.4 means that it costs $4.40 to park for 1.6 hr (1 hr 36 min).

20 y  5 x  6 5 x  20 y  6

59. a. W  t   120,000  2400  2.7  t for 0  t  4.5

51. A line that is parallel to the x-axis is a horizontal line with slope 0. Every coordinate has the same y-value, so the equation is y  6 .

b. W  2.5  120,000  2400  2.7  2.5

 120,000  16,200  103,800 W  2.5  103,800 means that 2.5 hr into the flight, the mass is 103,800 kg.

52. A line that is parallel to the y-axis is a vertical line with undefined slope. Every coordinate has the same x-value, so the equation is x  11 .

60. a. W  t   0.25t  6.8 for 0  t  27.2

238


Section 2.5 b. W  20  0.25  20  6.8  5  6.8  1.8

65. a.  730

W  20  1.8 means that after 20 days of drought, the water level will be 1.8 ft.

b.  0, 730 c.  730,  

61. a. T  x   0.019 x  172 for x  0

66. a.  25,000

b. T  80,000  0.019  80,000  172

b.  0, 25,000

 1520  172  1692 T  80,000  1692 means that the property tax is $1692 for a home with a taxable value of 80,000.

c.  25,000,   67. a. C  x   0.24 12 x  790  2.88 x  790

62. a. L  x   150 x  2400 for 0  x  16

b. R  x   6 x

b. L 12  150 12  2400

c. P  x   R  x   C  x 

 1800  2400  600 L 12  600 means that after 12 months, Jorge will owe $600.

 6 x   2.88 x  790  3.12 x  790 d.

63. a. C  x   34.5 x  2275

3.12 x  790  0 3.12 x  790 x  253.2 The business will make a profit if it produces and sells 254 dozen or more cookies.

b. R  x   80 x c. P  x   R  x   C  x 

 80 x   34.5 x  2275  45.5 x  2275 d.

P  x  0

e.

P  x   3.12 x  790 P 150  3.12 150  790

45.5 x  2275  0 45.5 x  2275 x  50 items

 468  790  322 The business will lose $322. 68. a. C  x   36 x  680

64. a. C  x   0.4 x  5625

b. R  x   60 x

b. R  x   1.3x

c. P  x   R  x   C  x 

c. P  x   R  x   C  x 

 60 x   36 x  680  24 x  680

 1.3x   0.4 x  5625  0.9 x  5625 d.

P  x  0

d.

P  x  0 24 x  680  0 24 x  680

P  x  0 0.9 x  5625  0 0.9 x  5625 x  6250 items

x  28.3 The business will make a profit if 29 or more maintenance calls are made per month.

239


Chapter 2 Functions and Graphs e.

P  x   24 x  680

d. y  73.4 x  221

y  73.4 12  221  880.8  221  1102 Approximately 1102

P  42  24  42  680  1008  680  328 The business will make $328. 69. a. m 

e. No. There is no guarantee that the linear trend will continue beyond the last observed data point.

y2  y1 41.8  50.8 9 1    x2  x1 19  1 18 2

y  y1  m  x  x1 

71. a. m 

y  50.8  0.5  x  1

y2  y1 13.0  11.2 1.8    0.18 x2  x1 14  4 10

y  y1  m  x  x1 

y  50.8  0.5 x  0.5 y  0.5 x  51.3

y  11.2  0.18  x  4 y  11.2  0.18 x  0.72 y  0.18 x  10.48

b. m  0.5 ; The slope means that alcohol usage among high school students 1 month prior to the CDC survey has dropped by an average rate of 0.5% per yr.

b. m  0.18 means that enrollment in public colleges increased at an average rate of 0.18 million per yr (180,000 per yr).

c. The y-intercept is (0, 51.3) and means that in the year 1990, approximately 51.3% of high school students used alcohol within 1 month prior to the date that the survey was taken.

c. The y-intercept is (0, 10.48) and means that in the year 1990, there were approximately 10,480,000 students enrolled in public colleges. d. y  0.18 x  10.48

d. y  0.5 x  51.3

y  0.18  25  10.48

y  0.5  20  51.3  10  51.3  41.3 Approximately 41.3%

 4.5  10.48  14.98 Approximately 14.98 million

e. No. There is no guarantee that the linear trend will continue well beyond the last observed data point.

72. a. m 

y2  y1 400  486 86    9.56 x2  x1 13  4 9

y  y1  m  x  x1 

y  y1 1469  955 514    73.4 70. a. m  2 x2  x1 17  10 7

y  486  9.56  x  4 y  486  9.56 x  38.24 y  9.56 x  524.24 y  9.56 x  524

y  y1  m  x  x1 

y  955  73.4  x  10 y  955  73.4 x  734 y  73.4 x  221

b. m  9.56 means that cigarette consumption decreased at an average rate of 9.56 billion per yr.

b. m  73.4 means that the number of transplants increased at an average rate of 73.4 per yr during this time period.

c. The y-intercept is (0, 524) and means that in the year 1990, there were approximately 524 billion cigarettes consumed in the United States.

c. The y-intercept is (0, 221) and means that approximately 221 lung transplants were performed in the United States in the year 1990.

240


Section 2.5 d. y  9.56 x  524

c. m  0.046 means that longevity increases at an average rate of 0.046 yr per 1 day increase in the gestation or incubation period.

y  9.56  25  524  239  524  285 Approximately 285 billion 73. a.

d.

L  x   0.0.046 x  6.48 L  80  0.0.046  80  6.48  3.68  6.48  10 Approximately 10 yr

75. Yes; From the graph, the data appear to follow a linear trend.

b. m 

76. Yes; From the graph, the data appear to follow a linear trend.

y2  y1 90  60 30    0.125 x2  x1 720  480 240

77. No; From the graph, the data do not appear to follow a linear trend.

y  y1  m  x  x1 

y  60  0.125  x  480

78. No; From the graph, the data do not appear to follow a linear trend.

y  60  0.125 x  60 y  0.125 x

79. a. y  0.5 x  52.3

c  x   0.125 x

b.

c. m  0.125 means that the amount of cholesterol increases at an average rate of 0.125 mg per calorie of hamburger. d.

c  x   0.125 x c  650  0.125  650  81.25 mg

74. a.

c. y  0.5 x  52.3

y  0.5  20  52.3  10  52.3  42.3 Approximately 42.3%, which is close to the result of 41.3% obtained in Exercise 69(d). 80. a. y  67.4 x  333.2 b.

y  y1 35  8.5 26.5    0.046 b. m  2 x2  x1 620  44 576 y  y1  m  x  x1 

y  8.5  0.046  x  44 y  8.5  0.046 x  2.024 y  0.046 x  6.476 L  x   0.0.046 x  6.48

241


Chapter 2 Functions and Graphs c. y  67.4 x  333.2

84. a. y  0.045 x  6.68

y  67.4 12  333.2  808.8  333.2  1142 Approximately 1142, which is close to the result of 1102 obtained in Exercise 70(d).

b.

81. a. y  0.175 x  10.46 b. c. y  0.045 x  6.68

y  0.045  80  6.68  3.6  6.68  10.28 Approximately 10 yr 85. m 

c. y  0.175 x  10.46

y  0.175  25  10.46

y2  y1 1   6 5 5    x2  x1 24 2 2

y  y1  m  x  x1 

 4.375  10.46  14.835 Approximately 14.8 million

5  x  4 2 5 y  6   x  10 2 5 y   x4 2 To find the x-intercept, solve y = 0. 5 0  x4 2 5 x4 2 8 8  x  , 0 5 5 y   6  

82. a. y  9.55 x  527 b.

c. y  9.55 x  527

y  9.55  25  527  238.75  527  288.25 Approximately 288 billion

86. m 

y2  y1 7   5 12    2 x2  x1 4  2 6

y  y1  m  x  x1 

83. a. y  0.136 x  4.27

y   5  2  x  2

b.

y  5  2 x  4 y  2 x  1 To find the x-intercept, solve y = 0. 0  2 x  1 2 x  1 1  1  x   , 0 2 2

c. y  0.136 x  4.27 y  0.136  650  4.27  88.4  4.27  84.13 Approximately 84 mg

242


Section 2.5 87. Use the points  0, 4 and  3,11 . m

91. If the slopes of the two lines are the same and the y-intercepts are different, then the lines are parallel. If the slope of one line is the opposite of the reciprocal of the slope of the other line, then the lines are perpendicular.

y2  y1 11  4 7   x2  x1 3  0 3

y  y1  m  x  x1 

7  x  0 3 7 y4 x 3 7 7 y  x  4 or f  x   x  4 3 3 y4

92. The point-slope formula is used to construct an equation of a line if a point on the line and the slope of the line are known. 93. Profit is equal to revenue minus cost. 94. The break-even point is found by determining where revenue equals cost or where profit equals zero.

88. Use the points  0, 7  and  2, 4 .

m

y2  y1 4  7 3 3    x2  x1 2  0 2 2

y  y1  m  x  x1 

95. m 

3  x  0 2 3 y7 x 2 3 3 y  x  7 or g  x   x  7 2 2 y7

1 1    1 m 1 y  y1  m  x  x1 

y  3  1 x  1 y  3  x 1 y  x  4

89. Use the points 1, 6 and  3, 2 . m

y2  y1 3  0 3   x2  x1 4  0 4 1 1 4    3 m 3 4 y  y1  m  x  x1 

y2  y1 2  6 4   1 x2  x1 3  1 4

96. m 

y  y1  m  x  x1  y  6  1 x  1 y  6  x 1

y  x  5 or h  x   x  5

4  x  4 3 4 16 y 3  x 3 3 4 25 y   x 3 3 y 3 

90. Use the points  2,10 and  5,  18 .

m

y2  y1 3   1 4   1 x2  x1 1   3 4

y2  y1 18  10 28    4 x2  x1 5   2 7

y  y1  m  x  x1 

y  10  4  x   2 

97. Let c  2.

y  10  4  x  2

 c, c  1   2,  2  1   2,  7 3

3

y  10  4 x  8

m  3c 2  3  2  3  4  12 2

y  4 x  2 or h  x   4 x  2

243


Chapter 2 Functions and Graphs y  y1  m  x  x1 

m

y   7   12  x   2 

y2  y1 2  8 10 5    5 1 4 2 x2  x1

y  y1  m  x  x1 

y  7  12  x  2

5  x  1 2 5 5 y 8  x 2 2 5 21 y   x for 1  x  5 2 2

y  7  12 x  24 y  12 x  17

y 8 

98. Let c  2.  1  1   c,    2,  c 2 1 1 1 m 2  2  c 4  2

 x  x y  y2  100. M   1 2 , 1   2 2 

y  y1  m  x  x1 

 4  12 1  3   8 4  ,     ,    4, 2  2 2   2 2 y  y1 5  2 7 7 m 2    x2  x1 64 2 2

1 1 y     x  2 2 4 1 1 1 y   x 2 4 2 1 y   x 1 4

y  y1  m  x  x1 

7  x  4 2 7 y  2   x  14 2 7 y   x  16 for 4  x  6 2 y2 

 x  x y  y2  99. M   1 2 , 1   2 2   2  4 9  7   2 16  ,     ,   1, 8  2 2  2 2

Problem Recognition Exercises: Comparing Graphs of Equations 1.

3.

2.

4.

244


Problem Recognition 5.

10.

The graphs have the shape of y  x with a vertical shift.

6. 11.

7.

The graphs have the shape of y  x with a horizontal shift. 12.

8.

The graphs have the shape of y  x 2 with a horizontal shift. 13. 9.

The graph of g  x    x has the shape of the graph of y  x but is reflected across the x-axis.

The graphs have the shape of y  x with a vertical shift. 2

245


Chapter 2 Functions and Graphs 14.

17.

The graph of g  x    x has the shape of

The graph of g  x    x has the shape of

the graph of y  x but is reflected across the x-axis.

the graph of y  x but is reflected across the y-axis.

15.

18.

The graph of g  x   3  x has the shape of

The graphs have the shape of y  x 2 but show a vertical shrink or stretch.

the graph of y  3 x but is reflected across the y-axis.

16.

The graphs have the shape of y  x but show a vertical shrink or stretch.

Section 2.6 Transformations of Graphs 1. a. m  

3 2

b.  0,1

2. a. m  0

c.

c.

246

3  b.  0,   2 


Section 2.6 21. The graph of f is the graph of f  x   x shifted upward 1 unit.

3.

The y-intercepts are different. The graphs differ by a vertical shift. Or we can interpret the difference as a horizontal shift. 22. The graph of g is the graph of f  x   x shifted upward 2 units.

4.

The centers of the circles are different. The graphs differ by a horizontal shift and by a vertical shift. 5. linear

6. up

7. left

8. right

9. down

10. vertical stretch

11. horizontal shrink

12. horizontal stretch

13. vertical shrink

14. x

15. e

16. f

17. b

18. c

19. a

20. d

23. The graph of k is the graph of f  x   x 3 shifted downward 2 units.

247


Chapter 2 Functions and Graphs 24. The graph of h is the graph of f  x  

27. The graph of r is the graph of f  x   x 2 shifted to the right 4 units.

1 x

shifted downward 2 units.

28. The graph of t is the graph of f  x   3 x shifted to the right 2 units.

25. The graph of g is the graph of f  x   x shifted to the left 5 units.

29. The graph of a is the graph of f  x   x shifted to the left 1 unit and downward 3 units.

26. The graph of m is the graph of f  x   x shifted to the left 1 unit.

248


Section 2.6 30. The graph of b is the graph of f  x   x shifted to the right 2 units and upward 4 units.

33. The graph of m is the graph of f  x   3 x stretched vertically by a factor of 4.

34. The graph of n is the graph of f  x   x stretched vertically by a factor of 3.

31. The graph of c is the graph of f  x   x 2 shifted to the right 3 units and upward 1 unit.

35. The graph of r is the graph of f  x   x 2

32. The graph of d is the graph of f  x   x shifted to the left 4 units and downward 1 unit.

shrunk vertically by a factor of

249

1 . 2


Chapter 2 Functions and Graphs 36. The graph of t is the graph of f  x   x

shrunk vertically by a factor of

39. The graph of the function is the graph of 1 f  x  shrunk vertically by a factor of . 3

1 . 3

37. p  x   2 x  2 x

40. The graph of the function is the graph of 1 g  x  shrunk vertically by a factor of . 2

The graph of p is the graph of f  x   x stretched vertically by a factor of 2.

41. The graph of the function is the graph of f  x  stretched vertically by a factor of 3.

38. q  x   2 x  2  x

The graph of q is the graph of f  x   x stretched vertically by a factor of

2.

250


Section 2.6 42. The graph of the function is the graph of g  x  stretched vertically by a factor of 2.

45. The graph of the function is the graph of f  x  stretched horizontally by a factor of

1 . 3

43. The graph of the function is the graph of f  x  shrunk horizontally by a factor of 3. 46. The graph of the function is the graph of g  x  stretched horizontally by a factor of

1 . 2

44. The graph of the function is the graph of g  x  shrunk horizontally by a factor of 2.

47. The graph of f is the graph of f  x  

reflected across the x-axis.

251

1 x


Chapter 2 Functions and Graphs 48. The graph of g is the graph of f  x   x reflected across the x-axis.

51. The graph of p is the graph of f  x   x 3 reflected across the y-axis.

49. The graph of h is the graph of f  x   x 3 reflected across the x-axis.

52. The graph of q is the graph of f  x   3 x reflected across the y-axis.

50. The graph of k is the graph of f  x   x reflected across the x-axis.

53. The graph of the function is the graph of f  x  reflected across the y-axis.

252


Section 2.6 54. The graph of the function is the graph of g  x  reflected across the y-axis.

57. The graph of the function is the graph of f  x  reflected across the y-axis.

55. The graph of the function is the graph of f  x  reflected across the x-axis.

58. The graph of the function is the graph of g  x  reflected across the y-axis.

56. The graph of the function is the graph of g  x  reflected across the x-axis.

59. The graph of the function is the graph of f  x  reflected across the x-axis.

253


Chapter 2 Functions and Graphs 63. The graph of f is the graph of f  x   x shifted to the left 3 units, stretched vertically by a factor of 2, and shifted downward 1 unit.

60. The graph of the function is the graph of g  x  reflected across the x-axis.

61. The graph of v is the graph of f  x   x 2 shifted to the left 2 units, reflected across the x-axis, and shifted upward 1 unit.

64. The graph of g is the graph of f  x   x shifted to the right 1 unit, stretched vertically by a factor of 2, and shifted upward 3 units.

62. The graph of u is the graph of f  x   x 2 shifted to the right 1 unit, reflected across the x-axis, and shifted downward 2 units.

65. The graph of p is the graph of f  x   x shifted to the right 1 unit, shrunk vertically 1 by a factor of , and shifted downward 2 2 units.

254


Section 2.6 66. The graph of q is the graph of f  x   x shifted to the left 2 units, shrunk vertically 1 by a factor of , and shifted downward 1 3 unit.

69. f  x    x  3    x  3

The graph of f is the graph of f  x   x reflected across the y-axis and shifted right 3 units.

70. g  x    x  4    x  4

67. The graph of r is the graph of f  x   x reflected across the y-axis, reflected across the x-axis, and shifted upward 1 unit.

The graph of g is the graph of f  x   x reflected across the y-axis and shifted to the left 4 units.

68. The graph of s is the graph of f  x   x reflected across the y-axis, reflected across the x-axis, and shifted downward 2 units.

71. n  x    2 x  6   2  x  3   4  x  3 2

2

2

The graph of n is the graph of f  x   x 2 shifted to the left by 3 units and stretched vertically by a factor of 4.

255


Chapter 2 Functions and Graphs 72. m  x   2 x  4  2  x  2

75. The graph of the function is the graph of f  x  shifted to the right 2 units, stretched vertically by a factor of 2, and shifted downward 3 units.

The graph of m is the graph of f  x   x shifted to the right 2 units and stretched vertically by a factor of 2.

73. The graph of the function is the graph of f  x  shifted to the right 1 unit, reflected across the x-axis, and shifted upward 2 units.

76. The graph of the function is the graph of f  x  shifted to the left 2 units, stretched vertically by a factor of 2, and shifted downward 4 units.

74. The graph of the function is the graph of f  x  shifted to the left 1 unit, reflected across the x-axis, and shifted downward 2 units.

77. The graph of the function is the graph of f  x  shrunk horizontally by a factor of 2, stretched vertically by a factor of 3, and reflected across the x-axis.

256


Section 2.6 84. As written, g  x   2 x is in the form

78. The graph of the function is the graph of f  x  stretched horizontally by a factor of

g  x   f  ax  with a  1 . This indicates a

horizontal shrink. However, g  x  can also be

1 1 , shrunk vertically by a factor of , and 2 2 reflected across the x-axis.

written as g  x   2  x  2 x . This is

written in the form g  x   af  x  with a  1 . This represents a vertical stretch. 1 x is in the form 2 h  x   f  ax  with 0  a  1 . This indicates

85. As written, h  x  

a horizontal stretch. However, h  x  can also 1  x . This is written 2 in the form h  x   af  x  with 0  a  1 . This represents a vertical shrink. be written as h  x  

79. The graph of the function is the graph of f  x  reflected across the y-axis and shifted downward 2 units.

86. The graph of f is the same as the graph of y y  x with a horizontal shift to the right 2 units and a vertical shift downward 3 units. By contrast, the graph of g is the graph of y  x with a horizontal shift to the right 3 units and a vertical shift downward 2 units. 87. The graph is f  x   x 2 shifted to the right 2 units and downward 3 units.

f  x    x  2  3 2

80. The graph of the function is the graph of f  x  reflected across the y-axis and shifted upward 3 units.

88. The graph is f  x   x shifted to the left 3 units and downward 4 units. f  x  x  3  4 89. The graph is f  x  

1 shifted to the left 3 x

units. f  x 

81. c

1 x3

90. The graph is f  x   x shifted downward 2 units. f  x  x  2

82. a

83. b

257


Chapter 2 Functions and Graphs 91. The graph is f  x   x3 reflected across the x-axis and shifted upward 1 unit. f  x    x3  1

b.

92. The graph is f  x   x 2 shifted left 2 units and reflected across the x-axis.

f  x     x  2

2

c. The general shape of y  x n is similar to

the graph of y  x 2 for even values of n greater than 1.

93. a.

d. The general shape of y  x n is similar to

the graph of y  x 3 for odd values of n greater than 1.

Section 2.7 Analyzing Graphs of Functions and Piecewise-Defined Functions 1.

3.

2.

4.

5.

f  x   3x 2  5 x  1 f   x   3   x   5   x   1 2

 3x 2  5 x  1

258


Section 2.7 g  x  2 x  x2  3

6.

This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the x-axis. Replace x by  x and y by  y .

g   x  2   x    x  3 2

 2 x  x2  3

 y   x  4

7. y

8. x

9. origin

10. y-axis

y   x  4 y x 4 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.

11. origin 12.  x  or int(x) or floor(x)

15. x   y  4 Replace x by  x . x   y  4

13. y  x  3 Replace x by  x . 2

y    x  3 2

x y 4 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the y-axis. Replace y by  y .

y  x2  3 This equation is equivalent to the original equation, so the graph is symmetric with respect to the y-axis. Replace y by  y .

x   y  4

y  x  3

x  y 4 This equation is equivalent to the original equation, so the graph is symmetric with respect to the x-axis. Replace x by  x and y by  y .

2

y   x2  3 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the x-axis. Replace x by  x and y by  y .

x  y 4

 y    x  3

x    y  4

y  x 3

x y 4 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.

2

2

y   x2  3 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.

16. x  y 2  3 Replace x by  x .  x  y2  3

14. y   x  4 Replace x by  x . y   x  4

x   y2  3 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the y-axis. Replace y by  y .

y   x 4 This equation is equivalent to the original equation, so the graph is symmetric with respect to the y-axis. Replace y by  y .

x    y  3 2

y   x  4

x  y2  3

y x 4

259


Chapter 2 Functions and Graphs This equation is equivalent to the original equation, so the graph is symmetric with respect to the x-axis. Replace x by  x and y by  y .

This equation is equivalent to the original equation, so the graph is symmetric with respect to the x-axis. Replace x by  x and y by  y .

 x    y  3

x   y  4

 x  y2  3

x  y 4 This equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.

2

x   y2  3 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.

19. y  x  2 x  7 Replace x by  x . y   x  2   x  7

17. x 2  y 2  3 Replace x by  x .

  x2  y 2  3

y  x  2x  7 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the y-axis. Replace y by  y .

x2  y 2  3 This equation is equivalent to the original equation, so the graph is symmetric with respect to the y-axis. Replace y by  y .

 y  x  2x  7 y   x  2x  7 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the x-axis. Replace x by  x and y by  y .

x2    y  3 2

x2  y 2  3 This equation is equivalent to the original equation, so the graph is symmetric with respect to the x-axis. Replace x by  x and y by  y .

 y   x  2   x  7  y  x  2x  7

  x2    y 2  3

y   x  2x  7 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.

x2  y 2  3 This equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.

20. y  x 2  6 x  1 Replace x by  x .

18. x  y  4 Replace x by  x . x  y  4

y    x  6   x  1 2

y  x2  6 x  1 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the y-axis. Replace y by  y .

x  y 4 This equation is equivalent to the original equation, so the graph is symmetric with respect to the y-axis. Replace y by  y .

 y  x2  6 x  1

x  y  4

y   x2  6 x  1 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the x-axis.

x  y 4

260


Section 2.7 Replace x by  x and y by  y .

Replace x by  x and y by  y .

 y    x  6   x  1

  y 4  2    x2

 y  x2  6 x  1

y 4  2  x2 This equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.

2

y   x2  6 x  1 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.

1 x3 2 Replace x by  x . 1 y    x  3 2 1 y   x3 2 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the y-axis. Replace y by  y . 1 y  x 3 2 1 y   x3 2 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the x-axis. Replace x by  x and y by  y . 1  y    x  3 2 1 y   x 3 2 1 y  x3 2 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.

23. y 

21. x 2  5  y 2 Replace x by  x .

  x2  5  y 2 x2  5  y 2 This equation is equivalent to the original equation, so the graph is symmetric with respect to the y-axis. Replace y by  y . x2  5    y 

2

x2  5  y 2 This equation is equivalent to the original equation, so the graph is symmetric with respect to the x-axis. Replace x by  x and y by  y .

  x2  5    y 2 x2  5  y 2 This equation is equivalent to the original equation, so the graph is symmetric with respect to the origin. 22. y 4  2  x 2 Replace x by  x .

y 4  2    x

2

y 4  2  x2 This equation is equivalent to the original equation, so the graph is symmetric with respect to the y-axis. Replace y by  y .

2 x 1 5 Replace x by  x . 2 y    x  1 5 2 y   x 1 5

24. y 

  y 4  2  x2 y 4  2  x2 This equation is equivalent to the original equation, so the graph is symmetric with respect to the x-axis.

261


Chapter 2 Functions and Graphs This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the y-axis. Replace y by  y . 2  y  x 1 5 2 y   x 1 5 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the x-axis. Replace x by  x and y by  y . 2  y    x  1 5 2  y   x 1 5 2 y  x 1 5 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.

b. Yes c. Even 34. a.

g   x      x   3   x    x8  3 x 8

b. Yes c. Even 35. a.

h  x   4 x3  2 x h   x   4   x   2   x   4 x 3  2 x 3

b.  h  x    4 x 3  2 x  4 x 3  2 x c. Yes d. Odd 36. a.

k  x   8 x 5  6 x 3 k   x   8   x   6   x   8 x 5  6 x 3 5

3

b.  k  x    8 x 5  6 x 3  8 x 5  6 x 3

25. y-axis symmetry

c. Yes

26. Origin symmetry

d. Odd

27. The function is symmetric to the origin. Therefore, the function is an odd function.

37. a.

2

 4 x2  2 x  3

b.  m  x    4 x 2  2 x  3  4 x 2  2 x  3

29. The function is symmetric to the y-axis. Therefore, the function is an even function.

c. No d. No

30. The function is symmetric to the y-axis. Therefore, the function is an even function.

e. Neither

31. The function is not symmetric with respect to either the y-axis or the origin. Therefore, the function is neither even nor odd.

38. a.

n  x  7 x  3x  1 n   x  7  x  3  x  1  7 x  3x  1

32. The function is not symmetric with respect to either the y-axis or the origin. Therefore, the function is neither even nor odd.

b.  n  x     7 x  3 x  1  7 x  3 x  1 c. No

f  x  4 x2  3 x

d. No

f   x  4   x  3  x  4 x  3 x 2

m  x  4 x2  2 x  3 m   x  4   x  2   x  3

28. The function is symmetric to the origin. Therefore, the function is an odd function.

33. a.

g  x    x8  3 x

2

e. Neither

262


Section 2.7 39.

f  x   3x6  2 x 2  x

r   x  r  x

r   x  r  x The function is neither even nor odd.

f   x  3  x  2   x   x 6

f   x   3x6  2 x 2  x f   x  f  x The function is even. 40.

45.

q   x   16    x   16  x 2 2

p  x    x  12 x10  5

q   x  q  x

p   x     x  12   x   5 10

The function is even.

p   x    x  12 x10  5

46.

p   x  p  x The function is even. 41.

q  x   16  x 2

z  x   49  x 2 z   x   49    x   49  x 2 2

z   x  z  x

k  x   13x 3  12 x

The function is even.

k   x   13   x   12   x  3

k   x   13 x 3  12 x

47.

h   x   5   x   5 x

 k  x    13 x 3  12 x  13 x 3  12 x

 h  x     5 x   5 x

k   x  k  x

h   x  h  x The function is odd.

The function is odd. 42.

m  x   4 x 5  2 x 3  x

48.

m   x   4   x   2   x     x  5

 g  x     x  x

3

g  x   x

g   x     x  x

3

m   x  4 x  2 x  x 5

h  x  5x

g   x   g  x The function is odd.

 m  x    4 x5  2 x 3  x  4 x 5  2 x 3  x m   x  m  x The function is odd.

49. a. Use the second rule.

f  3   3  3  9  3  12 2

43.

n  x   16   x  3

2

n   x   16    x  3

2

 n  x    16   x  3

2

b. Use the first rule. f  2  3  2  7  6  7  13 c. Use the second rule.

f  1   1  3  1  3  4 2

n   x  n  x n   x  n  x The function is neither even nor odd. 44.

r  x   81   x  2

d. Use the third rule. f  4  5 e. Use the third rule. f  5  5

2

r   x   81    x  2

2

50. a. Use the first rule. g  3  2 3  3  6  3  9

 r  x    81   x  2

2

b. Use the third rule. g  3  4

263


Chapter 2 Functions and Graphs c. Use the first rule. g  2  2 2  3  4  3  7

52. a. Use the second rule. t 1.99  2 1.99  3.98 b. Use the first rule. t  0.4  0.4

d. Use the second rule. g  0  5  0  6  0  6  6

c. Use the third rule. t  3  3  3  9

e. Use the third rule. g  4  4

d. Use the first rule. t 1  1

51. a. Use the second rule. h  1.7   1

e. Use the fourth rule. t  3.001  4  3.001  12.004

b. Use the first rule. h  2.5  2 c. Use the second rule. h  0.05  1

53. c

54. a

d. Use the fourth rule. h  2  1

55. d

56. b

e. Use the second rule. h  0  1 57. a.

b.

c.

58. a.

b.

c.

59. a.

b.

c.

264


Section 2.7 60. a.

b.

c.

61.

64.

62.

65.

63.

66.

265


Chapter 2 Functions and Graphs 67.

71. a.

b. y  x

68. 72.

f  x   x

f  3.7    3.7   4 73.

f  x   x

f  4.2   4.2  5 74.

f  x   x

f  0.5   0.5  1

69. 75.

f  x   x

f  0.09   0.09  1 76.

f  x   x

f  0.5  0.5  0 77.

f  x   x

f  0.09  0.09  0

70.

78. f  x    x 

f  6   6  6

79.

f  x   x

f  9   9  9 80.

f  x   x

f  5   5  5

266


Section 2.7 81.

84.

82.

0.44 0.61  85. a. C  x    0.78 0.95

for 0  x  1 for 1  x  2 for 2  x  3 for 3  x  3.5

b.

83.

60  2 x 86. a. L  x    32  2.5  x  14 b.

2000 87. S  x    2000  0.05  x  40,000

for 2  x  3 for 3  x  3.5

for 0  x  600 63.97 88. C  x    63.97  0.40  x  600 for x  600

267

for 0  x  14 for 14  x  19


Chapter 2 Functions and Graphs 89. a.  2,  

b.  3,  2 

c.  2, 2 

90. a.  , 0 

b.  0,1

c. 1, 4 

100. At x  2 , the function has a relative maximum of 3. At x  0 , the function has a relative minimum of 1. At x  2 , the function has a relative maximum of 3.

91. a.  ,  

101. At x  2 , the function has a relative minimum of 4 . At x  0 , the function has a relative maximum of 0. At x  2 , the function has a relative minimum of 4 .

b. Never decreasing c. Never constant 92. a.  ,  

102. At x  3 , the function has a relative maximum of 5. At x  0 , the function has a relative minimum of 0. At x  3 , the function has a relative maximum of 5.

b. Never decreasing c. Never constant 93. a. 1,  

103. a. (0, 3) and (7, 9); these intervals correspond to the years 2000 to 2003 and 2007 to 2009.

b.  ,1

b. (3, 7); this interval corresponds to the years 2003 to 2007.

c. Never constant 94. a.  ,  1

c. Relative maximum approximately 6%; Relative minimum approximately 4.5%.

b.  1,  

104. a. (4, 14) and (24, 27); these intervals correspond to the years 1984 to 1994 and 2004 to 2007.

c. Never constant 95. a.  ,  2    2,  

b. (0, 4) and (14, 24); these intervals correspond to the years 1980 to 1984 and 1994 to 2004.

b. Never decreasing c.  2, 2 

c. Relative minima: approximately 166,000 and 132,000; Relative maxima: approximately 195,000.

96. a. Never increasing b.  , 0    2,  

 2 for x  1 105. f  x    3 for x  1

c.  0, 2  97. At x  1 , the function has a relative minimum of 3 .

4 for x  2 106. f  x    1 for x  2

98. At x  1 , the function has a relative maximum of 2.

 x 107. f  x     2

99. At x  2 , the function has a relative minimum of 0. At x  0 , the function has a relative maximum of 2. At x  2 , the function has a relative minimum of 0.

for x  2 for x  2

 x 2 for x  2 108. f  x    4 for x  2

268


Section 2.7 1  109. f  x    x  x

117. If replacing y by  y in the equation results in an equivalent equation, then the graph is symmetric with respect to the x-axis. If replacing x by  x in the equation results in an equivalent equation, then the graph is symmetric with respect to the y-axis. If replacing both x by  x and y by  y results in an equivalent equation, then the graph is symmetric with respect to the origin.

for x  0 for x  0

for x  0   x 110. f  x     x  1 for x  0 111. For t  10 sec, use the first rule. s 10  1.5 10  15 ft/sec For t  20 sec, use the first rule. s  20  1.5  20  30 ft/sec For t  30 sec, use the second rule. 30 30 s  30    2.7 ft/sec 30  19 11 For t  40 sec, use the second rule. 30 30 s  40    1.4 ft/sec 40  19 21

118. If the graph is symmetric with respect to the y-axis, then the function is even. If the graph is symmetric with respect to the origin, then the function is odd. 119. At x  1 , there are two different y values. The relation contains the ordered pairs (1, 2) and (1, 3). 120. The two rules defining f  x  are stated for x  1 and for x  1 . The function is not defined at x  1 . Therefore, there is a “hole” in the function at the point (1, 3).

112. For t  6 sec, use the first rule. 5 5 2 s  6   6   36  15 mph 12 12 For t  12 sec, use the first rule. 5 2 s 12  12  5 12  60 mph 12 For t  45 sec, use the second rule. s  45  40 mph For t  80 sec, use the third rule. 2 3 s  80  92   80   20 3 2  12 20  21.6 mph 113. Graph b

121. A relative maximum of a function is the greatest function value relative to other points on the function nearby. 122. A function is increasing on an interval I if for all x1  x2 on I, f  x1   f  x2  . In other words, the function “rises” from left to right over the interval. 123. If the average rate of change is negative and then positive, the function is decreasing and then increasing. Therefore it must have a relative minimum at a.

114. Graph d

c. 4

d. 3

124. If the average rate of change is positive and then negative, the function is increasing and then decreasing. Therefore it must have a relative maximum at a.

e. 3

f. 4

125. a. Concave down

b. Decreasing

b. 1

126. a. Concave up

b. Increasing

127. a. Concave up

b. Decreasing

128. a. Concave down

b. Increasing

115. a. 2

116. a. 5

b. 4

c. 2

d. 6

e. 0

f. 2

269


Chapter 2 Functions and Graphs 129.

132.

The graph does not have a gap at x  2 , however, the limited resolution on the calculator gives the appearance of a gap.

130.

133.

131.

134.

The graph does not have a gap at x  2 , however, the limited resolution on the calculator gives the appearance of a gap.

270


Section 2.8 135.

136.

Relative minimum 7.825

Relative maximum 4.667

Section 2.8 Algebra of Functions and Function Composition 1. 5  2 x  0 2 x  5 5 x 2 5   ,  2

6.

f  a  4  3  a  4  5  a  4   1 2

 3 a 2  8a  16  5a  20  1  3a  24a  48  5a  20  1 2

 3a 2  19a  27

2. 1  4 x  0 4 x  1 1 x 4  1    4 ,  

7. f  x  ; g  x 

9.

f  x  h  f  x h

8.

f  x ; g  x g  x

10. f  g  x  

11.  f  g  x   x  3 ; Graph d

3. 81  x 2  0

12.  f  g  x   x   4  x  4 ; Graph b

 x 2  81 x 2  81 x  9  ,  9   9, 9   9,  

13.  f  g  x   x 2   4  x 2  4 ; Graph a 14.  f  g  x   x 2  3 ; Graph c

4. 49  x 2  0

15.  f  g  3  f  3  g  3

 x 2  49

 2  3  3  4  6  7  13

x 2  49 x  7  ,  7    7, 7    7,    5.

f  x   3x 2  5 x  1

16.  g  h  2  g  2  h  2

 24 

f  x   3x 2  5 x  1 f  t  2  3  t  2  5  t  2  1

1 1 6 7 23 1

2

17.  f  g  1  f  1  g  1

 3 t 2  4t  4  5t  10  1

 2  1  1  4  2  3  6

 3t 2  12t  12  5t  10  1  3t 2  17t  21

271


Chapter 2 Functions and Graphs

18.  h  g  4  h  4  g  4

1 x  0  x  1 x 1 The domain of p is  ,   .

1 1  4  4  8  8 43 1

19.  g  h  0  g  0  h  0

 04 

The domain of q is  ,1 .

1 1 11  4  03 3 3

The intersection of their domains is  , 1 .

20.  f  h  5  f  5  h  5

 2  5 

28.  r  q  x   r  x   q  x   3x 1  x

1 1 19  10    53 2 2

The domain of r is  ,   . The domain of q is  ,1 .

f  8 2  8 16  f 4 21.    8     g  8 8  4 12 3  g

The intersection of their domains is  , 1 . q  x  q 1 x 29.    x    2 p  x  x  3x  p

1 1 h  7  h 1  73  4   22.    7   f  7  2  7  14 56  f

The domain of q is  ,1 .

The domain of p is  ,   .

g  0 0  4 4  g 23.    0    Undefined f  0 2  0 0  f

The intersection of their domains is  , 1 .

x 2  3x  0 x  x  3  0

1 1 h  4 4  3 7  h   24.    4  g  4 4  4 0  g

x  0 or x  3 Also exclude the values x  0 and x  3 , which make the denominator zero. The domain is  ,  3   3, 0   0,1 .

Undefined 25.  r  p  x   r  x   p  x 

 3x  x 2  3x

q  x 1 x  q 30.    x     r 3 x r  x

 3x  x 2  3x   x 2  6 x The domain of r is  ,   .

The domain of q is  ,1 .

The domain of r is  ,   .

The domain of p is  ,   .

The intersection of their domains is  , 1 . 3 x  0 x0 Also exclude the value x  0 , which makes the denominator zero. The domain is  , 0   0,1 .

The intersection of their domains is  ,   .

26.  p  r  x   p  x   r  x 

27.  p  q  x   p  x   q  x   x 2  3x  1  x

 x 2  3x   3x   x 2  3x  3x  x 2  6 x The domain of p is  ,   .

The domain of r is  ,   .

The intersection of their domains is  ,   .

272


Section 2.8 p  x  x 2  3x  p  31.    x   q  x  q 1 x

r  x  r 3x 3  2  36.    x   p  x  x  3x x  3  p

The domain of p is  ,   .

The domain of q is  ,   .

The domain of q is  ,1 .

The domain of p is  ,   .

The intersection of their domains is  , 1 . Also exclude the value x  1 , which makes the denominator zero. The domain is  ,1 .

The intersection of their domains is  ,   . Also exclude the values x  0 and x  3 , which make the denominator zero. The domain is  ,  3   3, 0   0,   . 37. a. f  x  h   5  x  h   9  5 x  5h  9

r  x  r 3 x  32.    x   q  x  q 1 x The domain of r is  ,   .

b.

The domain of q is  ,1 .

The intersection of their domains is  , 1 . Also exclude the value x  1 , which makes the denominator zero. The domain is  ,1 .

f  x  h   f  x  5 x  5h  9   5 x  9   h h 5 x  5h  9  5 x  9  h 5h  h 5

38. a. f  x  h   8  x  h   4  8 x  8h  4

33.  r  q  x   r  x   q  x 

 3 x  1  x The domain of r is  ,   .

b.

The domain of q is  ,1 .

The intersection of their domains is  , 1 . 34.  p  q  x   p  x   q  x   x 2  3x  1  x The domain of p is  ,   .

f  x  h   f  x  8 x  8h  4   8 x  4   h h 8 x  8h  4  8 x  4  h 8h  h 8

39. a. f  x  h    x  h   4  x  h  2

The domain of q is  ,1 .

 x 2  2 xh  h 2  4 x  4h

The intersection of their domains is  , 1 . b.

p  x  x 2  3x x  3  p   35.    x    r r  x 3x 3

f  x  h  f  x h 2 x  2 xh  h 2  4 x  4h  x 2  4 x  h 2 2 x  2 xh  h  4 x  4h  x 2  4 x  h 2 2 xh  h  4h  h  2x  h  4

The domain of p is  ,   . The domain of r is  ,   .

The intersection of their domains is  ,   . Also exclude the value x  0 , which makes the denominator zero. The domain is  , 0   0,   .

273


Chapter 2 Functions and Graphs 40. a. f  x  h    x  h   3  x  h  2

41.

 x  2 xh  h  3x  3h 2

b.

2

f  x  h  f  x h 2 x  2 xh  h 2  3x  3h  x 2  3 x  h 2 2 x  2 xh  h  3x  3h  x 2  3 x  h 2 2 xh  h  3h   2x  h  3 h

 42.

2

2

f  x  h   f  x  2  x  h   5   2 x  5  h h 2 x  2h  5  2 x  5  h 2h   2 h

f  x  h   f  x  3  x  h   8   3x  8  h h 3x  3h  8  3 x  8  h 3h   3 h

f  x  h   f  x  5  x  h   4  x  h   2  5 x  4 x  2  43. h h 2 2 5 x  2 xh  h  4 x  4h  2  5 x 2  4 x  2  h 5 x 2  10 xh  5h 2  4 x  4h  2  5 x 2  4 x  2 10 xh  5h 2  4h    10 x  5h  4 h h 2

f  x  h   f  x  4  x  h   2  x  h   6  4 x  2 x  6  44. h h 2 2 4 x  2 xh  h  2 x  2h  6  4 x 2  2 x  6  h 2 2 4 x  8 xh  4h  2 x  2h  6  4 x 2  2 x  6 8 xh  4h 2  2h    8 x  4h  2 h h 2

f  x  h   f  x   x  h   x3 x 3  3 x 2 h  3xh 2  h3  x3 45.    3x 2  3xh  h 2 h h h 3

f  x  h  f  x  x  h  2  x  2 x 3  3x 2 h  3xh 2  h3  x 3 46.    3 x 2  3xh  h 2 h h h 3

3

x   x  h x xh h 1 1     f  x  h  f  x  x  h x x  x  h x  x  h x  x  h x  x  h 1      47. h h h h h x  x  h

274


Section 2.8

48.

f  x  h  f  x h 1 1   xh2 x2 h x2 xh2   x  2 x  h  2  x  2 x  h  2  h x2 xh2 h  x  2 x  h  2   x  2 x  h  2  h h 1   x  2 x  h  2

49. a.

  4  4  4  64  16  48 3

52. h  g  2   h

 2  2   h  2

 2  2  3  4  3  7

53. h  f 1   h 13  4 1  h  3

 2  3  3  6  3  3

54. g  f  3   g  3  4  3  g  27  12 3

 g 15  2 15  30

f  x  h  f  x 4 x  h  4 x  h h

55.  f  g 18  f  g 18   f

 f

4 11  4 1 b.  4 2  4  1.6569 1 4 1  0.1  4 1 4 1.1  4   1.9524 0.1 0.1 4 1  0.01  4 1 4 1.01  4   1.9950 0.01 0.01 4 1  0.001  4 1 4 1.001  4   1.9995 0.001 0.001

 2 18 

 36   f  6   6  4  6 3

 216  24  192 56.  f  h  1  f  h  1   f  2  1  3

 f 1  1  4 1  1  4  3 3

57.  g  f  5  g  f  5   g  5  4  5 3

 g 125  20  g 105

c. 2

50. a.

 2 8   f  16   f  4

51. f  g  8   f

 2 105  210

f  x  h  f  x h

12 12   xh x h

3

3

58.  h  f  2  h  f  2   h  2  4  2

 h  8  8  h  0  2  0  3  3

12 12 12  6 b. 2  0.1 2  2.1  2.8571 0.1 0.1 12 12 12  6 2  0.01 2  2.01  2.9851 0.01 0.01 12 12 12  6 2  0.001 2  2.001  2.9985 0.001 0.001 12 12 12  6 2  0.0001 2  2.0001  2.9999 0.0001 0.0001

59.  h  f  3  h  f  3   h  3  4  3

 h  27  12  h  15  2  15  3  30  3  27 60.  h  g  72  h  g  72   h

h

 144   h 12  2 12  3

 24  3  27

c. 3

275

 2  72 


Chapter 2 Functions and Graphs

61.  g  f 1  g  f 1   g 1  4 1 3

 g 1  4  g  3

67.  m  n  x   m  n  x    n  x   8

 x 58  x3

x3 0 x  3 Domain:  3,  

 2  3  6

Undefined

62.  g  f  4  g  f  4   g  4  4  4 3

 g  64  16  g  48

68.  n  m  x   n  m  x    m  x   5 

 x8 5

 2  48  96

x8 0 x  8 Domain:  8,  

Undefined 63. a.  f  g  x   f  g  x  

69.  q  n  x   q  n  x   

 2  g  x  4  2 x2  4 2

b.  g  f  x   g  f  x     f  x  

2

  2 x  4  4 x 2  16 x  16 2

1 1  x  5  10 x  15

x  15  0 x  15 Domain:  ,15  15,  

c. No 64. a.  k  m  x   k  m  x    3  m  x    1

70.  q  p  x   q  p  x  

3  1  3    1    1  x x b.  m  k  x   m  k  x   

1 n  x   10

1 1  k  x  3x  1

1

p  x   10

1 x  9 x  10 2

x  9 x  10  0 2

 x  10 x  1  0

c. No

x  10 or x  1 Domain:  ,  1   1,10  10,  

65.  n  p  x   n  p  x  

 p  x  5  x2  9 x  5

71.  q  r  x   q  r  x  

Domain:  ,  

66.  p  n  x   p  n  x  

1 1  r  x   10 2 x  3  10

2 x  3  10  0

  n  x    9  n  x   2

2 x  3  10

  x  5  9  x  5 2

2 x  3  10 or 2 x  3  10

 x  10 x  25  9 x  45 2

 x  19 x  70 Domain:  ,  

2x  7

or

7 2

or

2 x  13

13 2 13   13 7   7   Domain:  ,      ,    ,   2   2 2  2 

2

x

276

x


Section 2.8 72.  q  m  x   q  m  x  

1  m  x   10

d. T  C  4  23.267  4  10.99  104.058 The total cost to purchase 4 boxes of stationery is $104.06.

1 x  8  10

78. a. C  x   60 x

x  8  10  0 x  8  10 x  8  100

b. T  a   a  0.055a  8  1.055a  8 c. T  C  x   T  C  x    1.055  C  x    8

x  92 x8 0 x  8 Domain:  8, 92   92,  

 1.055  60 x   8  63.3 x  8 d. T  C  6  63.3  6  8  387.8 The total cost to purchase 6 tickets is $387.80.

73.  n  r  x   n  r  x    r  x   5  2 x  3  5

Domain:  ,  

79. a. r  t   80t

c.  d  r  t   d  r  t    7.2  r  t  

74.  r  n  x   r  n  x  

 7.2  80t   576t This function represents the distance traveled (in ft) in t minutes.

 2  n  x    3  2  x  5  3  2 x  10  3  2 x  7 Domain:  ,  

d.  d  r  30  576  30  17,280 means that the bicycle will travel 17,280 ft (approximately 3.27 mi) in 30 min.

75.  n  n  x   n  n  x    n  x   5

 x  5  5  x  10 Domain:  ,  

80. a. C  x   2.4 x

76.  p  p  x   p  p  x  

  p  x    9  p  x  

2

 x2  9 x  9 x2  9 x

b. D  C  

c.  D  C  x  D C  x 

2

b. d  r   7.2r

C 0.8

C  x 2.4 x   3x 0.8 0.8

d.  D  C 12  3 12  36 means that 12 croissants cost $36.

 x 4  18 x 3  81x 2  9 x 2  81x

81. f  x   x 2 and g  x   x  7

 x 4  18 x 3  72 x 2  81x Domain:  ,  

82. f  x   x 2 and g  x   x  8

77. a. C  x   21.95 x

83. f  x   3 x and g  x   2 x  1

b. T  a   a  0.06a  10.99  1.06a  10.99

84. f  x   4 x and g  x   9 x  5

c. T  C  x   T  C  x  

 1.06  C  x    10.99

85. f  x   x and g  x   2 x 2  3

 1.06  21.95 x   10.99

86. f  x   x and g  x   4  x 2

 23.267 x  10.99

277


Chapter 2 Functions and Graphs 87. f  x  

g. h  k  3   h  1  2

5 and g  x   x  4 x

92. a.  m  p 1  m 1  p 1  4  2  6

11 88. f  x   and g  x   x  3 x

b.  p  m 4  p  4  m  4

 4   2  6

89. a.  f  g  0  f  0  g  0  3   2  1

m  3 2  m c.    3   Undefined  p p  3 0

b.  g  f  2  g  2  f  2  0  1  1 c.  g  f  1  g  1  f  1  2  3  6

d.  m  p  3  m  3  p  3  2  0  0

g 1 1  g 1   d.   1  f 1 2 2  f

e.  m  p  0  m  p  0   m  2  3 f.  p  m  0  p  m  0   p  4 Undefined

e.  f  g  4  f  g  4   f  2  1

g. p  m  4   p  2  4

f.  g  f  0  g  f  0   g  3  1 g. g  f  4   g  1  2

93.  f  g  4  f  4  g  4  2  3  1

90. a.  f  g  0  f  0  g  0  1   3  2

94.  g  f  0  g  0  f  0  6  3  18

b.  g  f 1  g 1  f 1  2  1  3

95.  g  f  2  g  f  2   g  4  3

c.  g  f  2  g  2  f  2  1 2  2

96.  f  g  0  f  g  0   f  6  1

f  3 2  f  2 d.    3  g  3 1  g

97.  g  g  6  g  g  6   g  0  6

e.  f  g  3  f  g  3   f  0  1

98.  f  f  1  f  f  1   f  6  1

f.  g  f  0  g  f  0   g 1  2

99.  f  g  5  f  g  5   f  7  Undefined

g. g  f  4   g  3  1

100.  g  f  0  g  f  0   g  3 Undefined

91. a.  h  k  1  h  1  k  1  2   3  1 b.  h  k  4  h  4  k  4  1 0  0

101.  k  p  4  k  4  p  4  6  2  8

k  3 3  k c.    3   Undefined  h h  3 0

102.  p  k  0  p  0  k  0  3  4  7

d.  k  h 1  k 1  h 1  1  2  3

103.  k  p  2  k  p  2   k  4  6

e.  k  h  4  k  h  4   k  1  3

104.  p  k  2  p  k  2   p  5  0

f.  h  k  2  h  k  2   h  3  0

105.  k  k  0  k  k  0   k  4  6

278


Section 2.8 106.  p  p  5  p  p  5   p  0  3

112. a. A1  x     x  5 represents the area of the outer circle in terms of the radius of the inner circle, x. 2

107. T  x    M  W  x   M  x   W  x 

b. A2  x    x 2 represents the area of the inner circle based on its radius, x.

 0.08 x  5.4  0.03 x  1.1  0.11x  6.5 This function represents the total number of adults (in millions) on probation, on parole, or incarcerated x years after the year 2000.

c.  A1  A2   x   A1  x   A2  x 

   x  5   x 2 2

108. T  x    P  R  x   P  x   R  x 

  x 2  10 x  25   x 2   x  10 x  25   x 2  10 x  25 This function represents the area of the region outside the inner circle and inside the outer circle.

 0.6 x  52.9  0.1x  8.4  0.7 x  61.3 This function represents the total school enrollment (in millions) in the United States, x years after 1990.

2

113. a. S1  x   x  x  4  x 2  4 x

109. a. C  x   2.8 x  5000 b. R  x   40 x

2

1 1  x 1 x2 1 b. S 2  x   r 2         x 2 2 2  2 2 4 8

c.  R  C  x   R  x   C  x 

c.  S1  S 2   x   A1  x   A2  x  1  x2  4 x   x2 8 This function represents the area of the region outside the semicircle, but inside the rectangle.

 40 x   2.8 x  5000  40 x  2.8 x  5000  37.2 x  5000 This function represents the profit for selling x CDs. d.  R  C  2400  37.2  2400  5000

 f 114. The domain of    x  is the intersection of  g the domains of f and g with the further restriction to exclude values of x for which g  x  0 .

 $84,280 110. a. C  x   3.5 x  640 b. R  x   25 x c.  R  C  x   R  x   C  x 

115. The domain of  f  g  x  is the set of real numbers x in the domain of g such that g(x) is in the domain of f.

 25 x   3.5  640  25 x  3.5 x  640  21.5 x  640 This function represents the monthly profit for selling x necklaces.

116. For a positive real number h, the difference quotient represents the average rate of change of a function f between points  x, f  x  and  x  h, f  x  h . This is also

d.  R  C  212  21.5  212  640  $3918

interpreted as the slope of the secant line between the points  x, f  x   and

H  L 111.   x  represents the average of the  2  high and low temperatures for day x.

 x  h, f  x  h   .

279


Chapter 2 Functions and Graphs

117. a. b.

f  x  h  f  x h

xh3 x3 h

xh3  x3  h

xh3  x3 xh3  x3  h xh3 x3 x  h  3   x  3

 h

h

 h c.

118. a. b.

1 x03 x3 f  x  h  f  x  h

xh3  x3

xh4  x4 h xh4  x4 xh4  x4  h xh4  x4 x  h  4   x  4

h

h 

 x  h  4  x  4 h

x04  x4

 x  h  3  x  3

1

2 x3

xh4  x4  h

1

1

c.

 x  h  3  x  3

 x  h  4  x  4

1 xh4  x4

1 2 x4

2 d  t  h   d  t  4.84  t  h   88  t  h    4.84t  88t   119. a. h h 2 2 4.84  t  2th  h   88t  88h  4.84t 2  88t  h 4.84t 2  9.68th  4.84h 2  88h  4.84t 2  h 2 9.68th  4.84h  88h   9.68t  4.84h  88 h 2

b. 9.68t  4.84h  88  9.68  0  4.84  2  88  9.68  88  78.32 ft/sec c. 9.68t  4.84h  88  9.68  2  4.84  2  88  19.36  9.68  88  58.96 ft/sec d. 9.68t  4.84h  88  9.68  4  4.84  2  88  38.72  9.68  88  39.6 ft/sec e. 9.68t  4.84h  88  9.68  6  4.84  2  88  58.08  9.68  88  20.24 ft/sec

280


Section 2.8

120. a.

2 2 2 2 d t  h  d t  5 t  h  5t 2 5 t  2th  h  5t 5t 2  10th  5h 2  5t 2 10th  5h 2      10t  5h h h h h h

b. 10t  5h  10  0  5  2  10 ft/sec c. 10t  5h  10  2  5  2  20  10  30 ft/sec d. 10t  5h  10  4  5  2  40  10  50 ft/sec e. 10t  5h  10  6  5  2  60  10  70 ft/sec 121. a.

N  x  h  N  x h

0.28  x  h   20.8  x  h   194  0.28 x 2  20.8 x  194 2

 

h 0.28 x  2 xh  h  20.8 x  20.8h  194  0.28 x 2  20.8 x  194

2

2

h 0.28 x  0.56 xh  0.28h  20.8h  0.28 x 2  h 2 0.56 xh  0.28h  20.8h   0.56 x  0.28h  20.8 h 2

2

b. 0.56 x  0.28h  20.8  0.56 10  0.28 10  20.8  12.4 The difference quotient of 12.4 means that cigarette production increased at an average rate of 12.4 billion per yr between the years 1950 and 1960. c. 0.56 x  0.28h  20.8  0.56  50  0.28 10  20.8  10 The difference quotient of 10 means that cigarette production decreased at an average rate of 10 billion per yr between the years 1990 and 2000.

A  x  h   A  x  0.0092  x  h   0.805  x  h   21.9  0.0092 x  0.805 x  21.9  122. a. h h 2 2 0.0092 x  2 xh  h  0.805 x  0.805h  21.9  0.0092 x 2  0.805 x  21.9  h 0.0092 x 2  0.0184 xh  0.0092h 2  0.805h  0.0092 x 2  h 2 0.0184 xh  0.0092h  0.805h   0.0184 x  0.0092h  0.805 h 2

2

b. 0.0184 x  0.0092h  0.805  0.0184  20  0.0092  5  0.805  0.391 The difference quotient of 0.391 means that the amount of CO2 emitted decreases at an average rate of 0.391 ton per yr for each 1-mpg increase in fuel efficiency for vehicles getting between 20 and 25 mpg. c. 0.0184 x  0.0092h  0.805  0.0184  35  0.0092  5  0.805  0.115 The difference quotient of 0.115 means that the amount of CO2 emitted decreases at an average rate of 0.115 ton per yr for each 1-mpg increase in fuel efficiency for vehicles getting between 35 and 40 mpg.

281


Chapter 2 Functions and Graphs 123.

125.  g  g  x   g  g  x  

 f  f  x   f  f  x  

1  f  x  2

 g  x  3 

1 1 2 x2

Domain of g is  3,   . x3 3 0

1 1  2  x  2 1  2 x  4 1  x2 x2 x2 x2 1   2 x  5 2 x  5 x2 Domain of f is  , 2   2,   . 2 x  5  0 

x3 3 x39

126.  m  m  x   m  m  x  

 m  x  4 

5 2

x4 40 x4 4 x  4  16

1  h  x  6

Domain:  20,  

x  20

 h  h x   h  h  x  

x4 4

Domain of g is  4,   .

 5  5  Domain:  , 2   2,    ,   2  2 

124.

Domain: 12,  

x  12

2 x  5 x

x3 3

 

127.  f  g  h  x   f g  h  x    2 g  h  x    1

1

  1

 2  h  x  1  2 3 x

1 6 x6

1 1  1 6 x   36 6  x  6 1  x6 x6 x6 1 x6   6 x  37 6 x  37 x6 Domain of h is  , 6   6,   . 6 x  37  0 6 x  37 

2

2

     2  h  x    1   2 x  1

128.  g  f  h  x   g f  h  x    f  h  x   2

2

3

129.  h  g  f  x   h g  f  x    3 g  f  x  

 3  f  x    3  2 x  1 2

2

 

130.  g  h  f  x   g h  f  x    h  f  x  

37 x 6

 3 f  x

 37   37  Domain:  , 6   6,    ,   6  6 

   2 x  1 2

3

2

131. m  x   3 x , n  x   x  1 , h  x   4 x ,

k  x  x2

132. m  x   x , n  x   x  4 , h  x   2 x ,

k  x   x3

282

2

2


Chapter 2 Review Chapter 2 Review Exercises 1. a. d 

 x2  x1 2   y2  y1  2

  4   1    2  8 2

4 x  1  y  18

3. a.

4  3  1   2 0 18

2

4  4  2 0 18

 25  100  125  5 5

18 0 18  True

 x  x y  y2  b. M   1 2 , 1   2 2 

Yes 4  5  1   2 0 18 4  4  2 0 18

 3 6  3    ,    , 3  2 2  2  2. a. d 

14 0 18 False No

 x2  x1  2   y2  y1  2

 3 3  3   4 6    6  2

3  4. x-intercept:  , 0 ; y-intercept:  0,  2 2 

2

5. x-intercept:  4, 0 ; y-intercepts:

 12  150  162  8 2

 0,  4 ,  0,  10

 x  x y  y2  b. M   1 2 , 1   2 2 

6. x-intercepts:  1, 0 ,  7, 0 ; y-intercept: none

 3 3 3  6  4 6  ,  2 2    4 3 3 6  3 6    2 3, ,  2   2   2

7. y  x 2  2 x x

y

y  x2  2x

2

8

y   2  2  2  8

1

3

0

0

1

1

2

0

3

3

4

8

2

y   1  2  1  3 2

y   0  2  0  0 2

y  1  2 1  1 2

y   2  2  2  0 2

y   3  2  3  3 2

y   4  2  4  8 2

4 x  1  y  18

b.

 1  4 8   2  ,  2   2

Ordered pair

 2, 8  1, 3  0, 0 1,  1  2, 0  3, 3  4, 8

283


Chapter 2 Functions and Graphs 8. d  5   3    2   2  2

 x  x y  y2  13. a. C   1 2 , 1   2 2 

2

 64  16

 7  1 5   3  ,  2   2

 80  4 5 units

 8 2   ,    4,1  2 2

9. r 2  4

r 42 Center:  4,  3 ; Radius: 2 10. r  17 2

2

2

 11

 7  42   5  1 2

 x  h 2   y  k 2  r 2  x  4 2   y  12   5 2  x  4 2   y  12  25

 x  h2   y  k 2  r 2  x   3    y  1 

 x2  x1  2   y2  y1 2

 9  16  25  5

r  17  3 Center:  0,  ; Radius: 17  2 11. a.

r

b.

2

 x  32   y  12  11 b.

14. a. The circle must touch the x-axis and the yaxis at a distance r from the center. Since the center is in quadrant IV, the center must be  4,  4 . 12. a.  x  h    y  k   r 2 2

 x  h2   y  k 2  r 2 2  x  42   y   4   4 2  x  42   y  4 2  16

2

 x  0 2   y  02   4.2 2 x 2  y 2  17.64 b.

b.

284


Chapter 2 Review 15. a.

x 2  y 2  10 x  2 y  17  0

20. No vertical line intersects the graph in more than one point. This relation is a function.

 x  10 x    y  2 y   17 2

2

2

21. There is at least one vertical line that intersects the graph in more than one point. This relation is not a function.

2

1   2 10   25  

1   2  2   1  

 x  10 x  25   y  2 y  1  17  25  1 2

2

22. x 2   y  3  4 This equation represents the graph of a circle with center  0, 3 and radius 2. This relation is not a function because it fails the vertical line test. 2

 x  5   y  1  9 2

2

b. Center:  5,1 ; Radius:

93

x2  y 2  8 y  3  0

16. a.

x2  y 2  8 y

  3

23. x 2  y  3  4

y   x2  7

2

1   2  8   16  

x 2  y 2  8 y  16  3  16 x   y  4  13 2

2

b. Center:  0, 4 ; Radius: 13 17.  x  3   y  5  0 The sum of two squares will equal zero only if each individual term is zero. Therefore, x  3 and y  5 . 2

No vertical line intersects the graph in more than one point. This relation is a function.

2

24. f  x   2 x 2  4 x

 3, 5

18.

a. f  0  2  0  4  0  0 2

b. f  1  2  1  4  1  2  4  6 2

x 2  y 2  6 x  4 y  15  0

 x  6 x    y  4 y   15 2

c. f  3  2  3  4  3  18  12  6

2

2

1   2  6   9  

2

2

1   2  4   4  

d. f  t   2  t   4  t   2t 2  4t 2

e. f  x  4  2  x  4  4  x  4

 x  6 x  9   y  4 y  4  15  9  4 2

2

2

 x  32   y  22  2

 2 x 2  8 x  16  4 x  16

The sum of two squares cannot be negative, so there is no solution.

 2 x  16 x  32  4 x  16 2

 2 x 2  12 x  16



25. a. f 1  5

19. a. {(Dara Torres, 12), (Carl Lewis, 10), (Bonnie Blair, 6), (Michael Phelps, 16)}

b. f  0  4 c. f  x   1 for x  3

b. {Dara Torres, Carl Lewis, Bonnie Blair, Michael Phelps} c. {12, 10, 6, 16}

d. Yes

285


Chapter 2 Functions and Graphs 26.

P  x   1.065  x  0.32 x 

32.

P 189  1.065 189  0.32 189 

x 3

 1.065 189  60.48

x  3 and x  3  ,  3   3, 3   3, 

 1.065  248.48  265.70 P 189  265.70 means that a drill that costs $189 from the manufacturer will cost the customer $265.70 after the department store markup and sales tax.

33. There is no restriction on x.  ,  34. 2  x  0

 x  2 x2  , 2

27. Solve p  x   0 :

p  x  x  3  1 0  x  3 1

35. a. f  2  2

x 3 1 x 31 or x  4 or Evaluate p  0 :

x 3 0

b. f  3  1

x  3  1 x2

c. f  x   1 for x  1 , x  3 d. f  x   4 for x  4

p  x  x  3  1 p  0   0  3  1  3  1  2

e. x-intercepts:  0, 0 and  2, 0

x-intercepts:  4, 0 ,  2, 0 ; y-intercept:  0, 2

f. y-intercept:  0, 0 g. Domain:  ,  

28. Solve q  x   0 :

q  x   x  2

h. Range:  ,1

0 x2

36. f  x   2 x 2  4

x2 x4 Evaluate q  0 :

37. 2 x  4 y  8

4 y  2x  8 1 y  x2 2

q  x   x  2 q  0     0  2  2 x-intercept:  4, 0 ; y-intercept:  0, 2

x 4 2 0 2

29. Domain:  4,  2, 0, 2, 3, 5 ;

Range:  3, 0, 2,1

30. Domain:  , 4 ; Range:  , 3 31. x  5  0 x5  , 5   5, 

y 0 1 2 3

x-intercept:  4, 0 ; y-intercept:  0, 2

286


Chapter 2 Review 38. 4 x  5 y

4 2   y2  y1 2 1 42. m   3 3  x2  x1 1   3 4 2

4 y x 5 x 5 0

y 4 0 4  5 4

1 5

43. m 

y2  y1 f  b   f  a   x2  x1 ba

44. 0 45. Undefined 46. Undefined

x-intercept:  0, 0 ; y-intercept:  0, 0 47. 39. y  2 x 2 0 2 4

48. a. Linear

y 2 2 2 2

b. Neither c. Constant 49.

x-intercept: none; y-intercept:  0, 2 40. 3x  5

x

x 5 3 5 3 5 3 5 3

C represents the change in cost per change t in time.

5 3 y 2

y  mx  b 2 y   xb 3 2 5   1  b 3 2 5    b 3 13  b 3 2 13 2 13 y   x  ; f  x   x  3 3 3 3

50. y  mx  b

y  0x  b yb 1 b 4 1 1 y  ; f  x  4 4

0 2 4

5  x-intercept:  , 0 ; y-intercept: none 3 

51. m 

y  y1 4   2 2 1    41. m  2 12  4 16 8 x2  x1 287

f  x2   f  x1  x2  x1

30 3  4   3 7


Chapter 2 Functions and Graphs

52. a. Average rate of change 

m1 0 

x2  x1

14,577  10,799 3778   $755.60/yr 10  5 5

b. Average rate of change 

f  x2   f  x1 

1 1 0  2 2 1 1 0  True 2 2 Perpendicular

f  x2   f  x1  x2  x1

35,854  26,561 9293   $1858.60/yr 25  20 5

b. 3 y  1.5 x  5

3 x5 2 1 5 1 y  x  ; m2  2 3 2 m1  m2 ; Parallel

3y 

c. Increasing 53. f  x    x 3  4

f  0    0  4  4 3

f  2    2  4  8  4  4

c. 4 x  8 y  8

3

8 y  4 x  8

f  4    4  4  64  4  60 3

a. Average rate of change 

f  2  f  0 20

f  4  f  2 42

54. a. 1

1 1 y   x  1; m2   2 2 m1  m2 1 m1 0  m2

f  x2   h  x1  x2  x1

4  4 8   4 2 2

b. Average rate of change 

f  x2   h  x1 

60   4 2

b.  ,1

1 m2

1 1 0  1 2  2 1 0 2 False 2 Neither

x2  x1 

56  28 2

c. 1,   57.

2 55. a. 3

y  y1  m  x  x1  y   7   3  x   2  y  7  3  x  2

1 1 3 b.      2 m 2 3

y  7  3x  6 y  3x  1 58. y  y1  m  x  x1 

56. 2 x  4 y  3

4 y  2 x  3 y

2  x  0 5 2 y 5  x 5 2 y   x5 5 y 5 

1 3 1 x  ; m1  2 4 2

a. 12 x  6 y  6

6 y  12 x  6 y  2 x  1; m2  2

288


Chapter 2 Review 59. m 

b. G  4.5  15  2  4.5  15  9  6

y2  y1 7.1  5.3 1.8    0.9 x2  x1 0.9  1.1 2

G  4.5  6 means that after 4.5 hr of driving, the tank has 6 gal left.

y  y1  m  x  x1 

y  5.3  0.9  x  1.1

65. a. C  x   1500  35 x

y  5.3  0.9 x  0.99

b. R  x   60 x

y  0.9 x  6.29

c. P  x   R  x   C  x 

60. A line with an undefined slope is a vertical line. Every coordinate has the same x-value, so the equation is x  5 .

 60 x  1500  35 x   25 x  1500

61. 2 x  y  4

25 x  1500  0 25 x  1500

y  2 x  6; m  2

y  y1  m  x  x1 

x  60 The studio needs more than 60 private lessons per month to make a profit.

y   6  2  x  2 y  6  2x  4 y  2 x  10

e.

The studio will make $550.

2 2 y  x; m  5 5 1 1 5    2 m 2 5 y  y1  m  x  x1 

66. a.

5 y  3    x   2  2 5 y  3    x  2 2 5 y 3  x5 2 5 y  x2 2

b. m 

y2  y1 x2  x1 26,500  22,800 3700   370 12  2 10 y  y1  m  x  x1 

y  22,800  370  x  2

63. A line that is perpendicular to the y-axis is a horizontal line with slope 0. Every coordinate has the same y-value, so the equation is y  7 .

G  t   15  2t

P  x  25 x 1500 P 82  25 82 1500  2050 1500  550

62. 5 y  2 x

64. a. G  t   15  t hr 

P  x  0

d.

 y  2 x  6

y  22,800  370 x  740 y  370 x  22,060 E  x   370 x  22,060

60 mi 1 gal  hr 30 mi

c. The slope is 370 and means that enrollment rose at an average rate of 370 students per year.

289


Chapter 2 Functions and Graphs d. E  x   370 x  22,060

70. The graph of g is the graph of f  x   x shifted upward 1 unit.

E 15  370 15  22,060  5550  22,060  27,610 students 67. a. y  369.6 x  22,111 b.

71. The graph of h is the graph of f  x   x 2 shifted to the right 4 units. c. y  369.6 15  22,111

 5544  22,111  27,655 students 68. The value a provides a vertical stretch or shrink or reflection across the x-axis. The value b provides a horizontal stretch or shrink or reflection across the y-axis. The value c provides a horizontal shift. The value d provides a vertical shift. 72. The graph of k is the graph of f  x   3 x shifted to the left 1 unit.

69. The graph of f is the graph of f  x   x shifted downward 4 units.

290


Chapter 2 Review 76. The graph of v is the graph of f  x   x reflected across the x-axis and shrunk 1 vertically by a factor of . 2

73. The graph of r is the graph of f  x   x shifted to the right 3 units and upward 1 unit.

74. The graph of s is the graph of f  x   x 2 shifted to the left 2 units and downward 3 units.

77. m  x    x  5    x  5

The graph of m is the graph of f  x   x reflected across the y-axis and shifted right 5 units.

75. The graph of t is the graph of f  x   x reflected across the x-axis and stretched vertically by a factor of 2. 78. n  x    x  4    x  4

The graph of n is the graph of f  x   x reflected across the y-axis and shifted to the left 4 units.

291


Chapter 2 Functions and Graphs 79. The graph of the function is the graph of f  x  shrunk horizontally by a factor of 2.

82. The graph of the function is the graph of f  x  shifted to the right 4 units, reflected across the x-axis, and shifted downward 1 unit.

80. The graph of the function is the graph of f  x  stretched horizontally by a factor of 2.

83. The graph of the function is the graph of f  x  shifted to the right 3 units, stretched vertically by a factor of 2, and shifted upward 1 unit.

81. The graph of the function is the graph of f  x  shifted to the left 1 unit, reflected across the x-axis, and shifted downward 3 units.

84. The graph of the function is the graph of f  x  shifted to the left 2 units, shrunk

vertically by a factor of downward 3 units.

292

1 , and shifted 2


Chapter 2 Review 85. y  x 4  3 Replace x by  x .

1 x 1 3 Replace x by  x . 1 y    x  1 3 1 y   x 1 3 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the y-axis. Replace y by  y . 1  y  x 1 3 1 y   x 1 3 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the x-axis. Replace x by  x and y by  y . 1  y    x  1 3 1  y   x 1 3 1 y  x 1 3 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.

87. y 

y    x  3 4

y  x4  3 This equation is equivalent to the original equation, so the graph is symmetric with respect to the y-axis. Replace y by  y .

 y  x4  3 y   x4  3 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the x-axis. Replace x by  x and y by  y .  y    x  3 4

 y  x4  3 y   x4  3 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin. 86. x  y  y 2 Replace x by  x .  x  y  y2

x   y  y2 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the y-axis. Replace y by  y . x   y    y

88. x 2  y 2  1 Replace x by  x .

  x2  y 2  1

2

x  y  y2 This equation is equivalent to the original equation, so the graph is symmetric with respect to the x-axis. Replace x by  x and y by  y .

x2  y 2  1 This equation is equivalent to the original equation, so the graph is symmetric with respect to the y-axis. Replace y by  y .

 x   y    y

x2    y   1

2

2

 x  y  y2

x2  y 2  1 This equation is equivalent to the original equation, so the graph is symmetric with respect to the x-axis.

x   y  y2 This equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.

293


Chapter 2 Functions and Graphs Replace x by  x and y by  y . x  y 1 This equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.

m  x   x  2

2

2

m   x  m  x m   x  m  x The function is neither even nor odd.

f  x   4 x3  x

95. a. Use the first rule. f  4  4  4  2  16  2  18

f   x   4   x     x  3

f   x   4 x3  x

b. Use the second rule. f  1   1  1 2

 f  x    4 x  x  4 x  x

90.

3

3

f   x   f  x

c. Use the third rule. f  3  5

The function is odd.

d. Use the second rule. f  2   2  4 2

g  x  3 x

96.

g   x  3  x   x

 

 g  x   3 x   x g   x   g  x The function is odd. 91.

p  x  4  x2 p   x  4    x  4  x2 2

p   x  p  x The function is even. 92.

97.

q  x   x q   x    x   x q   x  q  x The function is even.

93.

m  x  x  2 m   x   x  2

2

89.

94.

  x    y   1 2

k  x    x  3

2

k   x     x  3

98.

2

 k  x     x  3

2

k   x  k  x k   x  k  x The function is neither even nor odd.

294


Chapter 2 Review 99. a.

108.  f  g  5  f  g  5   f  5  2 

f  x    x  1

f  1.5   1.5  1   2.5  3 b.

 f  3  3  3  9

f  x    x  1

109.  g  f  5  g  f  5   g  3  5 

f  2   2  1   3  3 c.

 g  15  15  2  17

f  x    x  1

110. a.  f  g  2  f  2  g  2  3   2  1

f  0.1  0.1  1   0.9  1 d.

b.  g  f  4  g  4  f  4  2  1  2

f  x    x  1

f  6.3  6.3  1  5.3  5

g  3 1  g  Undefined c.    3  f  3 0  f

100. a.  ,  3   2, 0 

d. f  g  4   f  2  3

b.  3,  2    0, 3 c.  3,  

e

101. a.  2,  

f.  g  f  5  g  f  5  Undefined

b.  , 2 

111.  n  m x   n  x   m  x 

c. Never constant

 x 2  4 x   4 x   x 2

102. At x  2 , the function has a relative minimum of 2 . At x  4 , the function has a relative minimum of 1 . At x  2 , the function has a relative maximum of 1.

Domain:  ,  

p  x x2  p 112.    x    2  n n  x x  4 x

103. At x  2 , the function has a relative maximum of 4.

 x  4 104. f  x    1

for x  3

x20 x2 2 x  4x  0

for x  3

x  x  4  0 x  0 and x  4 Domain:  2, 4   4,  

105.  f  h  2  f  2  h  2

 3  2 

1 1 19  6    2 1 3 3

n  x x2  4 x  n  113.    x   p  x  p x2 x20 x2 Domain:  2,  

106.  g  h  3  g  3  h  3

 3 2 

 g  f  4  g  f  4  g  1  1

1 1 1  1  3 1 4 4

g  5 5  2 7  g    28 107.    5  1 1  h h  5 5  1 4

114.  m  p  x   m  x   p  x   4 x x  2 x20 x2 Domain:  2,  

295


Chapter 2 Functions and Graphs 115.  q  n  x   q  n  x   

1 1  2 n  x  5 x  4 x  5

118.

x  4x  5  0

f  x  h  f  x h

 x  5 x  1  0 x  5 and x  1 Domain:  ,  1   1, 5   5,  

h 3 x  2 xh  h  4 x  4h  9  3 x 2  4 x  9

2

2

116.  q  p  x   q  p  x  

1  p  x  5

1 x2 5

12 and g  x   x  5 x 121. a. d  t   60t

120. f  x  

x2 5 x  2  25

b. n  d  

x  27 Domain:  2, 27    27,   117.

h

2

119. f  x   x 2 and g  x   x  4

x20 x2 x2 5 0

f  x  h  f  x

h 3x  6 xh  3h  4h  3 x 2 6 xh  3h 2  4h   h h  6 x  3h  4 2

3  x  h  4  x  h  9  3 x 2  4 x  9 2

2

d 28

c.  n  d  t   n  d  t   

6  x  h   5   6 x  5

d t  28

60t 28

This function represents the number of gallons of gasoline used in t hours.

h 6 x  6h  5  6 x  5  h 6h   6 h

d.  n  d  7  

60  7 

 15 means that 15 gal 28 of gasoline is used in 7 hr.

Chapter 2 Test x x y y  1. a. C   1 2 , 1 2  2   2

c.

 8   2 5  3  ,   2   2  6 2    ,   3, 1 2 2  b. r 

 x2  x1 2   y2  y1  2

 2  3 2  3   1

 x  h   y  k   r2 2 2 2  x  3   y   1   41  2 2  x  3   y  1  41 2

2. a. Substitute 0 for y: x  y 4

2

2

Substitute 0 for x: x  y 4

x   0  4

 0  y  4

x  4

y 4

y  4 x-intercept:  4, 0 ; y-intercepts:

 25  16  41

 0,  4 ,  0, 4

b. No

296


Chapter 2 Test 3. a.

x 2  y 2  14 x  10 y  70  0

 x  14 x    y  10 y   70 2

2

2

2

1   2 14   49  

1   2 10   25  

 x  14 x  49   y  10 y  25  70  49  25 2

2

 x  7  2   y  5 2  4 b. Center:  7, 5 ; Radius:

42

4. This mapping defines the set of ordered pairs:  2, 5 ,  3, 5 ,  4, 5 . No two ordered pairs have the same

x value but different y values. This relation is a function. 5. There is at least one vertical line that intersects the graph in more than one point. This relation is not a function. 6. a. f  1  2  1  7  1  3  2  7  3  12 2

b. f  x  h  2  x  h  7  x  h  3  2 x 2  2 xh  h 2  7 x  7 h  3  2 x 2  4 xh  2h 2  7 x  7 h  3 2

f  x  h   f  x  2 x  4 xh  2h  7 x  7 h  3  2 x  7 x  3  c. h h 2 2 2 x  4 xh  2h  7 x  7 h  3  2 x 2  7 x  3  h 2 4 xh  2h  7 h   4 x  2h  7 h 2

2

d. Substitute 0 for f  x  :

0  2 x 2  7 x  3 0  2 x2  7 x  3 0   2 x  1 x  3 2x  1  0

or

x3 0

2x  1

or

x3

x

1 2

1   , 0 and  3, 0 2 e. Substitute 0 for x:

f  x   2  0  7  0  3  3 2

 0,  3

f. 4 x  2h  7  4 1  2  2  7  4  4  7  1

297

2


Chapter 2 Functions and Graphs 7. a. f  0  2

b. f  4  0

d. m  

1 4   3 3    4

e. m  

3 4

c. f  x   2 for x  2 and x  2 d.  ,  2    0, 2  e.  2, 0    2,  

11. x  3 y  4

f. f  0  2 is a relative minimum.

3y  x  4

g. f  2  2 and f  2  2 are relative maxima. h.  ,  

1 4 1 y   x ; m  3 3 3 1 1   3 1 m  3 y  y1  m  x  x1 

i.  , 2

j. f  x   f   x  , so the function is even. 8. 3w  7  0

y  6  3  x   2 

3w  7

y  6  3  x  2

7 w  3 7    7   ,      ,  3 3

y  6  3x  6 y  3 x  12 12. a.  2

9. 4  c  0

c.  x | x  2

 c  4 c4  , 4

13.

10. 3x  4 y  8

4 y  3 x  8 3 y   x2 4 a. m  

3 4

b.  0, 2 14.

c.

298

b.  x | x  2


Chapter 2 Test 15.

f  x   x3  x

18.

f   x    x    x 3

f   x    x3  x

 f  x    x3  x   x3  x f   x   f  x The function is odd. g  x   x 4  x3  x

19.

g   x     x     x     x   x 4  x3  x

16.

4

3

 g  x    x 4  x3  x   x 4  x3  x g   x  g  x g   x   g  x The function is neither even nor odd. 20. a.

f  x   x

f  4.27    4.27   4 17. x  y  8 Replace x by  x . 2

b.

f  x   x

f  4.27    4.27   5

  x2  y  8 x2  y  8 This equation is equivalent to the original equation, so the graph is symmetric with respect to the y-axis. Replace y by  y .

21.  f  h  6  f  6  h  6

 64 65  2 1 1

x2   y  8

22.  g  h  5  g  5  h  5

x2  y  8

1  55 53 1  0 2 0

This equation is equivalent to the original equation, so the graph is symmetric with respect to the x-axis. Replace x by  x and y by  y .

  x2   y  8 x2  y  8 This equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.

23.  h  f 1  h  f 1 

 h 1  4  h  3  35  2 Undefined

299


Chapter 2 Functions and Graphs 28. a.  f  g  3  f  3  g  3  1   2  1

24.  f  g  x   f  x   g  x 

 1    x  4    x  3   x3 0

b.  f  g  0  f  0  g  0  1  1  1 c. g  f  3   g 1  2

x4 x3

d.  f  g  2  f  g  2   f  3 Undefined

x3 Domain:  , 3   3,  

e.  3, 0  f.  , 2 

1 g  x x  3  g 1   25.    x   f  x  x  4  x  3 x  4  f

29. a. m 

y  y1  m  x  x1 

 x  3 x  4  0

y  1833  98  x  0

x  3 and x  4 Domain:  , 3   3, 4   4,   1  26.  g  h  x   g  h  x    h  x  3 x5 0 x5 x5 3 0

y2  y1 2614  1833 781    98 x2  x1 80 8

y  1833  98 x y  98 x  1833

1

b. y  98 x  1833

x5 3

y  98 15  1833  1470  1833  $3303 million

x5  3

30. a. y  92.3 x  1912

x5 9

b. y  y  92.3x  1912

x  14 Domain:  5,14  14,  

y  92.3 15  1912  1384.5  1912

27. f  x   x and g  x  x  7

 $3297 million

3

Chapter 2 Cumulative Review Exercises 1. a. f  2  1

2. a.

d.  2,  

e. 1,  

f.  1,1

 x  12 x    y  4 y   31 2

b. f  x   0 for x  0 and x  3 c.  4,  

x 2  y 2  12 x  4 y  31  0 2

2

2

1   2 12   36  

1   2  4   4  

 x  12 x  36   y  4 y  4  31  36  4 2

g.  4,  1

2

 x  6 2   y  2 2  9

h.  f  f  1  f  f  1   f  2  1

b. Center:  6, 2 ; Radius:

300

93


Chapter 2 Cumulative Review 3.  g  f  x   g  f  x   

8.

1 1  2 f  x   x  3x

 x 2  3x  0 x 2  3x  0 x  x  3  0 x  0 and x  3 Domain:  , 0   0, 3   3,   4.  g  h  x   g  x   h  x  

x0 x20 x  2 Domain:  2, 0   0,   5.

1  x2  x

x2 x

9.

f  x  h  f  x h

  x  h   3  x  h    x 2  3x 2

 

y2  y1 1   3 4 2    x2  x1 5 2  8 10 y  mx  b 2 y   xb 5 2 1    2  b 5 4 1  b 5 1 b 5 2 1 y   x 5 5

10. m 

h

 x 2  2 xh  h 2  3 x  3h  x 2  3x

h  x  2 xh  h  3h  x 2  h 2 2 xh  h  3h   2 x  h  3 h 2

2

6. 2 x  h  3  2  0   3  3  0  3  3  0 7. Substitute 0 for f  x  :

f  x   x 2  3x 0   x 2  3x

11. x  7 or 7  x

x 2  3x  0 x  x  3  0

12. 2 x 3  128  2 x 3  64  2  x    4     2  x  4 x 2  4 x  16

x  0 or x  3 Substitute 0 for x: f  x    x 2  3x f  0    0  3  0  0 2

x-intercepts:  0, 0 and  3, 0 ;

y-intercept:  0, 0

301

3

3


Chapter 2 Functions and Graphs 13.

3t  t  1  2t  6

15. Let u  x1 5 . x 2 5  3x1 5  2  0

3t 2  3t  2t  6 3t 2  t  6  0 3t 2  t  6  0

t

  1 

u 2  3u  2  0  u  1 u  2  0 u  1 or

 1 2  4  3 6 2  3

x

1  1  72 1  71 1 71    i 6 6 6 6 71   1 i   6   6

1, 32

14.

17.

15  11

6 15  11

15  11 15  11

x

2 x  32

3a  1  11 11  3a  1  11 12  3a  10 10 4  a  3 10    4, 3   

7  4x  2  5

6

u2 15

16. 3a  1  2  9

2  4x  2 4 x  2  2 or 4 x  2  2 4 x  4 or 4x  0 x  1 or x0  0,1

18.

1 x 1

15

6

3  2 x  1  7 2  2 x  6 1  x  3 or  3  x  1  3,  1

 15  11  6 15  6 11  3 15  3 11 15  11

4

19. 3c 8c 2 d 3  c 2 50d 3  2d 2c 4 d  3c 22 c 2 d 2  2d  c 2 52 d 2  2d  2d

2

 c   2d 2 2

 6c 2 d 2d  5c 2 d 2d  2c 2 d 2d  9c 2 d 2d 2 1  2 2 2 2 2u 1  w1 uw u w  u w  2uw  u w  uw  2w  u  20.   2 2 2 2 2 2 4 1 4u  w u w 4w  u  2w  u   2w  u  2w  u  u 2 w2

302


Section 3.1

Chapter 3 Polynomial and Rational Functions Section 3.1 Quadratic Functions and Applications 1. quadratic

2. axis

3. vertex

4.  h, k 

5. downward

6. h

7. k

8. k

h. The domain is  ,   .

The range is  , 1 .

10. g  x     x  2  4    x   2   4 2

2

a  1, h  2, k  4

a. Since a  0 , the parabola opens downward.

9. f  x     x  4  1 2

a  1, h  4, k  1

b. The vertex is  h, k    2, 4 .

a. Since a  0 , the parabola opens downward.

c.

2

4    x  2 4   x  2

c. f  x     x  4  1 2 2 2

2

 1 x4 4 1  x x  3 or x  5 The x-intercepts are  3, 0 and  5, 0 .

2

d. g  0    0  2  4    2  4  4  4  0 The y-intercept is  0, 0 . 2

d. f  0    0  4  1    4  1 2

2

 4  x2 2  2  x x  4 or x  0 The x-intercepts are  4, 0 and  0, 0 .

0    x  4  1 1   x  4

2

0    x  2  4

b. The vertex is  h, k    4,1 .

1    x  4

g  x     x  2  4

2

e.

2

 16  1  15 The y-intercept is  0, 15 . e.

f. The axis of symmetry is the vertical line through the vertex: x  2 . g. The maximum value is 4. h. The domain is  ,   .

f. The axis of symmetry is the vertical line through the vertex: x  4 .

The range is  , 4 .

g. The maximum value is 1. 303


Chapter 3 Polynomial and Rational Functions c. k  x   2  x  3  2

11. h  x   2  x  1  8  2  x   1    8

2

2

2

a  2, h  1, k  8

0  2  x  3  2

a. Since a  0 , the parabola opens upward.

2  2  x  3

b. The vertex is  h, k    1, 8 .

1   x  3

c.

2

2

3 1  x x  2 or x  4 The x-intercepts are  2, 0 and  4, 0 .

0  2  x  1  8 2

4   x  1

2

 1  x3

h  x   2  x  1  8 8  2  x  1

2

2

2

d. k  0  2  0  3  2  2  3  2 2

 4  x 1

2

 18  2  16 The y-intercept is  0,16 .

1  2  x x  3 or x  1 The x-intercepts are  3, 0 and 1, 0 .

e.

d. h  0  2  0  1  8  2 1  8 2

2

 2  8  6 The y-intercept is  0, 6 . e.

f. The axis of symmetry is the vertical line through the vertex: x  3 . g. The minimum value is 2 . h. The domain is  ,   .

The range is  2,   .

f. The axis of symmetry is the vertical line through the vertex: x  1 .

13. m  x   3  x  1  3  x  1  0 2

2

g. The minimum value is 8 .

a  3, h  1, k  0

h. The domain is  ,   .

a. Since a  0 , the parabola opens upward.

The range is  8,   .

b. The vertex is  h, k   1, 0 . c. m  x   3  x  1

2

a  2, h  3, k  2

0  3  x  1

2

a. Since a  0 , the parabola opens upward.

0   x  1

12. k  x   2  x  3  2  2  x  3   2 2

2

b. The vertex is  h, k    3, 2 .

2

 0  x 1 1 x The x-intercept is 1, 0 .

304


Section 3.1 d. m  0  3  0  1  3  1  3 2

e.

2

The y-intercept is  0, 3 .

e.

f. The axis of symmetry is the vertical line through the vertex: x  2 . g. The minimum value is 0. f. The axis of symmetry is the vertical line through the vertex: x  1 .

h. The domain is  ,   .

The range is  0,   .

g. The minimum value is 0. h. The domain is  ,   .

15. p  x   

The range is  0,   .

1 a   , h  4, k  1 5

2 1 1 2 14. n  x    x  2   x   2   0 2 2 1 a  , h  2, k  0 2

a. Since a  0 , the parabola opens downward. b. The vertex is  h, k    4,1 .

a. Since a  0 , the parabola opens upward. b. The vertex is  h, k    2, 0 .

c.

1  x  2 2 2 1 2 0   x  2 2

c. n  x  

0   x  2

2 1 1  x  4 2  1    x   4  1 5 5

1  x  4 2  1 5 1 2 0    x  4  1 5 1 2 1    x  4 5

p  x  

5   x  4

2

2

 5  x4

 0  x2 2  x The x-intercept is  2, 0 .

4  5  x x  4  5

or

x  4  5

The x-intercepts are 4  5, 0 and

1 1  0  2 2   2 2  2 2 2 The y-intercept is  0, 2 .

d. n  0 

 4  5, 0 .

305


Chapter 3 Polynomial and Rational Functions

The x-intercepts are 1  3, 0 and

1 1  0  4 2  1    4 2  1 5 5 16 5 11    5 5 5 11  The y-intercept is  0,   .  5

d. p  0  

1  3, 0 .

1 1  0  1 2  1    1 2  1 3 3 1 2   1  3 3  2 The y-intercept is  0,  .  3

d. q  0  

e.

e.

f. The axis of symmetry is the vertical line through the vertex: x  4 . g. The maximum value is 1. h. The domain is  ,   .

f. The axis of symmetry is the vertical line through the vertex: x  1 .

The range is  , 1 .

16. q  x   

g. The maximum value is 1. h. The domain is  ,   .

1  x  12  1 3

The range is  , 1 .

1 a   , h  1, k  1 3

17. a. f  x   x 2  6 x  5

a. Since a  0 , the parabola opens downward.

f  x  x2  6 x

b. The vertex is  h, k   1,1 . c.

f  x    x  3  4 2

b. The vertex is  h, k    3, 4 . c.

f  x  x2  6 x  5 0  x2  6 x  5

2

0   x  5 x  1

 3  x 1

x  5 or x  1 The x-intercepts are  5, 0 and  1, 0 .

1 3  x x  1 3

f  x  x2  6 x  9  9  5

1 2 q  x     x  1  1 3 1 2 0    x  1  1 3 1 2 1    x  1 3 3   x  1

2

  5  12  6  9

or

x  1 3

d. f  0   0  6  0  5  5 2

The y-intercept is  0, 5 .

306


Section 3.1 f. The axis of symmetry is the vertical line through the vertex: x  4 .

e.

g. The minimum value is 9 . h. The domain is  ,   .

The range is  9,   .

19. a. p  x   3x 2  12 x  7

  p  x   3  x  4 x  4  3  4  7 2

h. The domain is  ,   .

p  x   3  x  2  19

The range is  4,   .

2

b. The vertex is  h, k    2, 19 .

18. a. g  x   x 2  8 x  7

2

1   2  4   4  

p  x  3 x2  4 x  4  4  7

g. The minimum value is 4 .

g  x  x  8x

7

2

7

p  x  3 x  4 x

f. The axis of symmetry is the vertical line through the vertex: x  3 .

2

c. p  x   3x 2  12 x  7

2

1   2  8   16  

0  3x 2  12 x  7

g  x   x 2  8 x  16  16  7

x

g  x    x  4  9

  12 

2

 12 2  4  3 7 2  3

12  228 12  2 57 6  57   6 6 3 6  57 6  57 x or x  3 3  6  57  The x-intercepts are  , 0 and 3   

b. The vertex is  h, k    4, 9 . c. g  x   x 2  8 x  7

0  x2  8x  7 0   x  7  x  1 x  7 or x  1 The x-intercepts are  7, 0 and  1, 0 .

 6  57  , 0 .  3  

d. g  0   0  8  0  7  7 2

d. p  0  3  0  12  0  7  7

The y-intercept is  0, 7  .

2

The y-intercept is  0, 7  .

e. e.

307


Chapter 3 Polynomial and Rational Functions f. The axis of symmetry is the vertical line through the vertex: x  2 .

f. The axis of symmetry is the vertical line through the vertex: x  1 .

g. The minimum value is 19 .

g. The minimum value is 5 .

h. The domain is  ,   .

h. The domain is  ,   .

The range is  19,   .

The range is  5,   .

20. a. q  x   2 x 2  4 x  3

21. a. c  x   2 x 2  10 x  4

q  x  2 x  2 x 2

4

c  x   2 x 2  5 x

2

1   3   2   1 2 

2

25 1   2  5   4  

  q  x   2  x  2 x  1  2  1  3 q  x  2 x2  2 x  1  1  3

25 25   c  x   2  x 2  5 x    4  4 4

2

q  x   2  x  1  5 2

b. The vertex is  h, k   1, 5 .

25    25  c  x   2  x 2  5 x    2     4   4 4

c. q  x   2 x 2  4 x  3

5 33  c  x   2  x     2 2

2

0  2 x2  4 x  3 x

  4 

 5 33  b. The vertex is  h, k     ,  .  2 2

 42  4  2 3 2  2

c. c  x   2 x 2  10 x  4

4  40 4  2 10 2  10    4 4 2 2  10 2  10 or x  x 2 2  2  10  The x-intercepts are  , 0 and  2 

0  2 x 2  10 x  4 x

  10 

 10 2  4  2 4 2  2

10  132 4 10  2 33 5  33   4 2 5  33 5  33 x or x  2 2  5  33  The x-intercepts are  , 0 and 2   

 2  10   2 , 0 .   d. q  0  2  0  4  0  3  3 2

The y-intercept is  0, 3 .

e.

 5  33  , 0 .  2   d. c  0  2  0  10  0  4  4 2

The y-intercept is  0, 4 .

308


Section 3.1  9  177  The x-intercepts are  , 0 and 6  

e.

 9  177  , 0 .  6   d. d  0  3  0  9  0  8  8 2

The y-intercept is  0, 8 .

e.

f. The axis of symmetry is the vertical line 5 through the vertex: x   . 2

33 . 2

g. The maximum value is

h. The domain is  ,   . 33   The range is  ,  .  2

f. The axis of symmetry is the vertical line 3 through the vertex: x   . 2

22. a. d  x   3 x  9 x  8 2

d  x   3 x  3 x 2

2

9 1   8   3   4 2 

g. The maximum value is

9 9  d  x   3  x 2  3 x     8  4 4

59 . 4

h. The domain is  ,   .

59   The range is  ,  .  4

9   9 d  x   3  x 2  3 x    3     8   4 4 2

23. f  x   3x 2  42 x  91

3 59  d  x   3  x      2 4

x-coordinate:

 3 59  b. The vertex is  h, k     ,  .  2 4

b   42 42   7 2a 2  3 6

y-coordinate: f  7  3 7  42 7  91  238 2

The vertex is  7,  238 .

c. d  x   3x 2  9 x  8

0  3x  9 x  8 2

x

  9 

24. g  x   4 x 2  64 x  107

 9  4  38 2  3 2

x-coordinate:

9  177 9  177  6 6 9  177 9  177 x or x  6 6 

b   64 64   8 2a 2  4 8

y-coordinate:

g  8  4  8  64  8  107  149 2

The vertex is  8,  149 .

309


Chapter 3 Polynomial and Rational Functions f. The axis of symmetry is the vertical line through the vertex: x  1 .

1 25. k  a    a 2  6a  1 3   6 b 6   9 x-coordinate: 2 2a 1  2  3 3 1 2 y-coordinate: k  9    9  6  9  1  28 3 The vertex is  9, 28 .

g. The maximum value is 3 .

 

h. The domain is  ,   .

The range is  ,  3 .

28. h  x    x 2  6 x  10 a. Since a  0 , the parabola opens downward.

1 26. j  t    t 2  10t  5 4  10 b 10 x-coordinate:    20 1 2a 1 2     4 2 y-coordinate: 2 1 j  20    20  10  20  5  95 4 The vertex is  20, 95 .

b. x-coordinate:

y-coordinate: 2 h  3    3  6  3  10  1 The vertex is  3,  1 .

c. Since the vertex of the parabola is below the x-axis and the parabola opens downward, the parabola cannot cross or touch the x-axis. Therefore, there are no x-intercepts.

27. g  x    x 2  2 x  4 a. Since a  0 , the parabola opens downward. b. x-coordinate:

b   6 6    3 2a 2  1 2

d. h  0    0  6  0  10  10 2

b   2 2   1 2a 2  1 2

The y-intercept is  0, 10 .

y-coordinate: g 1   1  2 1  4  3

e.

2

The vertex is 1,  3 .

c. Since the vertex of the parabola is below the x-axis and the parabola opens downward, the parabola cannot cross or touch the x-axis. Therefore, there are no x-intercepts. d. g  0    0  2  0  4  4 2

The y-intercept is  0, 4 .

f. The axis of symmetry is the vertical line through the vertex: x  3 .

e.

g. The maximum value is 1 . h. The domain is  ,   .

The range is  ,  1 .

29. f  x   5 x 2  15 x  3 a. Since a  0 , the parabola opens upward.

310


Section 3.1

b. x-coordinate:

30. k  x   2 x 2  10 x  5

b   15 15 3    2a 2  5 10 2

a. Since a  0 , the parabola opens upward.

y-coordinate: 2 33  3  3  3 f    5    15    3    2  2  2 4

b. x-coordinate:

y-coordinate: 2 35  5  5  5 k    2    10    5    2  2  2 2  5 35  The vertex is  ,   . 2 2

 3 33  The vertex is  ,   . 2 4 c. f  x   5 x 2  15 x  3

0  5 x 2  15 x  3 x

  15 

15  165 10 15  165 x 10

 152  4  5 3 2  5

c. k  x   2 x 2  10 x  5

0  2 x 2  10 x  5

x

15  165 10  15  165  , 0 and The x-intercepts are  10   or

b   10 10 5    2a 2  2 4 2

x

  10 

 102  4  2 5 2  2

10  140 4 10  2 35  4 5  35  2 5  35 5  35 x or x  2 2  5  35  The x-intercepts are  , 0 and 2   

 15  165  , 0 .  10   d. f  0  5  0  15  0  3  3 2

The y-intercept is  0, 3 .

e.

 5  35  , 0 .  2   d. k  0  2  0  10  0  5  5 2

The y-intercept is  0,  5 .

e. f. The axis of symmetry is the vertical line 3 through the vertex: x  . 2 g. The minimum value is 

33 . 4

h. The domain is  ,   .  33  The range is   ,  .   4

311


Chapter 3 Polynomial and Rational Functions f. The axis of symmetry is the vertical line 5 through the vertex: x  . 2 g. The minimum value is 

t

  42 b 42    4.29 sec 2a 2  4.9 9.8

b. The maximum height is the value of h  t  at the vertex.

35 . 2

h  4.29  4.9  4.29  42  4.29  3 2

h. The domain is  ,   .

 93 m

35 The range is   ,  .   2

35. a. The horizontal distance at which the water will be at its maximum height is the xcoordinate of the vertex. b   0.576 0.576 x    11.1 m 2a 2  0.026 0.052

31. a. The time at which the population will be at a maximum is the t-coordinate of the vertex. b   82, 000 82, 000 t    24 hr 2a 2  1718 3436

b. The maximum height is the value of h  x  at the vertex. 2 h 11.1  0.026 11.1  0.576 11.1  3

b. The maximum population is the value of P  t  at the vertex.

P  24  1718  24  82,000  24  10, 000  988, 000

 6.2 m

2

c. The distance of the firefighter from the house is the value of x when h  x   6 .

32. a. The speed at which the gas mileage will be at a maximum is the x-coordinate of the vertex. b   2.688 2.688 x    48 mph 2a 2  0.028 0.056

6  0.026 x 2  0.576 x  3 0  0.026 x 2  0.576 x  3 x

b. The maximum gas mileage is the value of m  x  at the vertex.

0.576 

 0.5762  4  0.026 3 2  0.026

0.576  0.019776 0.052 x  8 or x  14 Since we want the downward branch, we use the second value of x. The firefighter is 14 m from the house. 

m  x   0.028  48  2.688  48  35.012  29.5 mpg 2

33. a. The time at which the skateboarder will be at his maximum height is the tcoordinate of the vertex. b   5.4 5.4 t    0.55 sec 2a 2  4.9 9.8

36. a. The horizontal distance at which the jumper will be at a maximum height is the x-coordinate of the vertex. b   0.364 0.364 x    3.96 m 2a 2  0.046 0.092

b. The maximum height is the value of h  t  at the vertex.

b. The maximum height is the value of h  x  at the vertex. 2 h  3.96  0.046  3.96  0.364  3.96

h  0.55  4.9  0.55  5.4  0.55  3  4.5 m 2

 0.72 m

34. a. The time at which the mortar will be at its maximum height is the t-coordinate of the vertex.

312


Section 3.1 b  1 1    0.5 2a 2  1 2 y  1  x  1  0.5  0.5 The numbers are 0.5 and 0.5.

c. The length of the jump is the value of x when h  x   0 .

x

0  0.046 x 2  0.364 x 0  x  0.046 x  0.364 x  0 or 0.046 x  0.364  0

39. Let x represent the first number. Let y represent the second number. We know that x  y  10

0.046 x  0.364 x  7.9 Since we want the length of the jump, we use the second value of x. The jump is 7.9 m.

 y  10  x y  x  10 Let P represent the product. P  xy

37. Let x represent the first number. Let y represent the second number. We know that x  y  24

P  x   x  x  10  x 2  10 x Function P is a quadratic function with a positive leading coefficient. The graph of the parabola opens upward, so the vertex is the minimum point on the function. The xcoordinate of the vertex is the value of x that will minimize the product. b   10 10   5 x 2a 2 1 2 y  x  10  5  10  5 The numbers are 5 and 5 .

y  24  x Let P represent the product. P  xy P  x   x  24  x   24 x  x 2   x 2  24 x Function P is a quadratic function with a negative leading coefficient. The graph of the parabola opens downward, so the vertex is the maximum point on the function. The xcoordinate of the vertex is the value of x that will maximize the product. b   24 24 x    12 2a 2  1 2 y  24  x  24  12  12 The numbers are 12 and 12.

40. Let x represent the first number. Let y represent the second number. We know that x  y  30

 y  30  x y  x  30 Let P represent the product. P  xy

38. Let x represent the first number. Let y represent the second number. We know that x  y 1

P  x   x  x  30  x 2  30 x Function P is a quadratic function with a positive leading coefficient. The graph of the parabola opens upward, so the vertex is the minimum point on the function. The xcoordinate of the vertex is the value of x that will minimize the product. b   30 30    15 x 2a 2 1 2 y  x  30  15  30  15 The numbers are 15 and 15 .

y  1 x Let P represent the product. P  xy P  x   x 1  x   x  x 2   x 2  x Function P is a quadratic function with a negative leading coefficient. The graph of the parabola opens downward, so the vertex is the maximum point on the function. The xcoordinate of the vertex is the value of x that will maximize the product.

313


Chapter 3 Polynomial and Rational Functions b. Function V is a quadratic function with a negative leading coefficient. The graph of the parabola opens downward, so the vertex is the maximum point on the function. The x-coordinate of the vertex is the value of x that will maximize the volume. b   240 240   3 x 2a 2  40 80

41. We know that 2 x  y  160

y  160  2 x Let A represent the area. A  xy A  x   x 160  2 x   160 x  2 x 2   x 2  160 x Function A is a quadratic function with a negative leading coefficient. The graph of the parabola opens downward, so the vertex is the maximum point on the function. The xcoordinate of the vertex is the value of x that will maximize the area. b  160 160 x    40 2a 2  2 4

The sheet of aluminum should be folded 3 in. from each end. c. V  3  40  3  240  3  360 in.3 2

44. a. The perimeter of the box is 36 in. 2 x  2 y  36 2 y  36  2 x

y  160  2 x  160  2  40  160  80  80 The dimensions are 40 ft by 80 ft.

36  2 x 2 Let A represent the area. A  lw y

42. We know that 3x  4 y  120 4 y  120  3 x

A  x   xy

3 x 4 Let A represent the area. A  xy 3 3 3 A  x  x  30  x  30 x  x 2   x 2  30 x  4  4 4 Function A is a quadratic function with a negative leading coefficient. The graph of the parabola opens downward, so the vertex is the maximum point on the function. The xcoordinate of the vertex is the value of x that will maximize the area.   30 b 30 x    20 3 2a  3 2     4 2 3 3 y  30  x  30   20  30  15  15 4 4 The dimensions are 20 ft by 15 ft. y  30 

 36  2 x   x  x 18  x   2   18 x  x 2   x 2  18 x b. Function A is a quadratic function with a negative leading coefficient. The graph of the parabola opens downward, so the vertex is the maximum point on the function. The x-coordinate of the vertex is the value of x that will maximize the area. b  18 18   9 x 2a 2  1 2

36  2 x 36  2  9 18   9 2 2 2 The dimensions 9 in. by 9 in. should be used. That is, the shadow box should be square. y

c. A  9    9  18  9  81  162  81 in.2 2

43. a. Let V represent the volume. V  lwh

V  x   20 12  2 x  x 

 20 12 x  2 x 2

 240 x  40 x 2  40 x 2  240 x

314


Section 3.1 45. a.

y  t   0.000838t 2  0.0812t  0.040 b. From the graph, the time when the population is the greatest is the t-coordinate of the vertex.   0.0812 b 0.0812 t   2a 2  0.000838 0.001676

47. a. x  0 cm . From the table, v  0  195.6 cm/sec .

t

 48 hr

d 3000 cm   15.3 sec r 195.6 cm/sec

b. x  9 cm . From the table, v  9  180.0 cm/sec .

c. The maximum population of the bacteria is the y  t  value at the vertex.

t

y  48  0.000838  48  0.0812  48 2

 0.040

d 3000 cm   16.7 sec r 180.0 cm/sec

c.

2g

v  x   0.1436 x 2  0.4413x  195.7

46. a.

d. v  5.5  0.1436  5.5  0.4413  5.5 2

m  x   0.0235 x 2  2.10 x  15.9

 195.7  188.9 cm/sec

b. From the graph, the speed when the gas mileage is the greatest is the x-coordinate of the vertex.   2.10 b 2.10 x    45 mph 2a 2  0.0235 0.047

48. a.

c. The maximum gas mileage is the m  x  value at the vertex. 2 m  45  0.0235  45  2.10  45  15.9

d  s   0.039 x 2  2.53s  2.51

 31 mpg

315


Chapter 3 Polynomial and Rational Functions 67. For a parabola opening upward, such as the graph of f  x   x 2 , the minimum value is the y-coordinate of the vertex. There is no maximum value because the y values of the function become arbitrarily large for large values of x . 68. The vertex  4,  3 is below the x-axis. If the parabola opens downward, then the vertex is the maximum point. If the maximum point is below the x-axis, then no points on the curve will intersect the x-axis.

b. d  62  0.039  62  2.53  62  2.51 2

 304 ft c. d  53  0.039  53  2.53  53  2.51 2

 241 ft No, the stopping distance required is 242 ft (rounding up), so the car would miss the deer by approximately 3 ft. 49. False

50. True

51. True

52. False

69. No function defined by y  f  x  can have two y-intercepts because the graph would fail the vertical line test. 70. The x-intercepts are the solutions of the equation ax 2  bx  c  0 . The discriminant b 2  4ac determines the number and type of solutions to the equation and thus the number of x-intercepts. If b 2  4ac  0 , then the solutions to the equation are imaginary and the function will have no x-intercepts. If b 2  4ac  0 , then the equation has one real solution and the function has one x-intercept. If b 2  4ac  0 , then the equation has two real solutions and the function has two xintercepts.

53. b 2  4ac  12  4  4 9  144  144  0 Discriminant is 0; one x-intercept 2

54. b 2  4ac   20  4  25 4  400  400  0 Discriminant is 0; one x-intercept 2

55. b 2  4ac   5  4  1 8  25  32  57 Discriminant is 57; two x-intercepts 2

56. b 2  4ac   4  4  3 9  16  108  124 Discriminant is 124; two x-intercepts

71. Because a parabola is symmetric with respect to the vertical line through the vertex, the xcoordinate of the vertex must be equidistant from the x-intercepts. Therefore, given y  f  x  , the x-coordinate of the vertex is 4 because 4 is midway between 2 and 6. The ycoordinate of the vertex is f  4 .

2

57. b 2  4ac   6  4  3 11 2

 36  132  96 Discriminant is 96 ; no x-intercepts 58. b 2  4ac   5  4  2 10  25  80  55 Discriminant is 55 ; no x-intercepts 2

59. Graph g

60. Graph d

61. Graph h

62. Graph b

63. Graph f

64. Graph e

65. Graph c

66. Graph a

72. Given an equation of a parabola in the form 2 y  a  f  x  h   k , the orientation is determined by a and the vertex is (h, k). If the vertex is above the x-axis and the parabola opens upward (a > 0), then the graph has no x-intercepts. Likewise, if the vertex is below the x-axis and the parabola opens downward (a < 0), then the graph has no x-intercepts.

316


Section 3.1 73.  h, k    2,  3

f  3  9 2  3  12  3  c  9 18  36  c  9 18  c  9 c9

f  x   a  x  2   3  a  x  2  3 2

2

2

f  0  5

a  0  2  3  5 2

4a  8 a2

78. Find the x-coordinate of the vertex: b 12 12   2 2a 2  3 6

f  x   2  x  2  3 2

f  2  4

74.  h, k    3,1

3  2  12  2  c  4 12  24  c  4 12  c  4 c8

f  x   a  x   3   1  a  x  3  1 2

2

2

f  0  17

a  0  3  1  17 2

9a  18 a  2

79. Find the x-coordinate of the vertex: b b b b    2a 2  1 2 2

f  x   2  x  3  1 2

75.  h, k    4, 6

 b f   8  2

f  x   a  x  4  6 2

2

 b  b    b   4  8  2  2 b2 b2   4 4 2 b 2  2b 2  16

f 1  3

a 1  4  6  3 9a  3 1 a 3 1 2 f  x     x  4  6 3 2

b  4 or b  4

76.  h, k    2, 5

80. Find the x-coordinate of the vertex: b b b b    2a 2  1 2 2

f  x   a  x   2   5  a  x  2  5 2

b 2  16 b  4

2

f  2  13

 b f   7  2

a  2  2  5  13 16a  8 1 a 2 1 2 f  x    x  2  5 2 2

2

 b  b    b   2  7  2  2 b2 b2   9 4 2 b 2  2b 2  36

77. Find the x-coordinate of the vertex: b 12 12    3 2a 2  2 4

b  6 or b  6

317

b 2  36 b  6


Chapter 3 Polynomial and Rational Functions Section 3.2 Introduction to Polynomial Functions 1. f  x   6 x 2  18 x  7

x-coordinate:

f  x   6 x 2  15 x  36

4.

b  18 18 3    2a 2  6 12 2

0  6 x 2  15 x  36 0  2 x 2  5 x  12 0   2 x  3 x  4

y-coordinate: 2  3  3  3 f    6    18    7  2  2  2

27 13  9  6    27  7    20   4 2 2

2x  3  0

or

x40

2x  3

or

x  4

3 2 3 4 and 2 x

 3 13  The vertex is  ,  . 2 2 2. g  x   10 x 2  15 x  5

5. 16 x 7  48 x 6  9 x 5  27 x 4

b   15 15 3 x-coordinate:    2a 2 10 20 4

  x 4 16 x 2  x  3  9  x  3 

2

 3  3  3 y-coordinate: g    10    15    5  4  4  4

  x 4  x  3 16 x 2  9

3.

  x  x  3 4 x  3 4 x  3 4

 9  45  10    5  16  4 

  x 4 16 x 3  48 x 2  9 x  27

6. 98 x 6  196 x 5  8 x 4  16 x 3

45 90 40 5    8 8 8 8

 2 x 3 49 x 3  98 x 2  4 x  8

 3 5 The vertex is  ,   .  4 8

 2 x  49 x  x  2  4  x  2 

f  x   4 x 2  18 x  10

 2 x 3  x  2 7 x  2 7 x  2

3

 2 x 3  x  2 49 x 2  4

0  4 x 2  18 x  10 0  2 x2  9 x  5 0   2 x  1 x  5 2x  1  0

or

x5 0

2 x  1

or

x5

x

2

1 2

1 5 and  2

7. polynomial

8. is

9. is not

10. 2

11. 1

12. False

13. False

14. down; down

15. up; down

16. zeros

17. 3; 4

18. 5; 3

19. 5

20. 4

21. cross 22. touch (without crossing)

318


Section 3.2 23. f has at least one zero on the interval  a, b  . 24. y

36. Multiply the leading terms from each factor. 3

25. origin

The leading coefficient is positive and the degree is even. The end behavior is up to the left and up to the right.

26. Multiply the leading terms from each factor. 1 4 1 2   x   3x    x 4 9 x 2  3 x 6 3 3

  

37. f  x   x 3  2 x 2  25 x  50

0  x 3  2 x 2  25 x  50

27. Multiply the leading terms from each factor. 3 4 0.6 x 2 10 x   x   0.6 x 2 1000 x3 x 4

 

5 x 4   x   2 x   5 x 4  x3  2 x   10 x8

0  x 2  x  2  25  x  2

 

0   x  2 x 2  25

 600 x 9

0   x  2 x  5 x  5

28. up to the left and down to the right

x  2, x  5, x  5 Each zero is of multiplicity 1.

29. The leading coefficient is negative and the degree is even. The end behavior is down to the left and down to the right.

38. g  x   x 3  5 x 2  x  5

0  x3  5 x 2  x  5

30. The leading coefficient is negative and the degree is even. The end behavior is down to the left and down to the right.

0  x 2  x  5  1 x  5

0   x  5 x 2  1

0   x  5 x  1 x  1

31. The leading coefficient is positive and the degree is odd. The end behavior is down to the left and up to the right.

x  5, x  1, x  1 Each zero is of multiplicity 1.

32. The leading coefficient is positive and the degree is odd. The end behavior is down to the left and up to the right.

39. h  x   6 x 3  9 x 2  60 x

33. Multiply the leading terms from each factor.

0  3x 2 x 2  3x  20

  x   16 x

4  x  2 x   x   4  x  4 x 2

4

2

4

0  6 x 3  9 x 2  60 x

The leading coefficient is negative and the degree is odd. The end behavior is up to the left and down to the right.

5 x  0, x  , x  4 2 Each zero is of multiplicity 1.

34. Multiply the leading terms from each factor.

2  x  3 x   x   2  x  27 x 3

3

  x  54 x

0  3x  2 x  5 x  4

7

40. k  x   6 x 3  26 x 2  28 x

5

0  6 x 3  26 x 2  28 x

The leading coefficient is negative and the degree is odd. The end behavior is up to the left and down to the right.

0  2 x 3 x 2  13x  14

0  2 x  3 x  7  x  2 7 x  0, x  , x  2 3 Each zero is of multiplicity 1.

35. Multiply the leading terms from each factor. 3 2 x 2   x  2 x   2 x 2   x  8 x3  16 x 6

 

The leading coefficient is positive and the degree is even. The end behavior is up to the left and up to the right.

319


Chapter 3 Polynomial and Rational Functions

    0   x   3  5   x   3  5    

41. m  x   x5  10 x 4  25 x 3

0  x  10 x  25 x 5

4

0  x3 x 2  10 x  25 0  x 3  x  5

47. c  x    x  3  5   x  3  5    

3

x  3  5, x  3  5 Each zero is of multiplicity 1.

2

x  0, x  5 The zero 0 has multiplicity 3. The zero 5 has multiplicity 2.

    0   x   2  11   x   2  11    

48. d  x    x  2  11   x  2  11    

42. n  x   x 6  4 x 5  4 x 4

0  x 6  4 x5  4 x 4

0  x4 x2  4 x  4 0  x 4  x  2

x  2  11, x  2  11 Each zero is of multiplicity 1.

49. f  x   2 x 3  7 x 2  14 x  30

2

f 1  2 1  7 1  14 1  30 3

x  0, x  2 The zero 0 has multiplicity 4. The zero 2 has multiplicity 2.

 2  7  14  30  11

f  2  2  2  7  2  14  2  30 3

3

f  3  2  3  7  3  14  3  30 3

0  3 x  x  2  x  4 x  0, x  2, x  4 The zero 0 has multiplicity 1. The zero 2 has multiplicity 3. The zero 4 has multiplicity 1. 3

3

2

 54  63  42  30  21

f  4  2  4  7  4  14  4  30 3

2

 128  112  56  30  10 3 2 f  5  2  5  7  5  14  5  30  250  175  70  30  35

2

a. Since f 1 and f  2 have opposite signs, the intermediate value theorem guarantees that the function has at least one zero on the interval 1, 2 .

0  2 x 4  x  1  x  2 x  0, x  1, x  2 The zero 0 has multiplicity 4. The zero 1 has multiplicity 3. The zero 2 has multiplicity 2. 3

2

 16  28  28  30  10

43. p  x   3 x  x  2  x  4

44. q  x   2 x 4  x  1  x  2

2

2

b. Since f  2 and f  3 have the same sign, the intermediate value theorem does not guarantee that the function has at least one zero on the interval  2, 3 .

   0  5 x  3 x  5 2 x  9  x  3  x  3 

45. t  x   5 x  3x  5 2 x  9 x  3 x  3

c. Since f  3 and f  4 have the same sign, the intermediate value theorem does not guarantee that the function has at least one zero on the interval  3, 4 .

5 9 x   , x  3, x   3 3 2 Each zero is of multiplicity 1. x  0, x 

   0  4 x  5 x  1 3 x  8  x  5  x  5 

46. z  x   4 x  5 x  1 3 x  8 x  5 x  5

d. Since f  4 and f  5 have opposite signs, the intermediate value theorem guarantees that the function has at least one zero on the interval  4, 5 .

1 8 x   , x  5, x   5 5 3 Each zero is of multiplicity 1. x  0, x 

320


Section 3.2 c. Since Y1  2 and Y1  1 have the same sign, the intermediate value theorem does not guarantee that the function has at least one zero on the interval  2, 1 .

50. g  x   2 x 3  13 x 2  18 x  5

g 1  2 1  13 1  18 1  5 3

2

 2  13  18  5  12

g  2  2  2  13  2  18  2  5 3

2

d. Since Y1  1 and Y1  0 have the same sign, the intermediate value theorem does not guarantee that the function has at least one zero on the interval  1, 0 .

 16  52  36  5  5

g  3  2  3  13  3  18  3  5 3

2

 54  117  54  5  4

g  4  2  4  13  4  18  4  5 3

2

52. a. Since Y1  4 and Y1  3 have opposite signs, the intermediate value theorem guarantees that the function has at least one zero on the interval  4, 3 .

 128  208  72  5  3

g  5  2  5  13  5  18  5  5 3

2

 250  325  90  5  20 a. Since f 1 and f  2 have the same sign, the intermediate value theorem does not guarantee that the function has at least one zero on the interval 1, 2 .

b. Since Y1  3 and Y1  2 have opposite signs, the intermediate value theorem guarantees that the function has at least one zero on the interval  3,  2 .

b. Since f  2 and f  3 have opposite signs, the intermediate value theorem guarantees that the function has at least one zero on the interval  2, 3 .

c. Since Y1  2 and Y1  1 have the same sign, the intermediate value theorem does not guarantee that the function has at least one zero on the interval  2, 1 .

c. Since f  3 and f  4 have the same sign, the intermediate value theorem does not guarantee that the function has at least one zero on the interval  3, 4 .

d. Since Y1  1 and Y1  0 have the same sign, the intermediate value theorem does not guarantee that the function has at least one zero on the interval  1, 0 .

d. Since f  4 and f  5 have opposite signs, the intermediate value theorem guarantees that the function has at least one zero on the interval  4, 5 .

53. f  x   4 x 3  8 x 2  25 x  50

f  3  4  3  8  3  25  3  50 3

2

 108  72  75  50  55

51. a. Since Y1  4 and Y1  3 have opposite signs, the intermediate value theorem guarantees that the function has at least one zero on the interval  4, 3 .

f  2  4  2  8  2  25  2  50 3

2

 32  32  50  50  36 a. Since f  3 and f  2 have opposite signs, the intermediate value theorem guarantees that the function has at least one zero on the interval  3,  2 .

b. Since Y1  3 and Y1  2 have opposite signs, the intermediate value theorem guarantees that the function has at least one zero on the interval  3,  2 .

321


Chapter 3 Polynomial and Rational Functions b. f  x   4 x 3  8 x 2  25 x  50

b. The end behavior is down on the left and up on the right. The leading coefficient is positive and the degree is odd.

0  4 x 3  8 x 2  25 x  50 0  4 x 2  x  2  25  x  2

0   x  2 4 x  25 2

c. 4 (odd multiplicity); 1 (odd multiplicity); 3 (odd multiplicity)

0   x  2 2 x  5 2 x  5

58. The graph is smooth and continuous. It can represent a polynomial function.

5 5 x  2, x  , x   2 2

a. The function has 3 turning points, so the minimum degree is 4.

5 The zero on the interval  3,  2 is  . 2

b. The end behavior is up on the left and up on the right. The leading coefficient is positive and the degree is even.

54. f  x   9 x 3  18 x 2  100 x  200

f  4  9  4  18  4  100  4  200 3

2

c. 4 (odd multiplicity); 1 (odd multiplicity); 3 (even multiplicity)

 576  288  400  200  264

f  3  9  3  18  3  100  3  200 3

2

59. The graph is smooth and continuous. It can represent a polynomial function.

 243  162  300  200  95 a. Since f  4 and f  3 have opposite signs, the intermediate value theorem guarantees that the function has at least one zero on the interval  4, 3 .

a. The function has 5 turning points, so the minimum degree is 6. b. The end behavior is down on the left and down on the right. The leading coefficient is negative and the degree is even.

b. f  x   9 x 3  18 x 2  100 x  200

c. 4 (odd multiplicity); 3 (odd multiplicity); 1 (even multiplicity); 2 7 (odd multiplicity); (odd multiplicity) 2

0  9 x 3  18 x 2  100 x  200 0  9 x 2  x  2  100  x  2

0   x  2 9 x 2  100

0   x  2 3x  10 3 x  10 x  2, x 

60. The graph is smooth and continuous. It can represent a polynomial function.

10 10 ,x 3 3

The zero on the interval  4, 3 is 

a. The function has 2 turning points, so the minimum degree is 3.

10 . 3

b. The end behavior is up on the left and down on the right. The leading coefficient is negative and the degree is odd.

55. The graph is not smooth. It cannot represent a polynomial function.

c. 4 (odd multiplicity); 1 (odd multiplicity); 2 (odd multiplicity)

56. The graph is not smooth. It cannot represent a polynomial function.

61. The graph is not continuous. It cannot represent a polynomial function.

57. The graph is smooth and continuous. It can represent a polynomial function.

62. The graph is not continuous. It cannot represent a polynomial function.

a. The function has 2 turning points, so the minimum degree is 3.

322


Section 3.2 63. f  x   x 3  5 x 2

The leading term is x 3 . The end behavior is down to the left and up to the right. 3 2 f  0   0  5  0  0

The y-intercept is  0, 0 .

0  x3  5 x 2 0  x 2  x  5 x  0, x  5 The zeros of the function are 0 (multiplicity 2) and 5 (multiplicity 1). Test for symmetry: 3 2 f   x     x   5   x    x3  5 x 2

1  x  2 x  1 x  3 2 1 1 The leading term is  x  x  x   x3 . The 2 2 end behavior is down to the left and up to the right. 1 1 f  0   0  2 0  1 0  3   21 3 2 2  3 The y-intercept is  0, 3 . The zeros of the function are 2 (multiplicity 1), 1 (multiplicity 1), and 3 (multiplicity 1). Test for symmetry: 1 f   x     x  2  x  1  x  3 2 f  x  is neither even nor odd.

65. f  x  

f  x  is neither even nor odd.

64. g  x   x 5  2 x 4

The leading term is x 5 . The end behavior is down to the left and up to the right. 5 4 g  0   0  2  0  0 The y-intercept is  0, 0 . 0  x5  2 x 4 0  x 4  x  2 x  0, x  2 The zeros of the function are 0 (multiplicity 4) and 2 (multiplicity 1). Test for symmetry: 5 4 g   x     x   2   x    x5  2 x 4

1  x  1 x  4 x  2 4 1 1 The leading term is  x  x  x   x3 . The 4 4 end behavior is down to the left and up to the right. 1 1 h 0   0  10  4 0  2   1 4 2  2 4 4

66. h  x  

g  x  is neither even nor odd.

323


Chapter 3 Polynomial and Rational Functions 68. h  x   x 4  x3  6 x 2

The y-intercept is  0, 2 . The zeros of the function are 1 (multiplicity 1), 4 (multiplicity 1), and 2 (multiplicity 1). Test for symmetry: 1 h   x     x  1  x  4  x  2 4 h  x  is neither even nor odd.

The leading term is x 4 . The end behavior is up to the left and up to the right. 4 3 2 h  0    0   0  6  0   0 The y-intercept is  0, 0 . 0  x 4  x3  6 x 2

0  x2 x2  x  6

0  x 2  x  2 x  3 x  0, x  2, x  3 The zeros of the function are 0 (multiplicity 2), 2 (multiplicity 1), and 3 (multiplicity 1). Test for symmetry: 4 3 2 h   x    x    x  6   x  x 4  x3  6 x 2 h  x  is neither even nor odd.

67. k  x   x 4  2 x 3  8 x 2

The leading term is x 4 . The end behavior is up to the left and up to the right. 4 3 2 k  0   0  2  0  8  0  0 The y-intercept is  0, 0 .

0  x 4  2 x3  8 x 2

0  x2 x2  2 x  8

0  x  x  4 x  2 2

x  0, x  4, x  2 The zeros of the function are 0 (multiplicity 2), 4 (multiplicity 1), and 2 (multiplicity 1). Test for symmetry: 4 3 2 k   x    x  2   x  8   x

69. k  x   0.2  x  2  x  4 2

3

The leading term is 0.2  x   x   0.2 x5 . The end behavior is down to the left and up to the right. 2 3 k  0  0.2  0  2  0  4 2

 x 4  2 x3  8 x 2 k  x  is neither even nor odd.

 0.2  2  4  51.2 2

3

3

The y-intercept is  0, 51.2 . The zeros of the function are 2 (multiplicity 2) and 4 (multiplicity 3). Test for symmetry: 2 3 k   x   0.2   x  2   x  4 k  x  is neither even nor odd.

324


Section 3.2 5 5 x  0, x  1, x  , x   3 3 The zeros of the function are 0 (multiplicity 5 2), 1 (multiplicity 1), (multiplicity 1), 3 5 and  (multiplicity 1). 3 Test for symmetry: p   x 70. m  x   0.1 x  3  x  1 2

 9   x   9   x   25   x   25   x  5

3

3

2

 9 x 5  9 x 4  25 x 3  25 x 2 p  x  is neither even nor odd.

The leading term is 0.1 x   x   0.1x 5 . The end behavior is down to the left and up to the right. 2 3 2 3 m  0  0.1 0  3  0  1  0.1 3 1  0.9 2

4

3

The y-intercept is  0, 0.9 . The zeros of the function are 3 (multiplicity 2) and 1 (multiplicity 3). Test for symmetry: 2 3 m   x   0.1  x  3   x  1 m  x  is neither even nor odd.

72. q  x   9 x 5  18 x 4  4 x3  8 x 2

The leading term is x 5 . The end behavior is down to the left and up to the right. 5 4 3 2 q  0  9  0  18  0  4  0  8  0  0 The y-intercept is  0, 0 .

0  9 x 5  18 x 4  4 x 3  8 x 2

0  x 2 9 x 3  18 x 2  4 x  8

0  x 2 9 x 2  x  2  4  x  2 

71. p  x   9 x 5  9 x 4  25 x3  25 x 2

0  x 2  x  2 9 x 2  4

The leading term is x 5 . The end behavior is down to the left and up to the right. 5 4 3 2 p  0  9  0  9  0  25  0  25  0  0

0  x 2 9 x 3  9 x 2  25 x  25

0  x  x  2 3x  2 3x  2 2 2 x  0, x  2, x  , x   3 3 The zeros of the function are 0 (multiplicity 2 2), 2 (multiplicity 1), (multiplicity 1), 3 2 and  (multiplicity 1). 3

0  x 2 9 x 2  x  1  25  x  1 

0  x 2  x  1 9 x 2  25

2

The y-intercept is  0, 0 .

0  9 x 5  9 x 4  25 x 3  25 x 2

0  x  x  1 3 x  5 3x  5 2

325


Chapter 3 Polynomial and Rational Functions 74. v  x    x 4  15 x 2  44

Test for symmetry: q   x   9   x   18   x   4   x   8   x  5

4

3

2

The leading term is  x 4 . The end behavior is down to the left and down to the right. 4 2 v  0    0  15  0  44  44

 9 x 5  18 x 4  4 x3  8 x 2 q  x  is neither even nor odd.

The y-intercept is  0, 44 . 0   x 4  15 x 2  44 0  x 4  15 x 2  44



0  x 2  4 x 2  11

0   x  2 x  2 x 2  11

x  2, x  2, x  11, x   11 The zeros of the function are 2 (multiplicity 1), 2 (multiplicity 1), 11 (multiplicity 1), and  11 (multiplicity 1). Test for symmetry: 4 2 v   x      x   15   x   44

73. t  x    x 4  11x 2  28

The leading term is  x 4 . The end behavior is down to the left and down to the right. 4 2 t  0    0  11 0  28  28

  x 4  15 x 2  44 v  x  is even, so it is symmetric with respect to the y-axis.

The y-intercept is  0, 28 . 0   x 4  11x 2  28 0  x 4  11x 2  28



0  x2  4 x2  7

0   x  2 x  2 x 2  7

x  2, x  2, x  7, x   7 The zeros of the function are 2 (multiplicity 1), 2 (multiplicity 1), 7 (multiplicity 1), and  7 (multiplicity 1). Test for symmetry: t   x      x   11  x   28

75. False

76. True

  x 4  11x 2  28 t  x  is even, so it is symmetric with respect to the y-axis.

77. False

78. False

79. True

80. False

81. False

82. True

83. False

84. True

85. True

86. False

4

2

87. a. The acceleration is increasing over the interval  0,12    68,184  .

326


Section 3.2 92 All polynomial functions y  f  x  are

b. The acceleration is decreasing over the interval 12, 68   184, 200  .

continuous. Therefore, for a  b , if f  a 

and f  b  have different signs, then at some

c. The graph shows 3 turning points.

point on the interval  a, b  , f  x  must be 0. That is, for the function to change sign from positive to negative or from negative to positive, the function must have a y value of 0 somewhere in between.

d. The minimum degree of a polynomial function with 3 turning points is 4. The leading coefficient would be negative since the end behavior of the graph is down on the left and down on the right. e. The acceleration is greatest approximately 184 sec after launch.

93. b

94. d

f. The maximum acceleration is approximately 2.85 G-forces.

95. a

96. c

97. a. f  3   3  3  3  2  2 2

88. a. The number of new AIDS cases increased over the interval  0, 8   14, 20  .

f  4   4  3  4  2  6 2

b. The acceleration is decreasing over the interval  8,14  .

b. By the intermediate value theorem, because f  3  2 and f  4  6 , then f must take on every value between 2 and 6 on the interval  3, 4 .

c. The graph shows 2 turning points. d. The minimum degree of a polynomial function with 2 turning points is 3. The leading coefficient would be positive since the end behavior of the graph is down on the left and up on the right.

c. f  x   x 2  3 x  2

4  x 2  3x  2 0  x 2  3x  2

e. The number of new AIDS cases is greatest in approximately 1993.

x

f. The maximum number of new cases diagnosed in a single year is approximately 2648.

  3 

 3 2  4 1 2 2 1

3  17  3.56 or  0.56 2 On the interval  3, 4 , 

89. The x-intercepts are the real solutions to the equation f  x   0 .

x

3  17  3.56 . 2

98. a. f  4    4  4  4  3  3

90. An x-intercept is a cross point if the corresponding zero of the polynomial has an odd multiplicity. An x-intercept is a touch point if the corresponding zero of the polynomial has an even multiplicity.

2

f  3    3  4  3  3  6 2

b. By the intermediate value theorem, because f  4  3 and f  3  6 , then f must take on every value between 3 and 6 on the interval  4, 3 .

91. A function is continuous if its graph can be drawn without lifting the pencil from the paper.

327


Chapter 3 Polynomial and Rational Functions c. f  x    x 2  4 x  3

102.

5   x2  4x  3 0   x2  4x  2 0  x2  4x  2 x

4 

 4 2  4 1 2 2 1

The end behavior is up to the left and up to the right.

4  8 4  2 2  2 2  2  2  0.59 or  3.41 On the interval  4, 3 , 

103. Window b is better.

x  2  2  3.41 . 99.

104. Window b is better.

V  t   0.0406t 3  0.154t 2  0.173t  0.0024 100.

105.

T  x   0.76 x 3  17.7 x 2  71.2 x  111 101. 106.

The end behavior is down to the left and up to the right.

328


Section 3.3 Section 3.3 Division of Polynomials and the Remainder and Factor Theorems 1. g  x   x 2  10 x  21

y-coordinate: 1 2 h  6    6  6  6  16 2  18  36  16  2 The vertex is  6, 2 .

a. Since a  0 , the parabola opens upward. b. x-coordinate:

b   10 10   5 2a 2 1 2

y-coordinate: 2 g  5   5  10  5  21  4

c. The axis of symmetry is the vertical line through the vertex: x  6 .

The vertex is  5, 4 .

d. The maximum value is 2.

1 e. h  x    x 2  6 x  16 2 1 0   x 2  6 x  16 2 0  x 2  12 x  32

c. The axis of symmetry is the vertical line through the vertex: x  5 . d. The minimum value is 4 . e. g  x   x 2  10 x  21

0   x  8 x  4

0  x 2  10 x  21 0   x  3 x  7 

x  8, x  4

x  3, x  7

The x-intercepts are  8, 0 and  4, 0 .

The x-intercepts are  3, 0 and  7, 0 .

1 2  0  6  0  16  16 2 The y-intercept is  0,  16 .

f. h  0  

f. g  0   0  10  0  21  21 2

The y-intercept is  0, 21 .

g.

g.

595 3. 42 25, 019

1 2. h  x    x 2  6 x  16 2

210

a. Since a  0 , the parabola opens downward. b. x-coordinate:

595

29 42

401 378

b   6 6    6 2a  1  1 2    2

239 210 29 Check: 42  595  29  24,990  29  25,019

329


Chapter 3 Polynomial and Rational Functions 2787 4. 23 64,108

c.  2 x  5 3 x  12  65

7 2787 23

46

 6 x 2  24 x  15 x  60  65  6 x2  9 x  5

181 161

4x  2 18. a. 3x  4 12 x 2  10 x  3

200

184

 12 x 2  16 x

 6x  3   6 x  8

7

11

Check: 23  2787   7  64,101  7  64,108

5.

 161

168

6 x 5  2 x 4 3x

6.

b. Dividend: 12 x 2  10 x  3 ; Divisor: 3x  4 ; Quotient: 4 x  2 ; Remainder: 11

15 x 3  3x 2 5x

c.  3x  4 4 x  2  11  12 x 2  6 x  16 x  8  11

7. Quotient:  x  3 ; Remainder: 0

 12 x 2  10 x  3

8. Quotient:  x  4 ; Remainder: 0

3x 2  x  4 19. x  4 3x  11x 2  0 x  10 3

9. Dividend: f  x  ; Divisor: d  x  ;

 3x 3  12 x 2

Quotient: q  x  ; Remainder: r  x 

x  0x  x2  4 x

10.  x  3 2 x 2  x  3   8  2 x3  5 x 2  6 x  1

12. complex

13. True

14. factor; 0

15. True

16. False

6 3x 2  x  4 

6 x4

2 x 2  3x  15 20. x  5 2 x 3  7 x 2  0 x  65

 2 x 3  10 x 2

3 x  12 17. a. 2 x  5 6 x 2  9 x  5  6 x 2  15 x

4 x  10   4 x  16

 2 x3  x 2  3x  6 x 2  3x  9  8

11. f  c 

2

3x 2  0 x  3x 2  15 x

15 x  65  15 x  75

24 x  5   24 x  60

10

65 2 x 2  3 x  15 

b. Dividend: 6 x 2  9 x  5 ; Divisor: 2 x  5 ; Quotient: 3 x  12 ; Remainder: 65

330

10 x5


Section 3.3 4 x 3  20 x 2  13 x  4 21. x  2 4 x 4  12 x 3  27 x 2  30 x  8

 4 x 4  8 x3

4 x 3  12 x 2  6 x  18 24. 2 x  6 8 x 4  0 x 3  60 x 2  0 x  108

 8 x 4  24 x 3

 20 x 3  27 x 2  20 x 3  40 x 2

24 x 3  60 x 2  24 x 3  72 x 2

13x 2  30 x  13 x 2  26 x

4x  8   4 x  8

36 x  108   36 x  108

0

0 4 x 3  12 x 2  6 x  18 x3  4 x 2  5 x  2 25. x 2  5 x 5  4 x 4  0 x 3  18 x 2  20 x  10

3x 3  8 x 2  4 x  16 22. x  3 3x 4  17 x 3  20 x 2  28 x  48

12 x 2  0 x  12 x 2  36 x

4 x 3  20 x 2  13 x  4

 3x 4  9 x3

 x5  0 x 4  5 x3

8 x 3  20 x 2  8 x 3  24 x 2

4 x 4  5 x 3  18 x 2  4 x 4  0 x 3  20 x 2

 4 x 2  28 x  4 x 2  12 x

 5 x 3  2 x 2  20 x  5 x 3  0 x 2  25 x

 16 x  48   16 x  48

 2 x 2  5 x  10  2 x 2  0 x  10

0

5x

3x 3  8 x 2  4 x  16

5x x3  4 x 2  5 x  2  2 x 5

3x3  6 x 2  2 x  4 23. 2 x  4 6 x 4  0 x 3  20 x 2  0 x  16

 6 x 4  12 x 3

x3  2 x 2  4 x  6 26. x  3 x  2 x  x  0 x 2  8 x  18

2

 12 x 3  20 x 2  12 x 3  24 x 2

5

4

3

 x5  0 x 4  3x3

4 x2  0 x  4 x2  8x

 2 x  4 x  0 x2  2 x 4  0 x 3  6 x 2 4

3

4x  6x  8x  4 x 3  0 x 2  12 x 3

2

 8 x  16   8 x  16

 6 x  4 x  18  6 x 2  0 x  18 2

0 3x3  6 x 2  2 x  4

4x x3  2 x 2  4 x  6 

331

4x x 3 2


Chapter 3 Polynomial and Rational Functions 3x 2  1 27. 2 x 2  x  3 6 x 4  3 x 3  7 x 2  6 x  5

 6 x  3x  9 x 4

3

2

31. a. Dividend: 2 x 4  5 x 3  5 x 2  4 x  29 b. Divisor: x  3

c. Quotient: 2 x 3  x 2  2 x  10

2 x2  6 x  5  2 x2  x  3

d. Remainder: 1

32. a. Dividend: x 4  5 x3  2 x 2  x  2

5x  2 3x 2  1 

5x  2 2 x2  x  3

b. Divisor: x  2 c. Quotient: x 3  3 x 2  4 x  9

4x2  1 28. 3x  x  4 12 x  4 x  13x  2 x  1 2

4

3

d. Remainder: 2

2

 12 x 4  4 x 3  16 x 2

33. a. Dividend: x 3  2 x 2  25 x  4

b. Divisor: x  4

 3x  2 x  1  3 x 2  x  4 2

c. Quotient: x 2  6 x  1

x5 4 x2  1 

d. Remainder: 0

x5 3x  x  4

34. a. Dividend: 3x 3  13 x 2  14 x  20

2

b. Divisor: x  5

x 2  3x  9 29. x  3 x 3  0 x 2  0 x  27

 x3  3x 2

c. Quotient: 3x 2  2 x  4

3x 2  0 x  3x 2  9 x

d. Remainder: 0 35. 6 4

9 x  27   9 x  27 

15

1

24

54

4

9

55

4x  9 

55 x6

0 x 2  3x  9

36. 5 6

30

25

6

5

6

6x  5 

6 x5

x 2  4 x  16 30. x  4 x 3  0 x 2  0 x  64

 x3  4 x 2

 4 x2  0 x  4 x 2  16 x

25 19

37. 4 5 17 12 20 12

16 x  64  16 x  64

5

0

5x  3

x  4 x  16 2

332

3

0


Section 3.3 45. a. f  x   2 x 4  5 x 3  x 2  7

1 21

38. 3 2

6

21

f  4  2  4  5  4   4  7

2 7

0

 2  256  5  64  16  7

4

2x  7 3 8

4

10 20 46

76

5 10 23 38

72

5 x 3  10 x 2  23x  38 

72 x2

0

0 2 40. 1 2 5 2 7 7

9

2 7 7 9

14

b. 4 2 5 1 0 8 12 52 2

5

b. 2 3

21

4 12

4

6 8 16 20

42

0

47. a. 1 2

0

b. 3 2

1 49

79

15

2 1 48 2 1 48 127

127 112

1 49 6

0 81 0

79

15

5

0

By the remainder theorem, f  3  0 .

c. 4 2 1 49

1 3 9 27

38

21 84 15

2 7 28

x 4  2 x 3  4 x 2  8 x  16

81

21

By the remainder theorem, f  1  112 .

32

3 9 27

6

The remainder is 38 .

0

2 4 8 16 32 1 2 4 8 16 0

0 0

1

2

3 4 8 10

2 x 4  17 x 3  31x 2  4 x  12 0

2

 96  32  24  2  4  38

59

0

4

 3  32  2 16  6  4  2  4

42. 2 2 13 3 58 20 24 4 34 62 8 24

0 0

201

5

4 x 4  13x 3  97 x 2  59 x  21

31

3 13 52

g  2  3  2  2  2  6  2   2  4

198 63 41. 3 4 25 58 232 12 39 291 177 63

2 17

208

46. a. g  x   3x 5  2 x 4  6 x 2  x  4

2

4 13 97

7

The remainder is 201.

14 2 x  7 x  7 x  9  x 1 3

44. 3 1

2

 512  320  16  7  201

39. 2 5

43. 2 1

3

79

15

8 36 52 2 9 13 27

108 123

By the remainder theorem, f  4  123 .

x 3  3x 2  9 x  27

d.

5 2

2 1 49 79 15 5 15 85 15 2 6 34 6 0

 5 By the remainder theorem, f    0 .  2

333


Chapter 3 Polynomial and Rational Functions 48. a. 1 3 22 51 3 25

42

8

12

118

d. 1 5 4 15 5 9

76

3 25 76 118

126

5 9

18

By the remainder theorem, g  1  126 .

b. 2 3 22

51 42

6 32 3 16 19

By the remainder theorem, h  1  18 .

8

50. a. 2 2 1 14

38 8 4 0

By the remainder theorem, k  2  9 .

51 42 8 c. 1 3 22 3 19 32 10 32 10

b.

2

By the remainder theorem, g 1  2 . 4 d. 3

27

6

1 2

2 1 14 7 1 0 7 2 0 14 0

 1 By the remainder theorem, k    0 .  2

3 22 51 42 8 4 24 36 8 3 18

7

6 16 8 9

4 3

2

By the remainder theorem, g  2  0 .

3 19

6

6

c.

7

1

2

0

 4 By the remainder theorem, g    0 .  3

14

7

2 7 14  7

7

2 1  2 7

 7

By the remainder theorem, k

49. a. 1 5 4 15 12 5 1 14 1 14

5

d. 2 2

4 2 5

2

By the remainder theorem, h 1  2 . 4 b. 5

0 15

3 5

4

0

15

12

5 3 15  4 3

12

5 4  5 3

7 8 15

51. a. 2 1 3 7 13 10 2 10 6 38 1 5

 4 By the remainder theorem, h    0 .  5

c.

10 4

 7  0 .

By the remainder theorem, k  2  15 .

5 4 15 12 4 0 12 5

1 14

0

4 3

By the remainder theorem, h

3 19

28

By the remainder theorem, f  2  28 .

Since f  2  0 , 2 is not a zero of f  x  .

b. 5 1

3 7 5

0

1 2

 

3 0.

13 10

10 15

10

2

0

3

By the remainder theorem, f  5  0 .

Since f  5  0 , 5 is a zero of f  x  .

334


Section 3.3 52. a. 2 2

13 10 19

14

4 18

56

74

9 28

37

60

2

55. a. 5i

1 2  5i

14 2 1

7 3

b. 5i

14

2

40

1 20

7

56. a. 3i

57. a. 6  i

36

12i

0

1

11

25

37

By the remainder theorem, g  6  i   0 . Since g  6  i   0 , 6  i is a zero of g  x .

b. 6  i

Since q  3  0 , 3 is not a zero of q  x  .

1

3 1  3 10

0

11

1 5  i

25

37

6  i

0

By the remainder theorem, g  6  i   0 .

10

 10

1

6  i 31  i 37

30 10

3 10 30  10

Since g  6  i   0 , 6  i is a zero of g  x .

By the remainder theorem, q  10  0 . Since q  10  0 ,  10 is a zero of q  x .

9

6  i 31  i 37 1 5  i 6  i 0

By the remainder theorem, q  3  8 .

4

Since n  3i   0 , 3i is a zero of n  x  .

1 30 10 18 9 24 3 8 6 8

0

By the remainder theorem, n  3i   0 .

0

54. a. 3 3

3

1

1 4  3i

33

3 11

12i

3i 9  12i 36

Since p  11  0 ,  11 is a zero of

b.  10

36

Since n  3i   0 , 3i is a zero of n  x  .

By the remainder theorem, p  11  0 . p  x .

9

By the remainder theorem, n  3i   0 .

22 33

2 11 22  3 11

4

1 4  3i

b. 3i

1

3i 9  12i 36

p  x .

2 3  2 11

50 0

Since m  5i   0 , 5i is a zero of m  x  .

Since p  2  0 , 2 is not a zero of

3

25 50

By the remainder theorem, m  5i   0 .

By the remainder theorem, p  2  7 .

b.  11 2

0

5i 25  10i 1 2  5i 10i

3 22 33 2

2

1

21 14 2 0

Since g  7   0 , 7 is a zero of g  x  .

4

10i

Since m  5i   0 , 5i is a zero of m  x  .

By the remainder theorem, g  7   0 .

53. a. 2 2

50

By the remainder theorem, m  5i   0 .

Since g  2  0 , 2 is not a zero of g  x  . 13 10 19

25 50

5i 25  10i

By the remainder theorem, g  2  60 .

b. 7 2

2

1

335


Chapter 3 Polynomial and Rational Functions 58. a. 1  5i

2

5

54 26

2  10i 53  5i 2 3  10i

1  5i

1 16

8

26

2

3

13

0

2 3 13

21

61. a. 1 2

By the remainder theorem, f 1  5i   0 .

By the factor theorem, since f 1  0 ,

Since f 1  5i   0 , 1  5i is a zero of

x  1 is not a factor of f  x  .

f  x .

b. 1  5i

b. 2 2 2

5

54 26

2  10i 53  5i 2 3  10i 1  5i

2 1 4 2

8

2 2

0

By the factor theorem, since f 2 2  0 ,

x  2 2 is a factor of f  x  .

Since f 1  5i   0 , 1  5i is a zero of f  x .

62. a. 2 3 1 54 6 10 3 5 44

59. a. 5 1 11 41 61 30 5 30 55 30 1 6 11 6 0

18 88 70

By the factor theorem, since f  2  0 ,

x  2 is not a factor of f  x  .

By the factor theorem, since f  5  0 , x  5 is a factor of f  x  .

b. 3 2

1

3

30

54

18

9 2 54  3 2

18

3 1  9 2

390

3 2

0

 

By the factor theorem, since f 3 2  0 ,

420

By the factor theorem, since f  2  0 ,

x  3 2 is a factor of f  x  .

x  2 is not a factor of f  x  .

63. a. 2  5i

60. a. 4 1 10 35 50 24 4 24 44 24 1 6 11 6 0

1

4

29

2  5i 29 1 2  5i

0

Yes, 2  5i is a factor of f  x  .

By the factor theorem, since g  4  0 ,

b. 2  5i

x  4 is a factor of g  x  .

b. 1 1 10 35 50 1 11 46 1 11 46 96

16 8

1

4 2 16  2 2

26 0

By the remainder theorem, f 1  5i   0 .

b. 2 1 11 41 61 2 26 134 1 13 67 195

2

1

4

29

2  5i 29 1 2  5i

24

0

Yes, 2  5i is a factor of f  x  .

96 120

By the factor theorem, since g  1  0 , x  1 is not a factor of g  x  .

336


Section 3.3

c. x 

  4 

66. a. 2 3 16 5 50 6 20 50

 4 2  4 1 29 2 1

3 10 25

4  100 4  10i    2  5i 2 2 The solution set is  2  5i .

f  x    x  2 3x 2  10 x  25

6

1

b.  x  2 3 x  5 x  5  0 5 x  2, x  , x  5 3 5   The solution set is  2, , 5 . 3  

25

3  4i 25 1 3  4i 0 Yes, 3  4i is a factor of f  x  .

b. 3  4i

6

1

67. a.

25

3  4i 25 1 3  4i 0 Yes, 3  4i is a factor of f  x  .

c. x 

  6 

 6  4 1 25 2 1

1  f  x   4  x   5 x 2  11x  2  4

f  x    4 x  1 5 x  1 x  2

6  64 6  8i   3  4i 2 2 The solution set is  3  4i .

b.  4 x  1 5 x  1 x  2  0 1 1 , x   , x  2 4 5 1 1  The solution set is  ,  , 2 . 4 5 

x

d. The zeros are 3  4i .

2

20 39 3 2 5 11 2 20 44 8 0

2

1 37 36 2

1 4

1  f  x    x   20 x 2  44 x  8  4

65. a. 1 2

f  x    x  2 3x  5 x  5

d. The zeros are 2  5i . 64. a. 3  4i

0

1

36

1 36

0

f  x    x  1 2 x 2  x  36

68. a.

f  x    x  1 2 x  9 x  4 b.  x  1 2 x  9 x  4  0

3 4

8 18 11 15 6 9 15 8 12 20 0

3  f  x    x   8 x 2  12 x  20  4

9 x  1, x  , x  4 2 9   The solution set is  1, , 4 . 2  

3  f  x   4  x   2 x 2  3x  5  4

f  x    4 x  3 2 x  5 x  1

337


Chapter 3 Polynomial and Rational Functions b.  4 x  3 2 x  5 x  1  0

3 2  73. f  x    x  1  x    x   2

3 5 x  , x  , x  1 4 2 3 5  The solution set is  , , 1 . 4 2 

5 3   x2  x2  x    2 2 5 3 3 2 x  x 2 2  4 5 3 3 2 or f  x   a  x  x  x   2 2   x4 

69. a. 3 9 33 19 3 27 18 3 9 6 1 0

5 3    2  x 4  x3  x 2   2 2 

f  x    x  3 9 x  6 x  1 2

f  x    x  3 3 x  1

 2 x 4  5 x3  3x 2

2

5 3  74. f  x    x  2  x    x   2

b.  x  3 3x  1  0 2

x  3, x 

1 3

9    x 3  x 2  x  5   2

 1 The solution set is 3,  .  3

9 3 x  5 x3 2 9   or f  x   a  x 5  x 3  5 x 3    2  x5 

33 18 70. a. 2 4 20 8 24 18 4 12 9 0

f  x    x  2 4 x 2  12 x  9 f  x    x  2 2 x  3

9    2  x5  x3  5 x3    2

 2 x 5  9 x 3  10 x 3

2

  x   2 11

75. f  x   x  2 11 x  2 11

b.  x  2 2 x  3  0 2

2

3 x  2, x  2

  x  5 2 

76. f  x   x  5 2 x  5 2

71. f  x    x  2 x  3 x  4

2

77. f  x    x  2 x  3i  x  3i 

 x 3  x 2  14 x  24

  x  2 x 2  9

72. f  x    x  1 x  6 x  3

2

 x 2  50

 x 3  x 2  12 x  2 x 2  2 x  24

  x  1 x 2  3 x  18

2

 x 2  44

 3 The solution set is  2,  .  2

  x  2 x 2  x  12

 x  2 x  9 x  18 3

2

78. f  x    x  4 x  2i  x  2i 

 x 3  3x 2  18 x  x 2  3 x  18

  x  4 x 2  4

 x 3  2 x 2  21x  18

 x  4 x  4 x  16 3

338

2


Section 3.3 2  1  79. f  x   a  x    x    x  4  3  2

84. Direct substitution is easier. q  x   5 x 721  2 x 450

q  1  5  1

2  1   6  x    x    x  4  3  2

f 1  1

100

f  x .

 6 x  23x  6 x  8 80.

2

b. f  1   1

100

of f  x  .

2  3   10  x    x    x  6  5  2

c. g  x   x99  1

g 1  1  1  1  1  0 99

2  3   5  x    2  x    x  6  5  2

  5 x  2 2 x 2  15 x  18

Yes, since g 1  0 ,  x  1 is a factor of g  x .

d. g  1   1  1  1  1  2 99

 10 x 3  75 x 2  90 x  4 x 2  30 x  36

No, since g  1  0 ,  x  1 is not a

 10 x  71x  60 x  36 3

factor of g  x  .

2

81. f  x    x   7  8i    x   7  8i  

e. Yes

  x  7   8i   x  7   8i    x  7    8i  2

86. third 87. Since x is not a factor, zero is not a zero of the polynomial. False.

82. f  x    x   5  6i    x   5  6i  

88. Since x is a factor, zero is a zero of the polynomial. True.

  x  5  6i   x  5  6i  2

89. 4 4

m 13 5 16 12 28 4 3 7 0

2

 x 2  10 x  25  36  x 2  10 x  61

m   28  0

83. Direct substitution is easier. p  x   2 x 452  4 x 92 p 1  2 1

452

f. No

2

 x 2  14 x  49  64  x 2  14 x  113

  x  5   6i 

1  11  0

Yes, since f  1  0 ,  x  1 is a factor

2  3  f  x   a  x    x    x  6  5  2

  5 x  2 2 x  3 x  6

1  11  0

Yes, since f 1  0 ,  x  1 is a factor of

 6 x 3  27 x 2  12 x  4 x 2  18 x  8 3

450

85. a. f  x   x100  1

  3x  2 2 x  1 x  4   3x  2 2 x  9 x  4

 2  1

 5  1  2 1  7

2  1   3  x    2  x    x  4    3 2 2

721

m  28

 4 1  2  4  2 92

339


Chapter 3 Polynomial and Rational Functions 95. a. V  x   x  x  1 2 x  1  2 1 x 

m 90. 5 3 10 20 22 15 25 25 15 5 5 3 0 3

 2 x  3x  x  2 x 3

m   15  0

3 1 12 90 2 15 89

b. 6 2

91. 2 4

5 m 2 8 6 2m  12 4 3 m  6 0

0 534 534

The volume is 534 cm3.

2   2m  12  0

96. a. V  x   x  x  1 x  4  2  2 x  5

2m  10  0 2m  10 m  5

 x x 2  5 x  4  4  x  5  x 3  5 x 2  4 x  4 x  20  x 3  5 x 2  20

m 6 92. 3 2 7 6 3 3m  9 2 1 m  3 0

b. 10 1 5 0 10 50 1 5 50

6   3m  9  0

20 500 520

The volume is 520 ft3.

3m  3  0 3m  3 m 1

97. The divisor must be of the form  x  c  , where c is a constant. 98. Multiply the quotient times the divisor and add the remainder. The result should be equal to the dividend.

x 2  x  12 r  x  3 x4 x4  x  3 x  4  x  3  r x4 x4 r x  3  x  3 x4 r 0 x4 0r

94. 2 1 5 2 1 3

2

 2 x3  3x 2  x

m  15

93.

 x 2 x 2  3x  1  2 x

99. Compute f  c  either by direct substitution or by using the remainder theorem. The remainder theorem states that f  c  is equal to the remainder obtained after dividing f  x  by  x  c  . 100. Given a polynomial f  x  , if c is a zero of

8 6 14

f  x  , then  x  c  is a factor of f  x  . The

converse is also true. If  x  c  is a factor of f  x  , then c is a zero of f  x  .

x2  5x  8 r  x 3 x2 x2 14 r  x 3 x 3 x4 x4 14  r

340


Section 3.3 104. a. 2 1

4 1 20 20 2 4 10 20 1 2 5 10 0

101. a. 5 1 5 1 5 5 0 5

1

0 1

0

f  x    x  2 x3  2 x 2  5 x  10

f  x    x  5 x 2  1

  x  2  x 2  x  2  5  x  2 

x2  1  0

  x  2 x  2 x 2  5

x 2  1

   b.  x  2  x  5  x  5   0 2

2

b.  x  5 x  i  x  i   0

x  2, x  5, x   5

x  5, x  i, x  i

102. a. 3 1 3 100 300 3 0 300

105. a. The solution appears to be 3.

7 58 24 15 66 24 5 22 8 0

b. 3 5

0

f  x    x  3 x 2  100

Since the remainder is zero, 3 is a solution.

x  100  0 2

x 2  100

c. f  x    x  3 5 x 2  22 x  8

x   100  10i f  x    x  3 x  10i  x  10i 

 x  3 x  4 5 x  2  0

2 5 2  The solution set is 3,  4,   . 5  x  3, x  4, x  

x  3, x  10i, x  10i The solution set is  3,10i, 10i . 103. a. 1 1

2 2 6 3 1 1 3 3 1 1 3 3 0

106. a. The solution appears to be 5 . b. 5 2

1 41 70 10 55 70 2 11 14 0

f  x    x  1 x  x  3 x  3 2

  x  1  x 2  x  1  3  x  1 

Since the remainder is zero, 5 is a solution.

  x  1 x  1 x 2  3

   b.  x  1  x  3  x  3   0

c. f  x    x  5 2 x 2  11x  14

  x  1 x  3 x  3 2

  x  5 2 x  7  x  2

2

x  1, x  3, x   3

  x  3 x  4 5 x  2

b.  x  3 x  10i  x  10i   0

3

The solution set is 2, 5,  5 .

The solution set is  5, i, i .

0 100

  x  2 x  5 x  5

x   1  i f  x    x  5 x  i  x  i 

1

 x  5 2 x  7 x  2  0 x  5, x 

7 ,x2 2

The solution set is 1, 3,  3 .

7 The solution set is 5, , 2 . 2

341


Chapter 3 Polynomial and Rational Functions Section 3.4 Zeros of Polynomials 1. a. 4,

2 5

10, 4  2

b.

x 4  13 x 2  36  0

6. a.

 x  9 x  4  0 2

2

2 c. 4, , 10, 4  2 5

 x  3 x  3 x  2 x  2  0

d. 6i, 3  8i

The solution set is  3, 3, 2, 2

x  3, x  3, x  2, x  2

2 e. 4, , 10,, 6i, 3  8i 4  2 5

b. The zeros are 3, 3, 2, 2 .

2. a. x 2  25   x  5 x  5

7. zeros

b. x 2  25   x  5i  x  5i 

8. Fundamental theorem of algebra

3. f  x   3x 4  x  2  4 x  7 

2

0  3x 4  x  2  4 x  7 

2

3 3

11. Descartes’; f   x 

7 4 The zeros of the function are 0 (multiplicity 7 4), 2 (multiplicity 3), and (multiplicity 2). 4 x  0, x  2, x 

4. f  x   5 x  x  6  5 x  1

5

0  5 x  x  6  5 x  1

5

2 2

12. upper

13. greater than

14. 7 is not the ratio of any of the factors of 6 over the factors of 2.

1 x  0, x  6, x  5 The zeros of the function are 0 (multiplicity 1 1), 6 (multiplicity 2), and (multiplicity 5 5).

15.

Factors of 4 1,  2,  4   1,  2,  4 Factors of 1 1

16.

Factors of 9 1,  3,  9   1,  3,  9 1 Factors of 1

17.

Factors of  6 Factors of 4 1,  2,  3,  6  1,  2,  4 1 3 1 3  1,  2,  3,  6,  ,  ,  ,  2 2 4 4

5. a. f  x   2 x3  7 x 2  12 x  31

f  3  2  3  7  3  12  3  31 3

10. a  bi

9. n

2

 2  27   7  9  36  31

18.

 54  63  36  31  4 b. 3 2 7 12 31 6 3 27 2 1 9 4

Factors of 10 Factors of 25 1,  2,  5,  10  1,  5,  25 1 2 1 2  1,  2,  5,  10,  ,  ,  ,  5 5 25 25

By the remainder theorem, f  3  4 .

342


Section 3.4

19.

20.

Factors of 8 Factors of 12 1,  2,  4,  8  1,  2,  3,  4,  6,  12 1 1 2 4 8  1,  2,  4,  8,  ,  ,  ,  ,  , 2 3 3 3 3 1 1  , 6 12

24.

Factors of 6 Factors of 16 1,  2,  3,  6  1,  2,  4,  8,  16 1 3 1 3 1  1,  2,  3,  6,  ,  ,  ,  ,  , 2 2 4 4 8 3 1 3  , , 8 16 16

The remainder is zero. Therefore, 1 is a zero of p  x  . 2 1

1 7 5 10 2 10 10 2 1 1 5 5 0

The remainder is zero. Therefore, 2 is a zero of q  x  .

5 are not ratios of any of the factors 3 of 12 over the factors of 2.

21. 7 and

25.

3 are not ratios of any of the factors 2 of 10 over the factors of 4.

22. 3 and

23.

Factors of 2 1,  2 1   1,  2,  Factors of 2 1,  2 2 Use synthetic division and the remainder theorem to determine if any of the numbers in the list is a zero of p  x  . (Successful tests of zeros are shown.) 1 2 1 5 2 2

  0   x  5  x  2 x  4  2

x  5 or

1 2

26.

1 5 2 2 1 1 2 2 2 2 4 4 0

zero of p  x  .

 2 2  4 1 4 2 1

2  20 2  2 5   1 5 2 2 The zeros are 5, 1  5 .

2

The remainder is zero. Therefore, 

x

  2 

x

The remainder is zero. Therefore, 1 is a zero of p  x  . 

Factors of 20 1,  2,  4,  5,  10,  20  Factors of 1 1  1,  2,  4,  5,  10,  20 5 1 7 6 20 5 10 20 1 2 4 0 f  x    x  5 x 2  2 x  4

2 1 4 2 1 4 2 0

2

Factors of 10 1,  2,  5,  10  Factors of 1 1  1,  2,  5,  10 Use synthetic division and the remainder theorem to determine if any of the numbers in the list is a zero of q  x  . (Successful tests of zeros are shown.) 1 1 1 7 5 10 1 2 5 10 1 2 5 10 0

1 is a 2

343

Factors of 6 1,  2,  3,  6  Factors of 1 1  1,  2,  3,  6 3 1 7 14 6 3 12 6 1 4 2 0


Chapter 3 Polynomial and Rational Functions

  0   x  3  x  4 x  2

g  x    x  3 x 2  4 x  2

29.

2

x  3 or

x

  4 

 4 2  4 1 2 2 1

4 8 42 2   2 2 2 2 The zeros are 3, 2  2 . x

27.

Factors of 7 1,  7 1 7   1,  7,  ,  Factors of 5 1,  5 5 5 1 5 1 35 7 5 1 0 7 5 0 35 0 1  h  x    x   5 x 2  35  5

1  0   x   5 x 2  35  5 1 x or 5 x 2  35 5 x2  7

 

m  x    x  2 3x 3  5 x 2  26 x  8

2

m  x    x  2  3 x  1 x  4 2

0   x  2  3 x  1 x  4 2

1 x  2, x  , x  4 3 The zeros are 2 (multiplicity 2),

30.

1  k  x    x   7 x 2  21  7

1  0   x   7 x 2  21  7 1 or 7 x 2  21 x 7 x2  3 x 3 1 The zeros are ,  3 . 7

m  x    x  2 3 x 2  11x  4

Factors of 3 1,  3 1 3   1,  3,  ,  Factors of 7 1,  7 7 7 1 7 1 21 3 7 1 0 3 7 0 21 0

Find the zeros of the quotient. 2 3 5 26 8 6 22 8 3 11 4 0

x 7 1 The zeros are ,  7 . 5 28.

Factors of 16 Factors of 3 1,  2,  4,  8,  16  1,  3  1,  2,  4,  8,  16, 1 2 4 8 16  , , , , 3 3 3 3 3 2 3 1 36 60 16 6 10 52 16 3 5 26 8 0

1 , 4 . 3

Factors of  45 Factors of 2 1,  3,  5,  9,  15,  45  1,  2  1,  3,  5,  9,  15,  45, 1 3 5 9 15 45  , , , , , 2 2 2 2 2 2 3 2 9 5 57 45 6 9 42 45 2 3 14 15 0

n  x    x  3 2 x 3  3x 2  14 x  15 Find the zeros of the quotient. 3 2 3 14 15 6 9 15 2 3 5 0

344


Section 3.4

n  x    x  3 2 x 2  3x  5 2

33. t  x   x 4  x 2  90

   0   x  10 x  9

t  x   x 2  10 x 2  9

n  x    x  3  2 x  5 x  1 2

0   x  3  2 x  5 x  1

2

2

x 2  10

5 x  3, x  , x  1 2

34. v  x   x 4  12 x 2  13

Factors of 20 1,  2,  4,  5,  10,  20 31.  Factors of 1 1  1,  2,  4,  5,  10,  20 2 1 4 2 20 2 12 20 1 6 10 0

   0   x  13 x  1

v  x   x 2  13 x 2  1 2

2

 62  4 110 2 1

35. one

36. 3

37. 7

38. 9

39. a. 2  5i

6  4 6  2i   3 i 2 2 The zeros are 2 , 3  i .

1

7

14  35i

203 0

2  5i 0 14  35i 0 7 0



f  x    x   2  5i    x   2  5i   x 2  7

Find the remaining two zeros. x2  7  0

  0   x  4  x  4 x  13

x2  7

2

  4 

28 203

22

Since 2  5i is a zero, 2  5i is also a zero. 2  5i 1 2  5i 7 14  35i

p  x    x  4 x 2  4 x  13

x

4

1 2  5i

Factors of 52 1,  2,  4,  13,  26,  52  Factors of 1 1  1,  2,  4,  13,  26,  52 4 1 8 29 52 4 16 52 1 4 13 0

or

1

2  5i 29 14  35i

x

x4

x 2  1

or

x   13 or x  i The zeros are  13,  i .

  0   x  2  x  6 x  10

32.

2

x 2  13

q  x    x  2 x 2  6 x  10

x  2 or x 

x 2  9

or

x   10 or x  3i The zeros are  10,  3i .

5 The zeros are 3 (multiplicity 2), , 1 . 2

  6 

2

x 7 The zeros are 2  5i ,  7 .

 4  4 113 2 1 2

b. f  x 

4  36 4  6i x   2  3i 2 2 The zeros are 4, 2  3i .

x  2  5i x  2  5i x  7 x  7

c. The solution set is 2  5i,  7 .

345


Chapter 3 Polynomial and Rational Functions 40. a. 3  i

6

1

3  i 10 15  5i 1 3  i

3x  4  0 3x  4

30 50

5 5

50

15  5i

0

x

Since 3  i is a zero, 3  i is also a zero. 3  i 1 3  i 5 15  5i

The zeros are 4  i ,

3 i 0 15  5i 0 5 0

1

f  x    x   3  i    x   3  i   x 2  5

4  c. The solution set is  4  i,  . 3 

42. a. 5  i 5

x2  5



f  x    x   5  i    x   5  i    5 x  4

Find the remaining zero. 5x  4  0 5x  4

68

16  4i

0

x

Since 4  i is a zero, 4  i is also a zero. 4  i 3 16  3i 16  4i 3

4  c. The solution set is 5  i,  . 5 

4 37 117 87 193 52 1 9 27 15 52 4 36 108 60 208 0

Find the zeros of the quotient. 3  2i 4 36 108

4 . 5

b. f  x    x   5  i    x   5  i    5 x  4

Find the remaining zero.

1 4

4 5

The zeros are 5  i ,

12  3i 16  4i 4 0

f  x    x   4  i    x   4  i    3 x  4

43. a. 

0

25  5i 20  4i 4 0

5

83 68

12  3i 67  4i

20  4i

104

Since 5  i is a zero, 5  i is also a zero. 5  i 5 29  5i 20  4i

c. The solution set is 3  i,  5 .

3 16  3i

170 104

5 29  5i

x  3  i x  3  i x  5 x  5

28

54

25  5i 150  4i

x 5 The zeros are 3  i ,  5 .

b. f  x 

4 . 3

b. f  x    x   4  i    x   4  i    3 x  4

Find the remaining two zeros. x2  5  0

41. a. 4  i 3

4 3

60 208

12  8i 88  24i 108  32i 4 24  8i 20  24i 48  32i Since 3  2i is a zero, 3  2i is also a zero.

346

208 0


Section 3.4 3  2i

24  8i 20  24i 48  32i 48  32i 12  8i 36  24i 4 12 0 16 4

1  f  x    x   3  2i    x   3  2i    x   4 x 2  12 x  16  4

  f  x    x   3  2i    x   3  2i    4 x  1  x  3 x  4 2

f  x    x   3  2i    x   3  2i    4 x  1 x  1 x  4

0   x   3  2i    x   3  2i    4 x  1 x  1 x  4 1 x  3  2i, x  3  2i, x   , x  1, x  4 4 1 The zeros are 3  2i,  ,1,  4 4

b. f  x    x   3  2i    x   3  2i    4 x  1 x  1 x  4 1   c. The solution set is  3  2i,  ,1,  4 . 4  

44. a.

5 2

2 5 4 22 50 75 5 0 10 80 75 2 0 4 32 30 0

Find the zeros of the quotient. 1  2i 2 0 4 32 30 2  4i 6  8i 26  12i 30 2 2  4i 10  8i 6  12i 0

Since 1  2i is a zero, 1  2i is also a zero. 1  2i 2 2  4i 10  8i 6  12i 2  4i 4  8i 6  12i 2 4 6 0 5  f  x    x   1  2i    x   1  22i    x   2 x 2  4 x  6  2

  f  x    x   1  2i    x   1  22i    2 x  5  x  2 x  3 2

f  x    x   1  2i    x   1  22i    2 x  5 x  1 x  3

0   x   1  2i    x   1  22i    2 x  5 x  1 x  3 5 x  1  2i, x  1  2i, x  , x  1, x  3 2 5 The zeros are 1  2i, ,  1, 3 2 b. f  x    x   1  2i    x   1  22i    2 x  5 x  1 x  3 5   c. The solution set is  1  2i, ,  1, 3 . 2  

347


Chapter 3 Polynomial and Rational Functions 4  45. f  x   a  x  6i  x  6i   x    5

3  46. f  x   a  x  4i  x  4i   x    2

4   a x 2  36  x    5

3   a x 2  16  x    2

4 144    a  x3  x 2  36 x   Let a  5.  5 5 

3    a  x3  x 2  16 x  24 Let a  2.   2

4 144    5  x3  x 2  36 x    5 5 

3    2  x3  x 2  16 x  24   2

 5 x3  4 x 2  180 x  144

 2 x3  3x 2  32 x  48

47. f  x   a  x  4 x  2

3

 a  x  4 x  2 x  2

2

 a  x  4 x  2 x 2  4 x  4

   a  x  4  x  6 x  12 x  8  a  x  6 x  12 x  8 x  4 x  24 x  48 x  32  a  x  2 x  12 x  40 x  32  a  x  4 x3  4 x 2  4 x  2 x 2  8 x  8 3

2

4

3

2

4

3

2

3

2

f  0  a  0  2  0  12  0  40  0  32  160   32a  160 a  5 4 3 2 f  x   5 x  2 x  12 x  40 x  32 4

3

2

f  x   5 x  10 x  60 x  200 x  160 4

3

2

48. f  x   a  x  5  x  3 2

2

    a  x  6 x  9 x  10 x  60 x  90 x  25 x  150 x  225  a  x  4 x  26 x  60 x  225  a x 2  10 x  25 x 2  6 x  9 4

3

4

3

2

3

2

2

2

4 3 2 f  0  a  0  4  0  26  0  60  0  225  450   225a  450 a  2 4 3 2 f  x   2 x  4 x  26 x  60 x  225

f  x   2 x 4  8 x3  52 x 2  120 x  450

348


Section 3.4 52. f  x   x 3  x   5  10i    x   5  10i  

2

4  1  49. f  x   a  x    x    3  2

 x 3  x  5  10i  2

8 16   1   a  x2  x    x    3 9 2

   x  x  10 x  125  x 3 x 2  10 x  25  100 3

1 8 4 16 8   a  x3  x 2  x 2  x  x    2 3 3 9 9

53. f  x   x 6  2 x 4  4 x 3  2 x 2  5 x  6

3 sign changes in f  x  . The number of possible positive real zeros is either 3 or 1. 6 4 3 2 f   x    x  2   x  4   x  2   x

8  3 13 2 4 f  0  a  0   0   0    16 6 9 9  8  a  16 9 a  18 13 4 8   f  x   18  x3  x 2  x    6 9 9

 5   x  6 f   x   x6  2 x 4  4 x3  2 x 2  5 x  6 3 sign changes in f   x  . The number of possible negative real zeros is either 3 or 1.

f  x   18 x3  39 x 2  8 x  16

54. g  x   3 x 7  4 x 4  6 x 3  5 x 2  6 x  1

2

4 sign changes in g  x  . The number of possible positive real zeros is either 4, 2, or 0. 7 4 3 2 g   x  3  x  4   x  6   x  5   x

5  1  50. f  x   a  x    x      6 3 5 25  1   a  x2  x    x    3 36  3

6   x   1

1 5 5 25 25    a  x3  x 2  x 2  x  x    3 3 9 36 108

g   x   3x 7  4 x 4  6 x 3  5 x 2  6 x  1

4 5 25    a  x3  x 2  x    3 36 108

1 sign change in g   x  . The number of possible negative real zeros is 1.

25   3 4 2 5 f  0  a  0   0   0   25 3 36 108   25 a  25  108 a  108 25   3 4 2 5 f  x   108  x  x  x   3 36 108 

55. k  x   8 x 7  5 x 6  3 x 4  2 x 3  11x 2  4 x  3 6 sign changes in k  x  . The number of possible positive real zeros is either 6, 4, 2, or 0. 7 6 4 3 k   x  8   x  5   x  3   x  2   x  11  x  4   x  3 2

f  x   108 x  144 x  15 x  25 2

k   x  8 x 7  5 x 6  3 x 4  2 x 3  11x 2  4 x  3 1 sign change in k   x  . The number of possible negative real zeros is 1.

51. f  x   x 4  x   7  4i    x   7  4i    x 4  x  7    4i  2

2

   x  x  14 x  65

56. h  x   4 x 9  6 x8  5 x 5  2 x 4  3 x 2  x  8

 x 4 x 2  14 x  49  16 4

2

 x 5  10 x 4  125 x 3

13 4 8   a  x3  x 2  x    6 9 9

3

2

5 sign changes in h  x  . The number of possible positive real zeros is either 5, 3, or 1.

2

 x 6  14 x 5  65 x 4

349


Chapter 3 Polynomial and Rational Functions h   x   4   x   6   x   5   x  9

8

5

1 1 1   x  6    x  4    x  2 1 1000 100 10 1 6 1 4 1 2 t   x  x  x  x 1 1000 100 10 0 sign changes in t   x  . The number of possible negative real zeros is 0. t   x 

 2   x  3  x    x  8 4

2

h   x   4 x 9  6 x8  5 x 5  2 x 4  3 x 2  x  8 2 sign changes in h   x  . The number of possible negative real zeros is 2 or 0.

57. p  x   0.11x 4  0.04 x 3  0.31x 2  0.27 x  1.1

61. f  x   x8  5 x 6  6 x 4  x 3

0 sign changes in p  x  . The number of possible positive real zeros is 0. 4 3 2 p   x   0.11  x   0.04   x   0.31  x 

1 sign change. The number of possible positive real zeros is 1.   x 5  5   x 3  6   x   1   x 5  5 x 3  6 x  1 0 sign changes. The number of possible negative real zeros is 0. f  x  has 4 real zeros; 1 positive real zero, no negative real zeros, and the number 0 is a zero of multiplicity 3.

 0.27   x  1.1 p   x   0.11x 4  0.04 x 3  0.31x 2  0.27 x 1.1 4 sign changes in p   x  . The number of possible negative real zeros is either 4, 2, or 0.

58. q  x   0.6 x 4  0.8 x 3  0.6 x 2  0.1x  0.4

62. f  x   5 x8  3x 6  4 x 2  x

4 sign changes in q  x  . The number of possible positive real zeros is either 4, 2, or 0. 4 3 2 q   x   0.6   x   0.8   x   0.6   x 

1 sign change. The number of possible positive real zeros is 1. 5   x   3   x   4   x   1 7

5

 5 x7  3x5  4 x  1 0 sign changes. The number of possible negative real zeros is 0. f  x  has 2 real zeros; 1 positive real zero, no negative real zeros, and the number 0 is a zero of multiplicity 1.

q   x   0.6 x  0.8 x  0.6 x  0.1x  0.4 3

f  x   x 5 x 7  3 x 5  4 x  1

 0.1  x   0.4 4

f  x   x3 x5  5 x3  6 x  1

2

0 sign changes in q   x  . The number of possible negative real zeros is 0. 1 6 1 4 1 2 1 x  x  x  8 6 3 10 0 sign changes in v  x  . The number of possible positive real zeros is 0. 1 1 1 1 6 4 2 v   x    x    x    x  8 6 3 10 1 1 1 1 v   x  x6  x4  x2  8 6 3 10 0 sign changes in v   x  . The number of possible negative real zeros is 0.

59. v  x  

63. a. 2 1 6 0 5 1 3 2 16 32 74 150 1 8 16 37 75 147 The remainder and all coefficients of the quotient are nonnegative. Therefore, 2 is an upper bound for the real zeros of f  x .

b. 2 1

1 6 1 4 1 2 x  x  x 1 1000 100 10 0 sign changes in t  x  . The number of possible positive real zeros is 0.

60. t  x  

1

1

3

2 8 16 42

82

4 8 21 41

79

6

0

5

The signs of the quotient do not alternate.

350


Section 3.4 Therefore, we cannot conclude that 2 is a lower bound for the real zeros of f  x  . 8 4

7

3

3 33 87

282

1 11 29 94

279

64. a. 3 1

b. 4 6

1

7

3

3 15 57

192

5 19 64

195

8

4

172

6 25

43

102

b. 6 2

40 660 700

11 0 63 50

12 6 36 2 1 6 99

28

594 544

40 3264 3224

The signs of the quotient alternate. Therefore, 6 is a lower bound for the real zeros of f  x  .

414 442

68. a. 6 3 16 5 90 138 18 12 102 1152 3 2 17 192 1014

28

36 6084 6120

The remainder and all coefficients of the quotient are nonnegative. Therefore, 6 is an upper bound for the real zeros of f  x .

83 55

The signs of the quotient alternate. Therefore, 1 is a lower bound for the real zeros of f  x  .

66. a. 4 6 1 57 24 92 6 23 35

100

The remainder and all coefficients of the quotient are nonnegative. Therefore, 3 is an upper bound for the real zeros of f  x .

The remainder and all coefficients of the quotient are nonnegative. Therefore, 6 is an upper bound for the real zeros of f  x .

b. 1 8 42 33 8 50 8 50 83

24

67. a. 3 2 11 0 63 50 6 51 153 270 2 17 51 90 220

The signs of the quotient do not alternate. Therefore, we cannot conclude that 3 is a lower bound for the real zeros of f  x  .

65. a. 6 8 42 33 48 36 8 6 69

70

The signs of the quotient alternate. Therefore, 4 is a lower bound for the real zeros of f  x  .

The remainder and all coefficients of the quotient are nonnegative. Therefore, 3 is an upper bound for the real zeros of f  x .

b. 3 1

1 57

90 138 b. 3 3 16 5 9 75 240 450 3 25 80 150 312

70

36 936 900

The signs of the quotient alternate. Therefore, 3 is a lower bound for the real zeros of f  x  .

140 210

The remainder and all coefficients of the quotient are nonnegative. Therefore, 4 is an upper bound for the real zeros of f  x .

351

69. True

70. False

71. False

72. True


Chapter 3 Polynomial and Rational Functions

73.

Factors of 28 1,  2,  4,  7,  14,  28  1,  2,  4,  8 Factors of 8

2 6 1 57 12

 1,  2,  4,  7,  14,  28, 1 1 1 7 7  , , , , 2 4 8 2 4 From Exercise 65, we know that 6 and 1 are upper and lower bounds of f  x  , respectively. We can restrict the list of possible rational zeros to those on the interval  1, 6 :

0   2 x  7  3x  5 7 5 x ,x 2 3 7 5 The zeros are  , , and 2 (each with 2 3 multiplicity 1).

75.

32 40 28 7

0

Find the zeros of the quotient. 0  8 x 2  10 x  7

1 5  , 2 2 From Exercise 67, we know that 3 and 6 are upper and lower bounds of f  x  , respectively. We can restrict the list of possible rational zeros to those on the interval  6, 3 :

7 1 ,x 4 2

7 1 ,  , and 4 (each with 4 2 multiplicity 1).

The zeros are

74.

Factors of 40 Factors of 2 1,  2,  4,  5,  8,  10,  20,  40  1,  2  1,  2,  4,  5,  8,  10,  20,  40,

0   4 x  7  2 x  1 x

0

Find the zeros of the quotient. 0  6 x 2  11x  35

1 1 1 7 7 1, 2, 4,  ,  ,  , , 2 4 8 2 4 4 8 42 33 28 8 10

22 70

11 35

6

70

Factors of 70 Factors of 6 1,  2,  5,  7,  10,  14,  35,  70  1,  2,  3,  6

1 5 1,  2,  4,  5,  ,  2 2 2 2 11 0 63 50 4 14

1  1,  2,  5,  7,  10,  14,  35,  70,  , 2 1 2 5 5 5 7 7 7  , , , , , , , , 3 3 2 3 6 2 3 6 10 14 35 35 35 70 70  , , , , , , 3 3 2 3 6 3 6 From Exercise 66, we know that 4 and 4 are upper and lower bounds of f  x  , respectively. We can restrict the list of possible rational zeros to those on the interval  4, 4 :

2

28

7 14 35

70 40 20

Find the zeros of the quotient. 4 2 7 14 35 20 8 4 2 1 10

40 20 5 0

Find the zeros of the quotient. 1 2 1 10 5 2 1 0 5 2 0 10 0 Find the zeros of the quotient.

1 1 2 5 5 5 7 1,  2,  ,  ,  ,  ,  ,  ,  , 2 3 3 2 3 6 2 7 7 10  , , 3 6 3

352

40 0


Section 3.4 2 x 2  10  0

77.

2 x 2  10 x2  5 x 5

1 1 3 3 9 9  1,  3,  9,  ,  ,  ,  ,  ,  2 4 2 4 2 4 3 4 20 13 30 9

1 The zeros are  5, ,  2, and  4 (each 2 with multiplicity 1).

76.

12 24 4 8 11

Factors of 36 Factors of 3 1,  2,  3,  4,  6,  9,  12,  18,  36  1,  3

4

1 2 4  , , 3 3 3 From Exercise 68, we know that 6 and 3 are upper and lower bounds of f  x  , respectively. We can restrict the list of possible rational zeros to those on the interval  3, 6 :

6 20 30 3 10 15

60

3

0 18

4

1

x

0

1 2

The zeros are 3, and

1 (each with 2

multiplicity 2). 36

78.

0

Factors of 4 Factors of 9 1,  2,  4  1,  3,  9 1 1 2 2 4 4  1,  2,  4,  ,  ,  ,  ,  ,  3 9 3 9 3 9 2 9 30 13 20 4 18 24 22 4 9 12 11 2 0

18 0

Find the zeros of the quotient. 1 3 1 18 6 3 1 0 6 3

12 3

 2 x  12  0

Find the zeros of the quotient. 3 3 10 15 60 18 9 3 54 1 18 6

12

Find the zeros of the quotient. 4 x2  4 x  1  0

120 36 18

33 9 3 0

Find the zeros of the quotient. 3 4 8 11 3

 1,  2,  3,  4,  6,  9,  12,  18,  36,

1 2 4 1,  2, 3, 4,  ,  ,  3 3 3 2 3 16 5 90 138

Factors of 9 Factors of 4 1,  3,  9  1,  2,  4

Find the zeros of the quotient. 2 9 12 11 2 18 12 2 9 6 1 0

0

Find the zeros of the quotient. 3x 2  18  0

Find the zeros of the quotient. 9 x2  6 x  1  0

3x 2  18 x2  6

 3x  12  0

x 6

x

1 The zeros are  6, , 2, and 3 (each with 3 multiplicity 1). 353

1 3


Chapter 3 Polynomial and Rational Functions The zeros are 2, and

81. f  x   x3 x 2  10 x  34

1 (each with 3

Find the zeros of x  10 x  34 .

multiplicity 2).

79. f  x   x 2 x 4  2 x 3  11x 2  20 x  10

x

Factors of 10 1,  2,  5,  10  Factors of 1 1  1,  2,  5,  10 1 1 2 11 20 10 1 1 10 10 1 1 10 10 0

 102  4 1 34 2 1

10  36 10  6i   5  3i 2 2 The zeros are 0 (with multiplicity 3), and 5  3i (each with multiplicity 1).

82. f  x   x 4 x 2  12 x  40

Find the zeros of x 2  12 x  40 . x

  12 

 12 2  4 1 40 2 1

12  16 12  4i   6  2i 2 2 The zeros are 0 (with multiplicity 4), and 6  2i (each with multiplicity 1). 

Find the zeros of the quotient. x 2  10  0 x 2  10

x  i 10 The zeros are 0 (with multiplicity 2), 1 (with multiplicity 2), and i 10 (each with multiplicity 1). 80. f  x   x 2 x 4  6 x3  12 x 2  18 x  27

  10 

Find the zeros of the quotient. 1 1 1 10 10 1 0 10 1 0 10 0

2

83. f  x    x3  3x 2  9 x  13

Factors of 13 1,  13   1,  13 Factors of 1 1 1 1 3 9 13

1 4 13 1 4 13 0

Factors of 27 1,  3,  9,  27  Factors of 1 1  1,  3,  9,  27 3 1 6 12 18 27 3 9 9 27 1 3 3 9 0

Find the zeros of x 2  4 x  13 . x

  4 

 4 2  4 113 2 1

4  36 4  6i   2  3i 2 2 The zeros are 1 and 2  3i (each with multiplicity 1). 

Find the zeros of the quotient. 3 1 3 3 9 3 0 9 1 0 3 0

84. f  x    x3  5 x 2  11x  15

Factors of 15 1,  3,  5,  15  Factors of 1 1  1,  3,  5,  15 3 1 5 11 15 3 6 15 1 2 5 0

Find the zeros of the quotient. x2  3  0 x 2  3 x  i 3 The zeros are 0 (with multiplicity 2), 3 (with multiplicity 2), and  i 3 (each with multiplicity 1).

354


Section 3.4 Find the zeros of x 2  2 x  5 . x

  2 

95. If a polynomial has real coefficients, then all imaginary zeros must come in conjugate pairs. This means that if the polynomial has imaginary zeros, there would be an even number of them. A third-degree polynomial has 3 zeros (including multiplicities). Therefore, it would have either 2 or 0 imaginary zeros, leaving room for either 1 or 3 real zeros.

 2 2  4 1 5 2 1

2  16 2  4i   1  2i 2 2 The zeros are 3 and 1  2i (each with multiplicity 1). 

85. False

86. False

87. False

88. False

89. True

90. False

91. a. True

b. True

c. True

d. True

92. a. x 

  7  

96. The zeros of a second-degree polynomial can be found by applying the quadratic formula. 97. f  x  has no variation in sign, nor does

f   x  . By Descartes’ rule of signs, there are no positive or negative real zeros. Furthermore, 0 itself is not a zero of f  x 

because x is not a factor of f  x  . Therefore,

 7  4 1 5 7  29  2 1 2

there are no real zeros of f  x  .

2

98. The expression

 7  29   7  29  x b. x 2  7 x  5   x  2   2  

The term x  x has an exponent that is not a positive integer. 99. f  x   x n  1 has one sign change. The number of possible positive real zeros is 1. Since n is a positive even integer, n f   x     x   1  x n  1 has one sign change. The number of possible negative real zeros is 1. Therefore, there are 2 possible real roots, and n  2 possible imaginary roots.

93. a. f  2  2  2  7  2  4  8  14  4  2 2

f  3  2  3  7  3  4  18  21  4  1 2

Since f  2 and f  3 have opposite signs, the intermediate value theorem guarantees that f has at least one real zero between 2 and 3. b. x 

  7  

x  3 is not a polynomial. 12

 72  4  2 4 7  17  2  2 4

100. f  x   x n  1 has one sign change. The number of possible positive real zeros is 1. Since n is a positive odd integer,

7  17  2.78 is on the 4 interval [2, 3].

Furthermore,

f   x     x   1   x n  1 has no sign changes. The number of possible negative real zeros is 0. Therefore, there is 1 possible real root, and n  1 possible imaginary roots. n

94. Let f  x   x n  a n . Then

f  a   a n  a n  0 . By the factor theorem,

since f  a   0 , then x  a is a factor of xn  an .

355


Chapter 3 Polynomial and Rational Functions 1  101. 108  l  bh 2 

103.

162   x  10 x  7  2 x  5

 1 2  108   x  3    x   x  2 3  1 108  x3  3 x 2 3 324  x3  3 x 2 0  x3  3 x 2  324 Graph the function f  x   x3  3x 2  324 on a graphing utility. Use the Zero feature to find positive real roots of the equation.

162   x  10 2 x 2  19 x  35

162  2 x  19 x  35 x  20 x  190 x  350 3

2

2

0  2 x 3  39 x 2  225 x  188 Graph the function f  x   2 x3  39 x 2  225 x  188 on a graphing utility. Use the Zero feature to find positive real roots of the equation.

Each dimension was decreased by 1 in.

2 2 x   6  4 3 3 x3 63 9 The triangular front has a base of 6 ft and a height of 4 ft. The length is 9 ft. 102.

5  81  10  x  7  x    x 2 

104.

240  12  x  8  x  6  x  240   x  12 x  8 x  6

240   x  12 x 2  14 x  48

104 4 3   r   r 2h 3 3 104 4 3   r   r 2 10  2r  3 3 104 4 3   r  10 r 2  2 r 3 3 3 104 4 3  r  10r 2  2r 3 3 3 52  2r 3  15r 2  3r 3 0  r 3  15r 2  52 Graph the function f  r   r 3  15r 2  52 on a graphing utility. Use the Zero feature to find positive real roots of the equation.

240  x 3  14 x 2  48 x  12 x 2  168 x  576 0  x 3  26 x 2  216 x  336 Graph the function f  x   x3  26 x 2  216 x  336 on a graphing utility. Use the Zero feature to find positive real roots of the equation.

Each dimension is decreased by 2 ft. The smaller truck is 10 ft by 6 ft by 4 ft.

105. 6  2 x 4  x 2

3  x 4  x2 3  4x  x

3

0  x3  4 x  3

The radius is 2 ft.

356


Section 3.4 Factors of 3 1,  3   1,  3 1 Factors of 1 1 1 0 4 3 1 1 3 1 1 3 0

The width must be positive, so use the positive zero. The width of the rectangle is 5  x , which is 5  2  3 or 3  33 10 3  33 7  33    . 2 2 2 2 2 When x  2 , y  x 2   2  4 . 5

Find the zeros of x 2  x  3 . x

 1 

1 2  4 1 3 1  13  2 1 2

When x 

The width must be positive, so use the positive zero. The width of the rectangle is 2x, which is 2  1  13  or 2    1  13 . 2  

2

 3  33  9  6 33  33 yx    4  2  2

42  6 33 21  3 33  . 4 2 The dimensions are either 3 in. by 4 in. or 7  33 21  3 33 in. by in. 2 2 

When x  1 , y  4  x 2  4  1  3 . 2

When x 

1  13 , 2

 1  13  y  4 x  4  2  

2

107. a.

2

1  2 13  13 16 14  2 13   4 4 4 2  2 13 1  1 13   . 4 2 The dimensions are either 2 cm by 3 cm or 1  1 13 1  13 cm by cm. 2  4

 

f  x    x  3 x  1 x 2  4

12  5 x 2  x 3

b. Factor x 2  4 . x2  4  0

0  x 3  5 x 2  12 Factors of 12 1,  2,  3,  4,  6,  12  Factors of 1 1  1,  2,  3,  4,  6,  12 2 1 5 0 12 2 6 12 1 3 6 0

x 2  4 x  2i f  x    x  3 x  1 x  2i  x  2i  108. a.

Find the zeros of x 2  3x  6 . x

Factors of  12 1,  2,  3,  4,  6,  12  Factors of 1 1  1,  2,  3,  4,  6,  12 1 1 2 1 8 12 1 3 4 12 1 3 4 12 0 Factor the quotient. 3 1 3 4 12 3 0 12 1 0 4 0

106. 12   5  x  x 2

  3 

3  33 , 2

 32  4 1 6 3  33  2 1 2

357

Factors of 8 1,  2,  4,  8  Factors of 1 1  1,  2,  4,  8 2 1 6 9 6 8 2 8 2 8 1 4 1 4 0


Chapter 3 Polynomial and Rational Functions Factor the quotient. 4 1 4 1 4 4 0 4 1 0 1 0

Factor the quotient. 1 1 1 1 1 1 0 1 1 0 1 0

f  x    x  4 x  2 x 2  1

Factor the quotient. x2  1  0

b. Factor x 2  1 . x2  1  0

x 2  1 x  i The fourth roots of 1 are 1, 1 , i, and i .

x 2  1 x  i f  x    x  4 x  2 x  i  x  i  109. a.

112. f  x   x 6  1

    x  1  x  x  1  x  1  x  x  1

 x3  1 x3  1

f  x   x  2 x  35 4

2

2

   0   x  5 x  7 

f  x  x  5 x  7 2

2

2

2

x 5 0 2

Factor x 2  x  1 . x

x 70 2

or

x 5

x 2  7

2

x 5

     b. f  x   x  5  x  5  x  7i  x  7i  f  x  x  5 x  5 x  7

x

f  x   x 4  8 x 2  33

   0   x  3 x  11

f  x   x 2  3 x 2  11 x2  3  0

x 2  11  0

x2  3 x 3

and

x 2  11





x   11i

 1  4 11 2 1

1  3 1  i 3  2 2

2

1  i 3 , 2

1 i 3 . 2

113. The number 5 is a real solution to the equation x 2  5  0 and a zero of the polynomial f  x   x 2  5 . However, by the rational zeros theorem, the only possible rational zeros of f  x  are 1 and 5 . This

f  x   x  3 x  3 x  11 b. f  x  

 x  3  x  3  x  11i  x  11i

111.

  1 

The sixth roots of 1 are 1, 1 ,

2

or

1  4 11 2 1

1  3 1  i 3  2 2 2 Factor x  x  1 .

x   7i

2

 1 

2

110. a.

2

means that

Factors of  1 1   1 Factors of 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0

5 is irrational.

114. a. ax  b  0

ax  b b x a

358


Section 3.5 116. x 3  9 x  26 m  9, n  26

b  b  4ac b. x  2a

2

115.

x 3   3 x   2 m  3, n  2 2

2

n  n  m x 3       2  3  2

2

3

2

3

3

 3 169  27  13  3 169  27  13  3 196  13  3 196  13

2  2   3        2 3 2 2

3

26  26   9  3        2   3 2

2  2   3   3       2  3 2 2

3

n  n  m       2 3 2

26  26   9   3       2   3 2

n  n  m 3        2  3  2

3

3

3

2

3

n  n  m x 3       2  3  2

x 3  3 x  2

3

 3 14  13  3 14  13  3 27  3 1  3  1  2

 3 1   1  1  3 1   1  1  3 1  3 1  1  1  2

Section 3.5 Rational Functions 1. f  x   4 x 4  25 x 2  36



f  x  4 x2  9 x2  4

6 x2 6 6   6 h 1  1  2 1 6 6   60 h 1.9  1.9  2 0.1 6 6   600 h 1.99  1.99  2 0.01

3. h  x  

f  x    2 x  3 2 x  3 x  2 x  2 0   2 x  3 2 x  3 x  2 x  2 3 3 x  , x   , x  2, x  2 2 2 3 3 The zeros are ,  , 2,  2 . 2 2 2. g  x   9 x 4  43 x 2  50



g  x   9 x 2  25 x 2  2

4. k  x  

k 1 

2 x2  3 x2  1 2 1  3 2

5  2.5 2

1  1 2 2 10  3 203   2.0099 k 10  102  1 101 2 2 100  3 20003 k 100    2.0001 100 2  1 10001

   0   3x  5 3 x  5  x  2  x  2 

g  x    3x  5 3 x  5 x  2 x  2

5 5 x  , x   , x  2, x   2 3 3 5 5 The zeros are ,  , 2,  2 . 3 3

359

2


Chapter 3 Polynomial and Rational Functions 6. q  x 

5. rational

b. 

23. a. 2 c. 

d. 2

e. Never increasing

f.  , 4   4,  

8. x approaches 5 from the left

g.  , 4   4,  

h.  , 2   2,  

9. vertical; c

10. nonzero

i. x  4

j. y  2

11. c

12. <; >

24. a. 2

b. 

13. left; down

14. one

c. 

d. 2

15. denominator

16.

7. x approaches infinity

C  x

e.  , 3   3,   f. Never decreasing

x

g.  , 3   3,   h.  , 2   2,  

17. x  5  0

i. x  3

x5  , 5   5, 

25. a. 1

b. 

c. 

d. 1

e.  , 3

f.  3,  

18. x  3  0 x3  , 3   3,   19.

g.  , 3   3,   h.  1,   i. x  3

4 x 2  3x  1  0

 x  1 4 x  1  0

j. y  1 b. 

26. a. 4

1 4 1 1  ,  1   1,    ,  4 4 x  1, x 

20.

j. y  2

2 x2  5x  7  0

 2 x  7 x  1  0

c. 

d. 4

e. 1,  

f.  ,1

g.  ,1  1,  

h.  , 4

i. x  1

j. y  4

27. x  4  0 x4

7 x   , x 1 2 7  7    ,      ,1  1,   2 2

28. x  7  0 x  7

21. x 2  100  0 True for all real x.  , 

29.

2 x2  9 x  5  0

 x  5 2 x  1  0 x  5, x  

22. x 2  49  0 True for all real x.  , 

360

1 2


Section 3.5 3x 2  8 x  3  0

30.

b.

 x  3 3x  1  0 x  3, x 

1 3

37. a. The degree of the numerator is 2. The degree of the denominator is 2. 3 Since n  m , the line y  or 1 equivalently y  3 is a horizontal asymptote of h.

31. x 2  5 has no real zeros. The function has no vertical asymptotes. 32. x 4  1 has no real zeros. The function has no vertical asymptotes. 33. 2t 2  4t  3  0 t

  4 

b.

 42  4  2 3 4  40  2  2 4

4  2 10 2  10  4 2 2  10 2  10 t ,t  2 2 

a

38. a. The degree of the numerator is 2. The degree of the denominator is 2. 4 or Since n  m , the line y  1 equivalently y  4 is a horizontal asymptote of r.

 4 2  4  3 1 4  28  2  3 6

4  2 7 2  7  6 3

a

2  7 2  7 ,a 3 3

b.

35. a. The degree of the numerator is 0. The degree of the denominator is 2. Since n  m , the line y  0 is a horizontal asymptote of p. b.

3x 2  8 x  5 3 x2  3 3x 2  8 x  5  3x 2  9 8 x  14 7 x 4 7  The graph crosses y  3 at  , 3 . 4 

34. 3a 2  4a  1  0   4 

8 0 x  4x  4 8  0 No solution The graph does not cross y  0 . 2

5 0 x2  2 x  1 5  0 No solution The graph does not cross y  0 .

4 x 2  5 x  1  4 x2  2 4 x 2  5 x  1  4 x 2  8 5 x  7 7 x 5  7  The graph crosses y  4 at   , 4 .  5 

39. a. The degree of the numerator is 4. The degree of the denominator is 1. Since n  m , the function has no horizontal asymptotes.

36. a. The degree of the numerator is 0. The degree of the denominator is 2. Since n  m , the line y  0 is a horizontal asymptote of q.

b. Not applicable

361


Chapter 3 Polynomial and Rational Functions 40. a. The degree of the numerator is 3. The degree of the denominator is 1. Since n  m , the function has no horizontal asymptotes.

3x3 2 x 2 7 x  3  3 3x  2 x  7 x x3 x x  44. a. 3 3 5x 1 5x  1  x3 x3 2 7 3  2 x x  1 5 3 x 3

b. Not applicable 41. a. The degree of the numerator is 1. The degree of the denominator is 2. Since n  m , the line y  0 is a horizontal asymptote of t. b.

b. All of the terms approach 0 as x   .

2x  4 0 x  7x  4 2x  4  0 2 x  4 x  2 The graph crosses y  0 at  2, 0 .

c. Since the terms from part (b) approach 0 as x   , the horizontal asymptote is

2

y

2 x2  3 is in lowest terms x and the denominator is 0 at x  0 . f has a vertical asymptote at x  0 . The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, f has no horizontal asymptote, but does have a slant asymptote. 2 x2  3 2 x2 3 3    2x  x x x x The slant asymptote is y  2 x .

x3 0 2 x  3x  5 x3 0 x  3 The graph crosses y  0 at  3, 0 . 2

3x 2  2 is in lowest terms x and the denominator is 0 at x  0 . g has a vertical asymptote at x  0 . The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, g has no horizontal asymptote, but does have a slant asymptote. 3x 2  2 3x 2 2 2    3x  x x x x The slant asymptote is y  3x .

46. The expression

2

x 3x 1 3 1 1  2   x 2  3x  1 x 2 x 2 x 2 x x   43. a. 2 2 5 2x 5 2x  5 2 2  2 2 x x x b. All of the terms approach 0 as x   . c. Since the terms from part (b) approach 0 as x   , the horizontal asymptote is

y

300 3 or y  . 50 5

45. The expression

42. a. The degree of the numerator is 1. The degree of the denominator is 2. Since n  m , the line y  0 is a horizontal asymptote of s. b.

2

1 0  0 1 or y  . 20 2

3x 2  4 x  5 is in lowest x6 terms and the denominator is 0 at x  6 . h has a vertical asymptote at x  6 .

47. The expression

362


Section 3.5 The quotient is x  5 . The slant asymptote is y  x  5 .

The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, h has no horizontal asymptote, but does have a slant asymptote. 6 3 4 5 18 132 3 22 137

50. The expression

lowest terms. x2  7  0

The quotient is 3 x  22 . The slant asymptote is y  3x  22 .

x2  7 x 7 The denominator is 0 at x   7 . q has

2 x 2  3 x  7 is in lowest x3 terms and the denominator is 0 at x  3 . k has a vertical asymptote at x  3 . The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, k has no horizontal asymptote, but does have a slant asymptote. 3 2 3 7 6 9 2 3 2

vertical asymptotes at x  7 and x   7 . The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, q has no horizontal asymptote, but does have a slant asymptote. x3 2 3 2 x  0 x  7 x  3x  2 x  4

48. The expression

 x3  0 x 2  7 x

The quotient is x  3 . The slant asymptote is y  x  3 . 51. The expression

terms. x2  5  0 x 5 The denominator is 0 at x   5 . p has

vertical asymptotes at x  5 and x   5 . The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, p has no horizontal asymptote, but does have a slant asymptote. x5 2 3 2 x  0x  5 x  5x  4x  1

2

2x  1

 x  1  x 2  4

The denominator is 0 at x  1 , x  2 , and x  2 . r has vertical asymptotes at x  1 , x  2 , and x  2 . The degree of the numerator is 1. The degree of the denominator is 3. Since n  m , the line y  0 is a horizontal asymptote of r. r has no slant asymptote.

5x  x  1  5 x 2  0 x  25

2x  1 is in lowest x3  x 2  4 x  4

terms. 2x  1 2x  1  2 3 2 x  x  4 x  4 x  x  1  4  x  1

x2  5

5 x  17

x3  5 x 2  4 x  1 is in lowest x2  5

 x3  0 x 2  5 x

3x 2  5 x  4  3x 2  0 x  21

The quotient is 2 x  3 . The slant asymptote is y  2 x  3 . 49. The expression

x3  3x 2  2 x  4 is in x2  7

x  26

363


Chapter 3 Polynomial and Rational Functions 3x  4 is in x  2 x 2  9 x  18

52. The expression

The denominator is never 0, so a has no vertical asymptotes. The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, a has no horizontal asymptote, but does have a slant asymptote. 3x  2 2 3 2 3x  2 x  1 9 x  0 x  5 x  4

3

lowest terms. 3x  4 3x  4  2 3 2 x  2 x  9 x  18 x  x  2  9  x  2 

3x  4  x  2 x 2  9

The denominator is 0 at x  2 , x  3 , and x  3 . t has vertical asymptotes at x  2 , x  3 , and x  3 . The degree of the numerator is 1. The degree of the denominator is 3. Since n  m , the line y  0 is a horizontal asymptote of t. t has no slant asymptote.

 9 x3  6 x 2  3x

 6x  8x  4  6 x 2  4 x  2

x

55. The graph of f is the graph of y 

 42  4  2 3 4  8  2  2 4

 4 x3  8 x 2  6 x

56. The graph of g is the graph of y 

 10 x 2  x  3  10 x 2  20 x  15

shift left 4 units.

21x  12 The quotient is 2 x  5 . The slant asymptote is y  2 x  5 . 54. The expression

9 x3  5 x  4 is in lowest 3x 2  2 x  1

terms. 3x 2  2 x  1  0 x

1 with a x

shift right 3 units.

The denominator is never 0, so f has no vertical asymptotes. The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, f has no horizontal asymptote, but does have a slant asymptote. 2x  5 2 x 2  4 x  3 4 x3  2 x 2  7 x  3

  2 

 4x  6 The quotient is 3x  2 . The slant asymptote is y  3x  2 .

4 x3  2 x 2  7 x  3 53. The expression is in 2 x2  4 x  3 lowest terms. 2 x2  4 x  3  0   4 

2

 22  4  31 2  8  2  3 6 364

1 with a x


Section 3.5 57. The graph of h is the graph of y 

1 with a x2

shift upward 2 units.

61. The graph of p is the graph of y 

1 x

reflected across the x-axis. 1 58. The graph of k is the graph of y  2 with a x shift downward 3 units.

62. The graph of q is the graph of y 

1 x2

reflected across the x-axis. 1 59. The graph of m is the graph of y  2 with a x shift to the left 4 units and a shift downward 3 units.

7 . 2 7  The x-intercepts are  3, 0 and  , 0 . 2 

63. a. The numerator is 0 at x  3 and x 

1 with a x2 shift to the right 1 unit and a shift upward 2 units.

60. The graph of n is the graph of y 

b. The denominator is 0 at x  2 and 1 x   . f has vertical asymptotes at 4 1 x  2 and x   . 4

365


Chapter 3 Polynomial and Rational Functions c. The degree of the numerator is 2. The degree of the denominator is 2. 2 Since n  m , the line y  or 4 1 equivalently y  is a horizontal 2 asymptote of f.

c. The degree of the numerator is 1. The degree of the denominator is 2. Since n  m , the line y  0 is a horizontal asymptote of f. d. The constant term in the numerator is 9 . The constant term in the denominator is 9 . All other terms are 0 when evaluated at x  0 .  9  The y-intercept is  0,    0,1 .  9 

d. The constant term in the numerator is 21 . The constant term in the denominator is 2. All other terms are 0 when evaluated at x  0 . 21  The y-intercept is  0,   .  2

66. a. The numerator is 0 at x 

8  The x-intercept is  , 0 . 5 

4 64. a. The numerator is 0 at x  and x  6 . 3 4  The x-intercepts are  , 0 and  6, 0 . 3  b. The denominator is 0 at x 

b. The denominator is 0 at x  2 and x  2 . f has vertical asymptotes at x  2 and x  2 .

3 and 2

x  5 . f has vertical asymptotes at x  and x  5 .

c. The degree of the numerator is 1. The degree of the denominator is 2. Since n  m , the line y  0 is a horizontal asymptote of f.

3 2

d. The constant term in the numerator is 8 . The constant term in the denominator is 4 . All other terms are 0 when evaluated at x  0 .  8  The y-intercept is  0,    0, 2 .  4 

c. The degree of the numerator is 2. The degree of the denominator is 2. 3 Since n  m , the line y  is a 2 horizontal asymptote of f. d. The constant term in the numerator is 24. The constant term in the denominator is 15 . All other terms are 0 when evaluated at x  0 . 8  24   The y-intercept is  0,   0,   .   15   5 65. a. The numerator is 0 at x 

8 . 5

1 and x  3 . 5 1  The x-intercepts are  , 0 and  3, 0 . 5 

67. a. The numerator is 0 at x 

b. The denominator is 0 at x  2 . f has a vertical asymptote at x  2 .

9 . 4

c. f  x  

 5 x  1 x  3  5 x 2  14 x  3

x2 x2 The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, f has no horizontal asymptote, but does have a slant asymptote.

9  The x-intercept is  , 0 . 4 

b. The denominator is 0 at x  3 and x  3 . f has vertical asymptotes at x  3 and x  3 .

366


Section 3.5 2 5

14 10 5 4

3 8 11

69.

The quotient is 5 x  4 . The slant asymptote is y  5 x  4 . d. The constant term in the numerator is 3 . The constant term in the denominator is 2. All other terms are 0 when evaluated at x0. 3  3   The y-intercept is  0,    0,   .  2  2

70.

3 and x  2 . 4  3  The x-intercepts are   , 0 and  2, 0 .  4 

68. a. The numerator is 0 at x  

b. The denominator is 0 at x  3 . f has a vertical asymptote at x  3 . c. f  x  

 4 x  3 x  2  4 x 2  11x  6

71.

x3 x3 The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, f has no horizontal asymptote, but does have a slant asymptote. 3 4 11 6 12 3 4 1 9 72.

The quotient is 4 x  1 . The slant asymptote is y  4 x  1 . d. The constant term in the numerator is 6. The constant term in the denominator is 3. All other terms are 0 when evaluated at x0.  6 The y-intercept is  0,    0, 2 .  3

367


Chapter 3 Polynomial and Rational Functions 73. n  0 

3 3 3   2  0  7 7 7

3  The y-intercept is  0,   .  7 n is never 0. It has no x-intercepts. n is in lowest terms, and 2 x  7 is 0 for 7 x   , which is the vertical asymptote. 2 The degree of the numerator is 0. The degree of the denominator is 1. Since n  m , the line y  0 is a horizontal asymptote of n. 3 0 2x  7 0  3 No solution n does not cross its horizontal asymptote. 3 3 n   x   2   x   7 2 x  7

74. m  0 

 4 The y-intercept is  0,  .  5 m is never 0. It has no x-intercepts. m is in lowest terms, and 2 x  5 is 0 for 5 x  , which is the vertical asymptote. 2 The degree of the numerator is 0. The degree of the denominator is 1. Since n  m , the line y  0 is a horizontal asymptote of m. 4 0 2x  5 0  4 No solution m does not cross its horizontal asymptote. 4 4 m   x   2   x   5 2 x  5

n   x  n  x , n   x  n  x n is neither even nor odd. Interval

7   ,   2

 7    ,  2

Test Point

Comments

 4, 3

n(x) is positive. n(x) must approach the horizontal asymptote y  0 from above as x   . As x approaches the vertical asymptote 7 x   from the 2 left, n  x    .

 2, 1

4 4 4   2  0  5 5 5

m   x  m  x , m   x  m  x m is neither even nor odd. Interval

n(x) is negative. n(x) must approach the horizontal asymptote y  0 from below as x. As x approaches the vertical asymptote 7 x   from the 2 right, n  x    .

5   ,  2

368

Test Comments Point m(x) is positive. m(x) must approach the horizontal asymptote y  0 from above as x   .  2, 4 As x approaches the vertical asymptote 5 x  from the left, 2 m  x   .


Section 3.5

Interval

5   ,  2

Test Point

Comments

 3, 4

m(x) is negative. m(x) must approach the horizontal asymptote y  0 from below as x. As x approaches the vertical asymptote 5 x  from the right, 2 m  x    .

Test Point

Comments

 , 3

3   5,  8

p(x) is positive. p(x) must approach the horizontal asymptote y  0 from above as x   . As x approaches the vertical asymptote x  3 from the left, p  x    .

 3, 0

p(x) is negative. As x approaches the 6  vertical asymptote   2,   5 x  3 from the right, p  x    .

 0, 3

6   2,   5

p(x) is negative. As x approaches the vertical asymptote x  3 from the left, p  x    .

 3  5,  8

p(x) is positive. p(x) must approach the horizontal asymptote y  0 from above as x. As x approaches the vertical asymptote x  3 from the right, p  x    .

Interval

6

6 2 75. p  0    2  0  9 9 3 2  The y-intercept is  0,   .  3 p is never 0. It has no x-intercepts. p is in lowest terms, and x 2  9 is 0 for x  3 and x  3 , which are the vertical asymptotes. The degree of the numerator is 0. The degree of the denominator is 2. Since n  m , the line y  0 is a horizontal asymptote of p. 6 0 2 x 9 0  6 No solution p does not cross its horizontal asymptote. 6 6 p   x   2 2   x  9 x  9

 3,  

p   x  p  x p is even.

369


Chapter 3 Polynomial and Rational Functions 76. q  0 

4

 0  16 2

4 1  16 4

Interval

1  The y-intercept is  0,   .  4 q is never 0. It has no x-intercepts. q is in lowest terms, and x 2  16 is 0 for x  4 and x  4 , which are the vertical asymptotes. The degree of the numerator is 0. The degree of the denominator is 2. Since n  m , the line y  0 is a horizontal asymptote of q. 4 0 2 x  16 0  4 No solution q does not cross its horizontal asymptote. 4 4 q   x   2 2   x   16 x  16

 4, 

Test Point

Comments

 1  6,  5

q(x) is positive. q(x) must approach the horizontal asymptote y  0 from above as x. As x approaches the vertical asymptote x  4 from the right, q  x   .

q   x  q  x q is even.

Test Point

Comments

 , 4

1   6,  5

q(x) is positive. q(x) must approach the horizontal asymptote y  0 from above as x   . As x approaches the vertical asymptote x  4 from the left, q  x    .

 4, 0

q(x) is negative. As x approaches the 6  vertical asymptote   2,   5 x  4 from the right, q  x    .

 0, 4 

q(x) is negative. As x approaches the vertical asymptote x  4 from the left, q  x    .

Interval

6   2,   5

77. r  0 

5  0

0

 0   0  6 The y-intercept is  0, 0 . The x-intercept is  0, 0 . 2

r is in lowest terms, and x 2  x  6   x  3 x  2 is 0 for x  3 and x  2 , which are the vertical asymptotes. The degree of the numerator is 0. The degree of the denominator is 2. Since n  m , the line y  0 is a horizontal asymptote of r. 5x 0 2 x  x6 5x  0 x0 r crosses its horizontal asymptote at  0, 0 . r   x 

5  x

5 x x  x6

  x    x  6 r   x  r  x , r   x  r  x 2

r is neither even nor odd.

370

2


Section 3.5

Interval

Test Point

 , 2

r(x) is negative. r(x) must approach the horizontal asymptote y  0 5  from below as   3,   x   . 2 As x approaches the vertical asymptote x  2 from the left, r  x    .

 2, 0

5   1,  4

r(x) is positive. As x approaches the vertical asymptote x  2 from the right, r  x    .

5  1,   6

r(x) is negative. As x approaches the vertical asymptote x  3 from the left, r  x    .

 5  6,  4

r(x) is positive. r(x) must approach the horizontal asymptote y  0 from above as x. As x approaches the vertical asymptote x  3 from the right, r  x    .

 0, 3

 3, 

78. t  0 

Comments

4  0

0

 0  2  0  3 The y-intercept is  0, 0 . The x-intercept is  0, 0 . 2

t is in lowest terms, and x 2  2 x  3   x  3 x  1 is 0 for x  3 and x  1 , which are the vertical asymptotes. The degree of the numerator is 0. The degree of the denominator is 2. Since n  m , the line y  0 is a horizontal asymptote of t. 4x 0 2 x  2x  3 4x  0 x0 t crosses its horizontal asymptote at  0, 0 . t   x 

4   x

  x  2   x  3 t   x   t  x  , n   x   t  x  2

4 x x  2x  3 2

t is neither even nor odd. Interval Test Point Comments t(x) is negative. t(x) must approach the horizontal asymptote y  0 from below as  , 1  3, 1 x   . As x approaches the vertical asymptote x  1 from the left, t  x    .

 1, 0

 0, 3

371

 3 16    ,  4 5

t(x) is positive. As x approaches the vertical asymptote x  1 from the right, t  x    .

1, 1

t(x) is negative. As x approaches the vertical asymptote x  3 from the left, t  x    .


Chapter 3 Polynomial and Rational Functions

Interval

 3, 

79. k  0 

5   x   3 5 x  3  2   x   7 2 x  7

Test Point

Comments

k   x 

k   x  k  x , k   x  k  x k is neither even nor odd.

 5  5,  3

t(x) is positive. t(x) must approach the horizontal asymptote y  0 from above as x. As x approaches the vertical asymptote x  3 from the right, t  x   .

Interval

5  0  3 3  2  0  7 7

3   ,  5

8   1,  9

 3 7  ,  5 2

 3, 12

7   ,  2

 3 The y-intercept is  0,  .  7 5x  3  0 5x  3 3 x 5 3  The x-intercept is  , 0 . 5  k is in lowest terms, and 2 x  7 is 0 for 7 x  , which is the vertical asymptote. 2 The degree of the numerator is 1. The degree of the denominator is 1. 5 Since n  m , the line y  is a horizontal 2 asymptote of k. 5 5x  3  2 2x  7 10 x  35  10 x  6 35  6 No solution k does not cross its horizontal asymptote.

372

Test Point

 4,17

Comments

k(x) is positive. k(x) must approach the horizontal asymptote 5 y  from above as 2 x   . k(x) is negative. As x approaches the vertical asymptote 7 x  from the left, 2 k  x    . k(x) is positive. k(x) must approach the horizontal asymptote 5 y  from above as 2 x. As x approaches the vertical asymptote 7 x  from the right, 2 k  x   .


Section 3.5 80. h  0 

4  0  3 3 3   3  0  5 5 5

Test Point

Comments

 4,17

h(x) is positive. h(x) must approach the horizontal asymptote 4 y  from above as 3 x. As x approaches the vertical asymptote 5 x  from the right, 3 h  x   .

Interval

3  The y-intercept is  0,   .  5 4x  3  0

4 x  3 3 x 4

5   ,  3

 3  The x-intercept is   , 0 .  4  h is in lowest terms, and 3x  5 is 0 for 5 x  , which is the vertical asymptote. 3 The degree of the numerator is 1. The degree of the denominator is 1. 4 Since n  m , the line y  is a horizontal 3 asymptote of h. 4 4x  3  3 3x  5 12 x  20  12 x  9 20  9 No solution h does not cross its horizontal asymptote. 4   x   3 4 x  3  h   x  3   x   5 3 x  5

81. g  0 

Test Point

3   ,   4

8   1,  9

 3 5   ,  4 3

 3, 12

2

2  2 1

 0  1 The y-intercept is  0,  2 .

h   x  h  x , h   x  h  x h is neither even nor odd. Interval

3  0  5  0  2 2

3x 2  5 x  2  0

 3x  1 x  2  0 1 x ,x2 3  1  The x-intercepts are   , 0 and  2, 0 .  3 

Comments

h(x) is positive. h(x) must approach the horizontal 4 asymptote y  3 from above as x   . h(x) is negative. As x approaches the vertical asymptote 5 x  from the left, 3 h  x    .

g is in lowest terms, and x 2  1 is never 0, so there are no vertical asymptotes. The degree of the numerator is 2. The degree of the denominator is 2. 3 Since n  m , the line y  , or equivalently 1 y  3 , is a horizontal asymptote of g.

373


Chapter 3 Polynomial and Rational Functions 3x 2  5 x  2 x2  1 3x 2  3  3x 2  5 x  2 5 x  5 x  1 g crosses its horizontal asymptote at  1, 3 . 3

g   x 

3  x  5   x  2 2

3x 2  5 x  2 x2  1

  x2  1 g   x  g  x , g   x   g  x

82. c  0 

 , 1

1   1,   3

Test Point

Comments

 0,  2

 2, 

 3,1

2

3  3 1

2 x2  5x  3  0

Since g  2  4 is above the horizontal asymptote y  3 ,  2, 4 g(x) must approach the horizontal asymptote from above as x   . Plot the point  1    ,1 between 2 1   the horizontal   ,1 asymptote and the x2 intercept of  1    , 0 . 3

 1    , 2 3

2

 0  1 The y-intercept is  0, 3 .

g is neither even nor odd. Interval

2  0  5  0   3

 2 x  1 x  3  0 1 x ,x3 2  1  The x-intercepts are   , 0 and  3, 0 .  2  c is in lowest terms, and x 2  1 is never 0, so there are no vertical asymptotes. The degree of the numerator is 2. The degree of the denominator is 2. 2 Since n  m , the line y  , or equivalently 1 y  2 , is a horizontal asymptote of c. 2 x2  5x  3 x2  1 2 x2  2  2 x2  5x  3 5 x  5 x  1 c crosses its horizontal asymptote at  1, 2 . 2

The point  0,  2 is the y-intercept. Since g  3  1 is below the horizontal asymptote y  3 , g(x) must approach the horizontal asymptote from below as x   .

c   x 

2   x  5  x  3 2

  x2  1 c   x  c  x  , c   x  c  x c is neither even nor odd.

374

2 x2  5x  3 x2  1


Section 3.5

Interval

 , 1

1   1,   2

Test Point

x2  2 x  1  0

Comments

 x  1 x  1  0

Since c  2  3 is above the horizontal  2, 3 asymptote y  2 , c(x) must approach the horizontal asymptote from above as x   . Plot the point  3 6   ,  between 4 5  3 6  the horizontal   ,  asymptote and the 4 5 x-intercept of  1    , 0 . 2

 1    , 3 2

 0,  2

 3, 

 6  7,  5

x  1 The x-intercept is  1, 0 . n is in lowest terms, and the denominator is 0 when x  0 , which is the vertical asymptote. The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, n has no horizontal asymptote, but does have a slant asymptote. x2  2x  1 x2 2x 1 1     x2 n  x  x x x x x The quotient is x  2 . The slant asymptote is y  x  2 . x2  2 x  1 x 2 2 x  2x  x  2x  1 x2

The point  0, 3 is the y-intercept. 6 Since c  7   is 5 below the horizontal asymptote y  2 , c(x) must approach the horizontal asymptote from below as x   .

0  1 No solution n does not cross its slant asymptote. 2  x  2   x  1 x2  2 x  1  n   x   x   x n   x  n  x , n   x  n  x

n is neither even nor odd. Select test points from each interval.

Interval

2 0   2  0  1  undefined 83. n  0   0

There is no y-intercept.

375

 , 1

Test Point 9   4,   4

Test Point 1   2,   2

 1, 0

 1 1   ,   2 2

 1 9   ,   4 4

 0,  

 1 25   ,  4 4

 9  2,  2


Chapter 3 Polynomial and Rational Functions 2 0  4  0  4  84. m  0  undefined  0

There is no y-intercept. x2  4 x  4  0

 x  2 x  2  0 x2 The x-intercept is  2, 0 . m is in lowest terms, and the denominator is 0 when x  0 , which is the vertical asymptote. The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, m has no horizontal asymptote, but does have a slant asymptote. x2  4 x  4 x2 4 x 4 4     x4 m  x  x x x x x The quotient is x  4 . The slant asymptote is y  x  4 .

85. f  0 

 10  The y-intercept is  0,  .  3 x 2  7 x  10  0

 x  5 x  2  0 x  5, x  2 The x-intercepts are  5, 0 and  2, 0 . f is in lowest terms, and x  3 is 0 when x  3 , which is the vertical asymptote. The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, f has no horizontal asymptote, but does have a slant asymptote. 3 1 7 10

x2  4 x  4 x4 x 2 2 x  4x  x  4x  4 0  4 No solution m does not cross its slant asymptote.

  x2  4   x  4  x2  4 x  4 x   x m   x  m  x , m   x  m  x m   x 

3 12 1 4 2

m is neither even nor odd. Select test points from each interval.

Interval  , 0

Test Point  4, 9

 0, 2

 1 9  ,  2 2

1,1

 2,  

 1  3,  3

 9  8,  2

 02  7  0  10  10 3  0  3

The quotient is x  4 . The slant asymptote is y  x  4 . x 2  7 x  10 x3 2 2 x  7 x  12  x  7 x  10

Test Point   2, 8

x4

12  10 No solution f does not cross its slant asymptote. 2  x   7   x   10 x 2  7 x  10  f   x   x  3   x  3 f   x  f  x , f   x   f  x

f is neither even nor odd. Select test points from each interval.

376


Section 3.5 Interval

 , 5

Test Point 5   7,   2

 5, 3

 4, 2

 7 9   ,  2 2

 3, 2

 5 5   ,   2 2

 7 4   ,   3 3

 2,  

 1, 2

d does not cross its slant asymptote.

Test Point 4   6,   3

  x  2    x   12  x 2  x  12 x  2   x  2 d   x  d  x , d   x  d  x d   x 

d is neither even nor odd. Select test points from each interval.

 9 1,  2

Interval

Test Point

 , 3

 8,  6

Test Point 4   4,   3

 3, 2

3   2,  2

1,12

 2, 4

 3,  6

 7 13   ,   2 6

 4,  

 9  6,  2

 7, 6

 02   0  12  12  6 2  0  2 The y-intercept is  0, 6 .

86. d  0 

x 2  x  12  0

 x  3 x  4  0 x  3, x  4

The x-intercepts are  3, 0 and  4, 0 . d is in lowest terms, and x  2 is 0 when x  2 , which is the vertical asymptote. The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, d has no horizontal asymptote, but does have a slant asymptote. 2 1 1 12 1

2

2

1

10

87. w  0 

4  0

2

 0 2  4

0

The y-intercept is  0, 0 . The x-intercept is  0, 0 .

w is in lowest terms, and x 2  4 is never 0, so there are no vertical asymptotes. The degree of the numerator is 2. The degree of the denominator is 2. 4 , or Since n  m , the line y  1 equivalently y  4 , is a horizontal asymptote of w. 4 x 2 4  2 x 4 2 4 x  16  4 x 2

The quotient is x  1 . The slant asymptote is y  x  1 . x 2  x  12 x2 2 2 x  x  2  x  x  12 x 1 

2  12 No solution

16  0 No solution

377


Chapter 3 Polynomial and Rational Functions 3 , or 1 equivalently y  3 , is a horizontal asymptote of u. 3 x 2 3  2 x 1 2 3 x  3  3 x 2

w does not cross its horizontal asymptote. w   x 

4   x 

2

  x  4 w   x  w  x 2

Since n  m , the line y 

4 x x2  4 2

w is even.

Test Point

Interval

 , 0  2,  2

 0,  

88. u  0 

 2,  2

3  0

Comments

3  0 No solution u does not cross its horizontal asymptote.

Since w  2  2 is above the horizontal asymptote y  4 , w(x) must approach the horizontal asymptote from above as x   . Since w  2  2 is above the horizontal asymptote y  4 , w(x) must approach the horizontal asymptote from above as x   .

u   x 

2

  x2  1 u   x  u  x

3 x 2 x2  1

u is even.

Interval

Test Point

Comments 3 is 2 above the horizontal asymptote y  3 , u(x) must approach the horizontal asymptote from above as x   . 3 Since u 1   is 2 above the horizontal asymptote y  3 , u(x) must approach the horizontal asymptote from above as x   .

Since u  1  

2

 0 2  1

3   x 

0

The y-intercept is  0, 0 . The x-intercept is  0, 0 . u is in lowest terms, and x 2  1 is never 0, so there are no vertical asymptotes. The degree of the numerator is 2. The degree of the denominator is 2.

378

 , 0

3   1,   2

 0,  

3  1,   2


Section 3.5 3 2 0   0  4  0  4 4  89. f  0   undefined 0  0 2  3  0

Interval

There is no y-intercept. x3  x 2  4 x  4  0

x 2  x  1  4  x  1  0

 x  1  x 2  4  0  x  1 x  2 x  2  0 x  1, x  2, x  2 The x-intercepts are  1, 0 ,  2, 0  and

 2, 0 .

f is in lowest terms, and x 2  3 x  x  x  3 is 0 when x  0 and x  3 , which are the vertical asymptotes. The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, f has no horizontal asymptote, but does have a slant asymptote. x2 2 3 2 x  3x x  x  4 x  4

 x3  3x 2

 , 3

Test Point 21   8,   2

Test Point

 3,  2

 5 27    ,  2 10

 2, 1

 4 1   ,   3 3

 1, 0

 1 3   ,  2 2

 0, 2

 1 14   ,   3 3

3  1,   2

 2, 

 10   3,  9

 15   4,  7

 4, 9

 2x  4x  2 x 2  6 x 2

 3 2 0  3  0   0  3 3  90. g  0   undefined 0  0 2  2  0

2x  4 The quotient is x  2 . The slant asymptote is y  x  2 .

There is no y-intercept. x3  3x 2  x  3  0

x3  x 2  4 x  4 x2 x 2  3x 3 2 3 x  x  6 x  x  x2  4 x  4 2 x  4

x 2  x  3  1 x  3  0

 x  3  x 2  1  0  x  3 x  1 x  1  0

x2 y  x2 22 0

x  3, x  1, x  1

f crosses its slant asymptote at  2, 0 . f   x 

The x-intercepts are  3, 0 ,  1, 0  and

1, 0 .

  x    x  4   x  4   x 2  3  x 3

2

g is in lowest terms, and x 2  2 x  x  x  2 is 0 when x  0 and x  2 , which are the vertical asymptotes. The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, g has no horizontal asymptote, but does have a slant asymptote.

 x3  x 2  4 x  4 x 2  3x f   x  f  x , f   x   f  x f is neither even nor odd. Select test points from each interval. 

379


Chapter 3 Polynomial and Rational Functions x5 x  2 x x  3x  x  3 2

3

2

 x3  2 x 2

5x  x  5 x 2  10 x 2

9x  3 The quotient is x  5 . The slant asymptote is y  x  5 . x3  3x 2  x  3 x2  2 x 3 2 3 x  3x  10 x  x  3 x 2  x  3 x5

91. v  0 

y  x5

  x 3  3   x  2    x   3   x2  2   x

v   x 

 , 3  3,  1

3   2,  8

 1, 0

 1 3   ,   2 2

 1  0,  3

 1 128   ,  5 15 

1   ,1 3

 1 7  ,  2 2

1, 2

 3 15   ,   2 2

 2, 

 3,16

2   x

4

  x2  9 v   x  v  x

 x3  3x 2  x  3  x2  2 x g   x  g  x , g   x   g  x g is neither even nor odd. Select test points from each interval. Test Point 48    5,   35

0

v is in lowest terms, and x 2  9 is never 0, so there are no vertical asymptotes. The degree of the numerator is 4. The degree of the denominator is 2. Since n  m , the function has no horizontal asymptotes. Since n  m  1 , the function has no slant asymptote.

1 16 5 3 3

Interval

 0 2  9

The x-intercept is  0, 0 .

1 3

 1 16  g crosses its slant asymptote at  ,  . 3 3  g   x 

4

The y-intercept is  0, 0 .

9 x  3 x

2  0

2 x4 x2  9

v is even. Select test points. 1  The graph passes through  3, 9 ,  1,  ,  5

Test Point 5   4,   8

 1 1,  ,  3, 9 . 5

 5,12.8

380


Section 3.5

92. g  0 

4  0

d. The average cost would approach $20 per session. This is the same as the fee paid to the gym in the absence of fixed costs.

4

 0 2  8

0

The y-intercept is  0, 0 .

94. a. C  x   40 x  1200  420  100  200

The x-intercept is  0, 0 .

C  x   40 x  1920

g is in lowest terms, and x 2  8 is never 0, so there are no vertical asymptotes. The degree of the numerator is 4. The degree of the denominator is 2. Since n  m , the function has no horizontal asymptotes. Since n  m  1 , the function has no slant asymptote. 4   x

b. C  x  

40 x  1920 x

40  20  1920  136 20 40  50  1920 C  50   78.4 50 40 100  1920 C 100   59.2 100 40  200  1920 C  200   49.6 200

c. C  20 

4

4 x4 g   x     x2  8 x 2  8

g   x  g  x g is even. Select test points.

16   The graph passes through  2,  ,  3

d. C  200  49.6 means that if 200,000 pages are printed, then the average cost per thousand pages is $49.60 (or equivalently $0.0496 per page).

4   4   16    1,  , 1,  ,  2,  . 9 9 3

e. The average cost would approach $40 per thousand pages or equivalently $0.04 per page. This is the cost per page in the absence of fixed costs.

59.95  0.24 252 59.95  0.16 C1  366  366 59.95  0.15 C 1  400  400

95. a. C 1  252 

93. a. C  x   20 x  69.95  39.99

C  x   20 x  109.94 b. C  x  

59.95  0.45  436  400  0.17 252 59.95  0.45  582  400 C1  582   0.24 582 59.95  0.45  700  400 C 1  700   0.28 700

b. C 1  436 

20 x  109.94 x

20  5  109.94  41.99 5 20  30  109.94 C  30   23.66 30 20 120  109.94  20.92 C 120  120

c. C  5 

c. C 2  x  

381

79.95 x


Chapter 3 Polynomial and Rational Functions 79.95  0.32 252 79.95 C 2  400   0.20 252 79.95 C 2  700   0.11 252

d. C 2  252 

c.

475  25  5  300 2 475  25 10 C 1 10   362.5 2 475  25 15 C 1 15   425 2

96. a. C 1  5 

b. C 2  x  

600 x 100  x 600 x 1400  100  x 140,000  1400 x  600 x 140,000  2000 x 70  x 70% of the air pollutants can be removed. C  x 

80  20  20 ; $20,000 100  20 80  40  53 ; $53,000 C  40  100  40 80  90 C  90   720 ; $720,000 100  90

98. a. C  20 

2000 x

2000  400 5 2000 C 2 10   200 10 2000 C 2 15   133.33 15

c. C 2  5 

b.

d. The horizontal asymptote is y  0 . If it were possible for a person to have an infinite number of yearly memberships, the average cost per year would drop to $0.

80 x 100  x 80 x 320  100  x 32,000  320 x  80 x 32,000  400 x 80  x 80% of the waste can be removed. C  x 

99. a. N  t    P  J  t 

N  t   0.091t 3  3.48t 2  15.4t  335  23.0t  159

600  25  200 ; $200,000 97. a. C  25  100  25

N  t   0.091t 3  3.48t 2  38.4t  494

N  t  represents the total number of adults incarcerated in both prisons and jails, t years since 1980.

600  50  600 ; $600,000 b. C  50  100  50 600  75 C  75   1800 ; $1,800,000 100  75 600  90 C  90   5400 ; $5,400,000 100  90

b. R  t  

J t  N

23.0t  159 0.091t  3.48t 2  38.4t  494 R  t  represents the percentage of incarcerated adults who are in jail, t years since 1980. R t  

382

3


Section 3.5 c. R  25

2x  7 x3 Find the quotient. 3 2 7

103. f  x  

23.0  25 159

0.091 25  3.48  25  38.4  25  494 3

2

 0.333 R  25  0.333 means that in the year 2005, 33.3% of incarcerated adults were in jail.

6 2 1 f  x  2 

1.08t  36.9 V  100. a. P  t      t    N 0.0135t 2  1.09t  73.2 This represents the percentage of people of voting age who voted in U.S. presidential elections in year t.

b. P  60 

1 x3

1 with a x shift to the left 3 units and a shift upward 2 units.

The graph of f is the graph of y 

1.08  60  36.9

0.0135  60  1.09  60  73.2 2

 0.54 This means that in the presidential election in 1992 (60 yr after the year 1932), 54% of the people of voting age actually voted. 101. a. f  x  

1

 x   1  1 f  x  3  x  1 2 2

3

5 x  11 x2 Find the quotient. 2 5 11 10 5 1

104. f  x  

b. Domain:  , 1   1,   ;

Range:  3,  

102. a. f  x  

1 3 x   4

f  x 

1 3 x4

f  x  5 

1 x2

1 with a x shift to the left 2 units and a shift upward 5 units.

The graph of f is the graph of y 

b. Domain:  , 4   4,   ;

Range:  , 3   3,  

383


Chapter 3 Polynomial and Rational Functions 3  109. Factor of the numerator:  x   or  2 x  3  2

105. The numerator and denominator share a common factor of x  2 . The value 2 is not in the domain of f. The graph will have a “hole” at x  2 rather than a vertical asymptote.

Factors of the denominator:  x  2 x  5 The degree of the numerator is less than the degree of the denominator.   2x  3 f  x  a     x  2 x  5  f  0  3

106. A horizontal asymptote is a horizontal line that the function approaches as x becomes very large—that is, as x approaches infinity or as x approaches negative infinity.

 2  0  3  a 3   0  2 0  5   3  3 a  10 

107. Factors of the numerator:  x  3 x  1

Factor of the denominator:  x  2 The degree of the numerator equals the degree of the denominator.  x  3 x  1 f  x   x  2 x  a 

a  10   2x  3 20 x  30 f  x   10   2 x 2 x 5 x    3 x  10    

3 4  0  3 0  1  3  0  2 0  a  4 f  0 

4  110. Factor of the numerator:  x   or  3 x  4  3 Factors of the denominator:  x  3 x  4 The degree of the numerator is less than the degree of the denominator.   3x  4 f  x  a     x  3 x  4  f  0  1

3 3  2a 4 2a  4 a2  x  3 x  1  x 2  4 x  3 f  x   x  2 x  2 x 2  4 x  4

 3  0  4  a   1   0  3 0  4   4  a    1  12 

108. Factors of the numerator:  x  4 x  2

Factor of the denominator:  x  1 The degree of the numerator equals the degree of the denominator.  x  4 x  2 f  x   x  1 x  a 

a3   3x  4 9 x  12 f  x  3   2   x  3 x  4  x  7 x  12

f  0  8

 0  4 0  2  8  0  1 0  a 

111. a.

8 8 a a 1  x  4 x  2  x 2  6 x  8 f  x   x  1 x  1 x 2  2 x  1

384


Problem Recognition b.

c. Vertical asymptotes: 5x2  7 x  6  0

 x  2 5 x  3  0 x  2 and x 

113. a. f  x  

3 ; 5

b. On the window  9.4, 9.4,1 by

x 2  3x  2 x 1

 6.2, 6.2,1 , the calculator shows a discontinuity or “hole” at  4, 3 . The

 x  2  x  1

 x2 x 1 No vertical asymptotes 

 x  1  x  4

 x 1 x4 No vertical asymptotes

4 Horizontal asymptote: y  5 112. a. f  x  

x2  5x  4 x4

graph on the standard viewing window does not show the discontinuity.

b. On the window  4.7, 4.7,1 by

 3.1, 3.1,1 , the calculator shows a discontinuity or “hole” at  1,1 . The graph on the standard viewing window does not show the discontinuity.

Problem Recognition Exercises: Polynomial and Rational Functions 1.

Factors of 8 1,  2,  4,  8  Factors of 1 1  1,  2,  4,  8 2 1 3 6 8 2 10 8 1 5 4 0

2.

Factors of 6 1,  2,  3,  6  Factors of 1 1  1,  2,  3,  6 2 1 2 5 6 2 8 6 1 4 3 0

Factor the quotient. x2  5x  4  0

Factor the quotient. x2  4 x  3  0

 x  1 x  4  0

 x  1 x  3  0

x  1, x  4 The zeros are 2, 1 , and 4 .

x  1, x  3 The zeros are 2 , 1, and 3.

385


Chapter 3 Polynomial and Rational Functions 3. The x-intercepts of q are  2, 0 , 1, 0 , and

10.

 3, 0 .

4. The x-intercepts of p are  2, 0 ,  1, 0 , and

 4, 0 .

Factor the quotient. x2  4x  4  0

5. The x-intercepts of f are  2, 0 ,  1, 0 , and

 x  2 x  2  0

 4, 0 .

x  2 The zeros are 1 and 2 (multiplicity 2).

6. The vertical asymptotes of f occur where q  x   0 , at x  2 , x  1 , and x  3 .

11 The x-intercepts of d are 1, 0 and  2, 0 .

7. Since the degree of the numerator is the same as the degree of the denominator, the line 1 y  , or equivalently y  1 , is a horizontal 1 asymptote of f.

 12  4  5 14 1  281  2  5 10

 2, 0 , and

15. Since the degree of the numerator is the same as the degree of the denominator, the line 1 y  , or equivalently y  1 , is a horizontal 1 asymptote of g.

1.78,1 and  1.58,1 .

16.

Factors of 8 1,  2,  4,  8  Factors of 1 1  1,  2,  4,  8 4 1 4 2 8 4 0 8 1 0 2 0

x3  4 x 2  2 x  8 1 x3  3x 2  4 x3  4 x 2  2 x  8  x3  3x 2  4

7 x 2  2 x  12  0 x

  2 

 2 2  4  7 12 2  340  2  7 14

2  2 85 1  85   1.17 or  1.46 14 7 The graph crosses the horizontal asymptote  1  85   1  85  at  ,1 and  ,1 , or 7 7     

Factor the quotient. x2  2  0 x2  2 x 2 The zeros are 4,

13. The x-intercepts of g are  4, 0 ,

14. The vertical asymptotes of g occur where d  x   0 , at x  1 and x  2 .

 1.78 or  1.58 The graph crosses the horizontal asymptote  1  281   1  281  at  ,1 and  ,1 , or  10   10 

9.

 2, 0 , and

  2, 0 .

5 x 2  x  14  0   1 

12. The x-intercepts of c are  4, 0 ,

  2, 0 .

x3  3x 2  6 x  8 1 8. 3 x  2 x2  5x  6 x3  3x 2  6 x  8  x3  2 x 2  5 x  6

x

Factors of  4 1,  2,  4   1,  2,  4 1 Factors of 1 1 1 3 0 4 1 4 4 1 4 4 0

1.17,1 and  1.46,1 .

2 , and  2 .

386


Section 3.6 2 x 3  4 x 2  10 x  12  2x  4 21. x 2  11 2 x 3  4 x 2  10 x  12  2 x3  4 x 2  22 x  44 10 x  12  22 x  44 12 x  32 32 8 x  12 3 y  2x  4

17. Graph b has the intercepts and asymptotes of function f. 18. Graph a has the intercepts and asymptotes of function g.

2x  4 19. x 2  0 x  11 2 x3  4 x 2  10 x  12

 2 x 3  0 x 2  22 x

 4 x  12 x  12  4 x 2  0 x  44

16 12 4  8 y  2   4     3 3 3 3 The graph crosses the slant asymptote at  8 4  ,  . 3 3

2

12 x  32 a. The quotient is q  x   2 x  4 . b. The remainder is r  x   12 x  32 .

22. r  x   12 x  32

0  12 x  32 12 x  32 32 8  x 12 3 The solution to r  x   0 gives the xcoordinate of the point where the graph of f crosses its slant asymptote.

20. The slant asymptote is y  2 x  4 .

Section 3.6 Polynomial and Rational Inequalities 1. 2 x 3  5 x 2  12 x  0

3.

x 2 x 2  5 x  12  0 x  2 x  3 x  4  0 3 x  0, x  , x  4 2  3  The solution set is 0, ,  4 .  2 

 1 The solution set is    .  2

2. 12 x 3  32 x 2  12 x  0

2x  1 0 x5 2x  1  0 2 x  1 1 x 2

4.

4 x 3 x 2  8 x  3  0 4 x  3x  1 x  3  0 1 x  0, x   , x  3 3 1   The solution set is 0,  , 3 . 3  

4x  3 0 x 1 4x  3  0 4x  3 3 x 4 3 The solution set is   . 4

387


Chapter 3 Polynomial and Rational Functions 19. a.  ,  

5. x  5  0 x5 6. x  1  0

x  1 7. polynomial; 2

8. rational

9. negative

10.  ,   ;  

11. a.  4, 1

b.  4, 1

b.  ,  

c.  

d.  

20. a.  

b.  

c.  ,  

d.  ,  

21.  5 x  3 x  5  0

x

3 or x  5 5

c.  ,  4   1,  

The boundary points are

d.  ,  4   1,  

3 and 5. 5

Sign of  5 x  3 :

Sign of  5 x  3 x  5 : 

Sign of  x  5 :

12. a.  , 1   3,   b.  , 1   3,   c.  1, 3

d.  1, 3

5

3 5

13. a.  , 3   3,   b.  ,  

c.  

d.  3 14. a.   c.  , 4   4,  

b.  4 d.  ,  

15. a.  ,  2   0, 3

b.  ,  2   0, 3

c.  2, 0   3,  

d.  2, 0   3,  

16. a.  ,  4   0,1

b.  ,  4   0,1

c.  4, 0  1,  

d.  4, 0  1,  

17. a.  0, 3   3,  

d.  , 0   3

18. a.  0,  

b.  2   0,  

3   , 5 5 

b.  5 x  3 x  5  0

3   , 5 5

c.  5 x  3 x  5  0

3   5 , 5  

d.  5 x  3 x  5  0

3   ,    5,   5

e.  5 x  3 x  5  0

3   ,    5,   5

22.  3x  7  x  2  0

x

b.  0,  

c.  , 0

a.  5 x  3 x  5  0

7 or x  2 3

The boundary points are 

7 and 2. 3

Sign of  3 x  7  :

Sign of  3 x  7  x  2 : 

Sign of  x  2 :

c.  ,  2   2, 0 d.  , 0

388

7 3

2


Section 3.6 a.  3x  7  x  2  0

24.

 7    , 2  3 

  x  9 x  1  0 x  9 or x  1 The boundary points are 9 and 1 .

 7    , 2 3

Sign of  x  9 : Sign of  x  1 :

c.  3x  7  x  2  0

Sign of  x  9 x  1 :

 7    3 , 2  

Sign of   x  9 x  1 : 

d.  3x  7  x  2  0

b.  x 2  10 x  9  0  , 9   1, 

e.  3x  7  x  2  0 7   ,     2,   3

c.  x 2  10 x  9  0  ,  9   1,  

 x 2  x  12  0

d.  x 2  10 x  9  0  9, 1

 x 2  x  12  0   x  3 x  4  0 x  3 or x  4 The boundary points are 3 and 4. Sign of  x  3 :

e.  x 2  10 x  9  0  9, 1

25. x 2  12 x  36  0

 x  6 2  0

Sign of   x  3 x  4 : 

Sign of  x  4 :

Sign of  x  3 x  4 :

  9 1

a.  x 2  10 x  9  0  9, 1

7   ,     2,   3

 x 2  10 x  9  0

b.  3x  7  x  2  0

23.

 x 2  10 x  9  0

x  6 The boundary point is 6 .

3 4

a. x 2  12 x  36  0  6

a.  x 2  x  12  0  3, 4

b. x 2  12 x  36  0 The square of any real number is nonnegative. Therefore, this inequality has no solution.

b.  x 2  x  12  0  , 3   4, 



c.  x 2  x  12  0  , 3   4, 

c. x 2  12 x  36  0 The inequality in part (b) is the same as the inequality in part (a) except that equality is included. The expression

d.  x 2  x  12  0  3, 4

 x  62  0 for x  6 .  6

e.  x 2  x  12  0  3, 4

389


Chapter 3 Polynomial and Rational Functions d. x 2  12 x  36  0

27.

The expression  x  6  0 for all real 2

3w 2  w  2  w  2  3w 2  w  2 w  4

numbers except where  x  6  0 . Therefore, the solution set is all real numbers except 6 .  , 6   6, 

3w 2  w  4  0 Find the real zeros of the related equation. 3w 2  w  4  0

2

 w  1 3w  4  0 w  1 or w 

e. x 2  12 x  36  0 The square of any real number is greater than or equal to zero. Therefore, the solution set is all real numbers.  , 

4 3

The boundary points are 1 and Sign of  w  1 :

Sign of  w  1 3w  4 : 

Sign of  3w  4 :

26. x 2  14 x  49  0

 x  7  0 2

4

1

x7 The boundary point is 7.

4 . 3

3

4  The solution set is  1,  .  3

a. x  14 x  49  0  7 2

28.

b. x 2  14 x  49  0 The square of any real number is nonnegative. Therefore, this inequality has no solution.

5 y 2  7 y  3  y  4 5 y 2  7 y  3 y  12 5 y 2  4 y  12  0 Find the real zeros of the related equation. 5 y 2  4 y  12  0



 y  2 5 y  6  0

c. x 2  14 x  49  0 The inequality in part (b) is the same as the inequality in part (a) except that equality is included. The expression

y  2 or y 

6 5

The boundary points are 2 and

 x  7  0 for x  7 .  7 2

Sign of  y  2 :

Sign of  y  2 5 y  6 : 

Sign of  5 y  6 :

d. x 2  14 x  49  0

The expression  x  7   0 for all real 2

2

numbers except where  x  7   0 . Therefore, the solution set is all real numbers except 7.  , 7   7,  2

6  The solution set is  2,  .  5

e. x 2  14 x  49  0 The square of any real number is greater than or equal to zero. Therefore, the solution set is all real numbers.  , 

390

6 5

6 . 5


Section 3.6 a 2  3a

29.

d 2  6d

30.

a 2  3a  0 Find the real zeros of the related equation. a 2  3a  0

d 2  6d  0 Find the real zeros of the related equation. d 2  6d  0

a  a  3  0 a  0 or a  3 The boundary points are 0 and 3.

d  d  6  0 d  0 or d  6 The boundary points are 0 and 6.

Sign of  a  :

Sign of  d  :

Sign of  a  a  3 : 

Sign of  a  3 :

0

Sign of  d  d  6 : 

Sign of  d  6 :

3

0

The solution set is  , 0   3,   .

The solution set is  , 0   6,   .

10  6 x  5 x 2

31.

5 x 2  6 x  10  0 5 x 2  6 x  10  0 Find the real zeros of the related equation. 5 x 2  6 x  10  0

x

  6 

6

 62  4  5 10 6  236 6  2 59 3  59    2  5 10 10 5

3  59 3  59 or x  5 5 3  59 3  59 and . The boundary points are 5 5 x

 3  59      : 5      3  59    Sign of  x     : 5      3  59     3  59   Sign of  x      x     :  5 5     Sign of  x  

3  59 3  59 5

 3  59 3  59  The solution set is  , . 5 5  

391

5


Chapter 3 Polynomial and Rational Functions 6  4 x  3x 2

32.

3 x 2  4 x  6  0

3x 2  4 x  6  0 Find the real zeros of the related equation. 3x 2  4 x  6  0 x

  4 

 42  4  3 6 4  88 4  2 22 2  22    2  3 6 6 3

2  22 2  22 or x  3 3 2  22 2  22 and . The boundary points are 3 3 x

 2  22     : 3  

Sign of  x  

 2  22      : 3      2  22     2  22   Sign of  x      x     :  3 3     Sign of  x  

2  22 2  22 3

3

 2  22 2  22  The solution set is  , . 3 3   33.  x  4 x  1 x  3  0 Find the real zeros of the related equation.  x  4 x  1 x  3  0 x  4 , x  1 , or x  3 The boundary points are 4 , 1, and 3. Sign of  x  4 : Sign of  x  1 :

Sign of  x  3 :

Sign of  x  4 x  1 x  3 : 

The boundary points are 5 , 2 , and 4. Sign of  x  5 :

Sign of  x  5 x  2 x  4 : 

Sign of  x  2 : Sign of  x  4 :

5 2

The solution set is  5,  2   4,   .

 4

35. 5c  c  2  4  c   0

   4 1 3

2

5c  c  2  c  4  0 Find the real zeros of the related equation. 2

The solution set is  4,1   3,   .

5c  c  2  c  4  0 2

34.  x  2 x  5 x  4  0 Find the real zeros of the related equation.  x  2 x  5 x  4  0 x  2 , x  5 , or x  4

c  c  2  c  4   0 c  0 , c  2 , or c  4 The boundary points are 2 , 0, and 4. 2

392


Section 3.6 Sign of  c  2 : 2

Sign of  c  c  2  c  4 : 

Sign of  c  :

Sign of  c  4 : 2

2

 0

38. w4  20w2  64  0 Find the real zeros of the related equation. w4  20w2  64  0

 w  4 w  16  0 2

 w  2 w  2 w  4 w  4  0

4

w  2 , w  2 , w  4 , or w  4 The boundary points are 4 , 2 , 2, and 4.

The solution set is  ,  2   2, 0   4,  .

Sign of  w  4 : Sign of  w  2 :

36. 6u  u  1  3  u   0 2

Sign of  w  2 :

6u  u  1  u  3  0 Find the real zeros of the related equation. 2 6u  u  1  u  3  0 2

Sign of  w  4 : Sign of

w  2w  2w  4w  4:

u  u  1  u  3  0 u  0 , u  1 , or u  3 The boundary points are 1 , 0, and 3. 2

Sign of  u  1 : 2

Sign of  u  u  1  u  3 : 

Sign of  u  3 : 2

1 0

x

 t  1 t  1 t  3 t  3 :

4 2 2

4

5 , x  2 , or x  2 2

Sign of  2 x  5 : Sign of  x  2 :

t  1 , t  1 , t  3 , or t  3 The boundary points are 3 , 1 , 1, and 3.

Sign of

5 The boundary points are  , 2 , and 2. 2

 t  1 t  1 t  3 t  3  0

Sign of  t  3 :

 2 x  5  x 2  4   0  2 x  5 x  2 x  2  0

2

Sign of  t  1 :

x 2  2 x  5  4  2 x  5   0

3

 t  1 t  9  0

Sign of  t  1 :

2 x3  5 x 2  8 x  20  0 Find the real zeros of the related equation. 2 x3  5 x 2  8 x  20  0

37. t 4  10t 2  9  0 Find the real zeros of the related equation. t 4  10t 2  9  0

Sign of  t  3 :

2 x3  5 x 2  8 x  20

39.

The solution set is  , 1   1, 0   3,  .

2

The solution set is  4,  2   2, 4 .

Sign of  u  :

2

Sign of  x  2 :

Sign of  2 x  5 x  2 x  2 : 

3 1 1

   5 2 2

2 5   The solution set is  ,     2, 2 .  2

3

The solution set is  3, 1  1, 3 .

393


Chapter 3 Polynomial and Rational Functions 3x3  3x  4 x 2  4

40.

42. 4 x 4  4 x3  64 x 2  80 x  0

  x  x  x  16 x  20  0

3x3  4 x 2  3x  4  0 Find the real zeros of the related equation. 3x3  4 x 2  3x  4  0 x 2  3x  4  1 3x  4  0

4 x x3  x 2  16 x  20  0 3

Find the real zeros of the related equation. x x 3  x 2  16 x  20  0

 x  1  3x  4  0 2

4 3

The boundary points are 1 , 1, and Sign of  x  1 : Sign of  x  1 :

Sign of  3 x  4 :

4 . 3

x  x  2 x 2  3 x  10  0

x  x  2 x  2 x  5  0

Sign of  x  1 x  1 3 x  4 :     1 1 4

2

 4 The solution set is  , 1  1,  .  3

Sign of  x  2 : 2

  x  x  5 x  3 x  9  0

2 x x  5 x  3x  9  0 2

3

2

Sign of x  x  2  x  5 : 

4

5

2

Find the real zeros of the related equation. u 4 5u 2  28u  15  0

u  5u  3 u  5  0 4

2

0

  u  5u  28u  15  0

x  x  1 x  3  0 x  0 , x  1 , or x  3 The boundary points are 1 , 0, and 3.

Sign of  x  3 :

u 4 5u 2  28u  15  0

2

43. 5u 6  28u 5  15u 4  0

x  x  1 x 2  6 x  9  0

Sign of  x  :

The solution set is  2   0, 5 .

Factors of 9 1,  3,  9   1,  3,  9 Factors of 1 1 1 1 5 3 9 1 6 9 1 6 9 0

Sign of  x  1 :

2

2

Find the real zeros of the related equation. x x3  5 x 2  3x  9  0

Sign of  x  5 :

2

3

Sign of  x  :

41. 2 x  10 x  6 x  18 x  0 3

x  x  2   x  5  0 x  0 , x  2 , or x  5 The boundary points are 2 , 0, and 5.

3

4

Factors of  20 1,  2,  4,  5,  10,  20  Factors of 1 1  1,  2,  4,  5,  10,  20 2 1 1 16 20 2 6 20 1 3 10 0

 x  1 x  1 3x  4  0 x  1 , x  1 , or x 

2

u 0, u 

3 , or u  5 5

The boundary points are 0,

Sign of x  x  1 x  3 :     1 0 3 2

The solution set is  1, 0   3 .

394

3 , and 5. 5


Section 3.6

 

Sign of u 4 :

Sign of  5u  3 :

Sign of u 4  5u  3 u  5 : 

Sign of  u  5 :

 

0

Sign of 3 x  1 : 5

Sign of  x:

Sign of 2 x  5 : 4

Sign of  x  4:

5

3

Sign of

5

x 2 x  5 3 x  1  x  4: 4

3  The solution set is  ,    5,   .  5 5

1

5

0

3

4

2

The solution set is 1  5   5    ,     0,    , 4 . 3 2 2

4

  w  3w  8 w  4   0

 w 4 3w 2  8 w  4  0 4

44. 3w  8w  4 w  0 6

5

2

46. 5 x  3 x  2  4 x  1  x  3  0 Find the real zeros of the related equation. 2 3 4 5 x  3x  2  4 x  1  x  3  0 2

Find the real zeros of the related equation. w4 3w2  8w  4  0

w4  3w  2 w  2  0

3

4

Sign of w4 :

x  3x  2  4 x  1  x  3  0 2 1 x  0 , x  , x   , or x  3 3 4 1 2 The boundary points are  , 0, , and 3. 4 3

Sign of  3w  2 :

Sign of 4 x  1 :

2

2 w  0 , w  , or w  2 3

The boundary points are 0,

 

Sign of  w  2 :

2 , and 2. 3

2

2

Sign of 3 x  2 :

Sign of  x  3 :

1

4

Sign of

2  The solution set is  ,    2,   .  3

5 x 3 x  2 4 x  1  x  3 : 2

45. 6 x  2 x  5  3x  1  x  4  0 5

3

4

0

4

2 3

 1  The solution set is   , 0 .  4 

x  2 x  5  3x  1  x  4  0 Find the real zeros of the related equation. 4 5 x  2 x  5  3x  1  x  4  0 4

2

3

4

Sign of 5 x:

4

0

4

3

  5u  3u  5 :    

Sign of w

3

5

47.  5 x  3  2 The square of any real number is 2

5 1 , x   , or x  4 2 3 1 5 The boundary points are  , 0, , and 4. 3 2

x0, x 

nonnegative. Therefore,  5 x  3 is nonnegative, and always greater than 0. The solution set is  ,   . 2

395

3


Chapter 3 Polynomial and Rational Functions 48.  4 x  1  6 The square of any real number is 2 nonnegative. Therefore,  4 x  1 is nonnegative, and always greater than 0. The solution set is  ,   . 2

53.

x2  4 x  3  1  0 x2  4 x  4  0

 x  2 2  0 The square of any real number is 2 nonnegative. Therefore,  x  2 is nonnegative, and always greater than 0. However, the equality is included. The solution set is  2 .

49. 4   x  7  The square of any real number is 2 nonnegative. Therefore,  x  7  is nonnegative, and always greater than 0. The solution set is   . 2

54.  x  2 x  4  1

x2  6 x  8  1  0

50. 1   x  2 The square of any real number is 2

x2  6 x  9  0

 x  3 2  0

nonnegative. Therefore,  x  2 is nonnegative, and always greater than 0. The solution set is   . 2

51.

The square of any real number is

nonnegative. Therefore,  x  3 is nonnegative, and always greater than 0. However, the equality is included. The solution set is  3 . 2

16 y 2  24 y  9 16 y 2  24 y  9  0

 4 y  32  0 2 The expression  4 y  3  0 for all real

55. a.  2, 3

b.  2, 3

c.  ,  2   3,   d.  ,  2   3,  

numbers except where  4 y  32  0 .Therefore, the solution set is

56. a.  ,  2   2,   b.  ,  2   2,  

3 . 4 3  3   The solution set is  ,    ,  .  4  4 

c.  2, 2

all real numbers except

52.

 x  3 x  1  1

57. a.  , 2   2,  

 2 w  5  0 2 The expression  2w  5  0 for all real

b.  , 2   2,  

c.  

d.  

58. a.  

b.  

4w2  20w  25 4w2  20w  25  0

d.  2, 2

2

c.  , 3   3,   d.  , 3   3,  

numbers except where  2w  52  0 .Therefore, the solution set is

59.

5 . 2 5  5   The solution set is  ,    ,  .  2  2 

all real numbers except

x2 0 x3 x20 x  2 2 is a boundary point.

396


Section 3.6 The expression is undefined for x  3 . This is also a boundary point. Sign of  x  2 : 

Sign of  x  3 : Sign of

x2 x3

:

c.

60.

x2 0 x3  2, 3

Sign of

c.

x2 x2 0 0 d. x3 x3  ,  2   3,   ,  2   3,  62.

x4 0 x 1 x40

Sign of  x  1 : Sign of

x4 x 1

:

 4

x4 0 a. x 1  4,1

x 9

: 

x4 0 x2  9  0

b

x4 0 x2  9



x4 0 x2  9  , 

d.

x4 0 x2  9  , 0   0,  

 x2 0 x 2  16 x2  0

Sign of  x 2 :

Sign of x  16:

: 

2

Sign of

 x2 x 2  16

0

1

x4 b 0 x 1  4,1

a.

x4 x4 0 0 c. d. x 1 x 1  ,  4  1,    ,  4  1,   61.

x 2

x0 0 is a boundary point. The denominator is nonzero for all real numbers. Therefore, the only boundary point is 0.

x  4 4 is a boundary point. The expression is undefined for x  1 . This is also a boundary point. 

4

0

x2 0 x3  2, 3

Sign of  x  4 : 

Sign of x  9:

a.

b

2

2 3

a.

Sign of x 4 :

c.

x4 0 x2  9 x4  0

63.

x0 0 is a boundary point. The denominator is nonzero for all real numbers. Therefore, the only boundary point is 0.

397

 x2 0 x 2  16  ,    x2 0 x 2  16  0

b

d.

 x2 0 x 2  16  , 0   0,    x2 0 x 2  16



5 x 0 x 1 x5 0 x 1 The expression is undefined for x  1 . This is a boundary point. Find the real zeros of the related equation.


Chapter 3 Polynomial and Rational Functions x5 0 x 1 x5 0

The boundary points are 0 and 2.

x5 The boundary points are 1 and 5. Sign of  x  1 :

Sign of  x  5 : 

Sign of

x5 x 1

:

 1

66.

5

x2 The boundary points are 6 and 2. 

Sign of  x  2 :  Sign of

x2 x6

:

 6

Sign of x  2:

: 

0

2

x2 x2

9  3x 0 x2 3x  9 0 x2 x3 0 x2 The expression is undefined for x  0 . This is a boundary point. Find the real zeros of the related equation. x3 0 x2 x3 0 x3 The boundary points are 0 and 3. Sign of x 2 :

Sign of x  3:

: 

 Sign of

x3 x2

0

3

The solution set is  3,   .

2

The solution set is  6, 2 . 65.

The solution set is  2,   .

2x 0 x6 x2 0 x6 The expression is undefined for x  6 . This is a boundary point. Find the real zeros of the related equation. x2 0 x6 x20

Sign of  x  6 :

Sign of

The solution set is  1, 5 . 64.

Sign of x 2 :

67.

4  2x 0 x2 2x  4 0 x2 x2 0 x2 The expression is undefined for x  0 . This is a boundary point. Find the real zeros of the related equation. x2 0 x2 x20 x2

x2  x  2 0 x3  x  1 x  2  0 x3 The expression is undefined for x  3 . This is a boundary point. Find the real zeros of the related equation.  x  1 x  2  0 x3 x   1 x  2  0 x  1 or x  2 The boundary points are 3 , 1 , and 2.

398


Section 3.6 Sign of  x  3 : Sign of  x  1 :

Sign of  x  2 : Sign of

 x  1 x  2 :  x  3

The expression is undefined for x 

is a boundary point. Find the real zeros of the related equation. x6 0 2x  7 x6 0 x6 7 The boundary points are and 6. 2

3 1 2

The solution set is  3, 1   2,   . 68.

x2  2 x  8 0 x 1  x  2 x  4  0 x 1 The expression is undefined for x  1 . This is a boundary point. Find the real zeros of the related equation.  x  2 x  4  0 x 1  x  2 x  4  0

Sign of  2 x  7  : Sign of  x  6 : Sign of

Sign of  x  1 :

Sign of  x  4 : Sign of

 x  2 x  4 :  x  1

2

1

 6

2

7  The solution set is  , 6 . 2 

70.

4

The solution set is  2,1   4,   . 69.

 x  6 :  2 x  7

7

x  2 or x  4 The boundary points are 2 , 1, and 4. Sign of  x  2 :

7 . This 2

5 1 2x  7 5 1  0 2x  7 5 2x  7  0 2x  7 2x  7 12  2 x 0 2x  7 2  x  6 0 2x  7 x6 0 2x  7

4 1 3x  8 4 1  0 3x  8 4 3x  8  0 3x  8 3x  8 12  3x 0 3x  8 3  x  4 0 3x  8 x4 0 3x  8 The expression is undefined for x 

8 . This 3

is a boundary point. Find the real zeros of the related equation. x4 0 3x  8 x40 x4 8 The boundary points are and 4. 3

399


Chapter 3 Polynomial and Rational Functions Sign of  3 x  8 :

Sign of 7:

: 

Sign of  x  4 :

 x  4 :  3 x  8

Sign of

Sign of

8

3

7  The solution set is  ,  .  3

2x 2 x2

73.

2x 20 x2 2x x2  2 0 x2 x2 4 0 x2 The expression is undefined for x  2 . This is a boundary point. The related equation has no real zeros. Sign of 4:

Sign of  x  2 :

: 

Sign of

4

 x  2

3x  7

7

8  The solution set is  , 4 . 3  71.

7

4

3

The solution set is  , 2 .

Sign of  x  5 :

Sign of  x  2 :

3x 1 3x  7 3x 1  0 3x  7 3x 3x  7  0 3x  7 3x  7 7 0 3x  7 The expression is undefined for x 

4 x 2 x5 4 x 20 x5 x5 4 x  2 0 x5 x5 3x  6 0 x5 x2 0 x5 The expression is undefined for x  5 . This is a boundary point. Find the real zeros of the related equation. x2 0 x5 x20 x  2 The boundary points are 5 and 2 .

2

72.

Sign of  3 x  7  :

Sign of

 x  2 :  x  5

5 2

The solution set is  5,  2 . 74. 7 . This 3

is a boundary point. The related equation has no real zeros.

400

3 x 4 x2 3 x 40 x2 x2 3 x  4 0 x2 x2 5 x  5 0 x2 x 1 0 x2


Section 3.6 The expression is undefined for x  2 . This is a boundary point. Find the real zeros of the related equation. x 1 0 x2 x 1  0

The denominator is nonzero for all real numbers. Therefore, the only boundary point is 3.

x  1 The boundary points are 2 and 1 .

Sign of

Sign of  x  2 :

The solution set is  , 3 .

Sign of  x  1 :

 x  1 :  x  2

Sign of

77.

x2 0 x2  4 Find the real zeros of the related equation. x2 0 x2  4 x20

Sign of x 2  4:

: 

Sign of

x2 x2  4

: 

x3 x2  1

10 2  x2 x2 10 2  0 x2 x2 8 0 x2 The expression is undefined for x  2 . This is a boundary point. Sign of 10:

Sign of  x  2 :

: 

10

 x  2

2

The solution set is  2,   . 78.

2

The solution set is  , 2 . 76.

Sign of x  1:

Sign of

x2 2 is a boundary point. The denominator is nonzero for all real numbers. Therefore, the only boundary point is 2. 

3

The solution set is  2, 1 .

Sign of x  2:

2

2 1

75.

Sign of x  3:

x3 0 x2  1 Find the real zeros of the related equation. x3 0 x2  1 x3 0

4 1  x3 x3 4 1  0 x3 x3 3 0 x3 The expression is undefined for x  3 . This is a boundary point. Sign of 3:

Sign of  x  3 :

: 

Sign of

3

 x  3

3

The solution set is  3,   .

x3 3 is a boundary point.

401


Chapter 3 Polynomial and Rational Functions

79.

4 2  x3 x 4 2  0 x3 x 2  x  3 4x  0 x  x  3 x  x  3

The boundary points are 0,

Sign of 6  x  1 :

Sign of x:

: 

6  x  1

x  x  3

Sign of  3 x  2 :

: 

2  3 x  2 x  x  1

0

3

81.

3 6  4  x 1 x 3 6  x  4 x 1 3 6  0 x  4 x 1 3  x  1 6  x  4  0  x  4 x  1  x  4 x  1 3x  21 0  x  4 x  1

3 1 0

80.

1

2

 2 The solution set is  0,   1,   .  3

x 1  0 x  1 The boundary points are 3 , 1 , and 0.

Sign of

Sign of

The expression is undefined for x  0 and x  3 . These are boundary points. Find the real zeros of the related equation. 6  x  1 0 x  x  3

Sign of  x  3 :

Sign of x: Sign of  x  1 :

6  x  1 0 x  x  3

2 , and 1. 3

The solution set is  3, 1   0,   .

3  x  7  0  x  4 x  1

2 4  x 1 x 2 4  0 x 1 x 4  x  1 2x  0 x  x  1 x  x  1

3 x  7 0  x  4 x  1 The expression is undefined for x  1 and x  4 . These are boundary points. Find the real zeros of the related equation. 3 x  7 0  x  4 x  1

2  3 x  2 0 x  x  1

3 x  7  0

The expression is undefined for x  0 and x  1 . These are boundary points. Find the real zeros of the related equation. 2  3 x  2 0 x  x  1

x7 The boundary points are 1, 4, and 7. Sign of  x  1 :     Sign of  x  4 : Sign of  x  7  :

3x  2  0 x

Sign of

2 3

3  x  7 :      x  4  x  1 1

4

7

The solution set is  ,1   4, 7  .

402


Section 3.6

82.

5 3  2 x 3 x 5 3  x2 x3 5 3  0 x2 x3 5  x  3 3  x  2  0  x  2 x  3  x  2 x  3

x  2 or x  

The boundary points are  Sign of  2 x  1 : 2

Sign of  x  2 :

Sign of  x  4 : 4

Sign of

Sign of  x  3 :

Sign of  2 x  9 : Sign of

2x  9

 x  2 x  3

4

84.

9 . 2

: 

 x  3 4 x  1 4  0  x  2 2  x  3 4 x  14  0

9

x  3 or x 

2

83.

2

1

4

2

The expression is undefined for x  2 . This is a boundary point. Find the real zeros of the related equation.

3

 3  x  4 x  1 4  0  x  2 2  x  3 4 x  1 4  0  x  2 2

2

The solution set is  2, 4   4,   .

9 2

Sign of  x  2 :

2x  9  0

The boundary points are 2, 3, and

 x  2 2 x  1 :  x  4

1 , 2, and 4. 2

2

2x  9 0  x  2 x  3 The expression is undefined for x  2 and x  3 . These are boundary points. Find the real zeros of the related equation. 2x  9 0  x  2 x  3 x

1 2

1 4

9  The solution set is  2, 3   ,  . 2 

The boundary points are 2 , 3, and

1 . 4

Sign of  x  2 :

 2  x  2 x  12  0  x  4 4  x  2 2 x  12  0  x  4 4

Sign of  4 x  1 :

2

4

Sign of  x  3 :

 x  3 4 x  1 :  x  2 4

Sign of

2

2

The expression is undefined for x  4 . This is a boundary point. Find the real zeros of the related equation.

1 4

1 The solution set is  3,      . 4

 x  2 2 x  12  0  x  4 4  x  2 2 x  1 2  0

1  32 t 2   216 t   0 2 s  t   16t 2  216t

85. a. s  t   

403

3


Chapter 3 Polynomial and Rational Functions

b. t 

b   216 216    6.75 2a 2  16 32

 1 3 The solution set is  ,  .  4 4 The player will be more than 3 ft in the air between 0.25 sec and 0.75 sec after leaving the ground.

The shell will explode 6.75 sec after launch. c.

16t 2  216t  200 16t 2  216t  200  0 2t 2  27t  25  0 Find the real zeros of the related equation. 2t 2  27t  25  0  t  1 2t  25  0

87. d  v   0.06v 2  2v

0.06v 2  2v  250 0.06v 2  2v  250  0 6v 2  200v  25,000  0 3v 2  100v  12,500  0 Find the real zeros of the related equation. 3v 2  100v  12,500  0  3v  250 v  50  0 250 v or v  50 3

25 t  1 or t  2 The boundary points are 1 and

25 . 2

Sign of  t  1 :

Sign of  t  1 2t  25 : 

Sign of  2t  25 :

1

Sign of  3v  250 :

 25  The solution set is 1,  .  2 The spectators can see the shell between 1 sec and 6.75 sec after launch.

Sign of  3v  250 v  50 : 

3

1500t 2  60,000t  450,000  0 t 2  40t  300  0 Find the real zeros of the related equation. t 2  40t  300  0

 t  10 t  30  0 t  10 or t  30 Sign of  t  10 :

Sign of  t  30 :

1 3 and . 4 4 

Sign of  4t  1 4t  3 : 

250 50

1500t 2  60,000t  10,000  460,000

1 3 or t  4 4

Sign of  4t  3 :

88. P  t   1500t 2  60,000t  10,000

16t 2  16t  3 16t 2  16t  3  0 16t 2  16t  3  0 Find the real zeros of the related equation. 16t 2  16t  3  0  4t  1 4t  3  0

Sign of  4t  1 :

 250  The solution set is   , 50 .  3  The car will stop within 250 ft if the car is traveling less than 50 mph.

1  32 t 2  16 t   0 2 s  t   16t 2  16t

The boundary points are

86. a. s  t   

t

Sign of  v  50 :

25 2

b.

1

3

4

4

Sign of  t  10 t  30 : 

10 30

The solution set is 10, 30 . The population will be greater than 460,000 organisms between 10 hr and 30 hr after the culture is started.

404


Section 3.6 89. a. The degree of the numerator is less than the degree of the denominator. The horizontal asymptote is y  0 and means that the temperature will approach 0C as time increases without bound. b.

91. Let w represent the width. Then 1.2w represents the length. 72  w 1.2 w  96

72  1.2 w2  96 60  w2  80

320 5 x  3x  10 320 5 0 2 x  3 x  10 Find the real zeros of the related equation. 320 5 0 2 x  3x  10 320 5 2 x  3 x  10 5 x 2  15 x  50  320

60  w  80

2

2 15  w  4 5 The width should be between 2 15 ft and 4 5 ft. This is between approximately 7.7 ft and 8.9 ft. 92. Let w represent the width. Then 1.5w represents the length. 480  w 1.5w  720

480  1.5w2  720

5 x 2  15 x  270  0

320  w2  480

x 2  3 x  54  0

320  w  480

 x  9 x  6  0

8 5  w  4 30 The width should be between 8 5 yd and

x  9 or x  6 More than 6 hr is required for the temperature to fall below 5C . 90. a. S 

4 30 yd. This is between approximately 17.9 yd and 21.9 yd.

2d d d  r1 r2

93. 9  x 2  0

x2  9  0 Find the real zeros of the related equation. x2  9  0  x  3 x  3  0 x  3 or x  3 The boundary points are 3 and 3.

2  200  60 200 200  r2 501 400  60 200 4 r2

Sign of  x  3 : Sign of  x  3 :

400r2  60 4r2  200

Sign of  x  3 x  3 :    3 3

400r2  240r2  12,000

 3, 3

160r2  12,000 r2  75 The motorist must travel at least 75 mph on the return trip to average at least 60 mph for the round trip.

94. 1  t 2  0

t2 1  0 Find the real zeros of the related equation. t2 1  0

b. No.

 t  1 t  1  0 t  1 or t  1 The boundary points are 1 and 1.

405


Chapter 3 Polynomial and Rational Functions Sign of  x  1 :

Sign of  x  1 x  1 : 

Sign of  x  1 :

1

 1,1

The boundary points are 6 and Sign of  x  6 :

Sign of  x  6 2 x  3 : 

Sign of  2 x  3 :

1

6

95. a  5  0 Find the real zeros of the related equation. a2  5  0

3

2

2

3  The solution set is  ,  6   ,  . 2 

 a  5  a  5   0

98. 4 x 2  7 x  2  0 Find the real zeros of the related equation. 4x2  7 x  2  0

a   5 or a  5 The boundary points are  5 and

5.

     Sign of  x  5  :    Sign of  x  5  x  5  :   

 x  2 4 x  1  0

Sign of x  5 :

 ,  5    5, 

 5

x  2 or x 

Sign of  x  2 :

Sign of  x  2 4 x  1 : 

 1

1  The solution set is  ,  2   ,  . 4 

99. 2 x 2  9 x  18  0 Find the real zeros of the related equation. 2 x 2  9 x  18  0

7.

     Sign of  x  7  :    Sign of  x  7  x  7  :    Sign of x  7 :

 7

1 . 4

4

a   7 or a  7

2

 u  7  u  7   0

Sign of  4 x  1 :

96. u 2  7  0 Find the real zeros of the related equation. u2  7  0

,  7    7, 

1 4

The boundary points are 2 and

5

The boundary points are  7 and

3 . 2

 x  6 2 x  3  0 x  6 or x 

7

3 2

The boundary points are 6 and Sign of  x  6 :

Sign of  x  6 2 x  3 : 

Sign of  2 x  3 :

97. 2 x  9 x  18  0 Find the real zeros of the related equation. 2 x 2  9 x  18  0 2

6

 x  6 2 x  3  0

3 . 2

3 2

3  The solution set is  ,  6   ,  . 2 

3 x  6 or x  2

406


Section 3.6 100. 4 x 2  7 x  2  0 Find the real zeros of the related equation. 4x2  7 x  2  0

 x  2 4 x  1  0 x  2 or x 

1 4

Sign of  x  2 4 x  1 : 

Sign of  4 x  1 :

2

Sign of  x  2 : 

:

2x

 

x 1

:

1 0

2

3

Sign of  b  x  :

1

Sign of  x  c  :

4

Sign of

3

 x  a  2  b  x  x  c 3 :

a

b

c

b.  b, c  c.  , a    a, b    c,   104. a. g  x  

 a  x  x  b2  c  x 5

Sign of  a  x  :

Sign of  x  b  :

2

Sign of  c  x  : 5

 a  x  x  b : c  x 2

Sign of

    2 0

5

a

b

c

b.  , a    c,  

The solution set is  ,  2   0,   . 102.

Sign of  x  a  :

x0 The boundary points are 2 and 0.

x2

2

3x 0 x2 The expression is undefined for x  2 . This is a boundary point. Find the real zeros of the related equation. 3x 0 x2 3x  0

Sign of

Sign of  2 x  :

103. a. f  x    x  a   b  x  x  c 

1  The solution set is  ,  2   ,  . 4 

3x

The solution set is  , 1   0,   .

Sign of  x  2 :

Sign of  3 x  :

Sign of

1 The boundary points are 2 and . 4

101.

Sign of  x  1 : 

c.  a, b    b, c 

2x 0 x 1 The expression is undefined for x  1 . This is a boundary point. Find the real zeros of the related equation. 2x 0 x 1 2x  0 x0 The boundary points are 1 and 0.

105. The solution set to the inequality f  x   0 corresponds to the values of x for which the graph of y  f  x  is below the x-axis. 106. The solution set to the inequality f  x   0 corresponds to the values of x for which the graph of y  f  x  is on or above the x-axis.

407


Chapter 3 Polynomial and Rational Functions f  2  3

107. Both the numerator and denominator of the rational expression are positive for all real numbers x. Therefore, the expression cannot be negative for any real number.

f  x  0

111.

x3 Find the real zeros of the related equation. 2x  6  2  0

f  x  0

f  x  0

32

f  x  0

The solution set is  , 32 .

112.

The solution set is  3, 5 . 110.

4 x 60 The radical is real when 4 x0  x  4 x4 Find the real zeros of the related equation. 4 x 6 0 4 x  6 4  x  36  x  32 x  32 The boundary point is 32 . f  45  1 f  21  1

2x  6  2 2x  6  4 2 x  10 x5 The boundary point is 5.  7  15  f    1 f    1  2  2

5

5  The solution set is  , 7 . 3 

2x  6  2  0 The radical is real when 2x  6  0 2x  6

f  x  0

f  x  0 7

108. The rational expression is not defined for x  1 . Therefore, x  1 is not included in the solution set. At x  3 , the expression equals zero, indicating that 3 is in the solution set. The solution set is (1, 3]. 109.

f 10  1

3x  5  4  0 The radical is real when 3x  5  0 3x  5 5 x 3 Find the real zeros of the related equation. 3x  5  4  0

5 x 7 0 The radical is real when 5 x  0  x  5 x5 Find the real zeros of the related equation. 5 x 7  0 5 x  7 5  x  49  x  44 x  44 The boundary point is 44 . f  59  1 f  31  1

3x  5  4 3x  5  16 3x  21 x7 The boundary point is 7.

f  x  0

44

f  x  0

The solution set is  ,  44 .

408


Section 3.6

113.

1

0

1

0 x3 5 The radical is real when x3 0 x3 The denominator is zero when x3 5 0

114.

x2 4 The radical is real when x20 x2 The denominator is zero when x2 40 x2 4 x  2  16 x  18 The related equation has no zeros. The boundary point is 18. f 11  1 f  27   1 f  x  0 f  x  0  18

x3  5 x  3  25 x  28 The related equation has no zeros. The boundary point is 28. f 19   1 f  39   1 f  x  0 f  x  0  28

The solution set is  2,18 .

The solution set is  3, 28 .

115. 3  x 2  6 x  5  5 Rewrite the left inequality f  x  .

Find the real zeros of the related equation.

 x  2 x  4  0

3  x 2  6 x  5

x  2 or x  4

0  x2  6 x  8 x2  6 x  8  0

 x  2 x  4  0 Rewrite the right inequality g  x  .

Find the real zeros of the related equation.

x  6x  5  5

x  x  6  0

x  6x  0

x  0 or x  6

2

2

x  x  6  0 The boundary points are 0, 2, 4, and 6. f  1  15

f  x  0 g  1  7 g  x  0

f 1  3

f  3  1

f  5  3

f 1  15

g  x  0

g  x  0

g  x  0

g  x  0

f  x  0 f  x  0 f  x  0 f  x  0 g 1  5 g  3  9 g  5  5 g 1  7

0 2 The solution set is  0, 2   4, 6 .

4

6

409


Chapter 3 Polynomial and Rational Functions 116. 8  x 2  4 x  3  15 Rewrite the left inequality f  x  .

Find the real zeros of the related equation.

8  x2  4 x  3

x2  4 x  5  0

0  x2  4 x  5

 x  5 x  1  0

x  4x  5  0

x  5 or x  1

Rewrite the right inequality g  x  .

Find the real zeros of the related equation.

2

x 2  4 x  3  15

x 2  4 x  12  0

x 2  4 x  12  0

 x  6 x  2  0 x  6 or x  2

The boundary points are 6 , 5 , 1, and 2.

f  7   16 f  5.5  3.25 f  0  5 f 1.5  3.25 f  3  16 f  x  0 f  x  0 f  x  0 f  x  0 f  x  0 g  7   9 g  5.5  3.75 g  0  12 g 1.5  3.75 g  3  9 g  x  0 g  x  0 g  x  0 g  x  0 g  x  0  6 5 1 2 The solution set is  6, 5  1, 2 .

117.

x2  4  5

118.

x 2  1  17

x2  4  5  0

x 2  1  17  0

Find the real zeros of the related equation. x2  4  5  0

Find the real zeros of the related equation. x 2  1  17  0

x2  4  5 x2  4  5

x 2  1  17 or

x 2  4  5

x 2  1  17

x2  9 x 2  1 x  3 The boundary points are 3 and 3. f  4  7 f  0  1 f  4  7 f  x  0 f  x  0 f  x  0  3 3 The solution set is  3, 3 .

or

x 2  1  17

x 2  16 x 2  18 x  4 The boundary points are 4 and 4. f  5  9 f  0  16 f  5  9 f  x  0 f  x  0 f  x  0  4 4 The solution set is  4, 4 .

410


Section 3.6 x 2  18  2

119.

x 2  18  2  0 Find the real zeros of the related equation. x 2  18  2  0

x 2  18  2

x 2  18  2

x 2  20

or

x 2  18  2 x 2  16

x   20

x  4

x  2 5 The boundary points are 2 5 , 4 , 4, and 2 5 . f  5  5 f  x  0

f  4.1  0.81

f  0  16

f  x  0

2 5

f  x  0

4

f  4.1  0.81 f  x  0

4

f  5  5

f  x  0  2 5

The solution set is ,  2 5   4, 4  2 5,  . x2  6  3

120.

x2  6  3  0 Find the real zeros of the related equation. x2  6  3  0

x2  6  3

x2  6  3

x2  9

x2  3

x  3

x 3

The boundary points are 3 ,  3 ,

3 , and 3.

f  4  7 f  x  0

f  2  1 f  x  0

f  2  1 f  x  0

3

f  0  3 f  x  0

 3

3

or

x 2  6  3

f  4  7 f  x  0  3

The solution set is  , 3   3, 3   3,   . c. The real zeros are approximately 7.6 , 1.5 , and 1.6.

121. a. 0.552 x 3  4.13x 2  1.84 x  3.5  6.7

0.552 x  4.13 x  1.84 x  10.2  0 3

2

d.  ,  7.6   1.5,1.6

b.

122. a. 0.24 x 4  1.8 x 3  3.3x 2  2.84 x  1.8  4.5

0.24 x 4  1.8 x 3  3.3x 2  2.84 x  6.3  0

411


Chapter 3 Polynomial and Rational Functions c. The radius should be no more than 1.9 in. to keep the amount of aluminum to at most 90 in.2.

b.

124. a.

c. The real zeros are approximately 5.6 and 0.9. d.  , 5.6   0.9,   b. 123. a.

b.

c. It is safe to give a second dose 10.8 hr after the first dose.

Problem Recognition Exercises: Solving Equations and Inequalities 1 1   x5 2 2 4 9 1  x7 2 4 18  x  28

1. 

2 x2  6 x  5

2.

2 x2  6 x  5  0

x

28  x  18  28, 18

  6  

 6   4  2  5  2  2 2

6  76 4 6  2 19 3  19   4 2  3  19     2  

412


Problem Recognition 3.

50 x 3  25 x 2  2 x  1  0

6. 5  y

25 x 2  2 x  1   2 x  1  0

y  5

x

1 2

3 y  3

 5, 1

25 x 2  1

or

3 y  4  7

y  1

 2 x  1  25 x 2  1  0

2x  1

and

1 25 1 x 5

7. 5t  4  2  7

x2 

5t  4  5 5t  4  5

 1 1  ,   5 2

or

5t  4  5

5t  9

5t  1

9 5

t

t

1 5

 1 9  ,   5 5

5 x  x  3 0 4. 2 x 2

x  x  3 0 x2 The expression is undefined for x  2 . This is a boundary point. Find the real zeros of the related equation. 2

8. 3  4 x  5  x  2  3  2 x  2 4   x  1

3  4  x  5  x  6  4 x  2  4  x  1 3  4  x  5  3 x  6  2   x  5

x  x  3 0 x2

3  4  x  15 x  30  2 x  10

x  x  3  0

3  64 x  120  2 x  10 66 x  133 133 x 66

2

3  4 16 x  30  2 x  10

2

x  0 or x  3 The boundary points are 2 , 0, and 3. Sign of  x  2 : Sign of  x  :

Sign of  x  3 : 2

Sign of

x  x  3

: 

133    66 

2

x2

2

0

9.

10 x  2 x  14  29 x 2  100 20 x 2  140 x  29 x 2  100

3

The solution set is  ,  2   0,   .

49 x 2  140 x  100  0

 7 x  102  0

5. 4 m  4  5  2 4

 77

7 x  10  0 10 x 7

m4 3 m  4  34 m  4  81 m  77

10    7

413


Chapter 3 Polynomial and Rational Functions 5 3y 2 y 2  14 y   2 y  4 y  2 y  2y  8

10.

5 3y 2 y 2  14 y   y  4 y  2  y  4 y  2 5  y  2 3 y  y  4 2 y 2  14 y    y  4 y  2  y  4 y  2  y  4 y  2 5 y  10  3 y 2  12 y  2 y 2  14 y  y 2  3 y  10  0 y 2  3 y  10  0

 y  5 y  2  0 y  5 or y  2

 5 ; The value 2 does not check. x  x  14  40

11.

13. x  0.15  x  0.05

x  0.15  x  0.05 or x  0.15    x  0.05

x  14 x  40  0 Find the real zeros of the related equation. x 2  14 x  40  0 2

0.15  0.05

x  0.15   x  0.05 2 x  0.1

 x  4 x  10  0 Sign of  x  4 :

Sign of  x  4 x  10 : 

Sign of  x  10 :

4

 4,10 12.

14.

1 0 x  14 x  40 1 0  x  4 x  10 The expression is undefined for x  4 and x  10 . These are boundary points. The related equation has no real zeros. 

Sign of  x  10 :

1

: 

 4,10

 x  4 x  10

t 1

t  1  36

10

t 1  0

and

t 1  6 t  37

15. n1 2  7  10

2

Sign of

t 1  5  1

1, 37

Sign of  x  4 :

x  0.05

 0.05

x  4 or x  10 The boundary points are 4 and 10.

n1 2  3

9

n9

16. 4 x  3  x  x  2  x  5  0 2

3

x  x  3 x  2  x  5  0 Find the real zeros of the related equation. 2

3

x  x  3 x  2  x  5  0 x  0 , x  3 , x  2 , or x  5 The boundary points are 2 , 0, 3, and 5. 2

4 10

414

3


Problem Recognition Sign of  x  2 : 2

Sign of  x  3:

Sign of  x  5 :

Sign of  x :

3

Sign of x  x  3 x  2  x  5 : 2

3

2

 2   0, 3   5,  

0

3

15u 2  7u  2  0

 5u  1 3u  2  0 1 2 or u  5 3 Back substitute x 1 for u. 1 2 or x 1   x 1  5 3 u

5

x 1   5

17. 2 x  5  x  3  4  x  2  3x

x  5

2 x  5 x  15  4 x  8  3x

3 2

15  8 No solution



21. 8 x  3  10  7

8 x  3  3 Since the absolute value of a number cannot be negative, this inequality has no solution.

7 x  29  3  x 7 x  29  x  3



7 x  29  x 2  6 x  9  x 2  x  20  0

22. 2  x  1

x 2  x  20  0

x  1  16

17

19. x 2  9  5 x 2  9  14  0

Let u  x 2  9 .

23.

u 2  5u  14  0

u  2 or u  7 Back substitute x 2  9 for u. x  9  2

or

x2  9  7

x2  7

x 2  16

x 7

x  4

 4,  7  1

x  17

x3  3x 2  6 x  8 x3  3x 2  6 x  8  0 Find the real zeros of the related equation. x3  3x 2  6 x  8  0 Factors of  8 1,  2,  4,  8  Factors of 1 1  1,  2,  4,  8 1 1 3 6 8

 u  2 u  7  0

2

 16

x  1  84 3

x  4 or x  5 5 ; The value 4 does not check. 2

34

 x  13 4  8

 x  4 x  5  0

x

1

3   5,  2 

7 x  15  7 x  8

18.

 3 x 1     2

1

1 2 8 1 2 8

0

 x  1  x 2  2 x  8  0  x  1 x  2 x  4  0

2

20. 2  7 x  15 x  0

15 x 2  7 x 1  2  0 Let u  x 1 .

x  1 , x  2 , or x  4

415


Chapter 3 Polynomial and Rational Functions The boundary points are 2 , 1, and 4. Sign of  x  2 :

Sign of  x  1 x  2 x  4 : 

Sign of  x  4 :

2

 ,  2  1, 4 24.

2

Sign of  x  1 :

1

The expression  5 x  7   0 for all real numbers except where  5 x  7 2  0 .Therefore, the solution set is 7 all real numbers except  . 5 7  7    ,      ,  5 5

4

3 x 1 x5 3 x 1  0 x5 3 x x5  1 0 x5 x5 2 x  2 0 x5 x 1 0 x5 The expression is undefined for x  5 . This is a boundary point. Find the real zeros of the related equation. x 1 0 x5 x 1  0

27.

11  3  x 3  x  11 3  x  11 or  x  14 x  14  ,  8  14,   28. 4  x  3  8

Sign of  x  1 :

 x  1 :  x  5

Sign of

29.

5 1

The solution set is  5, 1 . 25. 15  3  x  1  2 x   x  18

15  3x  3  2 x  x  18

26.

or

1 2 5 x   x 1 3 5 6 10 x  12  25 x  30 15 x  42 42 x 15 14 x 5 14    ,  5

30. 2 2 x  1  2  8

3x  18  3x  18

2 2 x  1  10

00

 , 

3  x  11 x  8 x  8

4 x  12  8 4 x  4 x 1  ,  4  1,  

x  1 The boundary points are 5 and 1 . Sign of  x  5 :

2  3 x 9

2x  1  5

25 x  70 x  49 2

25 x 2  70 x  49  0

 3, 2

 5 x  7 2  0 416

5  2 x  1  5 6  2 x  4 3  x  2

7  x  3 x  4 x  4


Section 3.7 Section 3.7 Variation 1.

9 3  k 4 32 9  32    k 4 3 

 24 2.

24  k

y

24  24 1

y

24  12  2

y

24 8  3

y

24 6  4

y

24 4  6

b. y is one-half its original value.

7 7  k 10 5 7  5   k 10  7 

c. y is one-third its original value. d. decreases 11. C  kr

1 k 2

k n

13. C 

1   2

3.

24 x

10. a. y 

0.24 

x

0.24 x  1.68

12. I  kA 14. t 

15. V  khr 2

1.68

e. increases

17. E 

ks

19. c 

kmn t3

n

k r

16. V  klw 18. n 

k 2 E2

x 7

 49 4.

x  49

0.32 

21.

2.56 y

0.32 y  2.56 y 8 y  64

 64 23. 5. directly

6. inversely

7. constant; variation

8. jointly

9. a. y  2 x

y  2 1  2

y  2  2  4

y  2  3  6

y  2  4  8

y  2  5  10

25.

b. y is also doubled. c. y is also tripled. d. increases

e. decreases

417

y  kx

kuv 20. d  3 T 22.

y  kx

20  k  8

42  k 10

20 k 8 5 k 2

42 k 10 21 k 5

k q k 54  18 k  972

k x k 200  50 k  10,000 T

p

24.

y  kwv

26. N  ktp

40  k  40 0.2

15  k  2 2.5

40  k  8

15  k  5

k5

k 3


Chapter 3 Polynomial and Rational Functions 27. a.

y  kx

d.

4  k 10 4 k 10 2 k 5 2 2 y  x   5  2 5 5

30. Let S represent the number of people served. Let w represent the weight of the ham. S  kw

20  k  8

k x k 4 10 k  40 40 40 y  8 x 5

b. y 

28. a.

20 k 8 k  2.5 S  2.5w a. S  2.5w  2.5 10  25 people b. S  2.5w  2.5 15  37 people (rounded down to have more food per person)

y  kx  1 24  k    2

c. S  2.5w  2.5 18  45 people

k  48

d.

y  48 x  48  3  144 b.

A  4.5w 135  4.5w 135 w 4.5 w  30 lb

k x k 24  1 2 k  12 12 12 y  4 x 3 y

S  2.5w 30  2.5w 30 w 2.5 w  12 lb

31. Let C represent the average daily cost to rent a car. Let m represent the number of miles driven. k C m k 0.8  100 k  80

29. Let A represent the amount of the medicine. Let w represent the weight of the child. A  kw

180  k  40

C

80 m

180 k 40 k  4.5 A  4.5w

a. C 

80 80   $0.40 per mile m 200

a. A  4.5w  4.5  50  225 mg

b. C 

80 80   $0.27 per mile m 300

c. C 

80 80   $0.20 per mile m 400

b. A  4.5w  4.5  60  270 mg c. A  4.5w  4.5  70  315 mg

418


Section 3.7

d.

34. Let p represent the amount of pollution entering the atmosphere. Let n represent the number of people. p  kn

80 m 80 0.16  m 0.16m  80 80 m  500 mi 0.16 C

71,000  k 100,000 71,000 k 100,000 k  0.71 d  0.71n  0.71 750,000

32. Let C represent the number of books sold per month. Let p represent the price of a book. k C p k 1500  8 k  12,000

C a. C 

 532,500 tons 35. a. Let d represent the stopping distance of the car. Let s represent the speed of the car. d  ks 2

170  k  50

12,000 p

2

170 k 2500 k  0.068

12,000 12,000   1000 books p 12

d  0.068s 2  0.068  70  333.2 ft 2

12,000 12,000 b. C    800 books p 15 c. C  d.

b.

d  0.068s 2 244.8  0.068s 2

12,000 12,000   2000 books p 6

244.8  s2 0.068 3600  s 2

12,000 p 12,000 1200  p 1200 p  12,000 12,000 p  $10 1200 C

s  60 mph 36. a. Let A represent the area of a picture projected on a wall. Let d represent the distance from the projector to the wall. A  kd 2

36  k 15

33. Let d represent the distance a bicycle travels in 1 min. Let r represent the rpm of the wheels. d  kr 440  k  60 440 k 60 22 k 3 22 22 d r   87   638 ft 3 3

2

36 k 225 k  0.16 A  0.16d 2  0.16  25  100 ft 2 2

419


Chapter 3 Polynomial and Rational Functions A  0.16d 2

b.

b.

144  0.16d 2 144  d2 0.16 900  d 2 d  30 ft 37. Let t represent the number of days to complete the job. Let n represent the number of people working on the job. k t n k 12  8 k  96

39. Let I represent the current. Let V represent the voltage. Let R represent the resistance. kV I R k  90 9 10 90  90k

k 1

96 t n a. t  b.

I

96 96   6.4 days n 15

96 n 96 8 n 8n  96 n  12 people

0.0005  50k k  0.00001

38. Let y represent the yield of the bond. Let p represent the price of the bond. k y p k 0.05  120 k6

a. y 

V 160   32 A 5 R

40. Let R represent the resistance of the wire. Let  represent the length of the wire. Let d represent the diameter of the wire. k R 2 d k  50 0.0125   0.2 2

t

y

6 p 6 0.075  p 0.075 p  6 p  $80 y

R

0.00001 0.00001 40   0.04  d2  0.1 2

41. Let I represent the amount of interest owed. Let P represent the amount of the principal borrowed. Let t represent the amount of time (in years) that the money is borrowed. I  kPt

6 p

480  k  4000 2 480  8000k

6 6   0.06  6% p 100

480 k 8000 k  0.06 I  0.06  6000 4  $1440

420


Section 3.7 45. Let s represent the speed of the canoe. Let  represent the length of the canoe. sk 

42. Let I represent the amount of interest earned. Let P represent the amount of the principal invested. Let t represent the amount of time (in years) that the money is invested. I  kPt

6.2  k 16

750  k  5000 6

6.2

k 16 6.2 k 4 k  1.55

750  30,000k 750 k 30,000 k  0.025

s  1.55   1.55 25  7.75 mph

I  0.025  8000 4  $800

46. Let P represent the period of the pendulum. Let  represent the length of the pendulum. Pk 

43. Let B represent the BMI of an individual. Let w represent the weight of the individual. Let h represent the weight of the individual. kw B 2 h k 150 21.52   70 2

1.8  k 0.81 1.8

k 0.81 1.8 k 0.9 k2

105,448  150k 105,448 k 150 k  703 B

P  2   2 1  2 sec

703 180

 68 2

47. Let C represent the cost to carpet the room. Let  represent the length of the room. Let w represent the width of the room. C  k w

 27.37

3870  k 1015

44. Let S represent the strength of the beam. Let w represent the width of the beam. Let t represent the thickness of the beam. Let  represent the length of the beam. kwt 2 S 

417 

k  6 2

3870 k 150 k  25.8 C  k w  25.8 18 24  $11,145.60

2

48. Let C represent the cost to tile the kitchen. Let  represent the length of the kitchen. Let w represent the width of the kitchen. C  k w

48 20,016  24k 20,016 k 24 k  834 S

1104  k 1012

834 12 4 72

1104 k 120 k  9.2

2

 2224 lb

C  k w  9.2  2014  $2576

421


Chapter 3 Polynomial and Rational Functions 49. The data appears to show direct variation. Use the first row to find the constant of variation. y  kx

k x k 2 4 k 8 y

16  k  5 16 k 5 k  3.2

8 x Check the remaining values in the equation. They check. y

y  3.2 x Check the remaining values in the equation. They check.

53. Make a table of values. x 1 3 y 3 1

50. The data appears to show direct variation. Use the first row to find the constant of variation. y  kx

The data appears to show indirect variation. Use the first point to find the constant of variation. k y x k 3 1 k 3

24  k  5 24 k 5 k  4.8 y  4.8 x Check the remaining values in the equation. They check.

3 x Check the other point in the equation. It checks. y

51. The data appears to show indirect variation. Use the first row to find the constant of variation. k y x k 6 2 k  12

54. Make a table of values. x 12 24 36 48 60 y 1 2 3 4 5

The data appears to show direct variation. Use the first point to find the constant of variation. y  kx

12 x Check the remaining values in the equation. They check. y

1  k 12 1 12 1 y x 12 Check the other points in the equation. They check. k

52. The data appears to show indirect variation. Use the first row to find the constant of variation.

55. formulas a and c 56. formulas b and c

422


Section 3.7 57. The variable P varies directly as the square of v and inversely as t.

a. T 2  1.66  1019 d 3

58. The variable E varies directly as the square of c and inversely as the square root of b.

T  671 Earth days

T  1.66  1019 1.5  9.3  107

d3 

2232 T2 3  1.66  1019 1.66  1019 d  67 million miles

61. I 

S  4 r 2  4  20  1600 m 2 2

I

b. The surface area is 4 times as great. 2 Doubling the radius results in  2 times the surface area of the sphere. 1 the 4 intensity at 10 m. This is because the energy from the light is distributed across an area 4 times as great.

62. y 

y

k

10d 

2

k  1  k   2  100   d 2  100d

k x3 k

3

1 as great. 100

k  k  64  3  3 x  x 3 4

 x   4 y will be 64 times as great.

d. Let I represent the intensity of light from a source. Let d represent the distance of the light from the source. k I 2 d k 200  10 2

63. y 

y

k  20,000

kx 2 w4 k  2 x

 2 w

y will be

20,000 20,000 I   50 lux d2  202 T  kd

k d2

The intensity is

c. The intensity at 20 m should be

60.

T2 1.66  1019

d3

2

400 k 100 k  4

2

3

b. T 2  1.66  10 19 d 3

59. a. Let S represent the surface area of the sphere. Let r represent the radius of the sphere. S  kr 2

400  k 10

64. y 

3

 365 2  k  9.3  107  2 365   1.66  10 19 k 3

y

 9.3  10 

2

 4

2

4

4

1 its original value. 4

kx 5 w2 k  2 x

 2 w

   1  kx  16w  4  w  k 4 x2

5

 2

   8  kx   4w   w 

k 32 x 5 2

5

2

y will be 8 times its original value.

7 3

T 2  1.66  1019 d 3

423


Chapter 3 Polynomial and Rational Functions 65. y  kxw3

66. y  kx 4 w

3  x  x y  k    3w  k   27 w3  9 kxw3  3  3 y will be 9 times its original value.

 

 x4  1  x y  k    4 w  k  kx 4 w 4 w     4 64  256 

4

y will be

1 times its original value. 64

Chapter 3 Review Exercises 1. f  x     x  5  2    x   5   2 2

2

g. The axis of symmetry is the vertical line through the vertex: x  4 .

Vertex:  h, k    5, 2

h. The minimum value is 1 .

2. a. f  x   x  8 x  15

i. The domain is  ,   .

2

  15

f  x  x  8x 2

The range is  1,   .

2

1   2  8   16  

3. a. f  x   2 x 2  4 x  6

f  x   2 x 2  2 x

f  x   x 2  8 x  16  16  15

6

2

1   2  2   1  

f  x    x  4  1 2

b. Since a  0 , the parabola opens upward.

  f  x   2  x  2 x  1  2  1  6 f  x   2 x 2  2 x  1  1  6

c. The vertex is  h, k    4, 1 .

2

d. f  x   x 2  8 x  15

f  x   2  x  1  8 2

0  x 2  8 x  15

b. Since a  0 , the parabola opens downward.

0   x  3 x  5 x  3 or x5 The x-intercepts are  3, 0 and  5, 0 .

c. The vertex is  h, k   1, 8 . d. f  x   2 x 2  4 x  6

e. f  0   0  8  0  15  15 2

0  2 x 2  4 x  6

The y-intercept is  0,15 .

0  x2  2 x  3 0   x  1 x  3

f.

x  1 or x  3 The x-intercepts are  1, 0 and  3, 0 . e. f  0  2  0  4  0  6  6 2

The y-intercept is  0, 6 .

424


Chapter 3 Review Function A is a quadratic function with a negative leading coefficient. The graph of the parabola opens downward, so the vertex is the maximum point on the function. The xcoordinate of the vertex is the value of x that will maximize the area. b  180 180 x    45 2a 2  2 4

f.

y  180  2 x  180  2  45  180  90  90 The dimensions are 45 yd by 90 yd.

g. The axis of symmetry is the vertical line through the vertex: x  1 .

6. a. V  p   100 p 1  p   100 p  100 p 2

h. The maximum value is 8.

 100 p 2  100 p The value of p at which the variance will be at a maximum is the p-coordinate of the vertex. b  100 100 1 p    2a 2  100 200 2

i. The domain is  ,   .

The range is  , 8 .

4. a. f  x   2 x 2  12 x  19

f  x  2 x2  6 x

  19

b. The maximum variance is the value of V  p  at the vertex.

2

1   2  6   9  

2

 1  1  1 V    100    100    2  2  2

  f  x   2  x  6 x  9  2  9  19 f  x   2 x  6 x  9  9  19 2 2



f  x   2  x  3  1 2

Vertex:  h, k    3,1

100 100   25  50  25 4 2

7 a.

b. Since the vertex of the parabola is above the x-axis and the parabola opens upward, the parabola cannot cross or touch the xaxis. Therefore, there are no x-intercepts.

E  a   0.476a 2  37.0a  44.6

5. We know that 2 x  y  180

b. The age when the yearly expenditure is the greatest is the a-coordinate of the vertex.   37.0 b 37.0 a    39 yr 2a 2  0.476 0.952

y  180  2 x Let A represent the area. A  xy A  x   x 180  2 x   180 x  2 x 2

c. The maximum yearly expenditure is the E  a  value at the vertex.

  x  180 x 2

E  39  0.476  39  37.0  39  44.6 2

 $674

425


Chapter 3 Polynomial and Rational Functions 8. a. f  x   4 x 3  16 x 2  25 x  100

b. 0  x 4  10 x 2  9

The leading term is 4x 3 . The end behavior is up to the left and down to the right.

x  3, x  3, x  1, x  1 The zeros of the function are 3, 3 , 1, and 1 (each with multiplicity 1).

0  4 x 3  16 x 2  25 x  100 0  4 x 2  x  4  25  x  4

c. The x-intercepts are  3, 0 ,  3, 0 ,

1, 0 , and  1, 0 .

0   x  4 2 x  5 2 x  5 x  4, x 

0   x  3 x  3 x  1 x  1

b. 0  4 x 3  16 x 2  25 x  100

0   x  4 4 x 2  25



0  x2  9 x2  1

d. f  0   0  10  0  9  9 4

5 5 ,x 2 2

2

The y-intercept is  0, 9 .

The zeros of the function are 4,

5 , and 2

e. f   x     x   10   x   9 4

2

 x 4  10 x 2  9 f  x  is even.

5  (each with multiplicity 1). 2 f.

5  c. The x-intercepts are  4, 0 ,  , 0 , and 2 

 5    , 0 . 2 d. f  0  4  0  16  0  25  0  100 3

2

 100 The y-intercept is  0, 100 . e. f   x 

10. a. f  x   x 4  3 x 3  3 x 2  11x  6

 4   x   16   x   25   x   100 3

2

The leading term is x 4 . The end behavior is up to the left and up to the right.

 4 x  16 x  25 x  100 f  x  is neither even nor odd. 3

2

b. Factor the polynomial to find the zeros. Possible rational zeros: Factors of  6 1,  2,  3   1,  2,  3 Factors of 1 1 1 1 3 3 11 6

f.

1

1 2

5

6

2 5

6

0

f  x    x  1 x 3  2 x 2  5 x  6

Factor the quotient. Possible rational zeros: Factors of  6  1,  2,  3 Factors of 1

9. a. f  x   x 4  10 x 2  9

The leading term is x 4 . The end behavior is up to the left and up to the right.

426


Chapter 3 Review 1 1

2 5 6 1 1

6

1 6

0

1

b. 0  x 5  8 x 4  13 x 3

f  x    x  1 x  x  6 2

0  x 3 x 2  8 x  13

2

x

f  x    x  1  x  2 x  3 2

  8 

 82  4 113 2 1

x  1, x  2, x  3 The zeros of the function are 2, 3 (each with multiplicity 1) and 1 (with multiplicity 2).

8  12 8  2 3   4 3 2 2 x  0, x  4  3, x  4  3 The zeros of the function are 0 (with multiplicity 3), 4  3 and 4  3 (each with multiplicity 1).

c. The x-intercepts are  2, 0 ,  3, 0 , and

c. The x-intercepts are  0, 0 , 4  3, 0 ,

x

0   x  1  x  2 x  3 2

 1, 0 .

and 4  3, 0 .

d. f  0   0  3  0  3  0  11 0  6 4

3

2

d. f  0   0  8  0  13  0  0 5

 6 The y-intercept is  0, 6 .

4

3

The y-intercept is  0, 0 .

e. f   x     x   8   x   13   x 

e. f   x 

5

   x   3   x   3   x   11  x   6 4

3

4

3

  x 5  8 x 4  13x 3 f  x  is neither even nor odd.

2

 x 4  3x 3  3 x 2  11x  6 f  x  is neither even nor odd.

f.

f.

12. f  x   2 x 3  5 x 2  6 x  2

f  2  2  2  5  2  6  2  2 3

11. a. f  x   x  8 x  13x 5

4

3

2

 16  20  12  2  22

The leading term is x 5 . The end behavior is down to the left and up to the right.

f  1  2  1  5  1  6  1  2 3

2

 2  5  6  2  1

f  0  2  0  5  0  6  0  2  2 3

2

f 1  2 1  5 1  6 1  2 3

2

 2  5  6  2  7

427


Chapter 3 Polynomial and Rational Functions f  2  2  2  5  2  6  2  2 3

x3  5 x  4 18. a. 3x  2 3x 4  2 x 3  15 x 2  22 x  8

2

 16  20  12  2  14

 3x 4  2 x3

a. Since f  2 and f  1 have opposite signs, the intermediate value theorem guarantees that the function has at least one zero on the interval  2,  1 .

0 15 x 2  22 x  15 x 2  10 x

0 x3  5 x  4 b. Dividend: 3x 4  2 x 3  15 x 2  22 x  8 ; Divisor: 3x  2 ; Quotient: x 3  5 x  4 ; Remainder: 0

c. Since f  0 and f 1 have opposite signs, the intermediate value theorem guarantees that the function has at least one zero on the interval  0,1 .

19. 2 2

d. Since f 1 and f  2 have the same sign, the intermediate value theorem does not guarantee that the function has at least one zero on the interval 1, 2 . 14. True

15. False

16. True

12 x  8  12 x  8

b. Since f  1 and f  0 have the same sign, the intermediate value theorem does not guarantee that the function has at least one zero on the interval  1, 0 .

13. False

1 5

1

4 8 16 30

50

2 4 8 15 25

49

2 x 4  4 x 3  8 x 2  15 x  25 

49 x2

0 0

2 20. 3 1 3 1 7 3 18 51 174 1 6 17 58

2 x  3x  9 17. a. x 2  x  3 2 x 4  x 3  0 x 2  4 x  1

176

2

 2 x 4  2 x 3  6 x 2

x 3  6 x 2  17 x  58 

21. 2 3

3x3  6 x 2  4 x  3x3  3x 2  9 x

 9 x 2  13x  1  9 x 2  9 x  27

176 x3

4

1

6 12 28

64

3 6 14 32

65

0

2

By the remainder theorem, f  2  65 .

22 x  28

22.

22 x  28 2 x  3 x  9  2 x  x3 2

5

1

2

4

10 5

5 5  2 5 10  5 1 2 5

b. Dividend: 2 x 4  x 3  4 x  1 ; Divisor: x 2  x  3 ; Quotient: 2 x 2  3 x  9 ; Remainder: 22 x  28

1 2 5

By the remainder theorem, f

428

5

 5  0 .

5 0


Chapter 3 Review 23. a. 2 3 13 2 6 38

52 80 3 19 40 132

40 264 224

26. a. 2 1 4 2

1 6

By the factor theorem, since f  2  0 ,

By the factor theorem, since f  2  0 ,

x  2 is not a factor of f  x  .

b.

2 3

46 12 34

x  2 is not a factor of f  x  .

b. 2  5 2

3 13 2 52 40 2 10 8 40 3 15 12 60 0

4 46

1

25 2

46

1 2  5 2

0

 2 By the remainder theorem, f    0 .  3

By the factor theorem, since

2  2 Since f    0 , is a zero of f  x  .  3 3

of f  x  .

27.

24. a. 5 3

13 2 52 40 15 10 60 40 3 2 12 8 0

2 15 67 26 8 3 10 38 8 15 57 12 0 2  f  x   a  x   15 x 2  57 x  12  3

By the remainder theorem, f  5  0 .

Since f  5  0 , 5 is a zero of f  x  .

2   3  x   5 x 2  19 x  4  3

b.

  3x  2 5 x  1 x  4

13 2 52 40 6i 12  26i 52  20i 40 3 13  6i 10  26i 0 20i

2i 3



28. f  x    x  1 x  3 2 x  3 2

  x  1 x 2  18  x3  x 2  18 x  18

By the remainder theorem, f  2i   0 . Since f  2i   0 , 2i is a

zero of f  x  .

1  1  29. f  x   a  x    x    x  3  4  2

25. a. 4 1

4 9 36 4 0 36 1 0 9 0

1  1   8  x    x    x  3  4  2 1  1   4  x    2  x    x  3  4  2

By the factor theorem, since f  4  0 ,

  4 x  1 2 x  1 x  3

x  4 is a factor of f  x  .

b. 3i

f 2  5 2  0 , x  2  5 2 is a factor

  4 x  1 2 x 2  5 x  3

1

4 9 36 3i 9  12i 36 1 4  3i 12i 0

 8 x  20 x  12 x  2 x 2  5 x  3 3

2

 8 x 3  22 x 2  7 x  3

By the factor theorem, since f  3i   0 ,

x  3i is a factor of f  x  .

429


Chapter 3 Polynomial and Rational Functions 30. a. f  x  is a fifth-degree polynomial. It has 5 zeros. b.

Factor the quotient. 2 1 2 2 4 2 0 4 1 0 2 0

Factors of 40 Factors of 2 1,  2,  4,  5,  8,  10,  20,  40  1,  2  1,  2,  4,  5,  8,  10,  20,  40, 1 5  . 2 2

The rational zero is 2 (with multiplicity 2). d. Find the remaining two zeros. x2  2  0

x2  2 x 2 The zeros are 2 (with multiplicity 2),  2.

c. 1 2 7 2

9 18 4 40 9 18 36 40 2 9 18 36 40 0

32. Since 2  7i is a zero, then 2  7i is also a zero. The total number of zeros is 6, so the minimum degree of f  x  is 6.

Factor the quotient. 2 2 9 18 36 40 4 10 16 40 2 5 8 20 0

33. a. 3  i

Factor the quotient. 5 2 5 8 20 2 5 0 20 2 0 8 0 The rational zeros are

Since 3  i is a zero, 3  i is also a zero. 3  i 1 3  i 5 15  5i 3 i 0 15  5i 1 0 5 0

5 , 2, 1 . 2

f  x    x   3  i    x   3  i   x 2  5

d. Find the remaining two zeros. 2 x2  8  0

Find the remaining two zeros. x2  5  0

2 x 2  8 x 2  4 x  2i

x2  5 x 5 The zeros are 3  i ,  5 .

5 The zeros are , 2, 1 , 2i, 2i . 2

b. f  x 

31. a. f  x  is a fourth-degree polynomial. It has 4 zeros. b.

6 5 30 50 3  i 10 15  5i 50 1 3  i 5 15  5i 0 1



x  3  i x  3  i x  5 x  5

Factors of  8 1,  2,  4,  8  Factors of 1 1  1,  2,  4,  8

c. The solution set is 3  i,  5 .

c. 2 1

4 2 8 8 2 4 4 8 1 2 2 4 0

430


Chapter 3 Review 34. f  x   x 2  x   2  3i    x   2  3i  

38. a. 2 1 3 0 2 2 2 4

f  x   x 2  x   2  3i    x   2  3i  

 x 2  x  2   3i  2

1 1 2 2

2

The remainder and 3 of the coefficients of the quotient are negative. Therefore, 2 is not an upper bound for the real zeros of f  x .

   x  x  4 x  13  x2 x2  4 x  4  9 2

2

 x 4  4 x3  13x 2

2 b. 2 1 3 0 2 10 20

5  35. f  x   a  x  2i  x  2i   x    3

1 5 10 18

5   a x2  4  x    3

39. a. 5 1 4 2 5 5 1 1 7

5 20    3  x3  x 2  4 x    3 3  3 x 3  5 x 2  12 x  20

1 35 36

The remainder and all coefficients of the quotient are nonnegative. Therefore, 5 is an upper bound for the real zeros of f  x .

36. g  x   3x  4 x  2 x  5 x  4 6

3 36 33

The signs of the quotient alternate. Therefore, 2 is a lower bound for the real zeros of f  x  .

5 20    a  x 3  x 2  4 x   Let a  3.  3 3

7

3 4 7

2

4 sign changes in g  x  . The number of possible positive real zeros is either 4, 2, or 0. 7 6 2 g   x   3   x   4   x   2   x 

b. 2 1 4

2 2 12 1 6 14

5   x   4 g   x   3x7  4 x6  2 x 2  5 x  4

1 28 27

The signs of the quotient alternate. Therefore, 2 is a lower bound for the real zeros of f  x  .

1 sign change in g   x  . The number of possible negative real zeros is 1. 1 2 37. n  x   x 6  x 4  x3  4 x 2  3 3 7 0 sign changes in n  x  . The number of possible positive real zeros is 0. 1 2 6 4 3 2 n   x    x    x    x  4   x  3 3 7 1 2 n   x   x 6  x 4  x3  4 x 2  3 3 7 2 sign changes in n   x  . The number of possible negative real zeros is either 2 or 0.

40. a. 3

b. 

c. 

d. 3

e.  ,  2   2,   f. Never decreasing g.  ,  2   2,   h.  , 3   3,   i. x  2 41.

2 x 2  x  15  0

 2 x  5 x  3  0 5 x  , x  3 2

431

j. y  3


Chapter 3 Polynomial and Rational Functions 2x  1 x  0x  3 2x  x  6x  7

42. x 2  3 is never zero. There are no vertical asymptotes.

2

3

 2 x3  0 x 2  6 x

43. a. The degree of the numerator is 0. The degree of the denominator is 2. Since n  m , the line y  0 is a horizontal asymptote of r.

 x  0x  7   x2  0x  3 2

4

3 b. 2 0 x  2x  1 3  0 No solution The graph does not cross y  0 .

The quotient is 2 x  1 . The slant asymptote is y  2 x  1 . 47. The expression

44. a. The degree of the numerator is 2. The degree of the denominator is 2. 2 Since n  m , the line y  , or 1 equivalently y  2 , is a horizontal asymptote of q.

4 x 2  5 is in lowest 3x 2  14 x  5

terms. 3 x 2  14 x  5  0

 3x  1 x  5  0 1 x ,x5 3

2 x 2  3x  4  2 b. x2  1 2 x 2  3 x  4  2 x 2  2

n has vertical asymptotes at x  

1 and 3

x5. The degree of the numerator is 2. The degree of the denominator is 2. 4 or Since n  m , the line y  3 4 equivalently y   is a horizontal 3 asymptote of n.

3 x  4  2 3x  6 x2 The graph crosses y  2 at  2,  2 . 45. a. The degree of the numerator is 3. The degree of the denominator is 1. Since n  m , k has no horizontal asymptotes.

1 with a x shift to the right 4 units and a shift upward 2 units.

48. The graph of f is the graph of y 

b. Not applicable 46. The expression

2

2 x3  x 2  6 x  7 is in x2  3

lowest terms. x2  3  0 x2  3 x 3 The denominator is 0 at x   3 . m has vertical asymptotes at x  3 and x   3 . The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, m has no horizontal asymptote, but does have a slant asymptote.

432


Chapter 3 Review 2 0  49. k  0  0  02   0  12 The y-intercept is  0, 0 . The x-intercept is  0, 0 .

Interval

 0, 4

k is in lowest terms, and x 2  x  12   x  3 x  4 is 0 for x  3 and x  4 , which are the vertical asymptotes. The degree of the numerator is 2. The degree of the denominator is 2. 1 Since n  m , the line y  , or equivalently 1 y  1 , is a horizontal asymptote of k.

 4, 

Test Point

Comments

3   3,   2

k(x) is negative. As x approaches the vertical asymptote x  4 from the left, k  x    .

 6, 2

k(x) is positive. As x approaches the vertical asymptote x  4 from the right, k  x   . k(x) is greater than 1. k(x) must approach the horizontal asymptote y  1 from above as x   .

x2 x 2  x  12 x 2  x  12  x 2 1

x  12 k crosses its horizontal asymptote at  12,1 . x2   x2    x 2    x   12 x 2  x  12 k   x  k  x , k   x  k  x

k   x 

k is neither even nor odd. Interval

 , 12

 12,  3

 3, 0

Test Point Comments k(x) is less than 1. k(x) must approach the 98    14,  horizontal 99 asymptote y  1 from below as x   . k(x) is positive. As x approaches the vertical  4, 2 asymptote x  3 from the left, k  x   .

2   2,   3

2 0  6  0  9  undefined 50. m  0   0

There is no y-intercept. x2  6 x  9  0

 x  3 x  3  0 x  3 The x-intercept is  3, 0 . m is in lowest terms, and the denominator is 0 when x  0 , which is the vertical asymptote. The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, m has no horizontal asymptote, but does have a slant asymptote. x2  6 x  9 x2 6 x 9 9 m  x      x6 x x x x x The quotient is x  6 .

k(x) is negative. As x approaches the vertical asymptote x  3 from the right, k  x    .

433


Chapter 3 Polynomial and Rational Functions The slant asymptote is y  x  6 .

  x  6 q   x  q  x

x  6x  9 x 2 2 x  6x  x  6x  9 x6

12

q   x 

2

2

12 x 6 2

q is even.

0  9 No solution m does not cross its slant asymptote.

Test Point

Interval

  x  6   x  9  x2  6 x  9 m   x  x   x m   x  m  x , m   x  m  x 2

 , 3

Test Point 3   6,   2

Test Point 1   4,   4

 3, 0

1   2,   2

 1,  4

 0, 

1,16

 3, 12

 , 0

 0, 

12

12 51. q  0   2 2  0  6 6

The y-intercept is  0, 2 . q is never 0. It has no x-intercepts nor vertical asymptotes. The degree of the numerator is 0. The degree of the denominator is 2. Since n  m , the line y  0 is a horizontal asymptote of q. 12 0 2 x 6 0  12 No solution q does not cross its horizontal asymptote.

Comments

q(x) is positive. q(x) must approach the 4   3,  horizontal asymptote 5 y  0 from above as x   . q(x) is positive. q(x) must approach the  6  2,  horizontal asymptote 5 y  0 from above as x.

m is neither even nor odd. Select test points from each interval. Interval

52. a. P 1 

1  90  78% 0.16 1  1

P  4 

4  90  57% 0.16  4  1

P  6 

6  90  49% 0.16  6  1

1  6.25 0.16 P  t  will approach 6.25%.

b. Horizontal asymptote:

53. a.  ,  4 c.  4, 1  1,   54. a. 1, 2 c.  ,1   2,  

434

b.  ,  4  1 d.  4,   b. 1, 2 d.  ,1   2,  


Chapter 3 Review x 2  7 x  10  0

55.

 x  5 x  2  0 x  5 or x  2 The boundary points are 5 and 2 .

t  3t  18  0 Find the real zeros of the related equation. t 2  3t  18  0

Sign of  x  5 :

2

 t  3 t  6  0

Sign of  x  5 x  2 : 

t  3 or t  6 The boundary points are 3 and 6.

Sign of  x  2 :

Sign of  t  3 :

5 2

 6

Find the real zeros of the related equation. w3  w2  9w  9  0

Sign of  x  5 : 

w2  w  1  9  w  1  0

 w  9  w  1  0 2

 w  3 w  3 w  1  0

w  3 , w  3 , or w  1 The boundary points are 3 , 1 , and 3. Sign of  w  3 :

Sign of  w  3 w  3 w  1 : 

Sign of  w  1 :

Sign of  w  3 :

3 1

The solution set is  3, 1   3,   .

1 5

c.

 w  3 w  3 w  1  0

x 1 0 x5 x 1  0 x  1 1 is a boundary point. The expression is undefined for x  5 . This is also a boundary point.

x 1 0 a. x5  1, 5

Sign of  t  3 t  6 : 

2

e. x  7 x  10  0  , 5   2, 

 w  9  w  1  0

2

:

w2  w  1  9  w  1  0

d. x 2  7 x  10  0  ,  5   2, 

x5

58. w3  w2  9w  9  0 w3  w2  9w  9  0

c. x 2  7 x  10  0  5,  2

Sign of

The solution set is  , 3   6,  

b. x  7 x  10  0  5,  2

x 1

3

2

Sign of  x  1 :

Sign of  t  6 :

a. x 2  7 x  10  0  5,  2

56.

t  t  3  18

57.

59. x 2  2 x  4  3

x 1 b 0 x5  1, 5

x2  2x  1  0

 x  1 2  0 The square of any real number is

x 1 x 1 0 0 d. x5 x5  , 1   5,    , 1   5, 

nonnegative. Therefore,  x  1 is nonnegative, and always greater than 0. However, the equality is included. The solution set is 1 . 2

435

3


Chapter 3 Polynomial and Rational Functions 62.  4 x  5  0

60. 6 x 4  3 x  4  x  2  0 2

4

3

The expression  4 x  5  0 for all real

6 x 4  3 x  4  x  2  0 Find the real zeros of the related equation. 2 3 6 x 4  3 x  4  x  2  0 2

4

3

numbers except where  4 x  5  0 . Therefore, the solution set is all real numbers 5 except . 4 5  5    ,    ,  4 4 4

x 4  3 x  4  x  2  0 4 x  0 , x  , or x  2 3 2

3

The boundary points are 2 , 0, and

4 . 3

Sign of  x  2 :

Sign of 6 x 4 :

Sign of 6 x 4 3 x  4  x  2 : 

3

 

Sign of 3 x  4 : 2

2

3

2

0

63.

4 3

The solution set is  2,   . z 3  3z 2  10 z  24

61.

z 3  3 z 2  10 z  24  0 Find the real zeros of the related equation. z 3  3 z 2  10 z  24  0 Factors of 24 Factors of 1 1,  2,  3,  4,  6,  8, 12,  24  1  1,  2,  3,  4,  6,  8, 12,  24 2 1 3 10 24 2

x3 The boundary points are 0 and 3.

64.

x  2 , x  3 , or x  4 The boundary points are 3 , 2, and 4. 

Sign of  x  2 x  3 x  4 : 

Sign of  x  2 : Sign of  x  4 :

3

The solution set is  3, 2   4,   .

2

Sign of x  3:

: 

x3 x2

3

The solution set is  , 0   0, 3 .

0

0

 x  2  x 2  x  12  0  x  2 x  3 x  4  0 Sign of  x  3 :

Sign of x 2 :

Sign of

2 24

1 1 12

6  2x 0 x2 2x  6 0 x2 x3 0 x2 The expression is undefined for x  0 . This is a boundary point. Find the real zeros of the related equation. x3 0 x2 x3 0

4

436

8 1 3x  4 8 1  0 3x  4 8 3x  4  0 3x  4 3x  4 12  3 x 0 3x  4 3  x  4 0 3x  4 x4 0 3x  4


Chapter 3 Review The expression is undefined for x 

Sign of  x  :

4 . This 3

is a boundary point. Find the real zeros of the related equation. x4 0 3x  4 x40

Sign of 6  5 x  4 : 

Sign of  x  2 : Sign of

6  x  1

x  x  3

:

0

x4

Sign of  3 x  4 :

Sign of  x  4 :

 x  4 :  3 x  4

4

4  The solution set is  , 0   , 2 . 5 

4 and 4. 3

66.

4

3

1  x  3x  52  0  x  3 4  x  1 3x  52  0  x  3 4 The expression is undefined for x  3 . This is a boundary point. Find the real zeros of the related equation.

4  The solution set is  ,    4,   .  3

 x  1 3x  52  0  x  3 4  x  1 3x  52  0

3 2 65.  x2 x 3 2  0 x2 x 2  x  2 3x  0 x  x  2 x  x  2

x  1 or x  

5 3

5 The boundary points are  , 1, and 3. 3

5x  4 0 x  x  2 The expression is undefined for x  0 and x  2 . These are boundary points. Find the real zeros of the related equation. 5x  4 0 x  x  2

Sign of  3 x  5 : 2

Sign of  x  1 :

Sign of  x  3 : 4

 x  1 3x  5 :  x  3

Sign of

4

4 5

The boundary points are 0,

2

5x  4  0 x

2

5

The boundary points are

Sign of

4

5 3

1

The solution set is 1, 3   3,   . 4 , and 2. 5

80  40  15 x x 120  15 x C  x  x

67. a. C  x  

437

3


Chapter 3 Polynomial and Rational Functions

b.

120  15 x  16 x 120  15 x  16  0 x 120  15 x  16 x 0 x 120  x 0 x x  120 0 x The expression is undefined for x  0 . This is a boundary point. Find the real zeros of the related equation x  120 0 x x  120  0

Sign of  2t  1 :

Sign of  x  : Sign of

x  120 x

:

Sign of  2t  1 t  2 : 

 2

2

1  The solution set is  , 2 or 2  0.5  t  2 sec. The ball will be more than 18 ft high 0.5 sec and 2 sec after it is thrown.

69. m  kw

71. y 

72.

70. x 

Q  kp t

73.

d 1.8 

132 k 33 k4

k p2

kx z t3

132  k 11 9

kc x2 k  3

 2 2

7.2  3k k  2.4

74. Let w represent the weight of the ball. Let r represent the radius of the ball. w  kr 3

3.24  k  3

1 68. a. s  t     32 t 2   40 t   2 2 s  t   16t 2  40t  2

3

3.24 k 27 k  0.12

b. 16t 2  40t  2  18

w  0.12r 3  0.12  5  15 lb 3

16t 2  40t  16  0 2t 2  5t  2  0 Find the real zeros of the related equation. 2t 2  5t  2  0

75.

 2t  1 t  2  0 1 or t  2 2

The boundary points are

1

0 120 The solution set is  , 0  120,   . The trainer must have more than 120 sessions with his clients for his average cost to drop below $16 per session.

t

Sign of  t  2 :

x  120 The boundary points are 0 and 120. Sign of  x  120 : 

1 and 2. 2

438

k L k 6.25  1.6 k  10 10 10   5 lb F L 2 F


Chapter 3 Test 76. Let P represent power in a circuit. Let I represent the current in the circuit. Let R represent the resistance in the circuit. P  kIR 2

144  k  4 6

77. F 

F

2

144 k 144 k 1

kq1q2 d2 k  2q1  2q2  d   2

2

4kq1q2 d2 4  kq q   16  12 2   d  The force will be 16 times as great. 

P  IR 2   310  300 W 2

Chapter 3 Test 1. a. f  x   2 x 2  12 x  16

f  x  2 x2  6 x

f.

  16

2

1   2  6   9  

  f  x   2  x  6 x  9  2  9  16 f  x   2 x 2  6 x  9  9  16 2

f  x   2  x  3  2 2

b. Since a  0 , the parabola opens upward.

g. The axis of symmetry is the vertical line through the vertex: x  3 .

c. The vertex is  h, k    3, 2 .

h. The minimum value is 2 .

d. f  x   2 x 2  12 x  16

i. The domain is  ,   .

The range is  2,   .

0  2 x 2  12 x  16 0  x2  6 x  8

2. a. f  x   2 x 4  5 x3  17 x 2  41x  21 The leading coefficient is positive and the degree is even. The end behavior is up to the left and up to the right.

0   x  2 x  4 x  2 or x  4 The x-intercepts are  2, 0 and  4, 0 .

b. Possible rational zeros: Factors of  21 Factors of 2 1,  3,  7,  21  1,  2

e. f  0  2  0  12  0  16  16 2

The y-intercept is  0,16 .

1 3 7 21  1,  3,  7,  21,  ,  ,  ,  2 2 2 2

439


Chapter 3 Polynomial and Rational Functions 41 21 c. 1 2 5 17 2 3 20 21 2 3 20

21

1 2 3 20

21

3. a. Multiply the leading terms from each factor.

0.25 x 3  x   x   0.25 x 9 2

0

b. The leading coefficient is negative and the degree is odd. The end behavior is up to the left and down to the right.

2 1 21 1 21 0

2

2

f  x    x  1  2 x  7  x  3

 x  1  2 x  7  x  3  0 7 , x  3 2 The zero 1 has multiplicity 2. The zeros 7 and 3 have multiplicity 1. 2 x  1, x 

b. 0  x 4  5 x 2  36

0   x  2 x  2 x  3i  x  3i  x  2, x  2, x  3i, x  3i The zeros are 2, 2 , 3i, and 3i .

2

 21 f. f   x   2   x   5   x   17   x 



0  x2  4 x2  9

e. f  0  2  0  5  0  17  0  41 0  21 3

4

4. a. The leading term has degree 4. There are 4 zeros.

7  d. The x-intercepts are  , 0 ,  3, 0 , and 2  1, 0 .

4

0  0.25 x 3  x  2  x  1

x  0, x  2, x  1 The zero 0 has multiplicity 3. The zero 2 has multiplicity 2. The zero 1 has multiplicity 4.

2

3

4

2

2

4

c. f  x   0.25 x 3  x  2  x  1 2

f  x    x  1 2 x  x  21 2

4

c. The x-intercepts are  2,0 and  2, 0 . 2

d. f   x     x   5   x   36 4

 41  x   21

2

 x 4  5 x 2  36 f  x  is even.

 2 x 4  5 x 3  17 x 2  41x  21 f  x  is neither even nor odd.

5. f  x   x3  5 x 2  2 x  5

g.

f  2   2  5  2  2  2  5 3

2

 8  20  4  5  27

f  1   1  5  1  2  1  5 3

2

 1  5  2  5  3

f  0   0  5  0  2  0  5  5 3

2

f 1  1  5 1  2 1  5 3

2

 1 5  2  5  3

f  2   2  5  2  2  2  5 3

2

 8  20  4  5  3

440


Chapter 3 Test a. Since f  2 and f  1 have the same sign, the intermediate value theorem does not guarantee that the function has at least one zero on the interval  2,  1 .

80 51 9 b. 1 5 47 5 42 38 89 5 42

c. Since f  1  0 , x  1 is not a factor of

f  x .

d. 3 5

47 80 51 9 15 96 48 9 5 32 16 3 0

c. Since f  0 and f 1 have the same sign, the intermediate value theorem does not guarantee that the function has at least one zero on the interval  0,1 .

Since f  3  0 , x  3 is a factor of f  x .

d. Since f 1 and f  2 have opposite signs, the intermediate value theorem guarantees that the function has at least one zero on the interval 1, 2 .

e. 2 5

47 80 51 9 10 74 12 126 5 37 6 63 117

By the remainder theorem, f  2  117 .

2 x2  2 x  4 6. a. x 2  3x  1 2 x 4  4 x3  0 x 2  x  5

 2 x  6 x  2 x 3

2

8. a. 2i

2 x3  2 x 2  x  2 x3  6 x 2  2 x

4x  x  5  4 x 2  12 x  4

11x  9

f  x    x  2i  x  2i  x 2  8 x  17

11x  9 2x  2x  4  2 x  3x  1 2

Find the remaining two zeros. x 2  8 x  17  0

b. Dividend: 2 x 4  4 x 3  x  5 ; Divisor: x 2  3x  1 ; Quotient: 2 x 2  2 x  4 ; Remainder: 11x  9 7. a.

8 21 32 68 2i 4  16i 32  34i 68 1 8  2i 17  16i 34i 0 1

Since 2i is a zero, 2i is also a zero. 2i 1 8  2i 17  16i 34i 2i 16i 34i 1 8 17 0

2

80

Since f  1  0 , 1 is a zero of f  x  .

b. Since f  1 and f  0 have opposite signs, the intermediate value theorem guarantees that the function has at least one zero on the interval  1, 0 .

4

38 89

x

  8 

 82  4 117 2 1

8  4 8  2i   4i 2 2 The zeros are 2i , 4  i . 

3 5 47 80 51 9 5 3 30 66 9 5 50 110 15 0

b. f  x 

 x  2i x  2i x  4  i x  4  i

3  3 Since f    0 , is a zero of f  x  .  5 5

c. The solution set is  2i, 4  i .

441


Chapter 3 Polynomial and Rational Functions 9. a. f  x  is a fourth-degree polynomial. It has 4 zeros.

g. Factor 3x 2  6 . 3x 2  6  0

3x 2  6

Factors of 12 1,  2,  3,  4,  6,  12 b.  Factors of 3 1,  3  1,  2,  3,  4,  6,  12, 1 2 4  , , 3 3 3 7 12 14 6 26 28 3 13 14 14

c. 2 3

x2  2 x 2 The zeros are

2 , 3 ,  2 . 3

h.

12 28 40

The remainder and all coefficients of the quotient are nonnegative. Therefore, 2 is an upper bound for the real zeros of f  x . d. 4 3

7 12 14 12 20 32 3 5 8 46

12 184 196

1  2  10. f  x   a  x    x    x  4 Let a  15.    5 3

The signs of the quotient alternate. Therefore, 4 is a lower bound for the real zeros of f  x  .

1  2   15  x    x    x  4  5  3   5 x  1 3x  2 x  4

e. We can restrict the list of possible rational zeros to those on the interval  4, 2 :

  5 x  1 3x 2  10 x  8

1 2 4 1,  2,  3,  ,  ,  3 3 3 From part (c), the value 2 itself is not a zero of f  x  . Likewise, from part (d), the value 4 itself is not a zero. Therefore, 2 and 4 are also eliminated from the list of possible rational zeros.

 15 x 3  50 x 2  40 x  3x 2  10 x  8  15 x 3  53x 2  30 x  8 11. f  x   6 x 7  4 x5  2 x 4  3 x 2  1

3 sign changes in f  x  . The number of possible positive real zeros is either 3 or 1. 7 5 4 f   x   6   x   4   x   2   x 

f. 3 3

7 12 14 12 9 6 18 12 3 2 6 4 0

3   x   1 2

f   x   6 x 7  4 x5  2 x 4  3x 2  1

2 sign changes in f   x  . The number of possible negative real zeros is either 2 or 0.

Find the zeros of the quotient. 2 3 2 6 4 3 2 0 4 3 0 6 0 The rational zeros are

2 and  3 . 3

442


Chapter 3 Test 2 x 2  3x  5 12. The expression is in lowest x7 terms and the denominator is 0 at x  7 . r has a vertical asymptote at x  7 . The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, r has no horizontal asymptote, but does have a slant asymptote. 7 2 3 5 14 77 2 11 82

1 with a x2 shift upward 3 units and a reflection across the x-axis.

15. The graph of m is the graph of y 

The quotient is 2 x  11 . The slant asymptote is y  2 x  11 . 16. h  0 

3x  1 13. The expression is in lowest terms. 4 x2  1 3x  1 3 x  1  2 4 x  1  2 x  1 2 x  1

 0  4 2

4 1 4

The y-intercept is  0,1 . h is never 0. It has no x-intercepts. h is in lowest terms, and x 2  4 is 0 for x  2 and x  2 , which are the vertical asymptotes. The degree of the numerator is 0. The degree of the denominator is 2. Since n  m , the line y  0 is a horizontal asymptote of q. 4 0 2 x 4 0  4 No solution h does not cross its horizontal asymptote. 4 4 h   x   2 2   x  4 x  4

1 1 , and x  . 2 2 1 p has vertical asymptotes at x   , and 2 1 x . 2 The degree of the numerator is 1. The degree of the denominator is 2. Since n  m , the line y  0 is a horizontal asymptote of p. p has no slant asymptote.

The denominator is 0 at x  

14. The expression

4

5x2  2 x  1 is in lowest 3x 2  4

h   x  h  x h is even.

terms. The denominator 3x 2  4 is never zero. k has no vertical asymptotes. The degree of the numerator is 2. The degree of the denominator is 2. 5 Since n  m , the line y  is a horizontal 3 asymptote of k.

443

Interval

Test Point

 , 2

h(x) is negative. h(x) must approach the horizontal asymptote y  0 from below as 1   4,   x   . 3 As x approaches the vertical asymptote x  2 from the left, h  x    .

Comments


Chapter 3 Polynomial and Rational Functions

Interval

 2, 0

 0, 2 

 2, 

Test Point

Comments

4   1,  3

h(x) is positive. As x approaches the vertical asymptote x  2 from the right, h  x    .

 4 1,  3

h(x) is positive. As x approaches the vertical asymptote x  2 from the left, h  x   .

1   4,   3

h(x) is negative. h(x) must approach the horizontal asymptote y  0 from below as x. As x approaches the vertical asymptote x  2 from the right, h  x    .

x2  2 x  1 x2 2 x 1 1 k  x      x2 x x x x x The quotient is x  2 . The slant asymptote is y  x  2 . x2  2 x  1 x x2  2 x  x2  2 x  1 0  1 No solution k does not cross its slant asymptote. x2

2  x  2   x  1 x2  2 x  1  k   x   x   x k   x  k  x , k   x  k  x

k is neither even nor odd. Select test points from each interval. Interval

 , 1

Test Point 9   4,   4

Test Point 1   2,   2

 1, 0

 1 1   ,   2 2

 1 9   ,   4 4

 0, 

 1 25   ,  4 4

 9  2,  2

2 0  2  0  1  undefined 17. k  0   0

There is no y-intercept. x2  2 x  1  0

18.

 x  1 x  1  0

c 2  c  20 c 2  c  20  0 Find the real zeros of the related equation. c 2  c  20  0

x  1 The x-intercept is  1, 0 . k is in lowest terms, and the denominator is 0 when x  0 , which is the vertical asymptote. The degree of the numerator is exactly one greater than the degree of the denominator. Therefore, k has no horizontal asymptote, but does have a slant asymptote.

 c  4 c  5  0 c  4 or c  5 The boundary points are 4 and 5.

444


Chapter 3 Test Sign of  c  4 :

Sign of  c  4 c  5 : 

4

5

Sign of  c  5 :

The solution set is  4, 5 .

21. 9 x 2  42 x  49  0

 3x  7 2  0 2 The expression  3x  7   0 for all real 2 numbers except where  3x  7   0 . Therefore, the solution set is all real numbers 7 except  . 3 7  7    ,      ,  3 3

y 3  13 y  12

19.

y 3  13 y  12  0 Find the real zeros of the related equation. y 3  13 y  12  0 Factors of 12 1,  2,  3,  4,  6,  12  Factors of 1 1  1,  2,  3,  4,  6,  12 1 1 0 13 12 1 1 12 1 1 12 0

22.

 x  1  x 2  x  12  0  x  1 x  4 x  3  0 x  1 , x  4 , or x  3 The boundary points are 4 , 1, and 3. Sign of  x  4 :

Sign of  x  1 x  4 x  3 : 

Sign of  x  1 :

Sign of  x  3 :

4

The solution set is  4,1   3,   .

1

Sign of  x  3 :

Sign of  x  2 : 

Sign of

3

x  x  4  x  1  0 Find the real zeros of the related equation. 2 3 x  x  4  x  1  0 x  0 , x  4 , or x  1 The boundary points are 1 , 0, and 4. 3

Sign of x  x  4  x  1 : 

Sign of  x:

Sign of  x  4 : 2

2

3

1 0

:

2

4 0 x 9 4 0 2 x 9

23.

3

Sign of  x  1 :

x2

The solution set is  , 3   2,   .

3

2

x3

3

20. 2 x  x  4  x  1  0 2

x3 0 2 x x3 0 x2 The expression is undefined for x  2 . This is a boundary point. Find the real zeros of the related equation. x3 0 x2 x3 0 x  3 The boundary points are 3 and 2.

2

4

 x  3 x  3

0

The expression is undefined for x  3 and x  3 . These are boundary points. The related equation has no real zeros.

4

The solution set is  , 1   0,   .

445


Chapter 3 Polynomial and Rational Functions Sign of  x  3 :

Sign of  x  3 :

4

: 

Sign of

 x  3 x  3

3

3

The solution set is  3, 3 . 24.

26.

27. Let A represent the surface area of a cube. Let s represent the length of an edge. A  ks 2

4 3  x 1 x 4 3  0 x 1 x 3  x  1 4x  0 x  x  1 x  x  1 7x  3 0 x  x  1 The expression is undefined for x  0 and x  1 . These are boundary points. Find the real zeros of the related equation. 7x  3 0 x  x  1

24  k  2

A  6s 2  6  7   294 ft 2 2

28. Let w represent the weight of a body. Let d represent the distance from the center of the Earth. k w 2 d k 180   40002

Sign of  7 x  3 :

: 

Sign of  x  1 : Sign of

7x  3 x  x  1

0

3

k  2,880,000,000 2,880,000,000 2,880,000,000   178 lb w d2  4020 2

3 , and 1. 7

Sign of x:

2

24 k 4 k6

7x  3  0 3 x 7 The boundary points are 0,

ky x z k  6 4 7.2  7 50.4  12k k  4.2 w

29. Let P represent the pressure on the wall. Let A represent the area of the wall. Let v represent the velocity of the wind. P  kAv 2

  

P  kA  3v   kA 9v 2  9 kAv 2

1

2

7

The pressure is 9 times as great.

3  The solution set is  , 0   ,1 . 7 

2000 1  1000 11 2000  5 P  5   1667 5 1 2000 10 P 10   1818 10  1 There will be 1000 rabbits after 1 yr, 1667 rabbits after 5 yr, and 1818 rabbits after 10 yr.

30. a. P 1 

25. E  kv 2

446


Chapter 3 Test 2000  2000 1 The rabbit population will approach 2000 as t increases.

4.9t 2  98t  200

d.

b. Horizontal asymptote:

4.9t 2  98t  200  0 4.9t 2  98t  200  0 Find the real zeros of the related equation. 4.9t 2  98t  200  0

31. a. y  20  140.3 means that with 20,000 plants per acre, the yield will be 140.3 bushels per acre; y  30  172 means that with 30,000 plants per acre, the yield will be 172 bushels per acre; y  60  143.5 means that with 60,000 plants per acre, the yield will be 143.5 bushels per acre.

t

  98 

 98 2  4  4.9 200 2  4.9

98  5684  2.3 or 17.7 9.8 4.9t 2  98t  200  0 

 t  2.3 t  17.7  0

b. The number of plants per acre that will maximize the yield is the n-coordinate of the vertex.   8.32 b 8.32 n   2a 2  0.103 0.206

The boundary points are 2.3 and 17.7. Sign of  t  2.3 :

Sign of  t  2.3 t  17.7  : 

Sign of  t  17.7  :

 40.4 thousand plants  40,400 plants

2.3 17.7

The solution set is  2.3,17.7  . The rocket will be more than 200 m high between 2.3 sec and 17.7 sec after launch.

c. The maximum yield is the value of y  n  at the vertex. 2 y  40.4  0.103  40.4  8.32n  15.1

33 a.

 183 bushels 1  9.8 t 2   98 t   0 2 s  t   4.9t 2  98t

32. a. s  t   

b. t 

n  a   0.0011a 2  0.027 a  2.46

  98 b 98    10 2a 2  4.9 9.8

b. The age when the number of yearly visits is the least is the a-coordinate of the vertex. b   0.027  0.027 a    12 yr 2a 2  0.0011 0.0022

The rocket will reach maximum height 10 sec after launch. c.

s  t   4.9t 2  98t s 10  4.9 10  98 10 2

c. The minimum number of yearly visits is the n  a  value at the vertex.

 490  980  490 The rocket’s reach maximum height is 490 m.

n 12  0.001112  0.027 12  2.46 2

 2.3 visits per year

447


Chapter 3 Polynomial and Rational Functions Chapter 3 Cumulative Review Exercises 5  c. The x-intercepts are  , 0 and  1, 0 . 2 

1. a. x 2  16  0

x 2  16 x  4, x  4

d. f  0  2  0   0  8  0  5  5 3

2

The y-intercept is  0,  5 .

b. Since the degree of the numerator is greater than the degree of the denominator by more than 1, the horizontal asymptote 2 is y   2 . 1

e.

2. f  x    x  2  x   3  2i    x   3  2i  

f  x    x  2  x  3  2i   x  3  2i  2 f  x    x  2  x  3  4  

  f  x    x  2  x  6 x  13 f  x    x  2 x 2  6 x  9  4 2

4.

f  x   x3  6 x 2  13x  2 x 2  12 x  26 f  x   x3  8 x 2  25 x  26 3. f  x   2 x3  x 2  8 x  5 a. The leading term is 2x 3 . The end behavior is down to the left and up to the right. b.

5.

Factors of  5 1,  5  Factors of 2 1,  2

3  2i 3  2i 4  i   4i 4i 4i 12  3i  8i  2  16  1 10  11i  17 10 11   i 17 17 x 2  y 2  8 x  14 y  56  0

 x  8x    y  14 y   56 2

2

2

1   2  8   16  

1 5  1,  5,  ,  2 2 1 2 1 8 5 3 5 2 2 3 5 0

2

1   2  14   49  

 x  8 x  16   y  14 y  49  56  16  49 2

2

 x  4 2   y  7  2  9 Center:  4, 7  ; Radius: 9  3

Find the zeros of the quotient. 2 x 2  3x  5  0

 2 x  5 x  1  0 5 x  , x  1 2 5 (multiplicity 1) and 1 2 (multiplicity 2). The zeros are

448


Chapter 3 Cumulative Review 10. a. f  x   2 x 2  6 x  1

y  y1 3   8 5 5 6. m  2    x2  x1 24 2 2

2 x2  6 x  1  0   6   6  4  21 x 2  2

y  y1  m  x  x1 

5  x  4 2 5 y  8   x  10 2 5 y   x2 2

y   8  

6  28 4 62 7  4 3 7  2 

7. x  y 2  9

 3 7  , 0 and The x-intercepts are   2 

x   0  9 2

x  9 The x-intercept is  9, 0 .

3 7   2 , 0 .  

x  y 9 2

0  y2  9

b. f  0  2  0  6  0  1  1 2

y 9 y  3 2

The y-intercept is  0,1 .

The y-intercepts are  0, 3 and  0, 3 .

c. x 

8.

9.

b   6 6 3    2a 2  2 4 2 2

 3  3  3 f    2   6  1  2  2  2 9   9 1 2 7  2  3 7 The vertex is  ,   .  2 2

  y    5 x  y  25 x  5 x y  y 

v t  mt

11. 125 x 6  y 9  5 x 2

 v0t   m  t 2 m   v0t   t 2

2

449

3

3 3

3

4

2

3

6


Chapter 3 Polynomial and Rational Functions 3

 4 x 3 y 5   4 y 6  12.  2   12   z   x 

18. c 2  5c  9  c  c  3

12

c 2  5c  9  c 2  3c 8c  9 9 c 8 9   ,  8

 4 3 x 9 y15   41 2 y 3     x 6  z6   y15   2 x 6    3 9 6 3  4 x z  y  

y12 32 x 3 z 6

19.

13. 3 250 z 5 xy 21  3 125 z 3 y 21  2 z 2 x  5 zy 7 3 2 z 2 x

49 x 2  14 x  1 0 x

 7 x  1 2  0

x The expression is undefined for x  0 . This is a boundary point. Find the real zeros of the related equation.  7 x  12  0 x

1 1 1 1  2  2 3x 2 x3 14. 3 x x  3x x  2  2 1 3 1 3 3x x 3  2  2 3 x 3 x 1 x3    x  3  x  3 x  3

 7 x  1 2  0 x

1 1 15. 5   x  3  4 2 20  x  12  2

The boundary points are 

32  x  10 10  x  32 10, 32

Sign of  7 x  1 : 2

Sign of  x  : Sign of

16. x  3  4  10

x3  6

 3, 9

 0,  20.

 5,1

x

: 

2

or

2 x  1    x  4 2x 1   x  4 3x  3 x 1

5

450

1 0 7

4 x  3  x  12  0

17. 2 x  1  x  4

x  5

 7 x  1

1 and 0. 7

6  x  3  6 3  x  9

2x 1  x  4

1 7

4 x  3  x  12 4 x  3  x  12 3 x  15 x5


Section 4.1

Chapter 4 Exponential and Logarithmic Functions Section 4.1 Inverse Functions 1.  2,1 ,  3, 2 ,  4, 3 2. one-to-one 3. y  x

4. is not

5. is

6. =

7. x; x

8. f 1

9.  b, a 

10. is not; is

11. Yes

12. Yes

13. No

14. No

15. Yes

16. Yes

17. No

18. No

26. The graph does not define y as a one-to-one function of x because a horizontal line intersects the graph in more than one point. 27. The relation does not define y as a function of x, because it fails the vertical line test. If the relation is not a function, it is not a oneto-one function. 28. The relation does not define y as a function of x, because it fails the vertical line test. If the relation is not a function, it is not a oneto-one function. 29. Assume that f  a   f  b . 5a  4  5b  4 5a  5b ab Since f  a   f  b implies that a  b , then f is one-to-one.

19. The graph does not define y as a one-to-one function of x because a horizontal line intersects the graph in more than one point.

30. Assume that h  a   h  b . 3a  2  3b  2 3a  3b ab Since h  a   h  b implies that a  b , then f is one-to-one.

20. The graph does not define y as a one-to-one function of x because a horizontal line intersects the graph in more than one point. 21. The graph does define y as a one-to-one function of x because no horizontal line intersects the graph in more than one point.

31. Assume that g  a   g  b .

22. The graph does define y as a one-to-one function of x because no horizontal line intersects the graph in more than one point.

a 3  8  b3  8 a 3  b3

23. The graph does not define y as a one-to-one function of x because a horizontal line intersects the graph in more than one point.

a 3  3 b3 ab Since g  a   g  b implies that a  b , then f is one-to-one. 3

24. The graph does not define y as a one-to-one function of x because a horizontal line intersects the graph in more than one point. 25. The graph does not define y as a one-to-one function of x because a horizontal line intersects the graph in more than one point. 451


Chapter 4 Exponential and Logarithmic Functions 32. Assume that k  a   k  b .

 x  3 38.  h k  x   h  k  x    h   7 

a 3  27  b3  27

 x  3  7 3 x33 x  7 

a 3  b3 a 3  3 b3 ab Since k  a   k  b implies that a  b , then f is one-to-one. 3

 k h x   k  h  x   k  7 x  3  7 x  3  3  7 x  x 

7 7 Yes, k is the inverse of h.

33. No; For example the points 1, 3 and

 2  x  39.  m n  x   m  n  x    m   6 

 1, 3 have the same y values but different x values. That is, m  a   m  b  3 , but

 2  x   6  2  2  x  2  6 

a  b.

 x4 No, since  m n x   x , n is not an inverse of m.

34. No; For example the points  3,10 and

 3,10 have the same y values but different x values. That is, n  a   n  b  10 , but

 3  x  40.  p q  x   p  q  x    p   4 

a  b.

35. No; For example the points  2, 3 and

 3  x   4  3  3  x  3  4 

 4, 3 have the same y values but different x values. That is, p  a   p  b  3 , but

 x6 No, since  p q  x   x , q is not an inverse of p.

a  b.

36. No; For example the points  0, 3 and  6, 3 have the same y values but different x values. That is, q  a   q  b  3 , but a  b .

4  x  4  41.  t v  x   t  v  x    t    x   x  4   1 x 

 x  4 37.  f g  x   f  g  x    f   5 

 x  4  5 4  x44 x  5 

g

 4    4  4   x  1  v t  x   v t  x   v   x  1  4    x  1

f  x   g  f  x    g  5 x  4 

 5 x  4  4  5 x  x

5 Yes, g is the inverse of f.

4x 4x  x  x  4  x 4

4  4  x  1 4  4 x  4 4 x   4 4 4 x Yes, v is the inverse of t. 

5

452


Section 4.1

g

 6  2x  42.  w z  x   w  z  x    w   x 

6 6x    6  2x   6  2 x  2 x    2 x 

 60,000  2500 x   60,000

2500 2500 x  x 2500 Yes, g is the inverse of f.

6x x 6

b. The value g(x) represents the number of months since January based on the monthly amount in sales, x.

6   z w x   z  w  x   z   x  2  6  6  2  x  2  6  x  2  12   6  6    x2

45. a. Assume that f  a   f  b . 2a  3  2b  3 2a  2b ab Since f  a   f  b implies that a  b , then f is one-to-one.

6 x  12  12 6 x  x 6 6 Yes, z is the inverse of w. 

b.

 x  2000  43. a.  f g  x   f  g  x    f   150 

f  x  2x  3 y  2x  3 x  2y  3 x  3  2y x3 y 2 x3 f 1  x   2

 x  2000   2000  150   150   2000  x  2000  x  g f  x   g  f  x   g  2000  150 x  

f  x   g  f  x    g  60,000  2500 x 

 2000  150 x   2000

150 150 x  x 150 Yes, g is the inverse of f.

c.

b. The value g(x) represents the number of years since the year 2010 based on the number of applicants to the freshman class, x.  x  60,000  44. a.  f g  x   f  g  x    f   2500 

46. a. Assume that f  a   f  b . 4a  4  4b  4 4a  4b ab Since f  a   f  b implies that a  b , then f is one-to-one.

 x  60,000   60,000  2500   2500   60,000  x  60,000  x

453


Chapter 4 Exponential and Logarithmic Functions f  x  4x  4

b.

49.

y  4x  4 x  4y  4 x  4  4y x4 y 4 x4 f 1  x   4

h  x  3 x  5 y  3 x5 x  3 y 5 x3  y  5 x3  5  y h 1  x   x 3  5

50.

c.

k  x  3 x  8 y  3 x8 x  3 y8 x3  y  8 x3  8  y k 1  x   x 3  8

51.

f

48.

y  4 x3  2

4 x f  x  9 4 x y 9 4 y x 9 9x  4  y y  4  9x

47.

1

m  x   4 x3  2

x  4 y3  2 x  2  4 y3 x2  y3 4 x2 3 y 4 m 1  x   3

 x  4  9 x 8 x 3 8 x y 3 8 y x 3 3x  8  y y  8  3x

g  x 

52.

x2 4

n  x   2 x3  5

y  2 x3  5 x  2 y3  5 x  5  2 y3 x5  y3 2 x5 3 y 2

g 1  x   8  3 x

n 1  x   3

454

x5 2


Section 4.1

53.

5 x2 5 y x2 5 x y2

c  x 

56.

x  y  2  5 xy  2 x  5 xy  5  2 x 5  2x y x 5  2x c 1  x   x

54.

2 x3 2 y x3 2 x y 3

x5 x 1 x5 y x 1 y 5 x y 1 x  y  1  y  5 xy  x  y  5 xy  y   x  5 y  x  1    x  5 x5 y x 1 x5 v 1  x    x 1 v  x 

s  x 

3 x  a  f  x  c

57.

b 3 x  a  y c b  y  a 3  c x b  y  a 3 xc b 3 b  x  c   y  a

x  y  3  2 xy  3 x  2 xy  3 x  2 3x  2 y x 3 x 2 s 1  x   x

55.

3 3

b  x  c  y  a

b  x  c  a  y f 1  x   3 b  x  c   a

x4 t  x  x2 x4 y x2 y4 x y2

58.

g  x  b  x  a  c 3

y  b  x  a  c 3

x  b  y  a  c 3

x  c  b  y  a xc 3   y  a b x  c 3  ya b xc 3 a y b xc g 1  x   3 a b 3

x  y  2  y  4 xy  2 x  y  4 xy  y  2 x  4 y  x  1    2 x  4 2x  4 x 1 2x  4 t 1  x    x 1 y

455


Chapter 4 Exponential and Logarithmic Functions 59. a.

e.

f  x  x2  1 y  x2  1 x  y2  1 x  1  y2  x 1  y f 1  x    x  1

f. c.  , 0

b. Yes d.  3,  f  x  x2  3

e.

y  x2  3 x  y2  3 x  3  y2

g. 1,  

 x3  y f 1  x    x  3

h.  , 0

61. a.

f.

c.  1, 

b. Yes g.  3, 

h.  , 0

d.  0, 

60. a.

e.

f  x  x  1 y  x 1 x

y 1

x  y 1 2

x 1  y 2

f 1  x   x 2  1; x  0

b. Yes

f. The range of f is  0,  . Therefore, the

c.  , 0

domain of f 1 must be  0,  .

d. 1,   456


Section 4.1 h.  0, 

g.

i.  2, 

63. Domain:  0, 4 ; Range:  0,  64. Domain:  2,  ; Range:  3, 5 f  x  x  3

65.

y  x 3

h.  0, 

x  y 3

i.  1, 

x3 y y  x3

62. a.

y    x  3

or

y  3 x f

1

 x   3  x; x  3

f  x  x  3

66.

y  x 3 x  y 3 x3 y

c.  2, 

b. Yes

y  x3

y  x  3

d.  0,  e.

y    x  3

or

f

f  x  x  2 y x2 x

1

 x   x  3; x  3

67. subtracts; x  6

68. divides;

y2

x  y2 2

69. f 1  x  

x 2 y 2

f 1  x   x 2  2; x  0

x4 7

70. f 1  x  3 x  11

71. f 1  x  3 x  20

f. The range of f is  0,  . Therefore, the domain of f 1 must be  0,  .

73. f 1  x  

x 2

x 1 8

72. f 1  x   x  10 74. p 1  x  

x  10 2

g. 75. q 1  x   x  1  4 76. m 1  x   5

457

 x  33 4

3


Chapter 4 Exponential and Logarithmic Functions 82. a. f  20  5 , so f 1  5  20 .

77.

b. f  2.2  9.45 , so f 1  9.45  2.2 . c. f  8  8 , so f 1 8  8 . 83. True

84. False

85. False

86. True

87. a. T  x  6.33x

78.

b.

T  x   6.33 x y  6.33 x x  6.33 y x y 6.33 T 1  x  

x 6.33

c. T 1  x  represents the mass of a mammal based on the amount of air inhaled per breath, x.

79.

170  27 means that a 6.33 mammal that inhales 170 mL of air per breath during normal respiration is approximately 27 kg (this is approximately 60 lb—the size of a Labrador retriever).

d. T 1 170 

88. a. d  t   555t

80.

b.

d  t   555t y  555t t  555 y t y 555 d 1  t  

81. a. f 12  32 , so f 1  32  12 .

t 555

c. d 1  t  represents the amount of time (in hr) at which the aircraft has been at its cruising altitude based on t hours traveling at that altitude.

b. f  0.5  2.5 , so f 1  2.5  0.5 . c. f 10  26 , so f 1  26  10 .

458


Section 4.1 4 91. V  r    r 3 3 4 V  r3 3 3V  r3 4 3V 3 r 4

2553  4.6 means that if 555 2553 mi is traveled at cruising altitude, then the plane has been at its cruising altitude for 4.6 hr.

d. d 1  2553 

89. a. T  x  24 x  108 b.

T  x   24 x  108 y  24 x  108 x  24 y  108 x  108  24 y x  108 y 24 x  108 T 1  x   24

r V   3

3V represents the radius of a 4 sphere as a function of its volume. r V   3

92.

c. T 1  x  represents the taxable value of a home (in $1000) based on x dollars of property tax paid on the home. 2988  108  120 means that 24 if a homeowner is charged $2998 in property taxes, then the taxable value of the home is $120,000.

d. T 1  2988 

9 F  C   C  32 5 9 F  C  32 5 9 F  32  C 5 5  F  32  C 9 5 C  F    F  32 9 5 C  F    F  32 represents the 9 temperature in degrees Celsius as a function of the corresponding temperature in degrees Fahrenheit.

90. a. L  x  2.5  0.015x b.

3V 4

L  x   2.5  0.015 x y  2.5  0.015 x x  2.5  0.015 y x  2.5  0.015 y 2.5  x y 0.015 2.5  x L1  x   0.015

93. The domain and range of a function and its inverse are reversed. 94. A one-to-one function y  f  x  is a function in which no two ordered pairs have the same y-coordinate but different xcoordinates.

c. L1  x  represents the number of days since January 1 based on the water level, x.

95. If a horizontal line intersects the graph of a function in more than one point, then the function has at least two ordered pairs with the same y-coordinate but different xcoordinates. This conflicts with the definition of a one-to-one function.

2.5  1.9  40 means that given 0.015 a water level of 1.9 ft, the time elapsed since January 1 is 40 days.

d. L1 1.9 

459


Chapter 4 Exponential and Logarithmic Functions 96. The graph of f  x  x 2  k is a parabola opening upward or downward. The function is not one-to-one. However, if the domain is restricted to x values strictly to one side or the other of the axis of symmetry, then the resulting function is one-to-one and the inverse function can be found.

100. Let f be a periodic function and let p  0 be the period. Then f  x  p   f  x for all x in the domain of f. Since p  0 , then x  p  x , so f is not one-to-one. 101. a.

97. a. 23  8 , so f  8  3 . b. 25  32 , so f  32  5 . c. 21  2 , so f  2  1 . d. 23 

The graphs of f and g appear to be symmetric with respect to the line y  x . This suggests that f and g are inverses.

1 1  1  , so f    3 . 3  8 2 8

98. a. 33  27 , so f  27  3 .

b.

b. 34  81 , so f 81  4 . c. 31  3 , so f  3  1 . d. 32 

1 1  1  , so f    2 . 2  9 3 9

c.

99. Let f be an increasing function. Then for every value a and b in the domain of f such that a  b we have f  a   f  b . Now if u  v , then either u  v or v  u . Then either f  u   f  v or f  v  f  u  . In

The expressions Y1(Y2) and Y2(Y1) represent the composition of functions  f g  x and  g f  x . In each case, Y1(Y2) and Y2(Y1) equal the value of x. This suggests that f and g are inverses.

either case, f  u   f  v  , and f is one-toone.

Section 4.2 Exponential Functions 2. No; For example the points  2, 4 and

1. y is a linear function of x, so the relation is a function, which we can write as f  x   3x  5 .

 2, 4 have the same y values but different x values. That is, f  a   f  b  4 , but

Assume that f  a   f  b . 3a  5  3b  5 3a  3b ab Since f  a   f  b implies that a  b , then f is one-to-one.

a b.

460


Section 4.2

3.

6.

6 x2 6 y x2 6 x y2

f  x 

x  y  2  6 xy  2 x  6 xy  6  2 x 6  2x y x 6  2x f 1  x   x

4.

2 x5 2 y x5 2 x y 5

g  x 

x  y  5   2 xy  5 x  2 xy  5 x  2 5x  2 y x 5 x 2 g 1  x   x

7. b x

8. is not; is

9. increasing

10. decreasing

11.  , 

12.  0, 

13.  0,1

14. y  0

15. is not

16. e

17. e; natural

18. continuously

19. a. 51  0.2

b. 54.8  2264.9364

c. 5 2  9.7385 20. a. 72  0.0204 c. 7 11  635.1453

5.

 1 21. a.    4

3

 1 c.    4

3

 1 22. a.    6

3

 1 c.    6

23. a and d

461

d. 5  156.9925 b. 75.9  96,845.2749 d. 7e  198.2507 1.4

 64

 1 b.    4

0.5 e

 0.0906

 1 d.    4  1 b.    6

1.4

 216

 1  0.2817 d.    6

0.5

0.5

 0.1436

 0.1520

 0.0814

24. b and d

 0.0599


Chapter 4 Exponential and Logarithmic Functions 25.

29.

Domain:  ,  ; Range:  0, 

Domain:  ,  ; Range:  0, 

26.

30.

Domain:  ,  ; Range:  0, 

Domain:  ,  ; Range:  0, 

27.

31.

Domain:  ,  ; Range:  0, 

Domain:  ,  ; Range:  0, 

28.

32.

Domain:  ,  ; Range:  0, 

Domain:  ,  ; Range:  0, 

462


Section 4.2 33. f  x  3x  2

36. n  x  4 x3

Since k  2 , shift the graph of y  3x up 2 units.

Since h  3 , shift the graph of y  4 x right 3 units.

Domain:  ,  ; Range:  2, 

Domain:  ,  ; Range:  0, 

34. g  x  4x  3  4x   3

37. p  x  3x4  1  3x4   1 Since h  4 and k  1 , shift the graph of y  3x right 4 units and down 1 unit.

Since k  3 , shift the graph of y  4 x down 3 units.

Domain:  ,  ; Range:  3, 

Domain:  ,  ; Range:  1, 

35. m  x  3x2  3x 2

38. q  x  4x4  2  4x 4  2 Since h  4 and k  2 , shift the graph of y  4 x left 4 units and up 2 units.

Since h  2 , shift the graph of y  3x left 2 units.

Domain:  ,  ; Range:  0, 

Domain:  ,  ; Range:  2, 

463


Chapter 4 Exponential and Logarithmic Functions 39. k  x  3x   1 3x

42. v  x   4 x 

Since a  0 , reflect the graph of y  3x across the x-axis.

1  1  4x  4 

Domain:  ,  ; Range:  0, 

Domain:  ,  ; Range:  , 0

x 1

40. h  x  4   1 4 x

x

1 y    left 1 unit and down 3 units.  3

Domain:  ,  ; Range:  , 0 1  1   3x  3 

x  1

1 1 43. f  x      3      3  3  3 Since h  1 and k  3 , shift the graph of

x

Since a  0 , reflect the graph of y  4 x across the x-axis.

41. t  x   3 x 

x

Domain:  ,  ; Range:  3, 

x

x 2

1 44. g  x      1  4 Since h  2 and k  1 , shift the graph of x

1 y    right 2 units and up 1 unit.  4

Domain:  ,  ; Range:  0, 

Domain:  ,  ; Range: 1,  464


Section 4.2 x

49. f  x   e x4

x

 1  1 45. k  x       2   1    2  3  3 Since a  0 and k  2 , reflect the graph of

Since h  4 , shift the graph of y  e x right 4 units.

x

 1 y    across the x-axis and shift it up 2  3 units.

Domain:  ,  ; Range:  0,  50. g  x  e x2

Domain:  ,  ; Range:  , 2 x

Since h  2 , shift the graph of y  e x right 2 units.

x

 1  1 46. h  x       2   1     2  4  4 Since a  0 and k  2 , reflect the graph of x

 1 y    across the x-axis and shift it down  4 2 units.

Domain:  ,  ; Range:  0,  51. h  x  e x  2 Since k  2 , shift the graph of y  e x up 2 units. Domain:  ,  ; Range:  ,  2 47. a. e4  54.5982

b. e3.2  0.0408

c. e 13  36.8020

d. e  23.1407

48. a. e3  0.0498 c. e 7  14.0940

b. e6.8  897.8473 d. ee  15.1543

Domain:  ,  ; Range:  2, 

465


Chapter 4 Exponential and Logarithmic Functions 52. k  x  e x  1  e x   1

 r 55. A  P 1    n

Since k  1 , shift the graph of y  e x down 1 unit.

nt

 0.04  A  10,000 1    n 

 n5

a. For annual compounding, n  1 .  0.04  A  10,000 1    1 

  15

 12,166.53

b. For quarterly compounding, n  4 .  0.04  A  10,000 1    4 

Domain:  ,  ; Range:  1, 

 45

 12,201.90

c. For monthly compounding, n  12 .

53. m  x  e x  3   1 e x   3 Since a  0 and k  3 , reflect the graph of y  e x across the x-axis and shift it down 3 units.

 0.04  A  10,000 1    12 

125

 12,209.97

d. For daily compounding, n  365 .  0.04  A  10,000 1    365 

 3655

 12,213.89

e. For continuous compounding, use A  Pert . A  Pert  10,000e 0.045  12,214.03  r 56. A  P 1    n

Domain:  ,  ; Range:  , 3

nt

 0.035  A  8000 1    n 

54. n  x  e x  4   1 e x  4 Since a  0 and k  4 , reflect the graph of y  e x across the x-axis and shift it up 4 units.

 n20

a. For annual compounding, n  1 .  0.035  A  8000 1    1 

  120

 15,918.31

b. For quarterly compounding, n  4 .  0.035  A  8000 1    4 

 420

 16,061.05

c. For monthly compounding, n  12 .  0.035  A  8000 1    12 

1220

 16,093.62

d. For daily compounding, n  365 . Domain:  ,  ; Range:  , 4

 0.035  A  8000 1    365 

466

 36520

 16,109.48


Section 4.2 62. I  Prt  35,000  0.048 20  $33,600

e. For continuous compounding, use A  Pert . A  Pert  8000e 0.03520  16,110.02

I  Pe rt  P  35,000e 0.036 20  35,000  71,905.16  35,000  $36,905.16 3.6% compounded continuously for 20 yr results in more interest.

57. A  Pert  20,000e10r a. A  20,000e10 0.03  $26,997.18 b. A  20,000e10 0.04  $29,836.49

 1 63. A  t   10    2

c. A  20,000e10 0.055  $34,665.06 58. A  Pert  6000e12r

t 28.9

28.9 28.9

1

57.8 28.9

2

 1  1 a. A  28.9  10    10    5  2  2 After 28.9 yr, the amount of 90Sr remaining is 5 g . After one half-life, the amount of substance has been halved.

a. A  6000e12 0.01  $6764.98 b. A  6000e12 0.02  $7627.49 c. A  6000e12 0.45  $10,296.04

 1  1  10    2.5 b. A  57.8  10    2  2 After 57.8 yr, the amount of 90Sr remaining is 2.5 g . After two half-lives, the amount of substance has been halved, twice.

59. a. I  Prt  10,000  0.055 4  $2200 b. I  Pe rt  P  10,000e 0.05 4  10,000  12,214.03  10,000  $2214.03

100 28.9

 1  0.909 c. A 100  10    2 After 100 yr, the amount of 90Sr remaining is approximately 0.909 g .

c. 5.5% simple interest results in less interest. 60. a. I  Prt  15,000  0.067 5  $5025

 1 64. A  t   0.1   2

b. I  Pe rt  P  15,000e 0.064 5  15,000  20,656.92  15,000  $5656.92

t 138.4

 1 a. A 138.4  0.1   2

138.4 138.4

 1  0.1   2

1

 0.05 After 138.4 yr, the amount of 210Po remaining is 0.05 mg. After one half-life, the amount of substance has been halved.

c. 6.7% simple interest results in less interest. 61. I  Prt  25,000  0.052 30  $39,000

 1 b. A  276.8  0.1   2

I  Pe rt  P  25,000e 0.038 30  25,000  78,169.21  25,000  $53,169.21 3.8% compounded continuously for 30 yr results in more interest.

276.8 138.4

 1  0.1   2

2

 0.025 After 276.8 yr, the amount of 210Po remaining is 0.025 mg. After one half-life, the amount of substance has been halved.

467


Chapter 4 Exponential and Logarithmic Functions d. P 15  34 1.00804  38

500 138.4

15

 1 c. A  500  0.1   0.008  2 After 500 yr, the amount of 90Sr remaining is approximately 0.008 mg.

65. P  t   310 1.0097

P  25  34 1.00804  42 25

P  200  34 1.00804

200

 169

67. P  a   760e0.13a

t

a. P  0  760e0.13 0  760e0  760 mmHg

a. The base is 1.0097  1 , so the graph is an increasing exponential function.

b. P 8.848  760e0.138.848  241 mmHg

b. P  0  310 1.0097  310 In the year 2010, the U.S. population was approximately 310 million. This is the initial population in 2010. 0

68. A t   100e0.0318t a. A15  100e0.031815  $161.12 In the year 2025, approximately $161.12 will be needed to buy something that cost $100 in 2010.

c. P 10  310 1.0097  341 In the year 2020, the U.S. population will be approximately 341 million if this trend continues. 10

b. A 22  100e0.0318 22  $201.29

P  20  310 1.0097   376 20

d.

69. a. T  t   78   350  78 e 0.046t

P  30  310 1.0097   414 30

T  t   78  272e 0.046t

e. P  200  310 1.0097  2137 In the year 2210 the U.S population will be approximately 2.137 billion. The model cannot continue indefinitely because the population will become too large to be sustained from the available resources. 200

66. P  t   34 1.00804

b. T 10  78  272e0.04610  250F c. T  60  78  272e0.046 60  95.2F Yes; after 60 min, the cake will be approximately 95.2F . 70. a. T  t   60  122  60 e 0.00351t T  t   60  62e 0.00351t

t

a. The base is 1.00804  1 , so the graph is an increasing exponential function.

b. T 12  60  62e0.0035112  119F c. T  24  60  62e0.00351 24  117F Yes; the temperature after 24 hr will be approximately 117F .

b. P  0  34 1.00804  34 In the year 2010, the Canadian population was approximately 34 million. This is the initial population in 2010. 0

71. a. V  5  120  0.8  39 The resale value is $39,000. 5

c. P  5  34 1.00804  35 In the year 2015, the Canadian population will be approximately 35 million if this trend continues. 5

b. V 1  120  0.8  96 The depreciation after 1 yr is 120,000  96,000  24,000 . 1

C  h   18  36  22 h  76h C  800  76 800  60,800

468


Section 4.2 It costs the farmer $60,800  $24,000  $84,800 to run the tractor for 800 hr during the first year.

e. x is between 3 and 4. 76. a. 1 c.  3

72. a. V  5  10,000  0.9  $6561 4

d. x is between 1 and 2.

b. V 8  10,000  0.9  $4300 8

 1 73. a. P  x      4

b.  2

e. x is between 2 and 3.

x

77. a. See part (d). b. Yes

2

c. Domain:  ,  ; Range:  0, 

3

d.

1  1 P  2      0.0625  4 16 1  1 P  3      0.015625  4 64 4

1  1 P  4      0.003906  4 256 5

1  1 P  5      0.000977  4 512

b. The probability decreases. e. Domain:  0,  ; Range:  , 

10

 1 c. P 10     9.54  107  4 It is very unlikely.

 1 74. a. P  x      2

f. f 1 1  0 ; f 1  2  1 ; f 1  4  2 78. a. See part (d).

x

b. Yes c. Domain:  ,  ; Range:  0, 

2

1  1 P  2      0.25  2 4

d.

3

1  1 P  3      0.125  2 8 4

1  1 P  4      0.0625  2 16 10

1  1 P 10      0.000977  2 512

b. It is unlikely. 75. a.  2

e. Domain:  0,  ; Range:  , 

b.  3

 1 f. g 1 1  0 ; g 1  3  1 ; g 1    1  3

c.  4 d. x is between 2 and 3.

469


Chapter 4 Exponential and Logarithmic Functions 79. a. 

b. 0

c.  80. a.  c. 

d. 

b.

b. 0

c.

d. 

81. The range of an exponential function is the set of positive real numbers; that is, 2 x is nonnegative for all values of x in the domain. d. 82. The base is variable and the exponent is constant rather than the other way around. 83. f  x  2 x

f  b  f  a  0.25  1 0.75    0.375 ba 20 2

f  b   f  a  0.0625  0.25  ba 42 0.1875  2  0.0938 f  b   f  a  0.015625  0.0625  ba 64 0.046875  2  0.0234

a.

f  b  f  a  1  0.25 0.75    0.375 ba 0   2 2

b.

f  b  f  a  4  1 3    1.5 ba 20 2

a.

c.

f  b  f  a  16  4 12   6 ba 42 2

f  b  f  a  1 9 8    4 ba 0   2 2

b.

d.

f  b  f  a  64  16 48    24 ba 64 2

f  b   f  a  0.1111  1 0.8888   ba 20 2  0.4444

 1 86. f  x      3

c.

84. f  x  3x a.

f  b   f  a  1  0.1111 0.8888   ba 0   2 2  0.4444

b.

f  b  f  a  9  1 8   4 ba 20 2

c.

f  b  f  a  81  9 72    36 ba 42 2

d.

a.

f  b   f  a  0.0123  0.1111  ba 42 0.0988  2  0.0494 f  b   f  a  0.0014  0.0123  ba 64 0.0109  2  0.0055

87. 3x 2e  x  6 xe  x  0

f  b  f  a  729  81 648 d.    324 ba 64 2

 1 85. f  x      2

x

3xe  x  x  2  0 xe  x  x  2  0

x

x  0 or e x  0 or x  2 e x  0 has no solution because e raised to a power is always greater than 0, so the real solutions are  0, 2 .

f  b  f  a  1 4 3    1.5 ba 0   2 2

470


Section 4.3 x 2e x  e x  0

88.

2

 e x  e x   e x  e x  93.    2   2 

ex x2  1  0 e  x  1 x  1  0

e x  0 or x  1 or x  1 e x  0 has no solution because e raised to a power is always greater than 0, so the real solutions are  1,1 .

  e

89. a. e x eh  e xh

b. e x

2

2

2x

d. e x  e x  e x x  e0  1

   e1

2x

91. e x  e  x

2x

2x

x

x

  e  2e  e 2

2x

0

  e  2e  e 2

2x

0

1 2x e 2 x  e 2 x e  e 2 x  2 2

x h f  x  h   f  h  2 x h  2 x 2 2  1   h h h

97.

e4 x  2e2 x  1 e2 x

2 x

 e2 x  2  e 2 x 

The graphs of Y2 and Y3 are close approximations of Y1 = ex near x = 0.

e  2e  1 e2 x 4x

2x

Section 4.3 Logarithmic Functions 1.

2 x

 e2 x  2  e 2 x 

92. e x  e  x

96.

 e  1  e  e  1 e  1

b. e  e  e

2x

x h f  x  h   f  x  e x h  e x e e  1 95.   h h h

1

90. a. e xh  e x  e x eh  e x  e x eh  1 2x



1  2   e x  e  x e x  e  x  4

e  e xh eh

4x

 e x  e x   e x  e x  94. 2   2   2 

x

e. e 2 x  e2 x

 

1 2x  e  2  e 2 x  e 2 x  2  e 2 x   4 1   4  1 4

x

c.

2

f  x  3 x  4

2.

g  x  2 x  7 y  2x  7 x  2y  7 x  7  2y x7 y 2 x7 g 1  x   2

y 3 x4 x 3 y4 x3  y  4 x3  4  y f 1  x   x 3  4

471


Chapter 4 Exponential and Logarithmic Functions 3. 3 4  81

4. 2 3  8

1 36

6. 4 3 

5. 6 2 

 1 30.    2

1 64

 32  log1 2 32  5

31. 109  1,000,000,000  log1,000,000,000  9

7. logarithmic

32. 101  10  log10  1

8. logarithm; base; argument 9. exponential

10. logarithmic

11. common; natural

12. 10; e

13. 0; 0

14. 1; 1

33. a7  b  log a b  7 34. M 3  N  log M N  3 35. log 3 9  y 3 y  9  32 y2

15. x; x 16. increasing; decreasing 17. x  0 ; vertical

5

36. log 2 16  y 2 y  16  24 y4

18. left; downward

19. log8 64  2  82  64

37. log 5 5  y

20. log9 81  2  92  81

5 y  5  51 y 1

 1  1  4  104  21. log   10,000  10,000 

38. log 6 6  y 6 y  6  61 y 1

  1 1  6  106  22. log   1,000,000  1,000,000 

39. log100,000,000  y

23. log4 1  0  40  1

10 y  100,000,000  108 y8

24. log8 1  0  80  1

40. log10,000,000  y

25. log a b  c  ac  b

10 y  10,000,000  107 y7

26. log x M  N  x N  M 27. 53  125  log5 125  3

 1 41. log 2    y  16 

28. 25  32  log 2 32  5  1 29.    5

1 1  4  24 16 2 y  4

2y 

3

 125  log1 5 125  3

472


Section 4.3 49. log1 7 49  y

 1 42. log 3    y  9

y

 1  1    49    7 7

1 1   32 9 32 y  2

3y 

2

y  2

50. log1 4 16  y

 1 43. log    y  10 

y

 1  1    16    4 4

1 1  1  101 10 10 y  1

10 y 

2

y  2

 1 51. log1 2    y  32 

 1  y 44. log   10,000 

y

1  1  1      2 32  2  y5

1 1  4  104 10,000 10 y  4

10 y 

5

 1 52. log1 6    y  36 

45. ln e  y 6

y

1  1  1      6 36  6  y2

e y  e6 y6

46. ln e10  y

2

53. log 0.00001  y

e y  e10 y  10

10 y  0.00001  105 y  5

 1 47. ln  3   y e  1 e y  3  e 3 e y  3

54. log 0.0001  y 10 y  0.0001  104 y  4

55. a. 104  46,832  105 , so 4  log 46,832  5 . log 46,832  4.6705

 1 48. ln  8   y e 

b. 106  1,247,310  107 , so 6  log1,247,310  7 . log1,247,310  6.0960

1  e 8 e8 y  8

ey 

c. 101  0.24  100 , so 1  log 0.24  0 . log 0.24  0.6198

473


Chapter 4 Exponential and Logarithmic Functions 58. a. f 1860  ln1860  7.5283

d. 106  0.0000032  105 , so 6  log 0.0000032  5 . log 0.0000032  5.4949

b. f  0.0694  ln 0.0694  2.6679

e. 105  5.6  105  106 , so 5  log 5.6  105  6 .

c. f

d. f  2   ln 2  1.8379

log 5.6  10  5.7482 5

3

3

    f. f 8.5 10   ln 8.5 10   37.0039

e. f 1.3  1012  ln 1.3  1012  27.8934

2

e. 10  5.1  10  10 , so 3  log 5.1  103  2 .

17

log 5.1  103  2.2924 56. a. 105  293,416  106 , so 5  log 293,416  6 . log 293,416  5.4675 b. 102  897  103 , so 2  log897  3 . log897  2.9528 c. 102  0.038  101 , so 2  log 0.038  1 . log 0.038  1.4202

log 8.2  102  1.0862 57. a. f  94  ln 94  4.5433 b. f  0.182  ln 0.182  1.7037 c. f

 155   ln 155  2.5217

d. f  4   ln 4  2.5310

    f. f  7.1  10   ln  7.1  10   7.2502

e. f 3.9  109  ln 3.9  109  22.0842 4

62. log d d  1

63. 5log5 x y  x  y

64. 4log4 ac  a  c

65. ln eab  a  b

66. ln e x 1  x2  1

67. log 5 1  0

68. log 1  0

0 1 2

f. 102  8.2  102  101 , so 2  log 8.2  102  1 .

61. logc c  1

1

log 9.1  108  8.9590

60. log6 67  7

2

59. log 4 411  11

x

e. 108  9.1  108  109 , so 8  log 9.1  108  9 .

17

2

69. Interchange the x- and y-coordinates of the ordered pairs from its inverse function.

d. 104  0.00061  103 , so 4  log 0.00061  3 . log 0.00061  3.2147

 87   ln 87  2.2330

4

474

y  3x 1 9 1 3 1 3 9

x 1 9 1 3 1 3 9

y  log 3 x 2 1 0 1 2


Section 4.3 70. Interchange the x- and y-coordinates of the ordered pairs from its inverse function. x 2 1 0 1 2

y  5x 1 25 1 5 1 5 25

72. Interchange the x- and y-coordinates of the ordered pairs from its inverse function.

y  log 5 x

x 1 25 1 5 1 5 25

x

2

2 1 0

1 0 1 2

1 2

71. Interchange the x- and y-coordinates of the ordered pairs from its inverse function. x 2 1 0 1 2

 1 y   3 9 3 1 1 3 1 9

x

x 9 3 1 1 3 1 9

 1 y   5

x

25 5 1 1 5 1 25

x 25 5 1 1 5 1 25

y  log1 5 x 2 1 0 1 2

73. Interchange the x- and y-coordinates of the ordered pairs from its inverse function.

y  log1 3 x 2 1 0

y  ex 1 2 2  0.14 e 1 1  0.37 e 0 1 1 e  2.72 2 e 2  7.39 x

1 2

475

x 0.14 0.37 1 2.72 7.39

y  ln x 2 1 0 1 2


Chapter 4 Exponential and Logarithmic Functions 76. a. The graph of y  log 2  x  3 is the graph

74. Interchange the x- and y-coordinates of the ordered pairs from its inverse function. x 2 1 0 1 2

y   1 100 1 10 1 10 100

x

x 1 100 1 10 1 10 100

of y  log 2 x shifted to the left 3 units.

y  log x 2 1 0 1 2

b. Domain:  3,  ; Range:  ,  c. Vertical asymptote: x  3 77. a. The graph of y  2  log3 x is the graph of y  log3 x shifted up 2 units.

75. a. The graph of y  log3  x  2 is the graph of y  log3 x shifted to the left 2 units.

b. Domain:  0,  ; Range:  ,  c. Vertical asymptote: x  0 78. a. The graph of y  3  log 2 x is the graph of y  log 2 x shifted up 3 units. b. Domain:  2,  ; Range:  ,  c. Vertical asymptote: x  2

b. Domain:  0,  ; Range:  ,  c. Vertical asymptote: x  0 476


Section 4.3 b. Domain:  0,  ; Range:  , 

79. a. The graph of y  log3  x  1  3 is the graph of y  log3 x shifted right 1 unit and down 3 units.

c. Vertical asymptote: x  0 82. a. The graph of y   log 2 x is the graph of y  log 2 x reflected across the x-axis.

b. Domain: 1,  ; Range:  ,  c. Vertical asymptote: x  1

b. Domain:  0,  ; Range:  , 

80. a. The graph of y  log 2  x  2  1 is the

c. Vertical asymptote: x  0

graph of y  log 2 x shifted right 2 units and down 1 unit.

b. Domain:  2,  ; Range:  ,  c. Vertical asymptote: x  2 81. a. The graph of y   log3 x is the graph of y  log3 x reflected across the x-axis.

477

83. f  x  log 8  x 8 x  0  x  8 x8

Domain:  , 8

84. g  x  log  3  x 3 x  0  x  3 x3

Domain:  , 3

85. h  x  log 2  6 x  7 6x  7  0 6 x  7 7 x 6

 7  Domain:   ,   6 

86. k  x  log3  5x  6 5x  6  0 5 x  6 6 x 5

 6  Domain:   ,   5 


Chapter 4 Exponential and Logarithmic Functions

87. m  x  ln x 2  14

91. r  x  log3  4  x

x 2  14  0

 4  x2  0

x 2  14 The square of any real number is positive, so this condition is always true. Domain:  , 

This is true for all real x, except when 4  x  0 , or 4  x . Domain:  , 4   4, 

92. s  x  log5  3  x 

88. n  x  ln x  11 2

x  11  0

This is true for all real x, except when 3 x  0, 3  x. Domain:  , 3   3, 

x 2  11 The square of any real number is positive, so this condition is always true. Domain:  , 

 I  106.9 I 0  93. a. M  log    log   I0   I 0 

 log106.9  6.9

x  x  12  0 Find the real zeros of the related equation. x 2  x  12  0 2

 I  103.2 I 0  b. M  log    log   I0   I 0 

 x  3 x  4  0

 log103.2  3.2

x  3 or x  4 The boundary points are 3 and 4. Sign of  x  3 :

Sign of  x  3 x  4 : 

Sign of  x  4 :

3

Domain:  , 3   4, 

90. q  x  log x 2  10 x  9

c.

4

 log105.4  5.4

x  10 x  9  0 Find the real zeros of the related equation. x 2  10 x  9  0

 I  105.8 I 0  b. M  log    log   I0   I 0 

 x  9 x  1  0

 log105.8  5.8

x  9 or x  1 The boundary points are 9 and 1 . 

Sign of  x  9 x  1 : 

Sign of  x  1 :

106.9 I 0  106.93.2  103.7  5012 3.2 10 I 0 The Loma Prieta earthquake was approximately 5012 times more intense than an earthquake with magnitude 3.2.

 I  105.4 I 0  94. a. M  log    log   I0   I 0 

2

Sign of  x  9 :

2

 3  x2  0

2

89. p  x  log x2  x  12

2

c.

9 1

Domain:  , 9   1, 

478

105.8 I 0  105.85.4  100.4  2.5 5.4 10 I 0 The earthquake was approximately 2.5 times more intense than originally thought.


Section 4.3 100. a.   d    log 2 d

 1015 I 0  95. a. L  10log   10log1015  I 0   10 15  150 dB

1   log 2 d 1  log 2 d d  21  2 mm

 109 I 0   10log109 b. L  10log   I  

b.   d    log 2 d

0

 10  9  90 dB

5   log 2 d 5  log 2 d

1015 I 0 c.  10159  106  1,000,000 9 10 I 0 The sound of a jet plane taking off is 1,000,000 times more intense than the noise from city traffic.

d  25  32 mm

101. a. log3  x  1  4  34  x  1 b. 34  x  1 81  x  1 80  x The solution set is 80 .

 1010 I 0   10log1010 96. a. L  10log   I 0   10 10  100 dB

c.

 107 I 0   10log107 b. L  10log   I  

log 3  x  1  4

log 3  80  1 0 4

0

log 3 810 4

 10  7   70 dB

40 4

10

c.

10 I 0  10107  103  1000 7 10 I 0 The sound of a motorcycle is 1000 times more intense than a vacuum cleaner.

102. a. log2  x  5  4  24  x  5 b. 24  x  5 16  x  5 21  x The solution set is  21 .

  b. pH   log 1  10     2  2

97. a. pH   log 5.0  103  2.3 2

c. log 2  x  5  4

c. Lemon juice is more acidic.

log 2  21  5 0 4

   12.7 b. pH   log  4.1  10   9.4

98. a. pH   log 2.0  10

13

log 2 16 0 4 40 4

10

103. a. log 4  7 x  6  3  43  7 x  6

c. Bleach is more basic. 99.

b. 43  7 x  6 64  7 x  6 70  7 x 10  x The solution set is 10 .

  d    log 2 d

 128   log 2 128  7   8   log 2 8  3   4   log 2 4  2  1   log 2 1  0   0.5   log 2 0.5    1  1 479


Chapter 4 Exponential and Logarithmic Functions c.

log 4  7 x  6  3

111. a. log4 64  log4 4  3  1  2

log 4 7 10  6 0 3

 64  b. log 4    log 4 16  2  4

log 4  70  6 0 3 log 4 64 0 3

c. They are the same.

30 3

112. a. log100,000  log100  5  2  3

104. a. log5  9 x  11  2  52  9 x  11

 100,000  b. log   log1000  3  100 

b. 52  9 x  11 25  9 x  11 36  9 x 4 x The solution set is  4 . c.

c. They are the same. 113. a. log 2 25  5 b. 5  log 2 2  5 1  5

log 5  9 x  11  2

c. They are the same.

log 5 9  4  11 0 2

114. a. log7 76  6

log 5  36  11 0 2

b. 6  log7 7  6 1  6

log 5 25 0 2

c. They are the same.

20 2

105. log3  log 4 64  log3 3  1

115. a.

  1  106. log 2 log1 2     log 2 2  1  4  

ln 2 r ln 2 t  0.035   19.8 yr 0.035 t r 

ln 2  17.3 yr 0.04 ln 2 t  0.06   11.6 yr 0.06 ln 2 t  0.08   8.7 yr 0.08

b. t  0.04 

1  1 107. log16  log81 3  log16      4 2

1  1 108. log 4  log16 4  log 4      2 2

Ar   log 1   12 P  116. a. n   r  log 1    12 

109. a. log2 2  log 2 4  1  2  3 b. log 2  2  4  log 2 8  3 c. They are the same.

 3000  0.06  log 1    12  200    0.06  log 1    12 

110. a. log3 3  log3 27  1  3  4 b. log3  3  27  log3 81  4 c. They are the same.



480

log  0.925  16 months log 1.005


Section 4.3 Ar   log 1   12 P b. n   r  log 1    12

d.

 x  1 121. t  x   log 4   x  3 x 1 0 x3 The boundary points are 1 and 3.

 128,000  0.04 log 1    12  611.09    360 months  0.04 log 1    12 

Sign of  x  1 :

23

Sign of  x  3 : 

34

Sign of

   23.7797 b. log  6.626  10   33.1787

117. a. log 6.022  10

  b. log 1.602  10   18.7953 19

Sign of  x  4 : 

inclusive.

c.

f  b  f  a  1.3010  1   0.0301 ba 20  10

d.

f  b  f  a  1.4771  1.3010   0.0176 ba 30  20

120. a.

Sign of

f  b  f  a  0   0.3010   0.6020 ba 1  0.5 f  b  f  a  1  0 1    0.1111 ba 10  1 9

3

x2 x4

:

2

4

Domain:  ,  2   4,  123. s  x   ln

 x  5  1

x  5 1  0 x  5 1 x  5 1 x  4

f  b  f  a  0   0.6931   1.3862 ba 1  0.5

124. v  x  ln

Domain:  4, 

 x  8  1

x  8 1  0

f  b  f  a  2.3026  0 b.   0.2558 ba 10  1

c.

Sign of  x  2 : 

c. Given a number a  10n , then log a  10n is between n and n + 1,

b.

:

 x  2 122. r  x   log5   x  4  x2 0 x4 The boundary points are 2 and 4.

118. a. log 2.9979  108  8.4768

119. a.

x3

Domain:  ,1   3, 

inclusive.

x 1

1

c. Given a number a  10n , then log a  10n is between n and n + 1,

f  b  f  a  3.4012  2.9957   0.0406 ba 30  20

x 8 1 x 8 1 x9

f  b  f  a  2.9957  2.3026   0.0693 ba 20  10

481

Domain:  9, 


Chapter 4 Exponential and Logarithmic Functions  1  125. c  x   log   x  6  x6 0 x60 x6

128.

Domain:  6, 

 1  126. d  x   log   x  8  x8  0 x8 0 x  8

It appears that the functions are inverses. 129.

Domain:  8, 

127. a. The graphs are the same. 130.

The graphs match closely on the interval  0, 2 b. ln1.5  0.4010 The graphs are the same.

Problem Recognition Exercises: Analyzing Functions 1. f  x   3 a.  , 

h. Graph E b.  3

2. g  x  2 x  3 a.  , 

c. f  x   3 03 No x-intercept

b.  , 

c. g  x   2 x  3 0  2x  3 3  2x 3 x 2 3  x-intercept:  , 0 2 

d. f  x   3 f  0  3

y-intercept:  0, 3 e. No asymptotes f. The slope is 0, so the function is never increasing.

d. g  x   2 x  3 g  0  2  0  3  3

g. The slope is 0, so the function is never deceasing.

y-intercept:  0, 3 482


Problem Recognition c. h  x   3 x  2

e. No asymptotes f. The slope is positive, so the function is always increasing.  , 

0 3 x2 0 x2 2 x x-intercept:  2, 0

g. The slope is positive, so the function is never deceasing. h. Graph G

d. h  x   3 x  2 h  0  3 0  2   3 2

3. d  x   x  3  4  1 x  3   4 The graph of this function is the graph of y  x 2 shifted right 3 units and down 4 units. 2

2

y-intercept: 0,  3 2 e. No asymptotes

b.  4, 

a.  ,  2

5. k  x  

0   x  3  4 2

2 x 1

a. Undefined for x  1 .  ,1  1, 

2

b. The function is never 0.  , 0   0, 

2  x  3 x  1 or x  5 x-intercepts: 1, 0 and  5, 0

2 x 1 2 0 x 1 02 No x-intercept

c. k  x  

d. d  x    x  3  4 2

d  0   0  3  4  9  4  5 2

y-intercept:  0, 5 e. No asymptotes

2 x 1 2 k  0   2 0 1 y-intercept:  0,  2

d. k  x  

f. Vertex:  3,  4 Since a is positive, the function is increasing to the right of the vertex.  3,  

e. Vertical asymptote: x  1 The degree of the numerator is 0. The degree of the denominator is 1. Horizontal asymptote: y  0

g. Since a is positive, the function is decreasing to the left of the vertex.  , 3 h. Graph N

f. Never increasing

4. h  x  x  2 The graph of this function is the graph of y  3 x shifted right 2 units. 3

a.  , 

f.  , 

g. Never decreasing h. Graph B

c. d  x    x  3  4 4   x  3

g.  ,1  1, 

h. Graph L 6. z  x  

b.  , 

3x x2

a. Undefined for x  2 .  ,  2   2, 

483


Chapter 4 Exponential and Logarithmic Functions

b.

3x x2 3x  6  3x 6  0 No solution The function does not cross its horizontal asymptote, so it is never 3.  , 3  3, 

 4 d. p  x      3

3x x2 3x 0 x2 0  3x 0 x x-intercept:  0, 0

f.  , 

3

0

 4 p  0     1  3

y-intercept:  0,1 e. Horizontal asymptote: y  0

c. z  x  

g. Never decreasing h. Graph M 8. q  x   x2  6 x  9 a.  ,  b. Vertex: b   6 6 x    3 2a 2  1 2

3x d. z  x   x2 3  0 z  0  0 02 y-intercept:  0, 0

y    3  6  3  9  9  18  9  0 2

 , 0

c. q  x    x 2  6 x  9

e. Vertical asymptote: x  2 The degree of the numerator is 1. The degree of the denominator is 1. 3 Horizontal asymptote: y   3 1

0   x2  6 x  9

0   x2  6 x  9 0   x  3

f.  ,  2   2, 

d. q  x    x 2  6 x  9

x

q  0    0  6  0  9  9 2

y-intercept:  0, 9

a.  , 

e. No asymptotes

b.  0, 

f.  , 3

 4 c. p  x      3

2

x  3 x-intercept:  3, 0

g. Never decreasing h. Graph A  4 7. p  x      3

x

x

g.  3,  

h. Graph C 9. m  x  x  4  1 The graph of this function is the graph of y  x shifted right 4 units and down 1 unit.

x

 4 0    Not possible  3 No x-intercept

a.  , 

484

b.  1, 


Problem Recognition c. m  x   x  4  1

c. r  x   3  x

0  x  4 1

0  3 x 0  3 x x3 x-intercept:  3, 0

1 x  4 x  4  1 or x  4  1 x5 x3 x-intercepts:  3, 0 and  5, 0

d. r  x   3  x

d. m  x   x  4  1

r  0  3  0  3

m  0  0  4  1  4  1  3

y-intercept: 0, 3

y-intercept:  0, 3 e. No asymptotes

f.  4,  

g.  , 4 

h. Graph I

f. Never increasing

g.  , 3

h. Graph F

a.  3, 

0 x3 0 x3 3 x x-intercept:  3, 0

0  x 3 x 3 x  3 or x  3 x-intercepts:  3, 0 and  3, 0

d. s  x   x  3 s  0  0  3  3 No real solution No y-intercept

d. n  x    x  3 n  0   0  3  3

y-intercept:  0, 3

e. No asymptotes

e. No asymptotes

f.  , 0 

g.  0,  

h. Graph D

b.  0, 

c. s  x   x  3

b.  , 3

c. n  x    x  3

f.  3,  

g. Never decreasing h. Graph K 13. t  x  e x  2 The graph of this function is the graph of f  x   e x shifted up 2 units.

11. r  x  3  x    x  3

a.  , 

The graph of this function is the graph of f  x   x reflected across the y-axis and shifted right 3 units. a.  , 3

e. No asymptotes

12. s  x   x  3 The graph of this function is the graph of f  x   x shifted right 3 units.

10. n  x   x  3 The graph of this function is the graph of y  x reflected across the x-axis and shifted up 3 units. a.  , 

b.  2, 

c. t  x   e x  2 0  ex  2

b.  0, 

2  e x No solution No x-intercept

485


Chapter 4 Exponential and Logarithmic Functions c. v  x   ln  x  2

d. t  x   e x  2

0  ln  x  2

t  0  e  2  1  2  3 0

y-intercept:  0, 3

e0  x  2 1 x  2 1  x x-intercept:  1, 0

e. Horizontal asymptotes: y  2 f.  , 

g. Never decreasing

d. v  x   ln  x  2

h. Graph H

v  0  ln  0  2  ln 2

14. v  x  ln  x  2 The graph of this function is the graph of f  x   ln x shifted left 2 units.

y-intercept:  0, ln 2

e. Vertical asymptotes: x  2

a.  2, 

f.  2, 

b.  , 

h. Graph J

g. Never decreasing

Section 4.4 Properties of Logarithms 1. a. log2 4  log2 8  2  3  5

12. quotient; logb x  logb y

b. log 2  4  8  log 2 32  5 13. p logb x

14.

log a x log a b

15. 10; e

16.

log x ln x ; log 5 ln 5

2. a. log5 5  log5 25  1  2  3 b. log5  5  25  log5 125  3 3. a. log4 256  log4 16  4  2  2

17. log5 125z   log5 125  log5 z  3  log5 z

 256   log 4 16  2 b. log 4   16 

18. log7  49k   log7 49  log7 k  2  log7 k 19. log 8cd   log8  log c  log d

4. a. log1,000,000  log10  6  1  5

20. log  24vw  log 24  log v  log w

 1,000,000  b. log    log100,000  5  10

5. a. log3 81  4

b. log3 34  4

6. a. log8 64  2

b. log8 82  2

7. 1

8. 0

9. x

10. x

21. log 2  x  y   z   log 2  x  y   log 2 z 22. log3  a  b  c  log3  a  b  log3 c  p 23. log12    log12 p  log12 q  q  m 24. log9    log9 m  log9 n  n

11. logb x  logb y 486


Section 4.4  a4  38. log8  9   log8 a 4  log8 b9  log8 c  b c

 e 25. ln    ln e  ln 5  1  ln 5  5

 4log8 a  9log8 b  log8 c

 x 26. ln    ln x  ln e  ln x  1  e

 10  12 39. log   log10  log a 2  b 2 2 2   a b  1  1  log a 2  b 2 2

 m2  n   log m2  n  log100 27. log    100 

 

 log m  n  2 2

 d 2  1 12 2 40. log    log d  1  log10, 000  10, 000 

 1000  28. log  2   log1000  log c 2  1  c  1

1 log d 2  1  4 2 1  4  log d 2  1 2

 3  log c 2  1

29. log  2 x  3  4log  2 x  3 4

30. log 8t  3  2log 8t  3

 3 xy  13 41. ln  2   ln  xy   ln w  ln z 2 wz  

2

3 31. log 6 7 x3  log 6 x3 7  log 6 x 7

1  ln x  ln y   ln w  2ln z 3 1 1  ln x  ln y  ln w  2ln z 3 3 

3 32. log8 4 x3  log8 x3 4  log8 x 4

 4 pq  14 42. ln  3   ln  pq   ln t 3  ln m  tm

33. ln 2kt  kt ln 2 34. ln  0.5  rt ln 0.5 rt

1  ln p  ln q   3ln t  ln m 4 1 1  ln p  ln q  3ln t  ln m 4 4 

1  35. log 7  mn 2    log 7 7  log 7 m  log 7 n 2 7   1  log 7 m  2log 7 n

 a2  4 a2  4 43. ln 4  ln  e3  e3

1  36. log 4  t 3v   log 4 16  log 4 t 3  log 4 v  16 

14

1  a2  4 ln 4  e3 

 

1 ln a 2  4  ln e3   4 1 1  ln a 2  4   3 4 4 1 3  ln a 2  4  4 4 

 2  3log 4 t  log 4 v

 p5  log  log 6 p 5  log 6 q  log 6 t 3 37. 6 3  qt   5log 6 p  log 6 q  3log 6 t

487


Chapter 4 Exponential and Logarithmic Functions  e2  e2 44. ln 2  ln  2 c 5  c  5 

15

5

 

48. log 2 4 y 2  log 2  y  2    1 12  log 2  y  2    4 1 12  log 2 y  log 2  2    4 1 1    log 2 y  log 2 2  4 2

1  e2   ln  2 5  c  5 

12 14

1 ln e 2  ln c 2  5   5 1 1   2  ln c 2  5 5 5 2 1   ln c 2  5 5 5 

1 1  log 2 y  1   4 2  1 1  log 2 y  4 8 

 2 x x2  3 8   45. log   4  3x    8  log  2 x x 2  3   log 4  3 x  

49. log15 3  log15 5  log15  3  5  log15 15  1

 log 2  log x  log  x 2  3   log  4  3 x    1  log 2  log x  8log x 2  3  log  4  3 x  2 8

12

50. log12 8  log12 18  log12 8 18  log12 144  2  98  51. log 7 98  log 7 2  log 7    log 7 49  2  2

 5 y  4 x  1 7  46. log  3   2  7 x 

 144   log 6 36  2 52. log 6 144  log 6 4  log 6   4 

7  log 5 y  4 x  1   log 3 2  7 x   7 13  log 5  log y  log  4 x  1   log  2  7 x    1  log 5  log y  7 log  4 x  1  log  2  7 x  3

53. log150  log 3  log 5  log150   log 3  log 5  150   log   log10  1  3 5 

54. log 3 693  log 3 33  log 3 7

12 47. log5 3 x 5  log5  x  5    1 12  log 5  x  5    3 1 12  log 5 x  log 5  5   3 13

 log 3 693   log 3 33  log 3 7   693   log 3   log 3 3  1  33  7 

 

55. 2log 2 x  log 2 t  log 2 x 2  log 2 t  log 2 x 2t

1 1    log 5 x  log 5 5  3 2

 

56. 5log 4 y  log 4 w  log4 y5  log4 w  log4 y 5 w

1 1   log 5 x  1  3 2  1 1  log 5 x  3 6

57. 4 log8 m  3log8 n  2 log 8 p  log8 m 4  log8 n3  log8 p 2

 log8 m 4  log8 n3  log8 p 2  m4   log8  3 2  n p 

488


Section 4.4 58. 8log 3 x  2 log 3 z  7 log 3 y  log 3 x8  log 3 z 2  log 3 y 7

 log 3 x8  log 3 z 2  log 3 y 7

63.

1 1 ln  x  1  ln  x  1 2 2 1  ln  x  1  ln  x  1  2  x  1  ln    x  1

12

60.

 ln

64.

13

 x 2  1  ln    x 1 

 ln 3

1 log 2 w  log 2 w2  100  log 2  w  10 4  w1 4 w2  100    log 2  w  10    w1 4  w  10 w  10   log 2   w  10   14  log 2  w  w  10   log 2  4 w  w  10 

x 1 x 1

1 1 ln x 2  1  ln  x  1 3 3 1  ln x 2  1  ln  x  1  3

 x8   log 3  2 7  z y 

59.

1 log 4 p  log 4 q 2  16  log 4  q  4 3  p1 3 q 2  16    log 4  q4    p1 3  q  4 q  4   log 4   q4   13  log 4  p  q  4   log 4  3 p  q  4 

x2  1 x 1

65.

1 2 61. 6log x  log y  log z 3 3 1  6log x   log y  2log z  3 13 1  log x 6  log yz 2  log x 6  log yz 2 3    x6  x6    log  log   13 2  yz 2   3 yz 

 

1 6ln  x  2  ln x  ln x 2  2 1 6  ln  x  2  ln x  ln x 2    2 6 6 1   x  x  2   1    x  2    ln   ln      2   x2 2 x             x  2 6   ln    x    x  23   ln   x  

 

1 3 62. 15log c  log d  log k 4 4 1  15log c   log d  3log k  4 14 1  log c15  log dk 3  log c15  log dk 3 4    c15  c15   log   log 14  4 3   dk 3  dk

66.

 

12

  x  23   ln  1 2   x 

1 12ln  x  5  ln x  ln x3  3 1 12  ln  x  5  ln x  ln x 3   3 12 12 1   x  x  5   1    x  5    ln     ln   2 3   x3   3   x   

  x  512   ln   2  x  4   x  5   ln  3  2  x 

 

489

13

  x  5 4   ln  2 3   x 


Chapter 4 Exponential and Logarithmic Functions

77. log b 100  log b  2  5  2log b  2  5

67. log 8 y 2  7 y  log y 1

2

 2  log b 2  log b 5

 

 log  8 y 2  7 y y 1 

 2  0.356  0.827  2.366

 y 8 y  7   log    log  8 y  7  y  

78. log b 225  log b  3  5  2log b  3  5 2

 2  log b 3  log b 5

68. log 9t 3  5t  log t 1

 2  0.565  0.827   2.784

   t  9t  5    log  9t  5  log  t    log  9t 3  5t t 1 

79. a. 8  15  16

2

2

23  15  24 3  log 2 15  4 Between 3 and 4

69. logb 15  log b  3  5  log b 3  log b 5 70. logb 10  log b  2  5  log b 2  log b 5

c. 23.9069  15

 0.356  0.827  1.183

80. a. 9  15  27

 

71. logb 81  logb 3  4logb 3  4  0.565  2.26

32  15  23 2  log 3 15  3 Between 2 and 3

4

 

72. logb 125  log b 53  3log b 5  3  0.827 

b. log3 15 

 2.481

 0.356  2  0.827   2.01

log15  2.4650 log 3

c. 32.4650  15

73. logb 50  logb 2  52  log b 2  2log b 5

81. a.

1 3  5 50  3  51 0  log 5 3  1 Between 0 and 1

74. logb 12  log b 3  2  log b 3  2log b 2 2

log15  3.9069 log 2

b. log 2 15 

 0.565  0.827  1.392

 0.565  2  0.356  1.277

b. log5 3 

 15   3  5 75. log b    log b   2  2 

log 3  0.6826 log 5

c. 50.6826  3

 log b 3  log b 5  log b 2

82. a. 1  5  8

 0.565  0.827  0.356  1.036

80  5  81 0  log8 5  1 Between 0 and 1

 6  2  3 76. log b    log b   5  5 

b. log8 5 

 log b 2  log b 3  log b 5  0.356  0.565  0.827  0.094

log 5  0.7740 log8

c. 80.7740  5

490


Section 4.4 83. a. 0.25  0.3  0.5 22  0.3  21 2  log 2 0.3  1 Between  2 and 1 b. log 2 0.3 

1 log e 1 ln10 0 ln e ln10 ln10 ln10 0 ln e ln10 0 ln10

90. ln10 0

log 0.3  1.7370 log 2

c. 21.7370  0.3 84. a. 0.125  0.2  0.25 23  0.2  22 3  log 2 0.2  2 Between 3 and 2 b. log 2 0.2  c. 2

2.3219

1  1  91. False; log5     125  log 5 125

(The left side is 3 and the right side is

log 0.2  2.3219 log 2

log 4.68  107

(The left side is 2 and the right side is

log 2  25.4800 25.4800 2  46,800,000

 1 93. log 4   0  log 4 p  p

log 2.54  10

86. log 2 2.54  1010 

10

log 4  p  0  log 4 p 1

 log 4 p 0  log 4 p

log 2  34.5641 234.5641  2.54  1010

87. log 4 5.68 106 

log 5.68 106 log 4

True

 1 94. log8   0  log8 w  w log8  w 0  log8 w 1

  8.7128

 log8 w 0  log8 w

48.7128  5.68  106

88. log 4 9.84  105 

1 .) 3

1  1 92. False; log 6     36  log 6 36

 0.2

85. log 2 4.68  107 

True

log 9.84  105

True

95. False; log 10 10   log10 log10 (The left side is 2 and the right side is 1.)

log 4  6.6555 46.6555  9.84  105

 100  log100  96. False; log   10  log10 (The left side is 1 and the right side is 2.)

1 ln10 ln e 1 0 ln10 ln10 1 1 0 ln10 ln10

97. log 2  7 y   log 2 10 log 2  7 y 

89. log e 0

log 2  7 y 1 0 log 2  7 y  log 2  7 y  0 log 2  7 y 

True

491

True

1 .) 2


Chapter 4 Exponential and Logarithmic Functions 98. log 4  3d   log 4 10 log 4  3d 

 c  c2  x2  104. ln    c  c2  x2 

log 4  3d 1 0 log 4  3d  log 4  3d  0 log 4  3d 

True

 c  c2  x2 c  c2  x2   ln     c  c2  x2 c  c2  x2 

99. The given statement log5  5  log5  25 is not defined because the arguments to the logarithmic expressions are not positive real numbers.

b.

 

2

105.  log 2 5  log5 9 

1h

log 5 log 9 log 9    log 2 9 log 2 log 5 log 2

implies that b M  x and b N  y . Then x bM  N  b M  N . Writing the expression y b x  b M  N in logarithmic form, we have y  x logb    M  N , or equivalently,  y

 x logb    logb x  logb y as desired.  y

 b  b 2  4ac   b  b 2  4ac  103. log   log    2a 2a    

108. Let y  logb x , which implies that b y  x . Raising both sides to the p power yields

 b    x or b  x . Converting back to y p

 b  b 2  4ac b  b 2  4ac   log    2a 2a  

2

107. Let M  logb x and N  logb y , which

 1 x  x2 1   ln     x  x2 1 x  x2 1 

2

log11 log 4  log 3 log11 log 4   log 3 4 log 3

  1  ln  2  x  x  1 

2

106.  log 3 11  log11 4 

1

 x  x2 1    ln x  x 2  1  ln  2 2  x  x  1 

  ln x  2 ln  c  c  x   2 ln x

ln  x  h  ln x 1  ln  x  h  ln x h h

102.  ln x  x 2 1  ln x  x 2 1

 ln c  c 2  x 2

ln  x  h   ln x h

1  x  h  x  h  ln   ln    x  h  x 

100. The change-of-base formula enables us to write a logarithm of one base in terms of a ratio of logarithms of a different base. This is important among other reasons because it enables us to approximate the value of a logarithm of a base other than 10 or e. 101. a.

2 2     2 2 2 2  c c  x   c c  x   ln  2  ln   2 2  x2 c  c  x        

p

py

p

logarithmic form, we have logb x p  py , but since y  logb x , we have logb x p  p logb x as desired.

 b 2  b 2  4ac   4ac    log  2   log  2  4a  4a    c  log    log c  log a  a

492


Section 4.5 109.

113. a.

The graphs are the same. 110. b.

 

12 1 log x 2  log x 2  log x 2  log x 2

114.

111. The graphs differ by a vertical shift. This can be shown algebraically by using the product property of logarithms. For example, ln  2 x  ln 2  ln x . Therefore, the graph of y  ln x is shifted upward by ln 2 units. 112.

Section 4.5 Exponential and Logarithmic Equations 6. 7 x log 3  2log 5  3log11 2log 5  3log11 x 7 log 3

1. 400  e0.2t  ln 400  0.2t 2. 8721  100.003k  log8721  0.003k

 2log 5  3log11   7 log 3  

3. log11,000  4w  6  104 w6  11,000 4. ln850  3z  2  e3 z2  850 5. 14 x ln 7  2ln 3  7 ln 2 2ln 3  7 ln 2 x 14ln 7

 2ln 3  7 ln 2     14ln 7 

493

7. exponential

8. x; y

9. x; y

10. logarithmic


Chapter 4 Exponential and Logarithmic Functions 11. 3x  81

18.

3x  34

4

x4

 1     49 

7 2 x3   7 2 

2 x  25

5

x 13. 3 5  5t

51 3  5t

14.

1    4

1 4

82 x5  32 x6

2 

  25 

3 2 x 5

x 6

3  3w 31 2  3w

x  15 1    2

20.

3 y 1

2

3 x 4

1

y  1

21.

2 3t 5

 103 

3t

106t 10  1093t 6t  10  9  3t 9t  19

52 z  2  54 2z  2  4 2z  2

1

z 1

t

19    9

19 9

c 5

113c1  111 

22. 100,0002 w1  10,0004w

10 

5 2 w1

c 5

 104 

4 w

1010 w5  10164 w 10w  5  16  4 w 14w  11

113c1  11 c5 3c  1  c  5 4c  4 c 1

14

1003t 5  10003t

10 

52 z 2  625

17. 11

2 x 1

14  x

3 y  3

1    11 

  32 

33 x12  34 x2 3x  12  4 x  2

4

3 y  1  4

3 c 1

15

27 x4  92 x1

3 

23 y 1  16 2

16.

x 1

26 x15  25 x30 6 x  15  5 x  30

1 w 2 15.

19.

1    3

1 t 3

x 1

7 2 x3  7 2 x2 2 x  3  2 x  2 4x  1

12. 2 x  32

x5

7

2 x 3

1

w

494

11 14

11    14 


Section 4.5 23.

27. 103 4 x  8100  120,000

6t  87 log 6t  log 87

103 4 x  128,100

t log 6  log 87

log103 4 x  log128,100 3  4 x  log128,100 4 x  log128,100  3 log128,100  3 x 4 x  0.5269  log128,100  3    ; x  0.5269 4  

log 87 log 6 t  2.4925  log 87    ; t  2.4925  log 6  t

24.

2 z  70 log 2 z  log 70 z log 2  log 70 log 70 z log 2 z  6.1293  log 70    ; z  6.1293  log 2 

25.

28. 1058 x  4200  84,000

1058 x  79,800 log1058 x  log 79,800 5  8 x  log 79,800 8 x  log 79,800  5 log 79,800  5 8 x  0.0122 log 79,800  5    ; x  0.0122 8   x

1024  19 x  4 1020  19 x log1020  log19 x log1020  x log19

29. 21,000  63,000e 0.2t 1  e 0.2t 3  1 ln    ln e 0.2t  3

log1020 log19 x  2.3528  log1020    ; x  2.3528  log19  x

26.

 1 ln    0.2t  3

801  23 y  6

 1 ln    3  ln1  ln 3 0  ln 3 t   0.2 0.2 0.2 ln 3 ln 3 t   5ln 3  5.4931 1 0.2 5  ln 3    or  5ln 3 ; t  5.4931  0.2 

795  23 y log 795  log 23 y log 795  y log 23 log 795 y log 23 y  2.1299  log 795    ; y  2.1299  log 23 

495


Chapter 4 Exponential and Logarithmic Functions 30.

80  320e 0.5t 1  e 0.5t 4  1 ln    ln e 0.5t  4

1  6 x  ln 2   3x  4 ln 7 ln 2  6 x ln 2  3 x ln 7  4 ln 7 6 x ln 2  3x ln 7  4 ln 7  ln 2

 1 ln    0.5t  4

x  6 ln 2  3ln 7   4 ln 7  ln 2 ln 2  4 ln 7 6 ln 2  3ln 7 x  0.7093

x

 1 ln    4  ln1  ln 4 0  ln 4   t 0.5 0.5 0.5 ln 4 ln 4   2ln 4  2.7726 t 1 0.5 2  ln 4    or  2ln 4 ; t  2.7726  0.5  31.

216 x  73 x 4 ln 216 x  ln 73 x 4

33.

 ln 2  4 ln 7    ; x  0.7093  6 ln 2  3ln 7  1118 x  92 x3 ln1118 x  ln 92 x3

34.

1  8 x  ln11   2 x  3 ln 9 ln11  8 x ln11  2 x ln 9  3ln 9

36 x5  52 x ln 36 x5  ln 52 x

8 x ln11  2 x ln 9  3ln 9  ln11 x  8ln11  2 ln 9  3ln 9  ln11

 6 x  5 ln 3  2 x ln 5

ln11  3ln 9 8ln11  2 ln 9 x  0.1779

6 x ln 3  5ln 3  2 x ln 5 6 x ln 3  2 x ln 5  5ln 3

x

x  6ln 3  2ln 5  5ln 3

 ln11  3ln 9    ; x  0.1779  8ln11  2 ln 9 

5ln 3 x 2ln 5  6ln 3 x  1.6286 5ln 3     ; x  1.6286  2ln 5  6 ln 3  32.

4 x 1

35.

e2 x  9e x  22  0

 e   9  e   22  0 x 2

x

Let u  e x . u 2  9u  22  0

7 3 4 x 1 ln 7  ln 35 x 5x

 u  11 u  2  0

 4 x  1 ln 7  5 x ln 3 4 x ln 7  ln 7  5 x ln 3 4 x ln 7  5 x ln 3  ln 7

u  11

or

u  2

e x  11

or

e x  2 No solution

ln e x  ln11

x  4 ln 7  5ln 3  ln 7

x  ln11 x  2.3979 ln11   ; x  2.3979

ln 7 x 4 ln 7  5ln 3 x  0.8495 ln 7     ; x  0.8495  4 ln 7  5ln 3 

496


Section 4.5 40. a. log 4 64 0 3  log 4  64  63

e 2 x  6e x  16  0

36.

 e   6  e   16  0 x 2

3 0 3  log 4 1

x

30 3  Yes, the value is a solution.

Let u  e x . u 2  6u  16  0

b. log 4  1 0 3  log 4  1  63

 u  8 u  2  0 u8

or

u  2

ex  8

or

e x  2 No solution

log 4  1 0 3  log 4  64  No, the value is not a solution.

c. log 4 32 0 3  log 4  32  63

ln e x  ln 8

log 4 32 0 3  log 4  31  No, the value is not a solution.

x  ln 8  2.0794

 ln 8 ; x  2.0794

41. log 4  3w  11  log 4  3  w

e 2 x  9e x

37.

e   9e   0 e  e  9  0 x 2 x

3w  11  3  w 4w  8

x

x

w  2

e x  0 or e x  9



42. log 7 12  t   log 7  t  6

12  t  t  6 6  2t

e 2 x  7e x

38.

e   7e   0 e  e  7  0 x 2 x



 2

x

3t

x

3

43. log x 2  7 x  log18

e x  0 or e x  7

x 2  7 x  18 x 2  7 x  18  0

39. a. log 2 16  31 0 5  log 2 16

 x  9 x  2  0

log 2  5 0 5  4

x  9 or x  2

log 2  5 0 1 

 9, 2

44. log p 2  6 p  log 7

No, the value is not a solution. b. log 2  32  31 0 5  log 2 32

p2  6 p  7 p2  6 p  7  0

log 2 10 5  5

 p  7 p  1  0

00 0  Yes, the value is a solution.

p  7 or p  1

c. log 2 16   1  0 5  log 2  1

log 2 17  0 5  log 2  1  No, the value is not a solution.

497

 7, 1


Chapter 4 Exponential and Logarithmic Functions 45. 6 log 5  4 p  3  18

51. 2 ln  4  3t   1  7

4 p  3  53

ln  4  3t   3

4 p  3  125

4  3t  e3

2 ln  4  3t   6

log 5  4 p  3  3

4 p  128 p  32

3t  e3  4

32

t

46. 5log 6  7 w  1  10

 4  e3    ; t  5.3618  3 

log 6  7 w  1  2

7 w  1  62

52. 4 ln  6  5t   2  22

7 w  1  36

4 ln  6  5t   20

7 w  35 w5

ln  6  5t   5

5

6  5t  e5

47. log8  3 y  5  10  12

5t  e5  6

log8  3 y  5  2

t

3 y  5  82

6  e5  28.4826 5

 6  e5    ; t  28.4826  5 

3 y  5  64 3 y  69 y  23

4  e3  5.3618 3

 23

53.

log 2 w  3   log 2  w  2

48. log 3  7  5 z   14  17

log 2 w  log 2  w  2  3

7  5 z  33

w  w  2   23

7  5 z  27

w2  2 w  8

log 2  w  w  2   3

log 3  7  5 z   3

w2  2 w  8  0  w  2 w  4  0 w  2 or w  4 Check: log 2 w  3   log 2  w  2

5 z  20 z  4

 4

49. log  p  17   4.1

p  17  104.1

log 2  2  3 0  log 2  2  2

p  104.1  17  12,572.2541

log 2  2  3 0  log 2  4 1  3 0 2 2 0 2  log 2 w  3   log 2  w  2

10  17 ; p  12,572.2541 4.1

50. log  q  6  3.5

q  6  103.5

log 2  4  3 0  log 2  4  2

q  103.5  6 q  3168.2777

log 2  4  3 0  log 2  2 undefined undefined  2 ; The value  4 does not check.

10  6 ; q  3168.2777 3.5

498


Section 4.5 54. log 3 y  log 3  y  6  3

57.

log 3  y  y  6   3

log 5 z  log 5  z  20  3

y 2  6 y  27  0

z  z  20  53

log 5  z  z  20   3

y  y  6  33

 y  9 y  3  0

z 2  20 z  125

y  9 or y  3 Check: log 3 y  log 3  y  6  3

z 2  20 z  125  0

 z  5 z  25  0 z  5 or z  25 Check: log 5 z  3  log 5  z  20

log 3  9  log 3  9  6 0 3 log 3  9  log 3  3 0 3

log 5  5 0 3  log 5  5  20

undefined undefined log 3 y  log 3  y  6  3

log 5  5 0 3  log 5  25

log 3 3  log 3  3  6 0 3

undefined undefined log 5 z  3  log 5  z  20

log 3 3  log 3 9 0 3

log 5  25 0 3  log 5  25  20

1 20 3  3 ; The value 9 does not check.

2 0 3  log 5  5

20 3 1 20 2  25 ; The value  5 does not check.  

log 6  7 x  2  1  log 6  x  5

55.

log 6  7 x  2  log 6  x  5  1  7x  2 1 log 6   x  5 

58.

32

log 2  x  x  6   4

x  x  6  2 4

x 2  6 x  16  0

x  32

 x  2 x  8  0

log 4  5 x  13  1  log 4  x  2

x  2 or x  8 Check: log 2 x  4  log 2  x  6

log 2  2 0 4  log 2  2  6

log 4  5 x  13  log 4  x  2  1

log 2  2 0 4  log 2  8

 5 x  13  1 log 4   x  2 

undefined undefined log 2 x  4  log 2  x  6

5 x  13  41 x2 5 x  13  4 x  8

5

log 2 x  4  log 2  x  6

log 2 x  log 2  x  6  4

7x  2  61 x5 7x  2 6 x5 7 x  2  6 x  30

56.

log 5 z  3  log 5  z  20

log 2 8 0 4  log 2  8  6 3 0 4  log 2  2

x5

30 4  1 30 3  8 ; The value  2 does not check.

499


Chapter 4 Exponential and Logarithmic Functions 59.

ln x  ln  x  4  ln  3x  10

Check: ln x  ln  x  3  ln  5 x  7 

 x  x  4  ln  0  3x  10  x  x  4  e0 3x  10 x2  4 x 1 3x  10 x 2  4 x  3 x  10

ln1  ln 1  3 0 ln 5 1  7 

ln x  ln  x  4  ln  3 x  10  0

ln1  ln  2 0 ln  2

undefined undefined ln x  ln  x  3  ln  5 x  7  ln 7  ln  7  3 0 ln 5  7   7  ln 7  ln 4 0 ln 28 ln 28 0 ln 28 

 7 ; The value 1 does not check.

x  7 x  10  0 2

 x  2 x  5  0

61.

x  2 or x  5 Check: ln x  ln  x  4  ln  3x  10

log x  log  x  7   log  x  15  0

 x  x  7  log  0  x  15  x  x  7  100 x  15 x2  7 x 1 x  15 x 2  7 x  x  15

ln 2  ln  2  4 0 ln 3  2  10 ln 2  ln  2 0 ln  4

undefined undefined ln x  ln  x  4  ln  3x  10 ln 5  ln  5  4 0 ln 3  5  10 ln 5  ln10 ln 5

x 2  8 x  15  0

ln 5 0 ln 5  5 ; The value 2 does not check.  60.

log x  log  x  7   log  x  15

 x  3 x  5  0 x  3 or x  5 Check: log x  log  x  7   log  x  15

ln x  ln  x  3  ln  5 x  7 

ln x  ln  x  3  ln  5 x  7   0

log 3  log  3  7  0 log  3  15

 x  x  3  ln  0  5x  7  x  x  3  e0 5x  7 x 2  3x 1 5x  7 x 2  3x  5 x  7

log 3  log  4 0 log  12 undefined undefined log x  log  x  7   log  x  15 log 5  log  5  7  0 log  5  15 log 5  log  2 0 log  10 undefined undefined   ; The values 3 and 5 do not check.

x2  8x  7  0

 x  1 x  7  0 x  1 or x  7

500


Section 4.5 log x  log  x  10  log  x  18

62.

nt

 r 65. A  P  1    n Interest is A  P  $1000 .

log x  log  x  10  log  x  18  0

 x  x  10  log  0  x  18  x  x  10  100 x  18 x 2  10 x 1 x  18 x 2  10 x  x  18

 0.022 4000 1    12 

x 2  11x  18  0

 x  2 x  9  0 x  2 or x  9 Check: log x  log  x  10  log  x  18

12 t

 4000  1000

 0.022 4000 1    12 

12 t

 0.022 1   12 

12 t

 0.022 ln 1    12 

12 t

undefined undefined log x  log  x  10  log  x  18 log 9  log  9  10 0 log  9  18

nt

 r 66. A  P  1    n Interest is A  P  $2000 .

undefined undefined   ; The values 2 and 9 do not check.

 0.025 10,000 1    12 

rt

3 10,000  10,000e0.055t 0.055t

ln 3  0.055t ln 3 t 0.055 t  20 yr 64.

 5  ln    4

10 yr 2 months

log 9  log  1 0 log  9

3 e

5 4

 5 ln    4 t  0.022 12 ln 1    12  t  10.15

log 2  log  8 0 log  16

A  Pe

 0.022  5 12t ln 1   ln      4 12 

log 2  log  2  10 0 log  2  18

63.

 5000

A  Pe rt

12 t

 10,000  2000

 0.025 10,000 1    12 

12 t

 0.025 1   12 

12 t

 0.025 ln 1    12 

12 t

 12,000 

6 5

 6  ln    5

 0.025  6 12t ln 1   ln      5 12 

1,000,000  80,000e0.06t

 6 ln    5 t  0.025 12ln 1    12 

12.5  e0.06t ln12.5  0.06t ln12.5 t 0.06 t  42 yr

t  7.3 7 yr 4 months

501


Chapter 4 Exponential and Logarithmic Functions 67. a. R  100  2 b.

t 4.2

 100  2

30  100  2

 2 4.2

 72 mCi

69.

0.5  e  kx

t 4.2

ln  0.5  ln e  kx

3 t 4.2   2 10 3 t 4.2   ln    ln  2  10 

ln  0.5   kx ln  0.5 k ln  0.5 ln  0.5   14.1 m Ocean: x  k 0.0491 ln  0.5 ln  0.5   8.7 m Tahoe: x  k 0.0799 ln  0.5 ln  0.5 Erie: x    3.5 m k 0.1980 x

t ln 2  3 ln      10  4.2  3 4.2 ln    10  t  7.3 ln 2 7.3  2  5.3 days 68. a.

C  80  2

t 6

60  80  2

t 6

70.

ln  0.2  ln e  kx ln  0.2   kx ln  0.2 k ln  0.2 ln  0.2 Ocean: x    32.8 m k 0.0491 ln  0.2 ln  0.2   20.1 m Tahoe: x  k 0.0799 ln  0.2 ln  0.2   8.1 m Erie: x  k 0.1980 x

t ln 2  3 ln      4 6  3 6ln    4  2.5 hr t ln 2 C  80  2

t 6

30  80  2

t 6

P  e  kx 0.2  e  kx

3 t 6   2 4 t 6  3 ln    ln  2  4

b.

P  e  kx

71.

P  e  kx 0.01  e  kx

3 t 6   2 8 t 6  3 ln    ln  2  8

ln  0.01  ln e  kx ln  0.01   kx ln  0.01 k ln  0.01 ln  0.01 Ocean: x    93.8 m k 0.0491 x

t ln 2  3 ln      8 6  3 6ln    8  8.5 hr t ln 2

ln  0.01 ln  0.01   57.6 m k 0.0799 ln  0.01 ln  0.01   23.3 m Erie: x  k 0.1980

72. Tahoe: x 

502


Section 4.5 73.

T  50  1550e 0.05t 100  50  1550e 0.05t

b.

L  I   log  12   10  10 L  log I  log1012 10 L  log I  12log10 10 L log I   12 10

50  1550e 0.05t 1  e 0.05t 31  1 ln    ln e 0.05t  31  1 ln    0.05t  31  1 ln    31 t  69 or 1 hr 9 min 0.05 74.

L

I  1010 30

I  1010

T  70  255e 0.017 t 110  70  255e 0.017 t

71

76. I  1010

40  255e 0.017 t

12

12

12

 10312  10 9 W/m 2

 107.112  10 4.9

 1.26  10 5 W/m 2 90

8  e 0.017 t 51 8   ln    ln e 0.017 t  51

12

I  1010  10912  10 3  1  10 3 W/m 2 1.26  105  I  1  103 W/m 2 77. a. L  D   8.8  5.1log D

 8 ln    0.017t  51

L  6  8.8  5.1log 6  12.8 b. L  D   8.8  5.1log D

 8 ln    51  109 or 1 hr 49 min t 0.017

15.5  8.8  5.1log D 6.7  5.1log D 6.7  log D 5.1 D  106.7 5.1  21 in.

 I 75. a. L  10 log   I  0

 3.4  10 8  L  10 log   1012 

 I  L  10 log  12   10 

78. a. L  D   8.8  5.1log D

L  4  8.8  5.1log 4  11.9

 10 log 3, 4  104  45.3 dB

b. L  D   8.8  5.1log D

17  8.8  5.1log D 8.2  5.1log D 8.2  log D 5.1 D  108.2 5.1  41 in.

503


Chapter 4 Exponential and Logarithmic Functions 79. a.

83. For 0  t  72 : C  t   0.088  0.89ln  t  2

pH   log  H   8.5   log  H  

1.5  0.088  0.89ln  t  2

8.5  log  H  

1.588  0.89 ln  t  2

10 8.5  H 

1.588  ln  t  2 0.89 e1.588 0.89  t  2

H   3.16  10 9 mol/L b.

pH   log  H  

t  e1.588 0.89  2  4 min For t  72 : C  t   4.64e 0.003t

2.3   log  H   2.3  log  H   102.3  H  

H  5.01  10 80. a.

3

1.5  4.64e 0.003t 1.5  e 0.003t 4.64  1.5  ln   0.003t  4.64 

mol/L

pH   log  H   6.2   log  H   6.2  log  H   10

6.2

H

 1.5  ln   4.64  t  376 min 0.003 4 min  t  376 min

H  6.31  10 7 mol/L b.

pH   log  H  

84. a.

8.4   log  H  

D  t   91  160 ln  t  1 D 15  91  160 ln 15  1

8.4  log  H  

 91  160 ln16  535

10 8.4  H 

b.

H   3.98  10 9 mol/L

D  t   91  160 ln  t  1 600  91  160 ln  t  1

81. S  t   94  18ln  t  1

509  160 ln  t  1

65  94  18ln  t  1

509  ln  t  1 160 e509 160  t  1

29  18ln  t  1 29  ln  t  1 18 e 29 18  t  1

t  e509 160  1  23 days

t  e 29 18  1  4 months

85.

f  x  2x  7 y  2x  7

82. S  x   5  7 ln  x  1

x  2y  7

19.1  5  7 ln  x  1

x  7  2y

14.1  7 ln  x  1 14.1  ln  x  1 7 e14.1 7  x  1

log 2  x  7   y f 1  x   log 2  x  7 

x  e14.1 7  1  6.50 or $650 504


Section 4.5 f  x   5x  6

86.

91.

y  5x  6

y  log  x  7   9

x5 6

x  log  y  7   9

y

x65

x  9  log  y  7 

y

log 5  x  6  y

10 x9  y  7

f 1  x   log 5  x  6

10 x9  7  y f 1  x   10 x9  7

f  x   ln  x  5

87.

y  ln  x  5

92.

x  log  y  11  8

e  y5 x

x  8  log  y  11

ex  5  y f 88.

 x  e  5

10 x 8  y  11

x

10 x 8  11  y

f  x   ln  x  7 

f 1  x   10 x 8  11

y  ln  x  7  x  ln  y  7 

93. 5 x  3  122

ex  y  7

5 x  125

ex  7  y

5 x  53

f 1  x   e x  7 89.

x 3 x  3 or x  3

f  x   10 x 3  1 y  10 x 3  1

94. 11 x  9  130

x  10 y 3  1

11 x  121

x  1  10 y 3

 3, 3

11 x  112

log  x  1  y  3

x 2

log  x  1  3  y

x  2 or x  2

f 1  x   log  x  1  3 90.

f  x   log  x  11  8 y  log  x  11  8

x  ln  y  5

1

f  x   log  x  7   9

f  x   10

x2

4

y  10

x2

4

x  10

y2

4

 2, 2

95. log x  2log 3  2

 x log  2   2 3   x log    2  9

x  4  10 y  2

x  102 9 x  900

log  x  4  y  2 log  x  4  2  y f 1  x   log  x  4  2

505

900


Chapter 4 Exponential and Logarithmic Functions 96. log y  3log 5  3

x2 6x  6x

102.

 x log  3   3 5 

x2 6x  6x  0

 x  3 log   125 

6  x  1 x  1  0 x

6 x  0 or x  1 or x  1

x  103 125 x  125,000 97.

 1,1

undefined

125,000

103. log 3  log 3 x   0

6 x 2  36

log 3 x  30

6 x 2  62

log 3 x  1

x2  2  2

x  31

x2  4

x3

2

2

 4, 4

x  4 98.

6x x2  1  0

104. log 5  log 5 x   1

8 y 7  64

log 5 x  51

8 y  7  82

log 5 x  5

2

2

x  55

y2  7  2

 3, 3

x  3

105. 3 ln x  12  0

3 ln x  12

99. log 9 x  4  log 9 6

ln x  4

x4 6

ln x  4

x  4  6 or x  4  6 x2

x  10

xe

 10, 2

100. log8 3  x  log8 5

3  x  5 or 3  x  5 x  2  x  8 x  2

x8

ln x  4 x  e 4 1 x 4 e

106. 7 ln x  14  0

 2, 8

7 ln x  14 ln x  2

x 2 e x  9e x

ln x  2

x 2 e x  9e x  0

x  e2

ex x2  9  0 e x  x  3 x  3  0 e x  0 or x  3 or x  3 undefined

or

4

 4 1 e , 4   e 

3 x  5

 3125

x  3125

y2  9

101.

 3

 2 1 e , 2   e 

 3, 3 506

or

ln x  2 x  e 2 1 x 2 e


Section 4.5 107. log 3 x  log 3  2 x  6 

Let u  e x . 2u 2  9u  4  0

1 log 3 4 2

 x  log 3   log 3 2  2 x  6 

 2u  1 u  4  0

x 2 2x  6 x  4 x  12 3x  12 x  4

or

1 2 1 ex  2 u

1 log 3 4 2 1 log 3  4  log 3  2  4  6 0 log 3 4 2 1 log 3  4  log 3  2 0 log 3 4 2 undefined undefined   ; The value  4 does not check. log 3 x  log 3  2 x  6 

1 3 1 ex  3 u

or

u7 ex  7

111. If two exponential expressions of the same base are equal, then their exponents must be equal. 112. If two logarithmic expressions of the same base are equal, then their arguments must be equal. 113. Take a logarithm of any base b on each side of the equation. Then apply the power property of logarithms to write the product of x and the log b 4 . Finally divide both sides by log b 4 .

   6e  3e  4  0 2  e   9e  4  0 x

x

1 x  ln   x  ln 7 3   1  ln   , ln 7 ; x  1.0986, x  1.9459   3 

x 2

x

 3u  1 u  7  0

2e x e x  3  3e x  4 x

x

Let u  e x . 3u 2  22u  7  0

1 log 5 x  log 5  x  1  log 5 8 3 1 log 5  2  log 5  2  1 0 log 5 8 3 1 log 5  2  log 5  1 0 log 5 8 3 undefined undefined   ; The value  2 does not check.

x

2

x 2

Check:

2 e

   18e  4e  7  0 3  e   22e  7  0

3 ex

x 2 x 1 x  2x  2 x  2 x  2

3e x e x  6  4e x  7

110.

1 108. log 5 x  log 5  x  1  log 5 8 3  x   log 5 2 log 3   x  1

x 2

ex  4

1 x  ln   x  ln 4 2   1  ln   , ln 4 ; x  0.6931, x  1.3863   2 

Check:

109.

u4

507


Chapter 4 Exponential and Logarithmic Functions 114. Use the product property of logarithms to write a single logarithm on the left side of the equation. Then write the logarithmic equation in its equivalent exponential form. The resulting equation is linear which is solved by applying the addition and multiplication properties of equality.

10  13 10 4 3 10 x  13 10 x  12

 u  1 u  4  0 u 1

 

  10

 

118.

 12 10 x  13  0

Let u  10 . u 2  12u  13  0 x

or

10 x  1

or

u  2 ln x  2

x  log13

x  e 2 

119.

e   8 e   9  0 x

Let u  e . u 2  8u  9  0

x  10

u9 ex  9

x  ln  1

x  ln 9

or

log x  2 x  102

0

x 1 1,100

 u  1 u  9  0 e  1

x  e 1 

 log x  2  log x 2

log x  0

x

or

1 e2

 log x 2  2 log x  0 log x  log x  2  0

  

x

u  1 ln x  1

 1 1  2 ,  ; x  0.1353, x  0.3679 e e

e x e x  9e  x  8 e x

u  1

 ln x 2  ln x3  2  ln x  2  3 ln x   2  0

10 x  13

e x  9e  x 4 2 e x  9e  x  8

x 2

 u  2 u  1  0

undefined  log13 ; x  1.1139

xe x  e4 e, e 4 ; x  2.7183, x  54.5982

u  13

x  log  1

116.

ln x  4

Let u  ln x . u 2  3u  2  0

 u  1 u  13  0 u  1

u4

or

ln x  1

10 x 10 x  13 10 x  12 10 x x 2

 ln x 2  ln x5  4  ln x  2  5  ln x   4  0 Let u  ln x . u 2  5u  4  0

x

x

115.

117.

120.

x  100

 log x 2  log x3  log x 2  3log x  0 log x  log x  3  0

undefined ln  9 ; x  2.1972

log x  0 x  10 x 1 1,1000

508

or 0

log x  3 x  103 x  1000

1 e


Section 4.5 log w  4 log w  12  0

121.

124.

 e   6e  4  0

 log w   4 log w  12  0

x 2

2

u 2  4u  12  0

 u  6 u  2  0 or

u

u2

log w  6

log w  2

undefined

log w  4

x

Let u  e x . u 2  6u  4  0

Let u  log w .

u  6

e 2 x  6e x  4  0

  6 

 6 2  4 1 4 2 1

6  20 6  2 5   3 5 2 2 u  3 5 or u  3  5 

w  104  10,000

10,000

ex  3  5

x  ln 3  5 ln x  3 ln x  10  0

122.

x  ln 3  5

x  1.6556

x  0.2693

 ln x   3 ln x  10  0

ln 3  5  , ln 3  5  ; x  1.6556,

Let u  ln x . u 2  3u  10  0

x  0.2693

2

125. log 5 6c  5  log 5 c  1

 u  5 u  2  0 u  5

or

ln x  6 undefined

u2

log 5

ln x  2 ln x  4

 e  ; x  54.5981

 

2

6c 2  5c  25  0

 2c  5 3c  5  0 5 5 or c  2 3 Check: log 5 6c  5  log 5 c  1 c

 82  4 1 6 2 1

5  5 log 5 6     5  log 5  0 1  2 2

8  40 8  2 10   4  10 2 2 u  4  10 or u  4  10 

e  4  10 x

 

6c 2  5c  52

 8e x  6  0

  8 

2

 

Let u  e x . u 2  8u  6  0 u

 6c  5c   1

1 log 5 6c 2  5c  1 2 log 5 6c 2  5c  2

x  e4  54.5981

e 2 x  8e x  6  0 ex

 6c  5  c   1

log 5

4

123.

ex  3  5

5 log 5 10  log 5  0 1 2 undefined undefined

e  4  10 x

 x  ln  4  10  ln  4  10  , ln  4  10  ; x  1.9688, x  ln 4  10

x  0.1771

509


Chapter 4 Exponential and Logarithmic Functions log 5 6c  5  log 5 c  1 5  5 01 log 5 6    5  log 5  3 3 5 01 3  5 log 5  15   0 1 3 

log 5 15  log 5

 1.4408, 2.8584

log 5  5 0 1 10 1  5 5     ; The value  does not check. 2  3

128.

126. log 3 x  8  log 3 x  1

log 3

 x 8  x 1

log 3

 x  8x   1 2

 

 

1 log 3 x 2  8 x  1 2 log 3 x 2  8 x  2 x 2  8 x  32 x2  8x  9  0  x  1 x  9  0 x  1 or x  9 Check: log 3 x  8  log 3 x  1

 1.5818, 0.7417 129.

log 3 1  8  log 3 1 0 1 log 3 9  log 3 1 0 1 undefined undefined log 3 x  8  log 3 x  1

 2.0960

log 3 9  8  log 3 9 0 1 log 3 1  log 3 3 0 1 10 1  9 ; The value 1 does not check.

130.

127.

 2.0087

510


Section 4.6 Section 4.6 Modeling with Exponential and Logarithmic Functions 2. f  x   log b x

1. a and e only

14.

N  e 0.025t N0

3. 102 x 4  80,600  log80,600  2 x  4

 N ln    0.025t  N0 

4. ln  x  4  6  e6  x  4 5.

f  x   e x2 ye

 N ln    N0   t 0.025

x2

x  e y 2 ln x  y  2

15.

f 1  x   2  ln x

2  ln x  y

M  8.8  5.1log D M  8.8  5.1log D M  8.8  log D 5.1 10 M 8.8 5.1  D

6. g  x   4 ln x y  4 ln x x  4 ln y x  ln y 4 ex 4  y

16. log E  12.2  1.44 M

log E  1.44 M  12.2

g 1  x   e x 4

7. 5  3x  0 3x  5 5 x 3 8.

N  N 0e 0.025t

E  101.44 M 12.2 17.

 pH  log  H  

5   ,  3

x2  0  x  0 or x  0 x  0 or x  0

10  pH  H  18.

 , 0   0,  

 I L  10 log    I0   I L  log   10  I0 

10. y  ae ln b x

9. growth; decay

pH   log  H  

10 L 10  11. logistic 13.

12. c

Q  Q0 e Q  e  kt Q0

I I0

I 0 10 L 10  I

 kt

19.

A  P 1  r 

t

A t  1  r  P t  A ln    ln 1  r   P

 Q ln     kt Q  0

 Q ln    Q0   k t

 A ln    t ln 1  r   P

511


Chapter 4 Exponential and Logarithmic Functions

20.

 A ln    P t ln 1  r 

5  e0.044t 3  5 ln    0.044t  3

A  Pe rt A  e rt P  A ln    rt  P

 5 ln    3 t  11.6 yr 0.044

A  50,000e rt

24. a.

194,809.67  50,000e 20 r

 A ln    P r t

194,809.67  e 20 r 50,000  194,809.67  ln   20r  50,000 

 k  E 21. ln     A  RT

 194,809.67  ln   50,000  r  0.68 or 6.8% 20

k  e  E  RT  A k  Ae  E  RT 

A  50,000e rt

b.

1  P  22.  ln  A k  14.7 

250,000  50,000e0.068t 250,000  e0.068t 50,000

 P    kA ln   14.7 

5  e0.068t

P  e  kA 14.7 P  14.7e  kA 23. a.

ln 5  0.068t ln 5 t  23.7 yr 0.068

A  12,000e rt 14,309.26  12,000e

P  806.07  Pe0.032 3

14,309.26  e4 r 12,000

P  Pe0.096  806.07

P 1  e0.096  806.07

 14,309.26  ln   4r  12,000 

P

 14,309.26  ln   12,000  r  0.44 or 4.4% 4 b.

A  Pert

25. a.

4r

b.

806.07  $8000 1  e0.096

A  Pert 10,000  8000e0.032t 10,000  e0.032t 8000 5  e0.032t 4  5 ln    0.032t  4

A  12,000e rt 20,000  12,000e0.044t 20,000  e0.044t 12,000

512


Section 4.6  5 ln    4  7 yr t 0.032

Taiwan: P  t   P0 ekt P  t   22.9ekt 23.7  22.9e k 10 23.7  e k 10 22.9  23.7   10k ln   22.9 

A  Pe rt

26. a.

P  193.03  Pe0.021 2 P  Pe0.042  193.03

P 1  e0.042  193.03 193.03 1  e0.042 P  $4500

 23.7  ln   22.9   0.00343 k 10 P  t   22.9e0.00343t

P

b.

A  Pert 6000  4500e0.021t 6000  e0.021t 4500 4  e0.021t 3  4 ln    0.021t  3

b. Australia: P  20  19e0.01735 20  26.9 million Taiwan: P  20  22.9e0.00343 20  24.5 million c. The population growth rate for Australia is greater. d. Australia: 30  19e0.01735t

 4 ln    3 t  13.7 yr 0.021

30  e0.01735t 19  30  ln    0.01735t  19 

27. a. Australia: P  t   P0 ekt

 30  ln    19  t  26.3 years 0.01735 In the year 2026 Taiwan: 30  22.9e0.00343t 30  e0.00343t 22.9  30  ln   0.00343t  22.9 

P  t   19ekt 22.6  19e k 10 22.6  e k 10 19  22.6   10k ln   19   22.6  ln   19  k  0.01735 10 P  t   19e0.01735t

 30  ln   22.9  t  78.7 years 0.00343 In the year 2078

513


Chapter 4 Exponential and Logarithmic Functions 28. a. Switzerland: P  t   P0 e kt

Israel: 10  6.7e0.01391t 10  e0.01391t 6.7 10   ln   0.01391t  6.7 

P  t   7.3ekt 7.8  7.3e k 10 7.8  e k 10 7.3  7.8   10k ln   7.3 

 10  ln   6.7  t  28.8 years 0.01391 In the year 2028

 7.8  ln   7.3   0.00662 k 10 P  t   7.3e0.00662t Israel: P  t   P0 e kt P  t   6.7e

29. a. Costa Rica: t P  t   4.3 1.0135

P  t   4.3e ln1.0135t P  t   4.3e0.01341t In 2000, the population is 4.3 million. Norway: t P  t   4.6 1.0062

kt

7.7  6.7e k 10 7.7  e k 10 6.7  7.7   10k ln   6.7 

P  t   4.6e ln1.0062t P  t   4.6e0.00618t In 2000, the population is 4.6 million.

 7.7  ln   6.7  k  0.01391 10 P  t   6.7e0.01391t

b. Costa Rica: 5  4.3e0.01341t

5  e0.01341t 4.3  5  ln   0.01341t  4.3 

b. Switzerland: P  20  7.3e0.00662 20  8.3 million Israel: P  20  6.7e0.01391 20  8.8 million

 5  ln   4.3   11.2 years t 0.01341 In the year 2011 Norway: 5  4.6e0.00618t 5  e0.00618t 4.6  5  ln   0.00618t  4.6 

c. The population growth rate is greater for Israel. d. Switzerland: 10  7.3e0.00662t

10  e0.00662t 7.3  10  ln    0.00662t  7.3 

 5  ln   4.6   13.5 years t 0.00618 In the year 2013

 10  ln    7.3  t  47.5 years 0.00662 In the year 2047 514


Section 4.6 c. The population growth rate for Costa Rica is greater.

Q  t   Q0 e 0.000121t

32.

0.294Q0  Q0 e 0.000121t 0.294  e 0.000121t ln 0.294  0.000121t ln 0.294 t  10,117 yr 0.000121

30. a. Haiti: t P  t   8.5 1.0158

P  t   8.5e ln1.0158t P  t   8.5e0.01568 In 2000, the population is 8.5 million. Sweden: t P  t   9.0 1.0048

33. a.

0.5Q0  Q0 e  k 87.7 0.5  e  k 87.7 ln 0.5  87.7 k ln 0.5 k  0.0079 87.7 Q  t   2e 0.0079t

P  t   9.0e ln1.0048t P  t   9.0e0.00479t In 2000, the population is 9.0 million. b. Haiti: 10.5  8.5e0.01568

b. Q  t   2e 0.0079t

10.5  e0.01568t 8.5  10.5  ln   0.01568t  8.5 

1.6  2e 0.0079t 0.8  e 0.0079t ln 0.8  0.0079t ln 0.8 t  28 yr 0.0079

 10.5  ln   8.5  t  13.5 years 0.01568 In the year 2013 Sweden: 10.5  9.0e0.00479t 10.5  e0.00479t 9.0  10.5  ln   0.00479t  9.0 

34. a.

Q  t   Q0 e  kt 0.5Q0  Q0 e  k  6 0.5  e  k  6 ln 0.5  6k ln 0.5 k  0.1155 6 Q  t   10e 0.1155t

 10.5  ln   9.0  t  32.2 years 0.00479 In the year 2032

b. Q  t   10e 0.1155t

3  10e 0.1155t 0.3  e 0.1155t ln 0.3  0.1155t ln 0.3 t  10.4 hr 0.1155

c. The population growth rate for Haiti is greater. 31.

Q  t   Q0 e  kt

Q  t   Q0 e 0.000121t

35. a. Q  t   Q0 e  kt 1 Q0  Q0 e  k 174 3 1  e  k 174 3

0.78Q0  Q0 e 0.000121t 0.78  e 0.000121t ln 0.78  0.000121t ln 0.78 t  2053 yr 0.000121 515


Chapter 4 Exponential and Logarithmic Functions  1 ln    174k  3

b.

 1 ln    3 k  0.0063 174 Q  t   300e 0.0063t b.

Q  t   Q0 e 0.0063t 0.5Q0  Q0 e 0.0063t 0.5  e 0.0063t ln 0.5  0.0063t ln 0.5 t  110 min 0.0063

36. a.

t 6

 1 P  0  2,000,000    2

06

 1 P  6  2,000,000    2

66

 1 P 12  2,000,000    2

12 6

 1 P  60  2,000,000    2

60 6

 1,000,000  500,000  1953

P  0  2,000,000e 0.1155t  2,000,000 P  6  2,000,000e 0.1155t  1,000,000

Q  t   Q0 e  kt

P 12  2,000,000e 0.1155t  500,000 P  60  2,000,000e 0.1155t  1956

0.2  e  k  90 ln  0.2  90k

 1 38. a. Q  t      2

ln  0.2 k  0.01788 90 Q  t   Q0 e 0.01788t

t 1620

 1  t        2  

Q  t   Q0 e 0.01788t

1 1620

0.5Q0  Q0 e 0.01788t

 eln1 2t 

0.5  e 0.01788t ln 0.5  0.01788t ln 0.5 t  38.8 days 0.01788

 e      e 0.000428t

 

 1 Q t      2

t 1620

 1 Q  0     2

0 1620

1 1620

ln 1 2 /1620t

b.

 1 37. a. P  t   2,000,000    2

 2,000,000

P  t   2,000,000e 0.1155t

0.2Q0  Q0 e  k  90

b.

 1 P  t   2,000,000    2

t 6

t 16

 1    2,000,000       2  

 2,000,000  eln1 2t 

16

ln 1 2 /6t  2,000,000  e        0.1155t  2,000,000e

1

 1 Q 1620     2

1620 1620

 1 Q  3240     2

3240 1620

 0.5  0.25

Q  t   e 0.000428t Q  0  e 0.000428 0  1 Q 1620  e 0.0004281620  0.5 Q  3240  e 0.000428 3240  0.25 516


Section 4.6 39. a. P  t  

P  0 

725 1  8.295e 0.0165t 725 0.0165 0

40. a. P  t  

725 1  8.295e0

P  0 

1  8.295e 725   78 1  8.295 On January 1, 1900, the U.S. population was approximately 78 million. b.

P t   P 120 

P t   P 150 

725 1  8.295e 0.0165t 725

b.

c.

P t   P 140 

725 1  8.295e 0.0165t 725 500  1  8.295e 0.0165t 500 1  8.295e 0.0165t  725

d.

55.1 1  9.6e 0.02515t 55.1

55.1 1  9.6e 0.02515t 55.1

55.1 1  9.6e 0.02515t 55.1 45  1  9.6e 0.02515t 45 1  9.6e 0.02515t  55.1 P t  

1  8.295e 0.0165t  1.45

55.1 45 55.1 1 9.6e 0.02515t  45 55.1 1 0.02515t  45 e 9.6   55.1    1 0.02515t  ln  45   9.6   

1  9.6e 0.02515t 

0.0165t

 0.45 0.45 e 0.0165t  8.295  0.45  0.0165t  ln   8.295  0.45  ln   8.295 t  176.6 0.0165

In the year 2076

   55.1  1 ln  45   9.6  t  149.3 0.02515

8.295 e0.0165t approaches  , so the value of the expression approaches 0.

e. As t   , The denominator of

f. Limiting value: P t  

55.1 1  9.6e0

1  9.6e 0.02515140  42.9 million

P t  

8.295e

1  9.6e 0.02515115  36.0 million

725 1  8.295e 0.0165t 725

P t   P 115 

1  8.295e 0.0165150  427 million

d.

0.02515 0

1  9.6e 55.1   5.2 1  9.6 On January 1, 1900, the Canadian population was approximately 5.2 million.

1  8.295e 0.0165120  338 million

c.

55.1 1  9.6e 0.02515t 55.1

725  725 million 1 0

In the year 2049

517


Chapter 4 Exponential and Logarithmic Functions e. As t   , The denominator of

9.6

b.

0.02515t

e approaches  , so the value of the expression approaches 0.

f. Limiting value: P t   41. a. N  t  

N  0 

55.1  55.1 million 1 0

72 70 72 1 9e 0.36t  70 72 1 e 0.36t  70 9   72   0.36t  ln  70  1  9   

2.4 1  15e 0.72t 2.4

2.4

1  15e 0.72 6 2,000,000

c.

1  9e 0.36t 

1  15e 0.72 0 2.4   0.15 1  15 150,000 were infected initially. b. N  6 

72 1  9e 0.36t 72 70  1  9e 0.36t 70 1  9e 0.36t  72 S t  

2

  72    1 ln  70   9  t  16 weeks 0.36

2.4 1  15e 0.72t 2.4 1 1  15e 0.72t 1  15e 0.72t  2.4 N t  

c. Limiting value: 72 S t    72 thousand  $72,000 1 0

15e 0.72t  1.4 1.4 e 0.72t  15  1.4  0.72t  ln    15   1.4  ln    15  t  3.3 months 0.72

43. exponential

44. linear

45. logarithmic

46. logistic

47. a. exponential

d. Limiting value: 2.4 N t    2.4 million  2,400,000 1 0 42. a. S  t  

S  3 

72 1  9e 0.36t 72

1  9e 0.36 3 $18,000

b. y  2.3 1.12

 18

518

x


Section 4.6 b. y  5.08  15ln x

48. a. exponential

53. a. logistic

b. y  51.6 1.3

x

b. y 

49. a. linear

18 1  496e 1.1x

54. a. logistic

b. y  2.28 x  4.08 50. a. linear b. y 

12 1  219e 1.07 x

55. a. y  1.4663 1.096

t

b. y  1.4663 1.096

t

 1.4663e ln1.096t  1.4663e0.09167 t

b. y  5.47 x  641

  c. y  1.4663e0.09167 912  29,000 million Approximately 29 billion; This is unreasonable because this exceeds the total world population. A logistic model would probably fit the long-term trend better.

51. a. logarithmic

b. y  20.7  9.72ln x 52. a. logarithmic

d. y 

889 1  576e 0.0986t

e. y 

889   1  576e 0.0986 912

56. a. y  11,988 1.035

t

b. y  11,988 1.035

t

 877 million

 11,988e ln1.035t  11,988e0.0344t c. y  11,988e0.0344 7  $15,300

519


Chapter 4 Exponential and Logarithmic Functions 57. a. H  t   4.86  6.35ln t b.

61. A visual representation of the data can be helpful in determining the type of equation or function that best models the data.

25  4.86  6.35ln t 20.14  6.35ln t

62. The average rate of change is constant for a linear function for all intervals [a, b] in the domain of the function. For an exponential function defined by f  x   b x  b  1 , the average rate of change increases for increasing values of x.

20.14  ln t 6.35 t  e 20.14 6.35  24 yr c. No, the tree will eventually die. 58. a. N  t   19.7  10.9 ln t

63. An exponential growth model has unbounded growth, whereas a logistic growth model imposes a limiting value on the dependent variable. That is, a logistic growth model has an upper bound restricting the amount of growth.

b. N  7   19.7  10.9 ln 7  41 books c. No. The trend cannot continue indefinitely. At some point, book sales will begin to decrease as most reading enthusiasts have read the book.

64. The corresponding expression with base e is given by e ln bt .

59. a. y  mt  b  2920t  29,200 b. y  V0bt

y  29,200  0.8

Ar 12 P 12 t r  1  1    12 

t

65. a.

c. y  2920t  29,200

y  2920  5  29,200  $14,600

12 t   r   Ar P 1  1       12   12

y  2920 10  29,200  $0 d. y  29,200  0.8

t

y  29,200  0.8  $9568 5

y  29,200  0.8  $3135 10

60. a. y  mt  b y  6750t  54,000

b. y  V0bt y  54,000  0.7 

t

12 t

r   P 1    12 

12 t

r  1   12

12 t

r  ln 1    12 

12 t

Ar 12

Ar P 12

 1

Ar 12 P

Ar    ln  1   12 P 

r Ar    12t ln  1    ln  1   12   12 P 

c. y  6750t  54,000

y  6750  4  54,000  $27,600

Ar   ln  1   12 P  t r  12ln  1    12 

y  6750  8  54,000  $0 d. y  54,000  0.7 

r  P  P 1    12 

t

y  54,000  0.7   $12,965 4

y  54,000  0.7   $3113 8

520


Chapter 4 Review b. This represents the amount of time (in yr) required to completely pay off a loan of A dollars at interest rate r, by paying P dollars per month.

P0 N P P0   N  P0  e  kt

66. a.

P  P0   N  P0  e  kt   P0 N PP0  P  N  P0  e

 kt

 P0 N

P  N  P0  e

 kt

 P0 N  PP0

P  N  P0  e  kt  P0  N  P  e  kt  e kt 

P0  N  P  P  N  P0  P  N  P0  P0  N  P 

 P  N  P0   kt  ln    P0  N  P    P  N  P0   1 t   ln   k  P0  N  P  

N  3  N  2 0.87916  0.52702  32 1  0.35214

c.

N  4  N  3 1.3029  0.87916  43 1  0.42374

d.

N  5  N  4 1.7023  1.3029  54 1  0.39940

e.

N  6  N  5 2.0008  1.7023  65 1  0.29850

f.

N  7   N  6 2.1876  2.0008  76 1  0.18680

g. The value 0.23791 means that the number of additional computers infected with the virus between month 1 and month 2 increased at a rate of 237,910 per month. h. The rate of change increases up through approximately month 4 and then begins to decrease. This can be visualized in the graph of the function.

b. This represents the amount of time required for the population to reach a value P, given an initial population P0 and a limiting value N. 67. a.

b.

N  2  N 1 0.52702  0.28911  2 1 1  0.23791

Chapter 4 Review Exercises 3. Assume that f  a   f  b  .

1. The relation does not define y as a one-toone function of x because a horizontal line intersects the graph in more than one point.

a 3  1  b3  1 a 3  b3

2. Yes. Each x value in the domain is associated with only one y value in the range, and each y value in the range is associated with only one x value in the domain.

3

a 3  3 b3

ab Since f  a   f  b  implies that a  b , then f is one-to-one.

521


Chapter 4 Exponential and Logarithmic Functions x  y  7  2

4. No; For example the points  3, 8 and

 3, 8 have the same y values but different x values. That is, f  a   f  b   8 , but

xy  7 x  2 xy  7 x  2 2  7x y x 2 y  7 x 2 f 1  x    7 x

ab.  x  3 5.  f  g  x   f  g  x    f   4   x  3  4 3 x 33 x   4 

 g  f  x   g  f  x   g  4 x  3  4 x  3  3  4 x  x  

4 Yes, g is the inverse of f.

9. a.

4

6.  m  n  x   m  n  x    m  x  1

3

 3  x  1  1 3

 3 x3  3x 2  3x  1  1

7.

d.  3,   e.

f  x   2 x3  5

x  y2  3

x  2 y3  5

x  3  y2

x  5  2 y3 x5  y3 2 x5 3 y 2

8.

f  x  x2  3 y  x2  3

y  2 x3  5

f 1  x   3

c.  , 0

b. Yes

 3 x3  3x 2  3x No, since  m  n  x   x , n is not an inverse of m.

 x3  y f 1  x    x  3 f.

x5 2

2 x7 2 y x7 2 x y7

f  x 

g.  3,  

522

h.  , 0


Chapter 4 Review 10. a.

c. f 1  22,176 

22,176  4.2 mi 5280

12. b and c 13. a.

c.  1,  

b. Yes d.  0,   e.

g  x  x  1 y  x 1

b. Domain:  ,   c. Range:  0,  

x

d. y  0

y 1

x  y 1 2

14. a.

x 1  y 2

g 1  x   x 2  1; x  0 f.

b. Domain:  ,   c. Range:  0,   d. y  0 g.  0,   11. a.

h.  1,  

15. a. Since a  0 and k  1 , reflect the graph of y  3x across the x-axis and shift the graph up 1 unit.

f  x   5280 x y  5280 x x  5280 y x y 5280 f 1  x  

x 5280

b. f 1  x  represents the conversion from x

feet to f 1  x  miles.

b. Domain:  ,   c. Range: 1,   d. y  1

523


Chapter 4 Exponential and Logarithmic Functions

16. a. Since h  3 and k  4 , shift the graph of y  2 x left 3 units and down 4 units.

21. log b x 2  y 2  4  b 4  x 2  y 2 22. ln x   c  d   ec d  x 23. 106  1,000,000  log1,000,000  6 24. 81 3 

1 1  1  log8      2 2 3

25. log 3 81  y

3 y  81  34 y4

b. Domain:  ,   c. Range:  4,   d. y  4

26. log100,000  y

17. The graph of y  e is an increasing function.

10 y  100,000  105 y5

x

nt

 r  0.05  18. a. A  P  1    24,000 1    n  12 

1210

 1 27. log 2    y  64 

 $39,528.23

1 1  6  2 6 64 2 y  6

2y 

b. A  Pe rt  24,000e 0.045 30  $92,578.21 19. a. I  Prt  12,000  0.072 4  $3456

28. log1 4 16  y

b. I  Pe  P rt

y

 1  1 2    16  4    4 4

 12,000e 0.065 4  12,000

y  2

 15,563.16  12,000  $3563.16

29. log11 1  y

c. 7.2% simple interest results in less interest. 20. R  t   128  2

11y  1 y0

 t 4.2

a. R  6  128  2

6 4.2

30. log 5 5  y

 48 mCi

5 y  5  51 y 1

b. R  4.2  128  2  128  2  64 After 4.2 days, (1 biological half-life), the radioactivity level is 64 mCi (half the original amount). 4.2 4.2

1

31. 4log 4 7  7 32. ln e11  11

c. After each half-life the radioactivity level is halved. After 2 half-lives it will be 32 mCi, and after 3 half-lives it will be 16 mCi.

524

2


Chapter 4 Review 33. f  x   log  x  4 x40

38. a. The graph of y  log 2  x  3 is the graph

of y  log 2 x shifted to the right 3 units.

x4 Domain:  4,   34. g  x   ln  3  2 x 

3  2x  0 2 x  3 3 2 3  Domain:  ,   2 x

35. h  x   log 2 x 2  4

b. Domain:  3,   c. Range:  ,  

d. Vertical asymptote: x  3

x2  4  0

39. a. The graph of y  2  ln x is the graph of y  ln x shifted up 2 units.

x 2  4 The square of any real number is positive, so this condition is always true. Domain:  ,  

36. k  x   log 2 x 2  4

x2  4  0 Find the real zeros of the related equation. x2  4  0

 x  2 x  2  0 x  2 or x  2 The boundary points are 2 and 2. Sign of  x  2 :

Sign of  x  2 x  2 : 

Sign of  x  2 :

2

Domain:  ,  2   2,   37. m  x   log 2  x  4

b. Domain:  0,   c. Range:  ,   d. Vertical asymptote: x  0

2

40. a. pH   log 5.0  10 9  8.3 b. Since the pH is greater than 7, baking soda is alkaline.

2

 x  4 2  0

41. a. pH   log 3.16  10 5  4.5

This is true for all real x, except: x40

b. Since the pH is less than 7, tomatoes are acidic.

x4 Domain:  , 4   4,  

525

42. 0

43. 1

44. p

45. x


Chapter 4 Exponential and Logarithmic Functions 46. log b x  log b y

47. log b x  log b y

55.

48. p  log b x

1 1 ln x 2  9  ln  x  3 4 4

 100  12 49. log   log100  log c 2  10  2  c  10  1  2  log c 2  10 2

14

 x2  9  1 2    ln x  9  ln  x  3   ln   4  x3 

 x  3 x  3  ln 4 x  3

 ln 4

x3

 

56. log b 8  log b 23  3log b 2  3  0.289  0.867

1  50. log 2  a 2b   log 2 8  log 2 a 2  log 2 b 8 

57. log b 45  log b 32  5  2 log b 3  log b 5

 2  0.458  0.671  1.587

 3  2 log 2 a  log 2 b  3 ab 2  13  ln ab 2  ln c  ln d 5 51. ln  5   cd 

 1 58. log b    log b 32  2 log b 3  9

 

 

 2  0.458  0.916

1  ln a  2 ln b  ln c  5ln d 3 1 2  ln a  ln b  ln c  5ln d 3 3

log 596  3.2839 log 7 73.2839  596

59. log 7 596 

 x 2  2 x  15  52. log   1  x  

log 0.982  0.0131 log 4 40.0131  0.982

60. log 4 0.982 

 log  x 2  2 x  1   log 1  x   5

 log x 2  5log  2 x  1  log 1  x 

12

61.

42 y 7  64 4 2 y  7  43

1  2 log x  5log  2 x  1  log 1  x  2

2y  7  3 2 y  10

1 53. 4 log 5 y  3log 5 x  log 5 z 2 4 3  log 5 y  log 5 x  log 5 z1 2

5

y 5

 y z  log 5  3   x 

62. 1000

4

10 

2 x 1

3 2 x 1

 250  2  54. log 250  log 2  log 5  log   5 

 1     100   102 

x4

x 4

106 x3  102 x8 6 x  3  2 x  8

 log100  2

8x  5

x

526

5 8

5   8 


Chapter 4 Review 63.

67. 400e 2t  2.989 2.989 e 2t  400  2.989  ln e 2t  ln   400 

7 x  51 log 7 x  log 51

x log 7  log 51 log 51  2.0206 x log 7

 

 2.989  2t  ln   400 

 log 51   ; x  2.0206  log 7  64.

 2.989  ln   400    2.4483 t 2  2.989    ln     400   ; t  2.4483   2  

516  11w  21 537  11w log 537  log11w log 537  w log11

w

log 537  2.6215 log11

68. 2 101.2t  58

 log 537    ; w  2.6215  log11  65.

101.2t  29 log101.2t  log 29

32 x1  43 x 2 x 1

ln 3

 ln 4

1.2t  log 29 3x

 2 x  1 ln 3  3x ln 4

 log 29    ; t  1.2187  1.2 

2 x ln 3  ln 3  3x ln 4 2 x ln 3  3x ln 4   ln 3

x  2 ln 3  3ln 4   ln 3 x

 e   3 e   40  0

ln 3  0.5600 3ln 4  2 ln 3

x 2

ln 2

 ln 7

x

Let u  e x . u 2  3u  40  0

 u  8 u  5  0

2c  3  7 2 c 5 c3

e2 x  3e x  40  0

69.

ln 3     ; x  0.5600  3ln 4  2 ln 3 

66.

log 29  1.2187 1.2

t

2 c5

 c  3 ln 2   2c  5 ln 7

u8

or

u  5

ex  8

or

e x  5 No solution

ln e x  ln 8

c ln 2  3ln 2  2c ln 7  5ln 7 c ln 2  2c ln 7  5ln 7  3ln 2

x  ln 8  2.0794

 ln11 ; x  2.3979

c  ln 2  2 ln 7   5ln 7  3ln 2

e2 x  10e x

70.

5ln 7  3ln 2  2.3917 c ln 2  2 ln 7  5ln 7  3ln 2    ; c  2.3917  ln 2  2 ln 7 

 e   10  e   0 e  e  10  0 x 2 x

 527

x

x

e x  0 or e x  10


Chapter 4 Exponential and Logarithmic Functions 71. log 5  4 p  7   log 5  2  p 

75. 3ln  n  8  6.3

ln  n  8  2.1

4p  7  2  p 5 p  5

n  8  e 2.1

p  1

 1

72. log 2 m 2  10m  log 2 11

76.

4  log 2 x   log 2  x  6

m  10m  11

log 2 x  log 2  x  6  4

m  10m  11  0

log 2  x  x  6   4

2

2

 x  11 x  1  0

x  x  6  24

x  11 or x  1  11,1

x 2  6 x  16 x 2  6 x  16  0

 x  8 x  2  0

73. 2 log 6  4  8 y   6  10

x  8 or x  2 Check: 4  log 2 x   log 2  x  6

2 log 6  4  8 y   4

log 6  4  8 y   2 4  8 y  62

4  log 2  8 0  log 2  8  6

4  8 y  36

4  log 2  8 0  log 2  2

8 y  32 y  4

undefined undefined 4  log 2 x   log 2  x  6

 4 74.

n  e 2.1  8  16.1662 e2.1  8 ; n  16.1662

4  log 2 2 0  log 2  2  6 4  10  log 2  8

5  4 log 3  2  5 x   1

3 0 3   2 ; The value 8 does not check.

4  4 log 3  2  5 x 

1  log 3  2  5 x  31  2  5 x

77.

log 6  3x  2  log 6  x  4  1

log 6  3 x  2  log 6  x  4  1

1  2  5x 3 5   5 x 3 1 x 3 1    3

 3x  2  1 log 6   x  4  3x  2  61 x4 3x  2 6 x4 3 x  2  6 x  24

3x  22 22 x 3

528


Chapter 4 Review Check:

80.

log 6  3 x  2  log 6  x  4  1

  22    22  log 6 3     2 0 log 6    4  1  3    3   10  log 6  20 0 log 6     3 undefined undefined 22   ; The value  does not check. 3

 log x  2  log x 2  35  log x 2  2 log x  35  0 Let u  log x .

u 2  2u  35  0

 u  7 u  5  0 u7 log x  7 x  10

ln x  ln  x  2  ln  x  6  0

or

u  5 log x  5 x  105 1 x 100,000

 1  10,000, 000,  100,000  

 x  x  2  ln  0  x6  x  x  2  e0 x6 x2  2 x 1 x6 x2  2 x  x  6

f  x  4x

81.

y  4x x  4y log 4 x  log 4 4 y log 4 x  y

f 1  x   log 4 x

x  x6 0 2

 x  3 x  2  0 x  3 or x  2 Check: ln x  ln  x  2  ln  x  6

g  x   log  x  5  1

82.

y  log  x  5  1 x  log  y  5  1

ln  3  ln  3  2 0 ln  3  6

x  1  log  y  5

ln  3  ln  1 0 ln  3

10 x1  y  5

undefined undefined ln x  ln  x  2  ln  x  6

10 x1  5  y g 1  x   10 x1  5

ln 2  ln  2  2 0 ln  2  6 ln 2  ln 4 0 ln 8

83. a.

ln 8 0 ln 8   2 ; The value 3 does not check.

P  e 0.5 x 0.5  e 0.5 x ln  0.5  ln e 0.5 x

79. log 5  log 2 x   1

ln  0.5  0.5 x ln  0.5  1.39 m 0.5 Long Island Sound is murky.

log 2 x  51

x

log 2 x  5

32

or 7

x  10,000,000 or

ln x  ln  x  2  ln  x  6

78.

or

x  25 x  32

529


Chapter 4 Exponential and Logarithmic Functions P  e 0.5 x

b.

0.01  e

 5 ln    3 t  9.8 yr 0.052

0.5 x

ln  0.01  ln e 0.5 x ln  0.01  0.5 x x

87. a. Since the exponent on e is negative, the population is decreasing.

ln  0.01  9.2 m 0.5

80  85.5e 0.00208t 80  e 0.00208t 85.5  80  ln   0.00208t  85.5 

84. log B  1.7  2.3M

log B  2.3M  1.7 B  102.3 M 1.7 T  T f  T0 e  kt

85.

 80  ln   85.5  t  32 yr 0.00208

T0 e  kt  T f  T T0 e  kt  T  T f e  kt 

T  Tf

88. a. P  t   16.9 1.00836

T0

P  t   16.9e0.00833t

0

1  T  Tf  t   ln  k  T0 

b.

P  t   16.9e0.00833t 20  16.9e0.00833t 20  e0.00833t 16.9  20  ln   0.00833t  16.9 

A  18,000e rt 23,344.74  18,000e5 r 23,344.74  e5 r 18,000

 20  ln   16.9  t  20 yr 0.00833

 23,344.74  ln   5r  18,000   23,344.74  ln   18,000  r  0.52 or 5.2% 5 b.

t

P  t   16.9e ln1.00836t

 T  Tf   kt  ln   T 

86. a.

P  85.5e 0.00208t

b.

89.

Q  t   Q0 e 0.000121t 0.712Q0  Q0 e 0.000121t 0.712  e 0.000121t ln 0.712  0.000121t ln 0.712 t  2800 yr 0.000121

A  18,000e rt 30,000  18,000e0.052t 30,000  e0.052t 18,000

90. a. P  t  

5  e0.052t 3  5 ln    0.052t  3

3000 1  2e 0.37 t 3000

3000 3000   1000 1  2e0 1  2 1  2e The lake was initially stocked with 1000 bass. P  0 

530

0.37 0


Chapter 4 Test b. P  t  

P  2  c. P  t  

P  4  d.

3000 1  2e 0.37 t 3000 1  2e 0.37 2 3000 1  2e 0.37 t 3000 1  2e 0.37 4

e. As t   , The denominator of

e approaches  , so the value of the expression approaches 0.

 1535

f. Limiting value: P t  

 2061

91. a. Y1  2.38 1.5

3000  3000 bass 1 0

x

b.

3000 1  2e 0.37 t 3000 2800  1  2e 0.37 t 2800 1  2e 0.37 t  3000 15 1  2e 0.37 t  14 1 0.37 t 2e  14 1 0.37 t e  28  1 0.37t  ln    28  1 ln    28  9 yr t 0.37 P t  

2 0.37 t

92. a. y  6698  350 ln x b. y  6698  350 ln 26  5558 hospitals

Chapter 4 Test 1. a.

f  x   4 x3  1

b.

 f  f   x  f  f  x 1

y  4 x3  1

3

 x  1  x  1  f 3  43   1  4   4 

x  4 y3  1 x  1  4 y3 x 1  y3 4 x 1 3 y 4 f 1  x   3

1

 x  1  4 1  x 1 1  x   4 

 f  f   x  f  f  x  f  4 x  1  4 x  1  1  1

1

1

x 1 4

3

3

3

4

3

531

3

4x  3 x3  x  4


Chapter 4 Exponential and Logarithmic Functions 5. f  x   log x

2. a. f is a one-to-one function of x because no horizontal line intersects the graph in more than one point.

a. Domain:  0,   ; Range:  ,  

b.

b.

f  x   log x y  log x x  log y 10 x  10log y 10 x  y f 1  x   10 x

c. Domain:  ,   ; Range:  0,   x3 x4 x3 y x4 y3 x y4

6. f  x   3x  1

f  x 

3.

a. Domain:  ,   ; Range: 1,   b.

y  3x  1

x  y  4  y  3

x  3y  1 x  1  3y

xy  4 x  y  3 xy  y  4 x  3

log 3  x  1  log 3 3 y

y  x  1  4 x  3

log 3  x  1  y

4x  3 x 1 4x  3 f 1  x   x 1

f 1  x   log 3  x  1

y

c. Domain: 1,   ; Range:  ,   x

 1 7. a. f  x      2  3

4. f  x    x 2  1, x  0 a. Domain:  , 0 ; Range:  , 1

 1 Since k  2 , shift the graph of y     3 up 2 units.

f  x   x2  1

b.

f  x   3x  1

y   x2  1 x   y2  1 y2   x  1 y   1 x f

1

 x   1  x

c. Domain:  , 1 ; Range:  , 0 b. Domain:  ,  

532

x


Chapter 4 Test c. Range:  2,   d. Horizontal asymptote: y  2 8. a. g  x   2 x 4

Since h  4 , shift the graph of y  2 x right 4 units.

b. Domain:  1,   c. Range:  ,   d. Vertical asymptote: x  1 11. ln  x  y   a  e a  x  y b. Domain:  ,  

12. 104 x3  y  log y  4 x  3

c. Range:  0,   13. log 9

d. Horizontal asymptote: y  0

1 y 81 1 1 9y   811  92  9 2 81 y  2

 

9. a. The graph of y   ln x is the graph of y  ln x reflected across the x-axis.

14. log 6 216  y

6 y  216  63 y3 15. ln e8  y

e y  e8 y8 b. Domain:  0,  

16. log10 4  y

c. Range:  ,  

10 y  10 4 y  4

d. Vertical asymptote: x  0 10. a. The graph of y  log 2  x  1  3 is the

17.

graph of y  log 2 x shifted left 1 unit and down 3 units.

10

log a 2 b 2

y

     log y

log 10

log a 2  b2

log a 2  b 2  log y a2  b2  y

533


Chapter 4 Exponential and Logarithmic Functions 18. log1 2 1  y

2 23. 6 log 2 a  4 log 2 b  log 2 c 3 6 4  log 2 a  log 2 b  log 2 c 2 3

y

 1    1 2

 a6 3 c2   a 6c 2 3   log 2  4   log 2   4  b   b 

y0 19. f  x   log  7  2 x 

7  2x  0

24.

2 x  7

7 2 7  Domain:  ,   2 x

  x  3 x  4   ln   x4  

12

20. g  x   log 4 x 2  25

x  25  0 Find the real zeros of the related equation. x 2  25  0

 1  26. log b   log b 53  3log b 5  125 

 

x  5 or x  5 The boundary points are 5 and 5. 

Sign of  x  5 x  5 : 

Sign of  x  5 :

5

Domain:  , 5   5,  

 3  0.671  2.013 27.

 

5

5y 1  2y  6 3 y  7 y

1  5ln x  2 ln y  ln w  ln z 3

28.

 a2  b2  2 2 12  4 log10 22. log    log a  b 4  10 

7 3

5 x3  53 log 5 x3  log 53

 x  3 log 5  log 53

y 3

 7    3

25 y 1  22 y 6

 

25 y 1  4 y 3 25 y 1  22

 x5 y 2  21. ln  3   ln x 5  ln y 2  ln w  ln z1 3 w z

 

 3  0.289  2  0.458  1.783

 x  5 x  5  0 Sign of  x  5 :

 ln x  3

25. log b 72  log b 23  32  3log b 2  2 log b 3

2

1 1 ln x 2  x  12  ln  x  4 2 2 1  ln x 2  x  12  ln  x  4  2

x log 5  3log 5  log 53

x log 5  log 53  3log 5

1 log a 2  b 2  4 2

log 53  3log 5 log 5 log 53 x  3  0.5331 log 5 x

 log 53   3 ; x  0.5331   log 5  534


Chapter 4 Test 2c7  32 c3

29.

c7

34.

log x  log  x  1  log12

log x  log  x  1  log12  0

2 c3

ln 2  ln 3  c  7  ln 2   2c  3 ln 3 c ln 2  7 ln 2  2c ln 3  3ln 3 c ln 2  2c ln 3  3ln 3  7 ln 2 c  ln 2  2 ln 3  3ln 3  7 ln 2 3ln 3  7 ln 2  1.0346 x ln 2  2 ln 3  3ln 3  7 ln 2    ; x  1.0346  ln 2  2 ln 3 

 x  x  1  log  0  12  x  x  1  100 12 x2  x 1 12 x 2  x  12 x 2  x  12  0

30. 7e 4 x  14

 x  3 x  4  0

e 2

x  3 or x  4 Check: log x  log  x  1  log12

4x

ln e 4 x  ln 2 4 x  ln 2 ln 2 x  0.1733 4  ln 2    ; x  0.1733  4 

log  3  log  4  1 0 log12 log  3  log  5 0 log12 undefined undefined log x  log  x  1  log12 log 4  log  4  1 0 log12

e 2 x  7e x  8  0

31.

  ex

2

log 4  log 3 0 log12

 

 7 ex  8  0

log12 0 log12 

 4 ; The value 3 does not check.

Let u  e . u 2  7u  8  0  u  1 u  8  0 u 1 or x

e 1 x

35.

log 4 x  log 4  x  30  3

u  8 e  8 No solution

log 4  x  x  30  3

x

or

ln e  ln1 x  ln1  0 x

x  x  30  43

 0

32. log 5  3  x   log 5  x  1 3  x  x 1 2 x  2 x 1

x 2  30 x  64 x 2  30 x  64  0

 x  32 x  2  0 x  32 or x  2 Check: 3  log 4 x   log 4  x  30

1

3  log 4  32 0  log 4  32  30

33. 5ln  x  2  1  16

3  log 4  32 0  log 4  2

ln  x  2  3

x  2  e3

undefined

x  e  2  18.0855 e  2 ; x  18.0855 3

3

3  log 4 x   log 4  x  30

535

undefined


Chapter 4 Exponential and Logarithmic Functions 3  log 4 x   log 4  x  30

39. a.

3  log 4 2 0  log 4  2  30 3 0  log 4 32  log 4 2

A  Pe rt 13,566.25  10,000e r 5 13,566.25  e5 r 10,000

3 0   log 4 32  log 4 2

 13,566.25   5r ln   10,000 

3 0  log 4 64 3 0 3   2 ; The value 32 does not check.

 13,566.25  ln   10,000  r 5  0.061 or 6.1%

log 3  log  x  3  log  4 x  5

36.

log 3  log  x  3  log  4 x  5  0

 3  x  3  log  0  4x  5  3x  9  100 4x  5 3x  9 1 4x  5 3x  9  4 x  5

5  e0.061t ln 5  0.061t t

ln 5  26.4 yr 0.061

40. a. P  t   10,000  2

t 5

 

 10,000 2t S  92  k ln  t  1

15

 10,000e 

 ln 2 5t

S  92  ln  t  1 k e 92 S  k  t  1

 10,000e0.1386t b. 5,000,000  10,000e0.1386t

t  e 92 S  k  1  r A  P 1    n A  r  1   P  n

15

 10,000  e ln 2t 

S  92   k ln  t  1

38.

A  Pe rt 50,000  10,000e0.061t

4 x

 4 37.

b.

500  e0.1386t ln 500  0.1386t ln 500 t  45 hr 0.1386

nt

nt

 A  r ln    ln  1    P  n

1200 1  2e 0.12t 1200 1200 1200 P  0     400 0.12)0 1  2e 1  2e 0 1  2 400 deer were present when the park service began tracking the herd.

41. a. P  t   nt

 A  r ln    nt ln 1    P  n  A ln    P t  r n ln  1    n

b. P  t  

P  4 

536

1200 1  2e 0.12t 1200 1  2e 0.12 4

 536 deer


Chapter 4 Cumulative Review c. P  t  

P  8  d.

1200 1  2e 0.12t 1200 1  2e 0.128

e. As t   , the denominator of

e approaches  , so the value of the expression approaches 0.

 680 deer

f. Limiting value: P t  

1200 1  2e 0.12t 1200 900  1  2e 0.12t 0.12 t  1200 900 1  2e P t  

2 0.12 t

1200  1200 deer 1 0

42. a. y  88.6  7.475ln x

b. y  88.6  7.475ln12  70

4 3 1 2e 0.12t  3 1 e 0.12t  6

1  2e 0.12t 

 1 0.12t  ln    6  1 ln    6 t  15 yr 0.12t

Chapter 4 Cumulative Review Exercises 1.

 3.0  10 8.2  10   20  10  2.0  10 4.

3x 1  6 x 2 x 2 3 x 1  6 x 2   2 x 2  x 1 x 2 2 x 2  x 1 3x  6  2 x 3 x  2    x  2

9

1.23  10

5.

5 3

2 x2

 3

3

5 2 x2

3

5  3  2x  7 2x  7  2 2 x  7  2 or 2x  5 5 x 2 5   9   ,    ,  2 2

53 4x 53 4x  3  2x 4x 8 x3

4x

    a  b   a  ab  b  1

3. a 3  b3  a  b   a  b  a 2  ab  b 2   a  b  2

5

2  2x  7

 3 2.

3

7

2

537

2x  7  2 2x  9 9 x 2

10


Chapter 4 Exponential and Logarithmic Functions 6.

3 x  x  1  x  6

Find the real zeros of the related equation.  x  5 x  2 x  2  0 x  5 , x  2 , or x  2 The boundary points are 5 , 2 , and 2.

3x 2  3x  x  6 3x 2  4 x  6  0 x

  4 

 4 2  4  3 6 2  3

Sign of  x  5 :

Sign of  x  2 :

4  88 4  2 22 2  22   6 6 3  2  22     3 

Sign of  x  2 :

7.

Sign of  x  5 x  2 x  2 :     5 2 2

The solution set is  5,  2   2,   . 10. 5 x  1  3  4 x

t 3  t 3

5x  1  3  4x

or

5x  1    3  4 x

9x  4 4 x 9 4    ,  2 9  

or

5 x  1  3  4 x

2

t  3  t 2  6t  9 0  t  7t  6 2

0   t  1 t  6 t  1 or t  6 Check: t  3  4  t 1 1 3  40 11

t  3  4  t 1

2 2 m 3

 

 33

2

Let u  x  9 . u 2  2u  35  0 2

6  3  40 6 1

 u  5 u  7  0 u  5

x 9  7

x 4 x  2  2,  4

x 2  16 x  4

2

m 1

34 m6  33m3 4m  6  3m  3 m9 9 

12.

u7

or

x  9  5 2

92 m3  27 m1

3 

x  2

11. x 2  9  2 x 2  9  35  0

4  40 2 9  40 7 2  40 2 3  40 7 60 2  70 7   6 ; The value 1 does not check.

9.

t  3  4  t 1 t  3   t  3

8.

2

log 2  3 x  1  log 2  x  1  3

log 2  3x  1  log 2  x  1  3

 3x  1  log 2  3  x 1  3x  1 3 2 x 1 3x  1 8 x 1 8 x  8  3x  1 5 x  9 9 x 5

 x 3  5 x 2  4 x  20  0  x 2  x  5  4  x  5  0

 x  5   x 2  4   0  x  5  x 2  4   0  x  5 x  2 x  2  0 538


Chapter 4 Cumulative Review 15. a. f  x   x 2  16 x  55 Since a  0 , the graph of the function opens upward.

Check: log 2  3 x  1  log 2  x  1  3   9   9  log 2 3     1 0 log 2    1  3  5    5   32   4 log 2    0 log 2     3  5  5 undefined undefined 9   ; The value  does not check. 5 13.

b. x 

y   8  16  8  55  9 2

Vertex:  8, 9

c. The parabola opens upward, so the vertex is the minimum point:  8, 9 .

x4 0 x2 The expression is undefined for x  2 . This is a boundary point. Find the real zeros of the related equation. x4 0 x2 x40

d. The minimum value is 9 . e. 0  x 2  16 x  55

0   x  5 x  11 x  5 or x  11 x-intercepts:  5, 0 and 11, 0 f. f  0   0  16  0  55  55 2

x4 The boundary points are 2 and 4. Sign of  x  2 :

Sign of  x  4 :

 x  4 :  x  2

Sign of

b   16  8 2a 2 1

y-intercept:  0, 55

g.

2 4

The solution set is  2, 4 . 14.

Factors of 9 1,  3,  9   1,  3,  9 Factors of 1 1 1 1 10 10 10 9

h. The axis of symmetry is x  8 . i.  ,  

1 9 1 9 1 9 1 9 0

f  x    x  1 x 3  9 x 2  x  9

j.  9,  

16. f  x   1.5 x 2  x  2  x  1 The leading term is 2 3 1.5  x   x   x   1.5 x 6 . The end behavior is down to the left and down to the right.

Find the zeros of the quotient. 9 1 9 1 9 9 0 9 1 0 1 0

3

f  x    x  1 x  9 x 2  1

f  0  1.5  0  0  2  0  1  0 2

3

The y-intercept is  0, 0 .

x  1, x  9, x  i The zeros are 1 , 9 , i .

539


Chapter 4 Exponential and Logarithmic Functions 18. a. f  x   2 x 2  3  2 x  2   3

The zeros of the function are 0 (multiplicity 2), 2 (multiplicity 3), and 1 (multiplicity 1). Test for symmetry: 2 3 f   x   1.5   x    x  2   x  1

This is the graph of y  2 x shifted left 2 units and down 3 units.

 1.5 x 2   x  2   x  1 3

f  x  is neither even nor odd.

b. Asymptote: y  3 c.  ,   . d.  3,  

3x  6 x2 f is in lowest terms, and x  2 is 0 for x  2 , which is the vertical asymptote.

17. a. f  x  

 40  50  19. log 40  log 50  log 2  log   2   2000   log   2 

b. The degree of the numerator is 1. The degree of the denominator is 1. 3 Since n  m , the line y   3 is a 1 horizontal asymptote of f.

 log1000  3 20.

f  x  3 x  4  1 y  3 x  4 1 x  3 y  4 1

c.

x 1  3 y  4

 x  13  y  4  x  13  4  y 3 f 1  x    x  1  4

540


Section 5.1

Chapter 5 Systems of Equations and Inequalities Section 5.1 Systems of Linear Equations in Two Variables and Applications 2. solution

7 x  3 y  23

3. substitution; addition 4. parallel

 7 7 1  3   ⱨ 23  6

1. system

5. inconsistent

7 7  ⱨ 23 2 21 ⱨ 23 false 2

6. dependent

3 x  5 y  7

7. a.

3 1  5  2 ⱨ 7 3  10 ⱨ 7 7 ⱨ 7  true x  4 y  7

No 11 2  6  3 ⱨ 4

1  4  2 ⱨ 7

22  18 ⱨ 4

1  8 ⱨ 7 7 ⱨ 7  true

4 ⱨ 4  true 7 x  3 y  23

7  2  3  3 ⱨ 23

Yes 3x  5 y  7

b.

11x  6 y  4

b.

14  9 ⱨ 23

 2 3     5 1 ⱨ 7  3

23 ⱨ 23  true Yes

2  5 ⱨ 7 7 ⱨ 7  true x  4 y  7

9. a.

 2     4 1 ⱨ 7 3 2   4 ⱨ 7 3 14  ⱨ 7 false 3

3 x5 2 3  2 ⱨ  2  5 2 2 ⱨ 3  5 2 ⱨ 2  true 6 x  4 y  20 y

6  2  4  2 ⱨ 20 12  8 ⱨ 20 20 ⱨ 20  true

No 8. a.

11x  6 y  4

Yes

 7 111  6   ⱨ 4  6

b.

11  7 ⱨ 4 4 ⱨ 4  true

541

3 x5 2 3  11 ⱨ  4  5 2 11ⱨ 6  5 11ⱨ 11  true y


Chapter 5 Systems of Equations and Inequalities 6 x  4 y  20

15. x  3 y  5

6  4  4  11 ⱨ 20

x  3 y  5

24  44 ⱨ 20 20 ⱨ 20  true

3x  2 y  18 3  3 y  5  2 y  18

Yes

9 y  15  2 y  18

1 10. a. y   x  2 5 1 1 ⱨ   5  2 5 1ⱨ 1  2 1ⱨ1  true 2 x  10 y  10

11 y  33 y3 x  3 y  5  3  3  5  9  5  4

 4, 3

16. 2 x  y  2

2  5  10 1 ⱨ10

y  2 x  2

10  10 ⱨ10

5x  3 y  9 5 x  3  2 x  2   9

20 ⱨ10 false No

5x  6 x  6  9 x  3 x  3 y  2 x  2  2  3  2  6  2  8

1 b. y   x  2 5 1  4 ⱨ   10  2 5 4ⱨ2  2 4 ⱨ 4  true 2  x   10 y  10

 3, 8

17. 3 y  7  2

3y  9 y3

2  10  10  4 ⱨ10 20  40 ⱨ10 20 ⱨ10 false

2x  7 y  1 2 x  7  3  1

No

2 x  21  1 2 x  20

11. Intersecting lines, one solution.

x  10

12. Parallel lines, no solution. The system is inconsistent.

 10, 3

18. 6  5 x  1

13. Same line, infinitely many solutions. The equations are dependent.

5 x  5 x  1

14. Intersecting lines, one solution.

3x  2 y  11 3  1  2 y  11 3  2 y  11 8  2y 4 y

542

 1, 4


Section 5.1 19. 2  x  y   2  y

 2 21. 3 x  7 y  1   6 x  14 y  2 6 x  5 y  17 6 x  5 y  17 19 y  19 y  1 3x  7 y  1

2x  2 y  2  y 2x  2  3y 2  3y x 2

3x  7  1  1

4x  1  2  5 y

3x  7  1 3x  6

 2  3y  4 1  2  5y  2 

 2, 1

x  2

2 2  3y  1  2  5 y 4  6 y 1  2  5y

 2 10 x  4 y  4 22. 5 x  2 y  2  3 x  4 y  30 3x  4 y  30 13x  26 x 2 5 x  2 y  2

 y  1 y 1 2  3 y 2  3 1 2  3 1    2 2 2 2  1     ,1   2   x

5  2  2 y  2 10  2 y  2 2 y  12

20. 5  x  y   9  2 y

 2, 6

y6

5x  5 y  9  2 y 5x  9  3 y 9  3y x 5

23.

11x  5  4 y

2  x  2 y   22  y

11x  4 y  5

6 y  2  10  7 x

2 x  4 y  22  y 2 x  5 y  22

5 11x  4 y  5   55 x  20 y  25 4 2 x  5 y  22  8 x  20 y  88 63x  63 x 1

 9  3y  6 y  2  10  7   5  30 y  10  50  7  9  3 y 

11x  5  4 y

30 y  10  50  63  21y 9 y  3 1 y 3  1 9  3    3 9  1 9  3y x x  2 5 5 5  1   2,    3  

111  5  4 y 11  5  4 y 16  4 y 4  y

1,  4

24. 3  x  y   y  14

2x  2  7 y

3x  3 y  y  14 3 x  2 y  14

2 x  7 y  2

2 3 x  2 y  14   6 x  4 y  28 3 2 x  7 y  2  6 x  21y  6 17 y  34 y 2

543


Chapter 5 Systems of Equations and Inequalities 3x  6 y  5

2x  2  7 y 2 x  2  7  2

 2 3x  6    5  45 

2 x  2  14 2 x  12

4 5 15 45 x  4  75 45 x  79

3x 

x6

 6, 2

25. 0.6 x  0.1y  0.4

6x  y  4

2 x  0.7 y  0.3

20 x  7 y  3

x

7 6 x  y  4   42 x  7 y  28 20 x  7 y  3 20 x  7 y  3 62 x  31 0 1 0 x 0 2 0 6x  y  4

 12  2x  9     2  35 

3 y  4

26. 0.25 x  0.04 y  0.24

0.15 x  0.12 y  0.12

 1    ,1   2    

108 2 35 70 x  108  70 70 x  178 2x 

25 x  4 y  24 15 x  12 y  12

x

 3 25 x  4 y  24   75 x  12 y  72 15 x  12 y  12 15 x  12 y  12 60 x  60 x 1

29. 3x  4 y  6

89 35

 89 12    ,     35 35   9 x  12 y  4 9 x  12 y  4

25 x  4 y  24

 3 3x  4 y  6   9 x  12 y  18 9 x  12 y  4 9 x  12 y  4 0  14

25 1  4 y  24 25  4 y  24 4 y  1 1 y 4

 79 2    ,    45 45  

2 28. 3 x  4 y  9   6 x  8 y  18  3 2 x  9 y  2   6 x  27 y  6 35 y  12 0 12 0 y 0 35 0 2x  9 y  2

 1 6   y  4  2

y 1

79 45

  ; The system is inconsistent.

 1   1,    4  

30. 4 x  8 y  2

3 27. 2 x  11 y  4   6 x  33 y  12  2 3 x  6 y  5   6 x  12 y  10 45 y  2 0 2 0 y 0 45 0

2x  8  4 y 2x  4 y  8

4 x  8 y  2 4 x  8 y  2 2 2 x  4 y  8  4 x  8 y  16 0  18

  ; The system is inconsistent.

544


Section 5.1 34. 3  x  3 y   2 y

31. 3x  y  6

y  3x  6 x

3x  9 y  2 y 3 x  11y

1 y2 3

x

1  3x  6  2 3 xx2 2 22  x, y  | 3x  y  6 ; The equations are x

2x  5  5  7 y 2 x  7 y  11  2  y   7 y 3 

dependent.

22 y  7 y 3 22 y  21y

32. 2 x  y  8

 y  2 x  8

43 y  0

y  2x  8

y0 11 11 x  y   0  0 3 3

1 x y4 2 x

11 y 3

1  2 x  8  4 2 xx4 4

35. 5 y  800  x

x  5 y  800

44  x, y  | 2 x  y  8 ; The equations are

3x  10 y  1900 3  5 y  800  10 y  1900

dependent.

15 y  2400  10 y  1900 5 y  500

33. 2 x  4  4  5 y

y  100

2x  5 y x

 0, 0

x  5 y  800  5  100  800

5 y 2

 500  800  300  300, 100

2  4 x  y  7 y  2 4 x  y  7 y

36. 4 x  1800  y

4x  4 y  7 y

y  4 x  1800

4x  3y

2 x  7 y  2400

5  4  y  3 y 2 

2 x  7  4 x  1800  2400

10 y  3 y

2 x  28 x  12,600  2400

7y  0

30 x  15,000

y0 5 5 x  y   0  0 2 2

x  500 y  4 x  1800  4  500  1800

 0, 0

 2000  1800  200  500,  200

545


Chapter 5 Systems of Equations and Inequalities 37. x 

2 x 1 3 1 y  x2 6

3 5 y 2 2 3 5 x y 2 2

39. y 

5 2x  y  y  x  8 10 x  5 y  y  x  8 11x  4 y  8 5 3 11 y    4 y  8 2 2 33 55 y   4 y  8 2 2 33 y  55  8 y  16 41 y  71 71 y 41 3 5 3  71 5 213 5 x  y         2 2 2  41 2 82 2 213 205 8 4     82 82 82 41  4 71    ,      41 41  38. x 

2 1 x 1  x  2 3 6 4 x  6  x  12 3x  18 x6 1 1 y  x  2   6  2  1  2  3 6 6  6, 3 1 40. y   x  7 4 3 y   x  17 2 1 3  x  7   x  17 4 2 2 x  56  12 x  136 10 x  80 x8 1 1 y   x  7    8  7  2  7  5 4 4 8, 5

5 3 y 4 2 x

5 3 y 4 2

3 2 x  y   2  x 6x  3y  2  x 7x  3y  2 3  5 7   y    3y  2  4 2 7  5 y  6  12 y  8 35 y  42  12 y  8 47 y  34 34 y 47 5 3 5  34  3 170 3 x  y         4 2 4  47  2 188 2 170 282 112 28     188 188 188 47  28 34    ,    47 47  

41. 4  x  2  6 y  3

4x  8  6 y  3

1 3 1 x y  4 8 2 2 x  3 y  4

4 x  6 y  11 4 x  6 y  11 4 x  6 y  11  2 2 x  3 y  4   4 x  6 y  8 0  19

  ; The system is inconsistent.

546


Section 5.1

42.

1 1 1 x y 14 7 2 x  2y  7

46. y  0.18 x  0.129 y  0.15 x  0.1275

2  x  2 y   3  20 2 x  4 y  17

0.18 x  0.129  0.15 x  0.1275 0.03x  0.0015 x  0.05 y  0.18 x  0.129  0.18  0.05  0.129  0.009  0.129  0.12  0.05, 0.12

 2

 2 x  4 y  14 x  2 y  7  2 x  4 y  17 2 x  4 y  17 0 3

  ; The system is inconsistent. 43.

y 1 2 4x  y  2 4x  2  y 2x 

47.

0.04 x  0.01 y  0.02

x  2 y 1   6 8 2 x  2  4 y  4  48 x  4 y  50

x  2 y 1   12 2 4 2  x  2   y  1  48 2 x  4  y  1  48  y  2 x  53 y  2  4 y  50  53 y  8 y  100  53 9 y  153 y  17 x  4 y  50  4  17   50  68  50  18

4x  y  2 4 x   4 x  2  2 4x  4x  2  2 22  x, y  | 4 x  y  2 ; The equations are dependent. y 3  5 5 5x  y  3

44. x 

18, 17

y  5 x  3 0.05 x  0.01y  0.03

48.

5x  y  3 5 x   5 x  3  3 5x  5x  3  3 33  x, y  | 5 x  y  3 ; The equations are

x 1 y  2   1 2 10 5  x  1   y  2  10 5 x  5  y  2  10 5 x  17  y x 1 y  2   21 6 2 x  1  3  y  2  126 x  1  3 y  6  126 x  3 y  131 y  5 x  17 y  5  3 y  131  17 y  15 y  655  17 16 y  672 y  42

dependent. 45. y  2.4 x  1.54

y  3.5 x  7.9 2.4 x  1.54  3.5 x  7.9 5.9 x  9.44 x  1.6 y  2.4 x  1.54  2.4 1.6  1.54  3.84  1.54  2.3 1.6, 2.3

x  3 y  131  3  42  131  126  131  5

 5, 42 547


Chapter 5 Systems of Equations and Inequalities 49. Let x represent the amount of 36% alcohol solution. Let y represent the amount of 20% alcohol solution.

Amount of mixture Pure alcohol

36% Solution

20% Solution

30% Solution

x

y

40

0.36x

0.20y

0.30  40  12

  20 x y  40 x  y  40   20 x  20 y  800  100 0.36 x  0.20 y  12  36 x  20 y  1200  36 x  20 y  1200 16 x  400 x  25 x  y  40

25  y  40 y  15

25 L of 36% solution and 15 L of 20% solution should be mixed.

50. Let x represent the amount of 30% saline solution. Let y represent the amount of 10% saline solution.

Amount of mixture Pure saline

30% Solution

10% Solution

12% Solution

x

y

200

0.30x

0.10y

0.12  200  24

x  y  200 x y  200 x  100  10 0.30 x  0.10 y  24   3  30 x  10 y  2400   x

y  200 y  240 2 x  40 x  20

x  y  200

20  y  200 y  180 The pharmacist should mix 20 mL of the 30% solution and 180 mL of the 10% solution. 51. Let x represent the amount of 100% antifreeze solution. Let y represent the amount of 36% antifreeze solution. 100% Solution

36% Solution

50% Solution

Amount of mixture

x

y

16

Pure antifreeze

x

0.36y

0.50 16  8

 100 x y  16 x  y  16   100 x  100 y  1600  100 100 x  36 y  800 x  0.36 y  8  100 x  36 y  800 64 y  800 y  12.5 x  y  16 x  12.5  16 x  3.5 3.5 L should be replaced.

548


Section 5.1 52. a. Let x represent the amount of 0% vinegar solution (water). Let y represent the amount of 100% vinegar solution. 0% Solution

100% Solution

40% Solution

Amount of mixture

x

y

10

Pure vinegar

0

y

0.40 10  4

y4 x  y  10 x  4  10 x6

6 cups of water and 4 cups of vinegar should be mixed.

b. Let x represent the amount of 100% vinegar solution. Let y represent the amount of 40% vinegar solution. 100% Solution

40% Solution

60% Solution

Amount of mixture

x

y

10

Pure antifreeze

x

0.40y

0.60 10  6

 100 x y  10 x  y  10   100 x  100 y  1000  100 x  0.40 y  6  100 x  40 y  600 100 x  40 y  600  60 y  400 0 0 20 0 0 y 0 0 3 0 0 x  y  10 20 x  10 3 2 1 10 x He should mix 6 cups of the 40% solution and 3 cups of pure vinegar. 3 3 3

53. Let x represent the grams of fat in Cherry ice cream. Let y represent the grams of fat in Mint Chocolate Chunk ice cream. Monique’s sundae: 2 x  y  43

54. Let x represent the milligrams of sodium in 1 oz of chips. Let y represent the milligrams of sodium in cup of soda Bryan’s intake: 3x  2 y  700 Jadyn’s intake: x  3 y  350 x  3 y  350 3 x  2 y  700 3  3 y  350  2 y  700 9 y  1050  2 y  700 7 y  350 y  50

y  2 x  43 Tara’s sundae: x  2 y  47 x  2  2 x  43  47 x  4 x  86  47 3 x  39 x  13 y  2 x  43  2 13  43  26  43  17 Cherry has 13 g of fat and Mint Chocolate Chunk has 17 g of fat.

x  3 y  350  3  50  350  150  350  200 1 oz of chips contains 200 mg of sodium and 1 cup of soda contains 50 mg of sodium.

549


Chapter 5 Systems of Equations and Inequalities 55. Let x represent the amount borrowed at 4.6%. Let y represent the amount borrowed at 6.2%.

Principal Interest (I = Prt)

4.6% interest

6.2% interest

Total

x

y

5000

x  0.046 3  0.138 x

y  0.062 3  0.186 y

762

 138 x y  5000 x  y  5000   138 x  138 y  690,000  1000 0.138 x  0.186 y  762  138 x  186 y  762,000  138 x  186 y  762,000 48 y  72,000 y 1500 x  y  5000 x  1500  5000 x  3500 She borrowed $3500 at 4.6% and $1500 at 6.2%.

56. Let x represent the amount borrowed from the school at 4.5% interest. Let y represent the amount borrowed from the government at 6% interest.

Principal Interest (I = Prt)

4.5% interest

6% interest

Total

x

y

100,000

x  0.045 4  0.18 x

y  0.06 4  0.24 y

19,200

 18 x y  100,000 x  y  100,000   18 x  18 y  1,800,000  100 0.18 x  0.24 y  19,200  18 x  24 y  1,920,000  18 x  24 y  1,920,000 6 y  120,000 y 20,000 x  y  100,000 x  20,000  100,000 x  80,000 He borrowed $80,000 from the school and $20,000 through the government loan.

57. Let x represent one employee’s weekly salary. Let y represent the other employee’s weekly salary. x y  1350 2 x  y  2700 x  y  300 y  300  y  2700

58. Let x represent the electrician’s hourly wage. Let y represent the plumber’s hourly wage. x y  33 2 x  y  66

x   y  66 8 x  5 y  438 8   y  66  5 y  438

2 y  2400

8 y  528  5 y  438

y  1200 x  y  300  1200  300  1500 One makes $1200 and the other makes $1500.

3 y  90 y  30 x   y  66  30  66  36 The electrician makes $36/hr and the plumber makes $30/hr. 550


Section 5.1 2 x  2 y  44

59. Let x represent Josie’s walking speed. Let y represent the speed of the sidewalk.

With sidewalk Against sidewalk

Distance (ft)

Rate (ft/sec)

Time (sec)

200

x y

40

90

x y

30

2 18  2 y  44 36  2 y  44 2y  8 y4 The current is 4 mph and the boat travels 18 mph in still water.

d  rt

61. Let x represent the speed of one runner Let y represent the speed of the other runner.

200   x  y   40  40 x  40 y 90   x  y   30  30 x  30 y 4 40 x  40 y  200  10 x  10 y  50 3 30 x  30 y  90 10 x  10 y  30 20 x  80 x 4

Opposite direction Same direction

40 x  40 y  200

Distance (m)

Rate (m/sec)

Time (sec)

390

x y

30

390

x y

130

d  rt

40  4  40 y  200

390   x  y   30  30 x  30 y

160  40 y  200 40 y  40 y 1 The sidewalk moves at 1 ft/sec and Josie walks 4 ft/sec on nonmoving ground.

390   x  y  130  130 x  130 y  30 30 x  30 y  390   x  y  13  130 130 x  130 y  390  x y 3 2 x  16 x 8

30 x  30 y  390

60. Let x represent the speed of the boat in still water. Let y represent the speed of the current.

With current Against current

Distance (mi)

Rate (mi/hr)

Time (hr)

44

x y

2

56

x y

4

30  8  30 y  390 240  30 y  390 30 y  150 y5 The speeds are 8 m/sec and 5 m/sec. 62. Let x represent the speed of one particle. Let y represent the speed of the other particle.

d  rt 44   x  y   2  2 x  2 y 56   x  y   4  4 x  4 y

Opposite direction Same direction

2 x  2 y  44  4 x  4 y  88 4 x  4 y  56 4 x  4 y  56 8 x  144 x  18 2

Distance (ft)

Rate (ft/sec)

Time (sec)

390

x y

30

390

x y

130

d  rt 280   x  y  10  10 x  10 y 280   x  y   70  70 x  70 y

551


Chapter 5 Systems of Equations and Inequalities  10 10 x  10 y  280   x  y  28  70 70 x  70 y  280  x y 4 2 x  32 x  16

b. m 

y  y1  m  x  x1  y  188  67  x  2

10 x  10 y  280

y  188  67 x  134

10 16  10 y  280

y  67 x  54

160  10 y  280 10 y  120 y  12 The particles travel 16 ft/sec and 12 ft/sec. 63. a. m 

c. 1.25 x  54.3  0.32 x  64.5

1.57 x  10.2 x  6.5 y  0.32 x  64.5  0.32  6.5  64.5  62.4 {(18, 1260)}; The solution indicates that in the year 2018, the yearly number of visitors from Brazil and from Australia will equal 1,260,000 each if these trends continue.

y2  y1 66.8  56.8 10    1.25 10  2 8 x2  x1

y  y1  m  x  x1 

y  56.8  1.25  x  2 y  56.8  1.25 x  2.5 y  1.25 x  54.3

65. a. C  x   52 x  480

y  y1 61.3  64.5 3.2    0.32 b. m  2 10  0 10 x2  x1

b. R  x   100 x

y  y1  m  x  x1 

c.

y  64.5  0.32  x  0

C  x  R  x

52 x  480  100 x 48 x  480 x  10 offices

y  64.5  0.32 x y  0.32 x  64.5

d. 28  10 ; The company will make money.

c. 1.25 x  54.3  0.32 x  64.5

1.57 x  10.2 x  6.5 y  0.32 x  64.5

66. a. C  x   0.75 x  100 b. R  x   2 x

 0.32  6.5  64.5  62.4 {(6.5, 62.4)}; The solution indicates that midyear in 2006, the per capita consumption of beef and chicken was approximately equal at 62.4 lb each. 64. a. m 

y2  y1 724  188 536    67 10  2 8 x2  x1

c.

C  x  R  x

0.75 x  100  2 x 1.25 x  100 x  80 products

y2  y1 666  342 324    54 7 1 6 x2  x1

d. 60  80 ; The vendor will lose money.

y  y1  m  x  x1  y  342  54  x  1 y  342  54 x  54

y  54 x  288

552


Section 5.1 y  x  2  0  2  2  0, 2 Area of small triangle: 1 1 A  bh   2 2  2 2 2 Area of large triangle: 1 1 A  bh   2 4  4 2 2 Total area: 2  4  6 square units

67. a.

b. Find the intersection of the lines. 1 2x   x  5 2 4 x   x  10 5 x  10 x2 y  2 x  2  2  4  2, 4 The slopes are negative reciprocals, so the lines are perpendicular and the triangle is a right triangle. Length of short leg:

69. a. m 

y  y1  m  x  x1 

4  x   3  5 4 12 y 1  x  5 5 4 7 y  x 5 5

y   1 

b. m 

d  22  42  4  16  20  2 5 Length of long leg: d

10  2   0  4  82   4 2

2

y2  y1 7   1 8 4    x2  x1 7   3 10 5

y2  y1 1  5 4    1 x2  x1 4  0 4

y  y1  m  x  x1 

2

y  5  1 x  0

 64  16  80  4 5 1 A  bh 2 1  4 5 2 5  20 square units 2

y  5  x y  x  5

  

c.

68. a.

4 7 x   x  5 5 5 4 x  7  5 x  25 9 x  18 x2 y   x  5  2  5  3 The centroid is  2, 3 .

70. a. m 

y2  y1 6   2 8   x2  x1 3   2 5

y  y1  m  x  x1 

8  x   2  5 8 16 y2 x 5 5 8 6 y  x 5 5

y   2 

b. Find the intersection of the lines. 1 x2  x2 2 3 `x  0 2 x0

553


Chapter 5 Systems of Equations and Inequalities b. m 

73. y  60  x  28  180

y2  y1 4  0 4    4 x2  x1 0  1 1

y  x  148 x  28  x  y  180

y  y1  m  x  x1 

y  2 x  208 y  x  148 2 x  208  x  148

y  0  4  x  1 y  4 x  4 c.

8 6 x   4 x  4 5 5 8 x  6  20 x  20

 x  60 x  60 y  2 x  208  2  60  208

28 x  14

 120  208  88 x  60, y  88

1 x 2

74. x  y  46 x  y  82  180

 1 y  4 x  4  4    4  2  4  2  2

y  46  y  82  180

1  The centroid is  , 2 . 2 

2 y  144 y  72 x  y  46  72  46  26 x  26, y  72

71. Let x represent one angle. Let y represent the other angle. x  y  90 x  2y  6 x  y  90

75. For example: x y  a

2 y  6  y  90

3  5  a 2a System: x  y  2

3 y  96 y  32

x  2 y  6  2  32  6  64  6  58 The angles are 32 and 58 .

2x  y  b 2  3  5  b 1  b

2 x  y  1

72. Let x represent one angle. Let y represent the other angle. x  y  180 x  5 y  12 x  y  180

76. For example: x y  a

3x  4 y  b

4   3  a

3  4  4  3  b

1 a

12  12  b

System: x  y  1

5 y  12  y  180

0b

3x  4 y  0

6 y  168 y  28

77.

x  5 y  12  5  28  12  140  12  152 The angles are 28 and 152 .

Cx  5 y  13

2 x  Dy  5

C  4  5 1  13

2  4  D 1  5

4C  5  13

8  D  5

4C  8

D3

C2

554


Section 5.1 3 x  Ay  3

Bx  y  12

3  5  A  2  3

B  5   2  12

15  2 A  3 2 A  12

5B  2  12 5B  10

78.

f  x   mx  b

f  12  8

m  3  b  3

m  12  b  8

b  3m  3

v2 u  2v  5  2  2  5  4  1 1 x 1 1 x   1 u 1

u

 1 b  3    3  3

1 3

g  2  1

g  4  10

m  2  b  1

m  4  b  10

b  2m  1

b  2m  1  3 b  2     1  2

3 2

1 1 and v  . x y u  2v  1 u  2v  1

83. Let x represent Marta’s bicycling speed. Let y represent Marta’s running speed. d Use d  rt  t  . r 12 4 4   x y 3 21 3 5   x y 3 1 1 Let u  and v  . x y 4 1 4 12u  4v    3u  v  3 3 5  3 5  7u  v   21u  3v   3 9 0 2 4u   0 9 0 1 u 18 0

b  4m  10

2m  1  4m  10 6m  9

b  3 1  4

81. Let u 

u  4v  7 u  4v  7 u  4v  7

2v  1  4v  7 6v  6

v  1 u  2v  1  2  1  1  2  1  3 1 x 1 1 x  u 3

u

1 y 1 1 y  v 2 v

 1   1,   2  

b  1  3  4 g  x   mx  b

m

2v  4

b  3m  3

g  x   mx  b

80.

6v  15  4v  11

b  12m  8

3m  3  12m  8 15m  5

u  2v  5 u  2v  5

3  2v  5  4v  11

f  x   mx  b

f  3  3

m

3u  4v  11

B2

A6 79.

1 1 and v  . x y 3u  4v  11

82. Let u 

1 y 1 1 y   1 v 1 v

 1   , 1    3 555


Chapter 5 Systems of Equations and Inequalities 1 1 v x y 1 1 1 1 x  2 y  8 u 1 v 1 2 8 Sheila swims 2 mph and runs 8 mph.

4 3 4  1 12    4v   18  3 2 4  4v  3 3 2 4v  3 1 v 6 1 1 u v x y 1 1 1 1 x   18 y  6 1 u v 1 18 6 Marta bicycles 18 mph and runs 6 mph.

u

12u  4v 

85. Let x represent city miles. Let y represent highway miles. mi mi Use mpg   gal  . gal mpg x  y  254 x   y  254 x y   14 16 22 y  x 176     176 14  16 22  11x  8 y  2464 11  y  254  8 y  2464 11 y  2794  8 y  2464 3 y  330 y  110 x   y  254  110  254  144 The truck was driven 144 mi in the city and 110 mi on the highway.

84. Let x represent Shelia’s swimming speed. Let y represent Shelia’s running speed. d Use d  rt  t  . r 1 6 5   x y 4 2 8  2 x y 1 1 Let u  and v  . x y 5 5 u  6v  u  6v  4 4  2 2u  8v  2   u  4v  1 1 0 2v  4 0 1 0 v 8 0 5 u  6v  4  1 5 u  6    8 4 3 5 u  4 4 2 1 u  4 2

86. Let x represent city miles. Let y represent highway miles. mi mi Use mpg   gal  . gal mpg x  y  420 x   y  420 x y   26 12 18 y  x 36     36  26  12 18  3 x  2 y  936 3   y  420  2 y  936 3 y  1260  2 y  936  y  324 y  324 x   y  420  324  420  96 The driver drove 96 mi in the city and 324 mi on the highway.

556


Section 5.1 87. p  0.025 x

93.

p  0.04 x  104 a. 0.025 x  0.04 x  104

92  b 2  c 2 c 2  b 2  81  c  b c  b  81 Positive factors of 81: 1, 3, 9, 27, 81 c b 1 c  b  81 c b 3 c  b  81 c b 1 c  b  27 2c  82 2c  82 2c  30 c  41 c  41 c  15 c  b  81 c b 1 c  b  27

0.065 x  104 x  1600 p  0.025 x  0.025 1600  40

1600, 40 b. $40

41  b  81

c. 1600 tickets

b  40

88. p  0.002 x

c  b  27 c b 3 2c  30 c  15

p  0.005 x  70 a. 0.002 x  0.005 x  70

0.007 x  70 x  10,000

cb3 15  b  3

p  0.002 x  0.002 10,000  20

b  12

10,000, 20

41  b  1 b  40

15  b  27 b  12

c b 9 c b 9 2c  18 c 9 cb9 9b  9 b0

 9,12,15 and  9, 40, 41

b. $20 94.

c. 10,000 cookbooks 89. If the system represents two intersecting lines, then the lines intersect in exactly one point. The solution set consists of the ordered pair representing that point. If the lines in the system are parallel, then the lines do not intersect and the system has no solution. If the equations in a system of linear equations represent the same line, then the solution set is the set of points on the line. 90. If the system of equations reduces to an identity such as 0  0 , then the equations are dependent. 91. If the system of equations reduces to a contradiction such as 0  1 , then the system has no solution and is said to be inconsistent. 92. The solutions to the system are ordered pairs generated by the equation y  x  2 . In each ordered pair, y depends on x (y is 2 more than x). Likewise, x depends on y (x is 2 less than y).

a 2  122  c 2 c 2  a 2  144  c  a  c  a   144 Positive factors of 144: 1, 2, 3, 4, 6, 8, 9,12,16,18, 24, 36, 48, 72,144 c a 1 c  a  144 c a 3 c  a  144 c a 1 c  a  48 2c  145 2c  145 2c  51 145 145 51 c c c 2 2 2 c  a  48 c a 3 2c  51 51 c 2

c a 9 c  a  16 2c  25 25 c 2

c  a  16 c a 9 2c  25 25 c 2

c a 2 c  a  72 2c  74 c  37

c a 4 c  a  36 2c  40 c  20

c  a  72

c  a  72 c a 2 2c  74 c  37 ca 2

37  a  72

37  a  2

20  a  36

a  35 557

a  35

c  a  36 a  16


Chapter 5 Systems of Equations and Inequalities c  a  36 c a 4 2c  40 c  20 ca 4

c a 6 c  a  24 2c  30 c  15 c  a  24

c  a  24 c a 6 2c  30 c  15 ca6

20  a  4 a  16

15  a  24 a9

15  a  6 a  9

c a 8 c  a  18 2c  26 c  13 c  a  18

c  a  18 c a 8 2c  26 c  13 ca8

c  a  12 c  a  12 2c  24 c  12 c  a  12

13  a  18 a5

13  a  8 a  5

12  a  12 a0

F2 

100 1 3

100

1 3

96.

 2.470,  2.253 97.

 2.017,  0.015 98.

 0.529, 13.806

1 3

1 3 1 3

100 1  3

 50

3

3 2 F1  F2 2 2 3 2 F1  F2  0 2 2 1 2 F1  F2  50 2 2 3 2 F1  F2  0 2 2 1 2 F1  F2  50 2 2 1 3 F1  50 2 100 F1  1 3 F1 

2 3

3 F1  2

 F1 2 2 6    F1   F1 2 2 2 6    50 3  1   6   25   2   25 2  3  3 lb  44.8 lb

 35,12, 37  , 16,12, 20 ,  9,12,15 , and  5,12,13 95.

2

  100 1  3 

99.

2

 3  1 lb  36.6 lb

2 3 F2  F1 2 2

1.028, 15.772 558

 3  1


Section 5.2 Section 5.2 Systems of Linear Equations in Three Variables and Applications 1. x  5 y  12 1 1 1 x  y 2 3 3 3x  2  2 y

5. linear 6. triple 7. plane

3  5 y  12  2  2 y 15 y  36  2  2 y

8. triple; intersection

17 y  34

9. For example: Let x = 0 and y = 0. 2 x  4 y  6 z  12

y  2 x  5 y  12  5  2  12  10  12  2

2  0  4  0  6 z  12

 2,  2

6 z  12 z  2 Let x = 0 and z = 0. 2 x  4 y  6 z  12

2. y  2 x  6 0.03 x  0.07 y  0.02

3x  7 y  2

 0, 0,  2

2  0  4 y  6  0  12

3x  7  2 x  6  2

4 y  12 y3 Let y = 0 and z = 0. 2 x  4 y  6 z  12

3x  14 x  42  2 11x  44 x  4 y  2 x  6  2  4  6  8  6  2

 0, 3, 0

2 x  4  0  6  0  12

 4, 2

2 x  12 x6

3 3. y   x  1 4 3x  4 y  4

 6, 0, 0

10. For example: Let x = 0 and y = 0. 3 x  5 y  z  15

 3  3x  4   x  1  4  4 

3  0  5  0  z  15

3x  3x  4  4 44 3    x, y  | y   x  1 4  

z  15 Let x = 0 and z = 0. 3x  5 y  z  15

 0, 0,15

3  0  5 y   0  15 5 y  15 y  3 Let y = 0 and z = 0. 3 x  5 y  z  15

4. y  2 x  5 1 1 x  y 1 5 10 2 x  y  10

 0, 3, 0

3x  5  0   0  15

2 x   2 x  5  10

3x  15 x5

2 x  2 x  5  10 5  10   ; inconsistent system 559

 5, 0, 0


Chapter 5 Systems of Equations and Inequalities x  3y  7z  7

11. a.

2 x  3 y  z  12

b.

2 1  3  4   2 ⱨ 12

  2  3  3  7  0 ⱨ 7 2  9 ⱨ 7 7 ⱨ 7  true 2 x  4 y  z  16

2  12  2 ⱨ 12 12 ⱨ 12  true x  y  2z  9

2  2  4  3   0 ⱨ16

1   4  2  2 ⱨ 9

4  12 ⱨ16

1 4  4ⱨ9

16 ⱨ16  true 3x  5 y  6 z  9

9 ⱨ 9  true 3 x  2 y  z  7

3  2  5  3  6  0 ⱨ 9

3 1  2  4   2 ⱨ 7

6  15 ⱨ 9

3  8  2 ⱨ 7

9 ⱨ 9  true

7 ⱨ 7  true

Yes

Yes x  3y  7z  7

b.

x y z  2

13. a.

  2  3  4  7 1 ⱨ 7

 2   0    0 ⱨ 2

2  12  7 ⱨ 7 7 ⱨ 7  true 2 x  4 y  z  16

2 ⱨ 2 true x  2y  z  2

 2  2  0   0 ⱨ 2

2  2  4  4  1 ⱨ16

2 ⱨ 2  true 3x  5 y  z  6

4  16  1ⱨ16 13 ⱨ16 false

3  2  5  0   0 ⱨ 6

No

6 ⱨ 6  true 2 x  3 y  z  12

12. a.

Yes

2  2  3  5   1 ⱨ 12

x y z  2

b.

 1   2  1 ⱨ 2

4  15  1ⱨ 12 12 ⱨ 12  true x  y  2z  9

1  2  1ⱨ 2 2 ⱨ 2 true x  2y  z  2

 2   5  2  1 ⱨ 9

 1  2  2  1 ⱨ 2

2  5  2ⱨ9 9 ⱨ 9  true 3x  2 y  z  7

1  4  1ⱨ 2 2 ⱨ 2  true 3x  5 y  z  6

3  2  2  5   1 ⱨ 7

3  1  5  2  1 ⱨ 6

6  10  1ⱨ 7

3  10  1ⱨ 6 6 ⱨ 6  true

5 ⱨ 7 false No Yes

560


Section 5.2 14. a.

b.

x  y  z  3

3x  4 y  z  1

 1   2   6 ⱨ 3

3 1  4  2   6 ⱨ1

1  2  6 ⱨ 3 3 ⱨ 3 true

3  8  6 ⱨ1 5 ⱨ1 false

x  y  z  3

3x  4 y  z  1

  3   1   5 ⱨ 3

3  3  4  1   5 ⱨ1

3  1  5 ⱨ 3 3 ⱨ 3  true

9  4  5 ⱨ1 0 ⱨ1 false

No

No

x  2 y  z  9 15. A B 3x  4 y  5 z  9 C 2 x  3 y  z  12 Eliminate z from equations A and C. A x  2 y  z  9 C 2 x  3 y  z  12 x  y  3 D Eliminate z from equations B and C. B 3x  4 y  5 z  9 3x  4 y  5 z  9 Multiply by 5 C 2 x  3 y  z  12  10 x  15 y  5 z  60 7 x  19 y  69 E Solve the systems of equations D and E. Multiply by  7 D  x  y  3   7 x  7 y  21 E 7 x  19 y  69 7 x  19 y  69 12 y  48 y 4 Back substitute. A x  2 y  z  9 D x  y  3 x  4  3

1  2  4   z  9

 x  1  12 x 1

1  8  z  9 z  2

16. A 2 x  y  z  6 B  x  5 y  z  10 C 3 x  y  3 z  12 Eliminate z from equations A and B. A 2x  y  z  6 B  x  5 y  z  10 x  4y  16 D

561

1, 4,  2


Chapter 5 Systems of Equations and Inequalities Eliminate z from equations A and C. Multiply by 3 A 2 x  y  z  6  6 x  3 y  3 z  18 C 3x  y  3 z  12 3x  y  3 z  12 9x  2 y  30 E

Solve the systems of equations D and E. x  4 y  16 x  4 y  16 D Multiply by 2 E 9 x  2 y  30  18 x  4 y  60 19 x  76 x 4 Back substitute. A 2x  y  z  6 D x  4 y  16

4  4 y  16

2  4    3  z  6

4 y  12

83 z  6

y 3

z 1

17. A 4 x  3 y  2 z  5

B 2 x  y  y  z  6

 4, 3, 1  4 x  3 y  2 z  5

 2x  2 y  y  z  6

2 x  y  z  6

C 6 x  y  z  x  5 y  8  6x  6 y  z  x  5 y  8 

5 x  y  z  8

Eliminate y and z from equations B and C. B 2 x  y  z  6 C 5 x  y  z  8 7x  14 x  2 Eliminate x from equations A and B. A

4 x  3 y  2 z  5

2 x  y  z  6

B

4  2  3 y  2 z  5

2  2  y  z  6

8  3 y  2 z  5

4  y  z  6

3 y  2 z  3 D y  z  2 E Solve the systems of equations D and E. 3 y  2 z  3 D 3 y  2 z  3 Multiply by 2 E y  z  2  2 y  2 z  4 y  1 y 1 Back substitute. E y  z  2

1  z  2 z 3

 2, 1, 3

562


Section 5.2 18. A 3x  5 y  z  13

B   x  y  z  x  3

 x  y  z  x  3

3x  5 y  z  13

2 x  y  z  3

C 5  x  y   3 y  3z  4  5 x  5 y  3 y  3 z  4  5 x  2 y  3z  4 Eliminate z from equations A and B. A 3x  5 y  z  13 B 2 x  y  z  3  10 D x  4y Eliminate z from equations B and C. Multiply by 3 B 2 x  y  z  3  6 x  3 y  3 z  9 C 5 x  2 y  3 z  4 5 x  2 y  3 z  4 x  5y  13 E

Solve the systems of equations D and E. x  4 y  10 D E  x  5 y  13 y  3 Back substitute. B  2 x  y  z  3 D x  4 y  10 x  4  3  10

 2  2    3  z  3

x  12  10 x  2

4  3  z  3 z4

 2, 3, 4

 5z  2 19. A 2 x B 3y  7z  9 C 5 x  9 y  22 Eliminate y from equations B and C. Multiply by 3 B 3 y  7 z  9  9 y  21z  27  C 5 x  9 y  22 5 x  9 y  22 5 x  21z  5 D

Solve the systems of equations A and D. Multiply by 5 10 x  25 z  10 A 2 x  5 z  2  Multiply by 2 D 5 x  21z  5  10 x  42 z  10 67 z  0 z 0

Back substitute. A 2x  5z  2

B

3y  7z  9

2x  5  0  2

3 y  7  0  9

2x  2

3y  9

x 1

y3

1, 3, 0 563


Chapter 5 Systems of Equations and Inequalities 20. A 3x  2 y  8 B 5 y  6z  2 C 7x  11z  33 Eliminate y from equations A and B.

A 3x  2 y  8  15 x  10 y  40 Multiply by 2 B 5 y  6 z  2  10 y  12 z  4 15 x  12 z  36 D Multiply by 5

Solve the systems of equations C and D. Multiply by 15  105 x  165 z  495 C 7 x  11z  33  Multiply by 7 D 15 x  12 z  36   105 x  84 z  252 81z  243 z 3

Back substitute. B 5 y  6z  2

A

3 x  2 y  8

5 y  6  3  2

3x  2  4   8

5 y  18  2 5 y  20 y4

3x  8  8 3x  0 x0

 0, 4, 3

21. A 4 x  3 y  0 B 3 y  z  1  z  12 C 4x Eliminate x from equations A and C. A 4 x  3 y  0 C 4x  z  12  3 y  z  12 D

Eliminate y and z from equations B and D. B 3 y  z  1 D 3 y  z  12 0  11 The system of equations reduces to a contradiction. There is no solution. 22. A 4 x  y  2 z  1 B 3x  5 y  z  2 C 9 x  15 y  3z  0 Eliminate z from equations A and B.

A 4x  y  2z  1 4x  y  2z  1 Multiply by 2 B 3 x  5 y  z  2  6 x  10 y  2 z  4 10 x  9 y  3 D

564


Section 5.2 Eliminate z from equations B and C. Multiply by 3 B 3x  5 y  z  2  9 x  15 y  3z  6 C 9 x  15 y  3z  0 9 x  15 y  3z  0 0  6

The system of equations reduces to a contradiction. There is no solution. 23. A 2 x  3 y  6 z  1

2 x  3 y  6 z  1

B 6 y  12 z  10 x  9  10 x  6 y  12 z  9 C 3z  6 y  3x  1  3 x  6 y  3 z  1 Eliminate y from equations B and C. B 10 x  6 y  12 z  9 C 3 x  6 y  3 z  1 13 x  9z  8 D Eliminate y and z from equations A and B. Multiply by 2 A 2 x  3 y  6 z  1  4 x  6 y  12 z  2 B 10 x  6 y  12 z  9 10 x  6 y  12 z  9  7 14 x 0 0 1 0 x 0 0 2 0 A 2 x  3 y  6 z  1 B 3 x  6 y  3 z  1

 1 2    3 y  6 z  1  2

 1 3    6 y  3 z  1  2

1  3 y  6 z  1

3  12 y  6 z  2

3 y  6 z  2 D Solve the systems of equations D and E.

12 y  6 z  5 E

Multiply by 1 D 3 y  6 z  2   3y  6z  2 12 y  6 z  5 E 12 y  6 z  5 9 y  3 0 0 1 0 y 0 0 3 0 Back substitute. A 2 x  3 y  6 z  1

1 1 2    3    6 z  1  2 3 1  1  6 z  1 6 z  1 z

1 6

 1 1 1    , ,     2 3 6  

565


Chapter 5 Systems of Equations and Inequalities 24. A 5 x  2 y  3z  3

5 x  2 y  3 z  3

B 4 y  1  10 x  5 z  10 x  4 y  5 z  1 C 2z  5 x  6 y  5 x  6 y  2 z  0 Eliminate x from equations A and C. A 5 x  2 y  3 z  3 C 5 x  6 y  2 z  0 4 y  5 z  3 D Eliminate x from equations B and C. B 10 x  4 y  5 z  1 10 x  4 y  5 z  1 Multiply by 2 C 5 x  6 y  2 z  0  10 x  12 y  4 z  0 16 y  9 z  1 E Solve the systems of equations D and E. Multiply by  4 D 4 y  5 z  3   16 y  20 z  12 E 16 y  9 z  1 16 y  9 z  1 11z  11 z  1 Back substitute. D 4 y  5 z  3 A 5 x  2 y  3z  3 4 y  5  1  3 4 y  5  3

 1 5 x  2    3  1  3  2

4y  2

5 x  1  3  3

y

1 2

5x  1 x

1 5

 1 1   , , 1    5 2

25. A x  2 y  4 z  3 B y  3z  5 C x  2 z  7 Eliminate x from equations A and C. Multiply by 1 A x  2 y  4 z  3    x  2 y  4 z  3 C x x  2 z  7  2 z  7  2 y  6 z  10 D

Pair up equations B and D to solve for y and z. Multiply by 2 y  3z  5  2 y  6 z  10 B D 2 y  6 z  10 2 y  6 z  10 0 0

The system reduces to the identity 0  0 . It has infinitely many solutions.

566


Section 5.2 26. A 3 x  2 y  5 z  6 B 3y  z  4 C 3 x  17 y  26 Eliminate x from equations A and C. Multiply by 1 A 3x  2 y  5 z  6   3 x  2 y  5 z  6 C 3x  17 y 3 x  17 y  26  26 15 y  5 z  20 D

Pair up equations B and D to solve for y and z. Multiply by 5  15 y  5 z  20 B 3 y  z  4  D 15 y  5 z  20 15 y  5 z  20 0 0

The system reduces to the identity 0  0 . It has infinitely many solutions. 27. A 0.2 x  0.1y  0.6 z

 2x  y  6z  0

B 0.004 x  0.005 y  0.001z  0  4 x  5 y  z  0 C 30 x  50 z  20 y  3x  2 y  5 z  0 Eliminate y from equations A and C. Multiply by 2 A 2 x  y  6 z  0  4 x  2 y  12 z  0 C 3x  2 y  5 z  0 3x  2 y  5 z  0 7x  7z  0 D

Eliminate y from equations A and B. Multiply by 5 A 2 x  y  6 z  0  10 x  5 y  30 z  0 B 4x  5 y  z  0 4x  5 y  z  0  30 z  0 14 x 7 x  15 z  0 E

Solve the systems of equations D and E. Multiply by 1 D 7 x  7 z  0   7 x  7 z  0 E 7 x  15 z  0 7 x  15 z  0 8z  0 z 0 Back substitute. A 2x  y  6z  0 D 7x  7z  0 7 x  7 0  0

2 0  y  6  0  0

7x  0  0

0 y00

7x  0

y  0

x0

y0

567

 0, 0, 0


Chapter 5 Systems of Equations and Inequalities 28. A 0.3x  0.5 y  1.2 z

3x  5 y  12 z  0

B 0.05 x  0.1 y  0.04 z  5 x  10 y  4 z  0 C 100 x  300 y  700 z  x  3y  7z  0 Eliminate x from equations A and C. A 3x  5 y  12 z  0 3x  5 y  12 z  0 Multiply by 3 C x  3 y  7 z  0   3x  9 y  21z  0 4 y  9z  0 D Eliminate y from equations B and C. B 5 x  10 y  4 z  0 5 x  10 y  4 z  0 Multiply by 5 C x  3 y  7 z  0   5 x  15 y  35 z  0 25 y  39 z  0 E Solve the systems of equations D and E. Multiply by  25  100 y  225 z  0 D 4 y  9 z  0  Multiply by 4 E 25 y  39 z  0   100 x  156 z  0 69 z  0 z 0

Back substitute. D 4 y  9z  0

C

x  3y  7z  0

4 y  9  0  0

x  3 0  7  0  0

4y  0  0

x00 0

y0

x0

1 1 1 7 x y z   x  3y  4z  7 12 4 3 12 1 1 1 17 B  x y z     x  5 y  2 z  17 10 2 5 10 1 1 C x y z 3  2 x  y  4 z  12 2 4 Eliminate x from equations A and B. A x  3y  4z  7 B  x  5 y  2 z  17 8 y  2 z  10 D

29. A

Eliminate x and z from equations B and C. Multiply by 2 2 x  10 y  4 z  34 B  x  5 y  2 z  17  C 2 x  y  4 z  12 2 x  y  4 z  12  22 11 y y  2

568

 0, 0, 0


Section 5.2 Back substitute. D 8y  2 z  10

x  3y  4z  7

A

8  2  2 z  10

x  3  2  4  3  7

16  2 z  10

x  6  12  7

1, 2, 3

x 1

2z  6 z3 7 1 y z4  2x  7 y  z  8 2 2 3 1 B x  y  z  1  3x  4 y  2 z  4 4 2 1 2 3 C x  y  z  1  x  4 y  3 z  10 10 5 10 Eliminate x from equations A and C.

30. A x 

A 2x  7 y  z  8 2x  7 y  z  8 Multiply by  2 C x  4 y  3z  10   2 x  8 y  6 z  20 15 y  7 z  12 D Eliminate x from equations B and C. B 3x  4 y  2 z  4 3x  4 y  2 z  4 Multiply by 3 C x  4 y  3z  10   3x  12 y  9 z  30 16 y  11z  34 E Solve the systems of equations D and E. Multiply by 11  165 y  77 z  132 D 15 y  7 z  12  Multiply by 7 E 16 y  11z  34  112 y  77 z  238 53 y  106 y 2

Back substitute. D 15y  7 z  12

C

x  4 y  3 z  10

15  2  7 z  12

x  4  2  3  6  10

30  7 z  12 7 z  42

x  8  18  10 x0

 0, 2, 6 

z  6 31. A 3x  2 y  5 z  12 B 3 y  8 z  8 C 10 z  20

Solve C for z. 10 z  20 z2

 6, 8, 2 569

Solve B for y. 3 y  8 z  8

Solve A for x. 3x  2 y  5 z  12

3 y  8  2  8

3 x  2  8  5  2  12

y  16  8 3 y  24 y  8

3 x  16  10  12 3x  18 x6


Chapter 5 Systems of Equations and Inequalities 32. A 4 x  6 y  z  4 B  2 y  4 z  24 C 6 z  48

Solve C for z. 6 z  48 z8

 3,  4, 8

Solve B for y. 2 y  4 z  24

Solve A for x. 4 x  6 y  z  4

2 y  4  8  24

4 x  6  4  8  4

2 y  32  24 2 y  8 y  4

4 x  24  8  4 4 x  12 x  3

x  2 y  4 z 1    8  2 x  4  3 y  12  z  1  48  2 x  3 y  z  55 3 2 6 x  2 z 1 B   8  2 x  4  3 z  3  48  2 x  3z  49 3 2 y  4 z 1   1  C 3 y  12  2 z  2  12  3y  2z  2 4 6 Eliminate x from equations A and B. A 2 x  3 y  z  55 B 2 x  3 z  49 3 y  4 z  104 D

33. A

Solve the systems of equations C and D. Multiply by 1 C 3 y  2 z  2   3 y  2 z  2 3 y  4 z  104 D 3 y  4 z  104 6 z  102 z  17 Back substitute.  2 x  3z  49 D 3y  4 z  104 B 3y  4 17   104

2 x  3 17   49

3y  68  104 3 y  36 y  12

2 x  51  49 2 x  2 x 1

1,12,17

x 1 y  2 z  2    13  12 x  12  28 y  56  21z  42  1092  12 x  28 y  21z  1118 7 3 4 y2 z2 B 8 y  16  9 z  18  216  8 y  9 z  250  3  9 8 x 1 z  2 C  3  2 x  2  7 z  14  42  2 x  7 z  30 7 2 Eliminate x from equations A and C.

34. A

A 12 x  28 y  21z  1118 12 x  28 y  21z  1118 Multiply by 6 C 2x  7 z  30   12 x  42 z  180 28 y  21z  938 D

570


Section 5.2 Solve the systems of equations B and D. Multiply by  7  56 y  63z  1750 B 8 y  9 z  250  Multiply by 2 D 28 y  21z  938  56 y  42 z  1876 21z  126 6 z

Back substitute. B 8y  9 z  250

C

2 x  7 z  30

8y  9  6   250

2 x  7  6   30

8y  54  250 8 y  304 y  38

2 x  42  30 2 x  12 x  6

35. A 3  x  y   6  4 z  y 

B 4  6 y  5z

 6, 38, 6

3x  3 y  6  4 z  y  3x  2 y  4 z  6 6 y  5z  4

C  3x  4 y  z  0  3x  4 y  z  0 Eliminate x from equations A and C. A 3x  2 y  4 z  6 C 3x  4 y  z  0 6 y  5z  6 D

6 y  5z  4

 3x  4 y  z  0

Solve the systems of equations B and D. Multiply by 1  6 y  5 z  4 B 6 y  5 z  4  D 6 y  5z  6 6 y  5z  6 0 2 The system of equations reduces to a contradiction. There is no solution.

36. A 4  x  y   8  z  y 

B 3  3x  4 z

4x  4 y  8  z  y  3x  4 z  3

C  x  3 y  3z  1   x  3 y  3z  1 Eliminate y from equations A and C. A 4x  3y  z  8 C  x  3 y  3z  1  4z  9 D 3x

4x  3y  z  8 3x  4 z  3

  x  3 y  3z  1

Solve the systems of equations B and D. Multiply by 1  3x  4 z  3 B 3x  4 z  3  D 3y  4z  9 3y  4z  9 0 6 The system of equations reduces to a contradiction. There is no solution.

571


Chapter 5 Systems of Equations and Inequalities 37. Let x represent the amount invested in the large cap stock fund. Let y represent the amount invested in the real estate fund. Let z represent the amount invested in the bond fund. A x  y  z  8000  x  y  z  8000

B x  2y

x  2y  0

C 0.062 x  0.135 y  0.044 z  66  62 x  135 y  44 z  66,000 Eliminate x from equations A and B and from equations B and C. A x  y  z  8000 62  B 62 x  124 y  0 1  B  x  2 y  0 C 62 x  135 y  44 z  66,000 3 y  z  8000 D 11y  44 z  66,000  y  4 z  6000 E Solve the systems of equations D and E. D 3y  z  8000 3  E 3 y  12 z  18,000 13z  26,000 z  2000 Back substitute. D 3 y  z  8000 B x  2y  0 3 y  2000  8000 x  2  2000  0 3 y  6000 x  4000  0 y  2000 x  4000 He invested $4000 in the large cap fund, $2000 in the real estate fund, and $2000 in the bond fund. 38. Let x represent the amount put in the money market account. Let y represent the amount invested in the stock. Let z represent the amount invested in the mutual fund. A x  y  z  120,000  x  y  z  120,000

B y  z  10,000

y  z  10,000

C 0.022 x  0.06 y  0.02 z  2820  22 x  60 y  20 z  2,820,000 Eliminate z from equations A and B and from equations B and C. 20  B  20 y  20 z  200,000 A x  y  z  120,000 B y  z  10,000 C 22 x  60 y  20 z  2,820,000  2,620,000 E x  2y  130,000 D 22 x  40 y Solve the systems of equations D and E. 20  D 20 x  40 y  2,600,000 E 22 x  40 y  2,620,000 2x  20,000 x 10,000

572


Section 5.2 Back substitute. y  z  10,000 B D x  2 y  130,000 60,000  z  10,000 10,000  2 y  130,000  z  50, 000 2 y  120,000 z  50,000 y  60,000 $10,000 was put in the money market account. $60,000 was invested in the stock, and $50,000 was invested in the mutual fund.

39. Let x represent the number of free-throws. Let y represent the number of 2-point shots. Let z represent the number of 3-point shots. A x  2 y  3z  26  x  2 y  3z  26

B y z4

40. Let x represent the rate of saw A. Let y represent the rate of saw B. Let z represent the rate of saw C. A 6x  6 y  6 z  7200  x  y  z  1200

yz4

B 9.6 x  9.6 y  7200 

C x yz  x yz 0 Eliminate y from equations A and B and from equations B and C. A x  2 y  3z  26 2  B  2 y  2 z  8 x  5 z  18 D B C

x  y  750

C 9 y  9 z  7200  y  z  800 Eliminate x and y from equations A and B. A x  y  z  1200 1  B  x  y  750 z  450 Back substitute. C 9 y  9 z  7200

y z4 x  y z0  2z  4 E x

9 y  9  450  7200 9 y  4050  7200 9 y  3150 y  350

Solve the systems of equations D and E. 1  D  x  5 z  18 x  2z  4 E  7 z  14 z 2 Back substitute. D x  5 z  18

x  y  750 x  350  750 x  400 Saw A cuts 400 ft/hr, saw B cuts 350 ft/hr, and saw C cuts 450 ft/hr. B

x  5  2  18 x  10  18 x8 B yz4 y2 4 y6 He made eight free-throws, six 2-point shots, and two 3-point shots.

573


Chapter 5 Systems of Equations and Inequalities 41. Let x represent the percentage of nitrogen. Let y represent the percentage of phosphorous. Let z represent the percentage of potassium. A z  2y  2y  z  0

B x yz

Eliminate z from equations A and D. A 2y  z  0 D y  z  21 3y  21 y 7 Back substitute. A 2y  z  0

x yz0

C x  y  z  42  x  y  z  42 Eliminate y and z from equations B and C. B x  y z 0 C x  y  z  42 2x  42 x  21 Back substitute. C x  y  z  42 21  y  z  42

2  7  z  0 14  z  0 z  14 The proper N-P-K label is 21-7-14, which is choice b.

y  z  21 D

42. Let x represent the number of tickets sold for seats in section A. Let y represent the number of tickets sold for seats in section B Let z represent the number of tickets sold for seats in section C. A x  y  z  4000  x  y  z  4000

B 50x  30 y  20 z  120,000  5x  3 y  2 z  12,000 C y  x  z  1000   x  y  z  1000 Eliminate x and z from equations A and C. x  y  z  4000 A C  x  y  z  1000  5000 2y y  2500 Back substitute. B 5 x  3 y  2 z  12,000 A x  y  z  4000 5 x  3  2500  2 z  12,000

x  2500  z  4000

5 x  7500  2 z  12,000

x  z  1500 D Eliminate z from equations D and E. 2  D 2 x  2 z  3000 E 5 x  2 z  4500  1500 3x x  500

5 x  2 z  4500 E Back substitute. A

x  y  z  4000 500  2500  z  4000 3000  z  4000

z  1000 500 tickets in section A, 2500 tickets in section B, and 1000 tickets in section C were sold.

574


Section 5.2 43. Let x represent the length of the shortest side. Let y represent the length of the middle side. Let z represent the length of the longest side. A x  y  z  55  x  y  z  55

B x  z7

Eliminate z from equations C and D. C  w  l  12 1  D 4 w  l  52 5w  40 w 8 Back substitute. C  w  l  12 A wh  2

x  z  7

C y  x  z  19   x  y  z  19 Eliminate x and z from equations A and C. A x  y  z  55 C  x  y  z  19  36 2y y  18 Back substitute. A x  y  z  55

8h  2  h  6

45. Let x represent the measure of the largest angle. Let y represent the measure of the middle angle. Let z represent the measure of the smallest angle. A x  y  z  180  x  y  z  180

x  z  37 D Eliminate z from equations B and D. B x  z  7 D x  z  37  30 2x x  15 Back substitute. A x  y  z  55

B x  y  z  100  x  y  z  100 2 y  2 y  3z  0 3 Eliminate x from equations A and B. x  y  z  180 A 1  B  x  y  z  100 2 y  2 z  80 y  z  40 D Eliminate z from equations C and D. C 2 y  3z  0 3  D 3 y  3 z  120  120 5y y  24 Back substitute. C 2 y  3z  0 A x  y  z  180 C z

15  18  z  55 33  z  55 z  22 The sides are 15 in., 18 in., and 22 in. 44. Let w represent the width of the package. Let h represent the height of the package. Let l represent the length of the package. A 2 w  2h  l  48  2 w  2h  l  48

l  20

h6 The dimensions are w = 8 in., h = 6 in., and l = 20 in.

x  18  z  55

B w h2

8  l  12

wh  2

2  24  3 z  0

C l  w  12   w  l  12 Eliminate h from equations A and B. A 2 w  2h  l  48 2  B 2 w  2h  4 4w  l  52 D

48  3 z  0

x  24  16  180 x  40  180

3 z  48

x  140

z  16 The angles are 16 , 24 , and 140 . 46. Let x represent the measure of the largest angle. Let y represent the measure of the middle angle. Let z represent the measure of the smallest angle.

575


Chapter 5 Systems of Equations and Inequalities A x  y  z  180  x  y  z  180 B x  y  z  18

Eliminate z from equations C and D. C y  2z  0 2  D 2 y  2 z  162  162 3y y  54 Back substitute. C y  2z  0 A x  y  z  180

 x  y  z  18

1 y  y  2z  0 2 Eliminate x from equations A and B. x  y  z  180 A 1  B  x  y  z  18 2 y  2 z  162 y  z  81 D C z

10  0 10  5 3 1 2 The slopes are 5 and  1.

47. a. m 

m

54  2 z  0 2 z  54

z  27 x  99 The angles are 27 , 54 , and 99 .

15  10 5   1 2  3 5

y  ax 2  bx  c

b.

Substitute 1, 0 : 0  a 1  b 1  c  2  Substitute  3,10 : 10  a  3  b  3  c 2 Substitute  2,15 : 15  a  2  b  2  c  2

A a bc 0 B 9a  3b  c  10 C 4a  2b  c  15

Eliminate b from equations A and B and from equations A and C. 3  A 3a  3b  3c  0 2  A 2a  2b  2c  0 B 9a  3b  c  10 C 4a  2b  c  15 6a  2c  10 D 6a  3c  15 E Solve the system of equations D and E. D 6a  2c  10 1  E 6a  3c  15  5c  5 c 1

D

6a  2c  10 6a  2 1  10 6a  2  10 6a  12 a2

Back substitute. A

abc 0 2  b 1  0 b  3

x  54  27  180 x  81  180

y  2 x 2  3x  1

c.

576


Section 5.2 6  9 15  5 1  2 3 The slopes are 5 and 2.

m

48. a. m 

3  9 12  2 4  2 6

y  ax 2  bx  c

b.

Substitute  2, 9 : 9  a  2  b  2  c  2 Substitute  1,  6 : 6  a  1  b  1  c  2 Substitute  4,  3 : 3  a  4  b  4  c  2

A 4a  2b  c  9 B a  b  c  6 C 16a  4b  c  3

Eliminate b from equations A and B and from equations B and C. A 4a  2b  c  9 4  B 4a  4b  4c  24 2  B 2a  2b  2c  12 C 16a  4b  c  3 6a  3c  3 D 12a  3c  21 E Solve the system of equations D and E. D 6a  3c  3 D 6a  3c  3 E 12a  3c  21 6 1  3c  3  18 18a 6  3c  3 a 1 3c  9

Back substitute. B

a  b  c  6 1  b   3  6 1  b  3  6 b4

c  3 y  x  4x  3 2

c.

y  ax 2  bx  c

49.

Substitute  0, 6 : 6  a  0   b  0  c  2  Substitute  2,  6 : 6  a  2  b  2  c 2 Substitute  1, 9 : 9  a  1  b  1  c  2

A c 6 B 4a  2b  c  6 C a bc 9

Eliminate c from equations B and C. B 4a  2b  c  6 C a bc  9 4a  2b  6  6

ab6 9

4a  2b  12

a b  3 E

2a  b  6 D Solve the system of equations D and E. D 2a  b  6 E a b  3  3 3a a  1

E

a b  3 1  b  3 b  4 b  4

y  x  4x  6 2

577


Chapter 5 Systems of Equations and Inequalities y  ax 2  bx  c

50.

4  a  0  b  0  c  Substitute  0,  4 : 2 6  a  2  b  2  c  Substitute  2,  6 : 2 Substitute  3,  31 : 31  a  3  b  3  c 

A c  4 B 4a  2b  c  6 C 9a  3b  c  31

2

Eliminate c from equations B and C. B 4a  2b  c  6 C 9a  3b  c  31 4a  2b  4  6

9a  3b  4  31

4a  2b  2

9a  3b  27

2a  b  1 D Solve the system of equations D and E. D D 2a  b  1

3a  b  9 E 2a  b  1

2  2  b  1

E 3a  b  9  10 5a a  2

4  b  1 b3

y  2 x 2  3 x  4 y  ax 2  bx  c

51. a.

Substitute  0, 6 : 6  a  0  b  0  c  2 Substitute  4, 7  : 7  a  4  b  4  c  2 Substitute  9, 9 : 9  a  9  b  9  c 

A c 6 B 16a  4b  c  7 C 81a  9b  c  9

Eliminate c from equations B and C. B 16a  4b  c  7

C 81a  9b  c  9

2

81a  9b  6  9

16a  4b  6  7

81a  9b  3

16a  4b  1 D

27 a  3b  1 E Solve the system of equations D and E.

3D 48a  12b  3 4  E 108a  12b  4 60a  1 0 0 1 a 0 0 60

y

b. y 

D

16a  4b  1  1 16    4b  1  60  4  4b  1 15 4  60b  15 11 b 60

1 2 11 x  x6 60 60

1 2 11 1 11 144 132 2 x  x  6  12   12   6    6  10.6% 60 60 60 60 60 60

578


Section 5.2 y  ax 2  bx  c

52. a.

Substitute  0, 3 : 3  a  0  b  0  c  2 Substitute  3, 4 : 4  a  3  b  3  c  2 Substitute 10, 8 : 8  a 10  b 10  c  2

A c 3 B 9a  3b  c  4 C 100a  10b  c  8

Eliminate c from equations B and C. C 100a  10b  c  8 B 9a  3b  c  4 100a  10b  3  8 9a  3b  3  4 100a  10b  5 9a  3b  1 D 20a  2b  1 E Solve the system of equations D and E. 2  D 18a  6b  2 3  E 60a  6b  3 42a  1 0 0 1 a 0 0 42

y b. y 

53.

D

9a  3b  1  1 9    3b  1  42  3  3b  1 14 3  42b  14 11 b 42

1 2 11 x  x3 42 42 1 2 11 1 11 225 165 2 x  x  3  15   15   3    3  12 billion metric tons 42 42 42 42 42 42

1 2 at  v0t  s0 2 1 1 2 a  v0  s0  30 Substitute 1, 30 : 30  a 1  v0 1  s0  A 2 2 1 2 Substitute  2, 54 : 54  a  2  v0  2  s0  B 2a  2v0  s0  54 2 1 2 9 Substitute  3, 82 : 82  a  3  v0  3  s0  C a  3v0  s0  82 2 2 Eliminate v0 from equations A and B and from equations A and C. 3 2  A a  2v0  2s0  60 3  A  a  3v0  3s0  90 2 9 B 2a  2v0  s0  54 C a  3v0  s0  82 2 a  s0  6 D 3a  2s0  8 s t  

Solve the system of equations D and E. 2  D 2a  2s0  12 E 3a  2s0  8 a  4

D a  s0  6 4  s0  6 s0  10

579

D


Chapter 5 Systems of Equations and Inequalities Back substitute. 1 A a  v0  s0  30 2 1  4   v0  10  30 2 2  v0  10  30 v0  18 54.

a  4, v0  18, s0  10

1 2 at  v0t  s0 2 1 1 2 Substitute 1,  7  : 7  a 1  v0 1  s0  A a  v0  s0  7 2 2 1 2 Substitute  2, 12 : 12  a  2  v0  2  s0  B 2a  2v0  s0  12 2 1 2 9 Substitute  3, 37  : 37  a  3  v0  3  s0  C a  3v0  s0  37 2 2 Eliminate v0 from equations A and B and from equations A and C. 3 2  A  a  2v0  2s0  14 3  A  a  3v0  3s0  21 2 9 B 2a  2v0  s0  12 C a  3v0  s0  37 2 a  s0  26 D 3a  2s0  58 s t  

D

Solve the system of equations D and E. 2  D 2a  2s0  52 E 3a  2s0  58 a  6 Back substitute. 1 a  v0  s0  7 A 2 1  6   v0  20  7 2 3  v0  20  7 v0  10 55. a.

D a  s0  26 6  s0  26 s0  20

a  6, v0  10, s0  20

y  ax1  bx2  c Substitute  28, 0.5, 225 : 225  a  28  b  0.5  c  Substitute  25, 0.8, 207  : 207  a  25  b  0.8  c  Substitute 18, 0.4,154 : 154  a 18  b  0.4  c 

A 28a  0.5b  c  225 B 25a  0.8b  c  207 C 18a  0.4b  c  154

Eliminate c from equations A and B and from equations A and C. 1  A 28a  0.5b  c  225 1  A 28a  0.5b  c  225 B 25a  0.8b  c  207 B 18a  0.4b  c  154 3a  0.3b  18 10a  0.1b  71 E a  0.1b  6 D

580


Section 5.2 Solve the system of equations D and E. D  a  0.1b  6

1  D  a  0.1b  6 E 10a  0.1b  71 11a  77 a 7

7  0.1b  6 0.1b  1 b  10

Back substitute. A 28a  0.5b  c  225 28  7   0.5 10   c  225 196  5  c  225

y  7 x1  10 x2  24

c  24 b. y  7 x1  10 x2  24 y  7  20  10  0.4  24  140  4  24  168 $168,000 56. a.

y  ax1  bx2  c Substitute  3500, 6, 20 : 20  a  3500  b  6  c  Substitute  3200, 4, 26 : 26  a  3200  b  4  c  Substitute  4100, 8,18 : 18  a  4100  b  8  c 

A 3500a  6b  c  20 B 3200a  4b  c  26 C 4100a  8b  c  18

Eliminate c from equations A and B and from equations A and C. 1  A 3500a  1  A 3500a  6b  c  20 6b  c  20 B 3200a  4b  c  26 B 4100a  8b  c  18 300a  2b  6 600a  2b  2 150a  b  3 D 300a  b  1 D Solve the system of equations D and E. D 150a  b  3 E 300a  b  1 150a  2 1 a 75

D 150a  b  3  1 150    b  3  75  2  b  3 b  5

Back substitute. A 3500a  6b  c  20  1  3500    6  5   c  20  75  140  30  c  20 3 140  90  3c  60 3c  10 10 c 3

y

1 10 x1  5 x2  75 3

581


Chapter 5 Systems of Equations and Inequalities 1 10 x1  5 x2  75 3 1 10 152 10 y   3800  5  6    30   24 mpg 75 3 3 3

b. y 

57. The set of all ordered pairs that are solutions to a linear equation in three variables forms a plane in space.

Solve the system of equations F and G. 2  F 46c  26d  104 13  G 39c  26d  104 7c 0  0 c Back substitute. G 3c  2d  8

58. The planes do not all intersect in a common point in space. 59. Pair up two equations in the system and eliminate a variable. Choose a different pair of two equations from the system and eliminate the same variable. The result should be a system of two linear equations in two variables. Solve this system using either the substitution or addition method. Then back substitute to find the third variable.

3  0  2d  8

E

2d  8 d4 b  7c  5d  21 b  7  0  5  4  21 b  20  21 b  1

60. Substitute the ordered triple into each individual equation in the system and verify that it is a solution to each equation.

A 2a  b  c  d  7 2a  1  0  4  7 2a  4 a2  2, 1, 0, 4

61. A 2a  b  c  d  7 B 3b  2c  2d  11 C a  3c  3d  14 D 4a  2b  5c  6 Eliminate a from equations A and C. A 2a  b  c  d  7 2  C 2a  6c  6d  28 b  7c  5d  21 E

62. A 3a  4b  2c  d  8 B 2a  3b  2d  7 C 5b  3c  4d  4  7 D  a  b  2c Eliminate a from equations B and D. B 2a  3b  2d  7 2  D 2a  2b  4c  14 5b  4c  2d  7 E

Eliminate b from equations B and E. B 3b  2c  2d  11 3  D 3b  21c  15d  63 23c  13d  52 F Eliminate a and b from equations A and D. 2  A 4a  2b  2c  2d  14  6 D 4a  2b  5c  3c  2d  8 G

Eliminate b from equations C and E. C 5b  3c  4d  4 1  E 5b  4c  2d  7 c  2d  3 F

582


Section 5.2 Eliminate a from equations A and D. A 3a  4b  2c  d  8  21 3  D 3a  3b  6c b  4c  d  13 G

Eliminate y from equations A and C. A 6 x  8 y  3 z  24 4  C 4 x  8 y  8 z  96  11z  72 E 10 x

Eliminate b from equations C and G. C 5b  3c  4d  4 5  G 5b  20c  5d  65 23c  9d  69 H

Solve the systems of equations D and E. 10  D 10 x  10 z  80 E 10 x  11z  72 z 8 Back substitute. D x  z  8 x  8  8 x  16 B 2x  2 y  z  0

Solve the system of equations F and H. 23  F 23c  46d  69 H 23c  9d  69 55d  0 0 d Back substitute. F c  2d  3

2  16  2 y  8  0 32  2 y  8  0 2 y  24 y  12 x  u 3 y  v 1 16  u  3 12  v  1 13  u 11  v  13,11,10

c  2  0  3 C

c3 5b  3c  4d  4 5b  3  3  4  0  4

5b  9  4 5b  5 b 1 A 3a  4b  2c  d  8 3a  4 1  2  3  0  8 3a  4  6  8 3a  6 a2  2,1, 3, 0

z  w2 8 w2 10  w

64. Let x  u  1, y  v  1, and z  w  3 . x y z A    11  2 x  2 y  3z  132 6 6 4 x y z B    7  4 x  6 y  3z  84 3 2 4 x y z C    20  3x  y  3z  120 2 6 2 Eliminate z from equations A and B. A 2 x  2 y  3z  132 1  B 4 x  6 y  3z  84 2 x  8 y  48  x  4 y  24 D Eliminate z from equations A and C. A 2 x  2 y  3z  132 1  C 3x  y  3z  120 x  3y  12 E

63. Let x  u  3, y  v  1, and z  w  2 . x y z A    1  6 x  8 y  3z  24 4 3 8 x y z B    0  2x  2 y  z  0 2 2 4 x y z C    6  x  2 y  2 z  24 4 2 2 Eliminate y from equations B and C. B 2x  2 y  z  0 C x  2 y  2 z  24 3x  3 z  24 x  z  8 D

583


Chapter 5 Systems of Equations and Inequalities Solve the systems of equations D and E. D  x  4 y  24 1  E x  3 y  12 y  12 Back substitute. D  x  4 y  24

2 x  2 y  3z  132

A

2  24  2 12  3z  132

 x  4 12  24  x  48  24  x  24 x  24

48  24  3z  132 3z  60 z  20 x  u 1 y  v 1 24  u  1 12  v  1

z  w3 20  w  3

23  u

17  w

 23,13,17

x 2  y 2  Ax  By  C  0

65. a.

Substitute  2, 2 :

 2 2   2  2  A  2   B  2  C  0  Substitute  6, 0 :  6  2   0 2  A  6  B  0  C  0  2 2 Substitute  7, 3 :  7    3  A  7   B  3  C  0 

A 2 A  2 B  C  8 B 6A

Solve the system of equations B and D. B 6 A  C  36 1  D 4 A  C  28 2A  8 A  4

4 A  C  28

D

4  4  C  28 16  C  28 C  12

Back substitute. A 2 A  2 B  C  8 2  4   2 B  12  8 8  2 B  12  8 2 B  12 B6

x 2  y 2  4 x  6 y  12  0

x 2  y 2  4 x  6 y  12  0  y2  6 y  12 x2  4 x 2 2 x  4 x  4  y  6 y  9  12  4  9

 x  22   y  3 2  25  x  22   y  3 2  52

Center:  2, 3 ; Radius: 5 584

 C  36

C 7 A  3B  C  58

Eliminate B from equations A and C. 3  A 6 A  6 B  3C  24 2  C 14 A  6 B  2C  116 20 A   5C  140 4 A  C  28 D

b.

13  v


Section 5.2 x 2  y 2  Ax  By  C  0

66. a.

Substitute  1,12 :  1  12  A  1  B 12  C  0  2

Substitute  5,10 : Substitute  9, 2 :

2

 5  10  A  5  B 10  C  0   9 2   2  2  A  9  B  2   C  0  2

2

A  A  12 B  C  145 B 5 A  10 B  C  125 C 9 A  2 B  C  85

Eliminate A from equations A and B. 5  A 5 A  60 B  5C  725 B 5 A  10 B  C  125 70 B  6C  850 D Eliminate A from equations A and C. 9  A 9 A  108 B  9C  1305 C 9 A  2 B  C  85 110 B  10C  1390 11B  C  139 E Solve the system of equations D and E. D 70 B  6C  850 6  E 66 B  6C  834 4B  16 4 B

11B  C  139

E

11 4  C  139 44  C  139 C  95

Back substitute. A  A  12 B  C  145  A  12  4   95  145  A  48  95  145  A  2 A2 b.

x 2  y 2  2 x  4 y  95  0

x 2  y 2  2 x  4 y  95  0 x2  2 x  y2  4 y  95 2 2 x  2 x  1  y  4 y  4  95  1  4

 x  12   y  2 2  100  x  12   y  2 2  102 67.

Substitute  3,1, 2 :

Substitute  1,1, 0 :

Center:  1, 2  ; Radius: 10

c1 x  c2 y  c3 z  1

c1  3  c2 1  c3  2  1 

c1  1  c2 1  c3  0  1 

Substitute 1, 3,  2 : c1 1  c2  3  c3  2  1  Eliminate c3 from equations A and C. A 3c1  c2  2c3  1 C c1  3c2  2c3  1 4c1  2c2  2 2c1  c2  1 D 585

A 3c1  c2  2c3  1 B c1  c2 C

1

c1  3c2  2c3  1


Chapter 5 Systems of Equations and Inequalities Solve the system of equations B and D. B  c1  c2  1

B  c1  c2  1 D 2c1  c2  1 c1  2

 2  c2  1 c2  3

Back substitute. A 3c1  c2  2c3  1

3  2   3  2c3  1 6  3  2c3  1 2c3  8 c3  4

2x  3y  4z  1 68.

Substitute  5, 3, 4 :

c1 x  c2 y  c3 z  1

c1  5  c2  3  c3  4  1 

A 5c1  3c2  4c3  1

Substitute  1, 0,1 : c1  1  c2  0  c3 1  1 

B  c1

Substitute  1, 2, 5 : c1  1  c2  2  c3  5  1 

 c3  1

C  c1  2c2  5c3  1

Eliminate c2 from equations A and C. 2  A 10c1  6c2  8c3  2 3  C 3c1  6c2  15c3  3 13c1  7c3  1 D Solve the system of equations B and D. 7  B 7c1  7c3  7 D 13c1  7c3  1 6c1  6 c1  1 Back substitute. A 5c1  3c2  4c3  1

B  c1  c3  1 1  c3  1 c3  2

5 11  3c2  4  2   1 5  3c2  8  1

3c2  12 c2  4

x  4 y  2z  1

69. A 2 A  B  2C  11

B 5 A  2 B  7C  26 C 3 A  8B  4C  5 Eliminate B from equations A and B and equations A and C. 2  A 4 A  2 B  4C  22 8  A 16 A  8 B  16C  88 B 5 A  2 B  7C  26 C 3 A  8 B  4C  5 9A  3C  48 19 A  12C  83 E 3 A  C  16 D 586


Section 5.2 Solve the system of equations D and E. 12  D 36 A  12C  192 E 19 A  12C  83 55 A  275 5 A

3 A  C  16

D

3  5  C  16 15  C  16 C  1

Back substitute. A 2 A  B  2C  11 2  5   B  2  1  11 10  B  2  11 B3 70. A

B

A  3B  3C 

A  5, B  3, C  1

3

A  10 B  11C  37

C 12 A  3B  4C  82 Eliminate A from equations A and B and equations A and C. 1  A  A  3B  3C  3 12  A 12 A  36 B  36C  36 B A  10 B  11C  37 C 12 A  3B  4C  82  13B  8C  34 D 39 B  32C  46 E Solve the system of equations D and E. D 13B  8C  34 13B  8  34 13B  26 B  2

3  D 39 B  24C  102 E 39 B  32C  46 56C  56 1 C Back substitute. A A  3B  3C  3 A  3  2   3 1  3 A63 3 A6

A  6, B  2, C  1

Section 5.3 Partial Fraction Decomposition 1. a. 3x  2 y  6 2 y  3x  6 3 y  x3 2 b.

4 y  6 x  12 3 y  x3 2

  3 c.  x, y  y  x  3 2   2. a. 2 y  7  4 x 2 y  4 x  7 7 y  2 x  2

3 3 x3 x3 2 2 3  3 Identity Infinitely many solutions

587

6 x  3 y  10 3 y  6 x  10 10 y  2 x  3


Chapter 5 Systems of Equations and Inequalities A 3A  7C  18 3  C 3 A  12 B  3 12 B  7C  21 D

7 10  2 x  2 3 7 10  Contradiction 2 3 No solution

b. 2 x 

Solve the system of equations B and D. 12  B 12 B  60C  180 D 12 B  7C  21 67C  201 C 3

c.   3. A 3 A  5 B  C  19  3 A  5B  C  19 B B  5C  2 A  1  2 A  B  5C  1

B B  5C  15

C 7 A  3B  C  13  7 A  3B  C  13 Eliminate C from equations A and B and equations A and C. 5  A 15 A  25B  5C  95 B 2 A  B  5C  1 17 A  24 B  96 D

B  5  3  15 B  15  15 B0 Back substitute. A 3 A  7C  18 3 A  7  3  18

1  A 3 A  5 B  C  19 C 7 A  3B  C  13 4 A  8B  32 E

3 A  21  18 3 A  3 A  1

Solve the system of equations D and E. D 17 A  24 B  96 3  E 12 A  24 B  96 29 A  0 A 0

3x  4 5. x 2  2 x  1 3x 3  2 x 2  x  5

 3x3  6 x 2  3x

 4x  4x  5  4 x 2  8 x  4

4  0  8 B  32

4x  1

8 B  32 B4 Back substitute. A 3 A  5 B  C  19

3x  4 

4x 1 x  2x  1 2

2x  5 6. x  6 x  9 2 x  17 x  54 x  68

3  0  5  4  C  19

2

3

2

0  20  C  19

 2 x 3  12 x 2  18 x

C 1

4. A 3 A  7C  18  3 A B B  5C  15 

2

E 4 A  8 B  32

 0, 4,1

 1, 0, 3

 5 x  36 x  68  5 x 2  30 x  45 2

6 x  23

 7C  18 B  5C  15

2x  5 

 1 C A  4 B  1  A  4 B Eliminate A from equations A and C.

6 x  23 x  6x  9 2

7. fraction decomposition 8. constant; A

588

9. linear; Ax  B


Section 5.3 10. When the degree of the numerator is greater than or equal to the degree of the denominator, apply long division first.  x  37 A B 11.   x  4 2 x  3 x  4 2 x 3    12.

20 x  4 A B    x  5 3x  1 x  5 3x  1

13.

8 x  10 8 x  10 A B    2 x  2 x x  x  2 x x  2

14.

y  12 y  12 A B    2 y  3 y y  y  3 y y  3

15.

6w  7 6w  7 A B    w2  w  6  w  2 w  3 w  2 w  3

16.

10t  11 6w  7 A B    2 t  5t  6  t  6 t  1 t  6 t  1

17.

x 2  26 x  100 x 2  26 x  100 x 2  26 x  100 A B C      2 5 x3  10 x 2  25 x x x 2  10 x  25 x x  x  x  5  x  5 2

18.

B C 3x 2  2 x  8 3 x 2  2 x  8 3x 2  2 x  8 A      2 3 2 2 x  4x  4x x x  4x  4 x x  2  x  2 2 x  x  2

19.

13x 2  2 x  45 13 x 2  2 x  45 A Bx  C    2 x3  18 x 2 x x2  9 2 x x2  9

20.

17 x 2  7 x  18 17 x 2  7 x  18 A Bx  C    7 x3  42 x 7 x x2  6 7 x x2  6

21.

2 x3  x 2  13x  5 2 x3  x 2  13x  5 Ax  B Cx  D   2  2 2 x 4  10 x 2  25 x 5 x2  5 x2  5

22.

3x3  4 x 2  11x  12 3x3  4 x 2  11x  12 Ax  B Cx  D   2  2 2 x4  6 x2  9 x 3 x2  3 x2  3

23.

5x2  4 x  8

 x  4  x  x  4 2

A Bx  C  2 x4 x  x4

589


Chapter 5 Systems of Equations and Inequalities

24.

25.

26.

x 2  15 x  6

 x  6  x  2 x  6  2

2 x5  3x3  4 x 2  5

x  x  2 x  2 x  7 3

2

A Bx  C  2 x  6 x  2x  6

2

A B C D Ex  F Gx  H     2  2 3 2 x x  2  x  2  x  2 x  2x  7 x  2x  7 2

A B C Dx  E Fx  G    2  2 2 x  3 2 x  9  2 x  9 x 1 x2  1

6 x 4  5 x3  2 x 2  5

 x  3 2 x  9  x  1 2

2

2

 x  37 A B    x  4 2 x  3 x  4 2 x  3

27.

 x  37  B   A     x  4 2 x  3     x  4 2x  3   x  4 2 x  3 

 x  4 2 x  3  

 x  37  A  2 x  3  B  x  4  x  37  2 Ax  3 A  Bx  4 B

 x  37   2 A  B  x   3 A  4 B  1 2 A  B  1

Multiply by  4 1 1  2 A  B   8 A  4 B  4 3 A  4 B  37 2 37  3 A  4 B 11A  33 A 3

2  3  B  1 6  B  1 B  7

 x  37 3 7    x  4 2 x  3 x  4 2 x  3 20 x  4 A B    x  5 3x  1 x  5 3x  1

28.

20 x  4  B   A     x  5 3x  1     x  5 3 x  1   x  5 3 x  1 

 x  5 3x  1  

20 x  4  A  3x  1  B  x  5 20 x  4  3 Ax  A  Bx  5 B

20 x  4   3 A  B  x   A  5 B  Multiply by 5 15 A  5B  100 1 20  3 A  B  2 4  A  5 B A  5B  4  96 16 A A 6

20 x  4 6 2    x  5 3x  1 x  5 3x  1

590

2 A  5 B  4 6  5 B  4 5 B  10 B2


Section 5.3

29.

8 x  10 8 x  10 A B    2 x  2 x x  x  2 x x  2

30.

 8 x  10  B  A x  x  2     x  x  2      x x  2  x  x  2  8 x  10  A  x  2  Bx

 y  12  A B  y  y  3     y  y  3      y y  3  y  y  3  y  12  A  y  3  By

8 x  10  Ax  2 A  Bx

y  12  Ay  3 A  By

8 x  10   A  B  x   2 A

y  12   A  B  y  3 A

A B  8 5 B  8 B3

2 A  10 A5

3 A  12 A  4

y  12 4 5   2 y  3y y y3

8 x  10 5 3   2 x  2x x x  2

31.

y  12 y  12 A B    2 y  3 y y  y  3 y y  3

6w  7 6w  7 A B    w  w  6  w  2 w  3 w  2 w  3 2

 6w  7 B   A     w  2 w  3     w  2 w  3   w  2 w  3 

 w  2 w  3  

6w  7  A  w  3  B  w  2 6w  7  Aw  3 A  Bw  2 B

6w  7   A  B  w   3 A  2 B  Multiply by 2 6  A  B  2 A  2 B  12 1 2 7  3 A  2 B 3 A  2 B  7  5 5A A 1

1 A B  6 1 B  6 B5

6w  7 1 5   w  w6 w2 w3 2

32.

10t  11 6w  7 A B    2 t  5t  6  t  6 t  1 t  6 t  1  10t  11  B   A     t  6 t  1     t  6 t  1   t  6 t  1 

 t  6 t  1  

10t  11  A  t  1  B  t  6 10t  11  At  A  Bt  6 B

10t  11   A  B  t    A  6 B 

591

A B 1 4  B  1 B5


Chapter 5 Systems of Equations and Inequalities 1 10  A  B 2 11   A  6 B 21  7B 3  B 10t  11 7 3   2 t  5t  6 t  6 t  1 33.

1 A  B  10 A  3  10 A  7

x 2  26 x  100 x 2  26 x  100 x 2  26 x  100 A B C      2 3 2 2 x  10 x  25 x x x  10 x  25 x x  5  x  5 2 x  x  5

 x 2  26 x  100  A B C  2 2 x  x  5      x  x  5    2 2  x  x  5   x x  5  x  5  x 2  26 x  100  A  x  5  Bx  x  5  Cx 2

x 2  26 x  100  A x 2  10 x  25  Bx 2  5 Bx  Cx x  26 x  100  Ax  10 Ax  25 A  Bx 2  5 Bx  Cx 2

2

x 2  26 x  100   A  B  x 2  10 A  5B  C  x   25 A

25 A  100 A 4

A B 1 4 B 1 B  3

10 A  5 B  C  26 10  4  5  3  C  26 40  15  C  26 C 1

x 2  26 x  100 4 3 1    3 2 x  10 x  25 x x x  5  x  5 2 3x 2  2 x  8 3 x 2  2 x  8 3x 2  2 x  8 A B C      34. 3 2 2 2 x  4x  4x x x  4x  4 x x  2  x  2 2 x  x  2

 3 x 2  2 x  8  A B C  2 2 x  x  2      x  x  2    2 2  x  x  2   x x  2  x  2  3 x 2  2 x  8  A  x  2  Bx  x  2  Cx 2

3 x 2  2 x  8  A x 2  4 x  4  Bx 2  2 Bx  Cx 3 x  2 x  8  Ax  4 Ax  4 A  Bx 2  2 Bx  Cx 2

2

3 x 2  2 x  8   A  B  x 2   4 A  2 B  C  x   4 A 4A  8 A 2

4 A  2B  C  2

A  B  3 2  B  3

4  2  2  5  C  2

B  5

8  10  C  2 C4

3x  2 x  8 2 5 4    3 2 x  4 x  4 x x x  2  x  2 2 2

592


Section 5.3 13x 2  2 x  45 13 x 2  2 x  45 A Bx  C 35.    2 x 3  18 x 2 x x2  9 2 x x2  9

13x 2  2 x  45   A Bx  C     2 x x2  9    2 2x x  9   2  2x x  9   2 x x  9 

2

13 x 2  2 x  45  A x 2  9   Bx  C   2 x

9 A  45 A5

13 x  2 x  45  Ax  9 A  2 Bx 2  2Cx 2

2

A  2 B  13 5  2 B  13 2B  8 B4

2C  2

A  7 B  17

7C  7 C  1

C 1

13 x 2  2 x  45   A  2 B  x 2   2C  x   9 A 13x 2  2 x  45 5 4 x  1   2 x 3  18 x 2 x x2  9 17 x 2  7 x  18 17 x 2  7 x  18 A Bx  C    36. 7 x 3  42 x 7 x x2  6 7 x x2  6

17 x 2  7 x  18   A Bx  C    7 x x2  6    2 7x x  6    2 7x x  6   7 x x  6 

2

17 x 2  7 x  18  A x 2  6   Bx  C   7 x

6 A  18 A3

B2

17 x  7 x  18  Ax  6 A  7 Bx 2  7Cx 2

3  7 B  17 7 B  14

2

17 x 2  7 x  18   A  7 B  x 2   7C  x  6 A 17 x 2  7 x  18 3 2 x  1   7 x 3  42 x 7 x x2  6 x3 37. x  0 x  7 x x  3x  13 x  28 x  28 3

2

4

3

2

 x 4  0 x3  7 x 2

3x  6 x  28 x  3x 3  0 x 2  21x 3

2

6 x  7 x  28 2

x  3x  13x  28 x  28 6 x 2  7 x  28 x    3 x3  7 x x3  7 x 6 x 2  7 x  28 6 x 2  7 x  28 A Bx  C    2 x3  7 x x x 7 x x2  7 4

3

2

7 A  28

A B  6

A 4

4 B  6 B2

x 4  3x 3  13x 2  28 x  28 4 2x  7  x 3  2 3 x  7x x x 7

593

C  7


Chapter 5 Systems of Equations and Inequalities x4 38. x  0 x  2 x x  4 x  11x  13 x  12 3

2

4

3

2

 x 4  0 x3  2 x 2

 4 x  9 x  13x  4 x 3  0 x 2  8 x 3

2

9 x  5 x  12 2

x  4 x  11x  13 x  12 9 x 2  5 x  12 x 4    x3  2 x x3  2 x 9 x 2  5 x  12 9 x 2  5 x  12 A Bx  C    2 x3  2 x x x 2 x x2  2 4

3

2

 9 x 2  5 x  12   A Bx  C    x x2  2    2 x x2  2    2 x x 2   x x  2 

2 A  12 A6

9 x  5 x  12  A x  2   Bx  C  x 2

2

2

2

9 x 2  5 x  12   A  B  x 2   C  x   2 A x 4  4 x 3  11x 2  13 x  12 6 3x  5  x4  2 3 x  2x x x 2 39.

2 x 3  x 2  13x  5 2 x 3  x 2  13 x  5 Ax  B Cx  D   2  2 2 x 4  10 x 2  25 x 5 x2  5 x2  5

 B Cx  D    x  5   2 x  x  13x  5    x  5   Ax x  5  x  5  x 5        2 x  x  13x  5   Ax  B   x  5   Cx  D  2

2

3

2

2

2

2

2

3

2

2

2

2

2

2 x 3  x 2  13x  5  Ax 3  5 Ax  Bx 2  5 B  Cx  D 2 x 3  x 2  13x  5  Ax 3  Bx 2   5 A  C  x   5 B  D  A 2

B  1

5 A  C  13

5B  D  5

5  2  C  13

5  1  D  5

10  C  13

5  D  5

C3

D0

2 x 3  x 2  13x  5 2 x  1 3x  2  4 2 x  10 x  25 x  5 x2  5 2

6 B  9 B3

9 x  5 x  12  Ax  2 A  Bx  Cx 2

A B  9

594

C  5


Section 5.3

40.

3x 3  4 x 2  11x  12 3x 3  4 x 2  11x  12 Ax  B Cx  D   2  2 2 x4  6 x2  9 x 3 x2  3 x2  3

 3    2 Ax  B Cx  D  3x  4 x 2  11x  12  2   x 3   x 3  2  2 2 2 2    x 3  x x 3 3      

2

2

3 x 3  4 x 2  11x  12   Ax  B  x 2  3   Cx  D  3 x 3  4 x 2  11x  12  Ax 3  3 Ax  Bx 2  3B  Cx  D 3 x 3  4 x 2  11x  12  Ax 3  Bx 2   3 A  C  x   3B  D  B  4

A3

3 A  C  11

3B  D  12

3  3  C  11

3  4  D  12

9  C  11

12  D  12 D0

C2 3x 3  4 x 2  11x  12 3x  4 2x  2  4 2 x  6x  9 x  3 x2  3 2

41.

5x2  4 x  8

 x  4  x  x  4 2

A Bx  C  2 x4 x  x4

5x2  4 x  8

 Bx  C   A    x  4 x 2  x  4    2  2  x  4 x  x  4   x  4 x  x  4 

 x  4  x 2  x  4  

5 x 2  4 x  8  A x 2  x  4   Bx  C  x  4 5 x 2  4 x  8  Ax 2  Ax  4 A  Bx 2  4 Bx  Cx  4C 5 x 2  4 x  8   A  B  x 2   A  4 B  C  x   4 A  4C  1 5  A B 2 4  A  4 B  C 3 8  4A  4C

1 2

Multiply by 4  20 5  A B   4 A  4B 4  A  4 B  C A  4 B  C  4 5A  C  16 4

4 A  4C  8 3 4 A  4C  8 Multiply by 4 4 5 A  C  16   20 A  4 B  64 24 A  72 A 3

1 A B  5

3

4 A  4C  8

3 B  5

4  3  4C  8

B2

12  4C  8 4C  4 C 1

5x2  4 x  8

3 2x  1   2 2  x  4 x  x  4 x  4 x  x  4

595


Chapter 5 Systems of Equations and Inequalities

42.

x 2  15 x  6

 x  6  x  2 x  6 2

A Bx  C  2 x  6 x  2x  6

  x 2  15 x  6 Bx  C   A 2     x  6 x 2  2 x  6   x x x      2 6 2 6    2  x  6 x  2x  6    x  6 x  2 x  6 

x 2  15 x  6  A x 2  2 x  6   Bx  C  x  6 x  15 x  6  Ax  2 Ax  6 A  Bx 2  6 Bx  Cx  6C 2

2

x 2  15 x  6   A  B  x 2   2 A  6 B  C  x   6 A  6C  1 1  A B 2 15  2 A  6 B  C 3 6  6 A  6C Multiply by 6  6   6 A  6 B 1 1  A B 2 15  2 A  6 B  C 2 A  6 B  C  15 4 A C  9 4

3 4

6 A  6C  6 6 A  6C  6 Multiply by  6 4 A  C  9   24 A  6C  54 30 A  60 A  2

1 A B 1

3

6 A  6C  6 A  C  1 2  C  1

2  B  1 B3

C 1 x 2  15 x  6

2 3x  1   2 2  x  6 x  2 x  6 x  6 x  2 x  6

43.

4 x 3  4 x 2  11x  7 4 x 3  4 x 2  11x  7 Ax  B Cx  D   2  2 x4  5x2  6 x 2 x 3 x2  2 x2  3



 4 x 3  4 x 2  11x  7   Ax  B Cx  D    x2  2 x2  3   2 x2  2 x2  3    2 2 2 x  3   x 2  x  2 x  3 







4 x 3  4 x 2  11x  7   Ax  B  x 2  3   Cx  D  x 2  2

4 x  4 x  11x  7  Ax  3 Ax  Bx  3B  Cx  2Cx  Dx 2  2 D 3

2

3

2

3

4 x 3  4 x 2  11x  7   A  C  x 3   B  D  x 2   3 A  2C  x   3B  2 D  AC  4 A 4C

3 A  2C  11

AC  4

3  4  C   2C  11

A 1  4

12  3C  2C  11

A3

C 1 596


Section 5.3 B  D  4 B  4  D

3B  2 D  7

B  D  4

3  4  D   2 D  7

B  5  4

12  3D  2 D  7

B 1

D  5 D  5 4 x  4 x  11x  7 3x  1 x  5  2  x4  5x2  6 x  2 x2  3 3

44.

2

3x 3  4 x 2  6 x  7 3x 3  4 x 2  6 x  7 Ax  B Cx  D   2  2 x4  5x2  4 x 4 x 1 x2  4 x2  1



 3x3  4 x 2  6 x  7   Ax  B Cx  D    x2  4 x2  1   2 x2  4 x2  1    2 2 2 x  1   x 4  x  4 x  1 







3x 3  4 x 2  6 x  7   Ax  B  x 2  1   Cx  D  x 2  4

3x 3  4 x 2  6 x  7  Ax 3  Ax  Bx 2  B  Cx3  4Cx  Dx 2  4 D 3x 3  4 x 2  6 x  7   A  C  x 3   B  D  x 2   A  4C  x   B  4 D 

AC  3 A  3C

A  4C  6 3  C  4C  6 3C  3 C 1

AC  3 A 1  3 A2

B  D  4 B  4  D

B  4 D  7 4  D  4 D  7 3D  3 D  1 3 2 3x  4 x  6 x  7 2 x  3 x  1  2  x4  5x2  4 x  4 x2  1

B  D  4 B  1  4 B  3

2x  5 45. x 2  3 x  10 2 x3  11x 2  4 x  24

 2 x 3  6 x 2  20 x

5 x  16 x  24  5 x 2  15 x  50 2

x  26 2 x  11x  4 x  24 x  26  2x  5  2 2 x  3 x  10 x  3 x  10 x  26 x  26 A B    2 x  3x  10  x  2 x  5 x  2 x  5 3

2

597


Chapter 5 Systems of Equations and Inequalities 

 x  26 B   A     x  2 x  5     x  2 x  5   x  2 x  5 

 x  2 x  5  

x  26  A  x  5  B  x  2 x  26  Ax  5 A  Bx  2 B

x  26   A  B  x   5 A  2 B  A B 1

5 A  2 B  26 5 1  B   2 B  26

A  1 B

5  5B  2 B  26 7 B  21 B  3

A B 1 A31 A 4

2 x 3  11x 2  4 x  24 4 3  2x  5   2 x  3 x  10 x2 x5 3x  2 46. x  3 x  4 3 x  11x  x  10 2

3

2

 3x 3  9 x 2  12 x

2 x  13 x  10  2 x2  6 x  8 2

7 x  18 3x  11x  x  10 7 x  18  3x  2  2 2 x  3x  4 x  3x  4 7 x  18 7 x  18 A B    2 x  3x  4  x  1 x  4 x  1 x  4 3

2

7 x  18  B   A     x  1 x  4     x 1 x  4   x  1 x  4 

 x  1 x  4  

7 x  18  A  x  4  B  x  1 7 x  18  Ax  4 A  Bx  B

7 x  18   A  B  x   4 A  B  A B  7 A7B

4 A  B  18 4  7  B   B  18 28  4 B  B  18 5 B  10 B2

3x 3  11x 2  x  10 5 2  3x  2   2 x  3x  4 x 1 x  4

598

A B  7 A 2  7 A5


Section 5.3 3x  4 47. x  2 x  1 3x  2 x  x  5 2

3

2x  5 48. x  6 x  9 2 x  17 x  54 x  68 2

2

 3x3  6 x 2  3x

3

 2 x 3  12 x 2  18 x

 4x  4x  5  4 x 2  8 x  4

 5 x  36 x  68  5 x 2  30 x  45

4x  1

2 x  17 x  54 x  68 6 x  23  2x  5  2 2 x  6x  9 x  6x  9 A B 6 x  23 6 x  23    2 2 x  6 x  9  x  3 x  3  x  3 2 3

2

 x  32  

4 x  1  Ax  A  B

6 x  23  Ax  3 A  B

4 x  1   A x   A  B 

6 x  23   A x   3 A  B  A6

A  B  1 4  B  1 B  5

49. a.

18  B  23 B  5

2

2 x 3  17 x 2  54 x  68 x2  6 x  9 6 5  2x  5   x  3  x  3 2

Factors of 45 1,  3,  5,  9,  15,  45  Factors of 1 1  1,  3,  5,  9,  15,  45 5 1 1 21 45 5 30 45 1 6 9 0

3 A  B  23 3  6  B  23

3x  2 x  x  5 4 5  3x  4   2 x  2x  1 x  1  x  1 2 3

2

 6 x  23   A B  2  x  3    2  2   x  3   x  3  x  3  6 x  23  A  x  3  B

 4 x 1   A B  2   x  1    2 2   x  1   x  1  x  1  4 x  1  A  x  1  B

 x  12  

A 4

6 x  23

3x  2 x  x  5 4x  1  3x  4  2 2 x  2x  1 x  2x  1 4x  1 4x  1 A B    2 2 x  2 x  1  x  1 x  1  x  1 2 3

2

2

2

x 3  x 2  21x  45  x 2  6 x  9  x  5   x  3  x  5 2

599


Chapter 5 Systems of Equations and Inequalities 3 x 2  35 x  70

b.

 x  3  x  5 2

A B C   2 x  3  x  3 x5

 3 x 2  35 x  70   A B C  2      x  3  x  5    2 2 x  5    x  3  x  5   x  3  x  3

 x  3 2  x  5  

3x 2  35 x  70  A  x  3 x  5  B  x  5  C  x  3

2

3x 2  35 x  70  A x 2  2 x  15  B  x  5  C x 2  6 x  9

3x 2  35 x  70  Ax 2  2 Ax  15 A  Bx  5 B  Cx 2  6Cx  9C 3x 2  35 x  70   A  C  x 2   2 A  B  6C  x   15 A  5 B  9C  5  2 3

 C  3 A 1 2 2 A  B  6C  35 3 15 A  5B  9C  70

10 A  5 B  30C  175 15 A  5 B  9C  70 25 A  39C  245 4

Solve the system of equations 1 and 4. 1 A  C  3 25  1 25 A  25C  75 A  5  3 4 25 A  39C  245 64C  320 A 2 C 5

2

2A  B  6C  35 2  2  B  6  5  35 4  B  30  35 B 1

3x  35 x  70 2 1 5    2 3 2 x  x  21x  45 x  3  x  3 x5 2

50. a.

Factors of 4 1,  2,  4   1,  2,  4 Factors of 1 1 4 1 2 7 4 4 1 2

8 4 1

0

x 3  2 x 2  7 x  4  x 2  2 x  1  x  4   x  1  x  4 b.

10 x 2  17 x  17

 x  1  x  4 2

2

A B C   2 x  1  x  1 x4

10 x 2  17 x  17   A B C  2 2 x  1 x  4       x  1  x  4       2 2 x  4    x  1  x  4   x  1  x  1 10 x 2  17 x  17  A  x  1 x  4  B  x  4  C  x  1

2

10 x 2  17 x  17  A x 2  3x  4  B  x  4  C x 2  2 x  1

10 x  17 x  17  Ax  3 Ax  4 A  Bx  4 B  Cx  2Cx  C 2

2

2

10 x 2  17 x  17   A  C  x 2   3 A  B  2C  x   4 A  4 B  C 

600


Section 5.3 4  2 3

 C  10 A 1 2 3 A  B  2C  17 3 4 A  4 B  C  17

12 A  4 B  8C  68 4 A  4 B  C  17 16 A  9C  85 4

Solve the system of equations 1 and 4. 1 A  C  10 9  1 9 A  9C  90 7  C  10 4 16 A  9C  85 25 A  175 C3 A 7

3A  B  2C  17

2

3  7   B  2  3  17 21  B  6  17 B2

10 x 2  17 x  17 7 2 3    2 3 2 x  2 x  7 x  4 x  1  x  1 x4 51. a.

Factors of 8 1,  2,  4,  8   1,  2,  4,  8 Factors of 1 1 2 1 6 12 8 2 8 8 1 4 4 0

x 3  6 x 2  12 x  8  x 2  4 x  2  x  2   x  2  x  2   x  2 b.

3x 2  8 x  5

 x  2

3

2

3

A B C   2 x  2  x  2  x  2 3

 3x 2  8 x  5   A B C  3 3     x 2    x  2      3 2 3   x  2   x  2  x  2  x  2  3 x 2  8 x  5  A  x  2  B  x  2  C 2

3 x 2  8 x  5  A x 2  4 x  4  B  x  2  C 3 x  8 x  5  Ax  4 Ax  4 A  Bx  2 B  C 2

2

3 x 2  8 x  5   A x 2   4 A  B  x   4 A  2 B  C   3 1 A 8 2 4A  B 3 4 A  2B  C  5

4A  B  8

4A  2 B  C  5

4  3  B  8

4  3  2  4  C  5

12  B  8

12  8  C  5

B  4

C 1

3x 2  8 x  5 3 4 1    2 3 2 x  6 x  12 x  8 x  2  x  2  x  23

601


Chapter 5 Systems of Equations and Inequalities

52. a.

Factors of 27 1,  3,  9,  27   1,  3,  9,  27 Factors of 1 1 3 1 9 27 27 3 18 27 1 6 9 0

x 3  9 x 2  27 x  27  x 2  6 x  9  x  3   x  3  x  3   x  3 2 x 2  17 x  37

b.

 x  3

3

2

3

A B C   2 x  3  x  3  x  33

 2 x 2  17 x  37   A B C  3      x  3   3 2 3   x  3   x  3  x  3  x  3 

 x  33  

2 x 2  17 x  37  A  x  3  B  x  3  C 2

2 x 2  17 x  37  A x 2  6 x  9  B  x  3  C 2 x 2  17 x  37  Ax 2  6 Ax  9 A  Bx  3B  C 2 x 2  17 x  37   A x 2   6 A  B  x   9 A  3B  C   A 2 1  17 2 6 A  B 3 9 A  3B  C  37

6 A  B  17

9A  3B  C  37

6  2  B  17

9  2  3  5  C  37

12  B  17

18  15  C  37

B  5

C4

2 x 2  17 x  37 2 5 4    2 3 2 x  9 x  27 x  27 x  3  x  3  x  33

53. Partial fraction decomposition is a procedure in which a rational expression is written as a sum of two or more simpler rational expressions.

55. A proper rational expression is a rational expression in which the degree of the numerator is less than the degree of the denominator.

54. For a repeated linear factor that occurs three times, one fraction must be given with a denominator of  ax  b  , one fraction must

56. Given an improper rational expression, use long division to divide the numerator by the denominator. Then perform partial fraction decomposition to the expression represented by the remainder/divisor.

have denominator  ax  b  , and one 2

denominator must have  ax  b  . The numerators in each fraction must be constants, which we might call A, B, and C. 3

602


Section 5.3 2 A B   n  n  2 n n  2

57. a.

3 A B   n  n  3 n n  3

58. a.

 2  B  A n  n  2     n  n  2      n n  2  n  n  2  2  A  n  2  Bn

 3  B  A n  n  3     n  n  3      n n  3  n  n  3  3  A  n  3  Bn

2  An  2 A  Bn

3  An  3 A  Bn 3   A  B n  3 A A B  0 3A  3 1 B  0 A 1 B  1 3 1 1 1 1     n  n  3 n n  3 n n  3

2   A  B n   2 A A B  0 1 B  0 B  1 2 1 1 1 1     n  n  2 n n  2 n n  2

2A  2 A 1

b.

2 2 2 2 2      1 3 2  4 3  5 4  6 5  7 

b.

 1 1   1 1  1 1           1 4   2 5  3 6 

 1 1  1 1   1 1           1 3  2 4   3 5 

 1 1   1 1          4 7   5 8

 1 1  1 1          4 6  5 7 c. As n   ,

3 3 3 3 3      1 4 2  5 3  6 4  7  5  8

c. As n   ,

1  0. n2

1 0. n3

 1 1   1 1  1 1 d.             1 4   2 5  3 6 

 1 1  1 1   1 1  1 1  d.                 1 3  2 4   3 5   4 6 

 1 1   1 1          4 7   5 8

 1 1      5 7

 1 1 1  1 1   1 1             1 2 3  4 4   5 5

 1 1   1 1  1 1             1 2   3 3  4 4 

 1 1      6 6

 1 1      5 5

3 3   0  0  0   2 2

603

11 11  0  0  0   6 6


Chapter 5 Systems of Equations and Inequalities 1 A B   x  a  bx x a  bx

59.

  1 B  A x  a  bx    x  a  bx     x a  bx   x  a  bx  1  A  a  bx  Bx

aA  1 1 A a

1  aA  bAx  Bx

B

1  bA  B x   aA 1 b  1 1 b a a   x  a  bx x a  bx ax a  a  bx 1 1  2 a x  a  x  a  x 

60.

bA  B  0 1 b B0 a

2

1 A B   2 a x ax a x   1 B   A   a  x  a  x       a  x  a  x     a  x a  x   a  x  a  x   1  A a  x  B  a  x 2

1  aA  Ax  aB  Bx 1   A  B  x   aA  aB  aA  aB  1 aB  aB  1 2aB  1 1 B A 2a 1 1 1 1 1 2 a 2   a   2 2 a x a  x a  x 2a  a  x 2a  a  x A B  0 A B

61. Let u  e x . 5e x  7 5u  7 5u  7 A B  2    2x x e  3e  2 u  3u  2  u  1 u  2 u  1 u  2

5u  7  B   A     u  1 u  2    u 1 u  2   u  1 u  2 

 u  1 u  2  

5u  7  A  u  2  B  u  1 5u  7  Au  2 A  Bu  B

5u  7   A  B  u   2 A  B 

604

b a


Section 5.4 A B  5 A3 5 A 2

2A  B  7

A B  5 A  B  5

2   B  5  B  7 2 B  10  B  7  B  3 B3

5e x  7 A B 2 3    x  x x 2x e  3e  2 u  1 u  2 e  1 e  2 62. Let u  e x . 3e x  22 3u  22 3u  22 A B  2    x 2x e  3e  4 u  3u  4  u  1 u  4 u  1 u  4

 3u  22  B   A     u  1 u  4    u 1 u  4   u  1 u  4 

 u  1 u  4  

3u  22  A  u  4  B  u  1 3u  22  Au  4 A  Bu  B

3u  22   A  B  u   4 A  B  4 A  B  22

A  B  3 A  B  3

4   B  3  B  22 4 B  12  B  22 5B  10 B2

A  B  3 A  2  3 A  5

3e x  22 A B 5 2    x  x 2x x e  3e  4 u  1 u  4 e  1 e  4

Section 5.4 Systems of Nonlinear Equations in Two Variables 1. y   x  2  1   x  2   1 The graph of the equation is the graph of y  x 2 shifted to the right 2 units and downward 1 unit. 2

2

2. y  3x  2 Slope: 3 , y-intercept: 2

605


Chapter 5 Systems of Equations and Inequalities 3.

 x  3 2   y  22  16 2  x  3 2   y   2   42 Center:  3,  2 , radius: 4

3 6. 5 x  4 y  3  15 x  12 y  9  5 3 x  7 y  17   15 x  35 y  85 47 y  94 y 2 5 x  4 y  3

5 x  4  2  3 5 x  8  3 5x  5

1, 2

x 1 7. nonlinear 8. ordered; intersection 4. y   x 2  3    x  0  3 The graph of the equation is the graph of y  x 2 reflected across the x-axis and shifted downward 3 units. 2

9. a. A y  x 2  2

B 2x  y  2  y  2x  2

b. B

2 x  x2  2  2

2x  3y  3 2  4 y  7  3 y  3 8 y  14  3 y  3 11y  11 y  1

2 x  x2  2  2

5. x  4 y  7

2x  3y  3

2x  y  2

x2  2 x  0

x  4y  7

x  x  2  0 x  0 or x  2

x  4  1  7 x  4  7 x3

A y  x 2  2   0  2  2 2

The solution is  0,  2 .

 3, 1

A y  x 2  2   2  2  4  2  2 2

The solution is  2, 2 .

 2, 2 ,  0,  2

606


Section 5.4 B y   x  1    3  1  3  1  4

10. a. A y   x 2  3

The solution is  3, 4 .

B y  2x  0  y  2x

B y   x  1    4  1  4  1  3

The solution is  4, 3 .

 3, 4 ,  4, 3

12. a. A x 2  y 2  25  x 2  y 2  52

B 3y  4x

y

4 x 3

y  2x  0

b. B

 x  3  2x  0 2

x2  2 x  3  0

 x  3 x  1  0 x  3 or x  1 A y   x 2  3    3  3  9  3  6 2

The solution is  3,  6 . 2

2

4  x   x  25 3 

The solution is 1, 2 .

2

1, 2 ,  3, 6

9 2 16 2 x  x  25 9 9 25 2 x  25 9 x2  9 x  3 4 4 B y  x   3  4 3 3 The solution is  3,  4 .

11. a. A x 2  y 2  25  x 2  y 2  52

B x  y 1

x 2  y 2  25

b. A

A y   x 2  3   1  3  1  3  2

 y  x 1

4 4 x   3  4 3 3 The solution is  3, 4 . B y

b. A

 3, 4 ,  3,  4

x 2  y 2  25 x 2    x  1  25 2

x 2  x 2  2 x  1  25 2 x 2  2 x  24  0 x 2  x  12  0  x  3 x  4  0 x  3 or x  4 607


Chapter 5 Systems of Equations and Inequalities 13. a. A y  x

 

B x 2  y 2  20  x 2  y 2  2 5

B y  x  2  4  2= 6 Not real B y  x  2  3  2= 1  1

2

The solution is  3,1 .

 3,1

15. a. A

 x  2 2  y 2  9  2 2  x   2    y  0  32

B y  2x  4

x 2  y 2  20

b. B

x2 

 x   20 2

x 2  x  20 x 2  x  20  0  x  5 x  4  0 x  5 or x  4 A y  x  5 Not real

b. A

A y x 42 The solution is  4, 2 .

 x  2 2  y 2  9  x  2 2   2 x  4 2  9

x 2  4 x  4  4 x 2  16 x  16  9

 4, 2

5 x 2  12 x  11  0 b 2  4ac  12  4  511  76 There are no real solutions. 2

14. a. A x 2  y 2  10  x 2  y 2 

 10 

2



B y  x2

16. a. A x 2   y  3  4  2

 x  0 2   y  3 2  22 B y  x  4

x 2  y 2  10

b. A

x2 

 x  2   10 2

x 2  x  2  10 x 2  x  12  0  x  4 x  3  0 x  4 or x  3 608


Section 5.4 x 2   y  3  4

18. a. A y  3 x

2

b. A

x 2    x  4  3  4

B yx

2

x2    x  7  4 2

x 2  x 2  14 x  49  4 2 x 2  14 x  45  0

b 2  4ac  14  4  2 45  164 There are no real solutions. 2



17. a. A y  x 3

y3 x

b. A

B yx

x 3 x x3  x

x3  x  0

x x2  x  0 x  x  1 x  1  0 x  0 or x  1 or x  1 B y x0 The solution is  0, 0 .

b. A y  x

3

B y  x  1

xx

3

The solution is  1, 1 .

0 x x 3

B y  x 1

The solution is 1,1 .

0  x x 1 2

0  x  x  1 x  1

 1, 1 ,  0, 0 , 1,1

x  0 or x  1 or x  1 B yx0 The solution is  0, 0 . B y  x  1 The solution is  1, 1 . B y  x 1 The solution is 1,1 .

 1, 1 ,  0, 0 , 1,1

609


Chapter 5 Systems of Equations and Inequalities 2 x 2  3 y 2  11 19. A 2 x 2  3 y 2  11 Multiply by 2.  2 x 2  8 y 2  16 B x 2  4 y 2  8   5 y 2  5 y2  1 y  1 y  1: B x 2  4 y 2  8

y  1: B x 2  4 y 2  8

x 2  4 1  8

x 2  4  1  8

x2  4  8

x2  4  8

x2  4 x  2

x2  4 x  2

2

2

 2,1 ,  2, 1 ,  2, 1 ,  2, 1 2 2  6 x 2  2 y 2  42 20. A 3 x  y  21  4 x 2  2 y 2  2 B 4 x 2  2 y 2  2 10 x 2  40 2 x  4 x  2 Multiply by 2.

x  2 : B 4x 2  2 y 2  2

x  2 : B 4x 2  2 y 2  2

4  2  2 y 2  2

4  2  2 y 2  2

16  2 y 2  2

16  2 y 2  2

2 y 2  18

2 y 2  18

y2  9 y  3

y2  9 y  3

2

2

 2, 3 ,  2, 3 ,  2, 3 ,  2, 3 Multiply by 3. 21. A  3x 2  3xy  60 x 2  xy  20  B 2 x 2  3 xy  44 2 x 2  3xy  44 x2  16 x  4

x  4: A

x 2  xy  20

x  4 : A

x 2  xy  20

 42   4 y  20

 42   4 y  20

16  4 y  20

16  4 y  20

4 y  4 y  1

4y  4 y 1

 4, 1 ,  4,1

610


Section 5.4 22. A 4 xy  3 y 2  9 4 xy  3 y 2  9 Multiply by  2. B 2 xy  y 2  5   4 xy  2 y 2  10 y2  1 y  1

y  1: B

2 xy  y 2  5

y  1: B

2 xy  y 2  5

2 x 1  1  5

2 x  1   1  5

2 x  1  5 2 x  6 x  3

2 x  1  5 2 x  6 x3

2

 3,1 ,  3, 1

2

Multiply by 3. 2 2  15 x 2  6 y 2  3 23. A 5 x  2 y  1  2 2 Multiply by  2. B 2 x 2  3 y 2  4   4 x  6 y  8 2  11 11x x2  1 x  1

x  1: B

2 x 2  3 y 2  4

x  1: B

2 x 2  3 y 2  4

2 1  3 y 2  4

2  1  3 y 2  4

2  3 y 2  4

2  3 y 2  4

3 y 2  6

3 y 2  6

y2  2

y2  2

y 2

y 2

2

2

1, 2  , 1,  2  ,  1, 2  ,  1,  2  2 2  18 x 2  15 y 2  114 24. A 6 x  5 y  38  2 2 Multiply by 5. B 7 x 2  3 y 2  9   35 x  15 y  45  159 53 x 2 2 x  3 x 3 Multiply by 3.

x  3: B

7 x2  3 y 2  9

7 x2  3 y 2  9

 3  3y  9

7  3  3y2  9

21  3 y 2  9

21  3 y 2  9

2

7

x   3: B

2

2

3 y 2  12

3 y 2  12

y2  4 y  2

y2  4 y  2

 3, 2 ,  3, 2 ,   3, 2 ,   3, 2 611


Chapter 5 Systems of Equations and Inequalities 2 2 Multiply by 9. 25. A x 2  y 2  1   9 x  9 y  2 2 2 2 9x  4 y  B 9 x  4 y  36  13 y 2 

9 36 27 27 y2   13 27 y i 13

The values for y are all imaginary numbers.   2 2 Multiply by 16. 26. A 4 x 2  y 2  4   64 x  16 y  2 2 9 x 2  16 y 2  B 9 x  16 y  144 73 x 2 

64 144 80 80 x2   73 80 x i 73

The values for x are all imaginary numbers.  

27. A x 2  4 xy  4 y 2  1

B x y  4

x 2  6 xy  9 y 2  0

A

x 2  6 x  x  2  9  x  2  0

y  x  4

2

x 2  4 xy  4 y 2  1

x 2  6 x 2  12 x  9 x 2  4 x  4  0

x 2  4 x   x  4   4   x  4  1

5 x  12 x  9 x  36 x  36  0

A

2

2

2

4 x 2  24 x  36  0

x 2  4 x 2  16 x  4 x 2  8 x  16  1

x2  6 x  9  0

5 x 2  16 x  4 x 2  32 x  64  1

 x  3 2  0

9 x 2  48 x  63  0

x3

3 x 2  16 x  21  0

B y  x  2  3 2 1

 3x  7 x  3  0

 3,1

7 or x  3 3 7 12 5  7 B y  x  4      4      3 3 3 3

x

29. A y  x 2  4 x  5

B y  4x  5

B y   x  4    3  4  1   7 5   3,1 ,  ,    3 3  

4 x  5  x2  4 x  5 0  x2 x0 B y  4 x  5  4  0  5  5

28. A x 2  6 xy  9 y 2  0

B x y2

y  x2  4 x  5

A

y x2

 0, 5 612


Section 5.4 30. A y  x 2  6 x  9

Check: 1, 1

B y  2 x  5

1 x 1 1ⱨ 1 1ⱨ1 false 1,1

A

A y

y  x2  6 x  9 2 x  5  x 2  6 x  9 0  x2  4 x  4

0   x  2 x2 B y  2 x  5  2  2  5  1 2

33. A x 2   y  4  25 2

 2,1

B y   x2  9

31. A y  x 1 B y x

x 2   y  4  25 2

A

2

 x    x  5  25 2

x 2   x 2  9  4  25 2

2

2

x 2  x 4  10 x 2  25  25 x4  9 x2  0

y  x2 1  x2 x x3  1 x 1 1 1 B y   1 x 1 1,1 A

x2 x2  9  0 x  x  3 x  3  0 x  0 or x  3 or x  3 2

B y   x 2  9    0  9  9 2

B y   x 2  9    3  9  0 2

B y   x 2  9    3  9  0 2

32. A y 

1 x

 0, 9 ,  3, 0 ,  3, 0

B y x 34. A

1 x 1 x x 1 x 2 x x3  1 x 1 B y  x  1  1

A

y

B x  y2 A

1 x 1 1ⱨ 1 1ⱨ1  true

 x  102  y 2  100

 y  10  y  100 2

2

2

y 4  20 y 2  100  y 2  100 y 4  19 y 2  0

y 2 y 2  19  0 y  0 or y   19 or y  19 B x  y 2   0  0

Check: 1,1 A y

 x  102  y 2  100

2

   19 B x  y   19   19  0, 0 , 19, 19  , 19,  19  B x  y 2   19

B y x 1ⱨ 1 1ⱨ1  true

2

613

2

2


Chapter 5 Systems of Equations and Inequalities 37. Let x represent one number. Let y represent the other number. A x  y  12  y   x  12

1 1 and v  2 . 2 x y 4 3 A 2  2  23  4u  3v  23 x y 5 1 B 2  2  14  5u  v  14  v  5u  14 x y

35. Let u 

A

B xy  35 x   x  12  35

4u  3v  23

 x 2  12 x  35  0

4u  3  5u  14  23

x 2  12 x  35  0

4u  15u  42  23 19u  19 u 1 B v  5u  14  5 1  14  9 u

 x  5 x  7  0 x  5 or x  7 A y   x  12  5  12  7 A y   x  12  7  12  5 The numbers are 5 and 7.

1 1 1   1 , so x   2 u 1 x

38. Let x represent one number. Let y represent the other number. A x  y  9  y  x  9

1 1 1 1 v  2 , so y     v 9 3 y  1   1  1  1   1,  ,  1,  , 1,   ,  1,    3  3  3   3  

B xy  36 B

 x 2  9 x  36  0 x 2  9 x  36  0

 x  12 x  3  0 x  12 or x  3 A y   x  9  12  9  3

3u  v  13 3u  5u  5  13 2u  8 u4 B v  5u  5  5  4  5  25

A y   x  9  3  9  12 The numbers are 3 and 12.

A

1 1 1 1 , so x     2 x u 4 2

v

1 1 1 1 , so y     2 v 25 5 y

xy  36 x   x  9  36

1 1 36. Let u  2 and v  2 . x y 3 1 A  2  2  13  3u  v  13 x y 5 1 B 2  2  5  5u  v  5  v  5u  5 x y

u

xy  35

B

39. Let x represent one number. Let y represent the other number. A x 2  y 2  29 B x 2  y 2  21 2 x2  50 2 x  25 x  5

 1 1   1 1   1 1   1 1    ,  ,   ,  ,  ,   ,   ,     2 5   2 5   2 5   2 5  

614


Section 5.4 Both numbers must be positive. x  5 : A x 2  y 2  29

42. Let x represent one number. Let y represent the other number. A x  y  4  y  x  4

 52  y 2  29

B x 2  y 2  64

25  y 2  29 y2  4 y  2 The numbers are 5 and 2.

x 2  y 2  64

B

x 2    x  4  64 2

x 2  x 2  8 x  16  64 x  x  8 x  16  64 8 x  80 x  10 A y   x  4  10  4  6 The numbers are 10 and 6 .

40. Let x represent one number. Let y represent the other number. A x 2  y 2  145 B x 2  y 2  17 2 x2  162 2 x  81 x  9

2

2

43. Let x represent one number. Let y represent the other number. x 3 4   3y  4x  y  x A y 4 3

Both numbers must be negative. x  9 : A x 2  y 2  145

 9 2  y 2  145

B x 2  y 2  225

81  y  145 2

2

4  x   x  225 3  2

16 2 x  225 9 25 2 x  225 9 x 2  81 x  9 4 4 A y  x   9  12 3 3 4 4 A y  x   9  12 3 3 The numbers are 9 and 12 or 9 and 12 . x2 

41. Let x represent one number. Let y represent the other number. A x y  2 x y2

B x 2  y 2  44 B

x 2  y 2  225

B

y 2  64 y  8 The numbers are 9 and 8 .

x 2  y 2  44

 y  2 2  y 2  44 y 2  4 y  4  y 2  44 4 y  40 y  10 A x  y  2  10  2  12 The numbers are 12 and 10.

44. Let x represent one number. Let y represent the other number. x 5 12   5 y  12 x  y  x A y 12 5

B x 2  y 2  676

615


Chapter 5 Systems of Equations and Inequalities x 2  y 2  676

B

A

y   x  28  12  28  16

A y   x  28  16  28  12 The rectangle is 16 cm by 12 cm.

2

 12  x 2   x  676  5  144 2 x  676 25 169 2 x  676 25 x 2  100 x  10 12 12 A y  x  10  24 5 5 12 12 A y  x   10  24 5 5 The numbers are 10 and 24 or 10 and 24 . x2 

47. Let x represent the length. Let y represent the width. A xy  240

B 2 x  2 y  6  58 2 x  2 y  64 x  y  32 y   x  32 xy  240

A

x   x  32  240  x  32 x  240  0 2

45. Let x represent one dimension. Let y represent the other dimension. A 2 x  2 y  36  x  y  18  y   x  18

x 2  32 x  240  0

 x  12 x  20  0

B xy  80

A xy  80

B

A y   x  32  20  32  12 The floor is 20 ft by 12 ft.

x   x  18  80  x 2  18 x  80  0

48. Let x represent the length. Let y represent the width. A xy  320

x 2  18 x  80  0

 x  8 x  10  0 A

x  12 or x  20 y   x  32  12  32  20

x  8 or x  10 y   x  18  8  18  10

B 2 x  2 y  72  x  y  36  y   x  36 xy  320

A

A y   x  18  10  18  8 The rectangle is 10 m by 8 m.

x   x  36  320  x  36 x  320  0 2

46. Let x represent one dimension. Let y represent the other dimension. A 2 x  2 y  56  x  y  28  y   x  28

x 2  36 x  320  0

 x  16 x  20  0

B xy  192 B

A xy  192

x  16 or x  20 y   x  36  16  36  20

A y   x  36  20  36  16 The sign is 20 ft by 16 ft.

x   x  28  192  x 2  28 x  192  0 x 2  28 x  192  0

 x  12 x  16  0 x  12 or x  16

616


Section 5.4 49. Let x represent the length. Let y represent the 288  48 ft 2 . width. The floor area is 6 48  y A xy  48 x

51. Let x represent the length. Let y represent the width. 288 A 16xy  4608  y  x B 2 16 x   2 16 y   xy  1440 32 x  32 y  xy  1440

B x 2  y 2  102  x 2  y 2  100

32 x  32 y  xy  1440  288   288   x  1440 32 x  32    x   x  9216  288  1440 32 x  x 9216  1152  0 32 x  x 32 x 2  1152 x  9216  0 x 2  36 x  288  0  x  24 x  12  0 x  24 or x  12 288 288 A y   12 x 24 288 288 A y   24 12 x The aquarium is 24 in. by 12 in. by 16 in.

x 2  y 2  100

B

B

2

 48  x 2     100  x 2304  100 x2 x 4  2304  100 x 2

x2 

x 4  100 x 2  2304  0

 x  36 x  64  0 2

2

x  6 or x  8 48 48 A y  8 6 x 48 48 A y  6 x 8 The truck is 6 ft by 6 ft by 8 ft. 50. Let x represent the length. Let y represent the width. 108  y A xy  108 x

52. Let x represent the length. Let y represent the width. 80 A 3xy  240  y  x

B x 2  y 2  152  x 2  y 2  225

B 2  3x   2  3 y   2 xy  268

x 2  y 2  225

B

6 x  6 y  2 xy  268 3x  3 y  xy  134

2

 108  x2    225  x  B

11,664  225 x2 x 4  11,664  225 x 2

x2 

 80   80  3x  3    x    134  x  x 240  80  134 x 240  54  0 3x  x 3x 2  54 x  240  0

x 4  225 x 2  11,664  0

3x 

 x  81 x  144  0 2

3 x  3 y  xy  134

2

x  9 or x  12 108 108 A y   12 x 9 108 108 A y  9 x 12 The window is 9 yd by 12 yd.

x 2  18 x  80  0

 x  8 x  10  0 x  8 or x  10 617


Chapter 5 Systems of Equations and Inequalities 80 80   10 x 8 80 80 A y  8 x 10 The box is 8 m by 10 m by 3 m. A

y

55. A y  

B y

2

2

x 2    x  11  65 2

x  0 or x  128 3

2 x 2  22 x  56  0 x 2  11x  28  0

3 3 x  0  0 3 3 3 3 B y x 128 3  128 3 3 The ball will hit the ground at the point B y

 x  4 x  7  0

x  4 or x  7 y   x  11  4  11  7

 221.7, 128 .

54. Let x represent the length of one side. Let y represent the length of the other side. A x  y  11  y   x  11

x2  3x 36 3 B y x 3

56. A y  

 73   x  y  73 2

2

2

x 2  y 2  73

B

x    x  11  73 2

A

2

x 2  x 2  22 x  121  73 2 x 2  22 x  48  0 x 2  11x  24  0

 x  3 x  8  0 A

128 3, 128 or approximately

A y   x  11  7  11  4 The legs are 4 ft and 7 ft.

B x2  y 2 

x x  128 3  0

x 2  x 2  22 x  121  65

A

x2 3 x  192 3

x2 3 3 x x  3 192 3 x2 2 3 x0  192 3 x 2  128 3x  0

x 2  y 2  65

B

y 

 65   x  y  65 2

3 x 3

A

53. Let x represent the length of one side. Let y represent the length of the other side. A x  y  11  y   x  11

B x2  y 2 

x2 3  x 192 3

x  3 or x  8 y   x  11  3  11  8

x2  3x 36 3 x2  x    3x 3 36 2 x 4 3  x0 36 3 x 2  48 3x  0 y

x x  48 3  0 x  0 or x  48 3

A y   x  11  8  11  3 The legs are 3 in. and 8 in.

3 3 x  0  0 3 3 3 3 B y x 48 3  48 3 3 B y

618


Section 5.4 b. Q0  44.1e 4 k  44.1e 4 0.3786  201 MBq

The ball will hit the ground at the point

 48 3,  48 or approximately 83.1,  48 .

c.

Q  t   201e 0.3786t

57. A system of linear equations contains only linear equations, whereas a nonlinear system has one or more equations that are nonlinear.

Q 12  201e 0.378612  2.1 After 12 hr, the radioactivity level is 2.1 MBq.

58. The addition method is an efficient technique to eliminate like terms from two or more equations.

61. a. A 60,000  P0 e7 k  P0  60,000e 7 k

B 80,000  P0 e12 k  P0  80,000e 12 k

59. a. A  t   A0e  kt

60,000e 7 k  80,000e 12 k

0.69  A0e 3t b.

e 7 k 80,000  e 12 k 60,000

A  t   A0e  kt 0.655  A0e 4t

e5 k 

c. A 0.69  A0 e 3t  A0  0.69e3k

 4 5k  ln    3

B 0.655  A0 e 4t  A0  0.655e 4 k

1  4 k  ln   5  3 k  0.058

0.69e3k  0.655e 4 k 0.69 e 4 k  0.655 e3k 0.69  ek 0.655  0.69  ln  k  0.655  0.052  k

b. P0  60,000e 7 k  60,000e 7 0.058  40,000 The original population is 40,000. c.

15  e0.058t 2 15   ln    0.058t  2

A  t   0.81e  0.052t A 12  0.81e  0.05212  0.43 g/dL

60. a. A 44.1  Q0 e

4 k

 Q0  44.1e

P  t   40,000e0.058t 300,000  40,000e0.058t

d. A0  0.69e3k  0.69e3 0.052  0.81 g/dL e.

4 3

 15  ln    2 t 0.058 35  t The population will reach 300,000 approximately 35 hr after the culture is started.

4k

B 30.2  Q0e 5 k  Q0  30.2e5 k

44.1e 4 k  30.2e5 k 44.1 e5 k  30.2 e 4 k 44.1  ek 30.2 44.1 k ln 30.2 0.3786  k

619


Chapter 5 Systems of Equations and Inequalities b. P  7328.70e 2 k  7328.70e 2 0.06  6500 The original principal is 6500.

62. a. A 7328.70  Pe 2 k  P  7328.70e 2 k

B 8774.10  Pe5 k  P  8774.10e 5 k

c.

7328.70e 2 k  8774.10e 5 k

A  t   6500e0.06t 15,000  6500e0.06t

e 2 k 8774.10  e 5 k 7328.70 8774.10 e3 k  7328.70  8774.10  3k  ln   7328.70 

30  e0.06t 13  30  ln    0.06t  13   30  ln    13  t 0.06 14  t The investment will be worth $15,000 in approximately 14 yr.

1  8774.10  k  ln   3  7328.70  k  0.06  6%

63. A y  2 x1  log 2 y  x  1  1  log 2 y  x

B  1  log 2 y  x The equations are the same. The system has infinitely many solutions. 64. A x 2  y 2  0  x 2  y 2  x  y

B x y The equations are the same. The system has infinitely many solutions. log x  2 log y  5 65. A log x  2 log y  5 Multiply by 2. B 2 log x  log y  0   4 log x  2 log y  0 5log x  5 log x  1 x  10 A

log x  2 log y  5 log10  2 log y  5 1  2 log y  5 2 log y  4 log y  2

10,100

y  102  100

620


Section 5.4 log 2 x  3log 2 y  6 66. A log 2 x  3log 2 y  6 Multiply by 1. B log 2 x  log 2 y  2    log 2 x  log 2 y  2 4 log 2 y  4 log 2 y  1 y 2 A log 2 x  3log 2 y  6 log 2 x  3log 2 2  6 log 2 x  3  6 log 2 x  3 x  23  8

8, 2

67. A 2 x  2 y  6  2 y  2 x  6

68. A 3x  9 y  18  3x  32 y  18

B 4 x  2 y  14  22 x  2 y  14

B 3x  3 y  30  3x  3 y  30

B

22 x  2 y  14

3x  32 y  18

A

22 x  2 x  6  14

3 y  30  32 y  18

22 x  2 x  6  14

32 y  3 y  12  0

22 x  2 x  20  0 Let u  2 x u 2  u  20  0

32 y  3 y  12  0 Let u  3 y u 2  u  12  0

 u  4 u  3  0

 u  5 u  4  0 u  5 or u  4

u  4 or u  3

2 x  5 or 2 x  4

3 y  4 or 3 y  3

x2 A 2 2 6

B 3  3  30

x

y 1 x

y

y

22  2 y  6

3x  31  30

4  2y  6

3x  3  30

2y  2

3x  27

y 1

x3

 2,1

 3,1

621


Chapter 5 Systems of Equations and Inequalities 69. A

B x 2   y  4  29

 x 1 2   y  12  5

2

x 2  29   y  4

x2  2 x 1 y 2  2 y 1  5 x2  2 x  y 2  2 y  3  0 x  29   y  4 : 2

x   29   y  4

2

x2  2 x  y 2  2 y  3  0

A

2

29   y  4

2

  2  29   y  4   y  2 y  3  0 2

2

2

29   y  4  2 29   y  4  y 2  2 y  3  0 2

2

29  y 2  8 y  16  2 29   y  4  y 2  2 y  3  0 2

2 29   y  4  6 y  10 2

29   y  4  3 y  5 2

29   y  4   3 y  5 2

2

29  y 2  8 y  16  9 y 2  30 y  25 10 y 2  22 y  12  0 5 y 2  11y  6  0

 5 y  6 y  1  0 y x   29   y  4 : 2

x2  2 x  y 2  2 y  3  0

A

6 or y  1 5

 29   y  4

2

  2   29   y  4   y  2 y  3  0 2

2

2

29   y  4  2 29   y  4  y 2  2 y  3  0 2

2

29  y 2  8 y  16  2 29   y  4  y 2  2 y  3  0 2

2 29   y  4  6 y  10 2

29   y  4  3 y  5 2

29   y  4   3 y  5 2

2

29  y 2  8 y  16  9 y 2  30 y  25 10 y 2  22 y  12  0 5 y 2  11 y  6  0

 5 y  6 y  1  0 y

622

6 or y  1 5


Section 5.4 6 y : 5

B x 2   y  4  29 2

B x 2   y  4  29

y  1:

2

x 2  1  4  29

2

2

6  x 2    4  29 5 

x 2   5  29 2

2

 26  x 2     29  5

x 2  25  29

676 725  25 25 49 x2  25 7 x 5

x  2

x2 

Check:  2,1

Check:  2,1

A

x2  4

 x 1 2   y  1 2  5  2 12  1  1 2 ⱨ 5

B x 2   y  4  29

1 4ⱨ5

4  25 ⱨ 29

2

 2 2  1 4 2 ⱨ 29

5 ⱨ 5  true

A

29 ⱨ 29  true

 x  1   y  1  5  2  1 2  1  12 ⱨ 5 2

2

9  4ⱨ5 13ⱨ 5 false  7 6 Check:  ,   5 5

A

 x  1   y  12  5 2

2

2

7  6    1    1 ⱨ 5 5 5 4 121  ⱨ5 25 25 125 ⱨ5 25 5 ⱨ 5  true

 7 6 Check:   ,   5 5

A

 x 12   y  12  5 2

2

 7  6     1    1 ⱨ 5 5 5 144 121 ⱨ5  25 25 265 ⱨ5 25 53 ⱨ 5 false 5

  7 6   2,1 ,  ,    5 5   623

B

x 2   y  4  29 2

2

2

 7  6       4 ⱨ 29 5 5 49 676  ⱨ 29 25 25 725 ⱨ 29 25 29 ⱨ 29  true


Chapter 5 Systems of Equations and Inequalities 70. A

 x  32   y  22  4

B

 x 12  y 2  8 y 2  8   x  1

x2  6 x  9  y 2  4 y  4  4 x2  6 x  y 2  4 y  9  0 y  8   x  1 : 2

2

y   8   x  1

2

x2  6 x  y 2  4 y  9  0

A

  4  8   x  1   9  0 x  6 x  8   x  1  4  8   x  1   9  0 x  6 x  8  x  2 x  1  4  8   x  1   9  0

x2  6 x 

8   x  1

2

2

2

2

2

2

2

2

2

8 x  16  4

 8   x  1  2

2 x  4  8   x  1

2

 2 x  4 2  8   x  1 2 4 x 2  16 x  16  8  x 2  2 x  1 5 x 2  14 x  9  0

 5 x  9 x  1  0 x y   8   x  1 : 2

9 or x  1 5

x2  6 x  y 2  4 y  9  0

A

  4   8   x  1   9  0 x  6 x  8   x  1  4  8   x  1   9  0 x  6 x  8  x  2 x  1  4  8   x  1   9  0

x 2  6 x   8   x  1

2

2

2

2

2

2

2

2

2

8 x  16  4

 8   x  1 

2 x  4  8   x  1

2

2

 2 x  4 2  8   x  1 2 4 x 2  16 x  16  8  x 2  2 x  1 5 x 2  14 x  9  0

 5 x  9 x  1  0 x

624

9 or x  1 5


Section 5.4 9 x : B 5

 x 1 2  y 2  8

x  1: B

 x 12  y 2  8  1 12  y 2  8  22  y 2  8

2

 9  2    1  y  8 5 2

 14  2     y  8 5

4  y2  8 y2  4 y  2

196 200  y2  25 25 4 y2  25 2 y 5  9 2 Check:   ,   5 5

A

 x  3 2   y  22  4 2

B

2

 9   2    1    ⱨ 8 5 5

2

 14   2        ⱨ 8 5 5

 9  2     3    2 ⱨ 4 5 5 2

 6  8       ⱨ 4 5 5 36 64  ⱨ4 25 25 100 ⱨ4 25 4 ⱨ 4  true  9 2 Check:   ,    5 5

A

 x 12  y 2  8 2

2

2

2

196 4  ⱨ8 25 25 200 ⱨ8 25 8 ⱨ 8  true

 x  3 2   y  2 2  4 2

2

 9   2     3     2 ⱨ 4 5 5 2

2

 6   12        ⱨ 4 5 5

Check:  1, 2

A

36 144  ⱨ4 25 25 180 ⱨ 4 false 25  x  32   y  22  4

 1 32   2  22 ⱨ 4  2 2   0  2 ⱨ 4 4 ⱨ 4  true

625

B

 x 1 2  y 2  8  1 1 2   2 2 ⱨ8  22  4 ⱨ8 8 ⱨ 8  true


Chapter 5 Systems of Equations and Inequalities Check:  1,  2

A

 x  32   y  22  4  1  3 2   2  22 ⱨ 4  2 2   42 ⱨ 4 4  16 ⱨ 4 20 ⱨ 4 false

  9 2   1, 2 ,   ,    5 5  

71. A 2  2 x

 x

B 6  2 y

 y

1

 3

C

B 2  2 y

 y

C 2x  y  9

x 2  y 2  10

C

2

2

2

1

2

9

2

10

2

 1

2

2x 2  y 2  9 2

 1  3       10  

2

 2  1 2      9     8

 10

2

1

2 9

 10

9 9

 10 2  10

2 9 2  9

2 1   1 A 2  2 x

B 6  2 y

2 1   1 A 8  4 x

B 2  2 y

2  2 1 x

6  2 1 y

8  4 1 x

2  2 1 y

2  2x

6  2y

8  4x

2  2y

1 x

3 y

2 x

1 y

2

  1:

 x

2

C x  y  10 2

72. A 8  4 x

  1: A 2  2 x

  1:

B 6  2 y

  1: A 8  4 x

B 2  2 y

2  2  1 x

6  2  1 y

8  4  1 x

2  2  1 y

2  2 x 1  x

6  2 y 3  y

8  4 x 2  x

2  2 y 1  y

1, 3,1 ,  1, 3, 1

 2,1,1 ,  2, 1, 1

626


Section 5.4 74. a. The center of the circle is  0, 0 . Find the equation of the line that passes through  0, 0 and  4, 5 .

73. a. A x 2  y 2  25

 x  4   y  2  25 2

B

2

The circles appear to intersect at  0, 5 and  4, 3 .

m

Check:  0, 5

y  y1  m  x  x1 

x 2  y 2  25

A

5  x  0 4 5 y x 4 Solve the system A x2  y 2  9 5 B y x 4 A x2  y 2  9

y0

 0   5 ⱨ 25 2

2

0  25 ⱨ 25 25 ⱨ 25  true 2  x  4   y  22  25

B

 0  4 2   5  2 2 ⱨ 25 Check:  4, 3

16  9 ⱨ 25 25 ⱨ 25  true

2

5  x 2   x  9 4 

x  y  25 2

A

y2  y1 5  0 5   x2  x1 4  0 4

2

 4   32 ⱨ 25 2

x2 

16  9 ⱨ 25 25 ⱨ 25  true 2 2 B  x  4   y  2  25

 4  42   3  2 2  25

 0, 5 ,  4, 3

0  25 ⱨ 25 25 ⱨ 25  true

12 41 41 41 41 The point on the circle closest to  4, 5 will have the positive x-coordinate. 5 5  12 41  15 41 B y x   4 4  41  41 

b. Find the equation of the line that passes through  0, 5 and  4, 3 .

m

25 2 x 9 16 41 2 x 9 16 144 x2  41 144 x 41

y2  y1 3   5 8   2 40 4 x2  x1

y  y1  m  x  x1 

12

41



 12 41 15 41   41 , 41   

y   51  2  x  0 y  5  2x y  2x  5 The domain of the line segment is 0 x4.

b. The point on the circle furthest from  4, 5 will have the negative x-coordinate.

B y

5 5  12 41  15 41  x   4 4 41  41

 12 41 15 41    41 ,  41    627


Chapter 5 Systems of Equations and Inequalities 75.  2.359, 5.584

78. { 4.054, 3.946 ,  4.054, 3.946 ,

 2.237, 5.196 ,  2.237, 5.196}

76.  3.805,1.336

79.  

80.  

77. {1.538, 6.135 ,  1.538, 6.135 ,

 3.693, 5.135 ,  3.693, 5.135}

Section 5.5 Inequalities and Systems of Inequalities in Two Variables 1. 3x  y  4

2. x  2 y  2

y  3x  4

2 y  x  2 1 y   x 1 2

628


Section 5.5 3. y  x 2  4

7. linear

8. left; vertical

9. above; horizontal

10. solid

11. II

12

 0, 0 ; 2; inside

3 x  4 y  12

13. a.

3  1  4  3  12 ? ?

3  12  12 ?

9  12  Yes 4. y   x 2  4

b.

3x  4 y  12 3  5  4 1  12 ? ?

15  4  12 ?

19  12 No c.

3 x  4 y  12 3  4  4  0  12 ? ?

12  0  12 ?

12  12 No 5. 3x  y  4

2x  3y  6

14. a.

2  3  3  3  6

y  3x  4 x  2y  2

? ?

6  9  6

x  2  3x  4  2

?

3  6 No

x  6x  8  2 5 x  10

2x  3y  6

b.

2  5  3  1  6 ?

x  2 y  3x  4  3  2  4  6  4  2

?

10  3  6

 2, 2 6.

?

7  6  Yes c.

y  x2  4

2x  3y  6 2  0  3  2   6 ?

 x2  4  x2  4

?

06 6

2 x  8 2

?

6  6 No

x2  4 x  2

15. a.

y  x 2  4   2  4  4  4  0 2

y   x  3

2

30   3  3 ?

y  x 2  4   2  4  4  4  0

30   6

2

?

 2, 0 ,  2, 0

?

2

30  36 No

629

2


Chapter 5 Systems of Equations and Inequalities b. y   x  3

4  1  3 ?

4   2 ?

2

2

2

?

4  4  Yes c. y   x  3

5   5  3 ?

5   2 ?

2

2

2

5  4  Yes

b. The bounding line would be drawn as a dashed line.

y  x3  1

c. The bounding line would be dashed and the graph would be shaded strictly below the line.

?

16. a.

2   1  1 ?

3

?

2  1  1

18. a. 2 x  5 y  10  2 x  5 y  10 related

?

2   2  Yes

equation

x-intercept: 2 x  5  0  10

b. y  x3  1

6   2  1 ?

3

5 y  10 2 x  10 y2 x5 The inequality is strict, so draw the line as a dashed line. Test (0, 0): 2 x  5 y  10

?

6  8 1 ?

6  7  Yes c.

y  x3  1 50   4  1 ?

y-intercept: 2  0  5 y  10

2  0  5  0  10

3

?

?

50   64  1

?

0  10 false The points on the side of the line not containing (0, 0) are solutions.

?

50   65 No 17. a. 4 x  5 y  20  4 x  5 y  20 related equation

x-intercept: 4 x  5  0  20

y-intercept: 4  0  5 y  20

4 x  20 5 y  20 x5 y  4 The inequality symbol  allows for equality, so draw the line as a solid line. Test (0, 0): 4 x  5 y  20 4  0  5  0  20 ?

b. The bounding line would be drawn as a solid line.

?

0  0  true The points on the side of the line containing (0, 0) are solutions.

c. The bounding line would be dashed and the graph would be shaded strictly below the line.

630


Section 5.5 19. 2 x  5 y  5  2x  5 y  5 related equation

x-intercept: 2 x  5  0  5

y-intercept: 2  0  5 y  5

2x  5 5y  5 5 y 1 x 2 The inequality is strict, so draw the line as a dashed line. Test (0, 0): 2x  5 y  5

21. 30 x  20 y  600  30 x  20 y  600 related

2  0  5  0  5 ?

equation

?

30 x  20 y  600 30 x  20 y  600 3 x  2 y  60 y-intercept: x-intercept: 3x  2  0  60 3  0  2 y  60

0  5 false The points on the side of the line not containing (0, 0) are solutions.

2 y  60 3 x  60 y  30 x  20 The inequality symbol  allows for equality, so draw the line as a solid line. 30 x  20 y  600 Test (0, 0): 30  0  20  0  600 ? ?

0  600 false The points on the side of the line not containing (0, 0) are solutions.

20. 5 x  4 y  8  5 x  4 y  8 related equation

x-intercept: 5 x  4  0  8

y-intercept: 5  0  4 y  8

5 x  8

4y  8 y2

8 5 The inequality symbol  allows for equality, so draw the line as a solid line. 5 x  4 y  8 Test (0, 0): x

5  0  4  0  8 ? ?

0  8  true The points on the side of the line containing (0, 0) are solutions.

631


Chapter 5 Systems of Equations and Inequalities 22. 400 x  100 y  8000

 400 x  100 y  8000 related equation

400 x  100 y  8000 400 x  100 y  8000 4 x  y  80 y-intercept: x-intercept: 4 x   0  80 4  0  y  80

y  80 4 x  80 x  20 The inequality is strict, so draw the line as a dashed line. Test (0, 0): 400 x  100 y  8000

24. 3x  2 y  3x  2 y related equation

3x  2 y 3 y  x0 2 The inequality is strict, so draw the line as a dashed line. Test (1, 1): 3x  2 y

400  0  100  0  8000 ? ?

0  8000  true The points on the side of the line containing (0, 0) are solutions.

3 1  2 1 ? ?

3  2  true The points on the side of the line containing (1, 1) are solutions.

23. 5 x  6 y  5x  6 y related equation

5x  6 y 5 y  x0 6 The inequality symbol  allows for equality, so draw the line as a solid line. Test (1, 1): 5x  6 y

25. 3  2  x  y   y  3

3  2 x  y  y  3  related equation

3  2 x  y  y  3

5 1  6 1 ?

2x  2 y  y y  2 x  0 The inequality is strict, so draw the line as a dashed line. Test (1, 1): 3  2 x  y  y  3

?

5  6  true The points on the side of the line containing (1, 1) are solutions.

3  2 1  1  1  3 ? ?

3 4  4 ?

7  4  true 632


Section 5.5 The points on the side of the line containing (1, 1) are solutions.

28. y  5 The related equation y  5 is a horizontal line. The inequality y  5 represents all points below or on the line y  5 . The inequality symbol  allows for equality, so draw the line as a solid line.

26. 4  3  x  y   2 y  4  4  3  x  y   2 y  4 related equation

4  3  x  y   2 y  4 3x  3 y  2 y

y  3x  0 The inequality is strict, so draw the line as a dashed line. Test (1, 1): 4  3  x  y   2 y  4 4  3 1  1  2 1  4 ? ?

4   2  true The points on the side of the line containing (1, 1) are solutions.

1 y45 2 1  y 1 2 y  2 The related equation y  2 is a horizontal line. The inequality y  2 represents all points above or on the line y  2 . The inequality symbol  allows for equality, so draw the line as a solid line.

29. 

27. x  6 The related equation x  6 is a vertical line. The inequality x  6 represents all points strictly to the left of the line x  6 . The inequality is strict, so draw the line as a dashed line.

633


Chapter 5 Systems of Equations and Inequalities c. The shaded region would contain points on the circle (solid curve) and points outside the circle.

1 30.  x  2  4 3 1  x2 3 x  6 The related equation x  6 is a vertical line. The inequality x  6 represents all points strictly to the right of the line x  6 . The inequality is strict, so draw the line as a dashed line.

32. a. y  x 2  1  y  x2  1 related equation

The equation represents a parabola opening upward with vertex  0, 1 . The inequality symbol  allows for equality, so draw the parabola as a solid curve. Test (0, 0): y  x 2  1 0   0  1 ?

2

?

0   1  true The test point satisfies the inequality. The solution set consists of the points above or on the parabola.

31. a. x 2  y 2  4  x2  y 2  4 related equation

The equation represents a circle centered at  0, 0 with radius 2. The inequality is strict, so draw the circle as a dashed curve. Test (0, 0): x2  y 2  4

b. The region on and below the parabola would be shaded.

 0 2   0 2  4 ?

c. The region strictly above the parabola would be shaded (the parabola would be drawn as a dashed curve).

?

0  4  true The test point inside the circle satisfies the inequality. The solution set consists of the points strictly inside the circle.

y   x2 33. y   x 2  related equation

The equation represents a parabola opening downward with vertex  0, 0 . The inequality is strict, so draw the parabola as a dashed curve. y   x2 Test (0, 1): 1    0 ? ?

2

1  0 false The test point does not satisfy the inequality. The solution set consists of the points below the parabola.

b. The region outside the circle would be shaded.

634


Section 5.5

y    x  1  2 36. y    x  1  2  related

34. x 2  y 2  16  x 2  y 2  16 related

2

equation

equation

The equation represents a circle centered at  0, 0 with radius 4. The inequality symbol  allows for equality, so draw the circle as a solid curve. Test (0, 0): x 2  y 2  16

The equation represents a parabola opening downward with vertex  1,  2 . The inequality symbol  allows for equality, so draw the parabola as a solid curve. 2 Test (0, 0): y    x  1  2

 02   0 2  16 ?

0    0  1  2 ?

?

0  16 false The test point does not satisfy the inequality. The solution set consists of the points outside or on the circle.

2

2

?

0  3  true The test point satisfies the inequality. The solution set consists of the points above or on the parabola.

35. y   x  2  1  y   x  2  1 related 2

37. x  3  x 3 related

equation

equation

The equation represents a parabola opening upward with vertex  2,1 . The inequality symbol  allows for equality, so draw the parabola as a solid curve. 2 Test (0, 0): y   x  2  1

The related equation x  3 represents two vertical lines, x  3 and x  3 . The inequality symbol  allows for equality, so draw the lines as solid lines. Test (0, 0): x 3

0   0  2  1 ?

2

2

?

0 3

?

0  5  true The test point satisfies the inequality. The solution set consists of the points below or on the parabola.

?

0  3  true The test point satisfies the inequality. The solution set consists of all points between or on the lines x  3 and x  3 .

635


Chapter 5 Systems of Equations and Inequalities The test point does not satisfy the inequality. The solution set consists of all points strictly outside the lines y  1 and y  1 .

38. y  2  y 2 related equation

The related equation y  2 represents two horizontal lines, y  2 and y  2 . The inequality symbol  allows for equality, so draw the lines as solid lines. Test (0, 0): y 2

40. x  1  3  x 1  3 related equation

x 1  3 x 2

?

0 2

The related equation x  2 represents two vertical lines, x  2 and x  2 . The inequality is strict, so draw the lines as dashed lines. Test (0, 0): x 1 3

?

0  2  true The test point satisfies the inequality. The solution set consists of all points between or on the lines y  2 and y  2 .

?

0 1 3 ?

1  3 false The test point does not satisfy the inequality. The solution set consists of all points outside the lines x  2 and x  2 .

39. 2 y  2  2 y 2 related equation

2 y 2 y 1 The related equation y  1 represents two horizontal lines, y  1 and y  1 . The inequality is strict, so draw the lines as dashed lines. Test (0, 0): 2 y 2

41. y  x  y x related equation

The equation represents the parent square root function. The inequality symbol  allows for equality, so draw the function as a solid curve.

?

20 2 ?

0  2 false

636


Section 5.5 Test (1, 2):

43. a. y  2 x  3

y x ?

2 1

1  2  2  3

?

1  7  Yes

? ?

2  1  true The test point satisfies the inequality. Since the domain of the function is  0,   , the yaxis is also a boundary of the solution set. The solution set consists of the points that are above or on the curve, and to the right of or on the y-axis.

b. x  y  1 ?

2 1 1 ?

3  1 No c. No. Since the point  2,1 is not a solution to the second inequality, it is not a solution to the system of inequalities. 44. a. y   x  5 ?

2  3  5 ?

2  2 No b.

3x  y  11 3  3  2  11 ? ?

11  11  Yes 42. y  x  1  y  x 1 related

c. No. Since the point  3, 2 is not a solution to the first inequality, it is not a solution to the system of inequalities.

equation

The equation represents the parent square root function, shifted to the right 1 unit. The inequality is strict, so draw the function as a dashed curve. Test (1, 2): y  x 1

45. a. x  y  4

1  2  0  1

?

1  1  true

0 1 4 1  4  true

?

2  11

y  2x  1

?

? ?

Yes

?

2  0 false The test point does not satisfy the inequality. Since the domain of the function is 1,   , the line x  1 is also a boundary of the solution set. The solution set consists of the points that are strictly below the curve, and to the right of or on the line x  1 .

b. x  y  4 ?

3 1 4 ?

4  4 false No c. x  y  4

0  2  2  1

?

0  5  true

20 4 2  4  true Yes d. x  y  4 ?

1 4  4 ?

5  4 false No

637

y  2x  1

?

? ?


Chapter 5 Systems of Equations and Inequalities y   x2  3

46. a.

Find the point of intersection. 1 x  4  2 x  1 2 1 x  2 x  5 2 x  4 x  10

1    2  3 ?

2

?

1  1 false No y   x2  3

x  2y  2

2    0  3

0  2  2  2

b.

? ?

?

2  3  true Yes

4  2  true x  2y  2

c. y   x 2  3

0  2 1  2

1    0  3 ?

5 x  10 x2 1 1 y  x  4   2  4  3 2 2 Graph  2, 3 as an open dot. It is not a solution to either inequality.

?

2

?

2

?

?

2  2  true

1  3  true Yes y   x2  3

d.

6    3  3 ?

2

?

6   6 false No 1 1 x  4  y x4 related 2 2 equation The inequality is strict, so draw the line as a dashed line. 1 Test (0, 0): y x4 2 ? 1 0   0  4 2

47. y 

1 1 x  2  y x2 related 3 3 equation The inequality symbol  allows for equality, so draw the line as a solid line. 1 Test (0, 0): y x2 3 ? 1 0   0  2 3

48. y 

?

0   4 false The points on the side of the line not containing (0, 0) are solutions. y  2 x  1  y  2 x  1 related

?

0   2  true The points on the side of the line containing (0, 0) are solutions. y  x  4  y x4 related

equation

The inequality is strict, so draw the line as a dashed line. y  2 x  1 Test (0, 0):

equation

The inequality symbol  allows for equality, so draw the line as a solid line. Test (0, 0): y x4

0   2  0  1 ? ?

0  1 false The points on the side of the line not containing (0, 0) are solutions.

?

0 0  4 ?

0   4 false The points on the side of the line not containing (0, 0) are solutions.

638


Section 5.5 Find the point of intersection. 1 x2 x4 3 1 x x2 3 x  3x  6

3x  4 y  4

Test (0, 0):

3  0  4  0  4 ? ?

0  4 false The points on the side of the line not containing (0, 0) are solutions. Find the point of intersection. 3 2 x  5 y  5   6 x  15 y  15 2 3 x  4 y  4  6 x  8 y  8 23 y  23 y 1 2x  5 y  5

2 x  6 x3 1 1 y  x  2   3  2  1 3 3 Graph  3, 1 as a closed dot. It is a solution to both inequalities.

2 x  5 1  5 2x  0 x0 Graph  0,1 as a closed dot. It is a solution to both inequalities.

49. 2 x  5 y  5  2x  5 y  5 related equation

x-intercept: 2 x  5  0  5

y-intercept: 2  0  5 y  5

2x  5

5y  5 50. 4 x  3 y  3  4x  3y  3 related

5 y 1 2 The inequality symbol  allows for equality, so draw the line as a solid line. Test (0, 0): 2x  5 y  5 x

equation

2  0  5  0  5 ?

4y  4

5y  5

4  0  3  0  3 ?

equation

3x  4

4x  3

3 y 1 4 The inequality is strict, so draw the line as a dashed line. Test (0, 0): 4x  3y  3

0  5  true The points on the side of the line containing (0, 0) are solutions. 3 x  4 y  4  3 x  4 y  4 related y-intercept: 3  0  4 y  4

y-intercept: 2  0  5 y  5

x

?

x-intercept: 3 x  4  0  4

x-intercept: 4 x  3  0  3

?

0  3 false The points on the side of the line not containing (0, 0) are solutions. x  4 y  4  x  4 y  4 related

4 y 1 3 The inequality symbol  allows for equality, so draw the line as a solid line. x

equation

639


Chapter 5 Systems of Equations and Inequalities x-intercept: x  4  0  4

y-intercept:  0  4 y  4

x  4

4 y  4

x 2  y 2  16  x 2  y 2  16 related equation

The equation represents a circle centered at  0, 0 with radius 4. The inequality symbol  allows for equality, so draw the circle as a solid curve. x 2  y 2  16 Test (0, 0):

y  1 The inequality is strict, so draw the line as a dashed line. x  4 y  4 Test (0, 0):

 02   02  16 ?

0  4  0   4 ?

?

0  16  true The test point satisfies the inequality. The solution set consists of the points inside or on the circle. The graph shows that the circles do not intersect.

?

0   4 false The points on the side of the line not containing (0, 0) are solutions. Find the point of intersection. 4x  3y  3 4x  3y  3  4 x  4 y  4    4 x  16 y  16  19 y  19 y  1 x  4 y  4

x  4  1  4 x0 Graph  0, 1 as an open dot. It is not a solution to either inequality.

52. x 2  y 2  1  x2  y 2  1 related equation

The equation represents a circle centered at  0, 0 with radius 1. The inequality symbol  allows for equality, so draw the circle as a solid curve. x2  y 2  1 Test (0, 0):

 0 2   0 2  1 ?

51. x 2  y 2  9  x2  y 2  9 related

?

0  1 false The test point does not satisfy the inequality. The solution set consists of the points outside or on the circle. x 2  y 2  25  x 2  y 2  25 related

equation

The equation represents a circle centered at  0, 0 with radius 3. The inequality symbol  allows for equality, so draw the circle as a solid curve. Test (0, 0): x2  y 2  9

equation

The equation represents a circle centered at  0, 0 with radius 5. The inequality is strict, so draw the circle as a dashed curve. x 2  y 2  25 Test (0, 0):

 0   0  9 2

2 ?

?

0  9 false The test point does not satisfy the inequality. The solution set consists of the points outside or on the circle.

 02   0 2  25 ? ?

0  25  true

640


Section 5.5 54. y  2 x  4  y  2x  4 related

The test point satisfies the inequality. The solution set consists of the points inside the circle. The graph shows that the circles do not intersect.

equation

The inequality is strict, so draw the line as a dashed line. Test (0, 0): y  2x  4 0  2  0  4 ? ?

0   4 false The points on the side of the line containing (0, 0) are solutions. 2 x  y  2  y  2x  2 related equation

The inequality symbol  allows for equality, so draw the line as a solid line. Test (0, 0): 2 x  y  2 2  0  0  2 ?

53. y  3x  3  y  3x  3 related

?

0  2 false The points on the side of the line containing (0, 0) are not solutions. Find the point of intersection. 2x  4  2x  2 4  2 The lines do not intersect; they are parallel. The solutions to the first inequality are below the line, and the solutions to the second inequality are above the line. The solution sets do not overlap. The solution set of the system is the empty set,   .

equation

The inequality symbol  allows for equality, so draw the line as a solid line. Test (0, 0): y  3x  3 0  3  0  3 ? ?

0  3 false The points on the side of the line not containing (0, 0) are solutions. 3 x  y  1  y  3x  1 related equation

The inequality is strict, so draw the line as a dashed line. Test (0, 0): 3 x  y  1

55. x  3  x 3 related

3  0  0  1 ?

equation

The related equation x  3 represents two vertical lines, x  3 and x  3 . The inequality is strict, so draw the lines as dashed lines. Test (0, 0): x 3

?

0  1  true The points on the side of the line containing (0, 0) are solutions. Find the point of intersection. 3x  3  3x  1 31 The lines do not intersect; they are parallel. The solutions to the first inequality are above the line, and the solutions to the second inequality are below the line. The solution sets do not overlap. The solution set of the system is the empty set,   .

?

0 3 ?

0  3  true The test point satisfies the inequality. The solution set consists of all points between the lines x  3 and x  3 . y  3  y 3 related equation

The related equation y  3 represents two horizontal lines, y  3 and y  3 . The inequality is strict, so draw the lines as dashed lines. 641


Chapter 5 Systems of Equations and Inequalities Test (0, 0):

The lines intersect at  2, 2 ,  2, 2 ,

y 3 ?

 2,  2 , and  2,  2 . These points are

?

solutions to the inequalities, so graph them with closed dots.

0 3 0  3  true The test point satisfies the inequality. The solution set consists of all points between the lines y  3 and y  3 . The lines intersect at  3, 3 ,  3, 3 ,  3, 3 ,

and  3, 3 . These points are not solutions to the strict inequalities, so graph them with open dots.

57. y  x 2  2  y  x2  2 related equation

The equation represents a parabola opening upward with vertex  0,  2 . The inequality symbol  allows for equality, so draw the parabola as a solid curve. Test (0, 0): y  x2  2

x 2 56. x  2  related

0   0  2 ?

equation

2

?

0   2  true The test point satisfies the inequality. The solution set consists of the points above or on the parabola. y  x  yx related

The related equation x  2 represents two vertical lines, x  2 and x  2 . The inequality symbol  allows for equality, so draw the lines as solid lines. Test (0, 0): x 2

equation

?

0 2

The inequality is strict, so draw the line as a dashed line. yx Test (1, 2):

?

0  2 false The test point does not satisfy the inequality. The solution set consists of all points outside or on the lines x  2 and x  2 . y  2  y 2 related

?

2  1  true The points on the side of the line containing (1, 2) are solutions. y4 The related equation y  4 is a horizontal line. The inequality y  4 represents all points below or on the line y  4 . The inequality symbol  allows for equality, so draw the line as a solid line. Find the points of intersection between y  x 2  2 and y  x :

equation

The related equation y  2 represents two horizontal lines, y  2 and y  2 . The inequality symbol  allows for equality, so draw the lines as solid lines. y 2 Test (0, 0): ?

0 2 ?

0  2 false The test point does not satisfy the inequality. The solution set consists of all points outside or on the lines y  2 and y  2 .

x2  2  x x2  x  2  0

 x  1 x  2  0 642


Section 5.5 x  1 or x  2 y  x  1 yx2

Test (0, 0):

The solutions are  1, 1 and  2, 2 . They do not satisfy the strict inequalities, so plot them as open dots. Find the points of intersection between y  x 2  2 and y  4 :

0  5  true The points on the side of the line containing (0, 0) are solutions. y 1 The related equation y  1 is a horizontal line. The inequality y  1 represents all points above the line y  1 . The inequality is strict, so draw the line as a dashed line. Find the points of intersection between y   x 2  7 and y   x  5 :

0    0  5 ? ?

x2  2  4 x2  6  0 x2  6 x 6 y4 The solutions are

y  x  5

 x2  7   x  5

 6, 4 and   6, 4 .

 x2  x  2  0

x2  x  2  0

They satisfy both inequalities, so plot them as closed dots.

 x  1 x  2  0 x  1 or x  2 y   x  5    1  5  6 y   x  5  2  5  3 The solutions are  1, 6 and  2, 3 . They satisfy the inequalities, so plot them as closed dots. Find the points of intersection between y   x 2  7 and y  1 :  x2  7  1

58. y   x 2  7  y   x2  7 related

 x 2  6

equation

x2  6

The equation represents a parabola opening downward with vertex  0, 7  . The inequality symbol  allows for equality, so draw the parabola as a solid curve. Test (0, 0): y   x2  7

y 1

The solutions are

 6,1 and   6,1 .

They do not satisfy the inequalities, so plot them as open dots.

0    0  7 ?

x 6

2

?

0  7  true The test point satisfies the inequality. The solution set consists of the points below or on the parabola. y   x  5  y  x  5 related equation

The inequality symbol  allows for equality, so draw the line as a solid line.

643


Chapter 5 Systems of Equations and Inequalities 59. x 2  y 2  100  x 2  y 2  100 related

4 4 x   6  8 3 3 The solutions are  6, 8 and  6, 8 . They do not satisfy the inequalities, so plot them as open dots. Find the points of intersection between x 2  y 2  100 and x  8 :

y

equation

The equation represents a circle centered at  0, 0 with radius 10. The inequality symbol  allows for equality, so draw the circle as a solid curve. Test (0, 0): x 2  y 2  100

 02   02  100 ?

x 2  y 2  100

?

8 2  y 2  100

0  100  true The test point satisfies the inequality. The solution set consists of the points inside or on the circle. 4 4 y  x  y x related 3 3 equation The inequality is strict, so draw the line as a dashed line. 4 y x Test (1, 0): 3 ? 4 0  1 3 ? 4 0   true 3 The points on the side of the line containing (1, 0) are solutions. x8 The related equation x  8 is a vertical line. The inequality x  8 represents all points above or on the line x  8 . The inequality symbol  allows for equality, so draw the line as a solid line. Find the points of intersection between 4 x 2  y 2  100 and y  x : 3 x 2  y 2  100

y 2  36 y  6 x8 The solutions are  8,  6 and  8, 6 . They satisfy the inequalities, so plot them as closed dots.

60. x 2  y 2  100  x 2  y 2  100 related equation

The equation represents a circle centered at  0, 0 with radius 10. The inequality is strict, so draw the circle as a dashed curve. Test (0, 0): x 2  y 2  100

 02   02  100 ? ?

2

0  100  true The test point satisfies the inequality. The solution set consists of the points inside the circle. y  x  yx related

4  x 2   x  100 3  16 2 x  100 9 25 2 x  100 9 x 2  36 x  6 4 4 y  x   6  8 3 3

x2 

equation

The inequality symbol  allows for equality, so draw the line as a solid line. Test (1, 0): yx ?

0  1 false The points on the side of the line not containing (1, 0) are solutions. 644


Section 5.5 y 1 The related equation y  1 is a horizontal line. The inequality y  1 represents all points above or on the line y  1 . The inequality symbol  allows for equality, so draw the line as a solid line. Find the points of intersection between x 2  y 2  100 and y  x : x 2  y 2  100 x 2  x 2  100

61. y  e x  y  ex related

2 x  100 2

equation

The equation represents the parent natural exponential function. The inequality is strict, so draw the function as a dashed curve. Test (0, 0): y  ex

x 2  50 x  5 2 y x5 2

?

0  e0

y  x  5 2 The solutions are 5 2, 5 2 and 5 2, 5 2 . They do

?

0  1  true The test point satisfies the inequality. The solution set consists of the points below the function. y  1  y 1 related

not satisfy the inequalities, so plot them as open dots. Find the points of intersection between x 2  y 2  100 and y  1 :

equation

The related equation y  1 is a horizontal line. The inequality y  1 represents all points above the line y  1 . The inequality is strict, so draw the line as a dashed line. x2 The related equation x  2 is a vertical line. The inequality x  2 represents all points to the left of the line x  2 . The inequality is strict, so draw the line as a dashed line. Find the point of intersection between y  e x and y  1 :

x  y  100 2

2

x 2  1  100 2

x 2  99 x8

x  3 11

The solutions are 3 11,1 and 3 11, 1 . They do not satisfy the inequalities, so plot them as open dots. Find the point of intersection between y  x and y  1 : yx y 1 x 1 The solution is 1,1 . It satisfies the inequalities, so plot it as a closed dot.

y  ex 1  ex x0 The solution is  0,1 . It does not satisfy the inequalities, so plot it as an open dot. Find the points of intersection between y  e x and x  2 : y  ex y  e 2  7.4 The solution is  2, 7.4 . It does not satisfy the inequalities, so plot it as an open dot.

645


Chapter 5 Systems of Equations and Inequalities The point of intersection between y  1 and

Find the point of intersection between y 

x  2 is  2,1 . It does not satisfy the inequalities, so plot it as an open dot.

and y  x : 2 y x 2 x x 2 x 2

2 x

x 2 The solutions are

  2,  2  and  2, 2  . The do not

satisfy the inequalities, so plot them as open dots. Find the points of intersection between 2 y  and y  0 : x 2 y x 2 0  no solution x Find the points of intersection between y  x and y  0 : yx x0 y0 The solution is  0, 0 . It does not satisfy the inequalities, so plot it as an open dot.

2 2  y related x equation x The equation represents a reciprocal function. The inequality symbol  allows for equality, so draw the function as a dashed curve. 2  1 y Test  2,  :  2 x 1 ? 2  2 2 1 ?  1  true 2 The test point satisfies the inequality. The solution set consists of the points below or on the function. y  0  y0 related

62. y 

equation

The related equation y  0 is a horizontal line. The inequality y  0 represents all points above the line y  0 . The inequality is strict, so draw the line as a dashed line. y  x  yx related equation

The inequality is strict, so draw the line as a dashed line. yx Test (2, 1): ?

63.  x  2   y  3  9

1  2  true The points on the side of the line containing (2, 1) are solutions.

2

2

  x  2   y  3  9 related 2

2

equation

The equation represents a circle centered at  2, 3 with radius 3. The inequality symbol  allows for equality, so draw the circle as a solid curve.

646


Section 5.5

 x  22   y  32  9 ?  0  22   0  32  9

Test (0, 0):

The test point satisfies the inequality. The solution set consists of the points inside the circle. 2 x  y  4  y  2x  4 related

?

49 9

equation

?

13  9 false The test point does not satisfy the inequality. The solution set consists of the points inside or on the circle. x  y  2  y x2 related

The inequality is strict, so draw the line as a dashed line. 2 x  y  4 Test (0, 0): 2  0  0   4 ? ?

2   4 false The points on the side of the line not containing (0, 0) are solutions. Find the points of intersection.

equation

The inequality is strict, so draw the line as a dashed line. Test (0, 0): x y2 ?

00 2 ?

0  2 false The points on the side of the line not containing (0, 0) are solutions. Find the points of intersection.

The line does not intersect the circle. The solutions to the first inequality are inside the circle, and the solutions to the second inequality are above the line and the circle. The solution sets do not overlap. The solution set of the system is the empty set,  .

The line does not intersect the circle. The solutions to the first inequality are inside the circle, and the solutions to the second inequality are below the line and the circle. The solution sets do not overlap. The solution set of the system is the empty set,  . 64.  x  4   y  1  25 2

2

  x  4   y  1  25 related 2

2

equation

The equation represents a circle centered at  4,  1 with radius 5. The inequality is strict, so draw the circle as a dashed curve. Test (0, 0):

65. x  6

66. y  7

67. y  2

68. x 

69. x  y  18

70. x  y  4

71. a. x  y  9

b. x  3

c. y  4

d. x  0

1 2

e. y  0 f. The inequalities x  0 and y  0 together represent the set of points in the first quadrant, including the bounding axes. x  y  9  x y 9 related

 x  4 2   y  1 2  25 ?  0  42   0  1 2  25

equation

?

16  1  25 ?

17  25  true 647


Chapter 5 Systems of Equations and Inequalities Test (0, 0):

x y9 ?

00 9 ?

0  9  true The inequality x  y  9 represents the set of points on and below the line x  y  9 . In addition, the inequality x  3 represents the set of points on or to the right of the line x  3 , and the inequality y  4 represents the set of points on or below the line y  4 . 73. a. x  y  60,000

b. y  2 x d. y  0

c. x  0

e. The inequalities x  0 and y  0 together represent the set of points in the first quadrant, including the bounding axes. x  y  60,000  x  y  60,000 related equation

Test (0, 0):

x  y  60,000 ?

0  0  60,000 ?

72. a. x  6

0  60,000  true The inequality x  y  60,000 represents the set of points on and below the line x  y  60,000 . y  2 x  y  2x related

b. y  10

c. x  y  20

d. x  0

e. y  0

equation

f. The inequalities x  0 and y  0 together represent the set of points in the first quadrant, including the bounding axes. x  y  20  x  y  20 related

Test (5000, 20,000): y  2x 20,000  2  5000 ? ?

20,000  10,000  true The inequality y  2 x represents the set of points on and above the line y  2 x .

equation

Test (0, 0):

x  y  20 ?

0  0  20 ?

0  20  true The inequality x  y  20 represents the set of points on and below the line x  y  20 . In addition, the inequality x  6 represents the set of points on or to the right of the line x  6 , and the inequality y  10 represents the set of points on or below the line y  10 .

648


Section 5.5 74. a. x  y  2000

b. x  3 y

c. x  0

d. y  0

77. Find the equations of the three sides of the triangle. 2   4 6  1 Line 1: m  3   3 6

e. The inequalities x  0 and y  0 together represent the set of points in the first quadrant, including the bounding axes. x  y  2000  x  y  2000 related

y  2  1 x  3 y 2  x3 y  x 1

equation

Test (0, 0):

x  y  2000

Line 2: m 

?

0  0  2000 ?

0  2000  true The inequality x  y  2000 represents the set of points on and below the line x  y  2000 . x  3 y  x  3y related

1 y  4    x   5  4 1 5 y4  x 4 4 1 11 y   x 4 4 4  4 8   4 Line 3: m  3   5 2

equation

Test (1000, 100):

42 2 1   4 5  3 8

x  3y 1000  3 100 ? ?

1000  300  true The inequality x  3 y represents the set of points on and below the line x  3 y .

y   4  4  x   3  y  4  4 x  12 y  4 x  16 Graph the equations to determine the inequalities.

Line 1 is on the right. Line 2 is on the top. Line 3 is on the left. 1 11 y  x  1 , y   x  , y  4 x  16 4 4

75. These points are the Quadrant I part of a circle with vertex at the origin and radius 3: x2  y 2  9 , x  0 , y  0 76. These points are the Quadrant II part of a circle with vertex at the origin and radius 4: x 2  y 2  16 , x  0 , y  0

78. Find the equations of the three sides of the triangle. 1   4 5 Line 1: m   1 1   4 5

y  1  1 x  1 y 1  x 1 yx

649


Chapter 5 Systems of Equations and Inequalities Line 2: m 

1  1 2 1   5 1 4 2

b. The distance from the tower to the resident is

d

1  x  1 2 1 1 y 1   x  2 2 1 3 y   x 2 2 4   1 3 1 Line 3: m    4  5 9 3 1 y   1   x  5 3 1 5 y 1  x  3 3 1 8 y x 3 3 Graph the equations to determine the inequalities. y 1  

 4  52  52  81  25  106

No, the resident is 106  10.3 mi from the tower. 81. If the inequality is strict—that is, posed with < or >—then the bounding line or curve should be dashed. 82. After graphing the bounding line or curve to the solution set, select a test point from a given region of the plane. If the ordered pair is a solution to the inequality, then all other points in that region are also solutions. 83. Find the solution set to each individual inequality in the system. Then to find the solution set for the system of inequalities, take the intersection of the solution sets to the individual inequalities. 84. The solution set is a unit square (a square with sides 1 unit in length) in the first quadrant with one vertex at the origin. 85. x  y  x  y related equation

Graph the equivalent form: x  y and x   y . The inequality symbol  allows for equality, so draw the lines as solid lines. Test points in each region. Test (1, 0): x  y

Line 1 is on the left. Line 2 is on the right. Line 3 is on the bottom. 1 3 1 8 y x, y  x , y x 2 2 3 3 79. a. This is a circle with vertex  12, 9 and radius 16.

?

1 0

 x  122   y  92  256

?

1  0  true The test point satisfies the inequality. The points on the side of the lines containing (1, 0) are solutions. Test (0, 1): x  y

b. The distance from Hawthorne to the point of the earthquake is

d  92  122  81  144  225  15 km Yes, the earthquake could be felt at Hawthorne, which is 15 km from the earthquake.

?

01 ?

0  1 false The test point does not satisfy the inequality. The points on the side of the lines not containing (0, 1) are solutions.

80. a. This is a circle with vertex  4, 5 and radius 8.

 x  42   y  52  64

650


Section 5.5 Test  1, 0 :

x  y

 1 1 Test   ,  :  4 4

x  y 1 1 1 ?   1 4 4 1 ?  1  true 2 The test point satisfies the inequality. The points on the side of the line containing  1 1   ,  are solutions. 4 4

?

1  0 ?

1  0  true The test point satisfies the inequality. The points on the side of the lines containing  1, 0 are solutions. Test  0, 1

x  y ?

0  1 ?

0  1 false The test point does not satisfy the inequality. The points on the side of the lines not containing  0, 1 are solutions.

 1 1 Test   ,   :  4 4

x  y 1 1 1 ?    1 4 4 1 ?  1  true 2 The test point satisfies the inequality. The points on the side of the line containing  1 1   ,   are solutions. 4 4  1 1 Test  ,   :  4 4 x  y 1 1 1 ?   1 4 4 1 ?  1  true 2 The test point satisfies the inequality. The points on the side of the line containing  1 1  ,   are solutions. 4 4

x  y 1 86. x  y  1  related equation

Graph the equivalent forms: x  y  1 if x  0 and y  0 x  y  1 if x  0 and y  0 x  y  1 if x  0 and y  0 x  y  1 if x  0 and y  0 The inequality symbol  allows for equality, so draw the lines as solid lines. Test points in each form.  1 1 x  y 1 Test  ,  :  4 4 1 1 ?  1 4 4 1 ?  1  true 2 The test point satisfies the inequality. The points on the side of the line containing  1 1  ,  are solutions. 4 4

651


Chapter 5 Systems of Equations and Inequalities 87.

88.

Problem Recognition Exercises: Equations and Inequalities in Two Variables The points on the side of the line not containing (0, 0) are solutions. 2 x  y  0  y  2x related

1. a.

equation

The inequality is strict, so draw the line as a dashed line. Test (1, 1): 2 x  y  0 2 1  1  0 ? ?

1  0  true The points on the side of the line containing (1, 1) are solutions. From part (c), the point of intersection is (1, 2). Graph (1, 2) as an open dot. It is not a solution to either inequality.

b.

2 x  y  0

c.

2 x   3 x  5  0 2 x  3 x  5  0 5 x  5

e. y  3 x  5  y  3x  5 related

x 1 y  3x  5  3 1  5  3  5  2

equation

The inequality is strict, so draw the line as a dashed line. Test (0, 0): y  3 x  5

1, 2

d. y  3 x  5  y  3x  5 related

0   3  0  5 ?

equation

The inequality is strict, so draw the line as a dashed line. Test (0, 0): y  3 x  5

?

0  2  true The points on the side of the line containing (0, 0) are solutions. 2 x  y  0  y  2x related

0   3  0  5 ?

equation

?

0  2 false 652


Problem Recognition d. y  2 x  3  y  2x  3 related

The inequality is strict, so draw the line as a dashed line. 2 x  y  0 Test (1, 1):

equation

The inequality symbol  allows for equality, so draw the line as a solid line. Test (0, 0): y  2 x  3

2 1  1  0 ? ?

1  0 false The points on the side of the line not containing (1, 1) are solutions. From part (c), the point of intersection is (1, 2). Graph (1, 2) as an open dot. It is not a solution to either inequality.

0  2  0  3 ? ?

0   3  true The points on the side of the line containing (0, 0) are solutions. 4 x  2 y  2  4 x  2 y  2 related equation

The inequality symbol  allows for equality, so draw the line as a solid line. Test (0, 0): 4 x  2 y  2 4  0  2  0   2 ? ?

0   2  true The points on the side of the line containing (0, 0) are solutions. From part (c), the lines do not intersect. 2. a.

e. y  2 x  3  y  2x  3 related

b.

equation

The inequality symbol  allows for equality, so draw the line as a solid line. Test (0, 0): y  2 x  3 0  2  0  3 ? ?

0   3 false The points on the side of the line not containing (0, 0) are solutions. 4 x  2 y  2  4 x  2 y  2 related

4 x  2 y  2

c.

equation

The inequality symbol  allows for equality, so draw the line as a solid line. Test (0, 0): 4 x  2 y  2

4 x  2  2 x  3  2 4 x  4 x  6  2



6  2

4  0  2  0   2 ? ?

0   2 false

653


Chapter 5 Systems of Equations and Inequalities The inequality symbol  allows for equality, so draw the parabola as a solid curve. 1 Test (1, 2): y  x 2 2 ? 1 2 2  1 2 ? 1 2   true 2 The points on the side of the parabola containing (1, 2) are solutions. From part (a), the point of intersection is (0, 0). Graph (0, 0) as a closed dot. It is a solution to both inequalities.

The points on the side of the line not containing (0, 0) are solutions. From part (c), the lines do not intersect; they are parallel. The solutions to the first inequality are below the line, and the solutions to the second inequality are above the line. The solution sets do not overlap. The solution set of the system is the empty set,   . 3. a. y  x 2 1 y  x2 2

1 2 x 2 1 x2  x2 2 y

c. y  x 2  y  x2 related equation

The inequality symbol  allows for equality, so draw parabola as a solid curve. Test (1, 2): y  x 2

1 2 x 0 2 x2  0 x0

2  1 ?

y  x   0  0 2

2

?

2  1  true The points on the side of the parabola containing (1, 2) are solutions. 1 1 y  x 2  y  x2 related 2 2 equation The inequality symbol  allows for equality, so draw the parabola as a solid curve. 1 Test (1, 2): y  x 2 2 ? 1 2 2  1 2 ? 1 2  false 2 The points on the side of the parabola not containing (1, 2) are solutions.

 0, 0

b. y  x 2  y  x2 related equation

The inequality symbol  allows for equality, so draw the parabola as a solid curve. Test (1, 2): y  x 2 2  1 ?

2

2

?

2  1 false The points on the side of the parabola not containing (1, 2) are solutions. 1 1 y  x 2  y  x2 related 2 2 equation

654


Problem Recognition The solution sets do not overlap, except for the point of intersection. From part (a), the point of intersection is (0, 0). Graph (0, 0) as a closed dot. It is a solution to both inequalities.

Test (0, 0):

x  y 1 ?

0  0 1 ?

0  1 false The points on the side of the line not containing (0, 0) are solutions. y   x  3  y   x  3 related 2

2

equation

The inequality symbol  allows for equality, so draw the parabola as a solid curve. Test (0, 0):

y   x  3

2

0   0  3

2

? ?

0  9 false The points on the side of the parabola not containing (0, 0) are solutions. From part (a), the points of intersection are (2, 1) and (5, 4). Graph (2, 1) and (5, 4) as closed dots. They are solutions to both inequalities.

4. a. x  y  1 y   x  3

2

x  y 1 x   x  3  1 2

x  x2  6 x  9  1

c. x  y  1  x  y 1 related

 x 2  7 x  10  0

equation

The inequality symbol  allows for equality, so draw the line as a solid line. Test (0, 0): x  y  1

x 2  7 x  10  0

 x  2 x  5  0 x  2 or x  5

?

0  0 1

y   x  3   2  3   1  1 2

2

2

?

0  1  true The points on the side of the line containing (0, 0) are solutions.

y   x  3   5  3   2  4 2

2

2

 2,1 ,  5, 4

y   x  3  y   x  3 related 2

b. x  y  1  x  y 1 related

2

equation

The inequality symbol  allows for equality, so draw the parabola as a solid curve.

equation

The inequality symbol  allows for equality, so draw the line as a solid line.

655


Chapter 5 Systems of Equations and Inequalities Test (0, 0):

y   x  3

2

0   0  3

2

? ?

0  9  true The points on the side of the parabola containing (0, 0) are solutions. From part (a), the points of intersection are (2, 1) and (5, 4). Graph (2, 1) and (5, 4) as closed dots. They are solutions to both inequalities.

Section 5.6 Linear Programming 1. x  y  70

2. x  y  10

3. 3x  4 y  60

4. 5 x  2 y  54

5. y  3x

6. x 

7. 60  x  80

8. 10  x  20

9. linear

10. objective

11. feasible

12. vertices

13. z  0.80 x  1.10 y

14. z  10 x  8 y

15. z  0.62 x  0.50 y

16. z  82 x  55 y

18. a. z  1.8 x  2.2 y

at  0, 0 z  1.8  0  2.2  0  0

at  0, 27  z  1.8  0  2.2  27   59.4

at 18, 27  z  1.8 18  2.2  27 

2 y 3

 32.4  59.4  91.8 at  27, 9 z  1.8  27   2.2  9

 48.6  19.8  68.4 at  27, 0 z  1.8  27   2.2  0  48.6 The values x  18 and y  27 produce the maximum value of the objective function. b. Maximum value: 91.8 19. a. z  1000 x  900 y

at  5, 45 z  1000  5  900  45

17. a. z  3x  2 y

at  0, 0 z  3  0  2  0  0

 5000  40,500  45,500

at  45, 45 z  1000  45  900  45

at  0, 9 z  3  0  2  9  18

 45,000  40,500  85,500

at  4, 8 z  3  4  2  8  12  16  28

at  45, 10 z  1000  45  900 10

at  7, 5 z  3  7   2  5  21  10  31

 45,000  9000  54,000

at  9, 0 z  3  9  2  0  27 The values x  7 and y  5 produce the maximum value of the objective function.

at  25,15 z  1000  25  900 15

 25,000  13,500  38,500

at 10, 30 z  1000 10  900  30

b. Maximum value: 31

 10,000  27,000  37,000 The values x  10 and y  30 produce the minimum value of the objective function. b. Minimum value: 37,000

656


Section 5.6 at  20, 40 z  250  20  150  40

20. a. z  6 x  9 y

at  8,18 z  6  8  9 18

 5000  6000  11,000 at  60, 0 z  250  60  150  0  15,000 The values x  60 and y  0 produce the maximum value of the objective function.

 48  162  210 at 18, 8 z  6 18  9  8  108  72  180 at 14, 2 z  6 14  9  2

c. Maximum value: 15,000

 84  18  102 at  2,14 z  6  2  9 14

22. a. Bounding lines: x0, y 0, 2 x  y  40 , x  2 y  50 Find the points of intersection between pairs of bounding lines. x  0, y  0  0, 0

 12  126  138 The values x  14 and y  2 produce the minimum value of the objective function.

b. Minimum value: 102

x  2 y  50 0  2 y  50 y  25

21. a. Bounding lines: x  0 , y  0 , x  y  60 , y  2 x Find the points of intersection between pairs of bounding lines. y  2x

y  2  0 y0 x  y  60 x  2 x  60 3x  60 x  20 y  2 x  2  20  40 x  y  60 x  0  60 x  60

 0, 25

2 x  y  40 2  2 y  50  y  40 4 y  100  y  40 3 y  60 y  20 x  2 y  50

 0, 0

x  2  20  50

 20, 40

x  40  50 x  10 2 x  y  40 2 x  0  40 2 x  40 x  20

 60, 0

b. z  250 x  150 y

at  0, 0 z  250  0  150  0  0

657

10, 20

 20, 0


Chapter 5 Systems of Equations and Inequalities b. z  9.2 x  8.1y

b. z  3x  2 y

at  0, 0 z  9.2  0  8.1 0  0

at  0, 50 z  3  0  2  50  100

at 10, 20 z  9.2 10  8.1 20

 30  40  70 at  20, 0 z  3  20  2  0  60 The values x  20 and y  0 produce the minimum value of the objective function.

at 10, 20 z  3 10  2  20

at  0, 25 z  9.2  0  8.1 25  202.5

 92  162  254 at  20, 0 z  9.2  20  8.1 0  184 The values x  10 and y  20 produce the maximum value of the objective function.

c. Minimum value: 60 24. a. Bounding lines: x0, y 0, 4 x  3 y  60 , 2 x  3 y  36 Find the points of intersection between pairs of bounding lines. 4 x  3 y  60 4  0  3 y  60 3 y  60 y  20  0, 20

c. Maximum value: 254 23. a. Bounding lines: x0, y 0, 3x  y  50 , 2 x  y  40 Find the points of intersection between pairs of bounding lines. 3x  y  50

3  0  y  50

 0, 50

y  50

4 x  3 y  60 4 x   2 x  36  60 2 x  24 x  12

3x  y  50 3x   2 x  40  50 x  10 2 x  y  40 2 10  y  40 y  20 2 x  y  40 2 x  0  40 2 x  40 x  20

10, 20

 20, 0

658

2 x  3 y  36 2 12  3 y  36 24  3 y  36 3 y  12 y4

12, 4

2 x  3 y  36 2 x  3  0  36 2 x  36 x  18

18, 0


Section 5.6 b. z  4.5 x  6 y

b. z  150 x  90 y

at  0, 20 z  4.5  0  6  20  120

at  0, 0 z  150  0  90  0  0

 54  24  78 at 18, 0 z  4.5 18  6  0  81 The values x  12 and y  4 produce the minimum value of the objective function.

at  8, 40 z  150  8  90  40

at 12, 4 z  4.5 12  6  4

at  0, 40 z  150  0  90  40  3600

 1200  3600  4800 at  36,12 z  150  36  90 12  5400  1080  6480 at  36, 0 z  150  36  90  0  5400 The values x  36 and y  12 produce the maximum value of the objective function.

c. Minimum value: 78 25. a. Bounding lines: x  0 , y  0 , y  40 x  36 , x  y  48 Find the points of intersection between pairs of bounding lines. x  0, y  0  0, 0

x  0, y  40

c. Maximum value: 6480 26. a. Bounding lines: x  0 , y  0 , x  10 y  8 , x  y  12 Find the points of intersection between pairs of bounding lines. x  0, y  0  0, 0

 0, 40

x  y  48 x  40  48 x8

8, 40

x  0, y  8

x  y  48 36  y  48

 0, 8

x  y  12

y  12

 36,12

x  36, y  0

 36, 0

x  8  12 x4

 4, 8

x  y  12 10  y  12

659

y2

10, 2

x  10, y  0

10, 0


Chapter 5 Systems of Equations and Inequalities b. z  50 x  70 y

a. z  100 x  120 y

at  0, 0 z  50  0  70  0  0

at  0, 0 z  100  0  120  0  0

at  0, 8 z  50  0  70  8  560

at  0, 9 z  100  0  120  9  1080

at  4, 8 z  50  4  70  8

at  4, 9 z  100  4  120  9

 200  560  760 at 10, 2 z  50 10  70  2

 400  1080  1480 at  8, 6 z  100  8  120  6

 500  140  640 at 10, 0 z  50 10  70  0  500 The values x  4 and y  8 produce the maximum value of the objective function.

 800  720  1520 at 11, 0 z  100 11  120  0  1100

The ordered pair  8, 6 produces the maximum value of the objective function, 1520.

c. Maximum value: 760

b. z  100 x  140 y

27. Bounding lines: x  0 , y  0 , 3x  4 y  48 , 2 x  y  22 , y  9 Find the points of intersection between pairs of bounding lines. x  0, y  0  0, 0

at  0, 0 z  100  0  140  0  0

at  0, 9 z  100  0  140  9  1260

at  4, 9 z  100  4  140  9

 400  1260  1660 at  8, 6 z  100  8  140  6

 0, 9

x  0, y  9

 800  840  1640 at 11, 0 z  100 11  140  0  1100

3x  4 y  48

The ordered pair  4, 9 produces the maximum value of the objective function, 1660.

3x  4  9  48 3x  36  48 3x  12

 4, 9

x4

28. Bounding lines: x  0 , y  0 , x  y  20 , x  2 y  36 , x  14 Find the points of intersection between pairs of bounding lines. x  0, y  0  0, 0 x  2 y  36

3 x  4 y  48 3x  4  2 x  22  48 3x  8 x  88  48 5 x  40 x8

0  2 y  36

2 x  y  22 16  y  22 y6

x  y  20

 2 y  36  y  20

8, 6

 y  16

2 x  y  22

y  16

2 x  0  22 2 x  22 x  11

 0,18

y  18

2  8  y  22

x  y  20 x  16  20

11, 0

x4

660

 4,16


Section 5.6 x  y  20 14  y  20 y6

14, 6

x  14, y  0

14, 0

d. Find the points of intersection between pairs of bounding lines. x  0, y  0  0, 0

 0, 90

x  0, y  90 240 x  320 y  48,000

a. z  12 x  15 y

240 x  320  90  48,000

at  0, 0 z  12  0  15  0  0

240 x  28,800  48,000

at  0,18 z  12  0  15 18  270

240 x  19,200

at  4,16 z  12  4  15 16

x  80

 48  240  288 at 14, 6 z  12 14  15  6

80, 90

240 x  320 y  48,000 240 120  320 y  48,000

 168  90  258 at 14, 0 z  12 14  15  0  168

28,800  320 y  48,000

The ordered pair  4,16 produces the maximum value of the objective function, 288.

320 y  19,200 y  60

120, 0

x  120, y  0

b. z  15 x  12 y

at  0, 0 z  15  0  12  0  0

120, 60

e. z  160 x  240 y

at  0, 0 z  160  0  240  0  0

at  0,18 z  15  0  12 18  216

at  4,16 z  15  4  12 16

at  0, 90 z  160  0  240  90  21,600

 60  192  252 at 14, 6 z  15 14  12  6

 12,800  21,600  34,400

at  80, 90 z  160  80  240  90

at 120, 60 z  160 120  240  60

 210  72  282 at 14, 0 z  15 14  12  0  210

 19,200 14,400  33,600

The ordered pair 14, 6 produces the maximum value of the objective function, 282.

at 120, 0 z  160 120  240  0  19,200

f. The greatest profit is realized when 80 kitchen tables and 90 dining room tables are produced.

29. a. Profit: z  160 x  240 y b. x  0 , y  0 , x  120 , y  90 , 240 x  320 y  48,000

g. The maximum profit is $34,400. 30. a. Income: z  24 x  20 y

c.

b. x  0 , y  0 , x  y  18 , y  4 , y  2 x

661


Chapter 5 Systems of Equations and Inequalities 31. a. Let x represent the number of large trees. Let y represent the number of small trees. Profit: z  35 x  30 y Constraints: x  0 , y  0 , x  y  400 , 120 x  80 y  43,200 Find the points of intersection between pairs of bounding lines. x  0, y  0  0, 0

c.

x  y  400 0  y  400 y  400

d. Find the points of intersection between pairs of bounding lines. x  0, y  4  0, 4

120 x  80 y  43,200 120 x  80   x  400  43,200 120 x  80 x  32,000  43,200 40 x  11,200 x  280 x  y  400 280  y  400 y  120  280,120

x  y  18 0  y  18

 0,18

y  18 x  y  18 x   2 x   18 3 x  18 x6 y  2 x  2  6  12

y  2x 4  2x

120 x  80 y  43,200 120 x  80  0  43,200 120 x  43,200 x  360

 6,12

 360, 0

z  35 x  30 y

 2, 4

2 x

 0, 400

at  0, 0 z  35  0  30  0  0

at  0, 400 z  35  0  30  400  12,000

e. z  24 x  20 y

at  0, 4 z  24  0  20  4  80

at  280,120 z  35  280  30 120

at  0,18 z  24  0  20 18  360

 9800  3600  13,400

at  6,12 z  24  6  20 12

at  360, 0 z  35  360  30  0  12,600 280 large trees and 120 small trees would maximize profit.

 144  240  384 at  2, 4 z  24  2  20  4

 48  80  128

b. The maximum profit is $13,400. c. z  50 x  30 y

f. Josh should tutor 6 hr of chemistry and 12 hr of math to maximize his income.

at  0, 0 z  50  0  30  0  0

at  0, 400 z  50  0  30  400  12,000

g. Josh’s maximum income is $384 per week.

at  280,120 z  50  280  30 120

h. Josh will maximize his income when he tutors the maximum number of hours that he can work into his schedule which is 18 hr.

 14,000  3600  17,600

at  360, 0 z  50  360  30  0  18,000 In this case, the nursery should have 360 large trees and no small trees. 662


Section 5.6 at  26, 0 z  150  26  120  0  3900 In this case, the store should have 12 standard bikes and 18 deluxe bikes.

32. a. Let x represent the number of deluxe exercise bikes. Let y represent the number of standard exercise bikes. Profit: z  180 x  120 y Constraints: x  0 , y  0 , x  y  30 , 540 x  420 y  14,040 Find the points of intersection between pairs of bounding lines. x  0, y  0  0, 0

x  y  30 0  y  30 y  30

33. a. Let x represent the number of trips by the large truck. Let y represent the number of trips by the small truck. Cost: z  150 x  120 y Constraints: x  0 , y  0 , 3 24 x  18 y  288 ; x  y 4 Find the points of intersection between pairs of bounding lines. 24 x  18 y  288

 0, 30

540 x  420 y  14,040

24  0  18 y  288

540 x  420   x  30  14,040

18 y  288 y  16

540 x  420 x  12,600  14,040 120 x  1440 x  12 x  y  30 12  y  30 y  18 12,18

24 x  18 y  288 3  24  y   18 y  288 4  18 y  18 y  288 36 y  288 y8 3 3 x  y   8  6 4 4

540 x  420 y  14,040 540 x  420  0  14,040 540 x  14,040 x  26

 0,16

 26, 0

 6, 8

z  150 x  120 y

z  180 x  120 y

at  0,16 z  150  0  120 16  1920

at  0, 0 z  180  0  120  0  0

at  6, 8 z  150  6  120  8

at  0, 30 z  180  0  120  30  3600

 900  960  1860 The company should make 8 trips with the small truck and 6 trips with the large truck.

at 12,18 z  180 12  120 18

 2160  2160  4320 at  26, 0 z  180  26  120  0  4680 26 deluxe bikes and 0 standard model bikes would maximize profit.

b. The minimum cost is $1860. 34. a. Let x represent the number of full-time employees. Let y represent the number of part-time employees. Cost: z  40  20 x   25 12 y 

b. The maximum profit is $4680. c. z  150 x  120 y

at  0, 0 z  150  0  120  0  0

at  0, 30 z  150  0  120  30  3600

z  800 x  300 y Constraints: x  0 , y  0 , 40 x  25 y  3600 ; x  1.25 y

at 12,18 z  150 12  120 18

 1800  2160  3960

663


Chapter 5 Systems of Equations and Inequalities 0.4 x  0.6 y  540

Find the points of intersection between pairs of bounding lines. 40 x  25 y  3600

0.4  1.2 y  1200  0.6 y  540 0.48 y  0.6 y  540 1.08 y  540 y  500 x  1.2 y  1200

40 x  25  0  3600 40 x  3600 x  90

 90, 0

x  1.2  500  1200

40 x  25 y  3600 40 1.25 y   25 y  3600

x  600  1200 x  600

50 y  25 y  3600 75 y  3600 y  48 x  1.25 y  1.25  48  60

z  90 x  120 y at  0, 0 z  90  0  120  0  0

 60, 48

at  0, 900 z  90  0  120  900

z  800 x  300 y

 108,000

at  90, 0 z  800  90  300  0  72,000

at 1200, 0 z  90 1200  120  0

at  60, 48 z  800  60  300  48

 108,000

at  600, 500 z  90  600  120  500

 48,000  14, 400  62,400 The store should have 60 full-time employees and 48 part-time employees.

 54,000  60,000  114,000 The manufacturer should produce 600 grill A units and 500 grill B units to maximize profit.

b. The minimum labor cost for the week under these constraints is $62,400. 35. a. Let x represent the number of grill A units produced. Let y represent the number of grill B units produced. Profit: z  90 x  120 y Constraints: x  0 , y  0 , x  1.2 y  1200 ; 0.4 x  0.6 y  540 Find the points of intersection between pairs of bounding lines. x  0, y  0  0, 0

b. The maximum profit is $114,000. c. z  110 x  120 y

at  0, 0 z  110  0  120  0  0

at  0, 900 z  110  0  120  900  108,000 at 1200, 0 z  110 1200  120  0  132,000

at  600, 500 z  110  600  120  500

0.4 x  0.6 y  540

 66,000  60,000  126,000 In this case, the manufacturer should produce 1200 grill A units and 0 grill B units.

0.4  0  0.6 y  540 0.6 y  540 y  900

 0, 900

x  1.2 y  1200 x  1.2  0  1200 x  1200

 600, 500

1200, 0

664


Section 5.6 36. a. Let x represent the number of model A units produced. Let y represent the number of model B units produced. Profit: z  150 x  200 y Constraints: x  0 , y  0 , 2 x  3 y  1200 ; 1.2 x  1.5 y  660 Find the points of intersection between pairs of bounding lines. x  0, y  0  0, 0 2 x  3 y  1200

2  0  3 y  1200 3 y  1200 y  400

1.2 x  1.5 y  660 1.2 x  1.5  0  660

 0, 400

x  550

2 x  3 y  1200 2 x  3 y  1200 Multiply by  2. 1.2 x  1.5 y  660   2.4 x  3 y  1320 0.4 x  120 x  300

 550, 0

2 x  3 y  1200 2  300  3 y  1200 600  3 y  1200 3 y  600 y  200

 300, 200

1.2 x  1.5 y  660 1.2 x  1.5  0  660 1.2 x  660 x  550

 550, 0

z  150 x  200 y at  0, 0 z  150  0  200  0  0

at  0, 400 z  150  0  200  400  80,000 at  550, 0 z  150  550  200  0  82,500

at  300, 200 z  150  300  200  200  45,000  40,000  85,000 The manufacturer should produce 300 model A units and 200 model B units. b. The maximum profit is $85,000. c. z  180 x  200 y

at  0, 0 z  180  0  200  0  0

at  0, 400 z  180  0  200  400  80,000 at  550, 0 z  180  550  200  0  99,000

at  300, 200 z  180  300  200  200  54,000  40,000  94,000 In this case, the manufacturer should produce 550 model A units and no model B units.

665


Chapter 5 Systems of Equations and Inequalities z  120 x  100 y

37. a. Let x represent the number of acres of corn planted. Let y represent the number of acres of soybeans planted. Profit: z  120 x  100 y Constraints: x  0 , y  0 , x  y  1200 , 180 x  120 y  198,000 ; 80 x  100 y  110,000 Find the points of intersection between pairs of bounding lines. x  0, y  0  0, 0

at  0, 0 z  120  0  100  0  0

at  0,1100 z  120  0  100 1100  110,000

at 1100, 0 z  120 1100  100  0  132,000

at  500, 700 z  120  500  100  700  60,000  70,000  130,000 at  900, 300 z  120  900  100  300

80 x  100 y  110,000

 108,000  30,000  138,000 The farmer should plant 900 acres of corn and 300 acres of soybeans.

80  0  100 y  110,000 100 y  110,000 y  1100

 0,1100

180 x  120 y  198,000

b. The maximum profit is $138,000.

180 x  120  0  198,000 180 x  198,000 x  1100

c. z  100 x  120 y

at  0, 0 z  100  0  120  0  0

1100, 0

at  0,1100 z  100  0  120 1100  132,000

80 x  100 y  110,000

at 1100, 0 z  100 1100  120  0

80 x  100   x  1200  110,000

 110,000

80 x  100 x  120,000  110,000 20 x  10,000 x  500 x  y  1200 500  y  1200 y  700  500, 700 180 x  120 y  198,000

at  500, 700 z  100  500  120  700  50,000  84,000  134,000 at  900, 300 z  100  900  120  300  90,000  36,000  126,000 In this case, 500 acres of corn and 700 acres of soybeans should be planted.

180 x  120   x  1200  198,000 180 x  120 x  144,000  198,000 60 x  54,000 x  900 x  y  1200 900  y  1200 y  300  900, 300

666


Section 5.6 z  42 x  35 y

38. a. Let x represent the number of acres of wheat planted. Let y represent the number of acres of rye planted. Profit: z  42 x  35 y Constraints: x  0 , y  0 , x  y  800 , 90 x  120 y  90,000 ; 50 x  40 y  36,000 Find the points of intersection between pairs of bounding lines. x  0, y  0  0, 0

at  0, 0 z  42  0  35  0  0

at  0, 750 z  42  0  35  750  26,250

at  720, 0 z  42  720  35  0  30,240 at  200, 600 z  42  200  35  600

 8400  21,000  29,400 at  400, 400 z  42  400  35  400  16,800  14,000  30,800 The farmer should plant 400 acres of wheat and 400 acres of rye.

90 x  120 y  90,000 90  0  120 y  90,000 120 y  90,000 y  750

b. The maximum profit is $30,800. c. z  40 x  45 y

 0, 750

at  0, 0 z  40  0  45  0  0

50 x  40 y  36,000

at  0, 750 z  40  0  45  750  33,750

50 x  40  0  36,000 50 x  36,000 x  720

at  720, 0 z  40  720  45  0  28,800 at  200, 600 z  40  200  45  600

 720, 0

 8000  27,000  35,000 at  400, 400 z  40  400  45  400

90 x  120 y  90,000 90 x  120   x  800  90,000

 16,000 18,000  34,000 In this case, 200 acres of wheat and 600 acres of rye should be planted.

90 x  120 x  96,000  90,000 30 x  6000 x  200 x  y  800 200  y  800 y  600  200, 600

39. Linear programming is a technique that enables us to maximize or minimize a function under specific constraints. 40. An objective function is a function that is to be optimized, such as a function representing cost or profit.

50 x  40 y  36,000 50 x  40   x  800  36,000 50 x  40 x  32,000  36,000 10 x  4000 x  400 x  y  800 400  y  800 y  400  400, 400

41. The feasible region for a linear programming application is found by first identifying the constraints on the relevant variables. Then the regions defined by the individual constraints are graphed. The intersection of the constraints define the feasible region. 42. The vertices are found by finding the points of intersection of the bounding lines representing the constraints.

667


Chapter 5 Systems of Equations and Inequalities Chapter 5 Review Exercises 2x  3y  0

5. 5  x  y   19  2 y

0.2 x  0.7 y  1.7

 2 2 1  3   ⱨ 0  3

5 x  5 y  19  2 y

2 x  7 y  17

1. a.

5 x  3 y  19

2  2ⱨ0 0 ⱨ 0  true 5 x  6 y  1

2 5 x  3 y  19   10 x  6 y  38  5 2 x  7 y  17   10 x  35 y  85 41 y  123 y  3 5 x  3 y  19

 2 5 1  6   ⱨ 1  3 5  4 ⱨ 1 1ⱨ 1  true

5 x  3  3  19 5 x  9  19 5 x  10

Yes 2x  3y  0

b.

x2

2  6  3  4  ⱨ 0

2 6. 9 x  2 y  4  18 x  4 y  8 2x  4 y  7 2x  4 y  7 20 x  15 0 0 3 x 0 0 4 2x  4 y  7

12  12 ⱨ 0 0 ⱨ 0  true 5 x  6 y  1 5  6  6  4 ⱨ 1 30  24 ⱨ 1 6 ⱨ 1 false

 3 2   4y  7  4

No 2. Parallel lines, no solution. The system is inconsistent.

3  4y  7 2 3  8 y  14 8 y  11

3. Intersecting lines, one solution. 4.

4x  y  7 4x  y  7  2 2 x  5 y  19  4 x  10 y  38 9 y  45 y 5 4x  y  7

y

7.

4x  5  7 4 x  12 x3

 2,  3

 3, 5

11 8

1 1 x  y 1 10 2 x  5 y  10 x  5 y  10

 3 11   ,    4 8   2 x  10 y  6 2 x  10 y  6

2 x  10 y  6 2  5 y  10  10 y  6 10 y  20  10 y  6 20  6 ; The system is inconsistent. 

668


Chapter 5 Review

8.

x  y  20 8  y  20 y  12 8 L of the 40% mixture and 12 L of the 10% mixture should be used.

3 x 4 4  y  x   x y

4 y  4x   x 4 y  3x 3 y x 4 3    x, y  y  x 4  

11. Let x represent the speed of the plane in still air. Let y represent the speed of the wind. Rate (mi/hr)

Time (hr)

960

x y

2

960

x y

8 3

With wind Against wind

9. Let x represent the milligrams of calcium in 1 cup of milk. Let y represent the milligrams of calcium in 1 cup of cooked spinach. Day 1: 3x  y  1140

y  3x  1140 3 Day 2: 2 x  y  960 2 3 2 x   3 x  1140  960 2 4 x  3  3 x  1140  1920

d  rt 960   x  y   2  2 x  2 y 8  8 8 960   x  y      x  y  3 3 3 2880  8 x  8 y 4 2 x  2 y  960   8 x  8 y  3840 8 x  8 y  2880 8 x  8 y  2880 16 x  6720 x  420

4 x  9 x  3420  1920 5 x  1500 x  300 y  3 x  1140  3  300  1140

2 x  2 y  960

 900  1140  240 Milk has 300 mg per cup and spinach has 240 mg per cup.

2  420  2 y  960 840  2 y  960 2 y  120

10. Let x represent the amount of 40% alcohol solution. Let y represent the amount of 10% alcohol solution.

Amount of mixture Pure alcohol

Distance (mi)

y  60 The speed of the plane in still air is 420 mph and the speed of the wind is 60 mph.

40% Sol.

10% Sol.

22% Solution

12. a. C  x   100 x  1200

x

y

20

b. R  x   250 x

0.40x

0.10y

0.22  20  4.4

c.

C  x  R  x 100 x  1200  250 x 150 x  1200

x y  20 x  y  20  10 0.40 x  0.10 y  4.4   4  x  y  44 3 x  24 x  8

x8 If eight excursions are run per month, then the captain will break even.

669


Chapter 5 Systems of Equations and Inequalities d. R  x   C  x   250 x  100 x  1200

Solve the systems of equations B and D. 10  B 30 y  70 z  140 3  D 30 y  27 z  54 97 z  194 z 2

 250 x  100 x  1200  150 x  1200  150 18  1200  2700  1200  1500 The captain will earn $1500.

D

10 y  9  2  18

13. A 3a  4b  2c  17 B 2a  3b  c  1 C 4a  b  3c  7 Eliminate c from equations A and B. and from equations B and C. A 3a  4b  2c  17 2  B 4a  6b  2c  2  a  10b  19 D

10 y  18  18 10 y  0 y0 Back substitute. A 6 x  5 y  24 6 x  5  0   24 6 x  24 x4

3  B 6a  9b  3c  3 C 4a  b  3c  7  10 10a  10b a b 1 E Solve the systems of equations D and E. E a b 1 D  a  10b  19 b 1 9b  18 b 2 Back substitute. A 3a  4b  2c  17 E

a 

c  3

 4, 0, 2

15. A x  2y  z  5 B x y z 1 C 4 x  7 y  2 z  16 Eliminate z from equations A and B and from equations B and C. A x  2y  z  5 B x  y z1 2x  3y 6 D

a  2 1 a  1

2  B 2x  2 y  2z  2 C 4 x  7 y  2 z  16 6x  9 y  18 2x  3y  6 E Solve the systems of equations D and E. D 2x  3y  6 1  E 2 x  3 y  6 0 0

3  1  4  2   2c  17 3  8  2c  17 2c  6

10 y  9 z  18

 1, 2, 3

14. A 6 x  5 y  24 B 3 y  7 z  14 C 4x  3z  10 Eliminate x from equations A and C. 2  A 12 x  10 y  48 3  C 12 x  9 z  30  10 y  9 z  18 10 y  9 z  18 D

The system reduces to the identity 0  0 . It has infinitely many solutions.

670


Chapter 5 Review 16. A u  v  2 w  1 B 2v  5 w  2 C 3u  5v  w  1

Eliminate u from equations A and C. 3  A 3u  3v  6 w  3 C 3u  5v  w  1 2v  5w  2 D Solve the systems of equations B and D. B 2v  5 w  2 1  D 2v  5w  2 0 4 The system of equations reduces to a contradiction. There is no solution. 17. Let x represent the number of seats in Section A. Let y represent the number of seats in Section B Let z represent the number of seats in Section C. x  y  z  12,000 A x  y  z  12,000 

B z  x y  0 x y z C 90 x  65 y  40 z  655,000  18 x  13 y  8 z  131,000 Eliminate x and y from equations A and B. x  y  z  12,000 A 1  B  x  y  z  0 2 z  12,000 z  6000 Back substitute. A x  y  z  12,000

18 x  13 y  8 z  131,000

B

18 x  13 y  8  6000  131,000

x  y  6000  12,000

18 x  13 y  48,000  131,000

x  y  6000 D Solve the system of equations D and E. 13  D 13 x  13 y  78,000

18 x  13 y  83,000 E Back substitute. A

x  y  z  12,000

18 x  13 y  83,000 1000  y  6000  12,000 5x  5000 y  5000 1000 x There are 1000 seats in Section A, 5000 in Section B, and 6000 in Section C. E

671


Chapter 5 Systems of Equations and Inequalities 18. Let x represent the amount put in the savings account. Let y represent the amount invested in the bond fund. Let z represent the amount invested in the stock fund. x y A x  y  z  20,000 

z  20,000

B y  2z  y  2z  0 C 0.015 x  0.045 y  0.062 z  942  15 x  45 y  62 z  942,000 Eliminate x from equations A and C. 15  A 15 x  15 y  15 z  300,000 C 15 x  45 y  62 z  942,000 30 y  47 z  642,000 D Solve the systems of equations B and D. 30  B 30 y  60 z  0 D 30 y  47 z  642,000 107 z  642,000 z  6000

y  2z  0

D

y  2  6000  0 y  12,000  0 y  12,000

Back substitute. x  y  z  20,000 A x  12,000  6000  20,000 x  2000 She put $2000 in savings, and invested $12,000 in the bond fund and $6000 in the stock fund. 19.

y  ax 2  bx  c Substitute  1,  4 : 4  a  1  b  1  c  2 Substitute 1, 6 : 6  a 1  b 1  c  2 Substitute  3, 8 : 8  a  3  b  3  c 

A a  b  c  4 B a bc 6 C 9a  3b  c  8

2

Eliminate b from equations A and B and from equations A and C. A a  b  c  4 3  A 3a  3b  3c  12 B a b  c 6 C 9a  3b  c  8 2a  2c  2 12a  4c  4 a c 1 D 3a  c  1 E Solve the system of equations D and E. D a c  1 1  E 3a  c  1 2a  2 a  1 Back substitute. A a  b  c  4 1  b  2  4 b  5 b5

D

a  c 1 1  c  1 c2

y   x2  5x  2

672


Chapter 5 Review y  ax 2  bx  c

20.

Substitute 1,  2 : 2  a 1  b 1  c  2 Substitute  2,1 : 1  a  2  b  2   c  2 Substitute  3,10 : 10  a  3  b  3  c  2

A a  b  c  2 B 4a  2b  c  1 C 9a  3b  c  10

Eliminate c from equations A and B and from equations A and C. A a  b  c  2 A a  b  c  2 1 B 4a  2b  c  1 1 C 9a  3b  c  10 3a  b  3 8a  2b  12 3a  b  3 D 4a  b  6 E Solve the system of equations D and E. D 3a  b  3 1  E 4a  b  6 a  3 a 3

3a  b  3

D

3  3  b  3 9b  3 b  6

Back substitute. A a  b  c  2 3  6  c  2 c 1 y  3x 2  6 x  1 21.

 x  11 A B    x  2 x  1 x  2 x  1

22.

5 x  22 5 x  22 A B    2 x  8 x  16  x  4 x  4  x  4 2

23.

7 x 2  19 x  15 7 x 2  19 x  15 A B C    2 3 2 2 2 x  3x x  2 x  3 x x 2x  3

24.

2 x 2  x  10 2 x 2  x  10 A Bx  C    2 x3  5 x x x 5 x x2  5

25.

2 x3  x 2  8 x  16 2 x3  x 2  8 x  16 Ax  B Cx  D   2  2 x4  5x2  4 x 1 x 4 x2  1 x2  4

26.

2

4 x 4  3x 2  2 x  5

x  2 x  5 x 2  2 3

2



A B C D Ex  F Gx  H     2  2 3 2 x 2 x  5  2 x  5  2 x  5 x 2 x2  2

27. Use long division to divide the numerator by the denominator. Then perform partial fraction decomposition on the expression (remainder/divisor).

673


Chapter 5 Systems of Equations and Inequalities  x  11 A B    x  2 x  1 x  2 x  1

28.

 x  11  B   A     x  2 x  1     x  2 x  1   x  2 x  1 

 x  2 x  1  

 x  11  A  x  1  B  x  2  x  11  Ax  A  Bx  2 B

 x  11   A  B  x    A  2 B  A  B  1 A  B 1

   B  1  2 B  11

3  x  11 4    x  2 x  1 x  2 x  1 29.

A  B  1 A  4  1 A3

 A  2 B  11 B  1  2 B  11 3B  12 B  4

5 x  22 5 x  22 A B    2 x  8 x  16  x  4 x  4  x  4 2 2

 5 x  22   A B  2   x  4    2 2   x  4   x  4  x  4  5 x  22  A  x  4  B

 x  4 2  

5 x  22  Ax  4 A  B 5 x  22   A x   4 A  B  A5

4 A  B  22 4  5  B  22

5 x  22 5 2   x  8 x  16 x  4  x  4 2

B2

2

674


Chapter 5 Review x2 30. 2 x  3x 2 x  7 x  13 x  19 x  15 3

2

4

3

 2 x 4  3x3

2

4 x  13 x 2  4 x3  6 x 2 3

7 x  19 x  15 2

2 x  7 x  13 x  19 x  15 7 x 2  19 x  15    x 2 2 x3  3x 2 2 x3  3x 2 7 x 2  19 x  15 7 x 2  19 x  15 A B C    2 3 2 2 2 x  3x x  2 x  3 x x 2x  3 4

3

2

 7 x 2  19 x  15  C  A B 2 x 2  2 x  3   2   x  2 x  3    2  2 x  3  x x  x  2 x  3  7 x 2  19 x  15  Ax  2 x  3  B  2 x  3  Cx 2 7 x 2  19 x  15  2 Ax 2  3 Ax  2 Bx  3B  Cx 2 7 x 2  19 x  15   2 A  C  x 2   3 A  2 B  x   3B  3B  15 B5

3 A  2 B  19

2A  C  7

3 A  2  5  19

2  3  C  7

3A  9

6C  7

A3

C 1

2 x  7 x  13x  19 x  15 3 5 1  x2  2  3 2 x x 2 x  3x 2x  3 4

31.

3

2

2 x 2  x  10 2 x 2  x  10 A Bx  C    2 x3  5 x x x 5 x x2  5

 2 x 2  x  10   A Bx  C    x x2  5    2 x x2  5    2  x x 5   x x  5 

2 x 2  x  10  A x 2  5   Bx  C  x 2 x  x  10  Ax  5 A  Bx 2  Cx 2

2

2 x 2  x  10   A  B  x 2   C  x   5 A 5 A  10 A  2

C 1

A B  2 2  B  2 B4

2 x 2  x  10 2 4 x  1   x3  5 x x x2  5

675


Chapter 5 Systems of Equations and Inequalities 2 x 3  x 2  8 x  16 2 x 3  x 2  8 x  16 Ax  B Cx  D   2  2 32. x4  5x2  4 x 1 x 4 x2  1 x2  4



 2 x 3  x 2  8 x  16   Ax  B Cx  D    x2  1 x2  4   2  2 x2  1 x2  4   2 2 x  4   x 1  x  1 x  4 







2 x 3  x 2  8 x  16   Ax  B  x 2  4   Cx  D  x 2  1

2 x  x  8 x  16  Ax  4 Ax  Bx  4 B  Cx  Cx  Dx 2  D 3

2

3

2

3

2 x 3  x 2  8 x  16   A  C  x 3   B  D  x 2   4 A  C  x   4 B  D  AC  2 A 2C

4A  C  8

AC  2

4 2  C  C  8

A0  2

8  4C  C  8

A2

3C  0 C0 B  D  1 B  1  D

4 B  D  16

B  D  1

4  1  D   D  16

B  4  1

4  4 D  D  16 3D  12

B  5

D4 2 x 3  x 2  8 x  16 2 x  5 4  2  2 4 2 x  5x  4 x 1 x  4

33. a. A y  x 2  1  y  x 2  1

b. B

x  y  3

x  x 2  1  3

B x  y  3  y  x  3

x  x 2  1  3  x2  x  2  0 x2  x  2  0

 x  1 x  2  0 x  1 or x  2 A y  x 2  1   1  1  1  1  2 2

The solution is  1, 2 .

A y  x 2  1   2  1  4  1  5 2

The solution is  2, 5 .

 1, 2 ,  2, 5

676


Chapter 5 Review 34. a. A y  x  1

x2  y 2  5

b. B

B x2  y 2  5  x2  y 2 

 5

2

x2 

 x  1  5 2

x2  x  1  5 x2  x  6  0

 x  3 x  2  0 x  3 or x  2 A y  x  1  3  1  4 Not real A y  x 1  2 1  1 The solution is  2,1 .

 2,1

2 2  6 x 2  2 y 2  8 35. A 3x  y  4  x 2  2 y 2  36 B x 2  2 y 2  36  28 7 x2 x2  4 x  2 Multiply by 2.

x  2: A

3x 2  y 2  4

x  2 : A

3x 2  y 2  4

3  2  y 2  4

3  2  y 2  4

12  y 2  4

12  y 2  4

 y 2  16

 y 2  16

y 2  16

y 2  16

y  4

y  4

2

2

 2, 4 ,  2,  4 ,  2, 4 ,  2,  4 Multiply by 3. 2  6 x 2  3xy  72 36. A 2 x  xy  24  2 x 2  3xy  9 B x  3xy  9  63 7 x2 2 x  9 x  3

x  3: B

x 2  3xy  9

x  3: B

x 2  3 xy  9

 32  3 3 y  9

 32  3 3 y  9

9  9 y  9

9  9 y  9

9 y  18

9 y  18

y  2

y2

 3,  2 ,  3, 2

677


Chapter 5 Systems of Equations and Inequalities 37. A y 

39. Let x represent one number. Let y represent the other number. x 4 3 A   4 y  3x  y  x y 3 4

8 x

B y x

8 x 8 x x 64 x 2 x x 3  64 x4 B y  x  4  2 A

B x 2  y 2  100

y

B

2

 3 x 2     100  4 9 2 x  100 16 25 2 x  100 16 x 2  64 x  8 3 3 A y  x   8  6 4 4 3 3 A y  x   8  6 4 4 The numbers are 8 and 6 or 8 and 6 . x2 

Check:  4, 2

8 x 8 2ⱨ 4 2 ⱨ 2  true Check:  4,  2 A y

x 2  y 2  100

B y x 2ⱨ 4 2 ⱨ 2  true

8 x 8 2 ⱨ 4 2 ⱨ 2 false 4,  2

40. Let x represent the length of one side. Let y represent the length of the other side. A x  y  12  y   x  12

A y

B x2  y 2  B

 74   x  y  74 2

2

x 2  y 2  74 x 2    x  12  74 2

38. Let x represent one number. Let y represent the other number. A x 2  y 2  97 B x 2  y 2  65 2 x2  162 x 2  81 x  9

x 2  x 2  24 x  144  74 2 x 2  24 x  70  0 x 2  12 x  35  0

 x  5 x  7  0 A

Both numbers must be negative. x  9 : A x 2  y 2  97

x  5 or x  7 y   x  12  5  12  7

A y   x  12  7  12  5 The legs are 5 ft and 7 ft.

 9 2  y 2  97 81  y 2  97 y 2  16 y  4 The numbers are 9 and 4 .

678

2


Chapter 5 Review 41. Let x represent the length. Let y represent the width. A xy  288

3  0  4  0  8 ? ?

0  8 false The points on the side of the line not containing (0, 0) are solutions.

B 2 x  2 y  72  x  y  36  y   x  36 xy  288

A

3x  4 y  8

Test (0, 0):

x   x  36  288  x  36 x  288  0 2

x 2  36 x  288  0

 x  12 x  24  0 A

x  12 or x  24 y   x  36  12  36  24

A y   x  36  24  36  12 The sign is 12 ft by 24 ft. y   x  4 43. a. y   x  4  related 2

42. a. 3x  4 y  8  3x  4 y  8 related

equation

equation

The equation represents a parabola opening upward with vertex  4, 0 .The inequality is strict, so draw the parabola as a dashed curve. 2 Test (0, 0): y   x  4

y-intercept: 3  0  4 y  8

x-intercept: 3 x  4  0  8

2

4y  8 3x  8 y2 8 x 3 The inequality symbol  allows for equality, so draw the line as a solid line. Test (0, 0): 3x  4 y  8

0   0  4 ?

2

?

0  16  true The points on the side of the parabola containing (0, 0) are solutions.

3  0  4  0  8 ? ?

0  8  true The points on the side of the line containing (0, 0) are solutions.

y   x  4 b. y   x  4  related 2

2

equation

The equation represents a parabola opening upward with vertex  4, 0 .The inequality symbol  allows for equality, so draw the parabola as a solid curve.

b. 3x  4 y  8  3x  4 y  8 related equation

The inequality is strict, so draw the line as a dashed line.

679


Chapter 5 Systems of Equations and Inequalities Test (0, 0):

y   x  4

2

0   0  4

2

?

45. x  3.5 The related equation x  3.5 is a vertical line. The inequality x  3.5 represents all points to the left or on the line x  3.5 . The inequality symbol  allows for equality, so draw the line as a solid line.

?

0  16 false The points on the side of the parabola not containing (0, 0) are solutions.

44. 5  x  y   8 x  15  5  x  y   8 x  15 related

3 y 1 4 2 3  y3 2 y  2 The related equation y  2 is a horizontal line. The inequality y  2 represents all points strictly above the line y  2 . The inequality is strict, so draw the line as a dashed line.

46. 

equation

5  x  y   8 x  15 5 x  5 y  8 x  15 5 y  3 x  15 3 y   x3 5 The inequality symbol  allows for equality, so draw the line as a solid line. Test (0, 0): 5  x  y   8 x  15 5  0  0  8  0  15 ? ?

0  15 false The points on the side of the line not containing (0, 0) are solutions.

680


Chapter 5 Review 47. x 2   y  2  4  x 2   y  2  4 related 2

0  2 1  4 ?

equation

The equation represents a circle centered at  0,  2 with radius 2. The inequality is strict, so draw the circle as a dashed curve. 2 Test (0, 1) : x 2   y  2  4

?

2  4  true 3x  4 y  6 3  0  4 1  6 ? ?

4  6 false No, the ordered pair is not a solution to the system.

 0   1  2  4 2

x  2y  4

49. a.

2

2 ?

?

1  4  true The test point inside the circle satisfies the inequality. The solution set consists of the points strictly inside the circle.

x  2y  4

b.

1  2  4  4 ? ?

7  4  true 3x  4 y  6 3 1  4  4  6 ? ?

19  6  true Yes, the ordered pair is a solution to the system. 1 1 x  1  y  x 1 related 2 2 equation The inequality is strict, so draw the line as a dashed line. 1 Test (0, 0): y  x 1 2 ? 1 0   0  1 2

50. y  48. y  2  y 2 related equation

The related equation y  2 represents two horizontal lines, y  2 and y  2 . The inequality is strict, so draw the lines as dashed lines. Test (0, 0): y 2

?

0  1 false The points on the side of the line not containing (0, 0) are solutions. 3x  2 y  4  3x  2 y  4 related

?

0 2 ?

0  2 false The test point does not satisfy the inequality. The solution set consists of all points strictly outside the lines y  2 and y  2 .

equation

y-intercept: x-intercept: 3  0  2 y  4 3 x  2  0  4 3x  4 2y  4 4 y2 x 3 The inequality is strict, so draw the line as a dashed line. Test (0, 0): 3x  2 y  4 3  0  2  0  4 ? ?

0  4  true The points on the side of the line containing (0, 0) are solutions.

681


Chapter 5 Systems of Equations and Inequalities Find the point of intersection. 3x  2 y  4 1  3x  2  x  1  4 2  3x  x  2  4 4x  2 1 x 2 1 1  1 5 y  x 1    1    2 2 2 4 1 5 Graph  ,  as an open dot. It is not a  2 4 solution to either inequality.

The test point does not satisfy the inequality. The solution set consists of the points outside or on the circle.

y  x2  3 52. y  x 2  3  related equation

The equation represents a parabola opening upward with vertex  0, 3 . The inequality symbol  allows for equality, so draw the parabola as a solid curve. Test (0, 0): y  x2  3 0   0  3 ?

2

?

0  3  true The test point satisfies the inequality. The solution set consists of the points above or on the parabola. y 1 The related equation y  1 is a horizontal line. The inequality y  1 represents all points above the line y  1 . The inequality is strict, so draw the line as a dashed line. x  y  3  x y 3 related

51. x 2  y 2  9  x2  y 2  9 related equation

The equation represents a circle centered at  0, 0 with radius 3. The inequality symbol  allows for equality, so draw the circle as a solid curve. Test (0, 0): x2  y 2  9

 0 2   0 2  9 ?

equation

The inequality symbol  allows for equality, so draw the line as a solid line. Test (0, 0): x y3

?

0  9  true The test point satisfies the inequality. The solution set consists of the points inside or on the circle.

?

00 3

 x  12  y 2  4   x  1 2  y 2  4 related

?

0  3  true The points on the side of the line containing (0, 0) are solutions. Find the points of intersection between y  x 2  3 and x  y  3 : x y 3 x  x2  3  3 x2  x  6  0  x  3 x  2  0

equation

The equation represents a circle centered at 1, 0 with radius 2. The inequality symbol  allows for equality, so draw the circle as a solid curve. Test (0, 0):  x  1 2  y 2  4

 0  1 2   02  4 ? ?

1  4 false 682


Chapter 5 Review x  3 or x  2

The equation represents a parabola opening downward with vertex  0,1 . The inequality is strict, so draw the parabola as a dashed curve. y   x2  1 Test (0, 0):

y  x  3   3  3  9  3  6 2

2

y  x 2  3   2  3  4  3  1 2

The solutions are  3, 6 and  2,1 . Find the points of intersection between y  x 2  3 and y  1 :

0    0  1 ?

2

?

0   1 false The test point does not satisfy the inequality. The solution set consists of the points below the curve. The solution sets do not overlap. The solution set of the system is the empty set,  .

y  x2  3 1  x2  3 4  x2 2  x y 1 The solutions are  2,1 and  2,1 .

The point  2,1 is a point of intersection of all three equations. Test it in y  1 : y  1

54. a. x  y  12

b. y  2 x

c. x  0

d. y  0

e. The inequalities x  0 and y  0 together represent the set of points in the first quadrant, including the bounding axes. x  y  12  x  y  12 related

?

1  1 false The point  2,1 does not satisfy y  1 , so

plot it as an open dot. Plot  3, 6 as a

closed dot, and plot  2,1 as an open dot.

equation

Test (0, 0):

x  y  12 ?

0  0  12 ?

0  12  true The inequality x  y  12 represents the set of points on and below the line x  y  12 . y  2 x  y  2x related equation

Test (1, 4):

y  2x 4  2 1 ?

y  ex 53. y  e x  related

?

4  2  true The inequality y  2 x represents the set of points on and above the line y  2 x .

equation

The equation represents the parent natural exponential function. The inequality is strict, so draw the function as a dashed curve. Test (0, 0): y  ex ?

0  e0 ?

0  1 false The test point does not satisfy the inequality. The solution set consists of the points above the curve. y   x 2  1  y   x2  1 related equation

683


Chapter 5 Systems of Equations and Inequalities 55. z  24 x  20 y 56. a. z  36 x  50 y

at  0, 0 z  36  0  50  0

at  0,18 z  36  0  50 18  900

at 10,14 z  36 10  50 14 at 16,10

 360  700  1060 z  36 16  50 10

 576  500  1076 at 18, 0 z  36 18  50  0  648 The values x  16 and y  10 produce the maximum value of the objective function.

b. z  55 x  40 y

at  4,10 z  55  4  40 10  220  400  620 at  0,18 z  55  0  40 18  720

b. Maximum value: 1076

at 12, 0 z  55 12  40  0  660 The values x  4 and y  10 produce the minimum value of the objective function.

57. a. Bounding lines: x0, y 0, 2 x  y  18 , 5 x  4 y  60 Find the points of intersection between pairs of bounding lines. 5 x  4 y  60

c. Minimum value: 620 58. a. Let x represent the number of scoops of brand A powder. Let y represent the number of acres of brand B powder. Fiber: z  10 x  8 y Constraints: x  0 , y  0 , x  y  180 , 3x  2 y  480 ; 3x  4 y  696 Find the points of intersection between pairs of bounding lines. x  0, y  0  0, 0

5 x  4  2 x  18  60 5 x  8 x  72  60 3 x  12 2 x  y  18

x4

2  4  y  18 8  y  18 y  10

 4,10

3x  4 y  696

2 x  y  18 2  0  y  18 y  18

3  0  4 y  696 4 y  696

 0,18

y  174

5 x  4 y  60

3x  2 y  480

5 x  4  0  60 5 x  60 x  12

 0,174

3x  2   x  180  480 3x  2 x  360  480

12, 0

x  y  180 120  y  180 y  60

684

x  120

120, 60


Chapter 5 Test at  24, 156 z  10  24  8 156

3 x  4 y  696 3x  4   x  180  696

 240  1248  1488 at 160, 0 z  10 160  8  0  1600 She should use 120 scoops of brand A and 60 scoops of brand B.

3 x  4 x  720  696  x  24 x  24

x  y  180

b. The maximum amount of fiber is 1680 g.

24  y  180

c. z  8 x  10 y

 24, 156

y  156

at  0, 0 z  8  0  10  0  0

at  0,174 z  8  0  10 174  1740

3 x  2 y  480 3x  2  0  480 3 x  480 x  160

at 120, 60 z  8 120  10  60

 960  600  1560 at  24, 156 z  8  24  10 156

160, 0

 192  1560  1752 at 160, 0 z  8 160  10  0  1280 In this case, 24 scoops of brand A and 156 scoops of brand B should be used.

z  10 x  8 y at  0, 0 z  10  0  8  0  0

at  0,174 z  10  0  8 174  1392 at 120, 60 z  10 120  8  60

 1200  480  1680

Chapter 5 Test 1. a.

x  5 y  3

2 x  3 y  z  5

2. a.

 7  5  2 ⱨ 3

2  0  3 1   2 ⱨ 5

7  10 ⱨ 3

0  3  2 ⱨ 5

3 ⱨ 3  true y  2 x  12

5 ⱨ 5  true 5 x  y  3 z  18

 2 ⱨ 2  7  12

5  0  1  3  2 ⱨ 18 0  1  6 ⱨ 18

2 ⱨ14  12

7 ⱨ 18 false

2 ⱨ 2  true Yes b.

No

x  5 y  3

b.

 3  5  0 ⱨ 3

2 x  3 y  z  5 2  3  3  0  1 ⱨ 5

3 ⱨ 3  true y  2 x  12

6  0  1ⱨ 5 5 ⱨ 5  true 5 x  y  3 z  18

 0 ⱨ 2  3  12

5  3  0  3 1 ⱨ 18

0 ⱨ 6  12

15  0  3 ⱨ 18

0 ⱨ 18 false No

18 ⱨ 18  true

685


Chapter 5 Systems of Equations and Inequalities  x  2 y  5z  8

5. 0.2 x  0.35 y  2.5

 20 x  35 y  250

  3  2  0  5 1 ⱨ 8

0.16 x  0.5 y  5.8

 16 x  50 y  580

3  0  5ⱨ8

5 20 x  35 y 250   4x 7 y  50  4 16 x  50 y  580   4  12.5 x y 145  19.5 y 195 y  10

8 ⱨ 8  true Yes 3. a.

2x  4 y  9 ?

20 x  35 y  250

?

20 x  35 10  250

2  6  4 1  9 16  9  true 3 x  y  4

20 x  350  250

3  6  1  4 ?

20 x  100

?

x5

19  4  true Yes, the ordered pair is a solution to the system. b.

 5,10

2 3 y 5 10 2 3 x y 5 10

6. x 

2x  4 y  9 2 1  4  4  9 ? ?

3 2 10 x  4 y  3

14  9  true 3x  y  4

5x  2 y 

3 1  4  4 ?

3 2 10  y    4 y  3 5 10 

?

1  4 false No, the ordered pair is not a solution to the system.

4 y  3  4 y3 33  x, y  |10 x  4 y  3

4. x  5  4 y

3x  7 y  4 3  5  4 y   7 y  4 15  12 y  7 y  4 19 y  19 y 1

7. 7  x  y   3  5 y

4  3x  y   2 x

7x  7 y  3  5y 7x  2 y  3

12 x  4 y  2 x 14 x  4 y  0

 2 7 x  2 y  3   14 x  4 y  6 14 x  4 y  0 14 x  4 y  0 0  6

x  5  4 y  5  4 1  5  4  1

1,1

  ; The system is inconsistent.

686


Chapter 5 Test 8. A a  6b  3c  14 B 2a  b  2c  8 C 3a  2b  c  8 Eliminate a from equations A and B. and from equations A and C. 2  A 2a  12b  6c  28 B 2a  b  2c  8  11b  8c  20 D

3 A C

B

3  5  2 z  9 15  2 z  9 2 z  6 z3 Back substitute. A x  4 z  10 x  4  3  10

3a  18b  9c  42 3a  2b  c  8 20b  10c  50 2b  c  5 E

x  12  10 x  2

2b  c  5 2  4  c  5

Solve the systems of equations B and D. B x  3y  2 D  x  3 y  4 0  2 The system of equations reduces to a contradiction. There is no solution.

8  c  5 c3 Back substitute. A a  6b  3c  14 a  6  4  3  3  14

 2, 5, 3

10. A 2 x  y  z  3  2 B x  3y C x  2 y  z  7 Eliminate z from equations A and C. 1  A 2 x  y  z  3 C x  2 y  z  7 x  3y  4 D

Solve the systems of equations D and E. D 11b  8c  20 8  E 16b  8c  40  20 5b b  4

E

3y  2z  9

1,  4, 3

a  24  9  14 a 1

11. A

 x  42  y 2  25

B x  y  3 x  y 3

9. A x  4 z  10 B 3y  2z  9 C 2x  5 y  21 Eliminate x from equations A and C. 2  A 2 x  8 z  20 C 2x  5 y  21 5 y  8z  1 D

A

 x  4 2  y 2  25  y  3  4 2  y 2  25  y  1 2  y 2  25 y 2  2 y  1  y 2  25 2 y 2  2 y  24  0 y 2  y  12  0

 y  3 y  4  0

Solve the systems of equations B and D. 4  B 12 y  8 z  36 D 5 y  8z  1 7 y  35 y 5

y  3 or y  4 B x  y  3  3  3  0 B x  y3 43 7

 0, 3 ,  7, 4 687


Chapter 5 Systems of Equations and Inequalities 2 2  10 x 2  2 y 2  28 12. A 5 x  y  14  x 2  2 y 2  17 B x 2  2 y 2  17  11 11x 2 2 x  1 x  1 Multiply by 2.

x  1: A

5x 2  y 2  14

x  1: A

5x 2  y 2  14

5 1  y 2  14

5  1  y 2  14

5  y 2  14

5  y 2  14

y2  9 y  3

y2  9 y  3

2

2

1, 3 , 1, 3 ,  1, 3 ,  1, 3

Multiply by 3. 2  6 xy  3 y 2  72 13. A 2 xy  y  24  2 Multiply by 2. B 3 xy  2 y 2  38   6 xy  4 y  76 y2  4 y  2

y  2: A

2 xy  y 2  24

y  2 : A

2 xy  y 2  24

2 x  2    2   24

2 x  2    2   24

4 x  4  24 4 x  20 x  5

4 x  4  24 4 x  20 x5

2

2

 5,  2 ,  5, 2

1 1 and v  . x3 y 1 1 2 A   7  u  2v  7  u  2v  7 x  3 y 1 3 1 B   7  3u  v  7 x  3 y 1

14. Let u 

B

3u  v  7 3  2v  7   v  7

6v  21  v  7 7v  28 v4 1 1 u , so 1 x3 x3 x 31 x  2

A u  2v  7  2  4   7  1

v

1 , so y 1

1 y 1 4y  4  1 4y  5 4

y

688

5 4

 5   2,    4  


Chapter 5 Test 15. Let x represent the number of pounds of 100% peanuts. Let y represent the number of pounds of 45% peanuts. 100% Peanuts

45% Peanuts

56% Peanuts

Amount of mixture

x

y

20

Peanuts

x

0.45y

0.56  20  11.2

 100  100 x  100 y  2000 x y  20 x  y  20   100 100 x  45 y  1120 x  0.45 y  11.2   100 x  45 y  1120 55 y  880 16 y x  y  20 x  16  20 x4

The manager should mix 4 lb of peanuts with 16 lb of the 45% mixture. 16. Let x represent the speed of one runner. Let y represent the speed of the other runner. Distance (m) Opposite direction

400

Rate (m/sec) x y

Same direction

400

x y

d  rt

400   x  y   40 10  x  y

x  y  10 x y 2 2 x  12 x 6

Time (sec)

40 200

400   x  y   200 2 x y

x  y  10 6  y  10 y4

One runner runs 6 m / sec and the other runs 4 m/sec. 17. Let x represent the amount invested in the first stock. Let y represent the amount invested in the second stock. Let z represent the amount invested in the third stock. x y A x  y  z  15,000 

z  15,000

B  0.08 x  0.032 y  0.058 z  274  80 x  32 y  58 z  274,000 C y  z  2000  2000 y z Eliminate x from equations A and B. 80  A 80 x  80 y  80 z  1,200,000 B 80 x  32 y  58 z  274,000 112 y  138 z  1,474,000 D

689


Chapter 5 Systems of Equations and Inequalities Solve the systems of equations C and D. 138  C 138 y  138 z  276,000 D 112 y  138 z  1,474,000 250 y  1,750,000 y 7000

D

y  z  2000 7000  z  2000  z  5000 z  5000

Back substitute. A x  y  z  15,000 x  7000  5000  15,000 x  3000 Dylan invested $3000 in the risky stock, $7000 in the second stock, and $5000 in the third stock. 18. Let x represent one number. Let y represent the other number. A x  y  3 x  y 3

B x 2  y 2  33 x 2  y 2  33

B

A

x  y3 43 7

 y  3  y 2  33 2

y 2  6 y  9  y 2  33 6 y  24 y4 The numbers are 7 and 4. 19. Let x represent the length. Let y represent the width. A xy  1452

B 2 x  2 y  154  x  y  77  y   x  77 xy  1452

A

x   x  77   1452  x  77 x  1452  0 2

x 2  77 x  1452  0

 x  44 x  33  0 x  44 or x  33 A

y   x  77  44  77  33

A

y   x  77  33  77  44

The screen is 44 in. by 33 in.

690


Chapter 5 Test y  ax 2  bx  c

20.

Substitute 1, 1 : 1  a 1  b 1  c  2 Substitute  2, 1 : 1  a  2  b  2  c  2 Substitute  1, 7  : 7  a  1  b  1  c 

A a  b  c  1 B 4a  2b  c  1 C a bc 7

2

Eliminate c from equations A and B and from equations A and C. a  b  c  1 A A a  b  c  1 1 B 4a  2b  c  1 1 C  a  b  c  7 3a  b  2 2b  8 b  4 3a  b  2 D Back substitute. D 3a  b  2

A

a  b  c  1 2  4  c  1

3a  4  2 3a  6

c 1

a2 y  2x  4x  1 2

21.

22.

23.

15 x  15 15 x  15 A B    3x 2  x  2  x  1 3 x  2 x  1 3 x  2 5 x 6  3x5  4 x3  x  3

x 3  x  3 x 2  5 x  1

2

A B C D Ex  F Gx  H  2 3  2  3 x x x  x  3 x  5x  1 x2  5x  1 2

12 x  29 12 x  29 A B    2 x 2  11x  15  x  3 2 x  5 x  3 2 x  5 

12 x  29  B   A     x  3 2 x  5       5  3 2 5 3 2 x x x x    

 x  3 2 x  5  

12 x  29  A  2 x  5  B  x  3 12 x  29  2 Ax  5 A  Bx  3B

12 x  29   2 A  B  x   5 A  3B  2 A  B  12 B  2 A  12

5 A  3B  29

2 A  B  12

5 A  3  2 A  12  29

2  7   B  12

5 A  6 A  36  29 A  7

14  B  12

12 x  29 7 2   2 x 2  11x  15 x  3 2 x  5

A  7

691

B2


Chapter 5 Systems of Equations and Inequalities

24.

6x  8 6x  8 A B    2 x  4 x  4  x  2 x  2  x  2 2 2

 6x  8   A B  2  x  2       2 2   x  2   x  2  x  2 

 x  2 2  

6 x  8  A  x  2  B 6 x  8  Ax  2 A  B

6 x  8   A x   2 A  B 

A6

2A  B  8 2  6  B  8 12  B  8

6x  8 6 4   2 x  4 x  4 x  2  x  2 2

B  4

x2 25. x  4 x x  6 x  4 x  20 x  32 3

2

4

3

 x 4  4 x3

2

 2 x  4 x2  2 x 3  8 x 2 3

 4 x  20 x  32 2

x 4  6 x 3  4 x 2  20 x  32 4 x 2  20 x  32 x    2 x3  4 x 2 x3  4 x 2 2 2 4 x  20 x  32 4 x  20 x  32 A B C    2 3 2 2 x  4x x  x  4 x x x4  4 x 2  20 x  32  C  A B 2 x  x  4     x  x  4    2  2 x  x  4  x  4  x x  4 x 2  20 x  32  Ax  x  4  B  x  4  Cx 2 2

4 x 2  20 x  32  Ax 2  4 Ax  Bx  4 B  Cx 2 4 x 2  20 x  32   A  C  x 2   4 A  B  x   4 B  4 B  32 B8

4 A  B  20

A  C  4

4 A  8  20 4 A  12

3  C  4 C  1

A  3 3 8 1 x 4  6 x 3  4 x 2  20 x  32  x2  2 3 2 x  4x x x x4

692


Chapter 5 Test x 2  2 x  21 x 2  2 x  21 A Bx  C    2 26. x3  7 x x x 7 x x2  7

 x 2  2 x  21  A Bx  C    x x2  7    2 x x2  7    2  x x 7   x x  7 

x 2  2 x  21  A x 2  7   Bx  C  x x  2 x  21  Ax  7 A  Bx 2  Cx 2

2

x 2  2 x  21   A  B  x 2   C  x   7 A A B 1

C  2

7 A  21 A  3

3  B  1 B4

x 2  2 x  21 3 4 x  2   x3  7 x x x2  7 27.

7 x 3  4 x 2  63x  15 7 x 3  4 x 2  63 x  15 Ax  B Cx  D   2  2 x 4  11x 2  18 x 2 x 9 x2  2 x2  9



 B Cx  D    x  2 x  9   7 x x 4x2 x63x 9 15    x  2 x  9   Ax x 2 x  9       7 x  4 x  63 x  15   Ax  B   x  9   Cx  D   x  2 2

2

3

2

2

3

2

2

2

2

2

2

2

2

7 x 3  4 x 2  63 x  15  Ax 3  9 Ax  Bx 2  9 B  Cx3  2Cx  Dx 2  2 D 7 x 3  4 x 2  63 x  15   A  C  x 3   B  D  x 2   9 A  2C  x   9 B  2 D  AC  7 A 7C

9 A  2C  63

AC  7

9  7  C   2C  63

A0  7

63  9C  2C  63

A7

7C  0 C0 BD4 B  4D

9 B  2 D  15

BD4

9  4  D   2 D  15

B3 4

36  9 D  2 D  15

B 1

7 D  21 D3 7 x 3  4 x 2  63x  15 7 x  1 3  2  2 4 2 x  11x  18 x 2 x 9

693


Chapter 5 Systems of Equations and Inequalities 28. 2  x  y   6  y  2 x  y  6  y related

30. x  4  x 4 related

equation

equation

2 x  y  6  y 2x  2 y  6  y 3 y  2 x  6 2 y   x2 3 The inequality is strict, so draw the line as a dashed line. Test (0, 0): 2 x  y  6  y

The related equation x  4 represents two vertical lines, x  4 and x  4 . The inequality is strict, so draw the lines as dashed lines. Test (0, 0): x 4 ?

0  4  true The test point satisfies the inequality. The solution set consists of all points inside the lines x  4 and x  4 .

2  0  0  6  0 ? ?

0  6 false The points on the side of the line not containing (0, 0) are solutions.

31. x  y  4  x  y  4 or y   x  4 related equation

The inequality symbol  allows for equality, so draw the line as a solid line. x y4 Test (0, 0):

29.  x  3  y 2  9   x  3  y 2  9 related 2

2

?

00 4

equation

?

0  4  true The points on the side of the line containing (0, 0) are solutions. 2 x  y  2  2 x  y  2 or y  2 x  2 related

The equation represents a circle centered at  3, 0 with radius 3. The inequality symbol  allows for equality, so draw the circle as a solid curve. Test (1, 1):  x  32  y 2  9

equation

The inequality is strict, so draw the line as a dashed line. 2 x  y  2 Test (0, 0):

1  3 2  1 2  9 ? ?

17  9  true The test point satisfies the inequality. The solution set consists of the points outside or on the circle.

2  0  0   2 ? ?

0   2  true The points on the side of the line containing (0, 0) are solutions. Find the point of intersection.  x  4  2x  2 3x  2 2 x 3 2 10 y  x  4    4  3 3 694


Chapter 5 Test  2 10  Graph  ,  as an open dot. It is not a 3 3 solution to first inequality.

Find the points of intersection between y   x 2  5 and x  y  3 : x y 3

x   x2  5  3  x2  x  5  3 x2  x  2  0

 x  1 x  2  0 x  1 or x  2 y   x 2  5    1  5  1  5  4 2

y   x 2  5    2  5  4  5  1 2

The solutions are  1, 4 and  2,1 . Find the points of intersection between y   x 2  5 and y  1 :

y  x  5 32. y   x  5  related 2

2

equation

The equation represents a parabola opening downward with vertex  0, 5 . The inequality symbol  allows for equality, so draw the parabola as a solid curve. Test (0, 0): y   x 2  5

y   x2  5 1   x2  5 x2  4 x  2 y 1

?

0   02  5

The solutions are  2,1 and  2,1 .

?

0  5  true The test point satisfies the inequality. The solution set consists of the points below or on the parabola. y 1 The related equation y  1 is a horizontal line. The inequality y  1 represents all points above the line y  1 . The inequality is strict, so draw the line as a dashed line. x  y  3  x y 3 related

The point  2,1 is a point of intersection of all three equations. Test it in y  1 : y  1 ?

1  1 false The point  2,1 does not satisfy y  1 , so

plot it as an open dot. Plot  1, 4 as a closed dot, and plot  2,1 as an open dot.

equation

The inequality symbol  allows for equality, so draw the line as a solid line. Test (0, 0): x  y  3 ?

00 3 ?

0  3  true The points on the side of the line containing (0, 0) are solutions.

695


Chapter 5 Systems of Equations and Inequalities 33. z  2.4 x  0.55 y

b. z  600 x  850 y

at  0, 0 z  600  0  850  0  0

34. a. z  4 x  5 y

at 12, 36 z  600 12  850  36

at  2, 8 z  4  2  5  8  8  40  48

 7200  30,600  37,800

at  6,14 z  4  6  5 14  24  70  94

at  48, 0 z  600  48  850  0  28,800 The values x  12 and y  36 produce the maximum value of the objective function. c. Maximum value: 37,800

at 12, 6 z  4 12  5  6  48  30  78

at 10, 2 z  4 10  5  2  40  10  50 The values x  2 and y  8 produce the minimum value of the objective function. b. Minimum value: 48

36. a. Let x represent the number of scoops of the whey powder. Let y represent the number of acres of the soy powder. Protein: z  20 x  18 y Constraints: x  0 , y  0 , x  y  60 , 3x  2 y  150 ; 3 x  4 y  216 Find the points of intersection between pairs of bounding lines. x  0, y  0  0, 0 3x  4 y  216

35. a. Bounding lines: x  0 , y  0 , x  y  48 , y  3x Find the points of intersection between pairs of bounding lines. y  3x y  3  0 y0  0, 0

x  y  48 x  3x  48 4 x  48 x  12 y  3x  3 12  36 x  y  48 x  0  48 x  48

3  0  4 y  216 4 y  216 y  54

12, 36

 0, 54

3x  2 y  150 3x  2   x  60  150

 48, 0

3 x  2 x  120  150 x  30 x  y  60 30  y  60 y  30

 30, 30

3x  4 y  216 3x  4   x  60  216 3x  4 x  240  216  x  24 x  24 x  y  60 24  y  60 y  36

696

 24, 36


Chapter 5 Cumulative Review 3x  2 y  150

b. The maximum protein content is 1140 g.

3x  2  0  150

c. z  18 x  20 y

3 x  150 x  50

at  0, 0 z  18  0  20  0  0

 50, 0

at  0, 54 z  18  0  20  54  1080

at  30, 30 z  18  30   20  30 

z  20 x  18 y at  0, 0 z  20  0  18  0  0

 540  600  1140 at  24, 36 z  18  24   20  36 

at  0, 54 z  20  0  18  54  972

at  30, 30 z  20  30   18  30 

 432  720

 600  540

 1152 at  50, 0 z  18  50  20  0  900 In this case, 24 scoops of whey protein should be mixed with 36 scoops of soy protein.

 1140 at  24, 36 z  20  24   18  36   480  648  1128 at  50, 0 z  20  50  18  0  1000 30 scoops of each type of protein powder should be mixed to maximize protein content.

Chapter 5 Cumulative Review Exercises 2 x  x  2  5 x  7

1.

2 x2  4 x  5x  7  0

 u  5 u  12  0

 12  4  2 7 1  57  2  2 4

u  5 or

1  57     4  2.

 4,  i

2t  8  t  4 2t  8  t  4 2t  8  t 2  8t  16 0  t 2  6t  8 0   t  4 t  2

 2,  4

Let u  x  4 . u 2  7u  60  0

2x  x  7  0

  1 

2

2

2

x

3. x 2  4  7 x 2  4  60  0

t  4 or t  2

697

u  12

x 2  4  5

x 2  4  12

x 2  1 x  i

x 2  16 x  4


Chapter 5 Systems of Equations and Inequalities log 2  x  4  log 2  x  1  3

4.

The expression is undefined for x  2 . This is a boundary point. The related equation has no real zeros.

log 2  x  4  log 2  x  1  3  x  4 3 log 2   x  1 

x4  23 x 1 x4 8 x 1 x  4  8  x  1

Sign of  x  2 :

: 

Sign of

6

 x  2

2

The solution set is  , 2 .

x  4  8x  8 12  7 x 12  x 7

7. 3 x  2  1  8

3 x2 9 x2 3 x  2  3 or x  2  3 x  5 or x 1  ,  5  1,     

Check: log 2  x  4  log 2  x  1  3  12   12  log 2    4 ⱨ log 2    1  3  7   7   40   5 log 2     3 ⱨ log 2     3  7  7

8.

5 x  17 5 x  17 A B    2 2 x  6 x  9  x  3 x  3  x  3 2  5 x 17   A B  2  x  3    2   2   x  3   x  3  x  3  5 x 17  A  x  3  B

 x  32  

undefined

undefined 12   ; The value  does not check. 7 2 x 1 5. 50e  2000

5 x 17  Ax  3 A  B

e 2 x1  40 2 x  1  ln 40 2 x  1  ln 40 1  ln 40 x 2  1  ln 40    2   6.

Sign of 6:

A  5

5 x 17   A x   3 A  B  3 A  B  17 3  5  B  17 15  B  17

5 x  17 5 2   2 x  6 x  9 x  3  x  3 2

x4 1 x2 x4 1  0 x2 x4 x2  1 0 x2 x2 x4 x2 0 x2 6 0 x2

B2

9. a.  f  g  x   f  g  x  

 2  g  x  3  g  x 2

 2  5 x  1  3  5 x  1 2

 2 25 x 2  10 x  1  15 x  3  50 x  20 x  2  15 x  3 2

 50 x 2  5 x  1

698


Chapter 5 Cumulative Review b.  g  f  x   g  f  x  

14.

 5 2 x 2  3x  1  10 x 2  15 x  1 10.

f  x  3 x  2

f  x    x  1 x3  x 2  9 x  9

y  3 x2

Find the zeros of the quotient. 1 1 1 9 9 1 0 9 1 0 9 0

x 3 y2 x3  y  2 y  x3  2 f 1  x   x3  2 11. log 5 256 

Factors of 9 1,  3,  9   1,  3,  9 Factors of 1 1 1 1 2 10 18 9 1 1 9 9 1 1 9 9 0

  0   x  1  x  9

f  x    x  1 x 2  9 2

2

log 256  3.4454 log 5

2

x  1, x  3i The zeros are 3i (multiplicity 1), 3i (multiplicity 1),and 1 (multiplicity 1.

1 12. f  x    x 3  4 x 2  2 2 1 3 1 11 2 f 1   1  4 1  2    4  2  2 2 2 1 3 2 f  3    3  4  3  2 2 27 49    36  2  2 2 f  x2   f  x1  Average rate of change  x2  x1

15. a. The graph of f  x   2 x  1  3 is the

graph of f  x   x shifted to the right 1 unit, stretched vertically by a factor of 2, and shifted downward 3 units.

49 11 38  f  3  f 1 19   2 2  2  3 1 2 2 2 13. x  3 y  6

3y  x  6 1 y   x2 3 1 The slope is  . The slope of a 3 1  1 perpendicular line is      3 .  3 y  y1  m  x  x1 

b. Domain:  ,   c. Range:  3,  

y   1  3  x  2 y  1  3x  6 y  3x  7

699


Chapter 5 Systems of Equations and Inequalities 16. a. The graph of f  x   ln  x  3 is the

Test for symmetry: 2 2 f   x      x    x  1  x  2

graph of f  x   ln x shifted to the right 3 units.

  x 2   x  1  x  2

2

f  x  is neither even nor odd.

b. Domain:  3,   b. Domain:  ,  

c. Range:  ,   17. a. f  x    x 2  x  1 x  2

c. Range:  ,  

2

The leading term is  x 2  x  x    x5 . The end behavior is up to the left and down to the right. 2 2 f  0    0  0  1 0  2  0

18. 3x  5 y  1

2

3  3x  5  x  4  1 5  3x  3 x  20  1 0  21 contradiction

The y-intercept is  0, 0 . The zeros of the function are 0 (multiplicity 2), 1 multiplicity 1, and 2 (multiplicity 2).



19. A 5a  2b  3c  10 B 3a  b  2c  7 a  4b  4c  3 C Eliminate b from equations A and B.

A 5a  2b  3c  10 5a  2b  3c  10 Multiply by 2 B 3a  b  2c  7  6a  2b  4c  14 a  c  4 D Eliminate b from equations B and C. Multiply by  4 B 3a  b  2c  7   12a  4b  8c  28 C a  4b  4c  3 a  4b  4c  3 13a  4c  25 E

700


Chapter 5 Cumulative Review Solve the systems of equations D and E. Multiply by 4 4a  4c  16 D  a  c  4  E 13a  4c  25 13a  4c  25  9a 9 a 1 Back substitute. C a  4b  4c  3 D  a  c  4 1  4b  4  3  3

1  c  4 c  3 c3

4b  8 b2

1, 2, 3 Multiply by 2. 2 2  4 x 2  6 y 2  20 20. A 2 x  3 y  10  2 2 Multiply by 3. B 5 x 2  2 y 2  13   15 x  6 y  39 2 19 x  19 x2  1 x  1

x  1: A

 2 x 2  3 y 2  10

x  1: A

 2 x 2  3 y 2  10

2 1  3 y 2  10

2  1  3 y 2  10

2  3 y 2  10

2  3 y 2  10

3 y 2  12

3 y 2  12

y2  4 y  2

y2  4 y  2

2

2

1, 2 , 1,  2 ,  1, 2 ,  1,  2

21. 3x  y  1  3x  y  1 related

The points on the side of the line containing (0, 0) are solutions. x  2 y  4  x  2y  4 related

equation

3x  y  1  y  3 x  1 y  3x  1 The inequality symbol  allows for equality, so draw the line as a solid line. Test (0, 0): 3x  y  1

equation

x-intercept: x  2  0  4

y-intercept: 0  2y  4 2y  4 x4 y2 The inequality is strict, so draw the line as a dashed line.

3  0  0  1 ? ?

0  1  true 701


Chapter 5 Systems of Equations and Inequalities Test (0, 0):

x  2y  4 23.

0  2  0  4 ?

10 5x

4 5x 10 5x 4 5x 5     x x 5 5x 5x

?

0  4  true The points on the side of the line containing (0, 0) are solutions. Find the point of intersection. x  2y  4

10 5 x 20 5 x  5x 5x 30 5 x  5x 6 5x  x 

x  2  3 x  1  4 x  6x  2  4 7x  6 6 x 7 18 7 11  6 y  3x  1  3    1     7 7 7 7  6 11 Graph  ,  as an open dot. It is not a 7 7 solution to the second inequality.

A  t   Pe rt

24. a.

A  t   8000e rt A  5  8000e5 r 10,907.40  8000e5 r 10,907.40  e5 r 8000  10,907.40   5r ln   8000   10,907.40  ln   8000  r  0.062 5 A  t   8000e0.062t b. 16,000  8000e0.062t

22.

2  e0.062t ln 2  0.062t ln 2 t  11.2 yr 0.062

f  x  h  f  x h 2   x  h  5  x  h  1   x 2  5 x  1  h 2 2  x  2 xh  h  5 x  5h  1  x 2  5 x  1  h 2 2  x  2 xh  h  5 x  5h  1  x 2  5 x  1  h 2 2 xh  h  5h  h  2 x  h  5

25.

y  kxz 2 36  k 10 3

2

36  90k 36 2 k  90 5 2 2 384 2 y  xz 2  12 4   76.8 5 5 5

702


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.