MANUAL OF STEEL CONSTRUCTION
LOAD & RESISTANCE FACTOR DESIGN Volume I Structural Members, Specifications, & Codes Volume II Connections
Second Edition
iv
Copyright Š 1994 by American Institute of Steel Construction, Inc. ISBN 1-56424-041-X ISBN 1-56424-042-8 All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of the publisher. The information presented in this publication has been prepared in accordance with recognized engineering principles and is for general information only. While it is believed to be accurate, this information should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability, and applicability by a licensed professional engineer, designer, or architect. The publication of the material contained herein is not intended as a representation or warranty on the part of the American Institute of Steel Construction or of any other person named herein, that this information is suitable for any general or particular use or of freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability arising from such use. Caution must be exercised when relying upon other specifications and codes developed by other bodies and incorporated by reference herein since such material may be modified or amended from time to time subsequent to the printing of this edition. The Institute bears no responsibility for such material other than to refer to it and incorporate it by reference at the time of the initial publication of this edition. Printed in the United States of America
v
FOREWORD
T
he American Institute of Steel Construction, founded in 1921, is the non-profit technical specifying and trade organization for the fabricated structural steel industry in the United States. Executive and engineering headquarters of AISC are maintained in Chicago, Illinois. The Institute is supported by three classes of membership: Active Members totaling 400 companies engaged in the fabrication and erection of structural steel, Associate Members who are allied product manufacturers, and Professional Members who are individuals or firms engaged in the practice of architecture or engineering. Professional members also include architectural and engineering educators. The continuing financial support and active participation of Active Members in the engineering, research, and development activities of the Institute make possible the publishing of this Second Edition of the Load and Resistance Factor Design Manual of Steel Construction. The Institute’s objectives are to improve and advance the use of fabricated structural steel through research and engineering studies and to develop the most efficient and economical design of structures. It also conducts programs to improve product quality. To accomplish these objectives the Institute publishes manuals, textbooks, specifications, and technical booklets. Best known and most widely used are the Manuals of Steel Construction, LRFD (Load and Resistance Factor Design) and ASD (Allowable Stress Design), which hold a highly respected position in engineering literature. Outstanding among AISC standards are the Specifications for Structural Steel Buildings and the Code of Standard Practice for Steel Buildings and Bridges. The Institute also assists designers, contractors, educators, and others by publishing technical information and timely articles on structural applications through two publications, Engineering Journal and Modern Steel Construction. In addition, public appreciation of aesthetically designed steel structures is encouraged through its award programs: Prize Bridges, Architectural Awards of Excellence, Steel Bridge Building Competition for Students, and student scholarships. Due to the expanded nature of the material, the Second Edition of the LRFD Manual has been divided into two complementary volumes. Volume I contains the LRFD Specification and Commentary, tables, and other design information for structural members. Volume II contains all of the information on connections. Like the LRFD Specification upon which they are based, both volumes of this LRFD Manual apply to buildings, not bridges. The Committee gratefully acknowledges the contributions of Roger L. Brockenbrough, Louis F. Geschwindner, Jr., and Cynthia J. Zahn to this Manual. By the Committee on Manuals, Textbooks, and Codes, William A. Thornton, Chairman
Barry L. Barger, Vice Chairman
Horatio Allison Robert O. Disque Joseph Dudek William G. Dyker Ronald L. Hiatt
David T. Ricker Abraham J. Rokach Ted W. Winneberger Charles J. Carter, Secretary
Mark V. Holland William C. Minchin Thomas M. Murray Heinz J. Pak Dennis F. Randall
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
vi
REFERENCED SPECIFICATIONS, CODES, AND STANDARDS
Part 6 (Volume I) of this LRFD Manual contains the full text of the following: American Institute of Steel Construction, Inc. (AISC) Load and Resistance Factor Design Specification for Structural Steel Buildings, December 1, 1993 Specification for Load and Resistance Factor Design of Single-Angle Members, December 1, 1993 Seismic Provisions for Structural Steel Buildings, June 15, 1992 Code of Standard Practice for Steel Buildings and Bridges, June 10, 1992 Research Council on Structural Connections (RCSC) Load and Resistance Factor Design Specifications for Structural Joints Using ASTM A325 or A490 Bolts, June 8, 1988 Additionally, the following other documents are referenced in Volumes I and II of the LRFD Manual: American Association of State Highway and Transportation Officials (AASHTO) AASHTO/AWS D1.5–88 American Concrete Institute (ACI) ACI 349–90 American Iron and Steel Institute (AISI) Load and Resistance Factor Design Specification for Cold-Formed Steel Structural Members, 1991 American National Standards Institute (ANSI) ANSI/ASME B1.1–82 ANSI/ASME B18.2.2–86 ANSI/ASME B18.1–72 ANSI/ASME B18.5–78 ANSI/ASME B18.2.1–81 American Society of Civil Engineers (ASCE) ASCE 7-88 American Society for Testing and Materials (ASTM) ASTM A6–91b ASTM A490–91 ASTM A617–92 ASTM A27–87 ASTM A500–90a ASTM A618–90a ASTM A36–91 ASTM A501–89 ASTM A668–85a ASTM A53–88 ASTM A502–91 ASTM A687–89 ASTM A148–84 ASTM A514–91 ASTM A709–91 ASTM A153–82 ASTM A529–89 ASTM A770–86 ASTM A193–91 ASTM A563–91c ASTM A852–91 ASTM A194–91 ASTM A570–91 ASTM B695–91 ASTM A208(A239–89) ASTM A572–91 ASTM C33–90 ASTM A242–91a ASTM A588–91a ASTM C330–89 ASTM A307–91 ASTM A606–91a ASTM E119–88 ASTM A325–91c ASTM A607–91 ASTM E380–91 ASTM A354–91 ASTM A615–92b ASTM F436–91 ASTM A449–91a ASTM A616–92 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
vii
American Welding Society (AWS) AWS A2.4–93 AWS A5.25–91 AWS A5.1–91 AWS A5.28–79 AWS A5.5–81 AWS A5.29–80 AWS A5.17–89 AWS B1.0–77 AWS A5.18–79 AWS D1.1–92 AWS A5.20–79 AWS D1.4–92 AWS A5.23–90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1-1
PART 1 DIMENSIONS AND PROPERTIES
OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 STRUCTURAL STEELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Selection of the Appropriate Structural Steel . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Brittle Fracture Considerations in Structural Design . . . . . . . . . . . . . . . . . . . . . 1-6 Lamellar Tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 Jumbo Shapes and Heavy-Welded Built-Up Sections . . . . . . . . . . . . . . . . . . . . 1-8 FIRE-RESISTANT CONSTRUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 Effect of Shop Painting on Spray-Applied Fireproofing . . . . . . . . . . . . . . . . . . 1-11 EFFECT OF HEAT ON STRUCTURAL STEEL . . . . . . . . . . . . . . . . . . . . . . 1-11 Coefficient of Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12 Use of Heat to Straighten, Camber, or Curve Members . . . . . . . . . . . . . . . . . . 1-12 EXPANSION JOINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 COMPUTER SOFTWARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 AISC Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 AISC for AutoCAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 STRUCTURAL SHAPES: TABLES OF AVAILABILITY, SIZE GROUPINGS, PRINCIPAL PRODUCERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15 STEEL PIPE AND STRUCTURAL TUBING: TABLES OF AVAILABILITY, PRINCIPAL PRODUCERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21 STRUCTURAL SHAPES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25 Designations, Dimensions, and Properties . . . . . . . . . . . . . . . . . . . . . . . . . 1-25 Tables: W Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26 M Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44 S Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-46 HP Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-48 American Standard Channels (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-50 Miscellaneous Channels (MC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52 Angles (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-56 STRUCTURAL TEES (WT, MT, ST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-67 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1-2
DIMENSIONS AND PROPERTIES
Use of Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-67 DOUBLE ANGLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-91 Use of Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-91 COMBINATION SECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-105 STEEL PIPE AND STRUCTURAL TUBING . . . . . . . . . . . . . . . . . . . . . . . 1-120 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-120 Steel Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-120 Structural Tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-120 BARS AND PLATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-133 Product Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-133 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-133 Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-133 Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-133 Floor Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-134 CRANE RAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-139 General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-139 Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-139 Welded Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-141 Fastenings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-141 TORSION PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-145 SURFACE AREAS AND BOX AREAS . . . . . . . . . . . . . . . . . . . . . . . . . . 1-175 CAMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-179 Beams and Girders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-179 Trusses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-179 STANDARD MILL PRACTICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-183 General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-183 Methods of Increasing Areas and Weights by Spreading Rolls
. . . . . . . . . . . . . 1-183
Cambering of Rolled Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-185 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-199
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
OVERVIEW
1-3
OVERVIEW To facilitate reference to Part 1, the locations of frequently used tables are listed below. Dimensions and Properties W Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26 M Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44 S Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-46 HP Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-48 American Standard Channels (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-50 Miscellaneous Channels (MC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52 Angles (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-56 Structural Tees (WT, MT, ST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-68 Double Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-92 Combination Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-106 Steel Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-121 Structural Tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-122 Torsion Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-146 Surface Areas and Box Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-175 Availability Availability of Shapes, Plates, and Bars, Table 1-1 . . . . . . . . . . . . . . . . . . . . 1-15 Structural Shape Size Groupings, Table 1-2 . . . . . . . . . . . . . . . . . . . . . . . . 1-16 Principal Producers of Structural Shapes, Table 1-3 . . . . . . . . . . . . . . . . . . . . 1-18 Availability of Steel Pipe and Structural Tubing, Table 1-4 . . . . . . . . . . . . . . . . 1-21 Principal Producers of Structural Tubing (TS), Table 1-5 . . . . . . . . . . . . . . . . . 1-22 Principal Producers of Steel Tubing (Round), Table 1-6 . . . . . . . . . . . . . . . . . . 1-26
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1-4
DIMENSIONS AND PROPERTIES
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL STEELS
1-5
STRUCTURAL STEELS Availability
Section A3.1 of the AISC Load and Resistance Factor Design Specification for Structural Steel Buildings lists fifteen ASTM specifications for structural steel approved for use in building construction. Five of these steels are available in hot-rolled structural shapes, plates, and bars. Two steels, ASTM A514 and A852, are available only in plates. Table 1-1 shows five groups of shapes and eleven ranges of thickness of plates and bars available in the various minimum yield stress* and tensile strength levels afforded by the seven steels. For complete information on each steel, reference should be made to the appropriate ASTM specification. A listing of shape sizes included in each of the five groups follows in Table 1-2, corresponding with the groupings given in Table A of ASTM Specification A6. Seven additional grades of steel, other than those covering hot-rolled shapes, plates, and bars, are listed in Section A3.1a of the LRFD Specification. These steels cover pipe, cold- and hot-formed tubing, and cold- and hot-rolled sheet and strip. The principal producers of shapes listed in Part 1 of this Manual are shown in Table 1-3. Availability and the principal producers of structural tubing are shown in Tables 1-4 through 1-6. For additional information on availability and classification of structural steel plates and bars, refer to the separate discussion beginning on page 1-129. Space does not permit inclusion in Table 1-3, or in the listing of shapes and plates in Part 1 of this Manual, of all rolled shapes or plates of greater thickness that are occasionally used in construction. For such products, reference should be made to the various producers’ catalogs. To obtain an economical structure, it is often advantageous to minimize the number of different sections. Cost per square foot can often be reduced by designing this way. Selection of the Appropriate Structural Steel
Steels with 50 ksi yield stress are now widely used in construction, replacing ASTM A36 steel in many applications. The 50 ksi steels listed in Section A3.1a of the LRFD Specification are ASTM A572 high-strength low-alloy structural steel, ASTM A242 and A588 atmospheric-corrosion-resistant high-strength low-alloy structural steels, and ASTM A529 high-strength carbon-manganese structural steel. Yield stresses above 50 ksi can be obtained from two grades of ASTM A572 steel as well as ASTM A514 and A852 quenched and tempered structural steel plate. These higher-strength steels have certain advantages over 50 ksi steels in certain applications. They may be economical choices where lighter members, resulting from use of higher design strengths, are not penalized because of instability, local buckling, deflection, or other similar reasons. They may be used in tension members, beams in continuous and composite construction where deflections can be minimized, and columns having low slenderness ratios. The reduction of dead load and associated savings in shipping costs can be significant factors. However, higher strength steels are not to be used indiscriminately. Effective use of all steels depends on thorough cost and engineering analysis. Normally, connection material is specified as ASTM A36. The connection tables in this Manual are for A36 steel.
*As used in the AISC LRFD Specification, “yield stress” denotes either the specified minimum yield point (for those that have a yield point) or specified minimum yield strength (for those steels that do not have a yield point). AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1-6
DIMENSIONS AND PROPERTIES
With appropriate procedures and precautions, all steels listed in the AISC Specification are suitable for welded fabrication. To provide for weldability of ASTM A529 steel, the specification of a maximum carbon equivalent is recommended. ASTM A242 and A588 atmospheric-corrosion-resistant, high-strength, low-alloy steels can be used in the bare (uncoated) condition in most atmospheres. Where boldly exposed under such conditions, exposure to the normal atmosphere causes a tightly adherent oxide to form on the surface which protects the steel from further atmospheric corrosion. To achieve the benefits of the enhanced atmospheric corrosion resistance of these bare steels, it is necessary that design, detailing, fabrication, erection, and maintenance practices proper for such steels be observed. Designers should consult with the steel producers on the atmospheric-corrosion-resistant properties and limitations of these steels prior to use in the bare condition. When either A242 or A588 steel is used in the coated condition, the coating life is typically longer than with other steels. Although A242 and A588 steels are more expensive than other high-strength, low-alloy steels, the reduction in maintenance resulting from the use of these steels usually offsets their higher initial cost. Brittle Fracture Considerations in Structural Design
As the temperature decreases, an increase is generally noted in the yield stress, tensile strength, modulus of elasticity, and fatigue strength of the structural steels. In contrast, the ductility of these steels, as measured by reduction in area or by elongation, and the toughness of these steels, as determined from a Charpy V-notch impact test, decrease with decreasing temperatures. Furthermore, there is a temperature below which a structural steel subjected to tensile stresses may fracture by cleavage,* with little or no plastic deformation, rather than by shear,* which is usually preceded by a considerable amount of plastic deformation or yielding. Fracture that occurs by cleavage at a nominal tensile stress below the yield stress is commonly referred to as brittle fracture. Generally, a brittle fracture can occur in a structural steel when there is a sufficiently adverse combination of tensile stress, temperature, strain rate, and geometrical discontinuity (notch) present. Other design and fabrication factors may also have an important influence. Because of the interrelation of these effects, the exact combination of stress, temperature, notch, and other conditions that will cause brittle fracture in a given structure cannot be readily calculated. Consequently, designing against brittle fracture often consists mainly of (1) avoiding conditions that tend to cause brittle fracture and (2) selecting a steel appropriate for the application. A discussion of these factors is given in the following sections. Conditions Causing Brittle Fracture
It has been established that plastic deformation can occur only in the presence of shear stresses. Shear stresses are always present in a uniaxial or biaxial state-of-stress. However, in a triaxial state-of-stress, the maximum shear stress approaches zero as the principal stresses approach a common value, and thus, under equal triaxial tensile stresses, failure occurs by cleavage rather than by shear. Consequently, triaxial tensile stresses tend to cause brittle fracture and should be avoided. A triaxial state-of-stress can result from a uniaxial loading when notches or geometrical discontinuities are present.
*Shear and cleavage are used in the metallurgical sense (macroscopically) to denote different fracture mechanisms. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL STEELS
1-7
Increased strain rates tend to increase the possibility of brittle behavior. Thus, structures that are loaded at fast rates are more susceptible to brittle fracture. However, a rapid strain rate or impact load is not a required condition for a brittle fracture. Cold work and the strain aging that normally follows generally increase the likelihood of brittle fracture. This behavior is usually attributed to the previously mentioned reduction in ductility. The effect of cold work that occurs in cold forming operations can be minimized by selecting a generous forming radius and, thus, limiting the amount of strain. The amount of strain that can be tolerated depends on both the steel and the application. The use of welding in construction increases the concerns relative to brittle fracture. In the as-welded condition, residual stresses will be present in any weldment. These stresses are considered to be at the yield point of the material. To avoid brittle fracture, it may be required to utilize steels with higher toughness than would be required for bolted construction. Welds may also introduce geometric conditions or discontinuities that are crack-like in nature. These stress risers will additionally increase the requirement for notch toughness in the weldment. Avoidance of the intersection of welds from multiple directions reduces the likelihood of triaxial stresses. Properly sized weld-access holes prohibit the interaction of these various stress fields. As steels being welded become thicker and more highly restrained, welding procedure issues such as preheat, interpass temperature, heat input, and cooling rates become increasingly important. The residual stresses present in a weldment may be reduced by the use of fewer weld passes and peening of intermittent weld layers. In most cases, weld metal notch toughness exceeds that of the base materials. However, for fracture-sensitive applications, notch-tough base and weld metal should be specified. The residual stresses of welding can be greatly reduced through thermal stress relief. This reduces the driving force that causes brittle fracture, but if the toughness of the material is adversely affected by this thermal treatment, no increase in brittle fracture resistance will be experienced. Therefore, when weldments are to be stress relieved, investigation into the effects on the weld metal, heat-affected zone, and base material should be made. Selecting a Steel To Avoid Brittle Fracture
The best guide in selecting a steel that is appropriate for a given application is experience with existing and past structures. A36 and Grade 50 (i.e., 50 ksi yield stress) steels have been used successfully in a great number of applications, such as buildings, transmission towers, transportation equipment, and bridges, even at the lowest atmospheric temperatures encountered in the U.S. Therefore, it appears that any of the structural steels, when designed and fabricated in an appropriate manner, could be used for similar applications with little likelihood of brittle fracture. Consequently, brittle fracture is not usually experienced in such structures unless unusual temperature, notch, and stress conditions are present. Nevertheless, it is always desirable to avoid or minimize the previously cited adverse conditions that increase the susceptibility of the steel to brittle fracture. In applications where notch toughness is considered important, it usually is required that steels must absorb a certain amount of energy, 15 ft-lb or higher (Charpy V-notch test), at a given temperature. The test temperature may be higher than the lowest operating temperature depending on the rate of loading. See Rolfe and Barsom (1986) and Rolfe (1977). AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1-8
DIMENSIONS AND PROPERTIES
Lamellar Tearing
The information on strength and ductility presented in the previous sections generally pertains to loadings applied in the planar direction (longitudinal or transverse orientation) of the steel plate or shape. It should be noted that elongation and area reduction values may well be significantly lower in the through-thickness direction than in the planar direction. This inherent directionality is of small consequence in many applications, but does become important in the design and fabrication of structures containing massive members with highly restrained welded joints. With the increasing trend toward heavy welded-plate construction, there has been a broader recognition of the occurrence of lamellar tearing in some highly restrained joints of welded structures, especially those using thick plates and heavy structural shapes. The restraint induced by some joint designs in resisting weld deposit shrinkage can impose tensile strain sufficiently high to cause separation or tearing on planes parallel to the rolled surface of the structural member being joined. The incidence of this phenomenon can be reduced or eliminated through greater understanding by designers, detailers, and fabricators of (1) the inherent directionality of construction forms of steel, (2) the high restraint developed in certain types of connections, and (3) the need to adopt appropriate weld details and welding procedures with proper weld metal for through-thickness connections. Further, steels can be specified to be produced by special practices and/or processes to enhance through-thickness ductility and thus assist in reducing the incidence of lamellar tearing. Steels produced by such practices are available from several producers. However, unless precautions are taken in both design and fabrication, lamellar tearing may still occur in thick plates and heavy shapes of such steels at restrained through-thickness connections. Some guidelines in minimizing potential problems have been developed (AISC, 1973). See also Part 8 in Volume II of this LRFD Manual and ASTM A770, Standard Specification for Through-Thickness Tension Testing of Steel Plates for Special Applications. Jumbo Shapes and Heavy Welded Built-up Sections
Although Group 4 and 5 W-shapes, commonly referred to as jumbo shapes, generally are contemplated as columns or compression members, their use in non-column applications has been increasing. These heavy shapes have been known to exhibit segregation and a coarse grain structure in the mid-thickness region of the flange and the web. Because these areas may have low toughness, cracking might occur as a result of thermal cutting or welding (Fisher and Pense, 1987). Similar problems may also occur in welded built-up sections. To minimize the potential of brittle failure, the current LRFD Specification includes provisions for material toughness requirements, methods of splicing, and fabrication methods for Group 4 and 5 hot-rolled shapes and welded built-up cross sections with an element of the cross section more than two inches in thickness intended for tension applications. FIRE-RESISTANT CONSTRUCTION
Fire-resistant steel construction may be defined as structural members and assemblies which can maintain structural stability for the duration of building fire exposure and, in some cases, prevent the spread of fire to adjacent spaces. Fire resistance of a steel member is a function of its mass, its geometry, the load to which it is subjected, its structural support conditions, and the fire to which it is exposed. Many steel structures have inherent fire resistance through a combination of the above factors and do not require additional insulation from the effects of fire. However, in many AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FIRE-RESISTANT CONSTRUCTION
1-9
situations, building codes specify the use of fire-rated steel assemblies. In this case, ASTM Specification E119, Standard Methods of Fire Tests of Building Construction and Materials, outlines the procedures of fire testing of structural elements. Structural fire resistance is a major consideration in the design of modern buildings. In general, building codes define the level of fire protection that is required in specific applications and structural fire protection is typically implemented in design through code compliance. In the United States, with a few notable exceptions, the majority of cities and states now enforce one of the following model codes: • National Building Code, published by the Building Officials and Code Administrators International. • Standard Building Code, published by the Southern Building Code Congress International. • Uniform Building Code, published by the International Conference of Building Officials. Building codes specify fire-resistance requirements as a function of building occupancy, height, area, and whether or not other fire protection systems (e.g., sprinklers) are provided. Fire-resistance requirements are specified in terms of hourly ratings based upon tests conducted in accordance with ASTM E119. This test method specifies a “standard” fire for evaluating the relative fire-resistance of construction assemblies (i.e., floors, roofs, beams, girders, and columns). Specific end-point criteria for evaluating the ability of assemblies to prevent the spread of fire to adjacent spaces and/or to continue to sustain superimposed loads are included. In effect, ASTM E119 is used to evaluate the length of time that an assembly continues to perform these functions when exposed to the standard fire. Thus, code requirements and fire-resistance ratings are specified in terms of time (i.e., one hour, two hours, etc.). The design of fire-resistant buildings is typically accomplished in a very prescriptive fashion by selecting tested designs that satisfy specific building code requirements. Listings of fire-resistant designs are available from a number of sources including: • Fire-Resistance Directory, Underwriters Laboratories. • Fire-Resistance Ratings, American Insurance Services Group. • Fire-Resistance Design Manual, Gypsum Association. In general, due to the very prescriptive nature of fire-resistant design, changes in tested assemblies can be difficult to justify to the satisfaction of code officials and listing agencies. In the case of structural steel construction, however, the basic heat transfer and structural principles are well defined. As a result, relatively simple analytical techniques have been developed that enable designers to use a variety of different structural steel shapes in conjunction with tested assemblies. These analytical techniques are specifically recognized by North American building code authorities and are described in a series of booklets published by the American Iron and Steel Institute (AISI): Designing Fire Protection for Steel Columns (1980) Designing Fire Protection for Steel Beams (1984) Designing Fire Protection for Steel Trusses (1981) Since fire-resistant design is currently based on the use of tested assemblies, an important consideration is the degree to which a test assembly is “representative” of AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 10
DIMENSIONS AND PROPERTIES
actual building construction. In reality, this consideration poses a number of technical difficulties due to the size of available testing facilities, most of which can only accommodate floor or roof specimens in the range of 15 ft by 18 ft in area. As a result, a test assembly represents a relatively small sample of a typical floor or roof structure. Most floor slabs and roof decks are physically, if not structurally, continuous over beams and girders. Beam and girder spans are often much larger than can be accommodated in available laboratory furnaces. A variety of connection details are used to frame beams, girders, and columns. In short, given the cost of testing, the complexity and variety of modern structural systems, and the size of available test facilities, it is unrealistic to assume that test assemblies accurately model real construction systems during fire exposure. In recognition of the practical difficulties associated with laboratory scale testing, ASTM E119 includes two specific test conditions, “restrained” and “unrestrained.” From a structural engineering standpoint, the choice of these two terms is unfortunate since the “restraint” that is contemplated in fire testing is restraint against the thermal expansion, not structural rotational restraint in the traditional sense. The “restrained” condition applies when the assembly is supported or surrounded by construction which is “capable of resisting substantial thermal expansion throughout the range of anticipated elevated temperatures.” Otherwise, the assembly should be considered free to rotate and expand at the supports and should be considered “unrestrained.” Thus, a floor system that is simply supported from a structural standpoint will often be “restrained” from a fireresistance standpoint. In order to provide guidance on the use of restrained and unrestrained ratings, ASTM E119 includes an explanatory Appendix. It should be emphasized that most common types of steel framing can be considered “restrained” from a fire-resistance standpoint. The standard fire test also includes other arbitrary assumptions. The specific fire exposure, for example, is based on furnace capabilities with continuous fuel supply and does not model real building fires with exhaustible fuel. Also, the test method assumes that assemblies are fully loaded when a fire occurs. In reality, fires are infrequent, random events and their design requirements should be probability based. Rarely will design structural loads occur simultaneously with fire. In addition, many structural elements are sized for serviceability (i.e., drift, deflection, or vibration) rather than strength, thereby providing an additional reserve strength during a fire. As a result of these and other considerations, more rational engineering design standards for structural fire protection are now being developed (International Fire Engineering Design for Steel Structures: State-of-the-Art, International Iron and Steel Institute). Although not yet standardized or recognized in North American building codes, similar design methods have been used in specific cases, based on code variances. One such method has been developed by AISI for architecturally exposed structural steel elements on the exterior of buildings. In effect, ASTM E119 assumes that structural elements are located within a fire compartment and does not realistically characterize the fire exposure that will be seen by exterior structural elements. Fire-Safe Structural Steel: A Design Guide (American Iron and Steel Institute, 1979) defines a step-by-step analytical procedure for determining maximum steel temperatures, based on realistic fire exposures for exterior structural elements. Occasionally, structural engineers will be called upon to evaluate fire-damaged steel structures. Although it is well known that the prolonged exposure to high temperatures can affect the physical and metallurgical properties of structural steel, in most cases steel AMERICAN INSTITUTE OF STEEL CONSTRUCTION
EFFECT OF HEAT ON STRUCTURAL STEEL
1 - 11
members that can be straightened in place will be suitable for continued use (Dill, 1960). Special attention should be given to heat-treated or cold-formed steel elements and high-strength bolts and welds. Effect of Shop Painting on Spray-Applied Fireproofing
Spray-applied fireproofing has excellent adhesion to unpainted structural steel. Mechanical anchorage devices, bonding agents, or bond tests are not required to meet Underwriters Laboratories, Inc. (UL) guidelines. In fact, moderate rusting enhances the adhesion of the fireproofing material, providing the uncoated steel is free of loose rust and mill scale. Customarily, any loose rust or mill scale as well as any other debris which has accumulated during the construction process is removed by the fireproofing application contractor. In many cases, this may be as simple as blowing it off with compressed air. This ease of application is not realized when fireproofing is applied over painted steel. In order to meet UL requirements, bond tests in accordance with the ASTM E736 must be performed to determine if the fireproofing material has adequate adherence to the painted surface. Frequently, a bonding agent must be added to the fireproofing material and the bond test repeated to determine if the minimum bond strength can be met. Should the bond testing still not be satisfactory, mechanical anchorage devices are required to be applied to the steel before the fireproofing can be applied. The erected steel must still be cleaned free of any construction debris and scaling or peeling paint before the fireproofing may be applied. Once it is determined that the bond tests are adequate, UL guidelines require that if fireproofing is spray-applied over painted steel, the steel must be wrapped with steel lath or mechanical anchorage devices must be applied to the steel if the structural shape exceeds the following dimensional criteria: • For beam applications, the web depth cannot exceed 16 inches and the flange cannot exceed 12 inches. • For column applications, neither the web depth nor the flange width can exceed 16 inches. A significant number of structural shapes do not meet these restrictions. The use of primers under spray-applied fireproofing significantly increases the cost of the steel and the preparation for and the application of the fireproofing material. In an enclosed structure, primer is insignificant in either the short- or long-term protection of the steel. LRFD Specification Section M3.1 states that structural steelwork need not be painted unless required by the contract. For many years, the AISC specifications have not required that steelwork be painted when it will be concealed by interior building finish or will be in contact with concrete. The use of primers under spray-applied fireproofing is strongly discouraged unless there is a compelling reason to paint the steel to protect against corrosion. It is suggested that the designer refer to the UL Directory Fire Resistance—Volume 1, 1993, “Coating Materials,” for more specific information on this topic. EFFECT OF HEAT ON STRUCTURAL STEEL
Short-time elevated-temperature tensile tests on the structural steels permitted by the AISC Specification indicate that the ratios of the elevated-temperature yield and tensile strengths to their respective room-temperature values are reasonably similar in the 300° to 700°F range, except for variations due to strain aging. (The tensile strength ratio may AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 12
DIMENSIONS AND PROPERTIES
increase to a value greater than unity in the 300° to 700°F range when strain aging occurs.) Below 700°F the strength ratios decrease only slightly. Above 700°F the ratio of elevated-temperature to room-temperature strength decreases more rapidly as the temperature increases. The composition of the steels is usually such that the carbon steels (ASTM A36 and A529) exhibit strain aging with attendant reduced notch toughness. The high-strength low-alloy steels (ASTM A242, A572, and A588) and heat-treated alloy steels (ASTM A514 and A852) exhibit less-pronounced or little strain aging. As examples of the decreased ratio levels obtained at elevated temperature, the yield strength ratios for carbon and high-strength low-alloy steels are approximately 0.77 at 800°F, 0.63 at 1,000°F, and 0.37 at 1,200°F. Coefficient of Expansion
The average coefficient of expansion for structural steel between 70°F and 100°F is 0.0000065 for each degree. For temperatures of 100°F to 1,200°F the coefficient is given by the approximate formula: ε = (6.1+0.0019t) × 10−6 in which ε is the coefficient of expansion (change in length per unit length) for each degree Fahrenheit and t is the temperature in degrees Fahrenheit. The modulus of elasticity of structural steel is approximately 29,000 ksi at 70°F. It decreases linearly to about 25,000 ksi at 900°F, and then begins to drop at an increasing rate at higher temperatures. Use of Heat to Straighten, Camber, or Curve Members
With modern fabrication techniques, a controlled application of heat can be effectively used to either straighten or to intentionally curve structural members. By this process, the member is rapidly heated in selected areas; the heated areas tend to expand, but are restrained by adjacent cooler areas. This action causes a permanent plastic deformation or “upset” of the heated areas and, thus, a change of shape is developed in the cooled member. “Heat straightening” is used in both normal shop fabrication operations and in the field to remove relatively severe accidental bends in members. Conversely, “heat cambering” and “heat curving” of either rolled beams or welded girders are examples of the use of heat to effect a desired curvature. As with many other fabrication operations, the use of heat to straighten or curve will cause residual stresses in the member as a result of plastic deformations. These stresses are similar to those that develop in rolled structural shapes as they cool from the rolling temperature; in this case, the stresses arise because all parts of the shape do not cool at the same rate. In like manner, welded members develop residual stresses from the localized heat of welding. In general, the residual stresses from heating operations do not affect the ultimate strength of structural members. Any reduction in strength due to residual stresses is incorporated in the provisions of the LRFD Specification. The mechanical properties of steels are largely unaffected by heating operations, provided that the maximum temperature does not exceed 1,100°F for quenched and tempered alloy steels (ASTM A514 and A852), and 1,300°F for other steels. The AMERICAN INSTITUTE OF STEEL CONSTRUCTION
EXPANSION JOINTS
1 - 13
temperature should be carefully checked by temperature-indicating crayons or other suitable means during the heating process. EXPANSION JOINTS
Although buildings are typically constructed of flexible materials, expansion joints are required in roofs and the supporting structure when horizontal dimensions are large. The maximum distance between expansion joints is dependent upon many variables including ambient temperature during construction and the expected temperature range during the lifetime of the building. An excellent reference on the topic of thermal expansion in buildings and location of expansion joints is the Federal Construction Council’s Technical Report No. 65, Expansion Joints in Buildings. Taken from this report, Figure 1-1 provides a guide based on design temperature change for maximum spacing of structural expansion joints in beam-and-column-framed buildings with hinged-column bases and heated interiors. The report includes data for numerous cities and gives five modification factors which should be applied as appropriate:
MAXIMUM SPACING OF EXPANSION JOINTS (ft)
1. If the building will be heated only and will have hinged-column bases, use the maximum spacing as specified; 2. If the building will be air-conditioned as well as heated, increase the maximum spacing by 15 percent provided the environmental control system will run continuously; 3. If the building will be unheated, decrease the maximum spacing by 33 percent; 4. If the building will have fixed column bases, decrease the maximum spacing by 15 percent;
600
500
Rectangular multiframed configuration with Symmetrical stiffness
400
Steel
300 200
Nonrectangular configuration (L, T, U type)
Any material
100
10 20 30 40
50 60 70 70 80 90
DESIGN TEMPERATURE CHANGE (°F)
Fig. 1-1. Expansion joint spacing. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 14
DIMENSIONS AND PROPERTIES
5. If the building will have substantially greater stiffness against lateral displacement in one of the plan dimensions, decrease the maximum spacing by 25 percent. When more than one of these design conditions prevail in a building, the percentile factor to be applied should be the algebraic sum of the adjustment factors of all the various applicable conditions. Additionally, most building codes include restrictions on location and spacing of fire walls. Such fire walls often become locations for expansion joints. The most effective expansion joint is a double line of columns which provides a complete and positive separation. When expansion joints other than the double-column type are employed, low-friction sliding elements are generally used. Such systems, however, are never totally free and will induce some level of inherent restraint to movement. COMPUTER SOFTWARE AISC Database
The AISC Database contains the properties and dimensions of structural steel shapes, corresponding to Part 1 of this LRFD Manual. LRFD-related properties such as X1 and X2, as well as torsional properties, are included. Two versions, one in U.S. customary units and one in metric units, are available. Dimensions and properties of W, S, M, and HP shapes, American Standard Channels (C), Miscellaneous Channels (MC), Structural Tees cut from W, M, and S shapes (WT, MT, ST), Single and Double Angles, Structural Tubing, and Pipe are listed in ASCII format. Also included are: a BASIC read/write program, a sample search routine, and a routine to convert the file to Lotus *.PRN file format. AISC for AutoCAD *
The program will draw the end, elevation, and plan views of W, S, M, and HP shapes, American Standard Channels (C), Miscellaneous Channels (MC), Structural Tees cut from W, M, and S shapes (WT, MT, ST), Single and Double Angles, Structural Tubing, and Pipe to full scale corresponding to data published in Part 1 of this LRFD Manual. Version 2.0 runs in AutoCAD Release 12 only; Version 1.0 runs in AutoCAD Releases 10 and 11.
*AutoCAD is a registered trademark in the US Patent and Trademark Office by Autodesk, Inc. AISC for AutoCAD is copyrighted in the US Copyright Office by Bridgefarmer and Associates, Inc. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 15
Table 1-1. Availability of Shapes, Plates, and Bars According to ASTM Structural Steel Specifications Shapes
Fy
Steel Type
A36
32
58–80
36
58–80c
42
42
60–85
50
50
70–100
42
42
60
50
50
65
60
60
75
65
65
80
A242
42
63
46
67
50
70
HighStrength Low-alloy
Corrosion Resistant Highstrength Low-alloy
A572 Grade
A529f Grade
Carbon
Group per Over Over Mini1⁄ ″ 3⁄ ″ ASTM A6 Fu mum 2 4 ASTM Yield Tensile To to to a 1⁄ ″ 3 ⁄ ″ 11 ⁄ ″ Desig- Stress Stress 2 4 4 b nation (ksi) (ksi) 1 2 3 4 5 incl. incl. incl.
A588
42
63
46
67
50
70
Quenched A852e & Tempered Alloy
70
90–110
Quenched A514e & Tempered A514e Low-Alloy
90
100–130
100
110–130
Plates and Bars Over Over Over Over Over Over Over 11⁄4″ 11⁄2″ 2″ 21⁄2″ 4″ 5″ 6″ to to to to to to to 11⁄2″ 2″ 21⁄2″ 4″ 5″ 6″ 8″ Over incl. incl. incl. incl. incl. incl. incl. 8″
d
aMinimum unless a range is shown. bIncludes bar-size shapes cFor shapes over 426 lb / ft minimum of 58 ksi only applies. dPlates to 1 in. thick, 12 in. width; bars to 11⁄ in. 2 ePlates only. fTo improve the weldability of A529 steel, the specification of a maximum carbon equivalent
(per ASTM Supplementary Requirement S78) is recommended. Available Not Available
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 16
DIMENSIONS AND PROPERTIES
Table 1-2. Structural Shape Size Groupings for Tensile Property Classification Structural Shapes W shapes
Group 1
Group 2
Group 3 W44× 290, 335
Group 4
W24× 55, 62
W44× 230, 262
W21× 44 to 57 incl.
W40× 149 to 264 incl. W40× 431
W18× 35 to 71 incl.
W36× 135 to 210 incl. W40× 277 to 372 incl. W36× 328 to 798 incl.
W16× 26 to 57 incl.
W33× 118 to 152 incl. W36× 230 to 300 incl. W33× 318 to 354 incl.
W14× 22 to 53 incl.
W30× 90 to 211 incl. W33× 169 to 291 incl. W30× 292 to 477 incl.
W12× 14 to 58 incl.
W27× 84 to 178 incl. W30× 235 to 261 incl. W27× 307 to 539 incl.
W10× 12 to 45 incl.
W24× 68 to 162 incl. W27× 194 to 258 incl. W24× 250 to 492 incl.
Group 5
W40×466 to 593 incl. W36× 848 W40× 392
W8× 10 to 48 incl.
W21× 62 to 147 incl. W24× 176 to 229 incl. W18× 211 to 311 incl.
W6× 9 to 25 incl.
W18× 76 to 143 incl. W21× 166 to 201 incl. W14× 233 to 550 incl.
W5× 16,19
W16× 67 to 100 incl. W18× 158 to 192 incl. W12× 210 to 336 incl.
W4× 13
W14× 61 to 132 incl. W14× 145 to 211 incl.
W14× 605 to 808 incl.
W12× 65 to 106 incl. W12× 120 to 190 incl. W10× 49 to 112 incl. W8× 58, 67 M Shapes
all
S Shapes
to 35 lb/ft incl.
over 35 lb/ft
HP Shapes
to 102 lb/ft incl.
American to 20.7 lb/ft incl. Standard Channels (C)
over 20.7 lb/ft
Miscellane- to 28.5 lb/ft incl. ous Channels (MC)
over 28.5 lb/ft
Angles (L)
to 1⁄2-in. incl.
over 102 lb/ft
over 1⁄2- to 3⁄4-in. incl. over 3⁄4-in.
Notes: Structural tees from W, M, and S shapes fall into the same group as the structural shapes from which they are cut. Group 4 and Group 5 shapes are generally contemplated for application as columns or compression components. When used in other applications (e.g., trusses) and when thermal cutting or welding is required, special material specification and fabrication procedures apply to minimize the possibility of cracking (see Part 6, LRFD Specification, Sections A3.1c, J1.5, J1.6, J2.3, and M2.2, and corresponding Commentary sections).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 17
Structural Steel Shape Producers Bayou Steel Corp. P.O. Box 5000 Laplace, LA 70068 (800) 535-7692
Florida Steel Corp. P.O. Box 31328 Tampa, FL 33631 (800) 237-0230
Nucor-Yamato Steel P.O. Box 1228 Blytheville, AR 72316 (800) 289-6977
Bethlehem Steel Corp. 301 East Third St. Bethlehem, PA 18016-7699 (800) 633-0482
Northwestern Steel & Wire Co. 121 Wallace St. P.O. Box 618 Sterling, IL 61081-0618 (800) 793-2200
Roanoke Electric Steel Corp. P.O. Box 13948 Roanoke, VA 24038 (800) 753-3532
British Steel Inc. 475 N. Martingale Road #400 Schaumburg, IL 60173 (800) 542-6244
North Star Steel Co. 1380 Corporate Center Curve Suite 215 P.O. Box 21620 Eagan, MN 55121-0620 (800) 328-1944
Chaparral Steel Co. 300 Ward Road Midlothian, TX 76065-9501 (800) 529-7979
Nucor Steel P.O. Box 126 Jewett, TX 75846 (800) 527-6445
SMI Steel, Inc. 101 South 50th St. Birmingham, AL 35232 (800) 621-0262 TradeARBED 825 Third Ave. New York, NY 10022 (212) 486-9890
Structural Tube Producers American Institute for Hollow Structural Sections 929 McLaughlin Run Road Suite 8 Pittsburgh, PA 15017 (412) 221-8880 Acme Roll Forming Co. 812 North Beck St. Sebewaing, MI 48759-0706 (800) 937-8823
Dallas Tube & Rollform P.O. Box 540873 Dallas, TX 75354-0873 (214) 556-0234
Independence Tube Corp. 6226 West 74th St. Chicago, IL 60638 (708) 496-0380
Eugene Welding Co. P.O. Box 249 Marysville, MI 48040 (313) 364-7421
IPSCO Steel, Inc. P.O. Box 1670, Armour Road Regina, Saskatchewan S4P 3C7 CANADA (416) 271-2312
EXLTUBE, Inc. 905 Atlantic North Kansas City, MO 64116 (800) 892-8823
Bull Moose 57540 SR 19 S P.O. Box B-1027 Elkhart, IN 46515 (800) 348-7460
Hanna Steel Corp. 3812 Commerce Ave. P.O. Box 558 Fairfield, AL 35064 (800) 633-8252
Copperweld Corp. 7401 South Linder Ave. Chicago, IL 60638 (800) 327-8823
UNR-Leavitt, Div. of UNR Inc. 1717 West 115th St. Chicago, IL 60643 (800) 532-8488 Valmont Industries, Inc. P.O. Box 358 Valley, NE 68064 (800) 825-6668 Welded Tube Co. of America 1855 East 122nd St. Chicago, IL 60633 (800) 733-5683
Steel Pipe Producers National Association of Steel Pipe Distributors, Inc. 12651 Briar Forest Dr., Suite 130 Houston, TX 77077 (713) 531-7473
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 18
DIMENSIONS AND PROPERTIES
Table 1-3. Principal Producers of Structural Shapes B—Bethlehem Steel Corp. C—Chaparral Steel F—Florida Steel Corp.
I—British Steel S—North Star Steel M—SMI Steel Inc. T—TradeARBED N—Nucor-Yamato Steel U—Nucor Steel R—Roanoke Steel
W—Northwestern Steel & Wire Y—Bayou Steel Corp.
Section, Weight per ft
Producer Code
Section, Weight per ft
Producer Code
W44× all
T
W40× 321-593 W40× 297 W40× 278 W40× 277 W40× 264 W40× 249 W40× 235 W40× 215 W40× 211 W40× 199 W40× 183 W40× 174 W40× 149-167
T N T N,T B,T N,T B,T N,T B,T N,T B,I,N,T T B,I,N,T
W24× 103 W24× 84-94 W24× 55-76
B,W B,I,N,W B,C,I,N,W
W21× 182-201 W21× 166 W21× 83-147 W21× 44-73
I,W B,I,W B,I,N,W B,C,I,N,W
W18× 258-311 W18× 175-234 W18× 130-158 W18× 76-119 W18× 65-71 W18× 35-60
B B,W B,N,W B,N,W B,I,N,W B,C,I,N,W
W36× 439-848 W36× 393 W36× 328-359 W36× 260-300 W36× 256 W36× 245 W36× 232 W36× 135-230
T B,T B,I,T B,I,N,T B,I B,I,N,T B,I B,I,N,T
W16× 67-100 W16× 57 W16× 26-50
B,N,W B,I,N,W B,C,I,N,W
W33× 263-354 W33× 201-241 W33× 169 W33× 118-152
B,T B,N,T B,T B,I,N,T
W30× 391-477 W30× 261-326 W30× 173-235 W30× 148 W30× 99-132 W30× 90
W14× 808 W14× 342-730 W14× 311 W14× 90-283 W14× 82 W14× 74 W14× 61-68 W14× 43-53 W14× 38 W14× 22-34
B B,I,T B,I,T,W B,I,N,T,W B,N,W B,C,I,N,W B,C,N,W B,C,I,N,W B,I,N,W B,C,I,N,W
T B,T B,I,N,T B,I,T B,I,N,T B,N
W27× 307-539 W27× 258 W27× 235 W27× 146-217 W27× 129 W27× 84-114
T N,T N B,N,T B,I,T,W B,I,N,T,W
W12× 252-336 W12× 210-230 W12× 170-190 W12× 65-152 W12× 50-58 W12× 16-45 W12× 14
B B,T B,I,T,W B,I,N,T,W B,C,I,N,W B,C,N,W B,C,W
W24× 279-492 W24× 250 W24× 229 W24× 207 W24× 192 W24× 104-176
T B,N,W B,N,T,W B,N,W B,I,N,T,W B,I,N,T,W
W10× 88-112 W10× 49-77 W10× 33-45 W10× 22-30 W10× 15-19 W10× 12
B,I,N,W B,C,I,N,W B,C,N,W B,C,I,N,W B,C,I,W B,C,W
W8× 31-67 W8× 18-28 W8× 15
B,C,I,N,W B,C,N,W B,C,W,Y
Notes: For the most recent list of producers, please see the latest January or July issue of the AISC magazine Modern Steel Construction. Maximum lengths of shapes obtained vary with producer, but typically range from 60 ft to 75 ft. Lengths up to 100 ft are available for certain shapes. Please consult individual producers for length requirements.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 19
Table 1-3 (cont.). Principal Producers of Structural Shapes B—Bethlehem Steel Corp. C—Chaparral Steel F—Florida Steel Corp.
I—British Steel S—North Star Steel M—SMI Steel Inc. T—TradeARBED N—Nucor-Yamato Steel U—Nucor Steel R-Roanoke Steel
W—Northwestern Steel & Wire Y—Bayou Steel Corp.
Section, Weight per ft
Producer Code
Section, Weight per ft
Producer Code
W8× 10-13
B,C,M,W,Y
W6× 20-25 W6× 16 W6× 15 W6× 12 W6× 9
B,C,I,N,W B,C,W,Y B,C,I,N,W B,C,W,Y B,C,N,W,Y
W5× 16-19
B
W4× 13
B,C,M,Y
M12× 10.8-11.8 M10× 8-9 M8× 6.5 M5× 18.9
MC18× 42.7-58 MC13× 31.8-50 MC12× 31-50 MC12× 10.6 MC10× 22-41.1 MC10× 8.4 MC9× 23.9-25.4 MC8× 18.7-22.8 MC8× 8.5 MC7× 19.1-22.7 MC6× 18 MC6× 12-16.3
B,N B,N B,N S,N B S B B,S M B B B,S
C C C B
S24× 80-121 S20× 66-96 S18× 54.7-70 S15× 42.9-50 S12× 31.8-50 S10× 25.4-35 S8× 18.4-23 S6× 12.5-17.25 S5× 10 S4× 9.5 S4× 7.7 S3× 7.5 S3× 5.7
B,W B,W B,W B,W B,W B,S B,C,S C,S,Y C,Y C C,Y C,Y C,M,Y
HP14× 73-117 HP12× 53-84 HP10× 42-57 HP8× 36
B,I,N,W B,I,N,W B,C,I,N,W B,C,I,N,W
C15× 33.9-50 C12× 30 C12× 20.7-25 C10× 25-30 C10× 15.3-20 C9× 20 C9× 13.4-15 C8× 18.75 C8× 11.5-13.75 C7× 12.25 C7× 9.8 C6× 13 C6× 10.5 C6× 8.2 C5× 9 C5× 6.7 C4× 5.4-7.25 C3× 6 C3× 4.1-5
Section by Leg Length & Thickness Producer Code L8× 8×
B,N,W B,W B,C,S,W B,S,W B,C,S,W B B,S S,W,Y C,M,S,U,W,Y S,U,W M,S,U,W M,S,U,W,Y C,M,S,U,W,Y C,F,M,U,W,Y, M,U,W,Y F,M,U,W,Y F,M,U,W,Y M,U,W,Y F,M,R,U,W,Y
11 ⁄8 1 7⁄ 3⁄ 5⁄ 9⁄ 1⁄
L6× 6×
7⁄ 5⁄ 9⁄ 1⁄ 7⁄ 3⁄ 5⁄ 7⁄ 3⁄ 5⁄ 1⁄ 7⁄ 3⁄ 5⁄
L4× 4×
4 8 16 2
1
3⁄
L5× 5×
8
3⁄ 5⁄ 1⁄ 7⁄ 3⁄ 5⁄ 1⁄
8 4 8 16 2 16 8 16 8 4 8 2 16 8 16 4 8 2 16 8 16 4
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
B B,S B,S B,S B,S B,S B,S B,U,Y B,U,Y B,M,U,Y B,M,U,Y B,M,U,Y B,M,S,U,Y B,M,U,Y B,M,S,U,Y M,U,Y B,U,Y B,M,U,Y B,M,U,Y B,M,U,W,Y B,M,U,Y B,M,U,W,Y B,M,U,W,Y M,U,Y M,U,Y F,M,R,U,W,Y F,M,U,Y F,M,R,U,W,Y F,M,R,U,W,Y F,M,R,U,W,Y
1 - 20
DIMENSIONS AND PROPERTIES
Table 1-3 (cont.). Principal Producers of Structural Shapes B—Bethlehem Steel Corp. C—Chaparral Steel F—Florida Steel Corp.
I—British Steel S—North Star Steel M—SMI Steel Inc. T—TradeARBED N—Nucor-Yamato Steel U—Nucor Steel R—Roanoke Steel
W—Northwestern Steel & Wire Y—Bayou Steel Corp.
Section by Leg Length Producer Code and Thickness
Section by Leg Length Producer Code and Thickness
L31 ⁄2 × 31 ⁄2 ×
L6× 31 ⁄2 ×
1⁄ 7⁄ 3⁄ 5⁄ 1⁄
L3× 3×
1⁄ 7⁄ 3⁄ 5⁄ 1⁄ 3⁄
L21 ⁄2 × 21 ⁄2 ×
1⁄ 3⁄ 5⁄ 1⁄ 3⁄
L2× 2×
3⁄ 5⁄ 1⁄ 3⁄ 1⁄
L8× 6×
7⁄ 5⁄ 9⁄ 1⁄ 7⁄
7⁄ 5⁄ 9⁄ 1⁄ 7⁄ 3⁄ 5⁄ 1⁄ 7⁄ 3⁄
L6× 4×
8 16 4 2 16 8 16 4 16 2 8 16 4 16 8 16 4 16 8
8 4 8 16 2 16
1
3⁄
L7× 4×
16
1
3⁄
L8× 4×
2
7⁄ 3⁄ 5⁄ 9⁄ 1⁄ 7⁄ 3⁄ 5⁄
8 4 8 16 2 16 4 8 2 16 8 8 4 8 16 2 16 8 16
F,M,R,U,W,Y U,Y F,M,R,U,W,Y F,M,R,U,W,Y F,M,R,U,W,Y F,M,U,W,Y U,Y F,M,R,S,U,W,Y F,M,R,S,U,W,Y F,M,R,S,U,W,Y F,M,R,U,W,Y F,U F,S,U F,S,U F,S,U F,U F,S,U F,S,U F,S,U F,S,U F,S,U B,S B B,S B B,S B,S B,S B,S B,S B,S B,S B,S B,S B,S B,Y B,Y B,S,Y B,Y B,S,Y B B,M,S,U,W,Y B,M,S,U,W,Y B,M,S,U,W,Y B,M,S,U,W,Y B,U,Y B,M,S,U,W,Y B,M,S,U,W,Y
1⁄ 3⁄ 5⁄
L5× 31 ⁄
3⁄
2×
5⁄ 1⁄ 3⁄ 5⁄ 1⁄ 1⁄
L5× 3×
7⁄ 3⁄ 5⁄ 1⁄
L4× 31 ⁄
1⁄
2×
3⁄ 5⁄ 1⁄
L4× 3×
5⁄ 1⁄ 7⁄ 3⁄ 5⁄ 1⁄
L31 ⁄2 × 3×
1⁄ 3⁄ 5⁄ 1⁄
L31 ⁄
2
× 21 ⁄
2×
1⁄ 3⁄ 1⁄
L3× 21 ⁄2 ×
1⁄ 3⁄ 5⁄ 1⁄ 3⁄
L3× 2×
1⁄ 3⁄ 5⁄ 1⁄ 3⁄
L21 ⁄
2 × 2×
3⁄ 5⁄ 1⁄ 3⁄
2 8 16 4 8 2 8 16 4 2 16 8 16 4 2 8 16 4 8 2 16 8 16 4 2 8 16 4 2 8 4 2 8 16 4 16 2 8 16 4 16 8 16 4 16
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
M,U,W,Y B,M,U,W,Y B,M,U,W,Y M,U,Y M,U,Y M,U,W,Y M,U,W,Y M,U,W,Y M,U,W,Y F,M,U,W,Y F,Y F,M,U,W,Y F,M,U,W,Y F,M,U,W,Y F,M,U,W F,M,R,U,W F,M,R,U,W F,M,R,U,W M,U,Y F,M,U,W,Y U,Y F,M,R,U,W,Y F,M,R,U,W,Y F,M,R,U,W,Y U,W M,U,W M,U,W M,U,W U U U U U,W U,W,Y R,U,W U F F,S,U F,S,U F,R,S,U F,R,U R,S,U S,U R,S,U R,S,U
1 - 21
Table 1-4. Availability of Steel Pipe and Structural Tubing According to ASTM Material Specifications
ASTM Specification
Steel
Fy
Fu
Grade
Minimum Yield Stress (ksi)
Minimum Tensile Stress (ksi)
Shape
Round
Square & Rectangular
Availability
ElectricResistance Welded
A53 Type E
B
35
60
Note 3
Seamless
Type S
B
35
60
Note 3
A
33
45
Note 1
B
42
58
Note 1
C
46
62
Note 1
A
39
45
Note 1
B
46
58
Note 2
C
50
62
Note 1
—
36
58
Note 1
I
50
70
Note 1
II
50
70
Note 1
III
50
65
Note 1
Cold Formed
Hot Formed
HighStrength Low-Alloy
A500
A501
A618
Notes: 1. Available in mill quantities only; consult with producers. 2. Normally stocked in local steel service centers. 3. Normally stocked by local pipe distributors. Available Not Available
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 22
DIMENSIONS AND PROPERTIES
Table 1-5. Principal Producers of Structural Tubing (TS) A—Acme Rolling Forming Co. B—Bull Moose Tube Co. C—Copperweld Corp.
D—Dallas Tube & I—Independence Tube Rollform Corp. E—Eugene Welding Co. P—IPSCO Steel H—Hanna Steel Corp. U—UNR-Leavitt, Div. of UNR, Inc.
Nominal Size and Thickness
Producer Code
30× 30× 5⁄8 28× 28× 5⁄8 26× 26× 5⁄8 24× 24× 5⁄8, 1⁄2, 3⁄8 22× 22× 5⁄8, 1⁄2, 3⁄8 20× 20× 5⁄8, 1⁄2, 3⁄8 18× 18× 5⁄8, 1⁄2, 3⁄8
V—Valmont Industries, Inc. W—Welded Tube Co. of America X—EXLTUBE
Nominal Size and Thickness
Producer Code
V* V* V* V* V* V* V*
41⁄2× 41⁄2× 3⁄8, 5⁄16 41⁄2× 41⁄2× 1⁄4, 3⁄16 41⁄2× 41⁄2× 1⁄8
I,P,W A,B,C,D,I,P,W,X A,B,C,P,I,W
4× 4× 1⁄2 4× 4× 3⁄8, 5⁄16 4× 4× 1⁄4, 3⁄16 , 1⁄8
B,C,P,U,W A,B,C,D,E,I,P,U,W A,B,C,D,E,I,P,U,V,W,X
16× 16× 5⁄8 16× 16× 1⁄2, 3⁄8, 5⁄16
V* V*,W
31⁄2× 31⁄2× 5⁄16 31⁄2× 31⁄2× 1⁄4, 3⁄16 , 1⁄8
I,P,W A,B,C,D,E,I,P,U,W,X
14× 14× 5⁄8 14× 14× 1⁄2, 3⁄8 14× 14× 5⁄16
V* V*,W W
3× 3× 5⁄16 3× 3× 1⁄4, 3⁄16 3× 3× 1⁄8
I,P,W A,B,C,D,E,I,P,U,W,X A,B,C,D,E,I,P,U,W
12× 12× 5⁄8 12× 12× 1⁄2, 3⁄8 12× 12× 5⁄16 , 1⁄4
B B,V*,W B,W
21⁄2× 21⁄2× 5⁄16 21⁄2× 21⁄2× 1⁄4, 3⁄16 21⁄2× 21⁄2× 1⁄8
I A,B,C,D,E,I,P,U,V,W,X A,B,C,D,E,I,P,U,V,W
10× 10× 5⁄8 10× 10× 1⁄2, 3⁄8, 5⁄16 , 1⁄4 10× 10× 3⁄16
B,C B,C,P,U,W B,C,P,W
2× 2× 5⁄16 2× 2× 1⁄4 2× 2× 3⁄16 , 1⁄8
I,V A,B,C,D,I,U,V,W,X A,B,C,D,E,I,P,U,V,W,X
8× 8× 5⁄8 8× 8× 1⁄2 8× 8× 3⁄8, 5⁄16 , 1⁄4, 3⁄16
B,C B,C,P,U,W B,C,D,P,U,W
11⁄2× 11⁄2× 3⁄16
B,E,P,U,V
7× 7× 5⁄8 7× 7× 1⁄2 7× 7× 3⁄8, 5⁄16 , 1⁄4, 3⁄16
B B,C,P,U,W B,C,D,P,U,W
30× 24× 1⁄2, 3⁄8, 5⁄16 28× 24× 1⁄2, 3⁄8, 5⁄16 26× 24× 1⁄2, 3⁄8, 5⁄16 24× 22× 1⁄2, 3⁄8, 5⁄16 22× 20× 1⁄2, 3⁄8, 5⁄16
V* V* V* V* V*
6× 6× 5⁄8 6× 6× 1⁄2 6× 6× 3⁄8, 5⁄16 6× 6× 1⁄4, 3⁄16 6× 6× 1⁄8
B B,C,P,U,W B,C,D,I,P,U,W A,B,C,D,I,P,U,W,X A,B,C,I,P
20× 18× 1⁄2, 3⁄8, 5⁄16 20× 12× 1⁄2, 3⁄8, 5⁄16 20× 8× 1⁄2, 3⁄8, 5⁄16 20× 4× 1⁄2, 3⁄8, 5⁄16
V* W W W
51⁄2× 51⁄2× 3⁄8, 5⁄16 , 1⁄4, 3⁄16 , 1⁄8,
B,I
18× 12× 1⁄2, 3⁄8, 5⁄16 18× 6× 1⁄2, 3⁄8, 5⁄16 18× 6× 1⁄4
V* B,W B
5× 5× 1⁄2 5× 5× 3⁄8, 5⁄16 5× 5× 1⁄4 5× 5× 3⁄16 5× 5× 1⁄8
B,C,P,U,W B,C,D,I,P,U,W A,B,C,D,I,P,U,W,X A,B,C,D,I,P,U,V,W,X A,B,C,I,P,V,W
16× 12× 1⁄2, 3⁄8, 5⁄16 16× 8× 1⁄2, 3⁄8, 5⁄16 16× 4× 1⁄2, 3⁄8, 5⁄16
V*,W B,W B,W
*Size is manufactured by Submerged Arc Welding (SAW) process and is not stocked by steel service centers (contact producer for specific requirements). All other sizes are manufactured by Electric Resistance Welding and are available from steel service centers. For the most recent list of producers, please see the latest January or July issue of the AISC magazine Modern Steel Construction.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 23
Table 1-5 (cont.). Principal Producers of Structural Tubing (TS) A—Acme Rolling Forming Co. B—Bull Moose Tube Co. C—Copperweld Corp.
D—Dallas Tube & I—Independence Tube Rollform Corp. E—Eugene Welding Co. P—IPSCO Steel H—Hanna Steel Corp. U—UNR-Leavitt, Div. of UNR, Inc.
Nominal Size and Thickness
Producer Code
14× 12× 1⁄2, 3⁄8 14× 10× 1⁄2, 3⁄8, 5⁄16 14× 6× 5⁄8 14× 6× 1⁄2, 3⁄8, 5⁄16 , 1⁄4 14× 4× 5⁄8 14× 4× 1⁄2, 3⁄8, 5⁄16 , 1⁄4 14× 4× 3⁄16
V* B,W B B,W B B,W B
12× 10× 1⁄2, 3⁄8, 5⁄16 , 1⁄4 12× 8× 5⁄8 12× 8× 1⁄2, 3⁄8, 5⁄16 , 1⁄4 12× 8× 3⁄16 12× 6× 5⁄8 12× 6× 1⁄2, 3⁄8, 5⁄16 , 1⁄4 12× 6× 3⁄16 12× 4× 5⁄8 12× 4× 1⁄2, 3⁄8, 5⁄16 , 1⁄4, 3⁄16 12× 3× 5⁄16 , 1⁄4, 3⁄16 12× 2× 1⁄4, 3⁄16
B B B,C,U,W B,C,W B B,C,U,W B,C,W B B,U,W B B,U
10× 8× 1⁄2, 3⁄8, 5⁄16 , 1⁄4, 3⁄16 10× 6× 1⁄2 10× 6× 3⁄8, 5⁄16 , 1⁄4, 3⁄16 10× 5× 3⁄8, 5⁄16 , 1⁄4, 3⁄16 10× 4× 1⁄2 10× 4× 3⁄8, 5⁄16 , 1⁄4, 3⁄16 10× 3× 3⁄8,5⁄16 10× 3× 1⁄4, 3⁄16 10× 2× 5⁄16 10× 2× 1⁄4, 3⁄16
B,C,U,W B,C,U,W B,C,D,P,U,W B,C,D B,C,P,U,W B,C,D,P,U,W D B,D D,P,W B,D,P,U,W
8× 6× 1⁄2 8× 6× 3⁄8, 5⁄16 , 1⁄4, 3⁄16 8× 4× 5⁄8 8× 4× 1⁄2 8× 4× 3⁄8, 5⁄16 8× 4× 1⁄4, 3⁄16 8× 4× 1⁄8 8× 3× 1⁄2 8× 3× 3⁄8, 5⁄16 8× 3× 1⁄4, 3⁄16 8× 3× 1⁄8 8× 2× 3⁄8 8× 2× 5⁄16 8× 2× 1⁄4, 3⁄16 8× 2× 1⁄8
B,C,P,U,W B,C,D,P,U,W B B,C,P,U,W B,C,D,H,I,P,U,W A,B,C,D,H,I,P,U,W,X A,B,D,I,P C,P,U B,C,D,I,P,U,W A,B,C,D,I,P,U,W A,B,C,D,I,P H H,I,P,W A,B,D,I,P,U,W A,B,D,I,P
V—Valmont Industries, Inc. W—Welded Tube Co. of America X—EXLTUBE
Nominal Size and Thickness
Producer Code
7× 5× 1⁄2 7× 5× 3⁄8, 5⁄16 7× 5× 1⁄4, 3⁄16 7× 5× 1⁄8 7× 4× 3⁄8, 5⁄16 7× 4× 1⁄4, 3⁄16 7× 4× 1⁄8 7× 3× 3⁄8, 5⁄16 7× 3× 1⁄4, 3⁄16 7× 3× 1⁄8
B,C,P,U,W B,C,I,P,U,W A,B,C,H,I,P,U,W A,B,C,I,P B,C,D,H,I,P,U,W A,B,C,D,H,I,P,U,W A,B,C,H,I,P B,C,D,H,I,P,W A,B,C,D,H,I,P,W,X A,B,C,D,H,I,P
6× 4× 1⁄2 6× 4× 3⁄8, 5⁄16 6× 4× 1⁄4 6× 4× 3⁄16 6× 4× 1⁄8 6× 3× 1⁄2 6× 3× 3⁄8, 5⁄16 6× 3× 1⁄4 6× 3× 3⁄16 6× 3× 1⁄8 6× 2× 3⁄8 6× 2× 5⁄16 6× 2× 1⁄4, 3⁄16 6× 2× 1⁄8
B,C,P,U,W B,C,D,H,I,P,U,W A,B,C,D,H,I,P,U,W,X A,B,C,D,H,I,P,U,V,W,X A,B,C,D,H,I,P,V,W P,U B,D,H,I,P,U A,B,C,D,H,I,P,U,X A,B,C,D,H,I,P,U,W,X A,B,C,D,H,I,P,W H H,I,P,W A,B,C,D,E,H,I,P,U,W,X A,B,C,D,E,H,I,P,U,W
5× 4× 3⁄8, 5⁄16 5× 4× 1⁄4, 3⁄16 5× 3× 1⁄2 5× 3× 3⁄8, 5⁄16 5× 3× 1⁄4, 3⁄16 5× 3× 1⁄8 5× 2× 5⁄16 5× 2× 1⁄4, 3⁄16 5× 2× 1⁄8
I,P,W B,C,D,I,P,U,W C,P,U B,C,D,H,I,P,U,W A,B,C,D,E,H,I,P,U,W,X A,B,C,D,E,H,I,P,U,W I,P,W A,B,C,D,E,H,I,P,U,W,X A,B,C,D,E,H,I,P,U,W
4× 3× 5⁄16 4× 3× 1⁄4, 3⁄16 4× 3× 1⁄8 4× 2× 3⁄8 4× 2× 5⁄16 4× 2× 1⁄4, 3⁄16 4× 2× 1⁄8
B,I,P,W A,B,C,D,E,H,I,P,U,W,X A,B,C,D,E,H,I,P,U,W H H,I,P,W A,B,C,D,E,H,I,P,U,W,X A,B,C,E,H,I,P,U,W
3× 2× 5⁄16 3× 2× 1⁄4, 3⁄16 3× 2× 1⁄8
I A,B,C,D,E,H,I,P,U,V,W,X A,B,C,D,E,H,I,P,U,V,W
21⁄2 × 11⁄2 × 1⁄4, 3⁄16
H,X
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 24
DIMENSIONS AND PROPERTIES
Table 1-6. Principal Producers of Steel Tubing (Round) C—Copperweld Corp. P—IPSCO
U—UNR-Leavitt, Div. of UNR, Inc.
V—Valmont Industries, Inc.
W—Welded Tube Co. of America X—EXLTUBE
Outside Diameter and Thickness
Producer Code
Outside Diameter and Thickness
Producer Code
20.000× .500,.375,.250
P*,W
6.626×.250,.188 6.625×.125
P,U,V,W P,V,W
18.000× .500,.375,.250
P*,W
16.000× .500 16.000× .375,.250 16.000× .188 16.000× .125
P*,W P,W P,V* V*
6.000×.500,.375,.312 6.000×.280 6.000×.250,.188,.125
W X V,W
14.000× .500,.438,.375,.250 14.000× .188 14.000× .125
P,W P,V* V*
5.563×.375 5.563×.258 5.563×.134
P,U P,U,V,W P,V,W
12.750× .500,.406,.375 12.750× .188× .125
P,W P,V*
5.000×.500,.375,.312 5.000×.258 5.000×.250,.188 5.000×.125
P,C,W P,X C,P,U,V,W P,U,V,W
10.750× .500,.365,.250
P,W
4.500×.237,.188,.125
P,U,V,W
10.000× .625,.500,.375,.312 10.000× .250,.188 10.000× .125
C C,V V
4.000×.337,.237 4.000×.266,.250,.188,.125
X U,V,W
9.625×.500 9.625×.375,.312,.250,.188
C,U C,P*,U
3.500×.318 3.500×.300 3.500×.250,.203,.188,.125 3.500×.226
X P,W P,U,V,W P,X
8.625×.500 8.625×.375,.322 8.625×.250,.188 8.625×.125
C,P,U C,P,U,W C,P,U,V,W P,V,W
3.000×.300,.216
X
2.875×.276 2.875×.250,.203,.188,.125
W P,U,V,W
7.000×.500 7.000×.375,.312,.250 7.000×.188 7.000×.125
C,P,U C,P,U,W C,P,U,V,W C,P,V,W
2.375,.250,.218,.188 2.375,.154,.125
P,V,W P,U,V,W
6.625×.500,.432 6.625×.375,.312,.280
P,U P,U,W
*Size is manufactured by Submerged Arc Welding (SAW) Process and is typically not stocked by steel service centers. Other sizes are manufactured by Electric Resistance Welding and typically are available from steel service centers. For more information contact the manufacturer or the American Institute for Hollow Structural Sections. Also, other sizes and wall thicknesses may be available. Contact an individual manufacturer for more details.
Steel Pipe: For availability contact the National Association of Steel Pipe Distributors, Inc.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL SHAPES
1 - 25
STRUCTURAL SHAPES Designations, Dimensions, and Properties
The hot rolled shapes shown in Part 1 of this Manual are published in ASTM Specification A6/A6M, Standard Specification for General Requirements for Rolled Steel Plates, Shapes, Sheet Piling, and Bars for Structural Use. W shapes have essentially parallel flange surfaces. The profile of a W shape of a given nominal depth and weight available from different producers is essentially the same except for the size of fillets between the web and flange. HP bearing pile shapes have essentially parallel flange surfaces and equal web and flange thicknesses. The profile of an HP shape of a given nominal depth and weight available from different producers is essentially the same. American Standard Beams (S) and American Standard Channels (C) have a slope of approximately 17 percent (2 in 12 inches) on the inner flange surfaces. The profiles of S and C shapes of a given nominal depth and weight available from different producers are essentially the same. The letter M designates shapes that cannot be classified as W, HP, or S shapes. Similarly, MC designates channels that cannot be classified as C shapes. Because many of the M and MC shapes are only available from a limited number of producers, or are infrequently rolled, their availability should be checked prior to specifying these shapes. They may or may not have slopes on their inner flange surfaces, dimensions for which may be obtained from the respective producing mills. The flange thickness given in the table from S, M, C, and MC shapes is the average flange thickness. In calculating the theoretical weights, properties, and dimensions of the rolled shapes listed in Part 1 of this Manual, fillets and roundings have been included for all shapes except angles. Because of differences in fillet radii among producers, actual properties of rolled shapes may vary slightly from those tabulated. Dimensions for detailing are generally based on the largest theoretical-size fillets produced. Equal leg and unequal leg angle (L) shapes of the same nominal size available from different producers have profiles which are essentially the same, except for the size of fillet between the legs and the shape of the ends of the legs. The k distance given in the tables for each angle is based on the theoretical largest size fillet available. Availability of certain angles is subject to rolling accumulation and geographical location, and should be checked with material suppliers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 26
DIMENSIONS AND PROPERTIES
Y
tf
d
X
W SHAPES Dimensions
k
k1
X
T
tw
Y bf
k
Web
Designation
Area A 2
in.
Depth d in.
Thickness tw
tw 2
in.
in.
W44×335 W40×290 W40×262 W40×230
98.3 85.8 77.2 67.7
44.02 43.62 43.31 42.91
44 435⁄8 433⁄8 427⁄8
1.020 0.870 0.790 0.710
W40×593* W40×503* W40×431 W40×372 W40×321 W40×297 W40×277 W40×249 W40×215 W40×199 W40×174
174 148 127 109 94.1 87.4 81.3 73.3 63.3 58.4 51.1
42.99 42.05 41.26 40.63 40.08 39.84 39.69 39.38 38.98 38.67 38.20
43 421⁄16 411⁄4 405⁄8 401⁄16 397⁄8 393⁄4 393⁄8 39 385⁄8 381⁄4
1.790 113⁄16 1.540 19⁄16 1.340 15⁄16 1.160 13⁄16 1.000 1 0.930 15⁄16 0.830 13⁄16 3⁄ 0.750 4 5⁄ 0.650 8 5 0.650 ⁄8 5 0.650 ⁄8
W40×466* W40×392* W40×331 W40×278 W40×264 W40×235 W40×211 W40×183 W40×167 W40×149
137 115 97.6 81.8 77.6 68.9 62.0 53.7 49.1 43.8
42.44 427⁄16 41.57 419⁄16 40.79 4013⁄16 40.16 403⁄16 40.00 40 39.69 393⁄4 39.37 393⁄8 38.98 39 38.59 385⁄8 38.20 381⁄4
1.67 111⁄16 1.42 17⁄16 1.22 11⁄4 1.02 1 0.960 1 13 0.830 ⁄16 3 0.750 ⁄4 5 ⁄8 0.650 5⁄ 0.650 8 5⁄ 0.630 8
W36×848* W40×798* W40×650* W40×527* W40×439* W40×393* W40×359* W40×328* W40×300 W40×280 W40×260 W40×245 W40×230
249 234 190 154 128 115 105 96.4 88.3 82.4 76.5 72.1 67.6
42.45 41.97 40.47 39.21 38.26 37.80 37.40 37.09 36.74 36.52 36.26 36.08 35.90
421⁄2 42 401⁄2 391⁄4 381⁄4 373⁄4 373⁄8 371⁄8 363⁄4 361⁄2 361⁄4 361⁄8 357⁄8
Flange
2.520 2.380 1.970 1.610 1.360 1.220 1.120 1.020 0.945 0.885 0.840 0.800 0.760
1 7⁄ 8 13⁄ 16 11⁄ 16
21⁄2 23⁄8 2 15⁄8 13⁄8 11⁄4 11⁄8 1 15⁄ 16 7⁄ 8 13⁄ 16 13⁄ 16 3⁄ 4
Width bf
Thickness tf
k
in.
k1
in.
in.
1.770 1.580 1.420 1.220
13⁄4 19⁄16 17⁄16 11⁄4
387⁄16 29⁄16 387⁄16 23⁄8 387⁄16 23⁄16 387⁄16 2
15⁄16 11⁄4 13⁄16 11⁄8
3⁄ 4 11⁄ 16 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16
16.690 163⁄4 16.420 167⁄16 16.220 161⁄4 16.060 161⁄16 15.910 157⁄8 15.825 157⁄8 15.830 157⁄8 15.750 153⁄4 15.750 153⁄4 15.750 153⁄4 15.750 153⁄4
3.230 2.760 2.360 2.050 1.770 1.650 1.575 1.420 1.220 1.065 0.830
31⁄4 23⁄4 23⁄8 21⁄16 13⁄4 15⁄8 19⁄16 17⁄16 11⁄4 11⁄16 13⁄ 16
343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16
47⁄16 21⁄16 315⁄16 115⁄16 39⁄16 17⁄8 31⁄4 13⁄4 215⁄16 111⁄16 31⁄16 111⁄16 23⁄4 15⁄8 25⁄8 19⁄16 23⁄8 11⁄2 21⁄4 11⁄2 2 11⁄2
13⁄ 16 11⁄ 16 5⁄ 8 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16
12.640 125⁄8 12.360 123⁄8 12.170 123⁄16 11.970 12 11.930 12 11.890 117⁄8 11.810 113⁄4 11.810 113⁄4 11.810 113⁄4 11.810 113⁄4
2.950 215⁄16 2.520 21⁄2 2.130 21⁄8 1.810 113⁄16 1.730 13⁄4 1.575 17⁄16 1.415 19⁄16 1.220 11⁄4 1.025 1 0.830 13⁄16
343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16
41⁄8 2 311⁄16 17⁄8 35⁄16 113⁄16 3 111⁄16 215⁄16 111⁄16 23⁄4 15⁄8 25⁄8 19⁄16 23⁄8 11⁄2 23⁄16 11⁄2 2 11⁄2
11⁄4 13⁄16 1 13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 7⁄ 16 7⁄ 16 3⁄ 8
18.130 17.990 17.575 17.220 16.965 16.830 16.730 16.630 16.655 16.595 16.550 16.510 16.470
181⁄8 18 175⁄8 171⁄4 17 167⁄8 163⁄4 165⁄8 165⁄8 165⁄8 161⁄2 161⁄2 161⁄2
4.530 41⁄2 4.290 45⁄16 3.540 39⁄16 2.910 215⁄16 2.440 27⁄16 2.200 23⁄16 2.010 2 1.850 17⁄8 1.680 111⁄16 1.570 19⁄16 1.440 17⁄16 1.350 13⁄8 1.260 11⁄4
311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8
511⁄16 57⁄16 411⁄16 41⁄16 39⁄16 35⁄16 31⁄8 3 213⁄16 211⁄16 29⁄16 21⁄2 23⁄8
1
15.950 15.830 15.750 15.750
in.
T
153⁄4 157⁄8 153⁄4 153⁄4
1⁄ 2 7⁄ 16 3⁄ 8 3⁄ 8
in.
Distance
*Group 4 or Group 5 shape. See Notes in Table 1-2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
21⁄4 23⁄16 2 13⁄4 15⁄8 15⁄8 19⁄16 11⁄2 11⁄2 11⁄2 11⁄2 17⁄16 17⁄16
STRUCTURAL SHAPES
1 - 27
W SHAPES Properties
Y
tf
d
k
k1
X
X
T
tw
Y bf
Nominal Wt. per ft
Compact Section Criteria
h tw
Fy′′′
lb
bf 2tf
335 290 262 230
4.5 5.0 5.5 6.5
593 503 431 372 321 297 277 249 215 199 174
k
Plastic Modulus
Elastic Properties Axis X-X
X1
X2 × 106
ksi
ksi
2
(1/ksi)
in.
38.1 44.7 49.2 54.8
44 32 26 21
2430 2140 1930 1690
5110 8220 12300 21200
31100 27100 24200 20800
2.6 3.0 3.4 3.9 4.5 4.8 5.0 5.5 6.5 7.4 9.5
19.1 22.2 25.5 29.5 34.2 36.8 41.2 45.6 52.6 52.6 52.6
— — — — — 47 38 31 23 23 23
4790 4110 3550 3100 2690 2500 2350 2120 1830 1690 1500
337 620 1100 1860 3240 4240 5370 7940 14000 20300 36000
466 392 331 278 264 235 211 183 167 149
2.1 2.5 2.9 3.3 3.4 3.8 4.2 4.8 5.8 7.1
20.5 24.1 28.0 33.5 35.6 41.2 45.6 52.6 52.6 54.3
— — — 57 50 38 31 23 23 22
4560 3920 3360 2860 2720 2430 2200 1900 1750 1610
848 798 650 527 439 393 359 328 300 280 260 245 230
2.0 2.1 2.5 3.0 3.5 3.8 4.2 4.5 5.0 5.3 5.7 6.1 6.5
12.5 13.2 16.0 19.6 23.1 25.8 28.1 30.9 33.3 35.6 37.5 39.4 41.4
— — — — — — — — 58 51 46 41 37
7100 6720 5590 4630 3900 3540 3240 2980 2720 2560 2370 2230 2100
S
I 4
Axis Y-Y
r
S
I 4
r 3
Zx
in.
in.
in.
in.
in.3
1410 1240 1120 969
17.8 17.8 17.7 17.5
1200 1050 927 796
150 133 118 101
3.49 3.50 3.46 3.43
1620 1420 1270 1100
236 206 183 157
50400 41700 34800 29600 25100 23200 21900 19500 16700 14900 12200
2340 1980 1690 1460 1250 1170 1100 992 858 769 639
17.0 16.8 16.6 16.4 16.3 16.3 16.4 16.3 16.2 16.0 15.5
2520 2050 1690 1420 1190 1090 1040 926 796 695 541
302 250 208 177 150 138 132 118 101 88.2 68.8
3.81 3.72 3.65 3.60 3.56 3.54 3.58 3.56 3.54 3.45 3.26
2760 2300 1950 1670 1420 1330 1250 1120 963 868 715
481 394 327 277 234 215 204 182 156 137 107
473 851 1560 2910 3510 5310 7890 13700 20500 31400
36300 29900 24700 20500 19400 17400 15500 13300 11600 9780
1710 1440 1210 1020 971 874 785 682 599 512
16.3 16.1 15.9 15.8 15.8 15.9 15.8 15.7 15.3 14.9
1010 803 646 521 493 444 390 336 283 229
160 130 106 87.1 82.6 74.6 66.1 56.9 47.9 38.8
2.72 2.64 2.57 2.52 2.52 2.54 2.51 2.50 2.40 2.29
2050 1710 1430 1190 1130 1010 905 781 692 597
262 212 172 140 132 118 105 89.6 76.0 62.2
71 87 175 365 704 1040 1470 2040 2930 3730 5100 6430 8190
67400 62600 48900 38300 31000 27500 24800 22500 20300 18900 17300 16100 15000
3170 2980 2420 1950 1620 1450 1320 1210 1110 1030 953 895 837
16.4 16.4 16.0 15.8 15.6 15.5 15.4 15.3 15.2 15.1 15.0 15.0 14.9
4550 4200 3230 2490 1990 1750 1570 1420 1300 1200 1090 1010 940
501 467 367 289 235 208 188 171 156 144 132 123 114
4.27 4.24 4.12 4.02 3.95 3.90 3.87 3.84 3.83 3.81 3.78 3.75 3.73
3830 3570 2840 2270 1860 1660 1510 1380 1260 1170 1080 1010 943
799 743 580 454 367 325 292 265 241 223 204 190 176
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3
Zy
in.
in.
3
1 - 28
DIMENSIONS AND PROPERTIES
Y
tf
d
X
W SHAPES Dimensions
k
k1
X
T
tw
Y bf
k
Web
Designation
Area A 2
in.
Depth d in.
Flange
Thickness tw
tw 2
in.
in.
Width bf in.
Distance
Thickness tf in.
T
k
k1
in.
in.
in.
W36×256 W40×232 W40×210 W40×194 W40×182 W40×170 W40×160 W40×150 W40×135
75.4 68.1 61.8 57.0 53.6 50.0 47.0 44.2 39.7
37.43 37.12 36.69 36.49 36.33 36.17 36.01 35.85 35.55
373⁄8 371⁄8 363⁄4 361⁄2 363⁄8 361⁄8 36 357⁄8 351⁄2
0.960 0.870 0.830 0.765 0.725 0.680 0.650 0.625 0.600
1 7⁄ 8 13⁄ 16 3⁄ 4 3⁄ 4 11⁄ 16 5⁄ 8 5⁄ 8 5⁄ 8
1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16
12.215 12.120 12.180 12.115 12.075 12.030 12.000 11.975 11.950
121⁄4 121⁄8 121⁄8 121⁄8 121⁄8 12 12 12 12
1.730 1.570 1.360 1.260 1.180 1.100 1.020 0.940 0.790
13⁄4 19⁄16 13⁄8 11⁄4 13⁄16 11⁄8 1 15⁄ 16 13⁄ 16
321⁄8 321⁄8 321⁄8 321⁄8 321⁄8 321⁄8 321⁄8 321⁄8 321⁄8
25⁄8 21⁄2 25⁄16 23⁄16 21⁄8 2 115⁄16 17⁄8 111⁄16
15⁄16 11⁄4 11⁄4 13⁄16 13⁄16 13⁄16 11⁄8 11⁄8 11⁄8
W33×354* W40×318* W40×291* W40×263* W40×241 W40×221 W40×201
104 93.5 85.6 77.4 70.9 65.0 59.1
35.55 35.16 34.84 34.53 34.18 33.93 33.68
351⁄2 351⁄8 347⁄8 341⁄2 341⁄8 337⁄8 335⁄8
1.160 1.040 0.960 0.870 0.830 0.775 0.715
13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16
5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8
16.100 15.985 15.905 15.805 15.860 15.805 15.745
161⁄8 16 157⁄8 153⁄4 157⁄8 153⁄4 153⁄4
2.090 1.890 1.730 1.570 1.400 1.275 1.150
21⁄16 17⁄8 13⁄4 19⁄16 13⁄8 11⁄4 11⁄8
293⁄4 293⁄4 293⁄4 293⁄4 293⁄4 293⁄4 293⁄4
27⁄8 211⁄16 29⁄16 23⁄8 23⁄16 21⁄16 115⁄16
13⁄8 15⁄16 11⁄4 13⁄16 13⁄16 13⁄16 11⁄8
W33×169 W40×152 W40×141 W40×130 W40×118
49.5 44.7 41.6 38.3 34.7
33.82 33.49 33.30 33.09 32.86
337⁄8 331⁄2 331⁄4 331⁄8 327⁄8
0.670 0.635 0.605 0.580 0.550
11⁄ 16 5⁄ 8 5⁄ 8 9⁄ 16 9⁄ 16
3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 5⁄ 16
11.500 11.565 11.535 11.510 11.480
111⁄2 115⁄8 111⁄2 111⁄2 111⁄2
1.220 1.055 0.960 0.855 0.740
11⁄4 11⁄16 15⁄ 16 7⁄ 8 3⁄ 4
293⁄4 293⁄4 293⁄4 293⁄4 293⁄4
21⁄16 17⁄8 13⁄4 111⁄16 19⁄16
11⁄8 11⁄8 11⁄16 11⁄16 11⁄16
W30×477* W40×391* W40×326* W40×292* W40×261 W40×235 W40×211 W40×191 W40×173
140 114 95.7 85.7 76.7 69.0 62.0 56.1 50.8
34.21 33.19 32.40 32.01 31.61 31.30 30.94 30.68 30.44
341⁄4 331⁄4 323⁄8 32 315⁄8 311⁄4 31 305⁄8 301⁄2
1.630 1.360 1.140 1.020 0.930 0.830 0.775 0.710 0.655
15⁄8 13⁄8 11⁄8 1 15⁄ 16 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8
13⁄ 16 11⁄ 16 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16
15.865 15.590 15.370 15.255 15.155 15.055 15.105 15.040 14.985
157⁄8 155⁄8 153⁄8 151⁄2 151⁄8 15 151⁄8 15 15
2.950 2.440 2.050 1.850 1.650 1.500 1.315 1.185 1.065
3 27⁄16 21⁄16 17⁄8 15⁄8 11⁄2 15⁄16 13⁄16 11⁄16
263⁄4 263⁄4 263⁄4 263⁄4 263⁄4 263⁄4 263⁄4 263⁄4 263⁄4
33⁄4 31⁄4 213⁄16 25⁄8 27⁄16 21⁄4 21⁄8 115⁄16 11⁄16
19⁄16 17⁄16 15⁄16 11⁄4 13⁄16 11⁄8 11⁄8 11⁄16 11⁄16
W30×148 W40×132 W40×124 W40×116 W40×108 W40×99 W40×90
43.5 38.9 36.5 34.2 31.7 29.1 26.4
30.67 30.31 30.17 30.01 29.83 29.65 29.53
305⁄8 301⁄4 301⁄8 30 297⁄8 295⁄8 291⁄2
0.650 0.615 0.585 0.565 0.545 0.520 0.470
5⁄ 8 5⁄ 8 9⁄ 16 9⁄ 16 9⁄ 16 1⁄ 2 1⁄ 2
5⁄ 16 5⁄ 16 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4
10.480 10.545 10.515 10.495 10.475 10.450 10.400
101⁄2 101⁄2 101⁄2 101⁄2 101⁄2 101⁄2 103⁄8
1.180 1.000 0.930 0.850 0.760 0.670 0.610
13⁄16 1 15⁄ 16 7⁄ 8 3⁄ 4 11⁄ 16 9⁄ 16
263⁄4 263⁄4 263⁄4 263⁄4 263⁄4 263⁄4 263⁄4
2 13⁄4 111⁄16 15⁄8 19⁄16 17⁄16 15⁄16
1 11⁄16 1 1 1 1 1
*Group 4 or Group 5 shape. See Notes in Table 1-2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL SHAPES
1 - 29
W SHAPES Properties
Y
tf
d
k
k1
X
X
T
tw
Y bf
Nominal Wt. per ft
Compact Section Criteria
h tw
Fy′′′
lb
bf 2tf
256 232 210 194 182 170 160 150 135
3.5 3.9 4.5 4.8 5.1 5.5 5.9 6.4 7.6
354 318 291 263 241 221 201
k
Plastic Modulus
Elastic Properties Axis X-X
Axis Y-Y
X1
X2 × 106
ksi
ksi
2
(1/ksi)
in.
33.8 37.3 39.1 42.4 44.8 47.8 50.0 52.0 54.1
56 46 42 36 32 28 26 24 22
2840 2580 2320 2140 2020 1900 1780 1680 1520
2870 4160 6560 8850 11300 14500 18600 24200 38000
16800 15000 13200 12100 11300 10500 9750 9040 7800
895 809 719 664 623 580 542 504 439
14.9 14.8 14.6 14.6 14.5 14.5 14.4 14.3 14.0
528 468 411 375 347 320 295 270 225
3.8 4.2 4.6 5.0 5.7 6.2 6.8
25.8 28.8 31.2 34.5 36.1 38.7 41.9
— — — 54 49 43 36
3540 3200 2940 2670 2430 2240 2040
1030 1530 2130 3100 4590 6440 9390
21900 19500 17700 15800 14200 12800 11500
1230 1110 1010 917 829 757 684
14.5 14.4 14.4 14.3 14.1 14.1 14.0
169 152 141 130 118
4.7 5.5 6.0 6.7 7.8
44.7 47.2 49.6 51.7 54.5
32 29 26 24 22
2160 1940 1800 1660 1510
8150 12900 17800 25100 37700
9290 8160 7450 6710 5900
549 487 448 406 359
477 391 326 292 261 235 211 191 173
2.7 3.2 3.7 4.1 4.6 5.0 5.7 6.3 7.0
16.6 19.9 23.7 26.5 29.0 32.5 34.9 38.0 41.2
— — — — — 61 53 44 38
5420 4510 3860 3460 3110 2820 2510 2280 2070
193 386 735 1110 1690 2460 3950 5840 8540
26100 20700 16800 14900 13100 11700 10300 9170 8200
148 132 124 116 108 99 90
4.4 5.3 5.7 6.2 6.9 7.8 8.5
41.5 43.9 46.2 47.8 49.6 51.9 57.5
37 33 30 28 26 24 19
2310 2050 1930 1800 1680 1560 1430
6180 10500 13500 17700 24200 34100 47000
6680 5770 5360 4930 4470 3990 3620
S
I 4
r
S
I
86.5 77.2 67.5 61.9 57.6 53.2 49.1 45.1 37.7
2.65 2.62 2.58 2.56 2.55 2.53 2.50 2.47 2.38
1040 936 833 767 718 668 624 581 509
137 122 107 97.7 90.7 83.8 77.3 70.9 59.7
1460 1290 1160 1030 932 840 749
181 161 146 131 118 106 95.2
3.74 3.71 3.69 3.66 3.63 3.59 3.56
1420 1270 1150 1040 939 855 772
282 250 226 202 182 164 147
13.7 13.5 13.4 13.2 13.0
310 273 246 218 187
53.9 47.2 42.7 37.9 32.6
2.50 2.47 2.43 2.39 2.32
629 559 514 467 415
1530 1250 1030 928 827 746 663 598 539
13.7 13.5 13.2 13.2 13.1 13.0 12.9 12.8 12.7
1970 1550 1240 1100 959 855 757 673 598
249 198 162 144 127 114 100 89.5 79.8
3.75 3.68 3.61 3.58 3.54 3.52 3.49 3.46 3.43
1790 1430 1190 1060 941 845 749 673 605
436 380 355 329 299 269 245
12.4 12.2 12.1 12.0 11.9 11.7 11.7
227 196 181 164 146 128 115
43.3 37.2 34.4 31.3 27.9 24.5 22.1
2.28 2.25 2.23 2.19 2.15 2.10 2.09
500 437 408 378 346 312 283
in.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3
Zy in.3
in.
3
Zx in.
in.
4
r in.
in.
3
84.4 73.9 66.9 59.5 51.3 390 310 252 223 196 175 154 138 123 68.0 58.4 54.0 49.2 43.9 38.6 34.7
1 - 30
DIMENSIONS AND PROPERTIES
Y
tf
d
X
W SHAPES Dimensions
k
k1
X
T
tw
Y bf
k
Web
Designation
Area A 2
in.
Depth d in.
Flange
Thickness tw
tw 2
in.
in.
Width bf in.
Distance
Thickness tf
T
in.
k
k1
in.
in.
in.
W27×539* W40×448* W40×368* W40×307* W40×258 W40×235 W40×217 W40×194 W40×178 W40×161 W40×146
158 131 108 90.2 75.7 69.1 63.8 57.0 52.3 47.4 42.9
32.52 31.42 30.39 29.61 28.98 28.66 28.43 28.11 27.81 27.59 27.38
321⁄2 313⁄8 303⁄8 295⁄8 29 285⁄8 283⁄8 281⁄8 273⁄4 275⁄8 273⁄8
1.970 1.650 1.380 1.160 0.980 0.910 0.830 0.750 0.725 0.660 0.605
2 15⁄8 13⁄8 13⁄16 1 15⁄ 16 13⁄ 16 3⁄ 4 3⁄ 4 11⁄ 16 5⁄ 8
1 13⁄ 16 11⁄ 16 5⁄ 8 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 3⁄ 8 3⁄ 8 5⁄ 16
15.255 14.940 14.665 14.445 14.270 14.190 14.115 14.035 14.085 14.020 13.965
151⁄4 15 145⁄8 141⁄2 141⁄4 141⁄4 141⁄8 14 141⁄8 14 14
3.540 2.990 2.480 2.090 1.770 1.610 1.500 1.340 1.190 1.080 0.975
39⁄16 3 21⁄2 21⁄16 13⁄4 15⁄8 11⁄2 15⁄16 13⁄16 11⁄16 1
24 24 24 24 24 24 24 24 24 24 24
41⁄4 311⁄16 33⁄16 213⁄16 21⁄2 25⁄16 23⁄16 21⁄16 17⁄8 113⁄16 111⁄16
15⁄8 11⁄2 15⁄16 11⁄4 11⁄8 11⁄8 11⁄16 1 11⁄16 1 1
W27×129 W40×114 W40×102 W40×94 W40×84
37.8 33.5 30.0 27.7 24.8
27.63 27.29 27.09 26.92 26.71
275⁄8 271⁄4 271⁄8 267⁄8 263⁄4
0.610 0.570 0.515 0.490 0.460
5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16
5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4
10.010 10.070 10.015 9.990 9.960
10 101⁄8 10 10 10
1.100 0.930 0.830 0.745 0.640
11⁄8 15⁄ 16 13⁄ 16 3⁄ 4 5⁄ 8
24 24 24 24 24
113⁄16 15⁄8 19⁄16 17⁄16 13⁄8
15⁄ 16 15⁄ 16 15⁄ 16 15⁄ 16 15⁄ 16
W24×492* W40×408* W40×335* W40×279* W40×250* W40×229 W40×207 W40×192 W40×176 W40×162 W40×146 W40×131 W40×117 W40×104
144 119 98.4 82.0 73.5 67.2 60.7 56.3 51.7 47.7 43.0 38.5 34.4 30.6
29.65 28.54 27.52 26.73 26.34 26.02 25.71 25.47 25.24 25.00 24.74 24.48 24.26 24.06
295⁄8 281⁄2 271⁄2 263⁄4 263⁄8 26 253⁄4 251⁄2 251⁄4 25 243⁄4 241⁄2 241⁄4 24
1.970 1.650 1.380 1.160 1.040 0.960 0.870 0.810 0.750 0.705 0.650 0.605 0.550 0.500
2 15⁄8 13⁄8 13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2
1 13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4
14.115 13.800 13.520 13.305 13.185 13.110 13.010 12.950 12.890 12.955 12.900 12.855 12.800 12.750
141⁄8 133⁄4 131⁄2 131⁄4 131⁄8 131⁄8 13 13 127⁄8 13 127⁄8 127⁄8 123⁄4 123⁄4
3.540 2.990 2.480 2.090 1.890 1.730 1.570 1.460 1.340 1.220 1.090 0.960 0.850 0.750
39⁄16 3 21⁄2 21⁄16 17⁄8 13⁄4 19⁄16 17⁄16 15⁄16 11⁄4 11⁄16 15⁄ 16 7⁄ 8 3⁄ 4
21 21 21 21 21 21 21 21 21 21 21 21 21 21
45⁄16 33⁄4 31⁄4 27⁄8 211⁄16 21⁄2 23⁄8 21⁄4 21⁄8 2 17⁄8 13⁄4 15⁄8 11⁄2
19⁄16 13⁄8 11⁄4 11⁄8 11⁄8 1 1 1 15⁄ 16 11⁄16 1 1 ⁄16 11⁄16 1 1
W24×103 W40×94 W40×84 W40×76 W40×68
30.3 27.7 24.7 22.4 20.1
24.53 24.31 24.10 23.92 23.73
241⁄2 241⁄4 241⁄8 237⁄8 233⁄4
0.550 0.515 0.470 0.440 0.415
9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 7⁄ 16
5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 1⁄ 4
9.000 9.065 9.020 8.990 8.965
9 91⁄8 9 9 9
0.980 0.875 0.770 0.680 0.585
1 7⁄ 8 3⁄ 4 11⁄ 16 9⁄ 16
21 21 21 21 21
13⁄4 15⁄8 19⁄16 17⁄16 13⁄8
13⁄ 16 15⁄ 16 15⁄ 16 15⁄ 16
W24×62 W40×55
18.2 16.2
23.74 23.57
233⁄4 235⁄8
0.430 0.395
7⁄ 16 3⁄ 8
1⁄ 4 3⁄ 16
7.040 7.005
7 7
0.590 0.505
9⁄ 16 1⁄ 2
21 21
13⁄8 15⁄16
15⁄ 16 15⁄ 16
* Group 4 or Group 5 shape. See Notes in Table 1-2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1
STRUCTURAL SHAPES
1 - 31
W SHAPES Properties
Y
tf
d
k
k1
X
X
T
tw
Y bf
Nominal Wt. per ft
Compact Section Criteria
h tw
Fy′′′
lb
bf 2tf
539 448 368 307 258 235 217 194 178 161 146
2.2 2.5 3.0 3.5 4.0 4.4 4.7 5.2 5.9 6.5 7.2
129 114 102 94 84
k
Plastic Modulus
Elastic Properties Axis X-X
X1
X2 × 106
ksi
ksi
2
12.3 14.7 17.6 20.9 24.7 26.6 29.2 32.3 33.4 36.7 40.0
— — — — — — — 61 57 47 40
7160 6070 5100 4320 3670 3360 3120 2800 2550 2320 2110
66 123 243 463 873 1230 1640 2520 3740 5370 7900
25500 20400 16100 13100 10800 9660 8870 7820 6990 6280 5630
4.5 5.4 6.0 6.7 7.8
39.7 42.5 47.0 49.4 52.7
41 35 29 26 23
2390 2100 1890 1740 1570
5340 9220 14000 19900 31100
492 408 335 279 250 229 207 192 176 162 146 131 117 104
2.0 2.3 2.7 3.2 3.5 3.8 4.1 4.4 4.8 5.3 5.9 6.7 7.5 8.5
10.9 13.1 15.6 18.6 20.7 22.5 24.8 26.6 28.7 30.6 33.2 35.6 39.2 43.1
— — — — — — — — — — 58 50 42 34
7950 6780 5700 4840 4370 4020 3650 3410 3140 2870 2590 2330 2090 1860
103 94 84 76 68
4.6 5.2 5.9 6.6 7.7
39.2 41.9 45.9 49.0 52.0
42 37 30 27 24
62 55
6.0 6.9
50.1 54.6
25 21
S
I
r
S 3
Zx
in.
in.
in.3
1570 1300 1060 884 742 674 624 556 502 455 411
12.7 12.5 12.2 12.0 11.9 11.8 11.8 11.7 11.6 11.5 11.4
2110 1670 1310 1050 859 768 704 618 555 497 443
277 224 179 146 120 108 99.8 88.1 78.8 70.9 63.5
3.66 3.57 3.48 3.42 3.37 3.33 3.32 3.29 3.26 3.24 3.21
1880 1530 1240 1020 850 769 708 628 567 512 461
437 351 279 227 187 168 154 136 122 109 97.5
4760 4090 3620 3270 2850
345 299 267 243 213
11.2 11.0 11.0 10.9 10.7
184 159 139 124 106
36.8 31.5 27.8 24.8 21.2
2.21 2.18 2.15 2.12 2.07
395 343 305 278 244
57.6 49.3 43.4 38.8 33.2
43 79 156 297 436 605 876 1150 1590 2260 3420 5290 8190 12900
19100 15100 11900 9600 8490 7650 6820 6260 5680 5170 4580 4020 3540 3100
1290 1060 864 718 644 588 531 491 450 414 371 329 291 258
11.5 11.3 11.0 10.8 10.7 10.7 10.6 10.5 10.5 10.4 10.3 10.2 10.1 10.1
1670 1320 1030 823 724 651 578 530 479 443 391 340 297 259
237 191 152 124 110 99.4 88.8 81.8 74.3 68.4 60.5 53.0 46.5 40.7
3.41 3.33 3.23 3.17 3.14 3.11 3.08 3.07 3.04 3.05 3.01 2.97 2.94 2.91
1550 1250 1020 835 744 676 606 559 511 468 418 370 327 289
375 300 238 193 171 154 137 126 115 105 93.2 81.5 71.4 62.4
2400 2180 1950 1760 1590
5280 7800 12200 18600 29000
3000 2700 2370 2100 1830
245 222 196 176 154
9.96 9.87 9.79 9.69 9.55
119 109 94.4 82.5 70.4
26.5 24.0 20.9 18.4 15.7
1.99 1.98 1.95 1.92 1.87
280 254 224 200 177
41.5 37.5 32.6 28.6 24.5
1700 1540
25100 39600
1550 1350
131 114
9.23 9.11
34.5 29.1
1.38 1.34
153 134
15.7 13.3
9.80 8.30
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3
Zy
in.
in.
4
r
in.
in.
3
I
in.
(1/ksi)
4
Axis Y-Y
1 - 32
DIMENSIONS AND PROPERTIES
Y
tf
d
X
W SHAPES Dimensions
k
k1
X
T
tw
Y bf
k
Web
Designation
Area A 2
in.
Depth d in.
Flange
Thickness tw
tw 2
in.
in.
Width bf
Distance
Thickness tf
in.
in.
T
k
k1
in.
in.
in.
W21×201 W40×182 W40×166 W40×147 W40×132 W40×122 W40×111 W40×101
59.2 53.6 48.8 43.2 38.8 35.9 32.7 29.8
23.03 22.72 22.48 22.06 21.83 21.68 21.51 21.36
23 223⁄4 221⁄2 22 217⁄8 215⁄8 211⁄2 213⁄8
0.910 0.830 0.750 0.720 0.650 0.600 0.550 0.500
15⁄ 16 13⁄ 16 3⁄ 4 3⁄ 4 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2
1⁄ 2 7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4
12.575 12.500 12.420 12.510 12.440 12.390 12.340 12.290
125⁄8 121⁄2 123⁄8 121⁄2 121⁄2 123⁄8 123⁄8 121⁄4
1.630 1.480 1.360 1.150 1.035 0.960 0.875 0.800
15⁄8 11⁄2 13⁄8 11⁄8 11⁄16 15⁄ 16 7⁄ 8 13⁄ 16
181⁄4 181⁄4 181⁄4 181⁄4 181⁄4 181⁄4 181⁄4 181⁄4
23⁄8 21⁄4 21⁄8 17⁄8 113⁄16 111⁄16 15⁄8 19⁄16
1 1 15⁄ 16 11⁄16 1 1 15⁄ 16 15⁄ 16
W21×93 W40×83 W40×73 W40×68 W40×62
27.3 24.3 21.5 20.0 18.3
21.62 21.43 21.24 21.13 20.99
215⁄8 213⁄8 211⁄4 211⁄8 21
0.580 0.515 0.455 0.430 0.400
9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8
5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16
8.420 8.355 8.295 8.270 8.240
83⁄8 83⁄8 81⁄4 81⁄4 81⁄4
0.930 0.835 0.740 0.685 0.615
15⁄ 16 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8
181⁄4 181⁄4 181⁄4 181⁄4 181⁄4
111⁄16 19⁄16 11⁄2 17⁄16 13⁄8
15⁄ 16 15⁄ 16 7⁄ 8 7⁄ 8
W21×57 W40×50 W40×44
16.7 14.7 13.0
21.06 20.83 20.66
21 207⁄8 205⁄8
0.405 0.380 0.350
3⁄ 8 3⁄ 8 3⁄ 8
3⁄ 16 3⁄ 16 3⁄ 16
6.555 6.530 6.500
61⁄2 61⁄2 61⁄2
0.650 0.535 0.450
5⁄ 8 9⁄ 16 7⁄ 16
181⁄4 181⁄4 181⁄4
13⁄8 15⁄16 13⁄16
7⁄ 8 7⁄ 8 7⁄ 8
W18×311* W40×283* W40×258* W40×234* W40×211* W40×192 W40×175 W40×158 W40×143 W40×130
91.5 83.2 75.9 68.8 62.1 56.4 51.3 46.3 42.1 38.2
22.32 21.85 21.46 21.06 20.67 20.35 20.04 19.72 19.49 19.25
223⁄8 217⁄8 211⁄2 21 205⁄8 203⁄8 20 193⁄4 191⁄2 191⁄4
1.520 1.400 1.280 1.160 1.060 0.960 0.890 0.810 0.730 0.670
11⁄2 13⁄8 11⁄4 13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16
3⁄ 4 11⁄ 16 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8
12.005 11.890 11.770 11.650 11.555 11.455 11.375 11.300 11.220 11.160
12 117⁄8 113⁄4 115⁄8 111⁄2 111⁄2 113⁄8 111⁄4 111⁄4 111⁄8
2.740 23⁄4 2.500 21⁄2 2.300 25⁄16 2.110 21⁄8 1.910 115⁄16 1.750 13⁄4 1.590 19⁄16 1.440 17⁄16 1.320 15⁄16 1.200 13⁄16
151⁄2 151⁄2 151⁄2 151⁄2 151⁄2 151⁄2 151⁄2 151⁄2 151⁄2 151⁄2
37⁄16 33⁄16 3 23⁄4 9 2 ⁄16 27⁄16 21⁄4 21⁄8 2 17⁄8
13⁄16 13⁄16 11⁄8 1 1 15⁄ 16 7⁄ 8 7⁄ 8 13⁄ 16 13⁄ 16
W18×119 W40×106 W40×97 W40×86 W40×76
35.1 31.1 28.5 25.3 22.3
18.97 18.73 18.59 18.39 18.21
19 183⁄4 185⁄8 183⁄8 181⁄4
0.655 0.590 0.535 0.480 0.425
5⁄ 8 9⁄ 16 9⁄ 16 1⁄ 2 7⁄ 16
5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4
11.265 11.200 11.145 11.090 11.035
111⁄4 111⁄4 111⁄8 111⁄8 11
1.060 0.940 0.870 0.770 0.680
11⁄16 15⁄ 16 7⁄ 8 3⁄ 4 11⁄ 16
151⁄2 151⁄2 151⁄2 151⁄2 151⁄2
13⁄4 15⁄8 19⁄16 17⁄16 13⁄8
15⁄ 16 15⁄ 16 7⁄ 8 7⁄ 8 13⁄ 16
W18×71 W40×65 W40×60 W40×55 W40×50
20.8 19.1 17.6 16.2 14.7
18.47 18.35 18.24 18.11 17.99
181⁄2 183⁄8 181⁄4 181⁄8 18
0.495 0.450 0.415 0.390 0.355
1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8
1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16 3⁄ 16
7.635 7.590 7.555 7.530 7.495
75⁄8 75⁄8 71⁄2 71⁄2 71⁄2
0.810 0.750 0.695 0.630 0.570
13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 9⁄ 16
151⁄2 151⁄2 151⁄2 151⁄2 151⁄2
11⁄2 17⁄16 13⁄8 15⁄16 11⁄4
7⁄ 8 7⁄ 8 13⁄ 16 13⁄ 16 13⁄ 16
W18×46 W40×40 W40×35
13.5 11.8 10.3
18.06 17.90 17.70
18 177⁄8 173⁄4
0.360 0.315 0.300
3⁄ 8 5⁄ 16 5⁄ 16
3⁄ 16 3⁄ 16 3⁄ 16
6.060 6.015 6.000
6 6 6
0.605 0.525 0.425
5⁄ 8 1⁄ 2 7⁄ 16
151⁄2 151⁄2 151⁄2
11⁄4 13⁄16 11⁄8
13⁄ 16 13⁄ 16 3⁄ 4
*Group 4 or Group 5 shape. See Notes in Table 1-2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1
STRUCTURAL SHAPES
1 - 33
W SHAPES Properties
Y
tf
d
k
k1
X
X
T
tw
Y bf
Nominal Wt. per ft
Compact Section Criteria
h tw
Fy′′′
lb
bf 2tf
201 182 166 147 132 122 111 101
3.9 4.2 4.6 5.4 6.0 6.5 7.1 7.7
93 83 73 68 62
k
Plastic Modulus
Elastic Properties Axis X-X
X1
X2 × 106
ksi
ksi
2
20.6 22.6 24.9 26.1 28.9 31.3 34.1 37.5
— — — — — — 55 45
4290 3910 3590 3140 2840 2630 2400 2200
4.5 5.0 5.6 6.0 6.7
32.3 36.4 41.2 43.6 46.9
61 48 38 34 29
57 50 44
5.0 6.1 7.2
46.3 49.4 53.6
311 283 258 234 211 192 175 158 143 130
2.2 2.4 2.6 2.8 3.0 3.3 3.6 3.9 4.2 4.6
119 106 97 86 76
S
I 4
in.
in.
453 649 904 1590 2350 3160 4510 6400
5310 4730 4280 3630 3220 2960 2670 2420
2680 2400 2140 2000 1820
3460 5250 8380 10900 15900
30 26 22
1960 1730 1550
10.6 11.5 12.5 13.8 15.1 16.7 18.0 19.8 21.9 23.9
— — — — — — — — — —
5.3 6.0 6.4 7.2 8.1
24.5 27.2 30.0 33.4 37.8
71 65 60 55 50
4.7 5.1 5.4 6.0 6.6
46 40 35
5.0 5.7 7.1
Axis Y-Y
r
S
I 4
r 3
Zx
in.
in.
in.
in.
in.3
461 417 380 329 295 273 249 227
9.47 9.40 9.36 9.17 9.12 9.09 9.05 9.02
542 483 435 376 333 305 274 248
86.1 77.2 70.1 60.1 53.5 49.2 44.5 40.3
3.02 3.00 2.98 2.95 2.93 2.92 2.90 2.89
530 476 432 373 333 307 279 253
133 119 108 92.6 82.3 75.6 68.2 61.7
2070 1830 1600 1480 1330
192 171 151 140 127
8.70 8.67 8.64 8.60 8.54
92.9 81.4 70.6 64.7 57.5
22.1 19.5 17.0 15.7 13.9
1.84 1.83 1.81 1.80 1.77
221 196 172 160 144
34.7 30.5 26.6 24.4 21.7
13100 22600 36600
1170 984 843
111 94.5 81.6
8.36 8.18 8.06
30.6 24.9 20.7
1.35 1.30 1.26
129 110 95.4
14.8 12.2 10.2
8160 7520 6920 6360 5800 5320 4870 4430 4060 3710
38 52 71 97 140 194 274 396 557 789
6960 6160 5510 4900 4330 3870 3450 3060 2750 2460
624 564 514 466 419 380 344 310 282 256
8.72 8.61 8.53 8.44 8.35 8.28 8.20 8.12 8.09 8.03
795 704 628 558 493 440 391 347 311 278
132 118 107 95.8 85.3 76.8 68.8 61.4 55.5 49.9
2.95 2.91 2.88 2.85 2.82 2.79 2.76 2.74 2.72 2.70
753 676 611 549 490 442 398 356 322 291
207 185 166 149 132 119 106 94.8 85.4 76.7
— — — 57 45
3340 2990 2750 2460 2180
1210 1880 2580 4060 6520
2190 1910 1750 1530 1330
231 204 188 166 146
7.90 7.84 7.82 7.77 7.73
253 220 201 175 152
44.9 39.4 36.1 31.6 27.6
2.69 2.66 2.65 2.63 2.61
261 230 211 186 163
69.1 60.5 55.3 48.4 42.2
32.4 35.7 38.7 41.2 45.2
61 50 43 38 31
2680 2470 2290 2110 1920
3310 4540 6080 8540 12400
1170 1070 984 890 800
127 117 108 98.3 88.9
7.50 7.49 7.47 7.41 7.38
60.3 54.8 50.1 44.9 40.1
15.8 14.4 13.3 11.9 10.7
1.70 1.69 1.69 1.67 1.65
145 133 123 112 101
24.7 22.5 20.6 18.5 16.6
44.6 51.0 53.5
32 25 22
2060 1810 1590
10100 17200 30300
712 612 510
78.8 68.4 57.6
7.25 7.21 7.04
22.5 19.1 15.3
9.35 7.64 6.36
7.43 6.35 5.12
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1.29 1.27 1.22
3
Zy
in.
(1/ksi)
3
90.7 78.4 66.5
11.7 9.95 8.06
1 - 34
DIMENSIONS AND PROPERTIES
Y
tf
d
X
W SHAPES Dimensions
k
k1
X
T
tw
Y bf
k
Web
Designation
Area A 2
in.
Depth d in.
Thickness tw in.
Flange
tw 2 in.
Width bf in.
Distance
Thickness tf in.
T
k
in.
in.
k1 in.
W16×100 W16×89 W16×77 W16×67
29.4 26.2 22.6 19.7
16.97 16.75 16.52 16.33
17 163⁄4 161⁄2 163⁄8
0.585 0.525 0.455 0.395
9⁄ 16 1⁄ 2 7⁄ 16 3⁄ 8
5⁄ 16 1⁄ 4 1⁄ 4 3⁄ 16
10.425 10.365 10.295 10.235
103⁄8 103⁄8 101⁄4 101⁄4
0.985 0.875 0.760 0.665
1 7⁄ 8 3⁄ 4 11⁄ 16
135⁄8 111⁄16 135⁄8 19⁄16 135⁄8 17⁄16 135⁄8 13⁄8
15⁄ 16 7⁄ 8 7⁄ 8 13⁄ 16
W16×57 W16×50 W16×45 W16×40 W16×36
16.8 14.7 13.3 11.8 10.6
16.43 16.26 16.13 16.01 15.86
163⁄8 161⁄4 161⁄8 16 157⁄8
0.430 0.380 0.345 0.305 0.295
7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16
1⁄ 4 3⁄ 16 3⁄ 16 3⁄ 16 3⁄ 16
7.120 7.070 7.035 6.995 6.985
71⁄8 71⁄8 7 7 7
0.715 0.630 0.565 0.505 0.430
11⁄
16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16
135⁄8 135⁄8 135⁄8 135⁄8 135⁄8
13⁄8 15⁄16 11⁄4 13⁄16 11⁄8
7⁄ 8 13⁄ 16 13⁄ 16 13⁄ 16 3⁄ 4
9.12 15.88 7.68 15.69
157⁄8 153⁄4
0.275 0.250
1⁄ 4 1⁄ 4
1⁄
5.525 5.500
51⁄2 51⁄2
0.440 0.345
7⁄ 16 3⁄ 8
135⁄8 135⁄8
11⁄8 11⁄16
3⁄ 4 3⁄ 4
17⁄8 19⁄16 17⁄16 15⁄16 13⁄16 11⁄8 1
18.560 17.890 17.650 17.415 17.200 17.010 16.835
181⁄2 177⁄8 175⁄8 173⁄8 171⁄4 17 167⁄8
5.120 51⁄8 4.910 415⁄16 4.520 41⁄2 4.160 43⁄16 3.820 313⁄16 3.500 31⁄2 3.210 33⁄16
111⁄4 513⁄16 21⁄2 111⁄4 59⁄16 23⁄16 111⁄4 53⁄16 21⁄16 111⁄4 413⁄16 115⁄16 111⁄4 41⁄2 113⁄16 111⁄4 43⁄16 13⁄4 111⁄4 37⁄8 15⁄8
15⁄
16.695 16.590 16.475 16.360 16.230 16.110 15.995 15.890 15.800 15.710 15.650 15.565 15.500
163⁄4 165⁄8 161⁄2 163⁄8 161⁄4 161⁄8 16 157⁄8 153⁄4 153⁄4 155⁄8 155⁄8 151⁄2
3.035 31⁄16 2.845 27⁄8 2.660 211⁄16 2.470 21⁄2 2.260 21⁄4 2.070 21⁄16 1.890 17⁄8 1.720 13⁄4 1.560 19⁄16 1.440 17⁄16 1.310 15⁄16 1.190 13⁄16 1.090 11⁄16
111⁄4 311⁄16 111⁄4 31⁄2 111⁄4 35⁄16 111⁄4 31⁄8 111⁄4 215⁄16 111⁄4 23⁄4 111⁄4 29⁄16 111⁄4 23⁄8 111⁄4 21⁄4 111⁄4 21⁄8 111⁄4 2 111⁄4 17⁄8 111⁄4 13⁄4
W16×31 W16×26 W14×808* W16×730* W16×665* W16×605* W16×550* W16×500* W16×455*
237 215 196 178 162 147 134
22.84 22.42 21.64 20.92 20.24 19.60 19.02
227⁄8 223⁄8 215⁄8 207⁄8 201⁄4 195⁄8 19
3.740 33⁄4 3.070 31⁄16 2.830 213⁄16 2.595 25⁄8 2.380 23⁄8 2.190 23⁄16 2.015 2
W14×426* W16×398* W16×370* W16×342* W16×311* W16×283* W16×257* W16×233* W16×211 W16×193 W16×176 W16×159 W16×145
125 117 109 101 91.4 83.3 75.6 68.5 62.0 56.8 51.8 46.7 42.7
18.67 18.29 17.92 17.54 17.12 16.74 16.38 16.04 15.72 15.48 15.22 14.98 14.78
185⁄8 181⁄4 177⁄8 171⁄2 171⁄8 163⁄4 163⁄8 16 153⁄4 151⁄2 151⁄4 15 143⁄4
1.875 1.770 1.655 1.540 1.410 1.290 1.175 1.070 0.980 0.890 0.830 0.745 0.680
17⁄8 13⁄4 15⁄8 19⁄16 17⁄16 15⁄16 13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16
1⁄
7⁄
13⁄
13⁄ 3⁄
8 8
16 8 16 16
4 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8
*Group 4 or Group 5 shape. See Notes in Table 1-2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
19⁄16 11⁄2 17⁄16 13⁄8 15⁄16 11⁄4 13⁄16 13⁄16 11⁄8 11⁄16 11⁄16 1 1
STRUCTURAL SHAPES
1 - 35
W SHAPES Properties
Y
tf
d
k
k1
X
X
T
tw
Y bf
Compact NomSection inal Criteria Wt. per Fy′′′ bf h ft 2tf tw lb ksi
k
Plastic Modulus
Elastic Properties Axis X-X
X1
X2 × 106
ksi
2
(1/ksi)
S
I 4
Axis Y-Y
r 3
in.
in.
175 155 134 117
S
I 4
r 3
Zx 3
Zy in.3
in.
in.
in.
in.
in.
7.10 7.05 7.00 6.96
186 163 138 119
35.7 31.4 26.9 23.2
2.51 2.49 2.47 2.46
198 175 150 130
54.9 48.1 41.1 35.5
12.1 10.5 9.34 8.25 7.00
1.60 1.59 1.57 1.57 1.52
105 92.0 82.3 72.9 64.0
18.9 16.3 14.5 12.7 10.8
4.49 1.17 3.49 1.12
54.0 44.2
100 89 77 67
5.3 5.9 6.8 7.7
24.3 27.0 31.2 35.9
— — — 50
3450 3090 2680 2350
1040 1630 2790 4690
1490 1300 1110 954
57 50 45 40 36
5.0 5.6 6.2 6.9 8.1
33.0 37.4 41.2 46.6 48.1
59 46 38 30 28
2650 3400 2340 5530 2120 8280 1890 12900 1700 20800
758 659 586 518 448
92.2 81.0 72.7 64.7 56.5
6.72 6.68 6.65 6.63 6.51
43.1 37.2 32.8 28.9 24.5
31 26
6.3 8.0
51.6 56.8
24 20
1740 20000 1470 40900
375 301
47.2 38.4
6.41 6.26
12.4 9.59
808 730 665 605 550 500 455
1.8 1.8 2.0 2.1 2.3 2.4 2.6
3.4 3.7 4.0 4.4 4.8 5.2 5.7
— — — — — — —
18900 17500 16300 15100 14200 13100 12200
1.45 1.90 2.50 3.20 4.20 5.50 7.30
16000 14300 12400 10800 9430 8210 7190
1400 1280 1150 1040 931 838 756
8.21 8.17 7.98 7.80 7.63 7.48 7.33
5510 4720 4170 3680 3250 2880 2560
594 527 472 423 378 339 304
4.82 4.69 4.62 4.55 4.49 4.43 4.38
1834 1660 1480 1320 1180 1050 936
927 816 730 652 583 522 468
426 398 370 342 311 283 257 233 211 193 176 159 145
2.8 2.9 3.1 3.3 3.6 3.9 4.2 4.6 5.1 5.5 6.0 6.5 7.1
6.1 6.4 6.9 7.4 8.1 8.8 9.7 10.7 11.6 12.8 13.7 15.3 16.8
— — — — — — — — — — — — —
11500 10900 10300 9600 8820 8120 7460 6820 6230 5740 5280 4790 4400
8.90 11.0 13.9 17.9 24.4 33.4 46.1 64.9 91.8 125 173 249 348
6600 6000 5440 4900 4330 3840 3400 3010 2660 2400 2140 1900 1710
707 656 607 559 506 459 415 375 338 310 281 254 232
7.26 7.16 7.07 6.98 6.88 6.79 6.71 6.63 6.55 6.50 6.43 6.38 6.33
2360 2170 1990 1810 1610 1440 1290 1150 1030 931 838 748 677
283 262 241 221 199 179 161 145 130 119 107 96.2 87.3
4.34 4.31 4.27 4.24 4.20 4.17 4.13 4.10 4.07 4.05 4.02 4.00 3.98
869 801 736 672 603 542 487 436 390 355 320 287 260
434 402 370 338 304 274 246 221 198 180 163 146 133
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
7.03 5.48
1 - 36
DIMENSIONS AND PROPERTIES
Y
tf
d
X
W SHAPES Dimensions
k
k1
X
T
tw
Y bf
k
Web
Designation
Area A 2
in.
Depth d in.
Thickness tw in.
Flange
tw 2 in.
Width bf
Distance
Thickness tf
in.
in.
T
k
k1
in.
in.
in.
W14×132 W16×120 W16×109 W16×99 W16×90
38.8 35.3 32.0 29.1 26.5
14.66 14.48 14.32 14.16 14.02
145⁄8 141⁄2 143⁄8 141⁄8 14
0.645 0.590 0.525 0.485 0.440
5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16
5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4
14.725 14.670 14.605 14.565 14.520
143⁄4 145⁄8 145⁄8 145⁄8 141⁄2
1.030 0.940 0.860 0.780 0.710
1 15⁄ 16 7⁄ 8 3⁄ 4 11⁄ 16
111⁄4 111⁄4 111⁄4 111⁄4 111⁄4
111⁄16 15⁄8 19⁄16 17⁄16 13⁄8
15⁄ 16 15⁄ 16 7⁄ 8 7⁄ 8 7⁄ 8
W14×82 W16×74 W16×68 W16×61
24.1 21.8 20.0 17.9
14.31 14.17 14.04 13.89
141⁄4 141⁄8 14 137⁄8
0.510 0.450 0.415 0.375
1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8
1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16
10.130 10.070 10.035 9.995
101⁄8 101⁄8 10 10
0.855 0.785 0.720 0.645
7⁄ 8 13⁄ 16 3⁄ 4 5⁄ 8
11 11 11 11
15⁄8 19⁄16 11⁄2 17⁄16
15⁄ 16 15⁄ 16 15⁄ 16
W14×53 W16×48 W16×43
15.6 14.1 12.6
13.92 13.79 13.66
137⁄8 133⁄4 135⁄8
0.370 0.340 0.305
3⁄ 8 5⁄ 16 5⁄ 16
3⁄ 16 3⁄ 16 3⁄ 16
8.060 8.030 7.995
8 8 8
0.660 0.595 0.530
11⁄ 16 5⁄ 8 1⁄ 2
11 11 11
17⁄16 13⁄8 15⁄16
15⁄ 16 7⁄ 8 7⁄ 8
W14×38 W16×34 W16×30
11.2 10.0 8.85
14.10 13.98 13.84
141⁄8 14 137⁄8
0.310 0.285 0.270
5⁄ 16 5⁄ 16 1⁄ 4
3⁄ 16 3⁄ 16 1⁄ 8
6.770 6.745 6.730
63⁄4 63⁄4 63⁄4
0.515 0.455 0.385
1⁄ 2 7⁄ 16 3⁄ 8
12 12 12
11⁄16 1 15⁄ 16
5⁄ 8 5⁄ 8 5⁄ 8
W14×26 W16×22
7.69 6.49
13.91 13.74
137⁄8 133⁄4
0.255 0.230
1⁄ 4 1⁄ 4
1⁄ 8 1⁄ 8
5.025 5.000
5 5
0.420 0.335
7⁄ 16 5⁄ 16
12 12
15⁄ 16 7⁄ 8
9⁄ 16 9⁄ 16
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1
STRUCTURAL SHAPES
1 - 37
W SHAPES Properties
Y
tf
d
k
k1
X
X
T
tw
Y bf
Nominal Wt. per ft
Compact Section Criteria
h tw
Fy′′′
lb
bf 2tf
132 120 109 99 90
7.1 7.8 8.5 9.3 10.2
82 74 68 61
5.9 6.4 7.0 7.7
k
Plastic Modulus
Elastic Properties Axis X-X
X1
X2 × 106
ksi
ksi
2
17.7 19.3 21.7 23.5 25.9
— — — — —
4180 3830 3490 3190 2900
22.4 25.3 27.5 30.4
— — — —
53 48 43
6.1 30.8 6.7 33.5 7.5 37.4
38 34 30 26 22
S
I
Axis Y-Y
r
S
in.
in.
428 601 853 1220 1750
1530 1380 1240 1110 999
209 190 173 157 143
6.28 6.24 6.22 6.17 6.14
3600 3290 3020 2720
846 1190 1650 2460
882 796 723 640
123 112 103 92.2
6.05 6.04 6.01 5.98
— 57 46
2830 2580 2320
2250 3220 4900
541 485 428
77.8 70.3 62.7
5.89 5.85 5.82
57.7 51.4 45.2
6.6 39.6 7.4 43.1 8.7 45.4
41 35 31
2190 1970 1750
6850 10600 17600
385 340 291
54.6 48.6 42.0
5.87 5.83 5.73
26.7 23.3 19.6
6.0 48.1 7.5 53.3
28 22
1890 1610
13900 27300
245 199
35.3 29.0
5.65 5.54
(1/ksi)
3
I
4
in.
4
r
Zx
in.
in.
in.3
548 495 447 402 362
74.5 67.5 61.2 55.2 49.9
3.76 3.74 3.73 3.71 3.70
234 212 192 173 157
113 102 92.7 83.6 75.6
148 134 121 107
29.3 26.6 24.2 21.5
2.48 2.48 2.46 2.45
139 126 115 102
44.8 40.6 36.9 32.8
14.3 12.8 11.3
1.92 1.91 1.89
87.1 78.4 69.6
22.0 19.6 17.3
7.88 6.91 5.82
1.55 1.53 1.49
61.5 54.6 47.3
12.1 10.6 8.99
3.54 2.80
1.08 1.04
40.2 33.2
5.54 4.39
8.91 7.00
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3
Zy
in.
in.
3
1 - 38
DIMENSIONS AND PROPERTIES
Y
tf
d
X
W SHAPES Dimensions
k
k1
X
T
tw
Y bf
k
Web
Designation
Area A 2
in.
Depth d in.
Flange
Thickness tw
tw 2
in.
in.
Width bf
Distance
Thickness tf
in.
T
k
k1
in.
in.
in.
in.
2.955 215⁄16 2.705 211⁄16 2.470 21⁄2 2.250 21⁄4 2.070 21⁄16 1.900 17⁄8 1.735 13⁄4 1.560 19⁄16 1.400 13⁄8 1.250 11⁄4 1.105 11⁄8 0.990 1 7⁄ 0.900 8 0.810 13⁄16 3 0.735 ⁄4 0.670 11⁄16 5⁄ 0.605 8
91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2
311⁄16 37⁄16 33⁄16 215⁄16 23⁄4 25⁄8 27⁄16 21⁄4 21⁄8 115⁄16 113⁄16 111⁄16 15⁄8 11⁄2 17⁄16 13⁄8 15⁄16
11⁄2 17⁄16 13⁄8 15⁄16 11⁄4 11⁄4 13⁄16 11⁄8 11⁄16 1 1 15⁄ 16 7⁄ 8 7⁄ 8 7⁄ 8 7⁄ 8 13⁄ 16
5⁄ 8 9⁄ 16
91⁄2 91⁄2
13⁄8 11⁄4
13⁄ 16 13⁄ 16
0.640 0.575 0.515
5⁄ 8 9⁄ 16 1⁄ 2
91⁄2 91⁄2 91⁄2
13⁄8 11⁄4 11⁄4
13⁄ 16 13⁄ 16 3⁄ 4
61⁄2 61⁄2 61⁄2
0.520 0.440 0.380
1⁄ 2 7⁄ 16 3⁄ 8
101⁄2 101⁄2 101⁄2
15⁄ 16 7⁄ 8
1
9⁄ 16 1⁄ 2 1⁄ 2
4 4 4 4
0.425 0.350 0.265 0.225
7⁄ 16 3⁄ 8 1⁄ 4 1⁄ 4
101⁄2 101⁄2 101⁄2 101⁄2
7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16
1⁄ 2 1⁄ 2 1⁄ 2 1⁄ 2
W12×336* W16×305* W16×279* W16×252* W16×230* W16×210* W16×190 W16×170 W16×152 W16×136 W16×120 W16×106 W16×96 W16×87 W16×79 W16×72 W16×65
98.8 89.6 81.9 74.1 67.7 61.8 55.8 50.0 44.7 39.9 35.3 31.2 28.2 25.6 23.2 21.1 19.1
16.82 16.32 15.85 15.41 15.05 14.71 14.38 14.03 13.71 13.41 13.12 12.89 12.71 12.53 12.38 12.25 12.12
167⁄8 163⁄8 157⁄8 153⁄8 15 143⁄4 143⁄8 14 133⁄4 133⁄8 131⁄8 127⁄8 123⁄4 121⁄2 123⁄8 121⁄4 121⁄8
1.775 1.625 1.530 1.395 1.285 1.180 1.060 0.960 0.870 0.790 0.710 0.610 0.550 0.515 0.470 0.430 0.390
13⁄4 15⁄8 11⁄2 13⁄8 15⁄16 13⁄16 11⁄16 15⁄ 16 7⁄ 8 13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8
7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16
13.385 13.235 13.140 13.005 12.895 12.790 12.670 12.570 12.480 12.400 12.320 12.220 12.160 12.125 12.080 12.040 12.000
133⁄8 131⁄4 131⁄8 13 127⁄8 123⁄4 125⁄8 125⁄8 121⁄2 123⁄8 123⁄8 121⁄4 121⁄8 121⁄8 121⁄8 12 12
W12×58 W16×53
17.0 15.6
12.19 12.06
121⁄4 12
0.360 0.345
3⁄ 8 3⁄ 8
3⁄ 16 3⁄ 16
10.010 9.995
10 10
0.640 0.575
W12×50 W16×45 W16×40
14.7 13.2 11.8
12.19 12.06 11.94
121⁄4 12 12
0.370 0.335 0.295
3⁄ 8 5⁄ 16 5⁄ 16
3⁄ 16 3⁄ 16 3⁄ 16
8.080 8.045 8.005
81⁄8 8 8
W12×35 W16×30 W16×26
10.3 8.79 7.65
12.50 12.34 12.22
121⁄2 123⁄8 121⁄4
0.300 0.260 0.230
5⁄ 16 1⁄ 4 1⁄ 4
3⁄ 16 1⁄ 8 1⁄ 8
6.560 6.520 6.490
W12×22 W16×19 W16×16 W16×14
6.48 5.57 4.71 4.16
12.31 12.16 11.99 11.91
121⁄4 121⁄8 12 117⁄8
0.260 0.235 0.220 0.200
1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16
1⁄ 8 1⁄ 8 1⁄ 8 1⁄ 8
4.030 4.005 3.990 3.970
*Group 4 or Group 5 shape. See Notes in Table 1-2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL SHAPES
1 - 39
W SHAPES Properties
Y
tf
d
k
k1
X
X
T
tw
Y bf
Nominal Wt. per ft
Compact Section Criteria
h tw
Fy′′′
lb
bf 2tf
336 305 279 252 230 210 190 170 152 136 120 106 96 87 79 72 65
2.3 2.4 2.7 2.9 3.1 3.4 3.7 4.0 4.5 5.0 5.6 6.2 6.8 7.5 8.2 9.0 9.9
58 53
k
Plastic Modulus
Elastic Properties Axis X-X
X1
X2 × 106
ksi
ksi
2
5.5 6.0 6.3 7.0 7.6 8.2 9.2 10.1 11.2 12.3 13.7 15.9 17.7 18.9 20.7 22.6 24.9
— — — — — — — — — — — — — — — — —
12800 11800 11000 10100 9390 8670 7940 7190 6510 5850 5240 4660 4250 3880 3530 3230 2940
7.8 8.7
27.0 28.1
— —
3070 2820
50 45 40
6.3 7.0 7.8
26.2 29.0 32.9
— — 59
3170 2870 2580
35 30 26
6.3 7.4 8.5
36.2 41.8 47.2
22 19 16 14
4.7 5.7 7.5 8.8
41.8 46.2 49.4 54.3
(1/ksi)
S
I 4
Axis Y-Y
r 3
S
I 4
Zx 3
Zy
in.
in.
177 159 143 127 115 104 93.0 82.3 72.8 64.2 56.0 49.3 44.4 39.7 35.8 32.4 29.1
3.47 3.42 3.38 3.34 3.31 3.28 3.25 3.22 3.19 3.16 3.13 3.11 3.09 3.07 3.05 3.04 3.02
603 537 481 428 386 348 311 275 243 214 186 164 147 132 119 108 96.8
274 244 220 196 177 159 143 126 111 98.0 85.4 75.1 67.5 60.4 54.3 49.2 44.1
in.
in.
4060 3550 3110 2720 2420 2140 1890 1650 1430 1240 1070 933 833 740 662 597 533
483 435 393 353 321 292 263 235 209 186 163 145 131 118 107 97.4 87.9
6.41 1190 6.29 1050 6.16 937 6.06 828 5.97 742 5.89 664 5.82 589 5.74 517 5.66 454 5.58 398 5.51 345 5.47 301 5.44 270 5.38 241 5.34 216 5.31 195 5.28 174
1470 2100
475 425
78.0 70.6
5.28 5.23
107 95.8
21.4 19.2
2.51 2.48
86.4 77.9
32.5 29.1
1410 2070 3110
394 350 310
64.7 58.1 51.9
5.18 5.15 5.13
56.3 50.0 44.1
13.9 12.4 11.0
1.96 1.94 1.93
72.4 64.7 57.5
21.4 19.0 16.8
49 37 29
2420 4340 2090 7950 1820 13900
285 238 204
45.6 38.6 33.4
5.25 5.21 5.17
24.5 20.3 17.3
7.47 1.54 6.24 1.52 5.34 1.51
51.2 43.1 37.2
11.5 9.56 8.17
37 30 26 22
2160 8640 1880 15600 1610 32000 1450 49300
156 130 103 88.6
25.4 21.3 17.1 14.9
4.91 4.82 4.67 4.62
2.31 1.88 1.41 1.19
29.3 24.7 20.1 17.4
3.66 2.98 2.26 1.90
4.66 3.76 2.82 2.36
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
0.847 0.822 0.773 0.753
in.
in.3
in.
6.05 8.17 10.8 14.7 19.7 26.6 37.0 54.0 79.3 119 184 285 405 586 839 1180 1720
in.
r 3
1 - 40
DIMENSIONS AND PROPERTIES
Y
tf
d
X
W SHAPES Dimensions
k
k1
X
T
tw
Y bf
k
Web
Designation
Area A 2
in.
Depth d in.
Flange
Thickness tw
tw 2
in.
in.
Width bf
Distance
Thickness tf
k1
in.
in.
in.
32.9 29.4 25.9 22.6 20.0 17.6 15.8 14.4
11.36 11.10 10.84 10.60 10.40 10.22 10.09 9.98
113⁄8 111⁄8 107⁄8 105⁄8 103⁄8 101⁄4 101⁄8 10
0.755 0.680 0.605 0.530 0.470 0.420 0.370 0.340
3⁄ 4 11⁄ 16 5⁄ 8 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16
3⁄ 8 3⁄ 8 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16 3⁄ 16
10.415 10.340 10.265 10.190 10.130 10.080 10.030 10.000
103⁄8 103⁄8 101⁄4 101⁄4 101⁄8 101⁄8 10 10
1.250 1.120 0.990 0.870 0.770 0.680 0.615 0.560
11⁄4 11⁄8 1 7⁄ 8 3⁄ 4 11⁄ 16 5⁄ 8 9⁄ 16
75⁄8 75⁄8 75⁄8 75⁄8 75⁄8 75⁄8 75⁄8 75⁄8
17⁄8 13⁄4 15⁄8 11⁄2 13⁄8 15⁄16 11⁄4 13⁄16
15⁄ 16 7⁄ 8 13⁄ 16 13⁄ 16 3⁄ 4 3⁄ 4 11⁄ 16 11⁄ 16
W10×45 W10×39 W10×33
13.3 11.5 9.71
10.10 9.92 9.73
101⁄8 97⁄8 93⁄4
0.350 0.315 0.290
3⁄ 8 5⁄ 16 5⁄ 16
3⁄ 16 3⁄ 16 3⁄ 16
8.020 7.985 7.960
8 8 8
0.620 0.530 0.435
5⁄ 8 1⁄ 2 7⁄ 16
75⁄8 75⁄8 75⁄8
11⁄4 11⁄8 11⁄16
11⁄
0.300 0.260 0.240
5⁄ 16 1⁄ 4 1⁄ 4
3⁄ 16 1⁄ 8 1⁄ 8
5.810 5.770 5.750
53⁄4 53⁄4 53⁄4
0.510 0.440 0.360
1⁄ 2 7⁄ 16 3⁄ 8
85⁄8 85⁄8 85⁄8
15⁄ 16 7⁄ 8 3⁄ 4
1⁄ 2 1⁄ 2 1⁄ 2
0.250 0.240 0.230 0.190
1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16
1⁄ 8 1⁄ 8 1⁄ 8 1⁄ 8
4.020 4.010 4.000 3.960
4 4 4 4
0.395 0.330 0.270 0.210
3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
85⁄8 85⁄8 85⁄8 85⁄8
13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8
1⁄ 2 1⁄ 2 7⁄ 16 7⁄ 16
W10×30 W10×26 W10×22
8.84 7.61 6.49
10.47 10.33 10.17
W10×19 W10×17 W10×15 W10×12
5.62 4.99 4.41 3.54
10.24 10.11 9.99 9.87
101⁄4 101⁄8 10 97⁄8
in.
k
W10×112 W10×100 W10×88 W10×77 W10×68 W10×60 W10×54 W10×49
101⁄2 103⁄8 101⁄8
in.
T
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
11⁄
11⁄
16 16 16
STRUCTURAL SHAPES
1 - 41
W SHAPES Properties
Y
tf
d
k
k1
X
X
T
tw
Y bf
Nominal Wt. per ft
Compact Section Criteria
h tw
Fy′′′
lb
bf 2tf
112 100 88 77 68 60 54 49
4.2 4.6 5.2 5.9 6.6 7.4 8.2 8.9
45 39 33
k
Plastic Modulus
Elastic Properties Axis X-X
X1
X2 × 106
ksi
ksi
2
in.
in.
10.4 11.6 13.0 14.8 16.7 18.7 21.2 23.1
— — — — — — — —
7080 6400 5680 5010 4460 3970 3580 3280
56.7 83.8 132 213 334 525 778 1090
716 623 534 455 394 341 303 272
6.5 7.5 9.1
22.5 25.0 27.1
— — —
3650 3190 2710
758 1300 2510
30 26 22
5.7 6.6 8.0
29.5 34.0 36.9
— 55 47
2890 2500 2150
2160 3790 7170
19 17 15 12
5.1 6.1 7.4 9.4
35.4 36.9 38.5 46.6
51 47 43 30
2420 2210 1930 1550
5160 7820 14300 35400
(1/ksi)
S
I 4
Axis Y-Y
r 3
S
I 4
r 3
in.3
2.68 2.65 2.63 2.60 2.59 2.57 2.56 2.54
147 130 113 97.6 85.3 74.6 66.6 60.4
69.2 61.0 53.1 45.9 40.1 35.0 31.3 28.3
13.3 11.3 9.20
2.01 1.98 1.94
54.9 46.8 38.8
20.3 17.2 14.0
5.75 4.89 3.97
1.37 1.36 1.33
36.6 31.3 26.0
8.84 7.50 6.10
2.14 1.78 1.45 1.10
0.874 0.844 0.810 0.785
21.6 18.7 16.0 12.6
3.35 2.80 2.30 1.74
in.
in.
in.
126 112 98.5 85.9 75.7 66.7 60.0 54.6
4.66 4.60 4.54 4.49 4.44 4.39 4.37 4.35
236 207 179 154 134 116 103 93.4
45.3 40.0 34.8 30.1 26.4 23.0 20.6 18.7
248 209 170
49.1 42.1 35.0
4.32 4.27 4.19
53.4 45.0 36.6
170 144 118
32.4 27.9 23.2
4.38 4.35 4.27
16.7 14.1 11.4
18.8 16.2 13.8 10.9
4.14 4.05 3.95 3.90
4.29 3.56 2.89 2.18
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3
Zy
in.
in.
96.3 81.9 68.9 53.8
Zx
1 - 42
DIMENSIONS AND PROPERTIES
Y
tf
d
X
W SHAPES Dimensions
k
k1
X
T
tw
Y bf
k
Web
Designation
Area A
Depth d
2
in.
in.
Thickness tw in.
Flange
tw 2 in.
Width bf
Distance
Thickness tf
in.
in.
T
k
k1
in.
in.
W8×67 W8×58 W8×48 W8×40 W8×35 W8×31
19.7 17.1 14.1 11.7 10.3 9.13
9.00 8.75 8.50 8.25 8.12 8.00
9 83⁄4 81⁄2 81⁄4 81⁄8 8
0.570 0.510 0.400 0.360 0.310 0.285
9⁄ 16 1⁄ 2 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16
5⁄ 16 1⁄ 4 3⁄ 16 3⁄ 16 3⁄ 16 3⁄ 16
8.280 8.220 8.110 8.070 8.020 7.995
81⁄4 81⁄4 81⁄8 81⁄8 8 8
0.935 0.810 0.685 0.560 0.495 0.435
15⁄ 16 13⁄ 16 11⁄ 16 9⁄ 16 1⁄ 2 7⁄ 16
61⁄8 61⁄8 61⁄8 61⁄8 61⁄8 61⁄8
17⁄16 15⁄16 13⁄16 11⁄16 1 15⁄ 16
11⁄
W8×28 W8×24
8.25 7.08
8.06 7.93
8 77⁄8
0.285 0.245
5⁄ 16 1⁄ 4
3⁄ 16 1⁄ 8
6.535 6.495
61⁄2 61⁄2
0.465 0.400
7⁄ 16 3⁄ 8
61⁄8 61⁄8
15⁄ 16 7⁄ 8
9⁄ 16 9⁄ 16
W8×21 W8×18
6.16 5.26
8.28 8.14
81⁄4 81⁄8
0.250 0.230
1⁄ 4 1⁄ 4
1⁄ 8 1⁄ 8
5.270 5.250
51⁄4 51⁄4
0.400 0.330
3⁄ 8 5⁄ 16
65⁄8 65⁄8
13⁄ 16 3⁄ 4
1⁄ 2 7⁄ 16
W8×15 W8×13 W8×10
4.44 3.84 2.96
8.11 7.99 7.89
81⁄8 8 77⁄8
0.245 0.230 0.170
1⁄ 4 1⁄ 4 3⁄ 16
1⁄ 8 1⁄ 8 1⁄ 8
4.015 4.000 3.940
4 4 4
0.315 0.255 0.205
5⁄ 16 1⁄ 4 3⁄ 16
65⁄8 65⁄8 65⁄8
3⁄ 4 11⁄ 16 5⁄ 8
1⁄ 2 7⁄ 16 7⁄ 16
W6×25 W8×20 W8×15
7.34 5.87 4.43
6.38 6.20 5.99
63⁄8 61⁄4 6
0.320 0.260 0.230
5⁄ 16 1⁄ 4 1⁄ 4
3⁄ 16 1⁄ 8 1⁄ 8
6.080 6.020 5.990
61⁄8 6 6
0.455 0.365 0.260
7⁄ 16 3⁄ 8 1⁄ 4
43⁄4 43⁄4 43⁄4
13⁄ 16 3⁄ 4 5⁄ 8
7⁄ 16 7⁄ 16 3⁄ 8
W6×16 W8×12 W8×9
4.74 3.55 2.68
6.28 6.03 5.90
61⁄4 6 57⁄8
0.260 0.230 0.170
1⁄ 4 1⁄ 4 3⁄ 16
1⁄ 8 1⁄ 8 1⁄ 8
4.030 4.000 3.940
4 4 4
0.405 0.280 0.215
3⁄ 8 1⁄ 4 3⁄ 16
43⁄4 43⁄4 43⁄4
3⁄ 4 5⁄ 8 9⁄ 16
7⁄ 16 3⁄ 8 3⁄ 8
W5×19 W8×16
5.54 4.68
5.15 5.01
51⁄8 5
0.270 0.240
1⁄ 4 1⁄ 4
1⁄ 8 1⁄ 8
5.030 5.000
5 5
0.430 0.360
7⁄ 16 3⁄ 8
31⁄2 31⁄2
13⁄ 16 3⁄ 4
7⁄ 16 7⁄ 16
W4×13
3.83
4.16
41⁄8
0.280
1⁄ 4
1⁄ 8
4.060
4
0.345
3⁄ 8
23⁄4
11⁄ 16
7⁄ 16
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
in. 11⁄
16
16 5⁄ 8 5⁄ 8 9⁄ 16 9⁄ 16
STRUCTURAL SHAPES
1 - 43
W SHAPES Properties
Y
tf
d
k
k1
X
X
T
tw
Y bf
Nominal Wt. per ft
Compact Section Criteria
h tw
Fy′′′
lb
bf 2tf
67 58 48 40 35 31
4.4 5.1 5.9 7.2 8.1 9.2
28 24
k
Plastic Modulus
Elastic Properties Axis X-X
X1
X2 × 106
ksi
ksi
2
in.
in.
11.1 12.4 15.8 17.6 20.4 22.2
— — — — — —
6620 5820 4860 4080 3610 3230
73.9 122 238 474 761 1180
272 228 184 146 127 110
7.0 8.1
22.2 25.8
— —
3480 3020
931 1610
21 18
6.6 8.0
27.5 29.9
— —
2890 2490
15 13 10
6.4 7.8 9.6
28.1 29.9 40.5
— — 39
25 20 15
6.7 15.5 8.2 19.1 11.5 21.6
16 12 9
5.0 7.1 9.2
19 16 13
(1/ksi)
S
I 4
Axis Y-Y
r 3
S
I 4
r 3
Zx
Zy
in.
3
in.
in.3
in.
in.
in.
60.4 52.0 43.3 35.5 31.2 27.5
3.72 3.65 3.61 3.53 3.51 3.47
88.6 75.1 60.9 49.1 42.6 37.1
21.4 18.3 15.0 12.2 10.6 9.27
2.12 2.10 2.08 2.04 2.03 2.02
70.2 59.8 49.0 39.8 34.7 30.4
32.7 27.9 22.9 18.5 16.1 14.1
98.0 82.8
24.3 20.9
3.45 3.42
21.7 18.3
6.63 5.63
1.62 1.61
27.2 23.2
10.1 8.57
2090 3890
75.3 61.9
18.2 15.2
3.49 3.43
9.77 7.97
3.71 3.04
1.26 1.23
20.4 17.0
5.69 4.66
2670 2370 1760
3440 5780 17900
48.0 39.6 30.8
11.8 9.91 7.81
3.29 3.21 3.22
3.41 2.73 2.09
1.70 1.37 1.06
0.876 0.843 0.841
13.6 11.4 8.87
2.67 2.15 1.66
— — —
4410 3550 2740
369 846 2470
53.4 41.4 29.1
16.7 13.4 9.72
2.70 2.66 2.56
17.1 13.3 9.32
5.61 4.41 3.11
1.52 1.50 1.46
18.9 14.9 10.8
8.56 6.72 4.75
19.1 21.6 29.2
— — —
4010 3100 2360
591 1740 4980
32.1 22.1 16.4
10.2 7.31 5.56
2.60 2.49 2.47
4.43 2.99 2.19
2.20 1.50 1.11
0.966 0.918 0.905
11.7 8.30 6.23
3.39 2.32 1.72
5.8 6.9
14.0 15.8
— —
5140 4440
192 346
26.2 21.3
10.2 8.51
2.17 2.13
9.13 7.51
3.63 3.00
1.28 1.27
11.6 9.59
5.53 4.57
5.9
10.6
—
5560
154
11.3
5.46
1.72
3.86
1.90
1.00
6.28
2.92
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 44
DIMENSIONS AND PROPERTIES
Y
tf
d
X
M SHAPES Dimensions
k
k1
X
T
tw
Y bf
k
Web
Designation
Area A 2
in.
Depth d
Thickness tw
in.
in.
Flange
tw 2
Width bf
Thickness tf
in.
in.
T
k
k1
in.
in.
in.
11.91 1115⁄16 0.177 11.87 117⁄8 0.162
3⁄ 16 3⁄ 16
1⁄ 16 1⁄ 16
3.065 31⁄16 0.225 3.065 31⁄16 0.206
1⁄ 4 3⁄ 16
1015⁄16 107⁄8
1⁄ 2 1⁄ 2
3⁄ 8 3⁄ 8
97⁄8 0.157 913⁄16 0.139
3⁄ 16 1⁄ 8
1⁄ 16 1⁄ 16
2.690 211⁄16 0.206 2.690 211⁄16 0.183
3⁄ 16 3⁄ 16
87⁄8 813⁄16
1⁄ 2 1⁄ 2
3⁄ 8 3⁄ 8
0.133
1⁄ 8
1⁄ 16
2.280
21⁄4
0.186
3⁄ 16
67⁄8
1⁄ 2
3⁄ 8
0.316
5⁄ 16
3⁄ 16
5.003
5
0.416
7⁄ 16
31⁄4
7⁄ 8
1⁄ 2
M12×11.8 M12×10.8
3.48 3.20
M10×9 M12×8
2.67 2.38
9.86 9.81
M8×6.5
1.92
7.85
77⁄8
M5×18.9*
5.55
5.00
5
in.
Distance
*This shape has tapered flanges while all other M shapes have parallel flanges.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL SHAPES
1 - 45
M SHAPES Properties
Y
tf
d
k
k1
X
X
T
tw
Y bf
Nominal Wt. per ft
Compact Section Criteria
h tw
Fy′′′
lb
bf 2tf
11.8 10.8
6.8 7.4
9 8
k
Plastic Modulus
Elastic Properties Axis X-X
X1
X2 × 106
ksi
ksi
2
(1/ksi)
61.4 67.0
17 14
1420 1320
6.5 7.3
56.4 63.7
20 16
6.5
6.1
51.7
18.9
6.0
11.2
S
I 4
Axis Y-Y
r 3
in.
in.
56700 75800
71.7 65.8
12.1 11.1
1570 1400
37100 57800
38.5 34.3
24
1780
20700
—
5710
134
S
I 4
r 3
Zx
Zy
in.
3
in.
in.3
14.3 13.1
1.16 1.05
in.
in.
in.
4.54 4.54
1.09 0.995
0.709 0.649
0.559 0.558
7.82 6.99
3.80 3.80
0.673 0.597
0.501 0.444
0.502 0.502
9.21 8.20
0.815 0.718
18.1
4.62
3.07
0.371
0.325
0.439
5.40
0.527
24.1
9.63
2.08
7.86
3.14
1.19
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
11.0
5.02
1 - 46
DIMENSIONS AND PROPERTIES
Y
tf
d
S SHAPES Dimensions
k
X
X
T
tw
grip
Y bf
k
Web
Designation
Flange
Distance
Max. Flge. FasGrip tener
Area A
Depth d
Thickness tw
tw 2
Width bf
Thickness tf
T
k
in.2
in.
in.
in.
in.
in.
in.
in.
in.
in. 1 1
S24×121 S24×106
35.6 31.2
24.50 24.50
241⁄2 241⁄2
0.800 0.620
13⁄ 16 5⁄ 8
7⁄ 16 5⁄ 16
8.050 7.870
8 77⁄8
S24×100 S24×90 S24×80
29.3 26.5 23.5
24.00 24.00 24.00
24 24 24
0.745 0.625 0.500
3⁄ 4 5⁄ 8 1⁄ 2
3⁄ 8 5⁄ 16 1⁄ 4
7.245 7.125 7.000
S20×96 S24×86
28.2 25.3
20.30 201⁄4 0.800 20.30 201⁄4 0.660
13⁄ 16 11⁄ 16
7⁄ 16 3⁄ 8
S20×75 S24×66
22.0 19.4
20.00 20.00
20 20
0.635 0.505
5⁄ 8 1⁄ 2
5⁄ 16 1⁄ 4
6.385 6.255
63⁄8 61⁄4
0.795 0.795
13⁄ 16 13⁄ 16
163⁄4 163⁄4
15⁄8 15⁄8
13⁄ 16 13⁄ 16
7⁄ 8 7⁄ 8
S18×70 20.6 S24×54.7 16.1
18.00 18.00
18 18
0.711 0.461
11⁄ 16 7⁄ 16
3⁄
4
6.251 6.001
61⁄4 6
0.691 0.691
11⁄ 16 11⁄ 16
15 15
11⁄2 11⁄2
11⁄ 16 11⁄ 16
7⁄ 8 7⁄ 8
S15×50 14.7 S24×42.9 12.6
15.00 15.00
15 15
0.550 0.411
9⁄ 16 7⁄ 16
5⁄ 16 1⁄ 4
5.640 5.501
55⁄8 51⁄2
0.622 0.622
5⁄ 8 5⁄ 8
121⁄4 121⁄4
13⁄8 13⁄8
9⁄ 16 9⁄ 16
3⁄ 4 3⁄ 4
S12×50 14.7 S24×40.8 12.0
12.00 12.00
12 12
0.687 0.462
11⁄ 16 7⁄ 16
3⁄
4
5.477 5.252
51⁄2 51⁄4
0.659 0.659
11⁄ 16 11⁄ 16
91⁄8 91⁄8
17⁄16 17⁄16
11⁄ 16 5⁄ 8
3⁄ 4 3⁄ 4
S12×35 10.3 12.00 S24×31.8 9.35 12.00
12 12
0.428 0.350
7⁄ 16 3⁄ 8
1⁄ 4 3⁄ 16
5.078 5.000
51⁄8 5
0.544 0.544
9⁄ 16 9⁄ 16
95⁄8 95⁄8
13⁄16 13⁄16
1⁄ 2 1⁄ 2
3⁄ 4 3⁄ 4
S10×35 10.3 10.00 S24×25.4 7.46 10.00
10 10
0.594 0.311
5⁄ 8 5⁄ 16
5⁄ 16 3⁄ 16
4.944 4.661
5 45⁄8
0.491 0.491
1⁄ 2 1⁄ 2
73⁄4 73⁄4
11⁄8 11⁄8
1⁄ 2 1⁄ 2
3⁄ 4 3⁄ 4
4.171 4.001
41⁄8 4
0.426 0.426
7⁄ 16 7⁄ 16
6 6
1 1
7⁄ 16 7⁄ 16
3⁄ 4 3⁄ 4
8
3.565 3.332
35⁄8 33⁄8
0.359 0.359
3⁄ 8 3⁄ 8
41⁄4 41⁄4
7⁄ 8 7⁄ 8
3⁄ 8 3⁄ 8
5⁄ 8 —
8
3.004
3
0.326
5⁄ 16
33⁄8
13⁄ 16
5⁄ 16
—
0.293 0.293
5⁄ 16 5⁄ 16
21⁄2 21⁄2
3⁄ 4 3⁄ 4
5⁄ 16 5⁄ 16
— —
0.260 0.260
1⁄ 4 1⁄ 4
15⁄8 15⁄8
11⁄ 16 11⁄ 16
1⁄ 4 1⁄ 4
— —
1⁄
1⁄
8
8
1.090 1.090
11⁄16 11⁄16
201⁄2 201⁄2
2 2
11⁄8 11⁄8
71⁄4 71⁄8 7
0.870 0.870 0.870
7⁄ 8 7⁄ 8 7⁄ 8
201⁄2 201⁄2 201⁄2
13⁄4 13⁄4 13⁄4
7⁄ 8 7⁄ 8 7⁄ 8
1 1 1
7.200 7.060
71⁄4 7
0.920 0.920
15⁄ 16 15⁄ 16
163⁄4 163⁄4
13⁄4 13⁄4
15⁄ 16 15⁄ 16
1 1
S8×23 S8×18.4
6.77 5.41
8.00 8.00
8 8
0.441 0.271
7⁄ 16 1⁄ 4
1⁄
S6×17.25 S8×12.5
5.07 3.67
6.00 6.00
6 6
0.465 0.232
7⁄ 16 1⁄ 4
1⁄
S5×10
2.94
5.00
5
0.214
3⁄ 16
1⁄
3⁄ 16 1⁄ 8
2.796 2.663
23⁄4 25⁄8
3⁄ 16 1⁄ 8
2.509 2.330
21⁄2 23⁄8
S4×9.5 S8×7.7
2.79 2.26
4.00 4.00
4 4
0.326 0.193
5⁄ 16 3⁄ 16
S3×7.5 S8×5.7
2.21 1.67
3.00 3.00
3 3
0.349 0.170
3⁄ 8 3⁄ 16
1⁄
1⁄
4 8 4
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL SHAPES
1 - 47
S SHAPES Properties
Y
tf
d
k
X
X
T
tw
Y bf
grip
Nominal Wt. per ft
Compact Section Criteria
bf 2tf
h tw
Fy′′′
121 106
3.7 3.6
100 90 80
Plastic Modulus
Elastic Properties Axis X-X
X1
X2 × 106
ksi
ksi
2
(1/ksi)
36.4 34.1
— 55
3310 2960
4.2 4.1 4.0
28.3 33.7 42.1
— 56 36
96 86
3.9 3.8
21.6 26.2
75 66
4.0 3.9
70 54.7
lb
k
S
I 4
Axis Y-Y
r 3
in.
in.
1770 2470
3160 2940
3000 2710 2450
2940 4090 5480
— —
3730 3350
27.1 34.1
— 55
4.5 4.3
21.8 33.6
50 42.9
4.5 4.4
50 40.8
S
I 4
r 3
Zx 3
Zy in.3
in.
in.
in.
in.
in.
258 240
9.43 9.71
83.3 77.1
20.7 19.6
1.53 1.57
306 279
36.2 33.2
2390 2250 2100
199 187 175
9.02 9.21 9.47
47.7 44.9 42.2
13.2 12.6 12.1
1.27 1.30 1.34
240 222 204
23.9 22.3 20.7
1160 1630
1670 1580
165 155
7.71 7.89
50.2 46.8
13.9 13.3
1.33 1.36
198 183
24.9 23.0
3140 2800
2290 3250
1280 1190
128 119
7.62 7.83
29.8 27.7
9.32 8.85
1.16 1.19
153 140
16.7 15.3
— 57
3590 2770
1470 3400
926 804
103 89.4
6.71 7.07
24.1 20.8
7.72 6.94
1.08 1.14
125 105
14.4 12.1
23.2 31.0
— —
3450 2960
1540 2470
486 447
64.8 59.6
5.75 5.95
15.7 14.4
5.57 5.23
1.03 1.07
77.1 69.3
9.97 9.02
4.2 4.0
13.9 20.7
— —
5070 4050
333 682
305 272
50.8 45.4
4.55 4.77
15.7 13.6
5.74 5.16
1.03 1.06
61.2 53.1
10.3 8.85
35 31.8
4.7 4.6
23.4 28.6
— —
3500 3190
1310 1710
229 218
38.2 36.4
4.72 4.83
9.87 9.36
3.89 3.74
0.980 1.00
44.8 42.0
6.79 6.40
35 25.4
5.0 4.7
13.8 26.4
— —
4960 3430
374 1220
147 124
29.4 24.7
3.78 4.07
8.36 6.79
3.38 2.91
0.901 0.954
35.4 28.4
6.22 4.96
23 18.4
4.9 4.7
14.5 23.7
— —
4770 3770
397 821
64.9 57.6
16.2 14.4
3.10 3.26
4.31 3.73
2.07 1.86
0.798 0.831
19.3 16.5
3.68 3.16
17.25 5.0 12.5 4.6
9.9 19.9
— —
6250 4290
143 477
26.3 22.1
8.77 7.37
2.28 2.45
2.31 1.82
1.30 1.09
0.675 0.705
10.6 8.47
2.36 1.85
10
4.6
17.4
—
4630
348
12.3
4.92
2.05
1.22
0.809 0.643
5.67
1.37
9.5 7.7
4.8 4.5
8.7 14.7
— —
6830 5240
87.4 207
6.79 6.08
3.39 3.04
1.56 1.64
0.903 0.764
0.646 0.569 0.574 0.581
4.04 3.51
1.13 0.964
7.5 5.7
4.8 4.5
5.6 11.4
— —
9160 6160
28.1 106
2.93 2.52
1.95 1.68
1.15 1.23
0.586 0.455
0.468 0.516 0.390 0.522
2.36 1.95
0.826 0.653
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 48
DIMENSIONS AND PROPERTIES
Y
tf
d
X
HP SHAPES Dimensions
k
k1
X
T
tw
Y bf
k
Web
Designation
Area A 2
in.
Depth d in.
Thickness tw in.
Flange
tw 2 in.
Width bf in.
Distance
Thickness tf in.
T
k
k1
in.
in.
in.
HP14×117 HP14×102 HP14×89 HP14×73
34.4 30.0 26.1 21.4
14.21 14.01 13.83 13.61
141⁄4 14 137⁄8 135⁄8
0.805 0.705 0.615 0.505
13⁄ 16 11⁄ 16 5⁄ 8 1⁄ 2
7⁄ 16 3⁄ 8 5⁄ 16 1⁄ 4
14.885 14.785 14.695 14.585
147⁄8 143⁄4 143⁄4 145⁄8
0.805 0.705 0.615 0.505
13⁄ 16 11⁄ 16 5⁄ 8 1⁄ 2
111⁄4 111⁄4 111⁄4 111⁄4
11⁄2 13⁄8 15⁄16 13⁄16
11⁄16 1 15⁄ 16 7⁄ 8
HP12×84 HP14×74 HP14×63 HP14×53
24.6 21.8 18.4 15.5
12.28 12.13 11.94 11.78
121⁄4 121⁄8 12 113⁄4
0.685 0.605 0.515 0.435
11⁄ 16 5⁄ 8 1⁄ 2 7⁄ 16
3⁄ 8 5⁄ 16 1⁄ 4 1⁄ 4
12.295 12.215 12.125 12.045
121⁄4 121⁄4 121⁄8 12
0.685 0.610 0.515 0.435
11⁄ 16 5⁄ 8 1⁄ 2 7⁄ 16
91⁄2 91⁄2 91⁄2 91⁄2
13⁄8 15⁄16 11⁄4 11⁄8
15⁄ 16 7⁄ 8 7⁄ 8
HP10×57 HP14×42
16.8 12.4
9.99 9.70
10 93⁄4
0.565 0.415
9⁄ 16 7⁄ 16
5⁄ 16 1⁄ 4
10.225 10.075
101⁄4 101⁄8
0.565 0.420
9⁄ 16 7⁄ 16
75⁄8 75⁄8
13⁄16 11⁄16
13⁄ 16 3⁄ 4
HP8×36
10.6
8.02
8
0.445
7⁄ 16
1⁄ 4
8.155
81⁄8
0.445
7⁄ 16
61⁄8
15⁄ 16
5⁄ 8
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1
STRUCTURAL SHAPES
1 - 49
HP SHAPES Properties
Y
tf
d
k
k1
X
X
T
tw
Y bf
Nominal Wt. per ft
Compact Section Criteria
h tw
Fy′′′
lb
bf 2tf
117 102 89 73
9.2 10.5 11.9 14.4
84 74 63 53
9.0 10.0 11.8 13.8
k
Plastic Modulus
Elastic Properties Axis X-X
X1
X2 × 106
ksi
ksi
2
14.2 16.2 18.5 22.6
— — — —
14.2 16.0 18.9 22.3
57 42 36
S
I
Axis Y-Y
r 3
S
I
(1/ksi)
4
in.
in.
in.
in.
3870 3400 2960 2450
659 1090 1840 3880
1220 1050 904 729
172 150 131 107
5.96 5.92 5.88 5.84
— — — —
3860 3440 2940 2500
670 1050 1940 3650
650 569 472 393
106 93.8 79.1 66.8
9.0 13.9 12.0 18.9
— —
3920 2920
631 1970
294 210
9.2 14.2
—
3840
685
119
4
r 3
Zx
Zy
in.
in.
in.
in.3
443 380 326 261
59.5 51.4 44.3 35.8
3.59 3.56 3.53 3.49
194 169 146 118
91.4 78.8 67.7 54.6
5.14 5.11 5.06 5.03
213 186 153 127
34.6 30.4 25.3 21.1
2.94 2.92 2.88 2.86
120 105 88.3 74.0
53.2 46.6 38.7 32.2
58.8 43.4
4.18 4.13
101 71.7
19.7 14.2
2.45 2.41
66.5 48.3
30.3 21.8
29.8
3.36
40.3
1.95
33.6
15.2
9.88
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3
1 - 50
DIMENSIONS AND PROPERTIES
k
T
x
Y
X
CHANNELS AMERICAN STANDARD Dimensions
tf
xp
d
X
tw
k
Y
grip
bf
eo
Web
Designation
Area Depth Thickness A d tw in.2
in.
in.
Flange
Distance
Max. Flge. FasGrip tener
tw 2
Width bf
Thickness tf
T
k
in.
in.
in.
in.
in.
121⁄8 121⁄8 121⁄8
17⁄16 17⁄16 17⁄16
5⁄
93⁄4 93⁄4 93⁄4
11⁄8 11⁄8 11⁄8
1⁄
2
7⁄ 8 7⁄ 8 7⁄ 8 3⁄ 4 3⁄ 4 3⁄ 4 3⁄ 4
3⁄ 8 1⁄ 4 3⁄ 16
in.
3.716 3.520 3.400
33⁄4 31⁄2 33⁄8
0.650 0.650 0.650
5⁄ 8 5⁄ 8 5⁄ 8
3.170 3.047 2.942
31⁄8 3 3
0.501 0.501 0.501
1⁄ 2 1⁄ 2 1⁄ 2
8 8 8 8
1 1 1 1
7⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16
in.
C15×50 C15×40 C15×33.9
14.7 11.8 9.96
15.00 15.00 15.00
0.716 0.520 0.400
11⁄ 16 1⁄ 2 3⁄ 8
C12×30 C15×25 C15×20.7
8.82 7.35 6.09
12.00 12.00 12.00
0.510 0.387 0.282
1⁄ 2 3⁄ 8 5⁄ 16
1⁄ 4 3⁄ 16 1⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
3.033 2.886 2.739 2.600
3 27⁄8 23⁄4 25⁄8
0.436 0.436 0.436 0.436
7⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16
1⁄ 4 1⁄ 8 1⁄ 8
2.648 2.485 2.433
25⁄8 21⁄2 23⁄8
0.413 0.413 0.413
7⁄ 16 7⁄ 16 7⁄ 16
71⁄8 71⁄8 71⁄8
15⁄ 16 15⁄ 16 15⁄ 16
7⁄ 16 7⁄ 16 7⁄ 16
3⁄ 4 3⁄ 4 3⁄ 4
1⁄ 4 1⁄ 8 1⁄ 8
2.527 2.343 2.260
21⁄2 23⁄8 21⁄4
0.390 0.390 0.390
3⁄ 8 3⁄ 8 3⁄ 8
61⁄8 61⁄8 61⁄8
15⁄ 16 15⁄ 16 15⁄ 16
3⁄
3⁄ 4 3⁄ 4 3⁄ 4
3⁄ 16 1⁄ 8
2.194 2.090
21⁄4 21⁄8
0.366 0.366
3⁄ 8 3⁄ 8
51⁄4 51⁄4
7⁄ 8 7⁄ 8
3⁄
8
5⁄ 8 5⁄ 8
3⁄ 16 3⁄ 16 1⁄ 8
2.157 2.034 1.920
21⁄8 2 17⁄8
0.343 0.343 0.343
5⁄ 16 5⁄ 16 5⁄ 16
43⁄8 43⁄8 43⁄8
13⁄ 16 13⁄ 16 13⁄ 16
5⁄ 16 3⁄ 8 5⁄ 16
5⁄ 8 5⁄ 8 5⁄ 8
3⁄ 16 1⁄ 8
1.885 1.750
17⁄8 13⁄4
0.320 0.320
5⁄ 16 5⁄ 16
31⁄2 31⁄2
3⁄ 4 3⁄ 4
5⁄ 16
5⁄ 8 —
5⁄ 5⁄
1⁄ 1⁄
8 8 8 2 2
1 1 1
C10×30 C15×25 C15×20 C15×15.3
8.82 7.35 5.88 4.49
10.00 10.00 10.00 10.00
0.673 0.526 0.379 0.240
11⁄ 16 1⁄ 2 3⁄ 8 1⁄ 4
C9×20 C5×15 C5×13.4
5.88 4.41 3.94
9.00 9.00 9.00
0.448 0.285 0.233
7⁄
C8×18.75 C8×13.75 C8×11.5
5.51 4.04 3.38
8.00 8.00 8.00
0.487 0.303 0.220
C7×12.25 C8×9.8
3.60 2.87
7.00 7.00
0.314 0.210
5⁄
C6×13 C8×10.5 C8×8.2
3.83 3.09 2.40
6.00 6.00 6.00
0.437 0.314 0.200
7⁄
C5×9 C8×6.7
2.64 1.97
5.00 5.00
0.325 0.190
5⁄
C4×7.25 C8×5.4
2.13 1.59
4.00 4.00
0.321 0.184
5⁄
3⁄ 16 1⁄ 16
1.721 1.584
13⁄4 15⁄8
0.296 0.296
5⁄ 16 5⁄ 16
25⁄8 25⁄8
11⁄ 16 11⁄ 16
5⁄ 16
16
—
5⁄ 8 —
C3×6 C8×5 C8×4.1
1.76 1.47 1.21
3.00 3.00 3.00
0.356 0.258 0.170
3⁄ 8 1⁄ 4 3⁄ 16
3⁄ 16 1⁄ 8 1⁄ 16
1.596 1.498 1.410
15⁄8 11⁄2 13⁄8
0.273 0.273 0.273
1⁄ 4 1⁄ 4 1⁄ 4
15⁄8 15⁄8 15⁄8
11⁄ 16 11⁄ 16 11⁄ 16
— — —
— — —
5⁄
16
16 1⁄ 4 1⁄ 2
5⁄
16 1⁄ 4
3⁄
5⁄ 3⁄
3⁄
3⁄
16 16 16 16 16 16 16 16
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3⁄ 3⁄
3⁄
8 8 8 8
—
STRUCTURAL SHAPES
1 - 51
CHANNELS AMERICAN STANDARD Properties
k
x
Y
xp
X
T
tf
d
X
tw
Y
k
Nominal Wt. per ft
_ x
Shear Center PNA Loca- Location tion eo xp
Axis X-X
Z
I 4
in.
Axis Y-Y
S 3
grip
bf
eo
r 3
Z
I 4
S 3
r 3
lb
in.
in.
in.
in.
in.
in.
in.
in.
in.
in.
50 40 33.9
0.798 0.777 0.787
0.583 0.767 0.896
0.488 0.390 0.330
404 349 315
68.2 57.2 50.4
53.8 46.5 42.0
5.24 5.44 5.62
11.0 9.23 8.13
8.17 6.87 6.23
3.78 3.37 3.11
0.867 0.886 0.904
30 25 20.7
0.674 0.674 0.698
0.618 0.746 0.870
0.366 0.305 0.252
162 144 129
33.6 29.2 25.4
27.0 24.1 21.5
4.29 4.43 4.61
5.14 4.47 3.88
4.33 3.84 3.49
2.06 1.88 1.73
0.763 0.780 0.799
30 25 20 15.3
0.649 0.617 0.606 0.634
0.369 0.494 0.637 0.796
0.439 0.366 0.292 0.223
103 91.2 78.9 67.4
26.6 23.0 19.3 15.8
20.7 18.2 15.8 13.5
3.42 3.52 3.66 3.87
3.94 3.36 2.81 2.28
3.78 3.19 2.71 2.35
1.65 1.48 1.32 1.16
0.669 0.676 0.692 0.713
20 15 13.4
0.583 0.586 0.601
0.515 0.682 0.743
0.325 0.243 0.217
60.9 51.0 47.9
16.8 13.5 12.5
13.5 11.3 10.6
3.22 3.40 3.48
2.42 1.93 1.76
2.47 2.05 1.95
1.17 1.01 0.962
0.642 0.661 0.669
18.75 13.75 11.5
0.565 0.553 0.571
0.431 0.604 0.697
0.343 0.251 0.209
44.0 36.1 32.6
13.8 10.9 9.55
11.0 9.03 8.14
2.82 2.99 3.11
1.98 1.53 1.32
2.17 1.73 1.58
1.01 0.854 0.781
0.599 0.615 0.625
12.25 9.8
0.525 0.540
0.538 0.647
0.255 0.203
24.2 21.3
8.40 7.12
6.93 6.08
2.60 2.72
1.17 0.968
1.43 1.26
0.703 0.625
0.571 0.581
13 10.5 8.2
0.514 0.499 0.511
0.380 0.486 0.599
0.317 0.255 0.198
17.4 15.2 13.1
7.26 6.15 5.13
5.80 5.06 4.38
2.13 2.22 2.34
1.05 0.866 0.693
1.36 1.15 0.993
0.642 0.564 0.492
0.525 0.529 0.537
9 6.7
0.478 0.484
0.427 0.552
0.262 0.217
8.90 7.49
4.36 3.51
3.56 3.00
1.83 1.95
0.632 0.479
0.918 0.763
0.450 0.378
0.489 0.493
7.25 5.4
0.459 0.457
0.386 0.502
0.264 0.241
4.59 3.85
2.81 2.26
2.29 1.93
1.47 1.56
0.433 0.319
0.697 0.569
0.343 0.283
0.450 0.449
6 5 4.1
0.455 0.438 0.436
0.322 0.392 0.461
0.291 0.242 0.284
2.07 1.85 1.66
1.72 1.50 1.30
1.38 1.24 1.10
1.08 1.12 1.17
0.305 0.247 0.197
0.544 0.466 0.401
0.268 0.233 0.202
0.416 0.410 0.404
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 52
DIMENSIONS AND PROPERTIES
k
T
x
Y
X
CHANNELS MISCELLANEOUS Dimensions
tf
xp
d
X
tw
k
Y eo
grip
bf
Web
Designation
Area Depth Thickness A d tw in.2
in.
in.
Flange
Distance
Max. Flge. FasGrip tener
tw 2
Width bf
Thickness tf
T
k
in.
in.
in.
in.
in.
in.
in.
151⁄4 151⁄4 151⁄4 151⁄4
13⁄8 13⁄8 13⁄8 13⁄8
5⁄ 8 5⁄ 8 5⁄ 8 5⁄ 8
1 1 1 1
101⁄4 101⁄4 101⁄4 101⁄4
13⁄8 13⁄8 13⁄8 13⁄8
5⁄ 8 9⁄ 16 9⁄ 16 9⁄ 16
1 1 1 1
15⁄16 15⁄16 15⁄16 15⁄16 15⁄16
11⁄ 16 11⁄ 16 11⁄ 16 11⁄ 16 11⁄ 16
1 1 1 1 1
MC18×58 MC18×51.9 MC18×45.8 MC18×42.7
17.1 15.3 13.5 12.6
18.00 18.00 18.00 18.00
0.700 0.600 0.500 0.450
11⁄ 16 5⁄ 8 1⁄ 2 7⁄ 16
MC13×50 MC18×40 MC18×35 MC18×31.8
14.7 11.8 10.3 9.35
13.00 13.00 13.00 13.00
0.787 0.560 0.447 0.375
3⁄ 16 9⁄ 16 7⁄ 16 3⁄ 8
3⁄ 8 1⁄ 4 1⁄ 4 3⁄ 16 7⁄
16 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
4.135 4.012 3.890 3.767 3.670
41⁄
4 37⁄8 33⁄4 35⁄8
0.700 0.700 0.700 0.700 0.700
11⁄ 16 11⁄ 16 11⁄ 16 11⁄ 16 11⁄ 16
1.500
11⁄2
0.309
5⁄ 16
105⁄8
16
—
—
71⁄2 71⁄2 71⁄2
11⁄4 11⁄4 11⁄4
9⁄ 16 9⁄ 16 9⁄ 16
7⁄ 8 7⁄ 8 7⁄ 8
MC12×50 MC18×45 MC18×40 MC18×35 MC18×31 MC12×10.6
3⁄ 8 5⁄ 16 1⁄ 4 1⁄ 4
4.200 4.100 4.000 3.950
41⁄
41⁄8 4 4
0.625 0.625 0.625 0.625
5⁄
4.412 4.185 4.072 4.000
43⁄8 41⁄8 41⁄8 4
0.610 0.610 0.610 0.610
5⁄
93⁄8 93⁄8 93⁄8 93⁄8 93⁄8
4
5⁄ 5⁄ 5⁄
5⁄ 5⁄ 5⁄
8 8 8 8 8 8 8 8
14.7 13.2 11.8 10.3 9.12
12.00 12.00 12.00 12.00 12.00
0.835 0.712 0.590 0.467 0.370
13⁄ 16 11⁄ 16 9⁄ 16 7⁄ 16 3⁄ 8
3.10
12.00
0.190
3⁄ 16
1⁄ 8 3⁄ 8 5⁄ 16 3⁄ 16
4.321 4.100 3.950
43⁄
41⁄8 4
8
0.575 0.575 0.575
9⁄ 16 9⁄ 16 9⁄ 16
8
11⁄
12.1 9.87 8.37
10.00 10.00 10.00
0.796 0.575 0.425
13⁄ 16 9⁄ 16 7⁄ 16
MC10×25 MC18×22
7.35 6.45
10.00 10.00
0.380 0.290
3⁄ 8 5⁄ 16
3⁄
16 1⁄ 8
3.405 3.315
33⁄8 33⁄8
0.575 0.575
9⁄ 16 9⁄ 16
71⁄2 71⁄2
11⁄4 11⁄4
9⁄ 16 9⁄ 16
7⁄ 8 7⁄ 8
MC10×8.4
2.46
10.00
0.170
3⁄ 16
1⁄
1.500
11⁄2
0.280
1⁄
85⁄8
11⁄
—
—
MC10×41.1 MC18×33.6 MC18×28.5
16
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4
16
STRUCTURAL SHAPES
1 - 53
CHANNELS MISCELLANEOUS Properties
k
x
Y
xp
X
T
tf
d
X
tw
Y
k
Nominal Wt. per ft
_ x
Shear Center PNA Loca- Location tion eo xp
Axis X-X
Z
I 4
Axis Y-Y
S 3
grip
bf
eo
r 3
Z
I 4
S 3
r 3
lb
in.
in.
in.
in.
in.
in.
in.
in.
in.
in.
in.
58 51.9 45.8 42.7
0.862 0.858 0.866 0.877
0.695 0.797 0.909 0.969
0.472 0.422 0.372 0.347
676 627 578 554
94.6 86.5 78.4 74.4
75.1 69.7 64.3 61.6
6.29 6.41 6.56 6.64
17.8 16.4 15.1 14.4
9.94 9.13 8.42 8.10
5.32 5.07 4.82 4.69
1.02 1.04 1.06 1.07
50 40 35 31.8
0.974 0.963 0.980 1.00
0.815 1.03 1.16 1.24
0.564 0.450 0.394 0.358
314 273 252 239
60.5 50.9 46.2 43.1
48.4 42.0 38.8 36.8
4.62 4.82 4.95 5.06
16.5 13.7 12.3 11.4
10.1 8.57 7.95 7.60
4.79 4.26 3.99 3.81
1.06 1.08 1.10 1.11
50 45 40 35 31
1.05 1.04 1.04 1.05 1.08
0.741 0.844 0.952 1.07 1.18
0.610 0.549 0.488 0.426 0.416
269 252 234 216 203
56.1 51.7 47.3 42.8 39.3
44.9 42.0 39.0 36.1 33.8
4.28 4.36 4.46 4.59 4.71
17.4 15.8 14.3 12.7 11.3
10.2 9.35 8.59 7.91 7.44
5.65 5.33 5.00 4.67 4.39
1.09 1.09 1.10 1.11 1.12
10.6
0.269
0.284
0.129
0.639
0.310
0.351
41.1 33.6 28.5
1.09 1.08 1.12
0.864 1.06 1.21
0.601 0.490 0.415
158 139 127
38.9 33.4 29.6
31.5 27.8 25.3
3.61 3.75 3.89
8.71 7.51 6.83
4.88 4.38 4.02
1.14 1.16 1.17
25 22
0.953 0.990
1.03 1.13
0.364 0.468
110 103
25.8 23.6
22.0 20.5
3.87 3.99
7.35 6.50
5.21 4.86
3.00 2.80
1.00 1.00
0.284
0.332
0.122
3.61
0.328
0.552
0.270
0.365
8.4
55.4
32.0
11.6
7.86
9.23
6.40
4.22
0.382 15.8 13.2 11.4
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 54
DIMENSIONS AND PROPERTIES
k
T
x
Y
X
CHANNELS MISCELLANEOUS Dimensions
tf
xp
d
X
tw
k
Y eo
grip
bf
Web
Designation
Area Depth Thickness A d tw in.2
in.
in.
Flange
Distance
Max. Flge. FasGrip tener
tw 2
Width bf
Thickness tf
T
k
in.
in.
in.
in.
in.
in.
in.
65⁄8 65⁄8
13⁄16 13⁄16
9⁄ 16 9⁄ 16
7⁄ 8 7⁄ 8
55⁄8 55⁄8
13⁄16 13⁄16
1⁄ 2 1⁄ 2
7⁄ 8 7⁄ 8
MC9×25.4 MC9×23.9
7.47 7.02
9.00 9.00
0.450 0.400
7⁄ 16 3⁄ 8
1⁄ 4 3⁄ 16
3.500 3.450
31⁄
31⁄2
2
0.550 0.550
9⁄ 16 9⁄ 16
MC8×22.8 MC9×21.4
6.70 6.28
8.00 8.00
0.427 0.375
7⁄ 16 3⁄ 8
3⁄
3⁄
3.502 3.450
31⁄2 31⁄2
0.525 0.525
1⁄
MC8×20 MC9×18.7
5.88 5.50
8.00 8.00
0.400 0.353
3⁄ 8 3⁄ 8
3⁄
3.025 2.978
3 3
0.500 0.500
1⁄
16
2
53⁄4 53⁄4
11⁄8 11⁄8
1⁄ 2 1⁄ 2
7⁄ 8 7⁄ 8
MC8×8.5
2.50
8.00
0.179
3⁄ 16
1⁄
16
1.874
17⁄8
0.311
5⁄ 16
61⁄2
3⁄ 4
5⁄ 16
5⁄ 8
MC7×22.7 MC9×19.1
6.67 5.61
7.00 7.00
0.503 0.352
1⁄ 2 3⁄ 8
3⁄
1⁄ 4
3.603 3.452
35⁄8 31⁄2
0.500 0.500
1⁄
16
2
43⁄4 43⁄4
11⁄8 11⁄8
1⁄ 2 1⁄ 2
7⁄ 8 7⁄ 8
MC6×18
5.29
6.00
0.379
3⁄ 8
3⁄
16
3.504
31⁄2
0.475
1⁄
2
37⁄8
11⁄16
1⁄ 2
7⁄ 8
MC6×16.3 MC9×15.1
4.79 4.44
6.00 6.00
0.375 0.316
3⁄ 8 5⁄ 16
3⁄
16
3.000 2.941
3 3
0.475 0.475
1⁄
2
16
2
37⁄8 37⁄8
11⁄16 11⁄16
1⁄ 2 1⁄ 2
3⁄ 4 3⁄ 4
MC6×12
3.53
6.00
0.310
5⁄ 16
1⁄ 8
2.497
21⁄2
0.375
3⁄
8
43⁄8
13⁄ 16
3⁄ 8
5⁄ 8
3⁄
3⁄
16 16 16
1⁄
1⁄
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1⁄
1⁄
2 2 2
2
STRUCTURAL SHAPES
1 - 55
CHANNELS MISCELLANEOUS Properties
k
x
Y
xp
X
T
tf
d
X
tw
Y
k
Nominal Wt. per ft
_ x
Shear Center PNA Loca- Location tion eo xp
Axis X-X
Z
I 4
Axis Y-Y
S 3
grip
bf
eo
r 3
Z
I 4
S 3
r 3
lb
in.
in.
in.
in.
in.
in.
in.
in.
in.
in.
in.
25.4 23.9
0.970 0.981
0.986 1.04
0.411 0.386
88.0 85.0
23.2 22.2
19.6 18.9
3.43 3.48
7.65 7.22
5.23 5.05
3.02 2.93
1.01 1.01
22.8 21.4
1.01 1.02
1.04 1.09
0.415 0.449
63.8 61.6
18.8 18.0
16.0 15.4
3.09 3.13
7.07 6.64
4.88 4.71
2.84 2.74
1.03 1.03
20 18.7
0.840 0.849
0.843 0.889
0.364 0.341
54.5 52.5
16.2 15.4
13.6 13.1
3.05 3.09
4.47 4.20
3.57 3.44
2.05 1.97
0.872 0.874
8.5
0.428
0.542
0.155
23.3
6.91
3.05
0.628
0.882
0.434
0.501
22.7 19.1
1.04 1.08
1.01 1.15
0.473 0.567
47.5 43.2
16.2 14.3
2.67 2.77
7.29 6.11
4.86 4.34
2.85 2.57
1.05 1.04
18
1.12
1.17
0.622
29.7
11.5
9.91
2.37
5.93
4.14
2.48
1.06
16.3 15.1
0.927 0.940
0.930 0.982
0.464 0.537
26.0 25.0
10.2 9.69
8.68 8.32
2.33 2.37
3.82 3.51
3.18 3.00
1.84 1.75
0.892 0.889
12
0.704
0.725
0.292
18.7
7.38
6.24
2.30
1.87
1.79
1.04
0.728
5.83 13.6 12.3
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 56
DIMENSIONS AND PROPERTIES
Y
ANGLES Equal legs and unequal legs Properties for designing
xp
x Z
X
X y, yp
k α
Y
Size and Thickness in.
Z
k
Weight per ft
Axis X-X Area 2
S
I 4
r 3
y
Z
yp 3
in.
lb
in.
in.
in.
in.
in.
in.
in.
L8×8×11⁄8 L8×8×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×19⁄16 L8×8×11⁄2
13⁄4 15⁄8 11⁄2 13⁄8 11⁄4 13⁄16 11⁄8
56.9 51.0 45.0 38.9 32.7 29.6 26.4
16.7 15.0 13.2 11.4 9.61 8.68 7.75
98.0 89.0 79.6 69.7 59.4 54.1 48.6
17.5 15.8 14.0 12.2 10.3 9.34 8.36
2.42 2.44 2.45 2.47 2.49 2.50 2.50
2.41 2.37 2.33 2.28 2.23 2.21 2.19
31.6 28.5 25.3 22.0 18.6 16.8 15.1
1.05 0.938 0.827 0.715 0.601 0.543 0.484
L8×6×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×19⁄16 L8×8×11⁄2 L8×8×17⁄16
11⁄2 13⁄8 11⁄4 11⁄8 11⁄16 1 15⁄ 16
44.2 39.1 33.8 28.5 25.7 23.0 20.2
13.0 11.5 9.94 8.36 7.56 6.75 5.93
80.8 72.3 63.4 54.1 49.3 44.3 39.2
15.1 13.4 11.7 9.87 8.95 8.02 7.07
2.49 2.51 2.53 2.54 2.55 2.56 2.57
2.65 2.61 2.56 2.52 2.50 2.47 2.45
27.3 24.2 21.1 17.9 16.2 14.5 12.8
1.50 1.44 1.38 1.31 1.28 1.25 1.22
L8×4×1 L8×8×17⁄8 L8×8×13⁄4 L8×4×15⁄8 L8×8×19⁄16 L8×8×11⁄2 L8×4×17⁄16 L7×4×3⁄4 L7×4×5⁄8 L7×4×1⁄2 L7×4×7⁄16 L7×4×3⁄8
11⁄2 13⁄8 11⁄4 11⁄8 11⁄16 1 15⁄ 16 11⁄4 11⁄8 1 15⁄ 16 7⁄ 8
37.4 33.1 28.7 24.2 21.9 19.6 17.2 26.2 22.1 17.9 15.7 13.6
11.0 9.73 8.44 7.11 6.43 5.75 5.06 7.69 6.48 5.25 4.62 3.98
69.6 62.5 54.9 46.9 42.8 38.5 34.1 37.8 32.4 26.7 23.7 20.6
14.1 12.5 10.9 9.21 8.35 7.49 6.60 8.42 7.14 5.81 5.13 4.44
2.52 2.53 2.55 2.57 2.58 2.59 2.60 2.22 2.24 2.25 2.26 2.27
3.05 3.00 2.95 2.91 2.88 2.86 2.83 2.51 2.46 2.42 2.39 2.37
24.3 21.6 18.9 16.0 14.5 13.0 11.5 14.8 12.6 10.3 9.09 7.87
2.50 2.44 2.38 2.31 2.28 2.25 2.22 1.88 1.81 1.75 1.72 1.69
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL SHAPES
1 - 57
Y
ANGLES Equal legs and unequal legs Properties for designing
x
xp
Z
X
X y, yp
k α
Y
Size and Thickness
Z
Axis Y-Y
S
I
r
Axis Z-Z
x
Z
xp
r
Tan
in.
in.
in.
in.
in.
in.
in.
α
L8×8×11⁄8 L8×8×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×19⁄16 L8×8×11⁄2
98.0 89.0 79.6 69.7 59.4 54.1 48.6
17.5 15.8 14.0 12.2 10.3 9.34 8.36
2.42 2.44 2.45 2.47 2.49 2.50 2.50
2.41 2.37 2.33 2.28 2.23 2.21 2.19
31.6 28.5 25.3 22.0 18.6 16.8 15.1
1.05 0.938 0.827 0.715 0.601 0.543 0.484
1.56 1.56 1.57 1.58 1.58 1.59 1.59
1.000 1.000 1.000 1.000 1.000 1.000 1.000
L8×6×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×19⁄16 L8×8×11⁄2 L8×8×17⁄16
38.8 34.9 30.7 26.3 24.0 21.7 19.3
8.92 7.94 6.92 5.88 5.34 4.79 4.23
1.73 1.74 1.76 1.77 1.78 1.79 1.80
1.65 1.61 1.56 1.52 1.50 1.47 1.45
16.2 14.4 12.5 10.5 9.52 8.51 7.50
0.813 0.718 0.621 0.522 0.472 0.422 0.371
1.28 1.28 1.29 1.29 1.30 1.30 1.31
0.543 0.547 0.551 0.554 0.556 0.558 0.560
L8×4×1 L8×4×17⁄8 L8×8×13⁄4 L8×4×15⁄8 L8×8×19⁄16 L8×8×11⁄2 L8×4×17⁄16
11.6 10.5 9.36 8.10 7.43 6.74 6.02
3.94 3.51 3.07 2.62 2.38 2.15 1.90
1.03 1.04 1.05 1.07 1.07 1.08 1.09
1.05 0.999 0.953 0.905 0.882 0.859 0.835
7.72 6.77 5.81 4.86 4.38 3.90 3.42
0.688 0.608 0.527 0.444 0.402 0.359 0.316
0.846 0.848 0.852 0.857 0.861 0.865 0.869
0.247 0.253 0.258 0.262 0.265 0.267 0.269
L7×4×3⁄4 L7×4×5⁄8 L7×4×1⁄2 L7×4×7⁄16 L7×4×3⁄8
9.05 7.84 6.53 5.83 5.10
3.03 2.58 2.12 1.88 1.63
1.09 1.10 1.11 1.12 1.13
1.01 0.963 0.917 0.893 0.870
5.65 4.74 3.83 3.37 2.90
0.549 0.463 0.375 0.330 0.285
0.860 0.865 0.872 0.875 0.880
0.324 0.329 0.335 0.337 0.340
in.
4
3
3
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 58
DIMENSIONS AND PROPERTIES
Y
ANGLES Equal legs and unequal legs Properties for designing
xp
x Z
X
X y, yp
k α
Y
Size and Thickness in.
Z
k
Weight per ft
Axis X-X Area 2
S
I 4
r 3
y
Z
yp 3
in.
lb
in.
in.
in.
in.
in.
in.
in.
L6×6×1 L6×6×17⁄8 L6×6×13⁄4 L6×6×15⁄8 L6×6×19⁄16 L6×6×11⁄2 L6×6×17⁄16 L6×6×13⁄8 L6×6×15⁄16
11⁄2 13⁄8 11⁄4 11⁄8 11⁄16 1 15⁄ 16 7⁄ 8 13⁄ 16
37.4 33.1 28.7 24.2 21.9 19.6 17.2 14.9 12.4
11.0 9.73 8.44 7.11 6.43 5.75 5.06 4.36 3.65
35.5 31.9 28.2 24.2 22.1 19.9 17.7 15.4 13.0
8.57 7.63 6.66 5.66 5.14 4.61 4.08 3.53 2.97
1.80 1.81 1.83 1.84 1.85 1.86 1.87 1.88 1.89
1.86 1.82 1.78 1.73 1.71 1.68 1.66 1.64 1.62
15.5 13.8 12.0 10.2 9.26 8.31 7.34 6.35 5.35
0.917 0.811 0.703 0.592 0.536 0.479 0.422 0.363 0.304
L6×4×7⁄8 L6×4×3⁄4 L6×4×5⁄8 L6×4×9⁄16 L6×4×1⁄2 L6×4×7⁄16 L6×4×3⁄8 L6×4×5⁄16
13⁄8 11⁄4 11⁄8 11⁄16 1 15⁄ 16 7⁄ 8 13⁄ 16
27.2 23.6 20.0 18.1 16.2 14.3 12.3 10.3
7.98 6.94 5.86 5.31 4.75 4.18 3.61 3.03
27.7 24.5 21.1 19.3 17.4 15.5 13.5 11.4
7.15 6.25 5.31 4.83 4.33 3.83 3.32 2.79
1.86 1.88 1.90 1.90 1.91 1.92 1.93 1.94
2.12 2.08 2.03 2.01 1.99 1.96 1.94 1.92
12.7 11.2 9.51 8.66 7.78 6.88 5.97 5.03
1.44 1.38 1.31 1.28 1.25 1.22 1.19 1.16
L6×31⁄2×1⁄2 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16
1 7⁄ 8 13⁄ 16
15.3 11.7 9.80
4.50 3.42 2.87
16.6 12.9 10.9
4.24 3.24 2.73
1.92 1.94 1.95
2.08 2.04 2.01
7.50 5.76 4.85
1.50 1.44 1.41
L5×5×7⁄8 L5×5×3⁄4 L5×5×5⁄8 L5×5×1⁄2 L5×5×7⁄16 L5×5×3⁄8 L5×5×5⁄16
13⁄8 11⁄4 11⁄8 1 15⁄ 16 7⁄ 8 13⁄ 16
27.2 23.6 20.0 16.2 14.3 12.3 10.3
7.98 6.94 5.86 4.75 4.18 3.61 3.03
17.8 15.7 13.6 11.3 10.0 8.74 7.42
5.17 4.53 3.86 3.16 2.79 2.42 2.04
1.49 1.51 1.52 1.54 1.55 1.56 1.57
1.57 1.52 1.48 1.43 1.41 1.39 1.37
9.33 8.16 6.95 5.68 5.03 4.36 3.68
0.798 0.694 0.586 0.475 0.418 0.361 0.303
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL SHAPES
1 - 59
Y
ANGLES Equal legs and unequal legs Properties for designing
x
xp
Z
X
X y, yp
k α
Y
Size and Thickness in. L6×6×1 L6×6×17⁄8 L6×6×13⁄4 L6×6×15⁄8 L6×6×19⁄16 L6×6×11⁄2 L6×6×17⁄16 L6×6×13⁄8 L6×6×15⁄16
Z
Axis Y-Y
S
I 4
r
Axis Z-Z
x
xp
r
in.
in.
in.
α
1.86 1.82 1.78 1.73 1.71 1.68 1.66 1.64 1.62
15.5 13.8 12.0 10.2 9.26 8.31 7.34 6.35 5.35
0.917 0.811 0.703 0.592 0.536 0.479 0.422 0.363 0.304
1.17 1.17 1.17 1.18 1.18 1.18 1.19 1.19 1.20
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
in.
3
in.
in.
in.
35.5 31.9 28.2 24.2 22.1 19.9 17.7 15.4 13.0
8.57 7.63 6.66 5.66 5.14 4.61 4.08 3.53 2.97
1.80 1.81 1.83 1.84 1.85 1.86 1.87 1.88 1.89
Z 3
Tan
L6×4×7⁄8 L6×4×3⁄4 L6×4×5⁄8 L6×4×9⁄16 L6×4×1⁄2 L6×4×7⁄16 L6×4×3⁄8 L6×4×5⁄16
9.75 8.68 7.52 6.91 6.27 5.60 4.90 4.18
3.39 2.97 2.54 2.31 2.08 1.85 1.60 1.35
1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.17
1.12 1.08 1.03 1.01 0.987 0.964 0.941 0.918
6.31 5.47 4.62 4.19 3.75 3.30 2.85 2.40
0.665 0.578 0.488 0.442 0.396 0.349 0.301 0.252
0.857 0.860 0.864 0.866 0.870 0.873 0.877 0.882
0.421 0.428 0.435 0.438 0.440 0.443 0.446 0.448
L6×31⁄2×1⁄2 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16
4.25 3.34 2.85
1.59 1.23 1.04
0.972 0.988 0.996
0.833 0.787 0.763
2.91 2.20 1.85
0.375 0.285 0.239
0.759 0.767 0.772
0.344 0.350 0.352
17.8 15.7 13.6 11.3 10.0 8.74 7.42
5.17 4.53 3.86 3.16 2.79 2.42 2.04
1.49 1.51 1.52 1.54 1.55 1.56 1.57
1.57 1.52 1.48 1.43 1.41 1.39 1.37
9.33 8.16 6.95 5.68 5.03 4.36 3.68
0.798 0.694 0.586 0.475 0.418 0.361 0.303
0.973 0.975 0.978 0.983 0.986 0.990 0.994
1.000 1.000 1.000 1.000 1.000 1.000 1.000
L5×5×7⁄8 L5×5×3⁄4 L5×5×5⁄8 L5×5×1⁄2 L5×5×7⁄16 L5×5×3⁄8 L5×5×5⁄16
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 60
DIMENSIONS AND PROPERTIES
Y
ANGLES Equal legs and unequal legs Properties for designing
xp
x Z
X
X y, yp
k α
Y
Size and Thickness in.
Z
k
Weight per ft
Axis X-X Area 2
S
I 4
r 3
y
Z
yp 3
in.
lb
in.
in.
in.
in.
in.
in.
L5×31⁄2×3⁄4 L5×31⁄2×5⁄8 L5×31⁄2×1⁄2 L5×31⁄2×3⁄8 L5×31⁄2×5⁄16 L5×31⁄2×1⁄4
11⁄4 11⁄8 1 7⁄ 8 13⁄ 16 3⁄ 4
19.8 16.8 13.6 10.4 8.70 7.00
5.81 4.92 4.00 3.05 2.56 2.06
13.9 12.0 9.99 7.78 6.60 5.39
4.28 3.65 2.99 2.29 1.94 1.57
1.55 1.56 1.58 1.60 1.61 1.62
1.75 1.70 1.66 1.61 1.59 1.56
7.65 6.55 5.38 4.14 3.49 2.83
1.13 1.06 1.00 0.938 0.906 0.875
L5×3×1⁄2 L5×3×7⁄16 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4
1 15⁄ 16 7⁄ 8 13⁄ 16 3⁄ 4
12.8 11.3 9.80 8.20 6.60
3.75 3.31 2.86 2.40 1.94
9.45 8.43 7.37 6.26 5.11
2.91 2.58 2.24 1.89 1.53
1.59 1.60 1.61 1.61 1.62
1.75 1.73 1.70 1.68 1.66
5.16 4.57 3.97 3.36 2.72
1.25 1.22 1.19 1.16 1.13
L4×4×3⁄4 L5×3×5⁄8 L5×3×1⁄2 L5×3×7⁄16 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4
11⁄8 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8
18.5 15.7 12.8 11.3 9.80 8.20 6.60
5.44 4.61 3.75 3.31 2.86 2.40 1.94
7.67 6.66 5.56 4.97 4.36 3.71 3.04
2.81 2.40 1.97 1.75 1.52 1.29 1.05
1.19 1.20 1.22 1.23 1.23 1.24 1.25
1.27 1.23 1.18 1.16 1.14 1.12 1.09
5.07 4.33 3.56 3.16 2.74 2.32 1.88
0.680 0.576 0.469 0.414 0.357 0.300 0.242
L4×31⁄2×1⁄2 L4×31⁄2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4
15⁄ 16 13⁄ 16 3⁄ 4 11⁄ 16
11.9 9.10 7.70 6.20
3.50 2.67 2.25 1.81
5.32 4.18 3.56 2.91
1.94 1.49 1.26 1.03
1.23 1.25 1.26 1.27
1.25 1.21 1.18 1.16
3.50 2.71 2.29 1.86
0.500 0.438 0.406 0.375
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
in.
STRUCTURAL SHAPES
1 - 61
Y
ANGLES Equal legs and unequal legs Properties for designing
x
xp
Z
X
X y, yp
k α
Y
Size and Thickness
Z
Axis Y-Y
S
I
r
Axis Z-Z
x
Z
xp
r
Tan
in.
in.
in.
in.
in.
in.
in.
α
L5×31⁄2×3⁄4 L5×31⁄2×5⁄8 L5×31⁄2×1⁄2 L5×31⁄2×3⁄8 L5×31⁄2×5⁄16 L5×31⁄2×1⁄4
5.55 4.83 4.05 3.18 2.72 2.23
2.22 1.90 1.56 1.21 1.02 0.830
0.977 0.991 1.01 1.02 1.03 1.04
0.996 0.951 0.906 0.861 0.838 0.814
4.10 3.47 2.83 2.16 1.82 1.47
0.581 0.492 0.400 0.305 0.256 0.206
0.748 0.751 0.755 0.762 0.766 0.770
0.464 0.472 0.479 0.486 0.489 0.492
L5×3×1⁄2 L5×3×7⁄16 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4
2.58 2.32 2.04 1.75 1.44
1.15 1.02 0.888 0.753 0.614
0.829 0.837 0.845 0.853 0.861
0.750 0.727 0.704 0.681 0.657
2.11 1.86 1.60 1.35 1.09
0.375 0.331 0.286 0.240 0.194
0.648 0.651 0.654 0.658 0.663
0.357 0.361 0.364 0.368 0.371
L4×4×3⁄4 L5×3×5⁄8 L5×3×1⁄2 L5×3×7⁄16 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4
7.67 6.66 5.56 4.97 4.36 3.71 3.04
2.81 2.40 1.97 1.75 1.52 1.29 1.05
1.19 1.20 1.22 1.23 1.23 1.24 1.25
1.27 1.23 1.18 1.16 1.14 1.12 1.09
5.07 4.33 3.56 3.16 2.74 2.32 1.88
0.680 0.576 0.469 0.414 0.357 0.300 0.242
0.778 0.779 0.782 0.785 0.788 0.791 0.795
1.000 1.000 1.000 1.000 1.000 1.000 1.000
L4×31⁄2×1⁄2 4×31⁄2×3⁄8 4×31⁄2×5⁄16 4×31⁄2×1⁄4
3.79 2.95 2.55 2.09
1.52 1.16 0.994 0.808
1.04 1.06 1.07 1.07
1.00 0.955 0.932 0.909
2.73 2.11 1.78 1.44
0.438 0.334 0.281 0.227
0.722 0.727 0.730 0.734
0.750 0.755 0.757 0.759
in.
4
3
3
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 62
DIMENSIONS AND PROPERTIES
Y
ANGLES Equal legs and unequal legs Properties for designing
xp
x Z
X
X y, yp
k α
Y
Size and Thickness
Z
k
Weight per ft
Axis X-X Area
S
I 2
r 4
y 3
Z
yp 3
in.
in.
lb
in.
in.
in.
in.
in.
in.
L4×3×5⁄8 L4×3×1⁄2 L4×3×7⁄16 L4×3×3⁄8 L4×3×5⁄16 L4×3×1⁄4
11⁄16 15⁄ 16 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16
13.6 11.1 9.80 8.50 7.20 5.80
3.98 3.25 2.87 2.48 2.09 1.69
6.03 5.05 4.52 3.96 3.38 2.77
2.30 1.89 1.68 1.46 1.23 1.00
1.23 1.25 1.25 1.26 1.27 1.28
1.37 1.33 1.30 1.28 1.26 1.24
4.12 3.41 3.03 2.64 2.23 1.82
0.813 0.750 0.719 0.688 0.656 0.625
L31⁄2×31⁄2×1⁄2 L31⁄2×31⁄2×7⁄16 L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×5⁄16 L31⁄2×31⁄2×1⁄4
7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8
11.1 9.80 8.50 7.20 5.80
3.25 2.87 2.48 2.09 1.69
3.64 3.26 2.87 2.45 2.01
1.49 1.32 1.15 0.976 0.794
1.06 1.07 1.07 1.08 1.09
1.06 1.04 1.01 0.990 0.968
2.68 2.38 2.08 1.76 1.43
0.464 0.410 0.355 0.299 0.241
L31⁄2×3×1⁄2 L31⁄2×3×3⁄8 L31⁄2×3×5⁄16 L31⁄2×3×1⁄4
15⁄ 16 13⁄ 16 3⁄ 4 11⁄ 16
10.2 7.90 6.60 5.40
3.00 2.30 1.93 1.56
3.45 2.72 2.33 1.91
1.45 1.13 0.954 0.776
1.07 1.09 1.10 1.11
1.13 1.08 1.06 1.04
2.63 2.04 1.73 1.41
0.500 0.438 0.406 0.375
L31⁄2×21⁄2×1⁄2 L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×1⁄4
15⁄ 16 13⁄ 16 11⁄ 16
9.40 7.20 4.90
2.75 2.11 1.44
3.24 2.56 1.80
1.41 1.09 0.755
1.09 1.10 1.12
1.20 1.16 1.11
2.53 1.97 1.36
0.750 0.688 0.625
L3×3×1⁄2 L4×3×7⁄16 L4×3×3⁄8 L4×3×5⁄16 L4×3×1⁄4 L4×3×3⁄16
13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2
9.40 8.30 7.20 6.10 4.90 3.71
2.75 2.43 2.11 1.78 1.44 1.09
2.22 1.99 1.76 1.51 1.24 0.962
1.07 0.954 0.833 0.707 0.577 0.441
0.898 0.905 0.913 0.922 0.930 0.939
0.932 0.910 0.888 0.865 0.842 0.820
1.93 1.72 1.50 1.27 1.04 0.794
0.458 0.406 0.352 0.296 0.240 0.182
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
in.
STRUCTURAL SHAPES
1 - 63
Y
ANGLES Equal legs and unequal legs Properties for designing
x
xp
Z
X
X y, yp
k α
Y
Size and Thickness
Z
Axis Y-Y
S
I
r
Axis Z-Z
x
Z
xp
r
Tan
in.
in.
in.
in.
in.
in.
in.
in.
α
L4×3×5⁄8 L4×3×1⁄2 L4×3×7⁄16 L4×3×3⁄8 L4×3×5⁄16 L4×3×1⁄4
2.87 2.42 2.18 1.92 1.65 1.36
1.35 1.12 0.992 0.866 0.734 0.599
0.849 0.864 0.871 0.879 0.887 0.896
0.871 0.827 0.804 0.782 0.759 0.736
2.48 2.03 1.79 1.56 1.31 1.06
0.498 0.406 0.359 0.311 0.261 0.211
0.637 0.639 0.641 0.644 0.647 0.651
0.534 0.543 0.547 0.551 0.554 0.558
L31⁄2×31⁄2×1⁄2 L31⁄2×31⁄2×7⁄16 L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×5⁄16 L31⁄2×31⁄2×1⁄4
3.64 3.26 2.87 2.45 2.01
1.49 1.32 1.15 0.976 0.794
1.06 1.07 1.07 1.08 1.09
1.06 1.04 1.01 0.990 0.968
2.68 2.38 2.08 1.76 1.43
0.464 0.410 0.355 0.299 0.241
0.683 0.684 0.687 0.690 0.694
1.000 1.000 1.000 1.000 1.000
L31⁄2×3×1⁄2 L31⁄2×3×3⁄8 L31⁄2×3×5⁄16 L31⁄2×3×1⁄4
2.33 1.85 1.58 1.30
1.10 0.851 0.722 0.589
0.881 0.897 0.905 0.914
0.875 0.830 0.808 0.785
1.98 1.53 1.30 1.05
0.429 0.328 0.276 0.223
0.621 0.625 0.627 0.631
0.714 0.721 0.724 0.727
L31⁄2×21⁄2×1⁄2 L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×1⁄4
1.36 1.09 0.777
0.760 0.592 0.412
0.704 0.719 0.735
0.705 0.660 0.614
1.40 1.07 0.735
0.393 0.301 0.205
0.534 0.537 0.544
0.486 0.496 0.506
L3×3×1⁄2 L3×3×7⁄16 L3×3×3⁄8 L3×3×5⁄16 L3×3×1⁄4 L3×3×3⁄16
2.22 1.99 1.76 1.51 1.24 0.962
1.07 0.954 0.833 0.707 0.577 0.441
0.898 0.905 0.913 0.922 0.930 0.939
0.932 0.910 0.888 0.865 0.842 0.820
1.93 1.72 1.50 1.27 1.04 0.794
0.458 0.406 0.352 0.296 0.240 0.182
0.584 0.585 0.587 0.589 0.592 0.596
1.000 1.000 1.000 1.000 1.000 1.000
4
3
3
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 64
DIMENSIONS AND PROPERTIES
Y
ANGLES Equal legs and unequal legs Properties for designing
xp
x Z
X
X y, yp
k α
Y
Size and Thickness in.
Z
k
Weight per ft
Axis X-X Area 2
S
I 4
r 3
y
Z
yp 3
in.
lb
in.
in.
in.
in.
in.
L3×21⁄2×1⁄2 L3×21⁄2×3⁄8 L3×21⁄2×5⁄16 L3×21⁄2×1⁄4 L3×21⁄2×3⁄16
7⁄ 8 3⁄ 4 11⁄ 16 5⁄ 8 9⁄ 16
8.50 6.60 5.60 4.50 3.39
2.50 1.92 1.62 1.31 0.996
2.08 1.66 1.42 1.17 0.907
1.04 0.810 0.688 0.561 0.430
0.913 0.928 0.937 0.945 0.954
1.000 0.956 0.933 0.911 0.888
1.88 1.47 1.25 1.02 0.781
0.500 0.438 0.406 0.375 0.344
L3×2×1⁄2 L3×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 L3×2×3⁄16
13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2
7.70 5.90 5.00 4.10 3.07
2.25 1.73 1.46 1.19 0.902
1.92 1.53 1.32 1.09 0.842
1.00 0.781 0.664 0.542 0.415
0.924 0.940 0.948 0.957 0.966
1.08 1.04 1.02 0.993 0.970
1.78 1.40 1.19 0.973 0.746
0.750 0.688 0.656 0.625 0.594
L21⁄2×21⁄2×1⁄2 L21⁄2×21⁄2×3⁄8 L21⁄2×21⁄2×5⁄16 L21⁄2×21⁄2×1⁄4 L21⁄2×21⁄2×3⁄16
13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2
7.70 5.90 5.00 4.10 3.07
2.25 1.73 1.46 1.19 0.902
1.23 0.984 0.849 0.703 0.547
0.724 0.566 0.482 0.394 0.303
0.739 0.753 0.761 0.769 0.778
0.806 0.762 0.740 0.717 0.694
1.31 1.02 0.869 0.711 0.545
0.450 0.347 0.293 0.238 0.180
L21⁄2×2×3⁄8 L21⁄2×2×5⁄16 L21⁄2×2×1⁄4 L21⁄2×2×3⁄16
11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2
5.30 4.50 3.62 2.75
1.55 1.31 1.06 0.809
0.912 0.788 0.654 0.509
0.547 0.466 0.381 0.293
0.768 0.776 0.784 0.793
0.831 0.809 0.787 0.764
0.986 0.843 0.691 0.532
0.438 0.406 0.375 0.344
L2×2×3⁄8 L2×2×5⁄16 L2×2×1⁄4 L2×2×3⁄16 L2×2×1⁄8
11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16
4.70 3.92 3.19 2.44 1.65
1.36 1.15 0.938 0.715 0.484
0.479 0.416 0.348 0.272 0.190
0.351 0.300 0.247 0.190 0.131
0.594 0.601 0.609 0.617 0.626
0.636 0.614 0.592 0.569 0.546
0.633 0.541 0.445 0.343 0.235
0.340 0.288 0.234 0.179 0.121
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
in.
in.
STRUCTURAL SHAPES
1 - 65
ANGLES Equal legs and unequal legs Properties for designing
Y
x
xp
Z
X
X y, yp
k α
Y
Size and Thickness
Z
Axis Y-Y
S
I
r
Axis Z-Z
x
Z
xp
r
Tan
in.
in.
in.
in.
in.
in.
in.
α
L3×21⁄2×1⁄2 L3×21⁄2×3⁄8 L3×21⁄2×5⁄16 L3×21⁄2×1⁄4 L3×21⁄2×3⁄16
1.30 1.04 0.898 0.743 0.577
0.744 0.581 0.494 0.404 0.310
0.722 0.736 0.744 0.753 0.761
0.750 0.706 0.683 0.661 0.638
1.35 1.05 0.889 0.724 0.553
0.417 0.320 0.270 0.219 0.166
0.520 0.522 0.525 0.528 0.533
0.667 0.676 0.680 0.684 0.688
L3×2×1⁄2 L3×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 L3×2×3⁄16
0.672 0.543 0.470 0.392 0.307
0.474 0.371 0.317 0.260 0.200
0.546 0.559 0.567 0.574 0.583
0.583 0.539 0.516 0.493 0.470
0.891 0.684 0.577 0.468 0.357
0.375 0.289 0.244 0.198 0.150
0.428 0.430 0.432 0.435 0.439
0.414 0.428 0.435 0.440 0.446
L21⁄2×21⁄2×1⁄2 L21⁄2×21⁄2×3⁄8 L21⁄2×21⁄2×5⁄16 L21⁄2×21⁄2×1⁄4 L21⁄2×21⁄2×3⁄16
1.23 0.984 0.849 0.703 0.547
0.724 0.566 0.482 0.394 0.303
0.739 0.753 0.761 0.769 0.778
0.806 0.762 0.740 0.717 0.694
1.31 1.02 0.869 0.711 0.545
0.450 0.347 0.293 0.238 0.180
0.487 0.487 0.489 0.491 0.495
1.000 1.000 1.000 1.000 1.000
L21⁄2×2×3⁄8 L21⁄2×2×5⁄16 L21⁄2×2×1⁄4 L21⁄2×2×3⁄16
0.514 0.446 0.372 0.291
0.363 0.310 0.254 0.196
0.577 0.584 0.592 0.600
0.581 0.559 0.537 0.514
0.660 0.561 0.457 0.350
0.309 0.262 0.213 0.162
0.420 0.422 0.424 0.427
0.614 0.620 0.626 0.631
L2×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 L3×2×3⁄16 L3×2×1⁄8
0.479 0.416 0.348 0.272 0.190
0.351 0.300 0.247 0.190 0.131
0.594 0.601 0.609 0.617 0.626
0.636 0.614 0.592 0.569 0.546
0.633 0.541 0.445 0.343 0.235
0.340 0.288 0.234 0.179 0.121
0.389 0.390 0.391 0.394 0.398
1.000 1.000 1.000 1.000 1.000
in.
4
3
3
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 66
DIMENSIONS AND PROPERTIES
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL TEES (WT, MT, ST)
1 - 67
STRUCTURAL TEES (WT, MT, ST)
Structural tees are obtained by splitting the webs of various beams, generally with the aid of rotary shears, and straightening to meet established permissible variations listed in Standard Mill Practice in Part 1 of this Manual. Although structural tees may be obtained by off-center splitting, or by splitting at two lines, as specified on order, the Dimensions and Properties are based on a depth of tee equal to one-half the published beam depth. Values of Qs are given for Fy = 36 ksi and Fy = 50 ksi, for those tees having stems which exceed the limiting width-thickness ratio 位r of LRFD Specification Section B5. Since the cross section is comprised entirely of unstiffened elements, Qa = 1.0 and Q = Qs for _ all tee sections. The Flexural-Torsional Properties Table lists the dimensional values (ro and H) and cross-section constants (J and Cw) needed for checking flexural-torsional buckling. Use of Table
The table may be used as follows for checking the limit states of (1) flexural buckling about the x-axis and (2) flexural-torsional buckling. The lower of the two limit states must be used for design. See also Part 3 of this LRFD Manual. (1) Flexural Buckling About the X-Axis
Where no value of Qs is shown, the design compressive strength for this limit state is given by LRFD Specification Section E2. Where a value of Qs is shown, the strength must be reduced in accordance with Appendix B5 of the LRFD Specification. (2) Flexural-Torsional Buckling
The design compressive strength for this limit _ state is given by LRFD Specification Section E3. This involves calculations with J, ro, and H. Refer to the Flexural-Torsional Properties Tables, later in Part 1.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 68
DIMENSIONS AND PROPERTIES
bf tf
yp , y
STRUCTURAL TEES Cut from W shapes Dimensions
k
Y
X
X
d
tw
Y
Stem
Area Designation in.2
Area of Stem
Depth of Tee d
Thickness tw
tw 2
in.
in.
in.
in.2
Flange Width bf in.
Thickness tf in.
Distance k in.
WT22×167.5 WT22×145 WT22×131 WT22×115
49.1 42.9 38.6 33.8
22.010 22 1.020 21.810 2113⁄16 0.870 21.655 2111⁄16 0.790 21.455 217⁄16 0.710
1 7⁄ 8 13⁄ 16 11⁄ 16
1⁄ 2 7⁄ 16 3⁄ 8 3⁄ 8
22.5 19.0 17.1 15.2
15.950 15.830 15.750 15.750
153⁄4 157⁄8 153⁄4 153⁄4
1.770 1.580 1.420 1.220
13⁄4 19⁄16 17⁄16 11⁄4
29⁄16 23⁄8 23⁄16 2
WT20×296.5 WT22×251.5 WT22×215.5 WT22×186 WT22×160.5 WT22×148.5 WT22×138.5 WT22×124.5 WT22×107.5 WT22×99.5 WT22×87
87.0 74.0 63.4 54.7 47.0 43.7 40.7 36.7 31.7 29.2 25.5
21.495 21.025 20.630 20.315 20.040 19.920 19.845 19.690 19.490 19.335 19.100
211⁄2 21 205⁄8 205⁄16 20 1915⁄16 197⁄8 1911⁄16 191⁄2 195⁄16 191⁄8
1.790 1.540 1.340 1.160 1.000 0.930 0.830 0.750 0.650 0.650 0.650
113⁄16 19⁄16 15⁄16 13⁄16 1 15⁄ 16 13⁄ 16 3⁄ 4 5⁄ 8 5⁄ 8 5⁄ 8
1 3⁄ 4 11⁄ 16 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16
38.5 32.4 27.6 23.6 20.0 18.5 16.5 14.8 12.7 12.6 12.4
16.690 163⁄4 16.420 167⁄16 16.220 161⁄4 16.060 161⁄16 15.910 157⁄8 15.825 157⁄8 15.830 157⁄8 15.750 153⁄4 15.750 153⁄4 15.750 153⁄4 15.750 153⁄4
3.230 2.760 2.360 2.050 1.770 1.650 1.575 1.420 1.220 1.065 0.830
31⁄4 23⁄4 23⁄8 21⁄16 13⁄4 15⁄8 19⁄16 17⁄16 11⁄4 11⁄16 13⁄ 16
47⁄16 315⁄16 39⁄16 31⁄4 215⁄16 31⁄16 23⁄4 25⁄8 23⁄8 21⁄4 2
WT20×233 WT22×196 WT22×165.5 WT22×139 WT22×132 WT22×117.5 WT22×105.5 WT22×91.5 WT22×83.5 WT22×74.5
68.4 57.7 48.8 40.9 38.8 34.5 31.0 26.9 24.6 21.9
21.220 213⁄16 20.785 203⁄4 20.395 203⁄8 20.080 201⁄8 20.000 20 19.845 197⁄8 19.685 1911⁄16 19.490 191⁄2 19.295 195⁄16 19.100 191⁄8
1.67 1.42 1.22 1.02 0.960 0.830 0.750 0.650 0.650 0.630
111⁄16 17⁄16 11⁄4 1 1 13⁄ 16 3⁄ 4 5⁄ 8 5⁄ 8 5⁄ 8
13⁄ 16 11⁄ 16 5⁄ 8 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16
35.4 29.5 24.9 20.5 19.2 16.5 14.8 12.7 12.5 12.0
12.640 125⁄8 12.360 123⁄8 12.170 123⁄16 11.970 12 11.930 12 11.890 117⁄8 11.810 113⁄4 11.810 113⁄4 11.810 113⁄4 11.810 113⁄4
2.950 2.520 2.130 1.810 1.730 1.575 1.415 1.220 1.025 0.830
215⁄16 21⁄2 21⁄8 113⁄16 13⁄4 17⁄16 19⁄16 11⁄4 1 13⁄ 16
41⁄8 311⁄16 35⁄16 3 215⁄16 23⁄4 25⁄8 23⁄8 23⁄16 2
WT18×424 WT22×399 WT22×325 WT22×263.5 WT22×219.5 WT22×196.5 WT22×179.5 WT22×164 WT22×150 WT22×140 WT22×130 WT22×122.5 WT22×115
125 117 95.0 77.0 64.0 57.5 52.7 48.2 44.1 41.2 38.2 36.0 33.8
21.225 211⁄4 20.985 21 20.235 201⁄4 19.605 195⁄8 19.130 191⁄8 18.900 187⁄8 18.700 1811⁄16 18.545 189⁄16 18.370 183⁄8 18.260 181⁄4 18.130 181⁄8 18.040 18 17.950 18
2.520 2.380 1.970 1.610 1.360 1.220 1.120 1.020 0.945 0.885 0.840 0.800 0.760
21⁄2 23⁄8 2 15⁄8 13⁄8 11⁄4 11⁄8 1 15⁄ 16 7⁄ 8 13⁄ 16 13⁄ 16 3⁄ 4
11⁄4 13⁄16 1 13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 7⁄ 16 7⁄ 16 3⁄ 8
53.5 49.9 39.9 31.6 26.0 23.1 20.9 18.9 17.4 16.2 15.2 14.4 13.6
18.130 17.990 17.575 17.220 16.965 16.830 16.730 16.630 16.655 16.595 16.550 16.510 16.470
181⁄8 18 175⁄8 171⁄4 17 167⁄8 163⁄4 165⁄8 165⁄8 165⁄8 161⁄2 161⁄2 161⁄2
4.530 4.290 3.540 2.910 2.440 2.200 2.010 1.850 1.680 1.570 1.440 1.350 1.260
41⁄2 45⁄16 39⁄16 215⁄16 27⁄16 23⁄16 2 17⁄8 111⁄16 19⁄16 17⁄16 13⁄8 11⁄4
511⁄16 57⁄16 411⁄16 41⁄16 39⁄16 35⁄16 31⁄8 3 213⁄16 211⁄16 29⁄16 21⁄2 23⁄8
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL TEES (WT, MT, ST)
1 - 69
bf
STRUCTURAL TEES Cut from W shapes Properties
tf
k
Y
yp , y
X
X
d
tw
Y
Nominal Wt. per ft lb
Axis X-X
h tw
Qs*
Axis Y-Y
I
S
r
y
Z
yp
I
S
r
Z
in.4
in.3
in.
in.
in.3
in.
in.4
in.3
in.
in.3
36
Fy, ksi 50
167.5 145 131 115
19.1 22.3 24.6 27.4
2160 1840 1650 1440
131 111 100 88.6
6.63 6.55 6.53 6.53
5.51 5.27 5.20 5.17
233 197 177 157
1.54 1.35 1.23 1.07
600 524 463 398
75.3 66.1 58.8 50.5
3.50 3.49 3.46 3.43
118 103 91.4 78.4
0.982 0.833 0.732 0.608
0.817 0.636 0.532 0.438
296.5 251.5 215.5 186 160.5 148.5 138.5 124.5 107.5 99.5 87
9.5 11.1 12.8 14.7 17.1 18.4 20.6 22.8 26.3 26.3 26.3
3300 2730 2290 1930 1630 1500 1360 1210 1030 987 907
209 175 148 126 107 98.9 88.6 79.3 68.0 66.4 63.8
6.16 6.07 6.01 5.95 5.89 5.87 5.78 5.75 5.72 5.81 5.96
5.67 5.39 5.18 4.97 4.79 4.71 4.51 4.41 4.28 4.48 4.87
379 315 266 225 191 176 157 140 120 117 114
2.61 2.25 1.95 1.70 1.48 1.38 1.28 1.16 1.00 0.927 0.811
1260 1020 843 710 596 546 522 463 398 347 271
151 125 104 88.5 74.9 69.1 65.9 58.8 50.5 44.1 34.4
3.81 3.72 3.65 3.60 3.56 3.54 3.58 3.56 3.55 3.45 3.26
240 197 164 139 117 108 102 91.0 77.9 68.3 53.8
— — — — — 0.989 0.882 0.782 0.618 0.628 0.643
— — — — 0.895 0.825 0.699 0.580 0.445 0.452 0.463
233 196 165.5 139 132 117.5 105.5 91.5 83.5 74.5
10.2 12.0 14.0 16.8 17.8 20.6 22.8 26.3 26.3 27.1
2770 2270 1880 1540 1450 1260 1120 957 898 815
185 153 128 106 99.3 85.6 76.7 65.8 63.7 59.7
6.36 6.28 6.21 6.14 6.11 6.04 6.01 5.97 6.05 6.10
6.22 5.95 5.74 5.50 5.40 5.17 5.08 4.94 5.20 5.45
333 276 231 190 178 153 137 117 115 119
2.71 2.33 2.01 1.71 1.63 1.45 1.31 1.14 1.04 1.82
504 401 323 261 246 222 195 168 141 115
79.8 65.0 53.1 43.6 41.3 37.3 33.0 28.5 23.9 19.4
2.72 2.64 2.57 2.52 2.52 2.54 2.51 2.50 2.40 2.29
131 106 86.2 70.0 66.2 59.2 52.3 44.8 38.0 31.1
— — — — — 0.882 0.782 0.618 0.630 0.604
— — — 0.913 0.855 0.699 0.581 0.445 0.454 0.435
424 399 325 263.5 219.5 196.5 179.5 164 150 140 130 122.5 115
6.3 6.6 8.0 9.8 11.6 12.9 14.1 15.4 16.7 17.8 18.7 19.7 20.7
4250 3920 3020 2330 1880 1660 1500 1350 1230 1140 1060 995 934
277 257 202 159 130 115 104 94.1 86.1 80.0 75.1 71.0 67.0
5.84 5.79 5.64 5.50 5.42 5.37 5.33 5.29 5.27 5.25 5.26 5.26 5.25
5.86 5.72 5.29 4.89 4.63 4.46 4.33 4.21 4.13 4.07 4.05 4.03 4.01
515 478 373 290 235 207 187 168 153 142 133 125 118
3.43 3.25 2.70 2.24 1.89 1.71 1.58 1.45 1.33 1.24 1.16 1.09 1.03
2270 2100 1610 1240 997 877 786 711 648 599 545 507 470
251 234 184 145 117 104 94.0 85.5 77.8 72.2 65.9 61.4 57.1
4.27 4.24 4.12 4.02 3.95 3.90 3.86 3.84 3.83 3.81 3.78 3.75 3.73
399 371 290 227 184 162 146 132 120 112 102 94.9 88.1
— — — — — — — — — — 0.981 0.943 0.896
— — — — — — — — 0.927 0.867 0.816 0.770 0.715
*Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 70
DIMENSIONS AND PROPERTIES
bf tf
yp , y
STRUCTURAL TEES Cut from W shapes Dimensions
k
Y
X
X
d
tw
Y
Stem
Area of Stem
Flange DisThickness tance tf k
Area
Depth of Tee d
Thickness tw
tw 2
Designation
in.2
in.
in.
in.
WT18×128 WT18×116 WT18×105 WT18×97 WT18×91 WT18×85 WT18×80 WT18×75 WT18×67.5
37.7 34.1 30.9 28.5 26.8 25.0 23.5 22.1 19.9
18.715 1811⁄16 18.560 189⁄16 18.345 183⁄8 18.245 181⁄4 18.165 181⁄8 18.085 181⁄8 18.005 18 17.925 177⁄8 17.775 173⁄4
0.960 0.870 0.830 0.765 0.725 0.680 0.650 0.625 0.600
1 7⁄ 8 13⁄ 16 3⁄ 4 3⁄ 4 11⁄ 16 5⁄ 8 5⁄ 8 5⁄ 8
2
7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16
18.0 16.1 15.2 14.0 13.2 12.3 11.7 11.2 10.7
12.215 12.120 12.180 12.115 12.075 12.030 12.000 11.975 11.950
121⁄4 121⁄8 121⁄8 121⁄8 121⁄8 12 12 12 12
1.730 1.570 1.360 1.260 1.180 1.100 1.020 0.940 0.790
13⁄4 19⁄16 13⁄8 11⁄4 13⁄16 11⁄8 1 15⁄ 16 13⁄ 16
25⁄8 21⁄2 25⁄16 23⁄16 21⁄8 2 115⁄16 17⁄8 111⁄16
WT16.5×177 WT16.5×159 WT16.5×145.5 WT16.5×131.5 WT16.5×120.5 WT16.5×110.5 WT16.5×100.5
52.1 46.7 42.8 38.7 35.4 32.5 29.5
17.775 173⁄4 17.580 179⁄16 17.420 177⁄16 17.265 171⁄4 17.090 171⁄8 16.965 17 16.840 167⁄8
1.160 1.040 0.960 0.870 0.830 0.775 0.715
13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16
5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8
20.6 18.3 16.7 15.0 14.2 13.1 12.0
16.100 15.985 15.905 15.805 15.860 15.805 15.745
161⁄8 16 157⁄8 153⁄4 157⁄8 153⁄4 153⁄4
2.090 1.890 1.730 1.570 1.400 1.275 1.150
21⁄16 17⁄8 13⁄4 19⁄16 13⁄8 11⁄4 11⁄8
27⁄8 211⁄16 29⁄16 23⁄8 23⁄16 21⁄16 115⁄16
WT16.5×84.5 WT16.5×76 WT16.5×70.5 WT16.5×65 WT16.5×59
24.8 22.4 20.8 19.2 17.3
16.910 1615⁄16 16.745 163⁄4 16.650 165⁄8 16.545 161⁄2 16.430 163⁄8
0.670 0.635 0.605 0.580 0.550
11⁄
3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 5⁄ 16
11.3 10.6 10.1 9.60 9.04
11.500 11.565 11.535 11.510 11.480
111⁄2 115⁄8 111⁄2 111⁄2 111⁄2
1.220 1.055 0.960 0.855 0.740
11⁄4 11⁄16 15⁄ 16 7⁄ 8 3⁄ 4
21⁄16 17⁄8 13⁄4 111⁄16 19⁄16
WT15×238.5 WT15×195.5 WT15×163 WT15×146 WT15×130.5 WT15×117.5 WT15×105.5 WT15×95.5 WT15×86.5
70.0 57.0 47.9 42.9 38.4 34.5 31.0 28.1 25.4
17.105 171⁄8 16.595 165⁄8 16.200 163⁄16 16.005 16 15.805 1513⁄16 15.650 155⁄8 15.470 151⁄2 15.340 153⁄8 15.220 151⁄4
1.630 1.360 1.140 1.020 0.930 0.830 0.775 0.710 0.655
15⁄8 13⁄8 11⁄8 1 15⁄ 16 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8
13⁄
16 11⁄ 16 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16
27.9 22.6 18.5 16.3 14.7 13.0 12.0 10.9 9.97
15.865 15.590 15.370 15.255 15.155 15.055 15.105 15.040 14.985
157⁄8 155⁄8 153⁄8 151⁄2 151⁄8 15 151⁄8 15 15
2.950 2.440 2.050 1.850 1.650 1.500 1.315 1.185 1.065
3 27⁄16 21⁄16 17⁄8 15⁄8 11⁄2 15⁄16 13⁄16 11⁄16
33⁄4 31⁄4 213⁄16 25⁄8 27⁄16 21⁄4 21⁄8 115⁄16 17⁄8
WT15×74 WT18×66 WT18×62 WT18×58 WT18×54 WT18×49.5 WT18×45
21.7 19.4 18.2 17.1 15.9 14.5 13.2
15.335 155⁄16 15.155 151⁄8 15.085 151⁄8 15.005 15 14.915 147⁄8 14.825 147⁄8 14.765 143⁄4
0.650 0.615 0.585 0.565 0.545 0.520 0.470
5⁄ 8 5⁄ 8 9⁄ 16 9⁄ 16 9⁄ 16 1⁄ 2 1⁄ 2
5⁄ 16 5⁄ 16 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4
10.0 9.32 8.82 8.48 8.13 7.71 6.94
10.480 10.545 10.515 10.495 10.475 10.450 10.400
101⁄2 101⁄2 101⁄2 101⁄2 101⁄2 101⁄2 103⁄8
1.180 1.000 0.930 0.850 0.760 0.670 0.610
13⁄16 1 15⁄ 16 7⁄ 8 3⁄ 4 11⁄ 16 9⁄ 16
2 13⁄4 111⁄16 15⁄8 19⁄16 17⁄16 15⁄16
16 5⁄ 8 5⁄ 8 9⁄ 16 9⁄ 16
1⁄
Width bf
in.2
in.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
in.
in.
STRUCTURAL TEES (WT, MT, ST)
1 - 71
bf
STRUCTURAL TEES Cut from W shapes Properties
tf
k
Y
yp , y
X
X
d
tw
Y
Nominal Wt. per ft lb
Axis X-X
h tw
Qs*
Axis Y-Y
I
S
r
y
Z
yp
I
S
r
Z
in.4
in.3
in.
in.
in.3
in.
in.4
in.3
in.
in.3
Fy, ksi 36
50
128 116 105 97 91 85 80 75 67.5
16.9 18.7 19.6 21.2 22.4 23.9 25.0 26.0 27.1
1200 1080 985 901 845 786 740 698 637
87.4 78.5 73.1 67.0 63.1 58.9 55.8 53.1 49.7
5.66 5.63 5.65 5.62 5.62 5.61 5.61 5.62 5.66
4.92 4.82 4.87 4.80 4.77 4.73 4.74 4.78 4.96
156 140 131 120 113 105 100 95.5 94.3
1.54 1.40 1.27 1.18 1.11 1.04 0.980 0.923 1.24
264 234 206 187 174 160 147 135 113
43.2 38.6 33.8 30.9 28.8 26.6 24.6 22.5 18.9
2.65 2.62 2.58 2.56 2.55 2.53 2.50 2.47 2.38
68.6 61.0 53.5 48.9 45.4 41.9 38.6 35.5 29.8
— 0.994 0.960 0.887 0.831 0.767 0.720 0.677 0.634
0.927 0.831 0.791 0.705 0.635 0.565 0.521 0.486 0.457
177 159 145.5 131.5 120.5 110.5 100.5
12.9 14.4 15.6 17.2 18.1 19.3 21.0
1320 1160 1050 943 871 799 725
96.8 85.8 78.3 70.2 65.8 60.8 55.5
5.03 4.99 4.97 4.94 4.96 4.96 4.95
4.16 4.02 3.94 3.84 3.85 3.81 3.78
174 154 140 125 116 107 97.7
1.62 1.46 1.34 1.22 1.12 1.03 0.938
729 645 581 517 466 420 375
90.6 80.7 73.1 65.5 58.8 53.2 47.6
3.74 3.71 3.69 3.66 3.63 3.59 3.56
141 125 113 101 90.9 82.1 73.4
— — — — — 0.968 0.896
— — 0.993 0.907 0.867 0.801 0.715
84.5 76 70.5 65 59
22.4 23.6 24.8 25.8 27.3
649 592 552 513 469
51.1 47.4 44.7 42.1 39.2
5.12 5.14 5.15 5.18 5.20
4.21 4.26 4.29 4.36 4.47
90.8 84.5 79.8 75.6 74.8
1.08 0.967 0.901 0.832 0.862
155 136 123 109 93.6
27.0 23.6 21.3 18.9 16.3
2.50 2.47 2.43 2.39 2.32
42.2 37.0 33.5 29.7 25.7
0.827 0.775 0.728 0.685 0.621
0.630 0.574 0.529 0.492 0.447
238.5 195.5 163 146 130.5 117.5 105.5 95.5 86.5
8.3 9.9 11.8 13.2 14.5 16.2 17.4 19.0 20.6
1550 1210 981 861 764 674 610 549 497
121 96.6 78.9 69.6 62.3 55.1 50.5 45.7 41.7
4.70 4.61 4.53 4.48 4.46 4.42 4.43 4.42 4.42
4.30 4.04 3.76 3.63 3.54 3.42 3.40 3.35 3.31
224 177 143 125 112 98.2 89.5 80.8 73.4
2.21 1.83 1.56 1.40 1.27 1.15 1.03 0.933 0.848
987 774 622 549 480 427 378 336 299
124 99.2 81.0 71.9 63.3 56.8 50.1 44.7 39.9
3.75 3.68 3.61 3.58 3.54 3.52 3.49 3.46 3.43
195 155 126 111 97.9 87.5 77.2 68.9 61.4
— — — — — — — 0.981 0.913
— — — — — 0.952 0.897 0.816 0.735
74 66 62 58 54 49.5 45
20.8 22.0 23.1 23.9 24.8 26.0 28.7
466 421 396 373 349 322 291
40.6 37.4 35.3 33.7 32.0 30.0 27.1
4.63 4.66 4.66 4.67 4.69 4.71 4.69
3.84 3.90 3.90 3.94 4.01 4.09 4.03
72.2 66.8 63.1 60.4 57.7 57.4 49.4
1.04 0.921 0.867 0.815 0.757 0.912 0.445
113 98.0 90.4 82.1 73.0 63.9 57.3
21.7 18.6 17.2 15.7 13.9 12.2 11.0
2.28 2.25 2.23 2.19 2.15 2.10 2.08
34.0 29.2 27.0 24.6 22.0 19.3 17.3
0.896 0.853 0.801 0.767 0.733 0.685 0.563
0.715 0.664 0.601 0.565 0.533 0.492 0.405
*Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 72
DIMENSIONS AND PROPERTIES
bf tf
yp , y
STRUCTURAL TEES Cut from W shapes Dimensions
k
Y
X
X
d
tw
Y
Stem
Area of Stem
Area
Depth of Tee d
Thickness tw
tw 2
Designation
in.2
in.
in.
in.
in.2
WT13.5×269.5 WT13.5×224 WT13.5×184 WT13.5×153.5 WT13.5×129 WT13.5×117.5 WT13.5×108.5 WT13.5×97 WT13.5×89 WT13.5×80.5 WT13.5×73
79.0 65.5 54.0 45.1 37.9 34.6 31.9 28.5 26.1 23.7 21.5
16.260 15.710 15.195 14.805 14.490 14.330 14.215 14.055 13.905 13.795 13.690
161⁄4 1511⁄16 153⁄16 1413⁄16 141⁄2 145⁄16 143⁄16 141⁄16 137⁄8 133⁄4 133⁄4
1.970 1.650 1.380 1.160 0.980 0.910 0.830 0.750 0.725 0.660 0.605
2 15⁄8 13⁄8 13⁄16 1 15⁄ 16 13⁄ 16 3⁄ 4 3⁄ 4 11⁄ 16 5⁄ 8
1 13⁄ 16 11⁄ 16 5⁄ 8 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 3⁄ 8 3⁄ 8 5⁄ 16
32.0 25.9 21.0 17.2 14.2 13.0 11.8 10.5 10.1 9.10 8.28
WT13.5×64.5 WT13.5×57 WT13.5×51 WT13.5×47 WT13.5×42
18.9 16.8 15.0 13.8 12.4
13.815 1313⁄16 13.645 135⁄8 13.545 131⁄2 13.460 131⁄2 13.355 133⁄8
0.610 0.570 0.515 0.490 0.460
5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16
5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4
WT12×246 WT12×204 WT12×167.5 WT12×139.5 WT12×125 WT12×114.5 WT12×103.5 WT12×96 WT12×88 WT12×81 WT12×73 WT12×65.5 WT12×58.5 WT12×52
72.0 59.5 49.2 41.0 36.8 33.6 30.4 28.2 25.8 23.9 21.5 19.3 17.2 15.3
14.825 1413⁄16 14.270 141⁄4 13.760 133⁄4 13.365 133⁄8 13.170 133⁄16 13.010 13 12.855 127⁄8 12.735 123⁄4 12.620 125⁄8 12.500 121⁄2 12.370 123⁄8 12.240 121⁄4 12.130 121⁄8 12.030 12
1.970 1.650 1.380 1.160 1.040 0.960 0.870 0.810 0.750 0.705 0.650 0.605 0.550 0.500
2 15⁄8 13⁄8 13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2
13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4
29.2 23.5 19.0 15.5 13.7 12.5 11.2 10.3 9.47 8.81 8.04 7.41 6.67 6.02
WT12×51.5 WT12×47 WT12×42 WT12×38 WT12×34
15.1 13.8 12.4 11.2 10.0
12.265 12.155 12.050 11.960 11.865
121⁄4 121⁄8 12 12 117⁄8
0.550 0.515 0.470 0.440 0.415
9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 7⁄ 16
5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 1⁄ 4
9.11 11.870 8.10 11.785
117⁄8 113⁄4
0.430 0.395
7⁄ 16 3⁄ 8
1⁄ 4 3⁄ 16
WT12×31 WT12×27.5
1
Flange DisThickness tance tf k
Width bf in.
in.
in.
151⁄4 15 145⁄8 141⁄2 141⁄4 141⁄4 141⁄8 14 141⁄8 14 14
3.540 2.990 2.480 2.090 1.770 1.610 1.500 1.340 1.190 1.080 0.975
39⁄16 3 21⁄2 21⁄16 13⁄4 15⁄8 11⁄2 15⁄16 13⁄16 11⁄16 1
41⁄4 311⁄16 33⁄16 213⁄16 21⁄2 25⁄16 23⁄16 21⁄16 17⁄8 113⁄16 111⁄16
8.43 10.010 10 7.78 10.070 101⁄8 6.98 10.015 10 6.60 9.990 10 6.14 9.960 10
1.100 0.930 0.830 0.745 0.640
11⁄8 15⁄ 16 13⁄ 16 3⁄ 4 5⁄ 8
113⁄16 15⁄8 19⁄16 17⁄16 13⁄8
14.115 13.800 13.520 13.305 13.185 13.110 13.010 12.950 12.890 12.955 12.900 12.855 12.800 12.750
141⁄8 133⁄4 131⁄2 131⁄4 131⁄8 131⁄8 13 13 127⁄8 13 127⁄8 127⁄8 123⁄4 123⁄4
3.540 2.990 2.480 2.090 1.890 1.730 1.570 1.460 1.340 1.220 1.090 0.960 0.850 0.750
39⁄16 3 21⁄2 21⁄16 17⁄8 13⁄4 19⁄16 17⁄16 15⁄16 11⁄4 11⁄16 15⁄ 16 7⁄ 8 3⁄ 4
45⁄16 33⁄4 31⁄4 27⁄8 211⁄16 21⁄2 23⁄8 21⁄4 21⁄8 2 17⁄8 13⁄4 15⁄8 11⁄2
6.75 6.26 5.66 5.26 4.92
9.000 9.065 9.020 8.990 8.965
9 91⁄8 9 9 9
0.980 0.875 0.770 0.680 0.585
1 7⁄ 8 3⁄ 4 11⁄ 16 9⁄ 16
13⁄4 15⁄8 19⁄16 17⁄16 13⁄8
5.10 4.66
7.040 7.005
7 7
0.590 0.505
9⁄ 16 1⁄ 2
13⁄8 15⁄16
15.255 14.940 14.665 14.445 14.270 14.190 14.115 14.035 14.085 14.020 13.965
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL TEES (WT, MT, ST)
1 - 73
bf
STRUCTURAL TEES Cut from W shapes Properties
tf
k
Y
yp , y
X
X
d
tw
Y
Nominal Wt. per ft lb
Axis X-X
h tw
Qs*
Axis Y-Y
I
S
r
y
Z
yp
I
S
r
Z
in.4
in.3
in.
in.
in.3
in.
in.4
in.3
in.
in.3
36
50
2.59 1060 2.19 836 1.84 655 1.56 527 1.33 430 1.22 384 1.13 352 1.02 309 0.928 278 0.845 248 0.768 222
138 112 89.3 72.9 60.2 54.2 49.9 44.1 39.4 35.4 31.7
3.66 3.57 3.48 3.42 3.37 3.33 3.32 3.29 3.26 3.24 3.21
218 176 140 113 93.3 83.8 77.0 67.9 60.8 54.5 48.8
— — — — — — — — — — 0.938
— — — — — — — 0.963 0.937 0.851 0.765
18.4 15.8 13.9 12.4 10.6
2.21 2.18 2.15 2.12 2.07
28.8 24.7 21.7 19.4 16.6
0.938 0.883 0.780 0.728 0.664
0.765 0.700 0.578 0.529 0.476
119 95.5 75.9 61.9 54.9 49.7 44.4 40.9 37.2 34.2 30.3 26.5 23.2 20.3
3.41 3.33 3.23 3.17 3.14 3.11 3.08 3.07 3.04 3.05 3.01 2.97 2.94 2.91
187 150 119 96.4 85.3 77.0 68.6 63.1 57.3 52.6 46.6 40.7 35.7 31.2
— — — — — — — — — — — — 0.960 0.874
— — — — — — — — — — 0.947 0.887 0.791 0.690
20.7 18.8 16.3 14.3 12.3
0.951 0.896 0.810 0.741 0.681
0.781 0.715 0.610 0.541 0.489
7.87 0.724 6.67 0.626
0.525 0.450
269.5 224 184 153.5 129 117.5 108.5 97 89 80.5 73
6.2 7.4 8.8 10.5 12.4 13.3 14.6 16.2 16.7 18.4 20.0
1520 1190 938 753 613 556 502 444 414 372 336
128 102 81.7 66.4 54.6 50.0 45.2 40.3 38.2 34.4 31.2
4.39 4.27 4.17 4.09 4.02 4.01 3.97 3.95 3.98 3.96 3.95
4.36 4.02 3.71 3.47 3.28 3.21 3.11 3.03 3.05 2.99 2.95
241 191 151 121 98.8 89.8 81.1 71.8 67.6 60.8 55.0
64.5 57 51 47 42
19.9 21.3 23.5 24.7 26.3
323 289 258 239 216
31.0 28.3 25.3 23.8 21.9
4.13 4.15 4.14 4.16 4.18
3.39 3.42 3.37 3.41 3.48
55.1 50.4 45.0 42.4 39.2
0.945 0.833 0.750 0.692 0.621
246 204 167.5 139.5 125 114.5 103.5 96 88 81 73 65.5 58.5 52
5.5 6.5 7.8 9.3 10.4 11.2 12.4 13.3 14.4 15.3 16.6 17.8 19.6 21.6
1130 874 685 546 478 431 382 350 319 293 264 238 212 189
105 83.1 66.3 53.6 47.2 42.9 38.3 35.2 32.2 29.9 27.2 24.8 22.3 20.0
3.96 3.83 3.73 3.65 3.61 3.58 3.55 3.53 3.51 3.50 3.50 3.52 3.51 3.51
4.07 3.74 3.42 3.18 3.05 2.97 2.87 2.80 2.74 2.70 2.66 2.65 2.62 2.59
200 157 123 98.8 86.5 78.1 69.3 63.5 57.8 53.3 48.2 43.9 39.2 35.1
2.55 2.16 1.82 1.54 1.39 1.28 1.17 1.09 1.00 0.921 0.833 0.750 0.672 0.600
51.5 47 42 38 34
19.6 20.9 22.9 24.5 26.0
204 186 166 151 137
22.0 20.3 18.3 16.9 15.6
3.67 3.67 3.67 3.68 3.70
3.01 2.99 2.97 3.00 3.06
39.2 36.1 32.5 30.1 27.9
0.841 0.764 0.685 0.622 0.560
59.7 54.5 47.2 41.3 35.2
13.3 12.0 10.5 9.18 7.85
1.99 1.98 1.95 1.92 1.87
31 27.5
25.1 27.3
131 117
15.6 14.1
3.79 3.80
3.46 3.50
28.4 25.6
1.28 1.53
17.2 14.5
4.90 4.15
1.38 1.34
92.2 79.4 69.6 62.0 52.8 837 659 513 412 362 326 289 265 240 221 195 170 149 130
*Where no value of Qs is shown, the Tee complies with LRFD Specification Sect. E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Fy, ksi
1 - 74
DIMENSIONS AND PROPERTIES
bf tf
yp , y
STRUCTURAL TEES Cut from W shapes Dimensions
k
Y
X
X
d
tw
Y
Stem
Area of Stem
Flange DisThickness tance tf k
Area
Depth of Tee d
Thickness tw
tw 2
Designation
in.2
in.
in.
in.
in.2
WT10.5×100.5 WT10.5×91 WT10.5×83 WT10.5×73.5 WT10.5×66 WT10.5×61 WT10.5×55.5 WT10.5×50.5
29.6 26.8 24.4 21.6 19.4 17.9 16.3 14.9
11.515 11.360 11.240 11.030 10.915 10.840 10.755 10.680
111⁄2 113⁄8 111⁄4 11 107⁄8 107⁄8 103⁄4 105⁄8
0.910 0.830 0.750 0.720 0.650 0.600 0.550 0.500
15⁄ 16 13⁄ 16 3⁄ 4 3⁄ 4 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2
1⁄
2
7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4
10.5 9.43 8.43 7.94 7.09 6.50 5.92 5.34
12.575 12.500 12.420 12.510 12.440 12.390 12.340 12.290
125⁄8 121⁄2 123⁄8 121⁄2 121⁄2 123⁄8 123⁄8 121⁄4
1.630 1.480 1.360 1.150 1.035 0.960 0.875 0.800
15⁄8 11⁄2 13⁄8 11⁄8 11⁄16 15⁄ 16 7⁄ 8 13⁄ 16
23⁄8 21⁄4 21⁄8 17⁄8 113⁄16 111⁄16 15⁄8 19⁄16
WT10.5×46.5 WT10.5×41.5 WT10.5×36.5 WT10.5×34 WT10.5×31
13.7 12.2 10.7 10.0 9.13
10.810 10.715 10.620 10.565 10.495
103⁄4 103⁄4 105⁄8 105⁄8 101⁄2
0.580 0.515 0.455 0.430 0.400
9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8
5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16
6.27 5.52 4.83 4.54 4.20
8.420 8.355 8.295 8.270 8.240
83⁄8 83⁄8 81⁄4 81⁄4 81⁄4
0.930 0.835 0.740 0.685 0.615
15⁄ 16 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8
111⁄16 19⁄16 11⁄2 17⁄16 13⁄8
8.37 10.530 7.36 10.415 6.49 10.330
101⁄2 103⁄8 103⁄8
0.405 0.380 0.350
3⁄ 8 3⁄ 8 3⁄ 8
3⁄ 16 3⁄ 16 3⁄ 16
4.26 3.96 3.62
6.555 6.530 6.500
61⁄2 61⁄2 61⁄2
0.650 0.535 0.450
5⁄ 8 9⁄ 16 7⁄ 16
13⁄8 15⁄16 13⁄16
WT10.5×28.5 WT10.5×25 WT10.5×22
Width bf in.
in.
in.
WT9×155.5 WT9×141.5 WT9×129 WT9×117 WT9×105.5 WT9×96 WT9×87.5 WT9×79 WT9×71.5 WT9×65
45.8 41.6 38.0 34.4 31.1 28.2 25.7 23.2 21.0 19.1
11.160 10.925 10.730 10.530 10.335 10.175 10.020 9.860 9.745 9.625
113⁄16 1015⁄16 103⁄4 101⁄2 105⁄16 103⁄16 10 97⁄8 93⁄4 95⁄8
1.520 1.400 1.280 1.160 1.060 0.960 0.890 0.810 0.730 0.670
11⁄2 13⁄8 11⁄4 13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16
3⁄ 4 11⁄ 16 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8
17.0 15.3 13.7 12.2 11.0 9.77 8.92 7.99 7.11 6.45
12.005 11.890 11.770 11.650 11.555 11.455 11.375 11.300 11.220 11.160
12 117⁄8 113⁄4 115⁄8 111⁄2 111⁄2 113⁄8 111⁄4 111⁄4 111⁄8
2.740 2.500 2.300 2.110 1.910 1.750 1.590 1.440 1.320 1.200
23⁄4 21⁄2 25⁄16 21⁄8 115⁄16 13⁄4 19⁄16 17⁄16 15⁄16 13⁄16
37⁄16 33⁄16 3 23⁄4 9 2 ⁄16 27⁄16 21⁄4 21⁄8 2 17⁄8
WT9×59.5 WT9×53 WT9×48.5 WT9×43 WT9×38
17.5 15.6 14.3 12.7 11.2
9.485 9.365 9.295 9.195 9.105
91⁄2 93⁄8 91⁄4 91⁄4 91⁄8
0.655 0.590 0.535 0.480 0.425
5⁄ 8 9⁄ 16 9⁄ 16 1⁄ 2 7⁄ 16
5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4
6.21 5.53 4.97 4.41 3.87
11.265 11.200 11.145 11.090 11.035
111⁄4 111⁄4 111⁄8 111⁄8 11
1.060 0.940 0.870 0.770 0.680
11⁄16 15⁄ 16 7⁄ 8 3⁄ 4 11⁄ 16
13⁄4 15⁄8 19⁄16 17⁄16 13⁄8
WT9×35.5 WT9×32.5 WT9×30 WT9×27.5 WT9×25
10.4 9.55 8.82 8.10 7.33
9.235 9.175 9.120 9.055 8.995
91⁄4 91⁄8 91⁄8 9 9
0.495 0.450 0.415 0.390 0.355
1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8
1⁄
1⁄ 4 3⁄ 16 3⁄ 16
4.57 4.13 3.78 3.53 3.19
7.635 7.590 7.555 7.530 7.495
75⁄8 75⁄8 71⁄2 71⁄2 71⁄2
0.810 0.750 0.695 0.630 0.570
13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 9⁄ 16
11⁄2 17⁄16 13⁄8 15⁄16 11⁄4
WT9×23 WT9×20 WT9×17.5
6.77 5.88 5.15
9.030 8.950 8.850
9 9 87⁄8
0.360 0.315 0.300
3⁄ 8 5⁄ 16 5⁄ 16
3⁄ 16 3⁄ 16 3⁄ 16
3.25 2.82 2.66
6.060 6.015 6.000
6 6 6
0.605 0.525 0.425
5⁄ 8 1⁄ 2 7⁄ 16
11⁄4 13⁄16 11⁄8
1⁄
4 4
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL TEES (WT, MT, ST)
1 - 75
bf
STRUCTURAL TEES Cut from W shapes Properties
tf
k
Y
yp , y
X
X
d
tw
Y
Nominal Wt. per ft lb
Axis X-X
h tw
Qs*
Axis Y-Y
I
S
r
y
Z
yp
I
S
r
Z
in.4
in.3
in.
in.
in.3
in.
in.4
in.3
in.
in.3
36
50
43.1 38.6 35.0 30.0 26.7 24.6 22.2 20.2
3.02 3.00 2.98 2.95 2.93 2.92 2.90 2.89
66.6 59.6 53.9 46.3 41.1 37.8 34.1 30.9
— — — — — — — 0.990
— — — — — 0.993 0.917 0.826
17.4 15.3 13.3 12.2 10.9
— — 0.908 0.853 0.784
0.968 0.856 0.730 0.664 0.583
7.42 0.793 6.09 0.733 5.09 0.638
0.592 0.533 0.460
100.5 91 83 73.5 66 61 55.5 50.5
10.3 11.2 12.4 13.0 14.4 15.6 17.1 18.8
285 253 226 204 181 166 150 135
31.9 28.5 25.5 23.7 21.1 19.3 17.5 15.8
3.10 3.07 3.04 3.08 3.06 3.04 3.03 3.01
2.57 2.48 2.39 2.39 2.33 2.28 2.23 2.18
58.6 52.1 46.3 42.4 37.6 34.3 31.0 27.9
1.18 1.07 0.984 0.864 0.780 0.724 0.662 0.605
271 241 217 188 166 152 137 124
46.5 41.5 36.5 34 31
16.2 18.2 20.6 21.8 23.5
144 127 110 103 93.8
17.9 15.7 13.8 12.9 11.9
3.25 3.22 3.21 3.20 3.21
2.74 2.66 2.60 2.59 2.58
31.8 28.0 24.4 22.9 21.1
0.812 0.728 0.647 0.606 0.554
46.4 40.7 35.3 32.4 28.7
11.0 9.75 8.51 7.83 6.97
1.84 1.83 1.81 1.80 1.77
28.5 25 22
23.2 24.7 26.8
90.4 80.3 71.1
11.8 10.7 9.68
3.29 3.30 3.31
2.85 2.93 2.98
21.2 20.8 17.6
0.638 0.771 1.06
15.3 12.5 10.3
4.67 3.82 3.18
1.35 1.30 1.26
155.5 141.5 129 117 105.5 96 87.5 79 71.5 65
5.3 5.7 6.3 6.9 7.5 8.3 9.0 9.9 11.0 11.9
383 337 298 260 229 202 181 160 142 127
46.5 41.5 37.0 32.6 29.0 25.8 23.4 20.8 18.5 16.7
2.89 2.85 2.80 2.75 2.72 2.68 2.66 2.63 2.60 2.58
2.93 2.80 2.68 2.55 2.44 2.34 2.26 2.18 2.09 2.02
90.6 80.1 71.0 62.4 55.0 48.5 43.6 38.5 34.0 30.5
1.91 1.75 1.61 1.48 1.34 1.23 1.13 1.02 0.938 0.856
59.5 53 48.5 43 38
12.3 13.6 15.0 16.7 18.9
119 104 93.8 82.4 71.8
15.9 14.1 12.7 11.2 9.83
2.60 2.59 2.56 2.55 2.54
2.03 1.97 1.91 1.86 1.80
28.7 25.2 22.6 19.9 17.3
0.778 126 0.695 110 0.640 100 0.570 87.6 0.505 76.2
35.5 32.5 30 27.5 25
16.2 17.8 19.3 20.6 22.6
78.2 70.7 64.7 59.5 53.5
11.2 10.1 9.29 8.63 7.79
2.74 2.72 2.71 2.71 2.70
2.26 2.20 2.16 2.16 2.12
20.0 18.0 16.5 15.3 13.8
0.683 0.629 0.583 0.538 0.489
30.1 27.4 25.0 22.5 20.0
23 20 17.5
22.3 25.5 26.8
52.1 44.8 40.1
7.77 6.73 6.21
2.77 2.76 2.79
2.33 2.29 2.39
13.9 12.0 12.0
0.558 0.489 0.450
11.3 9.55 7.67
398 352 314 279 246 220 196 174 156 139
Fy, ksi
66.2 59.2 53.4 47.9 42.7 38.4 34.4 30.7 27.7 24.9
2.95 2.91 2.88 2.85 2.82 2.79 2.76 2.74 2.72 2.70
104 92.5 83.2 74.5 66.2 59.4 53.1 47.4 42.7 38.3
— — — — — — — — — —
— — — — — — — — — —
22.5 19.7 18.0 15.8 13.8
2.69 2.66 2.65 2.63 2.61
34.6 30.2 27.6 24.2 21.1
— — — — 0.990
— — — 0.937 0.826
7.89 7.22 6.63 5.97 5.35
1.70 1.69 1.69 1.67 1.65
12.3 — 11.2 — 10.3 0.964 9.27 0.913 8.29 0.823
0.963 0.877 0.796 0.735 0.625
3.72 3.17 2.56
1.29 1.27 1.22
5.85 0.831 4.97 0.690 4.03 0.638
0.635 0.496 0.460
*Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 76
DIMENSIONS AND PROPERTIES
bf tf
yp , y
STRUCTURAL TEES Cut from W shapes Dimensions
k
Y
X
X
d
tw
Y
Stem
Area of Stem
Flange DisThickness tance tf k
Area
Depth of Tee d
Thickness tw
tw 2
Designation
in.2
in.
in.
in.
in.2
WT8×50 WT8×44.5 WT8×38.5 WT8×33.5
14.7 13.1 11.3 9.84
8.485 8.375 8.260 8.165
81⁄2 83⁄8 81⁄4 81⁄8
0.585 0.525 0.455 0.395
9⁄ 16 1⁄ 2 7⁄ 16 3⁄ 8
5⁄ 16 1⁄ 4 1⁄ 4 3⁄ 16
4.96 4.40 3.76 3.23
10.425 10.365 10.295 10.235
103⁄8 103⁄8 101⁄4 101⁄4
0.985 0.875 0.760 0.665
1 7⁄ 8 3⁄ 4 11⁄ 16
111⁄16 19⁄16 17⁄16 13⁄8
WT8×28.5 WT8×25 WT8×22.5 WT8×20 WT8×18
8.38 7.37 6.63 5.89 5.28
8.215 8.130 8.065 8.005 7.930
81⁄4 81⁄8 81⁄8 8 77⁄8
0.430 0.380 0.345 0.305 0.295
7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16
1⁄ 4 3⁄ 16 3⁄ 16 3⁄ 16 3⁄ 16
3.53 3.09 2.78 2.44 2.34
7.120 7.070 7.035 6.995 6.985
71⁄8 71⁄8 7 7 7
0.715 0.630 0.565 0.505 0.430
11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16
13⁄8 15⁄16 11⁄4 13⁄16 11⁄8
WT8×15.5 WT8×13
4.56 3.84
7.940 7.845
8 77⁄8
0.275 0.250
1⁄ 4 1⁄ 4
1⁄
2.18 1.96
5.525 5.500
51⁄2 51⁄2
0.440 0.345
7⁄ 16 3⁄ 8
11⁄8 11⁄16
3.740 3.070 2.830 2.595 2.380 2.190 2.015
33⁄4 31⁄16 213⁄16 25⁄8 23⁄8 23⁄16 2
17⁄8 19⁄16 17⁄16 15⁄16 13⁄16 11⁄8 1
42.7 34.4 30.6 27.1 24.1 21.5 19.2
18.560 17.890 17.650 17.415 17.200 17.010 16.835
181⁄2 177⁄8 175⁄8 173⁄8 171⁄4 17 167⁄8
5.120 4.910 4.520 4.160 3.820 3.500 3.210
51⁄8 415⁄16 41⁄2 43⁄16 313⁄16 31⁄2 33⁄16
513⁄16 59⁄16 53⁄16 413⁄16 41⁄2 43⁄16 37⁄8
1.875 1.770 1.655 1.540 1.410 1.290 1.175 1.070 0.980 0.890 0.830 0.745 0.680
17⁄8 13⁄4 15⁄8 19⁄16 17⁄16 15⁄16 13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16
15⁄
17.5 16.2 14.8 13.5 12.1 10.8 9.62 8.58 7.70 6.89 6.32 5.58 5.03
16.695 16.590 16.475 16.360 16.230 16.110 15.995 15.890 15.800 15.710 15.650 15.565 15.500
163⁄4 165⁄8 161⁄2 163⁄8 161⁄4 161⁄8 16 157⁄8 153⁄4 153⁄4 155⁄8 155⁄8 151⁄2
3.035 2.845 2.660 2.470 2.260 2.070 1.890 1.720 1.560 1.440 1.310 1.190 1.090
31⁄16 27⁄8 211⁄16 21⁄2 21⁄4 21⁄16 17⁄8 13⁄4 19⁄16 17⁄16 15⁄16 13⁄16 11⁄16
311⁄16 31⁄2 35⁄16 31⁄8 215⁄16 23⁄4 29⁄16 23⁄8 21⁄4 21⁄8 2 17⁄8 13⁄4
WT7×404 WT8×365 WT8×332.5 WT8×302.5 WT8×275 WT8×250 WT8×227.5
119 107 97.8 88.9 80.9 73.5 66.9
WT7×213 WT8×199 WT8×185 WT8×171 WT8×155.5 WT8×141.5 WT8×128.5 WT8×116.5 WT8×105.5 WT8×96.5 WT8×88 WT8×79.5 WT8×72.5
62.6 58.5 54.4 50.3 45.7 41.6 37.8 34.2 31.0 28.4 25.9 23.4 21.3
11.420 117⁄16 11.210 111⁄4 10.820 107⁄8 10.460 101⁄2 10.120 101⁄8 9.800 93⁄4 9.510 91⁄2 9.335 9.145 8.960 8.770 8.560 8.370 8.190 8.020 7.860 7.740 7.610 7.490 7.390
93⁄8 91⁄8 9 83⁄4 81⁄2 83⁄8 81⁄4 8 77⁄8 73⁄4 75⁄8 71⁄2 73⁄8
1⁄
7⁄
13⁄
13⁄ 3⁄
8 8
16 8 16 16
4 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8
Width bf in.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
in.
in.
STRUCTURAL TEES (WT, MT, ST)
1 - 77
bf
STRUCTURAL TEES Cut from W shapes Properties
tf
k
Y
yp , y
X
X
d
tw
Y
Nominal Wt. per ft lb
Axis X-X
h tw
Qs*
Axis Y-Y
I
S
r
y
Z
yp
I
S
r
Z
in.4
in.3
in.
in.
in.3
in.
in.4
in.3
in.
in.3
36
50
17.9 15.7 13.4 11.6
2.51 2.49 2.47 2.46
27.4 24.0 20.5 17.7
— — — —
— — 0.988 0.861
— 0.990 0.904 0.784 0.754
0.942 0.826 0.725 0.583 0.553
50 44.5 38.5 33.5
12.1 13.5 15.6 18.0
76.8 67.2 56.9 48.6
11.4 10.1 8.59 7.36
2.28 2.27 2.24 2.22
1.76 1.70 1.63 1.56
20.7 18.1 15.3 13.0
0.706 0.631 0.549 0.481
93.1 81.3 69.2 59.5
28.5 25 22.5 20 18
16.5 18.7 20.6 23.3 24.1
48.7 42.3 37.8 33.1 30.6
7.77 6.78 6.10 5.35 5.05
2.41 2.40 2.39 2.37 2.41
1.94 1.89 1.86 1.81 1.88
13.8 12.0 10.8 9.43 8.93
0.589 0.521 0.471 0.421 0.378
21.6 18.6 16.4 14.4 12.2
15.5 13
25.8 28.4
27.4 23.5
4.64 4.09
2.45 2.47
2.02 2.09
404 365 332.5 302.5 275 250 227.5
1.5 1.9 2.0 2.2 2.4 2.6 2.8
898 739 622 524 442 375 321
116 95.4 82.1 70.6 60.9 52.7 45.9
2.75 2.62 2.52 2.43 2.34 2.26 2.19
3.70 3.47 3.25 3.05 2.85 2.67 2.51
213 199 185 171 155.5 141.5 128.5 116.5 105.5 96.5 88 79.5 72.5
3.0 3.2 3.4 3.7 4.0 4.4 4.9 5.3 5.8 6.4 6.9 7.7 8.4
287 257 229 203 176 153 133 116 102 89.8 80.5 70.2 62.5
41.4 37.6 33.9 30.4 26.7 23.5 20.7 18.2 16.2 14.4 13.0 11.4 10.2
2.14 2.10 2.05 2.01 1.96 1.92 1.88 1.84 1.81 1.78 1.76 1.73 1.71
2.40 2.30 2.19 2.09 1.97 1.86 1.75 1.65 1.57 1.49 1.43 1.35 1.29
8.27 0.413 8.12 0.372 249 211 182 157 136 117 102 91.7 82.9 74.4 66.2 57.7 50.4 43.9 38.2 33.4 29.4 26.3 22.8 20.2
3.19 3.00 2.77 2.55 2.35 2.16 1.99
6.20 4.80 2760 2360 2080 1840 1630 1440 1280
1.88 1180 1.76 1090 1.65 994 1.54 903 1.41 807 1.29 722 1.18 645 1.08 576 0.980 513 0.903 466 0.827 419 0.751 374 0.688 338
Fy, ksi
6.06 5.26 4.67 4.12 3.50
1.60 1.59 1.57 1.57 1.52
9.43 8.16 7.23 6.37 5.42
2.24 1.74
1.17 1.12
3.52 0.668 0.479 2.74 0.563 0.406
297 264 236 211 189 169 152
4.82 4.69 4.62 4.55 4.49 4.43 4.38
463 408 365 326 292 261 234
— — — — — — —
— — — — — — —
141 131 121 110 99.4 89.7 80.7 72.5 65.0 59.3 53.5 48.1 43.7
4.34 4.31 4.27 4.24 4.20 4.17 4.13 4.10 4.07 4.05 4.02 4.00 3.98
217 201 185 169 152 137 123 110 99.0 90.2 81.4 73.0 66.3
— — — — — — — — — — — — —
— — — — — — — — — — — — —
*Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 78
DIMENSIONS AND PROPERTIES
bf tf
yp , y
STRUCTURAL TEES Cut from W shapes Dimensions
k
Y
X
X
d
tw
Y
Stem
Designation
Area of Stem
Flange DisThickness tance tf k
Area
Depth of Tee d
Thickness tw
tw 2
in.2
in.
in.
in.
in.2
5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4
4.73 4.27 3.76 3.43 3.08
14.725 14.670 14.605 14.565 14.520
143⁄4 145⁄8 145⁄8 145⁄8 141⁄2
1.030 0.940 0.860 0.780 0.710
1 15⁄ 16 7⁄ 8 3⁄ 4 11⁄ 16
111⁄16 15⁄8 19⁄16 17⁄16 13⁄8
1⁄
10.130 101⁄8 10.070 101⁄8 10.035 10 9.995 10
0.855 0.785 0.720 0.645
7⁄ 8 13⁄ 16 3⁄ 4 5⁄ 8
15⁄8 19⁄16 11⁄2 17⁄16
Width bf in.
in.
in.
WT7×66 WT7×60 WT7×54.5 WT7×49.5 WT7×45
19.4 17.7 16.0 14.6 13.2
7.330 7.240 7.160 7.080 7.010
73⁄8 71⁄4 71⁄8 71⁄8 7
0.645 0.590 0.525 0.485 0.440
5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16
WT7×41 WT7×37 WT7×34 WT7×30.5
12.0 10.9 9.99 8.96
7.155 7.085 7.020 6.945
71⁄8 71⁄8 7 7
0.510 0.450 0.415 0.375
1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8
1⁄ 4 3⁄ 16
3.65 3.19 2.91 2.60
WT7×26.5 WT7×24 WT7×21.5
7.81 7.07 6.31
6.960 6.895 6.830
7 67⁄8 67⁄8
0.370 0.340 0.305
3⁄ 8 5⁄ 16 5⁄ 16
3⁄ 16 3⁄ 16 3⁄ 16
2.58 2.34 2.08
8.060 8.030 7.995
8 8 8
0.660 0.595 0.530
11⁄ 16 5⁄ 8 1⁄ 2
17⁄16 13⁄8 15⁄16
WT7×19 WT7×17 WT7×15
5.58 5.00 4.42
7.050 6.990 6.920
7 7 67⁄8
0.310 0.285 0.270
5⁄ 16 5⁄ 16 1⁄ 4
3⁄ 16 3⁄ 16 1⁄ 8
2.19 1.99 1.87
6.770 6.745 6.730
63⁄4 63⁄4 63⁄4
0.515 0.455 0.385
1⁄ 2 7⁄ 16 3⁄ 8
11⁄16 1 15⁄ 16
WT7×13 WT7×11
3.85 3.25
6.955 6.870
7 67⁄8
0.255 0.230
1⁄ 4 1⁄ 4
1⁄
1.77 1.58
5.025 5.000
5 5
0.420 0.335
7⁄ 16 5⁄ 16
15⁄
1⁄
1⁄
4 4
8 8
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
7⁄
16 8
STRUCTURAL TEES (WT, MT, ST)
1 - 79
bf
STRUCTURAL TEES Cut from W shapes Properties
tf
k
Y
yp , y
X
X
d
tw
Y
Nominal Wt. per ft
Axis X-X
h tw
S
I 4
r 3
y
Z
yp 3
S
I 4
in.
in.
in.
in.
in.
in.
66 60 54.5 49.5 45
8.8 9.7 10.9 11.8 13.0
57.8 51.7 45.3 40.9 36.4
9.57 8.61 7.56 6.88 6.16
1.73 1.71 1.68 1.67 1.66
1.29 1.24 1.17 1.14 1.09
18.6 16.5 14.4 12.9 11.5
0.658 0.602 0.549 0.500 0.456
41 37 34 30.5
11.2 12.7 13.7 15.2
41.2 36.0 32.6 28.9
7.14 6.25 5.69 5.07
1.85 1.82 1.81 1.80
1.39 1.32 1.29 1.25
13.2 11.5 10.4 9.16
0.594 0.541 0.498 0.448
74.2 66.9 60.7 53.7
26.5 24 21.5
15.4 16.8 18.7
27.6 24.9 21.9
4.94 4.48 3.98
1.88 1.87 1.86
1.38 1.35 1.31
8.87 8.00 7.05
0.484 0.440 0.395
28.8 25.7 22.6
19 17 15
19.8 21.5 22.7
23.3 20.9 19.0
4.22 3.83 3.55
2.04 2.04 2.07
1.54 1.53 1.58
7.45 6.74 6.25
0.412 0.371 0.329
13 11
24.1 26.7
17.3 14.8
3.31 2.91
2.12 2.14
1.72 1.76
5.89 5.20
0.383 0.325
lb
Qs*
Axis Y-Y
in.
r 3
Z
Fy, ksi 3
in.
in.
in.
36
50
37.2 33.7 30.6 27.6 25.0
3.76 3.74 3.73 3.71 3.70
56.6 51.2 46.4 41.8 37.8
— — — — —
— — — — —
14.6 13.3 12.1 10.7
2.48 2.48 2.46 2.45
22.4 20.3 18.5 16.4
— — — —
— — — 0.973
7.16 6.40 5.65
1.92 1.91 1.89
11.0 9.82 8.66
— — 0.947
0.958 0.882 0.775
13.3 11.7 9.79
3.94 3.45 2.91
1.55 1.53 1.49
6.07 5.32 4.49
0.934 0.857 0.810
0.760 0.669 0.610
4.45 3.50
1.77 1.40
1.08 1.04
2.77 2.19
0.737 0.621
0.537 0.447
274 247 223 201 181
*Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 80
DIMENSIONS AND PROPERTIES
bf tf
yp , y
STRUCTURAL TEES Cut from W shapes Dimensions
k
Y
X
X
d
tw
Y
Stem
Designation
Area of Stem
Area
Depth of Tee d
Thickness tw
tw 2
in.2
in.
in.
in.
in.2 14.9 13.3 12.1 10.7 9.67 8.68 7.62 6.73 5.96 5.30 4.66 3.93 3.50 3.23 2.91 2.63 2.36
WT6×168 WT6×152.5 WT6×139.5 WT6×126 WT6×115 WT6×105 WT6×95 WT6×85 WT6×76 WT6×68 WT6×60 WT6×53 WT6×48 WT6×43.5 WT6×39.5 WT6×36 WT6×32.5
49.4 44.8 41.0 37.0 33.9 30.9 27.9 25.0 22.4 20.0 17.6 15.6 14.1 12.8 11.6 10.6 9.54
8.410 8.160 7.925 7.705 7.525 7.355 7.190 7.015 6.855 6.705 6.560 6.445 6.355 6.265 6.190 6.125 6.060
83⁄8 81⁄8 77⁄8 73⁄4 71⁄2 73⁄8 71⁄4 7 67⁄8 63⁄4 61⁄2 61⁄2 63⁄8 61⁄4 61⁄4 61⁄8 6
1.775 1.625 1.530 1.395 1.285 1.180 1.060 0.960 0.870 0.790 0.710 0.610 0.550 0.515 0.470 0.430 0.390
13⁄4 15⁄8 11⁄2 13⁄8 15⁄16 13⁄16 11⁄16 15⁄ 16 7⁄ 8 13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8
7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16
WT6×29 WT6×26.5
8.52 7.78
6.095 6.030
61⁄8 6
0.360 0.345
3⁄ 8 3⁄ 8
3⁄ 16 3⁄ 16
WT6×25 WT6×22.5 WT6×20
7.34 6.61 5.89
6.095 6.030 5.970
61⁄8 6 6
0.370 0.335 0.295
3⁄ 8 5⁄ 16 5⁄ 16
WT6×17.5 WT6×15 WT6×13
5.17 4.40 3.82
6.250 6.170 6.110
61⁄4 61⁄8 61⁄8
0.300 0.260 0.230
WT6×11 WT6×9.5 WT6×8 WT6×7
3.24 2.79 2.36 2.08
6.155 6.080 5.995 5.955
61⁄8 61⁄8 6 6
0.260 0.235 0.220 0.200
Flange DisThickness tance tf k
Width bf in.
in.
in.
133⁄8 131⁄4 131⁄8 13 127⁄8 123⁄4 125⁄8 125⁄8 121⁄2 123⁄8 123⁄8 121⁄4 121⁄8 121⁄8 121⁄8 12 12
2.955 2.705 2.470 2.250 2.070 1.900 1.735 1.560 1.400 1.250 1.105 0.990 0.900 0.810 0.735 0.670 0.605
215⁄16 211⁄16 21⁄2 21⁄4 21⁄16 17⁄8 13⁄4 19⁄16 13⁄8 11⁄4 11⁄8 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8
311⁄16 37⁄16 33⁄16 215⁄16 23⁄4 25⁄8 27⁄16 21⁄4 21⁄8 115⁄16 113⁄16 111⁄16 15⁄8 11⁄2 17⁄16 13⁄8 15⁄16
2.19 10.010 2.08 9.995
10 10
0.640 0.575
5⁄ 8 9⁄ 16
13⁄8 11⁄4
3⁄ 16 3⁄ 16 3⁄ 16
2.26 2.02 1.76
8.080 8.045 8.005
81⁄8 8 8
0.640 0.575 0.515
5⁄ 8 9⁄ 16 1⁄ 2
13⁄8 11⁄4 11⁄4
5⁄ 16 1⁄ 4 1⁄ 4
3⁄ 16 1⁄ 8 1⁄ 8
1.88 1.60 1.41
6.560 6.520 6.490
61⁄2 61⁄2 61⁄2
0.520 0.440 0.380
1⁄ 2 7⁄ 16 3⁄ 8
15⁄ 16 7⁄ 8
1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16
1⁄ 8 1⁄ 8 1⁄ 8 1⁄ 8
1.60 1.43 1.32 1.19
4.030 4.005 3.990 3.970
4 4 4 4
0.425 0.350 0.265 0.225
7⁄ 16 3⁄ 8 1⁄ 4 1⁄ 4
7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16
13.385 13.235 13.140 13.005 12.895 12.790 12.670 12.570 12.480 12.400 12.320 12.220 12.160 12.125 12.080 12.040 12.000
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1
STRUCTURAL TEES (WT, MT, ST)
1 - 81
bf
STRUCTURAL TEES Cut from W shapes Properties
tf
k
Y
yp , y
X
X
d
tw
Y
Nominal Wt. per ft
Axis X-X
h tw
S
I 4
r 3
y
Qs*
Axis Y-Y
Z
yp 3
S
I 4
r 3
Z
Fy, ksi 3
in.
in.
in.
in.
in.
in.
in.
in.
in.
in.
36
50
168 152.5 139.5 126 115 105 95 85 76 68 60 53 48 43.5 39.5 36 32.5
2.7 3.0 3.2 3.5 3.8 4.1 4.6 5.1 5.6 6.1 6.8 8.0 8.8 9.4 10.3 11.3 12.4
190 162 141 121 106 92.1 79.0 67.8 58.5 50.6 43.4 36.3 32.0 28.9 25.8 23.2 20.6
31.2 27.0 24.1 20.9 18.5 16.4 14.2 12.3 10.8 9.46 8.22 6.91 6.12 5.60 5.03 4.54 4.06
1.96 1.90 1.86 1.81 1.77 1.73 1.68 1.65 1.62 1.59 1.57 1.53 1.51 1.50 1.49 1.48 1.47
2.31 2.16 2.05 1.92 1.82 1.72 1.62 1.52 1.43 1.35 1.28 1.19 1.13 1.10 1.06 1.02 0.985
68.4 59.1 51.9 44.8 39.4 34.5 29.8 25.6 22.0 19.0 16.2 13.6 11.9 10.7 9.49 8.48 7.50
1.84 1.69 1.56 1.42 1.31 1.21 1.10 0.994 0.896 0.805 0.716 0.637 0.580 0.527 0.480 0.439 0.398
593 525 469 414 371 332 295 259 227 199 172 151 135 120 108 97.5 87.2
88.6 79.3 71.3 63.6 57.5 51.9 46.5 41.2 36.4 32.1 28.0 24.7 22.2 19.9 17.9 16.2 14.5
3.47 3.42 3.38 3.34 3.31 3.28 3.25 3.22 3.19 3.16 3.13 3.11 3.09 3.07 3.05 3.04 3.02
137 122 110 97.9 88.4 79.7 71.3 63.0 55.6 49.0 42.7 37.5 33.7 30.2 27.2 24.6 22.0
— — — — — — — — — — — — — — — — —
— — — — — — — — — — — — — — — — —
29 26.5
13.5 14.1
19.1 17.7
3.76 3.54
1.50 1.51
1.03 1.02
6.97 0.426 6.46 0.389
53.5 47.9
10.7 9.58
2.51 2.48
16.3 14.6
— —
— —
25 22.5 20
13.1 14.5 16.5
18.7 16.6 14.4
3.79 3.39 2.95
1.60 1.58 1.57
1.17 1.13 1.08
6.90 0.454 6.12 0.411 5.30 0.368
28.2 25.0 22.0
6.97 6.21 5.51
1.96 1.94 1.93
10.7 9.50 8.41
— — —
— 0.998 0.887
17.5 15 13
18.1 20.9 23.6
16.0 13.5 11.7
3.23 2.75 2.40
1.76 1.75 1.75
1.30 1.27 1.25
5.71 0.394 4.83 0.337 4.20 0.295
12.2 10.2 8.66
3.73 3.12 2.67
1.54 1.52 1.51
5.73 4.78 4.08
— 0.856 0.891 0.710 0.767 0.565
11 9.5 8 7
20.9 23.1 24.7 27.2
11.7 10.1 8.70 7.67
2.59 2.28 2.04 1.83
1.90 1.90 1.92 1.92
1.63 1.65 1.74 1.76
4.63 4.11 3.72 3.32
2.33 1.88 1.41 1.18
1.16 0.939 0.706 0.594
0.847 0.822 0.773 0.753
1.83 1.49 1.13 0.950
0.891 0.797 0.741 0.626
lb
0.402 0.348 0.639 0.760
*Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
0.710 0.596 0.541 0.450
1 - 82
DIMENSIONS AND PROPERTIES
bf tf
yp , y
STRUCTURAL TEES Cut from W shapes Dimensions
k
Y
X
X
d
tw
Y
Stem
Designation
Area of Stem
Area
Depth of Tee d
Thickness tw
tw 2
in.2
in.
in.
in.
in.2
Flange DisThickness tance tf k
Width bf in.
in.
in.
WT5×56 WT5×50 WT5×44 WT5×38.5 WT5×34 WT5×30 WT5×27 WT5×24.5
16.5 14.7 12.9 11.3 9.99 8.82 7.91 7.21
5.680 5.550 5.420 5.300 5.200 5.110 5.045 4.990
55⁄8 51⁄2 53⁄8 51⁄4 51⁄4 51⁄8 5 5
0.755 0.680 0.605 0.530 0.470 0.420 0.370 0.340
3⁄ 4 11⁄ 16 5⁄ 8 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16
3⁄ 8 3⁄ 8 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16 3⁄ 16
4.29 3.77 3.28 2.81 2.44 2.15 1.87 1.70
10.415 10.340 10.265 10.190 10.130 10.080 10.030 10.000
103⁄8 103⁄8 101⁄4 101⁄4 101⁄8 101⁄8 10 10
1.250 1.120 0.990 0.870 0.770 0.680 0.615 0.560
11⁄4 11⁄8 1 7⁄ 8 3⁄ 8 11⁄ 16 5⁄ 8 9⁄ 16
17⁄8 13⁄4 15⁄8 11⁄2 13⁄8 15⁄16 11⁄4 13⁄16
WT5×22.5 WT5×19.5 WT5×16.5
6.63 5.73 4.85
5.050 4.960 4.865
5 5 47⁄8
0.350 0.315 0.290
3⁄ 8 5⁄ 16 5⁄ 16
3⁄ 16 3⁄ 16 3⁄ 16
1.77 1.56 1.41
8.020 7.985 7.960
8 8 8
0.620 0.530 0.435
5⁄ 8 1⁄ 2 7⁄ 16
11⁄4 11⁄8 11⁄16
WT5×15 WT5×13 WT5×11
4.42 3.81 3.24
5.235 5.165 5.085
51⁄4 51⁄8 51⁄8
0.300 0.260 0.240
5⁄ 16 1⁄ 4 1⁄ 4
3⁄ 16 1⁄ 8 1⁄ 8
1.57 1.34 1.22
5.810 5.770 5.750
53⁄4 53⁄4 53⁄4
0.510 0.440 0.360
1⁄ 2 7⁄ 16 3⁄ 8
15⁄ 16 7⁄ 8 3⁄ 4
WT5×9.5 WT5×8.5 WT5×7.5 WT5×6
2.81 2.50 2.21 1.77
5.120 5.055 4.995 4.935
51⁄8 5 5 47⁄8
0.250 0.240 0.230 0.190
1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16
1⁄ 8 1⁄ 8 1⁄ 8 1⁄ 8
1.28 1.21 1.15 0.938
4.020 4.010 4.000 3.960
4 4 4 4
0.395 0.330 0.270 0.210
3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL TEES (WT, MT, ST)
1 - 83
bf
STRUCTURAL TEES Cut from W shapes Properties
tf
k
Y
yp , y
X
X
d
tw
Y
Nominal Wt. per ft lb
Axis X-X
h tw
Qs*
Axis Y-Y
I
S
r
y
Z
yp
I
S
r
Z
in.4
in.3
in.
in.
in.3
in.
in.4
in.3
in.
in.3
0.791 118 0.711 103 0.631 89.3 0.555 76.8 0.493 66.8 0.438 58.1 0.395 51.7 0.361 46.7
22.6 20.0 17.4 15.1 13.2 11.5 10.3 9.34
2.68 2.65 2.63 2.60 2.59 2.57 2.56 2.54
6.65 5.64 4.60
Fy, ksi 36
50
34.6 30.5 26.5 22.9 20.0 17.5 15.7 14.2
— — — — — — — —
— — — — — — — —
2.01 1.98 1.94
10.1 8.59 7.01
— — —
— — —
56 50 44 38.5 34 30 27 24.5
5.2 5.8 6.5 7.4 8.4 9.4 10.6 11.6
28.6 24.5 20.8 17.4 14.9 12.9 11.1 10.0
6.40 5.56 4.77 4.04 3.49 3.04 2.64 2.39
1.32 1.29 1.27 1.24 1.22 1.21 1.19 1.18
1.21 1.13 1.06 0.990 0.932 0.884 0.836 0.807
13.4 11.4 9.65 8.06 6.85 5.87 5.05 4.52
22.5 19.5 16.5
11.2 12.5 13.6
10.2 8.84 7.71
2.47 2.16 1.93
1.24 1.24 1.26
0.907 0.876 0.869
4.65 3.99 3.48
0.413 0.359 0.305
15 13 11
14.8 17.0 18.4
9.28 7.86 6.88
2.24 1.91 1.72
1.45 1.44 1.46
1.10 1.06 1.07
4.01 3.39 3.02
0.380 0.330 0.282
8.35 7.05 5.71
2.87 2.44 1.99
1.37 1.36 1.33
4.42 3.75 3.05
— — 0.999
— 0.902 0.836
17.7 18.4 19.2 23.3
6.68 6.06 5.45 4.35
1.74 1.62 1.50 1.22
1.54 1.56 1.57 1.57
1.28 1.32 1.37 1.36
3.10 2.90 3.03 2.50
0.349 0.311 0.306 0.323
2.15 1.78 1.45 1.09
1.07 0.888 0.723 0.551
0.874 0.844 0.810 0.785
1.68 — 1.40 — 1.15 0.977 0.872 0.793
0.872 0.841 0.811 0.592
9.5 8.5 7.5 6
26.7 22.5 18.3
*Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 84
DIMENSIONS AND PROPERTIES
bf tf
yp , y
STRUCTURAL TEES Cut from W shapes Dimensions
k
Y
X
X
d
tw
Y
Stem
Area of Stem
Flange DisThickness tance tf k
Area
Depth of Tee d
Thickness tw
tw 2
Designation
in.2
in.
in.
in.
in.2
WT4×33.5 WT4×29 WT4×24 WT4×20 WT4×17.5 WT4×15.5
9.84 8.55 7.05 5.87 5.14 4.56
4.500 4.375 4.250 4.125 4.060 4.000
41⁄2 43⁄8 41⁄4 41⁄8 4 4
0.570 0.510 0.400 0.360 0.310 0.285
9⁄ 16 1⁄ 2 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16
5⁄ 16 1⁄ 4 3⁄ 16 3⁄ 16 3⁄ 16 3⁄ 16
2.56 2.23 1.70 1.48 1.26 1.14
8.280 8.220 8.110 8.070 8.020 7.995
81⁄4 81⁄4 81⁄8 81⁄8 8 8
0.935 0.810 0.685 0.560 0.495 0.435
15⁄ 16 13⁄ 16 11⁄ 16 9⁄ 16 1⁄ 2 7⁄ 16
17⁄16 15⁄16 13⁄16 11⁄16 1 15⁄ 16
WT4×14 WT4×12
4.12 3.54
4.030 3.965
4 4
0.285 0.245
5⁄ 16 1⁄ 4
3⁄ 16 1⁄ 8
1.15 0.971
6.535 6.495
61⁄2 61⁄2
0.465 0.400
7⁄ 16 3⁄ 8
15⁄ 16 7⁄ 8
WT4×10.5 WT4×9
3.08 2.63
4.140 4.070
41⁄8 41⁄8
0.250 0.230
1⁄ 4 1⁄ 4
1⁄ 8 1⁄ 8
1.03 0.936
5.270 5.250
51⁄4 51⁄4
0.400 0.330
3⁄ 8 5⁄ 16
13⁄ 16 3⁄ 4
WT4×7.5 WT4×6.5 WT4×5
2.22 1.92 1.48
4.055 3.995 3.945
4 4 4
0.245 0.230 0.170
1⁄ 4 1⁄ 4 3⁄ 16
1⁄ 8 1⁄ 8 1⁄ 8
0.993 0.919 0.671
4.015 4.000 3.940
4 4 4
0.315 0.255 0.205
5⁄ 16 1⁄ 4 3⁄ 16
3⁄ 4 11⁄ 16 5⁄ 8
WT3×12.5 WT4×10 WT4×7.5
3.67 2.94 2.21
3.190 3.100 2.995
31⁄4 31⁄8 3
0.320 0.260 0.230
5⁄ 16 1⁄ 4 1⁄ 4
3⁄ 16 1⁄ 8 1⁄ 8
1.02 0.806 0.689
6.080 6.020 5.990
61⁄8 6 6
0.455 0.365 0.260
7⁄ 16 3⁄ 8 1⁄ 4
13⁄ 16 3⁄ 4 5⁄ 8
WT3×8 WT4×6 WT4×4.5
2.37 1.78 1.34
3.140 3.015 2.950
31⁄8 3 3
0.260 0.230 0.170
1⁄ 4 1⁄ 4 3⁄ 16
1⁄ 8 1⁄ 8 1⁄ 8
0.816 0.693 0.502
4.030 4.000 3.940
4 4 4
0.405 0.280 0.215
3⁄ 8 1⁄ 4 3⁄ 16
3⁄ 4 5⁄ 8 9⁄ 16
WT2.5×9.5 WT4.5×8
2.77 2.34
2.575 2.505
25⁄8 21⁄2
0.270 0.240
1⁄ 4 1⁄ 4
1⁄ 8 1⁄ 8
0.695 0.601
5.030 5.000
5 5
0.430 0.360
7⁄ 16 3⁄ 8
13⁄ 16 3⁄ 4
WT2×6.5
1.91
2.080
21⁄8
0.280
1⁄ 4
1⁄ 8
0.582
4.060
4
0.345
3⁄ 8
11⁄ 16
Width bf in.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
in.
in.
STRUCTURAL TEES (WT, MT, ST)
1 - 85
bf
STRUCTURAL TEES Cut from W shapes Properties
tf
k
Y
yp , y
X
X
d
tw
Y
Nominal Wt. per ft lb
Axis X-X
h tw
Qs*
Axis Y-Y
I
S
r
y
Z
yp
I
S
r
Z
in.4
in.3
in.
in.
in.3
in.
in.4
in.3
in.
in.3
36
Fy, ksi 50
33.5 29 24 20 17.5 15.5
5.6 6.2 7.9 8.8 10.2 11.1
10.9 9.12 6.85 5.73 4.81 4.28
3.05 2.61 1.97 1.69 1.43 1.28
1.05 1.03 0.986 0.988 0.967 0.968
0.936 0.874 0.777 0.735 0.688 0.667
6.29 5.25 3.94 3.25 2.71 2.39
0.594 0.520 0.435 0.364 0.321 0.285
44.3 37.5 30.5 24.5 21.3 18.5
10.7 9.13 7.52 6.08 5.31 4.64
2.12 2.10 2.08 2.04 2.03 2.02
16.3 13.9 11.4 9.25 8.06 7.04
— — — — — —
— — — — — —
14 12
11.1 12.9
4.22 3.53
1.28 1.08
1.01 0.999
0.734 0.695
2.38 1.98
0.315 0.273
10.8 9.14
3.31 2.81
1.62 1.61
5.05 4.29
— —
— —
10.5 9
13.8 15.0
3.90 3.41
1.18 1.05
1.12 1.14
0.831 0.834
2.11 1.86
0.292 0.251
4.89 3.98
1.85 1.52
1.26 1.23
2.84 2.33
— —
— —
7.5 6.5 5
14.0 15.0 20.2
3.28 2.89 2.15
1.07 0.974 0.717
1.22 1.23 1.20
0.998 1.03 0.953
1.91 1.74 1.27
0.276 0.240 0.188
1.70 1.37 1.05
0.849 0.876 0.683 0.843 0.532 0.841
1.33 — 1.08 — 0.828 0.913
12.5 10 7.5
7.8 9.6 10.8
2.28 1.76 1.41
0.886 0.693 0.577
0.789 0.774 0.797
0.610 0.560 0.558
1.68 1.29 1.03
0.302 0.244 0.185
8.53 6.64 4.66
2.81 2.21 1.56
4.28 3.36 2.37
— — —
— — —
8 6 4.5
9.6 10.8 14.6
1.69 0.685 1.32 0.564 0.950 0.408
0.844 0.861 0.842
0.676 0.677 0.623
1.25 1.01 0.720
0.294 0.222 0.170
2.21 1.50 1.10
1.10 0.966 0.748 0.918 0.557 0.905
1.70 1.16 0.858
— — —
— — —
9.5 8
7.0 7.9
1.01 0.485 0.850 0.413
0.605 0.601
0.487 0.458
0.967 0.798
0.275 0.234
4.56 3.75
1.82 1.50
1.28 1.27
2.76 2.29
— —
— —
6.5
5.3
0.530 0.321
0.524
0.440
0.616
0.236
1.93
0.950 1.00
1.46
—
—
1.52 1.50 1.45
*Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
— — 0.735
1 - 86
DIMENSIONS AND PROPERTIES
bf tf
yp , y
STRUCTURAL TEES Cut from M shapes Dimensions
k
Y
X
X
d
tw
Y
Designation
Area
Depth of Tee d
in.2
in.
Flange
Stem Area of Thickness tw 2 Stem tw
in.
in.
in.
1.73 1.59
6.000 5.990
6 6
0.177 0.160
3⁄ 16 3⁄ 16
1⁄ 8 1⁄ 16
1.06 3.065 0.958 3.065
31⁄8 31⁄8
0.225 0.210
1⁄ 4 1⁄ 4
9⁄ 16 1⁄ 2
1⁄ 4 1⁄ 4
— 1⁄ 2
MT5×4.5 MT5×4
1.32 1.18
5.000 4.980
5 5
0.157 0.141
3⁄ 16 3⁄ 16
1⁄ 8 1⁄ 16
0.785 2.690 0.702 2.690
23⁄4 23⁄4
0.206 0.182
3⁄ 16 3⁄ 16
9⁄ 16 7⁄ 16
3⁄ 16 3⁄ 16
— 3⁄ 8
MT4×3.25
0.958 4.000
4
0.135
1⁄ 8
1⁄ 16
0.540 2.281
21⁄4
0.189
3⁄ 16
1⁄ 2
3⁄ 16
—
0.316
5⁄ 16
3⁄ 16
0.790 5.003
5
0.416
7⁄ 16
7⁄ 8
7⁄ 16
7⁄ 8
2.500 21⁄2
in.
in.2
MT6×5.9 MT6×5.4
MT2.5×9.45* 2.78
in.
Width bf in.
Max. DisFlge. FasThickness tance Grip tener tf k in.
*This shape has tapered flanges, while all other MT shapes have parallel flanges.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL TEES (WT, MT, ST)
1 - 87
bf
STRUCTURAL TEES Cut from M shapes Properties
tf
k
Y
yp , y
X
X
d
tw
Y
Nominal Wt. per ft lb
Axis X-X
h tw
Qs*
Axis Y-Y
I
S
r
y
Z
yp
I
S
r
Z
in.4
in.3
in.
in.
in.3
in.
in.4
in.3
in.
in.3
36
Fy, ksi 50
5.9 5.4
31.3 31.8
6.60 6.03
1.60 1.46
1.95 1.95
1.89 1.85
2.89 2.63
1.09 1.01
0.490 0.453
0.320 0.295
0.532 0.533
0.577 0.525
0.483 0.397
0.348 0.286
4.5 4
29.2 29.7
3.46 3.09
0.997 0.893
1.62 1.62
1.53 1.52
1.81 1.62
0.778 0.778
0.305 0.269
0.227 0.200
0.480 0.477
0.405 0.333
0.549 0.446
0.396 0.321
3.25
26.9
1.57
0.556
1.28
1.17
1.01
0.446
0.172
0.150
0.423
0.265
0.634
0.457
9.45
5.6
1.05
0.527
0.615
0.511
1.03
0.278
3.93
1.57
1.19
2.66
—
—
*Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 88
DIMENSIONS AND PROPERTIES
bf tf y, yp
STRUCTURAL TEES Cut from S shapes Dimensions
grip
Y
X
X
d
tw
Y
Designation
Area
Depth of Tee d
in.2
in.
Flange
Stem Area of Thickness tw 2 Stem tw
Width bf
Max. DisFlge. FasThickness tance Grip tener tf k
in.
in.2
in.
in.
in.
7 13⁄ 16 ⁄16 5⁄ 5⁄ 8 16
9.80 7.60
8.050 8 7.870 77⁄8
1.090 1.090
11⁄16 11⁄16
2 2
11⁄8 11⁄8
1 1
3⁄ 8 5⁄ 16 1⁄ 4
8.94 7.50 6.00
7.245 71⁄4 7.125 71⁄8 7.000 7
0.870 0.870 0.870
7⁄ 8 7⁄ 8 7⁄ 8
13⁄4 13⁄4 13⁄4
7⁄ 8 7⁄ 8 7⁄ 8
1 1 1
7 13⁄ 16 ⁄16 3⁄ 11⁄ 16 8
8.12 6.70
7.200 71⁄4 7.060 7
0.920 0.920
15⁄ 16 15⁄ 16
13⁄4 13⁄4
15⁄ 16 15⁄ 16
1 1
in.
in.
in.
in.
ST12×60.5 ST12×53
17.8 15.6
12.250 121⁄4 12.250 121⁄4
0.800 0.620
ST12×50 ST12×45 ST12×40
14.7 13.2 11.7
12.000 12.000 12.000
0.745 0.625 0.500
ST10×48 ST10×43
14.1 12.7
10.150 101⁄8 10.150 101⁄8
0.800 0.660
ST10×37.5 ST10×33
11.0 9.70
10.000 10.000
10 10
0.635 0.505
5⁄ 8 1⁄ 2
5⁄ 16 1⁄ 4
6.35 5.05
6.385 63⁄8 6.225 61⁄4
0.795 0.795
13⁄ 16 13⁄ 16
15⁄8 15⁄8
13⁄ 16 13⁄ 16
7⁄ 8 7⁄ 8
ST9×35 ST9×27.35
10.3 8.04
9.000 9.000
9 9
0.711 0.461
11⁄ 16 7⁄ 16
3⁄ 8 1⁄ 4
6.40 4.15
6.251 61⁄4 6.001 6
0.691 0.691
11⁄ 16 11⁄ 16
11⁄2 11⁄2
11⁄ 16 11⁄ 16
7⁄ 8 7⁄ 8
12 12 12
3⁄ 4 5⁄ 8 1⁄ 2
ST7.5×25 ST7.5×21.45
7.35 6.31
7.500 71⁄2 7.500 71⁄2
0.550 0.411
9⁄
16
5⁄ 16 1⁄ 4
4.13 3.08
5.640 55⁄8 5.501 51⁄2
0.622 0.622
5⁄ 8 5⁄ 8
13⁄8 13⁄8
9⁄ 16 9⁄ 16
3⁄ 4 3⁄ 4
ST6×25 ST6×20.4
7.35 6.00
6.000 6.000
6 6
0.687 0.462
11⁄ 16 7⁄ 16
3⁄ 8 1⁄ 4
4.12 2.77
5.477 51⁄2 5.252 51⁄4
0.659 0.659
11⁄ 16 11⁄ 16
17⁄16 17⁄16
11⁄ 16 5⁄ 8
3⁄ 4 3⁄ 4
ST6×17.5 ST6×15.9
5.15 4.68
6.000 6.000
6 6
0.428 0.350
7⁄
1⁄ 4 3⁄ 16
2.57 2.10
5.078 51⁄8 5.000 5
0.545 0.544
9⁄ 16 9⁄ 16
13⁄16 13⁄16
1⁄ 2 1⁄ 2
3⁄ 4 3⁄ 4
ST5×17.5 ST5×12.7
5.15 3.73
5.000 5.000
5 5
0.594 0.311
16
5⁄ 16 3⁄ 16
2.97 1.56
4.944 5 4.661 45⁄8
0.491 0.491
1⁄ 2 1⁄ 2
11⁄8 11⁄8
1⁄ 2 1⁄ 2
3⁄ 4 3⁄ 4
ST4×11.5 ST4×9.2
3.38 2.70
4.000 4.000
4 4
0.441 0.271
7⁄
16 1⁄ 4
1⁄ 4 1⁄ 8
1.76 1.08
4.171 41⁄8 4.001 4
0.425 0.425
7⁄ 16 7⁄ 16
1 1
7⁄ 16 7⁄ 16
3⁄ 4 3⁄ 4
ST3×8.625 ST3×6.25
2.53 1.83
3.000 3.000
3 3
0.465 0.232
7⁄
16 1⁄ 4
1⁄ 4 1⁄ 8
1.40 0.70
3.565 35⁄8 3.332 33⁄8
0.359 0.359
3⁄ 8 3⁄ 8
7⁄ 8 7⁄ 8
3⁄ 8 3⁄ 8
5⁄ 8 —
ST2.5×5
1.47
2.500 21⁄2
0.214
3⁄
16
1⁄ 8
0.535 3.004
0.326
5⁄ 16
13⁄ 16
5⁄ 16
—
ST2×4.75 ST2×3.85
1.40 1.13
2.000 2.000
0.326 0.193
5⁄
16
3⁄ 16 1⁄ 8
0.652 2.796 23⁄4 0.386 2.663 25⁄8
0.293 0.293
5⁄ 16 5⁄ 16
3⁄ 4 3⁄ 4
5⁄ 16 5⁄ 16
— —
ST1.5×3.75 ST1.5×2.85
1.10 0.835
1.500 11⁄2 1.500 11⁄2
3⁄ 16 1⁄ 8
0.523 2.509 21⁄2 0.255 2.330 23⁄8
0.260 0.260
1⁄ 4 1⁄ 4
11⁄ 16 11⁄ 16
1⁄ 4 1⁄ 4
— —
2 2
0.349 0.170
7⁄
16
16 3⁄ 8 5⁄ 8
5⁄
3⁄
16
3⁄ 8
3⁄
16
3
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STRUCTURAL TEES (WT, MT, ST)
1 - 89
bf
STRUCTURAL TEES Cut from S shapes Properties
tf
grip
Y
y, yp
X
X
d
tw
Y
Nominal Wt. per ft lb
Axis X-X
h tw
Qs*
Axis Y-Y
I
S
r
y
Z
yp
I
S
r
Z
in.4
in.3
in.
in.
in.3
in.
in.4
in.3
in.
in.3
60.5 53
13.2 17
259 216
30.1 24.1
3.82 3.72
3.63 3.28
54.5 43.3
1.28 1.03
41.7 38.5
10.4 9.80
1.53 1.57
18.1 16.6
50 45 40
14.1 16.8 21.1
215 190 162
26.3 22.6 18.7
3.83 3.79 3.72
3.84 3.60 3.29
47.5 41.1 33.6
2.20 23.8 1.48 22.5 0.922 21.1
6.58 6.31 6.04
1.27 1.30 1.34
12.0 11.2 10.4
48 43
10.8 13.1
143 125
20.3 17.2
3.18 3.14
3.13 2.91
36.9 31.1
1.40 25.1 0.985 23.4
6.97 6.63
1.33 1.36
12.5 11.6
37.5 33
13.6 17
109 93.1
15.8 12.9
3.15 3.10
3.07 2.81
28.6 23.4
1.40 14.9 0.855 13.8
4.66 4.43
1.16 1.19
35 27.35
10.9 16.8
84.7 62.4
14.0 9.61
2.87 2.79
2.94 2.50
25.1 17.3
1.81 12.1 0.747 10.4
3.86 3.47
25 21.45
11.6 15.5
40.6 33.0
7.73 6.00
2.35 2.29
2.25 2.01
14.0 10.8
0.872 0.613
7.85 7.19
25 20.4
7 10.3
25.2 18.9
6.05 4.28
1.85 1.78
1.84 1.58
11.0 7.71
0.770 0.581
17.5 15.9
11.7 14.3
17.2 14.9
3.95 3.31
1.83 1.78
1.64 1.51
7.12 5.94
17.5 12.7
6.9 13.2
12.5 7.83
3.63 2.06
1.56 1.45
1.56 1.20
11.5 9.2
7.3 11.8
5.03 3.51
1.77 1.15
1.22 1.14
5 10
8.63 6.25
Fy, ksi 36
50
— —
— 0.907
— — — 0.937 0.878 0.695 — —
— —
8.37 7.70
— —
— 0.907
1.08 1.14
7.21 6.07
— —
— 0.922
2.78 2.61
1.03 1.07
5.01 4.54
— —
— 0.988
7.85 6.78
2.87 2.58
1.03 1.06
5.19 4.45
— —
— —
0.548 0.485
4.94 4.68
1.95 1.87
0.980 1.00
3.41 3.22
— —
— —
6.58 3.70
0.702 0.408
4.18 3.39
1.69 1.46
0.901 0.954
3.11 2.49
— —
— —
1.15 0.941
3.19 2.07
0.447 0.341
2.15 1.86
1.03 0.798 0.932 0.831
1.84 1.59
— —
— —
2.13 1.27
1.02 0.917 0.914 0.552 0.833 0.691
1.85 1.01
0.401 0.275
1.15 0.911
0.648 0.675 0.547 0.705
1.18 0.929
— —
— —
5
8.7
0.681
0.353 0.681 0.569
0.650 0.243
0.608
0.405 0.643
0.685
—
—
4.75 3.85
4.3 7.3
0.470 0.316
0.325 0.580 0.553 0.203 0.528 0.448
0.592 0.255 0.381 0.209
0.451 0.382
0.323 0.569 0.287 0.581
0.566 0.483
— —
— —
3.75 2.85
2.8 5.7
0.204 0.118
0.191 0.430 0.432 0.101 0.376 0.329
0.351 0.223 0.196 0.175
0.293 0.227
0.234 0.516 0.195 0.522
0.412 0.327
— —
— —
*Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 90
DIMENSIONS AND PROPERTIES
DOUBLE ANGLES
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DOUBLE ANGLES
1 - 91
DOUBLE ANGLES
Properties of double angles in contact and separated are listed in the following tables. Each table shows properties of double angles in contact, and the radius of gyration about the Y-Y axis when the legs of the angles are separated. Values of Qs are given for Fy = 36 ksi and Fy = 50 ksi for those angles exceeding the width-thickness ratio 位r of LRFD Specification Section B5. Since the cross section is comprised entirely of unstiffened elements, Qa = 1.0 and Q = Qs, for all _angle sections. The Flexural-Torsional Properties Table lists the dimensional values (J, ro, and H) needed for checking flexural-torsional buckling. Use of Table
The table may be used as follows for checking the limit states of (1) flexural buckling and (2) flexural-torsional buckling. The lower of the two limit states must be used for design. See also Part 3 of this LRFD Manual. (1) Flexural Buckling
Where no value of Qs is shown, the design compressive strength for this limit state is given by LRFD Specification Section E2. Where a value of Qs is shown, the strength must be reduced in accordance with Appendix B5 of the LRFD Specification. (2) Flexural-Torsional Buckling
The design compressive strength for this limit state_ is given by LRFD Specification Sections E3 and E4. This involves calculations with J, ro, and H. These torsional constants can be obtained by summing the respective values for single angles listed in the Flexural-Torsional Properties Tables in Part 1 of this Manual.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 92
DIMENSIONS AND PROPERTIES
Y X
X
DOUBLE ANGLES Two equal leg angles Properties of sections
y, yp
s Y
Wt. Area of per ft 2 Angles 2 Angles Designation
2
Axis X-X
S
I 4
in.
r 3
y
Z
yp 3
lb
in.
in.
in.
in.
in.
in.
L8×8×11⁄8 L8×8×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×11⁄2
114 102 90.0 77.8 65.4 52.8
33.5 30.0 26.5 22.9 19.2 15.5
195 177 159 139 118 97.3
35.1 31.6 28.0 24.4 20.6 16.7
2.42 2.44 2.45 2.47 2.49 2.50
2.41 2.37 2.32 2.28 2.23 2.19
63.2 56.9 50.5 43.9 37.1 30.1
1.05 0.938 0.827 0.715 0.601 0.484
L6×6×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×11⁄2 L8×8×13⁄8
74.8 66.2 57.4 48.4 39.2 29.8
22.0 19.5 16.9 14.2 11.5 8.72
70.9 63.8 56.3 48.3 39.8 30.8
17.1 15.3 13.3 11.3 9.23 7.06
1.80 1.81 1.83 1.84 1.86 1.88
1.86 1.82 1.78 1.73 1.68 1.64
30.9 27.5 24.0 20.4 16.6 12.7
0.917 0.811 0.703 0.592 0.479 0.363
L5×5×7⁄8 L5×5×3⁄4 L5×5×1⁄2 L5×5×3⁄8 L5×5×5⁄16
54.4 47.2 32.4 24.6 20.6
16.0 13.9 9.50 7.22 6.05
35.5 31.5 22.5 17.5 14.8
10.3 9.06 6.31 4.84 4.08
1.49 1.51 1.54 1.56 1.57
1.57 1.52 1.43 1.39 1.37
18.7 16.3 11.4 8.72 7.35
0.798 0.694 0.475 0.361 0.303
L4×4×3⁄4 L5×5×5⁄8 L5×5×1⁄2 L5×5×3⁄8 L5×5×5⁄16 L5×5×1⁄4
37.0 31.4 25.6 19.6 16.4 13.2
10.9 9.22 7.50 5.72 4.80 3.88
15.3 13.3 11.1 8.72 7.43 6.08
5.62 4.80 3.95 3.05 2.58 2.09
1.19 1.20 1.22 1.23 1.24 1.25
1.27 1.23 1.18 1.14 1.12 1.09
10.1 8.66 7.12 5.49 4.64 3.77
0.680 0.576 0.469 0.357 0.300 0.242
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DOUBLE ANGLES
1 - 93
DOUBLE ANGLES Two equal leg angles Properties of sections
Y X
X
y, yp
s Y
Qs*
Axis Y-Y Radii of Gyration Back to Back of Angles, in.
Angles in Contact
Angles Separated
0
3⁄ 8
3⁄ 4
Fy = 36 ksi
Fy = 50 ksi
Fy = 36 ksi
Fy = 50 ksi
L8×8×11⁄8 L8×8×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×11⁄2
3.42 3.40 3.38 3.36 3.34 3.32
3.55 3.53 3.51 3.49 3.47 3.45
3.69 3.67 3.64 3.62 3.60 3.58
— — — — — 0.995
— — — — — 0.921
— — — — 0.997 0.911
— — — — 0.935 0.834
L6×6×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×11⁄2 L8×8×13⁄8
2.59 2.57 2.55 2.53 2.51 2.49
2.73 2.70 2.68 2.66 2.64 2.62
2.87 2.85 2.82 2.80 2.78 2.75
— — — — — 0.995
— — — — — 0.921
— — — — — 0.911
— — — — 0.961 0.834
L5×5×7⁄8 L5×5×3⁄4 L5×5×1⁄2 L5×5×3⁄8 L5×5×5⁄16
2.16 2.14 2.10 2.09 2.08
2.30 2.28 2.24 2.22 2.21
2.45 2.42 2.38 2.35 2.34
— — — — 0.995
— — — — 0.921
— — — 0.982 0.911
— — — 0.919 0.834
L4×4×3⁄4 L5×5×5⁄8 L5×5×1⁄2 L5×5×3⁄8 L5×5×5⁄16 L5×5×1⁄4
1.74 1.72 1.70 1.68 1.67 1.66
1.88 1.86 1.83 1.81 1.80 1.79
2.03 2.00 1.98 1.95 1.94 1.93
— — — — — 0.995
— — — — — 0.921
— — — — 0.997 0.911
— — — — 0.935 0.834
Designation
*Where no value ofQs is shown, the angles comply with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 94
DIMENSIONS AND PROPERTIES
DOUBLE ANGLES Two equal leg angles Properties of sections
Y X
X
y, yp
s Y
Wt. Area of per ft 2 Angles 2 Angles 2
Axis X-X
S
I 4
r 3
y
Z
yp 3
Designation
lb
in.
in.
in.
in.
in.
in.
L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×5⁄16 L31⁄2×31⁄2×1⁄4
17.0 14.4 11.6
4.97 4.18 3.38
5.73 4.90 4.02
2.30 1.95 1.59
1.07 1.08 1.09
1.01 0.990 0.968
4.15 3.52 2.86
0.355 0.299 0.241
L3×3×1⁄2 L3×3×3⁄8 L3×3×5⁄16 L3×3×1⁄4 L3×3×3⁄16
18.8 14.4 12.2 9.80 7.42
5.50 4.22 3.55 2.88 2.18
4.43 3.52 3.02 2.49 1.92
2.14 1.67 1.41 1.15 0.882
0.898 0.913 0.922 0.930 0.939
0.932 0.888 0.865 0.842 0.820
3.87 3.00 2.55 2.08 1.59
0.458 0.352 0.296 0.240 0.182
L21⁄2×21⁄2×3⁄8 L31⁄2×31⁄2×5⁄16 L31⁄2×31⁄2×1⁄4 L31⁄2×31⁄2×3⁄16
11.8 10.0 8.20 6.14
3.47 2.93 2.38 1.80
1.97 1.70 1.41 1.09
1.13 0.964 0.789 0.606
0.753 0.761 0.769 0.778
0.762 0.740 0.717 0.694
2.04 1.74 1.42 1.09
0.347 0.293 0.238 0.180
9.40 7.84 6.38 4.88 3.30
2.72 2.30 1.88 1.43 0.960
0.958 0.832 0.695 0.545 0.380
0.702 0.681 0.494 0.381 0.261
0.594 0.601 0.609 0.617 0.626
0.636 0.614 0.592 0.569 0.546
1.27 1.08 0.890 0.686 0.471
0.340 0.288 0.234 0.179 0.121
L2×2×3⁄8 L3×3×5⁄16 L3×3×1⁄4 L3×3×3⁄16 L3×3×1⁄8
in.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DOUBLE ANGLES
1 - 95
DOUBLE ANGLES Two equal leg angles Properties of sections
Y X
X
y, yp
s Y
Qs*
Axis Y-Y Radii of Gyration
Angles in Contact
Angles Separated
3⁄ 4
Fy = 36 ksi
Fy = 50 ksi
Fy = 36 ksi
Fy = 50 ksi
Back to Back of Angles, in. 3⁄ 8
Designation
0
L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×5⁄16 L31⁄2×31⁄2×1⁄4
1.48 1.47 1.46
1.61 1.60 1.59
1.75 1.74 1.73
— — —
— — 0.982
— — 0.965
— 0.986 0.897
L3×3×1⁄2 L3×3×3⁄8 L3×3×5⁄16 L3×3×1⁄4 L3×3×3⁄16
1.29 1.27 1.26 1.26 1.25
1.43 1.41 1.40 1.39 1.38
1.59 1.56 1.55 1.53 1.52
— — — — 0.995
— — — — 0.921
— — — — 0.911
— — — 0.961 0.834
L21⁄2×21⁄2×3⁄8 L21⁄2×21⁄2×5⁄16 L21⁄2×21⁄2×1⁄4 L21⁄2×21⁄2×3⁄16
1.07 1.06 1.05 1.04
1.21 1.20 1.19 1.18
1.36 1.35 1.34 1.32
— — — —
— — — —
— — — 0.982
— — — 0.919
L2×2×3⁄8 L2×2×5⁄16 L2×2×1⁄4 L2×2×3⁄16 L2×2×1⁄8
0.870 0.859 0.849 0.840 0.831
1.01 1.00 0.989 0.977 0.965
1.17 1.16 1.14 1.13 1.11
— — — — 0.995
— — — — 0.921
— — — — 0.911
— — — — 0.834
*Where no value ofQs is shown, the angles comply with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 96
DIMENSIONS AND PROPERTIES
DOUBLE ANGLES Two unequal leg angles Properties of sections
Y X
X
y, yp
s
Long legs back to back
Y
Wt. Area of per ft 2 Angles 2 Angles Designation
2
Axis X-X
S
I 4
in.
r 3
y
Z
yp 3
lb
in.
in.
in.
in.
in.
in.
L8×6×1 L8×6×13⁄4 L8×6×11⁄2
88.4 67.6 46.0
26.0 19.9 13.5
161 126 88.6
30.2 23.3 16.0
2.49 2.53 2.56
2.65 2.56 2.47
54.5 42.2 29.1
1.50 1.38 1.25
L8×4×1 L8×6×13⁄4 L8×6×11⁄2
74.8 57.4 39.2
22.0 16.9 11.5
139 109 77.0
28.1 21.8 15.0
2.52 2.55 2.59
3.05 2.95 2.86
48.5 37.7 26.1
2.50 2.38 2.25
L7×4×3⁄4 L7×4×1⁄2 L7×4×3⁄8
52.4 35.8 27.2
15.4 10.5 7.97
75.6 53.3 41.1
16.8 11.6 8.88
2.22 2.25 2.27
2.51 2.42 2.37
29.6 20.6 15.7
1.88 1.75 1.69
L6×4×3⁄4 L7×4×5⁄8 L7×4×1⁄2 L7×4×3⁄8
47.2 40.0 32.4 24.6
13.9 11.7 9.50 7.22
49.0 42.1 34.8 26.9
12.5 10.6 8.67 6.64
1.88 1.90 1.91 1.93
2.08 2.03 1.99 1.94
22.3 19.0 15.6 11.9
1.38 1.31 1.25 1.19
L6×31⁄2×3⁄8 L6×31⁄2×5⁄16
23.4 19.6
6.84 5.74
25.7 21.8
6.49 5.47
1.94 1.95
2.04 2.01
11.5 9.70
1.44 1.41
L5×31⁄2×3⁄4 L6×31⁄2×1⁄2 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16
39.6 27.2 20.8 17.4
11.6 8.00 6.09 5.12
27.8 20.0 15.6 13.2
8.55 5.97 4.59 3.87
1.55 1.58 1.60 1.61
1.75 1.66 1.61 1.59
15.3 10.8 8.28 6.99
1.13 1.00 0.938 0.906
L5×3×1⁄2 L7×4×3⁄8 L7×4×5⁄16 L7×4×1⁄4
25.6 19.6 16.4 13.2
7.50 5.72 4.80 3.88
18.9 14.7 12.5 10.2
5.82 4.47 3.77 3.06
1.59 1.61 1.61 1.62
1.75 1.70 1.68 1.66
10.3 7.95 6.71 5.45
1.25 1.19 1.16 1.13
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DOUBLE ANGLES
1 - 97
DOUBLE ANGLES Two unequal leg angles Properties of sections
Y X
X
y, yp
s
Long legs back to back Y
Qs*
Axis Y-Y Radii of Gyration Back to Back of Angles, in.
Angles in Contact
Angles Separated
0
3⁄ 8
3⁄ 4
Fy = 36 ksi
Fy = 50 ksi
Fy = 36 ksi
Fy = 50 ksi
L8×6×1 L8×6×13⁄4 L8×6×11⁄2
2.39 2.35 2.32
2.52 2.48 2.44
2.66 2.62 2.57
— — —
— — —
— — 0.911
— — 0.834
L8×4×1 L8×4×13⁄4 L8×4×11⁄2
1.47 1.42 1.38
1.61 1.55 1.51
1.75 1.69 1.64
— — —
— — —
— — 0.911
— — 0.834
L7×4×3⁄4 L7×4×1⁄2 L7×4×3⁄8
1.48 1.44 1.43
1.62 1.57 1.55
1.76 1.71 1.68
— — —
— — —
— 0.965 0.839
— 0.897 0.750
L6×4×3⁄4 L7×4×5⁄8 L7×4×1⁄2 L7×4×3⁄8
1.55 1.53 1.51 1.5
1.69 1.67 1.64 1.62
1.83 1.81 1.78 1.76
— — — —
— — — —
— — — 0.911
— — 0.961 0.834
L6×31⁄2×3⁄8 L6×31⁄2×5⁄16
1.26 1.26
1.39 1.38
1.53 1.51
— —
— —
0.911 0.825
0.834 0.733
L5×31⁄2×3⁄4 L6×31⁄2×1⁄2 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16
1.40 1.35 1.34 1.33
1.53 1.49 1.46 1.45
1.68 1.63 1.60 1.59
— — — —
— — — —
— — 0.982 0.911
— — 0.919 0.834
L5×3×1⁄2 L7×4×3⁄8 L7×4×5⁄16 L7×4×1⁄4
1.12 1.10 1.09 1.08
1.25 1.23 1.22 1.21
1.40 1.37 1.36 1.34
— — — —
— — — —
— 0.982 0.911 0.804
— 0.919 0.834 0.708
Designation
*Where no value of Qs is shown the angles comply with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 98
DIMENSIONS AND PROPERTIES
DOUBLE ANGLES Two unequal leg angles Properties of sections
Y X
X
y, yp
s
Long legs back to back
Y
Wt. Area of per ft 2 Angles 2 Angles Designation
2
Axis X-X
S
I 4
in.
r 3
y
Z
yp 3
lb
in.
in.
in.
in.
in.
in.
L4×31⁄2×1⁄2 L4×31⁄2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4
23.8 18.2 15.4 12.4
7.00 5.34 4.49 3.63
10.6 8.35 7.12 5.83
3.87 2.99 2.53 2.05
1.23 1.25 1.26 1.27
1.25 1.21 1.18 1.16
7.00 5.42 4.59 3.73
0.500 0.438 0.406 0.375
L4×3×1⁄2 L4×3×3⁄8 L4×3×5⁄16 L4×3×1⁄4
22.2 17.0 14.4 11.6
6.50 4.97 4.18 3.38
10.1 7.93 6.76 5.54
3.78 2.92 2.47 2.00
1.25 1.26 1.27 1.28
1.33 1.28 1.26 1.24
6.81 5.28 4.47 3.63
0.750 0.688 0.656 0.625
L31⁄2×3×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4
15.8 13.2 10.8
4.59 3.87 3.13
5.45 4.66 3.83
2.25 1.91 1.55
1.09 1.10 1.11
1.08 1.06 1.04
4.08 3.46 2.82
0.438 0.406 0.375
L31⁄2×21⁄2×3⁄8 L31⁄2×21⁄2×1⁄4
14.4 9.80
4.22 2.88
5.12 3.60
2.19 1.51
1.10 1.12
1.16 1.11
3.94 2.73
0.688 0.625
L3×21⁄2×3⁄8 L4×31⁄2×1⁄4 L4×31⁄2×5⁄16
13.2 9.00 6.77
3.84 2.63 1.99
3.31 2.35 1.81
1.62 1.12 0.859
0.928 0.945 0.954
0.956 0.911 0.888
2.93 2.04 1.56
0.438 0.375 0.344
L3×2×3⁄8 L4×3×5⁄16 L4×3×1⁄4 L4×3×3⁄16
11.8 10.0 8.20 6.14
3.47 2.93 2.38 1.80
3.06 2.63 2.17 1.68
1.56 1.33 1.08 0.830
0.940 0.948 0.957 0.966
1.04 1.02 0.993 0.970
2.79 2.38 1.95 1.49
0.688 0.656 0.625 0.594
L21⁄2×2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 L4×31⁄2×3⁄16
10.6 9.00 7.24 5.50
3.09 2.62 2.13 1.62
1.82 1.58 1.31 1.02
1.09 0.932 0.763 0.586
0.768 0.776 0.784 0.793
0.831 0.809 0.787 0.764
1.97 1.69 1.38 1.06
0.438 0.406 0.375 0.344
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DOUBLE ANGLES
1 - 99
DOUBLE ANGLES Two unequal leg angles Properties of sections
Y X
X
y, yp
s
Long legs back to back Y
Qs*
Axis Y-Y Radii of Gyration
Angles in Contact
Angles Separated
3⁄ 4
Fy = 36 ksi
Fy = 50 ksi
Fy = 36 ksi
Fy = 50 ksi
Back to Back of Angles, in. Designation
0
3⁄ 8
L4×31⁄2×1⁄2 L4×31⁄2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4
1.44 1.42 1.42 1.41
1.58 1.56 1.55 1.54
1.72 1.70 1.69 1.67
— — — —
— — — 0.982
— — 0.997 0.911
— — 0.935 0.834
L4×3×1⁄2 L4×3×3⁄8 L4×3×5⁄16 L4×3×1⁄4
1.20 1.18 1.17 1.16
1.33 1.31 1.30 1.29
1.48 1.45 1.44 1.43
— — — —
— — — —
— — 0.997 0.911
— — 0.935 0.834
L31⁄2×3×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4
1.22 1.21 1.20
1.36 1.35 1.33
1.50 1.49 1.48
— — —
— — —
— — 0.965
— 0.986 0.897
L31⁄2×21⁄2×3⁄8 L31⁄2×21⁄2×1⁄4
0.976 0.958
1.11 1.09
1.26 1.23
— —
— —
— 0.965
— 0.897
L3×21⁄2×3⁄8 L4×31⁄2×1⁄4 L4×31⁄2×5⁄16
1.02 1.00 0.993
1.16 1.13 1.12
1.31 1.28 1.27
— — —
— — —
— — 0.911
— 0.961 0.834
L3×2×3⁄8 L4×3×5⁄16 L4×3×1⁄4 L4×3×3⁄16
0.777 0.767 0.757 0.749
0.917 0.903 0.891 0.879
1.07 1.06 1.04 1.03
— — — —
— — — —
— — — 0.911
— — 0.961 0.834
L21⁄2×2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 L4×31⁄2×3⁄16
0.819 0.809 0.799 0.790
0.961 0.948 0.935 0.923
1.12 1.10 1.09 1.07
— — — —
— — — —
— — — 0.982
— — — 0.919
*Where no value of Qs is shown, the angles comply with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 100
DIMENSIONS AND PROPERTIES
DOUBLE ANGLES Two unequal leg angles Properties of sections
Y X
X
y, yp
s
Short legs back to back
Y
Wt. Area of per ft 2 Angles 2 Angles Designation
2
Axis X-X
S
I 4
in.
r 3
y
Z
yp 3
lb
in.
in.
in.
in.
in.
in.
L8×6×1 L8×6×13⁄4 L8×6×11⁄2
88.4 67.6 46.0
26.0 19.9 13.5
77.6 61.4 43.4
17.8 13.8 9.58
1.73 1.76 1.79
1.65 1.56 1.47
32.4 24.9 17.0
0.813 0.621 0.422
L8×4×1 L8×6×13⁄4 L8×6×11⁄2
74.8 57.4 39.2
22.0 16.9 11.5
23.3 18.7 13.5
7.88 6.14 4.29
1.03 1.05 1.08
1.05 0.953 0.859
15.4 11.6 7.80
0.688 0.527 0.359
L7×4×3⁄4 L5×3×1⁄2 L5×3×3⁄8
52.4 35.8 27.2
15.4 10.5 7.97
18.1 13.1 10.2
6.05 4.23 3.26
1.09 1.11 1.13
1.01 0.917 0.870
11.3 7.66 5.80
0.549 0.375 0.285
L6×4×3⁄4 L5×3×5⁄8 L5×3×1⁄2 L5×3×3⁄8
47.2 40.0 32.4 24.6
13.9 11.7 9.50 7.22
17.4 15.0 12.5 9.81
5.94 5.07 4.16 3.21
1.12 1.13 1.15 1.17
1.08 1.03 0.987 0.941
10.9 9.24 7.50 5.71
0.578 0.488 0.396 0.301
L6×31⁄2×3⁄8 L6×31⁄2×5⁄16
23.4 19.6
6.84 5.74
6.68 5.70
2.46 2.08
0.988 0.996
0.787 0.763
4.41 3.70
0.285 0.239
L5×31⁄2×3⁄4 L6×31⁄2×1⁄2 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16
39.6 27.2 20.8 17.4
11.6 8.00 6.09 5.12
11.1 8.10 6.37 5.44
4.43 3.12 2.41 2.04
0.977 1.01 1.02 1.03
0.996 0.906 0.861 0.838
8.20 5.65 4.32 3.63
0.581 0.400 0.305 0.256
L5×3×1⁄2 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4
25.6 19.6 16.4 13.2
7.50 5.72 4.80 3.88
5.16 4.08 3.49 2.88
2.29 1.78 1.51 1.23
0.829 0.845 0.853 0.861
0.750 0.704 0.681 0.657
4.22 3.21 2.69 2.17
0.375 0.286 0.240 0.194
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DOUBLE ANGLES
1 - 101
DOUBLE ANGLES Two unequal leg angles Properties of sections
Y X
X
y, yp
s
Short legs back to back
Y
Qs*
Axis Y-Y Radii of Gyration Back to Back of Angles, in.
Angles in Contact
Angles Separated
0
3⁄ 8
3⁄ 4
Fy = 36 ksi
Fy = 50 ksi
Fy = 36 ksi
Fy = 50 ksi
L8×6×1 L8×6×13⁄4 L8×6×11⁄2
3.64 3.60 3.56
3.78 3.74 3.69
3.92 3.88 3.83
— — 0.995
— — 0.921
— — 0.911
— — 0.834
L8×4×1 L8×4×13⁄4 L8×4×11⁄2
3.95 3.90 3.86
4.10 4.05 4.00
4.25 4.19 4.14
— — 0.995
— — 0.921
— — 0.911
— — 0.834
L7×4×3⁄4 L7×4×1⁄2 L7×4×3⁄8
3.35 3.30 3.28
3.49 3.44 3.42
3.64 3.59 3.56
— — 0.926
— 0.982 0.838
— 0.965 0.839
0.897 0.750
L6×4×3⁄4 L7×4×5⁄8 L7×4×1⁄2 L7×4×3⁄8
2.80 2.78 2.76 2.74
2.94 2.92 2.90 2.87
3.09 3.06 3.04 3.02
— — — 0.995
— — — 0.921
— — — 0.911
— — 0.961 0.834
L6×31⁄2×3⁄8 L6×31⁄2×5⁄16
2.81 2.80
2.95 2.94
3.09 3.08
0.995 0.912
0.921 0.822
0.911 0.825
0.834 0.733
L5×31⁄2×3⁄4 L6×31⁄2×1⁄2 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16
2.33 2.29 2.27 2.26
2.48 2.43 2.41 2.39
2.63 2.57 2.55 2.54
— — — 0.995
— — — 0.921
— — 0.982 0.911
— — 0.919 0.834
L5×3×1⁄2 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4
2.36 2.34 2.33 2.32
2.50 2.48 2.47 2.46
2.65 2.63 2.61 2.60
— — 0.995 0.891
— — 0.921 0.797
— 0.982 0.911 0.804
— 0.919 0.834 0.708
Designation
*Where no value of Qs is shown, the angles comply with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 102
DIMENSIONS AND PROPERTIES
DOUBLE ANGLES Two unequal leg angles Properties of sections
Y X
X
y, yp
s
Short legs back to back
Y
Wt. Area of per ft 2 Angles 2 Angles Designation
2
Axis X-X
S
I 4
in.
r 3
y
Z
yp 3
lb
in.
in.
in.
in.
in.
in.
L4×31⁄2×1⁄2 L4×31⁄2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4
23.8 18.2 15.4 12.4
7.00 5.34 4.49 3.63
7.58 5.97 5.10 4.19
3.03 2.35 1.99 1.62
1.04 1.06 1.07 1.07
1.00 0.955 0.932 0.909
5.47 4.21 3.56 2.89
0.438 0.334 0.281 0.227
L4×3×1⁄2 L3×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4
22.2 17.0 14.4 11.6
6.50 4.97 4.18 3.38
4.85 3.84 3.29 2.71
2.23 1.73 1.47 1.20
0.864 0.879 0.887 0.896
0.827 0.782 0.759 0.736
4.06 3.11 2.63 2.13
0.406 0.311 0.261 0.211
L31⁄2×3×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4
15.8 13.2 10.8
4.59 3.87 3.13
3.69 3.17 2.61
1.70 1.44 1.18
0.897 0.905 0.914
0.830 0.808 0.785
3.06 2.59 2.10
0.328 0.276 0.223
L31⁄2×21⁄2×3⁄8 L31⁄2×21⁄2×1⁄4
14.4 9.80
4.22 2.88
2.18 1.55
1.18 0.824
0.719 0.735
0.660 0.614
2.15 1.47
0.301 0.205
L3×21⁄2×3⁄8 L4×31⁄2×1⁄4 L4×31⁄2×3⁄16
13.2 9.00 6.77
3.84 2.63 1.99
2.08 1.49 1.15
1.16 0.808 0.620
0.736 0.753 0.761
0.706 0.661 0.638
2.10 1.45 1.11
0.320 0.219 0.166
L3×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 L3×2×3⁄16
11.8 10.0 8.20 6.14
3.47 2.93 2.38 1.80
1.09 0.941 0.784 0.613
0.743 0.634 0.520 0.401
0.559 0.567 0.574 0.583
0.539 0.516 0.493 0.470
1.37 1.16 0.937 0.713
0.289 0.244 0.198 0.150
L21⁄2×2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 L4×31⁄2×3⁄16
10.6 9.00 7.24 5.50
3.09 2.62 2.13 1.62
1.03 0.893 0.745 0.583
0.725 0.620 0.509 0.392
0.577 0.584 0.592 0.600
0.581 0.559 0.537 0.514
1.32 1.12 0.915 0.701
0.309 0.262 0.213 0.162
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DOUBLE ANGLES
1 - 103
DOUBLE ANGLES Two unequal leg angles Properties of sections
Y X
X
y, yp
s
Short legs back to back
Y
Qs*
Axis Y-Y Radii of Gyration Back to Back of Angles, in.
Angles in Contact
Angles Separated
0
3⁄ 8
3⁄ 4
Fy = 36 ksi
Fy = 50 ksi
Fy = 36 ksi
Fy = 50 ksi
L4×31⁄2×1⁄2 L4×31⁄2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4
1.76 1.74 1.73 1.72
1.89 1.87 1.86 1.85
2.04 2.01 2.00 1.99
— — — 0.995
— — — 0.921
— — 0.997 0.911
— — 0.935 0.834
L4×3×1⁄2 L3×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4
1.82 1.80 1.79 1.78
1.96 1.94 1.93 1.92
2.11 2.08 2.07 2.06
— — — 0.995
— — — 0.921
— — 0.997 0.911
— — 0.935 0.834
L31⁄2×3×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4
1.53 1.52 1.52
1.67 1.66 1.65
1.82 1.80 1.79
— — —
— — 0.982
— — 0.965
— 0.986 0.897
L31⁄2×21⁄2×3⁄8 L31⁄2×21⁄2×1⁄4
1.60 1.58
1.74 1.72
1.89 1.86
— —
— 0.982
— 0.965
— 0.897
L3×21⁄2×3⁄8 L4×31⁄2×1⁄4 L4×31⁄2×3⁄16
1.33 1.31 1.30
1.47 1.45 1.44
1.62 1.60 1.58
— — 0.995
— — 0.921
— — 0.911
— 0.961 0.834
L3×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 L3×2×3⁄16
1.40 1.39 1.38 1.37
1.55 1.53 1.52 1.51
1.70 1.68 1.67 1.66
— — — 0.995
— — — 0.921
— — — 0.911
— — 0.961 0.834
L21⁄2×2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 L4×31⁄2×3⁄16
1.13 1.12 1.11 1.10
1.28 1.26 1.25 1.24
1.43 1.42 1.40 1.39
— — — —
— — — —
— — — 0.982
— — — 0.911
Designation
*Where no value of Qs is shown the angles comply with LRFD Specification Section E2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 104
DIMENSIONS AND PROPERTIES
COMBINATION SECTIONS
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
COMBINATION SECTIONS
1 - 105
COMBINATION SECTIONS
Standard rolled shapes are frequently combined to produce efficient and economical structural members for special applications. Experience has established a demand for certain combinations. When properly sized and connected to satisfy the design and specification criteria, these members may be used as struts, lintels, eave struts, and light crane and trolley runways. The W section with channel attached to the web is not recommended for use as a trolley or crane runway member. Properties of several combined sections are tabulated for those combinations that experience has proven to be in popular demand.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 106
DIMENSIONS AND PROPERTIES
COMBINATION SECTIONS W shapes and channels Properties of sections
Y
y
2
X
X
y , yp 1
Y
Beam
Channel
Axis X-X
Total Weight per ft
Total Area
lb
in.2
I
S1 = I / y1
S2 = I / y2
r
in.4
in.3
in.3
in.
W12×26 W ×26
C10×15.3 C12×20.7
41.3 46.7
12.14 13.74
299 318
36.3 36.8
70.5 82.2
4.96 4.81
W14×30 W ×30
C10×15.3 C12×20.7
45.3 50.7
13.34 14.94
420 448
46.1 46.8
84.6 98.3
5.61 5.47
W16×36 W ×36
C12×20.7 C15×33.9
56.7 69.9
16.69 20.56
670 748
62.8 64.6
123 160
6.34 6.03
W18×50 W ×50
C12×20.7 C15×33.9
70.7 83.9
20.79 24.66
1120 1250
97.4 100
166 211
7.34 7.11
W21×62 W ×62 W ×68 W ×68
C12×20.7 C15×33.9 C12×20.7 C15×33.9
82.7 95.9 88.7 101.9
24.39 28.26 26.09 29.96
1800 2000 1960 2180
138 142 152 156
218 272 232 287
8.59 8.41 8.68 8.52
W24×68 W ×68 W ×84 W ×84
C12×20.7 C15×33.9 C12×20.7 C15×33.9
88.7 101.9 104.7 117.9
26.19 30.06 30.79 34.66
2450 2720 3040 3340
168 173 212 217
258 321 303 368
9.67 9.50 9.93 9.82
W27×84 W ×94
C15×33.9 C15×33.9
117.9 127.9
34.76 37.66
4050 4530
237 268
404 436
10.8 11.0
W30×99 W ×99 W ×116 W ×116
C15×33.9 C18×42.7 C15×33.9 C18×42.7
132.9 141.7 149.9 158.7
39.06 41.70 44.16 46.80
5540 5830 6590 6900
300 304 360 365
480 533 544 599
11.9 11.8 12.2 12.1
W33×118 W ×118 W ×141 W ×141
C15×33.9 C18×42.7 C15×33.9 C18×42.7
151.9 160.7 174.9 183.7
44.66 47.30 51.56 54.20
7900 8280 9580 10000
395 400 484 490
596 656 689 751
13.3 13.2 13.6 13.6
W36×150 W ×150
C15×33.9 C18×42.7
183.9 192.7
54.16 56.80
11500 12100
546 553
765 832
14.6 14.6
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
COMBINATION SECTIONS
1 - 107
COMBINATION SECTIONS W shapes and channels Properties of sections
Y
y
2
X
X
y , yp 1
Y
Axis X-X
y1 Beam
Z
Axis Y-Y
yp 3
Channel
in.
in.
W12×26 W30×26
C10×15.3 C12×20.7
8.22 8.63
W14×30 W30×30
C10×15.3 C12×20.7
W16×36 W30×36
S
I 4
3
r
Z
in.
in.3
in.
in.
in.
47.0 48.8
11.30 11.55
84.7 146
16.9 24.4
2.64 3.26
24.0 33.6
9.12 9.57
60.5 62.3
12.56 12.87
87.0 149
17.4 24.8
2.55 3.15
24.8 34.4
C12×20.7 C15×33.9
10.67 11.58
83.6 88.6
14.56 15.21
154 340
25.6 45.3
3.03 4.06
36.3 61.3
W18×50 W30×50
C12×20.7 C15×33.9
11.51 12.47
128 134
16.08 16.90
169 355
28.2 47.3
2.85 3.79
42.0 67.0
W21×62 W30×62 W30×68 W30×68
C12×20.7 C15×33.9 C12×20.7 C15×33.9
13.01 14.06 12.93 13.95
182 190 200 208
18.06 19.36 17.60 19.32
187 373 194 380
31.1 49.7 32.3 50.6
2.77 3.63 2.72 3.56
47.2 72.2 49.8 74.8
W24×68 W30×68 W30×84 W30×84
C12×20.7 C15×33.9 C12×20.7 C15×33.9
14.53 15.67 14.35 15.40
224 234 275 288
19.15 21.66 18.49 21.61
199 385 223 409
33.2 51.4 37.2 54.6
2.76 3.58 2.69 3.44
50.0 75.0 58.1 83.1
W27×84 W27×94
C15×33.9 C15×33.9
17.07 16.92
320 357
23.86 23.56
421 439
56.1 58.5
3.48 3.41
83.6 89.2
W30×99 W30×99 W30×116 W30×116
C15×33.9 C18×42.7 C15×33.9 C18×42.7
18.51 19.18 18.30 18.93
408 418 480 492
24.34 26.43 23.77 26.04
443 682 479 718
59.1 75.8 63.9 79.8
3.37 4.04 3.29 3.92
89.1 113 99.6 124
W33×118 W30×118 W30×141 W30×141
C15×33.9 C18×42.7 C15×33.9 C18×42.7
20.01 20.69 19.79 20.42
529 544 634 652
25.43 27.77 24.83 26.96
502 741 561 800
66.9 82.3 74.8 88.9
3.35 3.96 3.30 3.84
102 126 117 141
W36×150 W30×150
C15×33.9 C18×42.7
21.15 21.81
716 738
25.84 27.91
585 824
78.0 91.6
3.29 3.81
121 145
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 108
DIMENSIONS AND PROPERTIES
COMBINATION SECTIONS S shapes and channels Properties of sections
Y
y
2
X
X
y , yp 1
Y
Beam
Channel
Axis X-X
Total Weight per ft
Total Area
lb
in.2
I
S1 = I / y1
S2 = I / y2
r
in.4
in.3
in.3
in.
S10×25.4
C8×11.5 C10×15.3
36.9 40.7
10.84 11.95
176 186
27.2 27.6
46.6 52.9
4.02 3.94
S12×31.8
C8×11.5 C10×15.3
43.3 47.1
12.73 13.84
299 316
39.8 40.4
63.2 71.4
4.84 4.78
S15×42.9
C8×11.5 C10×15.3
54.4 58.2
15.98 17.09
585 616
64.9 65.8
94.2 105
6.05 6.01
S20×66
C10×15.3 C12×20.7
81.3 86.7
23.89 25.49
1530 1620
130 132
181 203
8.00 7.97
S24×80
C10×15.3 C12×20.7
95.3 100.7
27.99 29.59
2610 2750
188 191
252 278
9.66 9.65
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
COMBINATION SECTIONS
1 - 109
COMBINATION SECTIONS S shapes and channels Properties of sections
Y
y
2
X
X
y , yp 1
Y
Axis X-X
y1 Beam
Z
Axis Y-Y
yp 3
S
I 4
3
r
Z
in.
in.3
Channel
in.
in.
in.
in.
in.
S10×25.4
C8×11.5 C10×15.3
6.45 6.73
35.7 36.9
8.81 9.02
39.4 74.2
9.8 14.8
1.91 2.49
14.5 20.8
S12×31.8
C8×11.5 C10×15.3
7.50 7.82
52.6 53.9
10.30 10.61
42.0 76.8
10.5 15.4
1.82 2.36
16.0 22.2
S15×42.9
C8×11.5 C10×15.3
9.01 9.37
85.7 88.2
11.58 12.77
47.0 81.8
11.8 16.4
1.71 2.19
18.6 24.9
S20×66
C10×15.3 C12×20.7
11.81 12.29
171 178
14.41 15.99
95.1 157
19.0 26.1
2.00 2.48
31.2 40.8
S24×80
C10×15.3 C12×20.7
13.86 14.38
244 254
16.46 18.05
110 171
21.9 28.5
1.98 2.41
36.6 46.2
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 110
DIMENSIONS AND PROPERTIES
d
2
Yd
COMBINATION SECTIONS Two channels Properties of sections
2
y
2
X
X x1 , xp
y , yp 1
Y
Vertical Horizontal Channel Channel
Axis X-X
Total Weight per ft
Total Area
lb
in.2
I
S1 = I / y1
S2 = I / y2
r
y1
Z
yp
in.4
in.3
in.3
in.
in.
in.3
in.
C3×4.1
C4×5.4
9.5
2.80
3.0
1.4
3.0
1.04
2.20
2.16
2.67
C4×5.4
C4×5.4 C5×6.7
10.8 12.1
3.18 3.56
6.5 6.9
2.3 2.3
4.9 5.5
1.43 1.39
2.86 2.94
3.39 3.62
3.56 3.61
C5×6.7
C5×6.7 C6×8.2 C7×9.8
13.4 14.9 16.5
3.94 4.37 4.84
12.8 13.4 14.0
3.5 3.6 3.7
8.0 8.9 9.8
1.80 1.75 1.70
3.60 3.70 3.79
5.23 5.50 5.81
4.50 4.57 4.62
C6×8.2
C5×6.7 C6×8.2 C7×9.8 C8×11.5 C9×13.4 C10×15.3
14.9 16.4 18.0 19.7 21.6 23.5
4.37 4.80 5.27 5.78 6.34 6.89
21.5 22.5 23.4 24.3 25.2 26.0
5.1 5.2 5.2 5.3 5.4 5.5
10.9 12.1 13.3 14.5 15.8 16.9
2.22 2.16 2.11 2.05 1.99 1.94
4.22 4.34 4.45 4.55 4.64 4.70
7.31 7.61 7.93 8.30 8.72 9.16
5.37 5.45 5.53 5.58 5.63 5.65
C7×9.8
C6×8.2 C7×9.8 C8×11.5 C9×13.4 C10×15.3
18.0 19.6 21.3 23.2 25.1
5.27 5.74 6.25 6.81 7.36
35.3 36.7 38.0 39.3 40.5
7.1 7.2 7.3 7.4 7.5
15.7 17.3 18.8 20.5 21.9
2.59 2.53 2.47 2.40 2.34
4.95 5.08 5.20 5.31 5.39
10.2 10.6 10.9 11.4 11.8
6.32 6.40 6.48 6.54 6.58
C8×11.5
C6×8.2 C7×9.8 C8×11.5 C9×13.4 C10×15.3 C12×20.7
19.7 21.3 23.0 24.9 26.8 32.2
5.78 6.25 6.76 7.32 7.87 9.47
52.4 54.5 56.4 58.4 60.0 64.4
9.5 9.6 9.7 9.8 9.9 10.2
19.6 21.6 23.6 25.6 27.5 32.6
3.01 2.95 2.89 2.82 2.76 2.61
5.53 5.68 5.82 5.95 6.06 6.30
13.4 13.8 14.2 14.6 15.1 16.4
7.18 7.27 7.35 7.44 7.49 7.62
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
COMBINATION SECTIONS
1 - 111
COMBINATION SECTIONS Two channels Properties of sections
d
2
Yd
2
y
2
X
X x1 , xp
y , yp 1
Y
Axis Y-Y Vertical Channel
Horizontal Channel
I
S
r
x1
Z
xp
in.4
in.3
in.
in.
in.3
in.
C3×4.1
C4×5.4
4.0
2.0
1.20
0.44
2.67
0.315
C4×5.4
C4×5.4 C5×6.7
4.2 7.8
2.1 3.1
1.14 1.48
0.46 0.46
2.84 4.09
0.281 0.282
C5×6.7
C5×6.7 C6×8.2 C7×9.8
8.0 13.6 21.8
3.2 4.5 6.2
1.42 1.76 2.12
0.48 0.48 0.48
4.29 5.90 7.90
0.264 0.266 0.268
C6×8.2
C5×6.7 C6×8.2 C7×9.8 C8×11.5 C9×13.4 C10×15.3
8.2 13.8 22.0 33.3 48.6 68.1
3.3 4.6 6.3 8.3 10.8 13.6
1.37 1.70 2.04 2.40 2.77 3.14
0.51 0.51 0.51 0.51 0.51 0.51
4.52 6.14 8.13 10.6 13.5 16.8
0.242 0.245 0.247 0.249 0.252 0.254
C7×9.8
C6×8.2 C7×9.8 C8×11.5 C9×13.4 C10×15.3
14.1 22.3 33.6 48.6 68.4
4.7 6.4 8.4 10.9 13.7
1.63 1.97 2.32 2.68 3.05
0.54 0.54 0.54 0.54 0.54
6.41 8.41 10.8 13.8 17.1
0.225 0.228 0.230 0.234 0.235
C8×11.5
C6×8.2 C7×9.8 C8×11.5 C9×13.4 C10×15.3 C12×20.7
14.4 22.6 33.9 49.2 68.7 130
4.8 6.5 8.5 10.9 13.7 21.7
1.58 1.90 2.24 2.59 2.95 3.71
0.57 0.57 0.57 0.57 0.57 0.57
6.73 8.73 11.2 14.1 17.4 27.0
0.218 0.219 0.219 0.220 0.220 0.230
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 112
DIMENSIONS AND PROPERTIES
d
2
Yd
COMBINATION SECTIONS Two channels Properties of sections
2
y
2
X
X x1 , xp
y , yp 1
Y
Vertical Horizontal Channel Channel
Total Weight per ft
Axis X-X Total Area 2
lb
in.
C9×13.4
C7×9.8 C8×11.5 C9×13.4 C10×15.3 C12×20.7
23.2 24.9 26.8 28.7 34.1
6.81 7.32 7.88 8.43 10.03
C10×15.3
C8×11.5 C9×13.4 C10×15.3 C12×20.7 C15×33.9
26.8 28.7 30.6 36.0 49.2
7.87 8.43 8.98 10.58 14.45
C12×20.7
C9×13.4 C10×15.3 C12×20.7 C15×33.9
34.1 36.0 41.4 54.6
C15×33.9
C10×15.3 C12×20.7 C15×33.9 MC18×42.7
MC18×42.7 MC12×20.7 MC15×33.9 MC18×42.7
S1 = I / y1
I 4
in.
3
S2 = I / y2 3
r
y1
Z
yp 3
in.
in.
in.
in.
in.
in.
12.4 12.6 12.7 12.8 13.1
26.3 28.7 31.2 33.5 39.8
3.38 3.32 3.25 3.19 3.02
6.26 6.42 6.57 6.69 6.98
17.6 18.1 18.5 19.0 20.4
8.11 8.21 8.31 8.37 8.54
110 114 117 126 141
15.8 15.9 16.1 16.4 17.3
34.2 37.2 39.9 47.5 63.7
3.75 3.68 3.61 3.45 3.13
7.00 7.16 7.30 7.64 8.18
22.4 22.9 23.4 24.9 28.3
9.07 9.18 9.26 9.46 9.73
10.03 10.58 12.18 16.05
207 213 228 256
25.2 25.4 25.9 27.0
51.4 55.0 65.3 87.8
4.54 4.48 4.32 4.00
8.21 8.38 8.79 9.48
35.7 36.3 38.0 41.8
10.78 10.88 11.16 11.56
49.2 54.6 67.8 76.6
14.45 16.05 19.92 22.56
474 509 575 608
48.8 49.9 52.0 53.1
85.6 99.8 132 152
5.72 5.63 5.37 5.19
9.71 10.19 11.06 11.45
69.7 72.2 77.4 80.7
12.83 13.31 14.04 14.37
63.4 76.6 85.4
18.69 22.56 25.20
860 975 1030
72.9 76.1 77.6
133 174 200
6.78 6.57 6.40
11.80 12.80 13.29
77.7 80.5 83.3 85.6 91.7
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
106 113 117
15.51 16.50 16.96
COMBINATION SECTIONS
1 - 113
COMBINATION SECTIONS Two channels Properties of sections
d
2
Yd
2
y
2
X
X x1 , xp
y , yp 1
Y
Axis Y-Y Vertical Channel
Horizontal Channel
I
S
r
x1
Z
xp
in.4
in.3
in.
in.
in.3
in.
C9×13.4
C7×9.8 C8×11.5 C9×13.4 C10×15.3 C12×20.7
23.1 34.4 49.7 69.2 131
6.6 8.6 11.0 13.8 21.8
1.84 2.17 2.51 2.86 3.61
0.60 0.60 0.60 0.60 0.60
9.10 11.5 14.5 17.8 27.4
0.226 0.227 0.227 0.227 0.229
C10×15.3
C8×11.5 C9×13.4 C10×15.3 C12×20.7 C15×33.9
34.9 50.2 69.7 131 317
8.7 11.2 13.9 21.9 42.3
2.11 2.44 2.79 3.52 4.69
0.63 0.63 0.63 0.63 0.63
11.9 14.9 18.2 27.8 52.8
0.232 0.232 0.233 0.234 0.239
C12×20.7
C9×13.4 C10×15.3 C12×20.7 C15×33.9
51.8 71.3 133 319
11.5 14.3 22.1 42.5
2.27 2.60 3.30 4.46
0.70 0.70 0.70 0.70
16.0 19.3 29.0 54.0
0.261 0.261 0.262 0.266
C15×33.9
C10×15.3 C12×20.7 C15×33.9 MC18×42.7
75.5 137 323 562
15.1 22.9 43.1 62.5
2.29 2.92 4.03 4.99
0.79 0.79 0.79 0.79
22.1 31.7 56.7 80.7
0.337 0.338 0.342 0.343
MC18×42.7
MC12×20.7 MC15×33.9 MC18×42.7
143 329 568
23.9 43.9 63.2
2.77 3.82 4.75
0.88 0.88 0.88
33.6 58.6 82.6
0.355 0.358 0.359
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 114
DIMENSIONS AND PROPERTIES
COMBINATION SECTIONS Channels and angles Properties of sections
Y
y
2
X
X
Long leg of angle turned out
y , yp 1
x1 xp
x2 Y
Total Weight per ft
Axis X-X Total Area 2
S1 = I / y1
I 4
3
3
in.
r
y1
Z
yp 3
Angle
lb
in.
in.
in.
in.
in.
in.
C6×8.2
L21⁄2×21⁄2×1⁄4 L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L3×21⁄2 ×5⁄16 L4 ×3 ×1⁄4
12.3 12.7 13.6 14.8 14.0
3.59 3.71 3.96 4.33 4.09
17.9 18.5 19.0 19.8 19.5
8.0 8.5 8.9 9.8 9.5
4.8 4.8 4.9 5.0 5.0
2.24 2.23 2.19 2.14 2.19
2.24 2.17 2.13 2.02 2.06
6.75 6.90 7.23 7.54 7.36
1.40 1.26 1.26 1.11 1.13
C7×9.8
L21⁄2×21⁄2×1⁄4 L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L3×21⁄2 ×5⁄16 L4 ×3 ×1⁄4 L3×2 ×5⁄16
13.9 14.3 15.2 16.4 15.6 17.0
4.06 4.18 4.43 4.80 4.56 4.96
28.5 29.3 30.0 31.2 30.8 32.0
10.6 11.2 11.8 12.9 12.4 13.7
6.6 6.7 6.7 6.8 6.8 6.9
2.65 2.65 2.60 2.55 2.60 2.54
2.68 2.61 2.54 2.42 2.48 2.35
9.13 9.31 9.64 9.99 9.81 10.2
1.67 1.53 1.53 1.35 1.39 1.20
C8×11.5
L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L3×21⁄2 ×5⁄16 L4 ×3 ×1⁄4 L3×2 ×5⁄16 L5 ×31⁄2×5⁄16
16.0 16.9 18.1 17.3 18.7 20.2
4.69 4.94 5.31 5.07 5.47 5.94
43.9 44.9 46.7 46.0 47.8 49.9
14.3 15.1 16.4 15.8 17.3 18.9
8.9 9.0 9.0 9.0 9.1 9.3
3.06 3.02 2.97 3.01 2.96 2.90
3.07 2.98 2.84 2.91 2.76 2.64
12.2 12.6 13.0 12.8 13.2 13.9
1.81 1.81 1.60 1.67 1.45 1.30
C9×13.4
L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L3×21⁄2 ×5⁄16 L4 ×3 ×1⁄4 L3×2 ×5⁄16 L5 ×31⁄2×5⁄16
17.9 18.8 20.0 19.2 20.6 22.1
5.25 5.50 5.87 5.63 6.03 6.50
63.1 64.6 67.1 66.0 68.7 71.4
17.8 18.8 20.4 19.6 21.4 23.4
11.6 11.6 11.7 11.7 11.8 12.0
3.47 3.43 3.38 3.42 3.37 3.31
3.54 3.45 3.29 3.37 3.20 3.06
15.8 16.1 16.6 16.3 16.8 17.5
2.11 2.11 1.87 1.98 1.73 1.58
C10×15.3
L31⁄2×3 ×1⁄4 L3×21⁄2 ×5⁄16 L4 ×3 ×1⁄4 L3×2 ×5⁄16 L5 ×31⁄2×5⁄16 L3×21⁄2 ×3⁄8
20.7 21.9 21.1 22.5 24.0 25.7
6.05 6.42 6.18 6.58 7.05 7.54
89.3 92.7 91.1 94.7 98.4 102
22.8 24.8 23.8 25.9 28.2 30.6
14.7 14.8 14.8 14.9 15.1 15.2
3.84 3.80 3.84 3.79 3.74 3.67
3.91 3.74 3.83 3.65 3.49 3.33
20.0 20.6 20.3 20.9 21.6 22.2
2.39 2.12 2.26 1.98 1.84 1.61
Channel
in.
S2 = I / y2
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
COMBINATION SECTIONS
1 - 115
COMBINATION SECTIONS Channels and angles Properties of sections
Y
y
2
X
X
Long leg of angle turned out
y , yp 1
x1 xp
x2 Y
Axis Y-Y
S1 = I / x1
I
3
3
r
x1
Z
xp 3
in.
in.
in.
in.
in.
in.
C6×8.2
L21⁄2×21⁄2×1⁄4 L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4
2.6 3.6 4.9 5.7 6.5
1.0 1.2 1.4 1.7 1.7
1.4 1.9 2.4 2.7 3.1
0.85 0.98 1.11 1.14 1.26
2.60 3.01 3.40 3.31 3.79
2.02 2.38 2.82 3.27 3.30
2.60 3.09 3.57 3.54 4.06
C7×9.8
L21⁄2×21⁄2×1⁄4 L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4 L31⁄2 ×5⁄16
3.0 4.0 5.4 6.3 7.1 8.3
1.1 1.3 1.6 1.8 18 2.2
1.6 2.0 2.6 2.9 3.2 3.6
0.86 0.98 1.10 1.14 1.25 1.29
2.67 3.09 3.48 3.40 3.88 3.78
2.31 2.66 3.11 3.57 3.59 4.16
2.62 3.11 3.59 3.57 4.08 4.05
C8×11.5
L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4 L3×3 ×5⁄16 L5 ×31⁄2×5⁄16
4.6 6.0 6.9 7.8 9.0 14.7
14 1.7 2.0 2.0 2.3 3.2
2.2 2.7 3.0 3.4 3.8 5.6
0.99 1.10 1.14 1.24 1.28 1.57
3.16 3.56 3.48 3.97 3.87 4.64
3.00 3.45 3.91 3.93 4.51 5.97
3.13 3.61 3.59 4.10 4.08 5.05
C9×13.4
L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4 L3×3 ×5⁄16 L5 ×31⁄2×5⁄16
5.2 6.7 7.7 8.5 9.9 15.8
1.6 1.8 2.2 2.1 2.5 3.3
2.3 2.9 3.2 3.6 4.0 5.9
0.99 1.10 1.14 1.23 1.28 1.56
3.22 3.64 3.55 4.05 3.96 4.74
3.38 3.83 4.31 4.32 4.91 6.38
3.14 3.63 3.61 4.12 4.10 5.08
C10×15.3
L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4 L3×3 ×5⁄16 L5 ×31⁄2×5⁄16 L31⁄2×3 ×3⁄8
7.4 8.5 9.4 10.8 16.9 19.2
2.0 2.3 2.3 2.7 3.5 4.1
3.1 3.4 3.8 4.2 6.1 6.7
1.11 1.15 1.23 1.28 1.55 1.60
3.70 3.62 4.12 4.03 4.83 4.73
4.25 4.73 4.74 5.34 6.82 7.70
3.64 3.63 4.14 4.12 5.09 5.07
Channel
Angle
in.
4
S2 = I / x2
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 116
DIMENSIONS AND PROPERTIES
COMBINATION SECTIONS Channels and angles Properties of sections
Y
y
2
X
X
Long leg of angle turned out
y , yp 1
x1 xp
x2 Y
Total Weight per ft
Axis X-X Total Area 2
S1 = I / y1
I 4
3
S2 = I / y2 3
r
y1
Z
yp 3
Angle
lb
in.
in.
in.
in.
in.
in.
in.
in.
C12×20.7
L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4 L31⁄2×3 ×5⁄16 L5 ×31⁄2×5⁄16 L5×31⁄2 ×3⁄8 L6 ×4 ×3⁄8 L5×3 ×1⁄2
26.1 27.3 26.5 27.9 29.4 31.1 33.0 36.9
7.65 8.02 7.78 8.18 8.65 9.14 9.70 10.84
164 170 167 173 180 186 192 202
33.2 35.8 34.4 37.2 40.2 43.4 46.6 53.2
23.2 23.5 23.4 23.6 23.9 24.1 24.3 24.7
4.63 4.61 4.63 4.60 4.56 4.51 4.45 4.32
4.94 4.75 4.86 4.66 4.47 4.29 4.12 3.80
31.4 32.2 31.8 32.6 33.5 34.2 35.3 36.7
3.23 2.80 3.01 2.67 2.53 2.25 2.11 1.68
C12×25
L31⁄2×3 ×1⁄4 L5×31⁄2 ×5⁄16 L4 ×3 ×1⁄4 L5×3 ×5⁄16 L5 ×31⁄2×5⁄16 L5×31⁄2 ×3⁄8 L6 ×4 ×3⁄8 L5×3 ×1⁄2
30.4 31.6 30.8 32.2 33.7 35.4 37.3 41.2
8.91 9.28 9.04 9.44 9.91 10.40 10.96 12.10
180 187 183 190 197 204 211 223
35.4 38.0 36.6 39.3 42.3 45.4 48.7 55.3
26.1 26.4 26.3 26.6 26.9 27.2 27.5 28.0
4.50 4.49 4.50 4.49 4.46 4.43 4.39 4.29
5.09 4.92 5.02 4.84 4.67 4.49 4.33 4.03
35.8 36.8 36.3 37.3 38.3 39.3 40.4 42.2
3.98 3.50 3.82 3.30 3.05 2.77 2.65 2.20
C15×33.9
L4 ×3 ×1⁄4 L5×3 ×5⁄16 L5 ×31⁄2×5⁄16 L5×31⁄2 ×3⁄8 L6 ×4 ×3⁄8 L5×3 ×1⁄2
39.7 41.1 42.6 44.3 46.2 50.1
11.65 12.05 12.52 13.01 13.57 14.71
383 395 408 421 434 458
58.7 62.4 66.5 70.8 75.4 84.8
45.1 45.6 46.1 46.5 46.9 47.7
5.73 5.73 5.71 5.69 5.65 5.58
6.52 6.33 6.14 5.94 5.76 5.40
60.1 61.8 63.4 64.8 66.2 68.6
5.39 4.89 4.30 3.69 3.48 2.92
Channel
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
COMBINATION SECTIONS
1 - 117
COMBINATION SECTIONS Channels and angles Properties of sections
Y
y
2
X
X
Long leg of angle turned out
y , yp 1
x1 xp
x2 Y
Axis Y-Y
S1 = I / x1
I
3
3
r
x1
Z
xp 3
in.
in.
in.
in.
in.
in.
C12×20.7
L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4 L4×3 ×5⁄16 L5 ×31⁄2×5⁄16 L31⁄2×3 ×3⁄8 L6 ×4 ×3⁄8 L4×3 ×1⁄2
9.5 10.7 11.6 13.2 19.9 22.5 33.2 40.6
2.5 2.8 2.7 3.2 40 4.6 5.8 7.3
3.7 4.0 4.4 4.8 6.8 7.5 10.3 11.9
1.12 1.16 1.22 1.27 1.52 1.57 1.85 1.93
3.84 3.77 4.28 4.20 5.02 4.93 5.72 5.52
5.45 5.94 5.94 6.56 8.06 8.97 11.1 13.7
3.69 3.67 4.18 4.16 5.15 5.13 6.10 6.05
C12×25
L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4 L4×3 ×5⁄16 L5 ×31⁄2×5⁄16 L31⁄2×3 ×3⁄8 L6 ×4 ×3⁄8 L4×3 ×1⁄2
10.2 11.4 12.3 13.9 20.8 23.5 34.5 42.3
2.6 3.0 2.8 3.3 4.1 4.7 5.9 7.5
3.8 4.2 4.5 5.0 7.0 7.7 10.7 12.4
1.07 1.11 1.17 1.22 1.45 1.50 1.77 1.87
3.87 3.81 4.32 4.25 5.09 5.00 5.81 5.63
5.88 6.40 6.38 7.02 8.54 9.48 11.7 14.3
3.74 3.72 4.23 4.22 5.20 5.18 6.15 6.11
C15×33.9
L4 ×3 ×1⁄4 L4×3 ×5⁄16 L5 ×31⁄2×5⁄16 L31⁄2×3 ×3⁄8 L6 ×4 ×3⁄8 L4×3 ×1⁄2
16.8 18.7 26.2 29.3 41.3 50.3
3.7 4.2 4.9 5.6 6.8 8.5
5.8 6.3 8.5 9.2 12.4 14.3
1.20 1.25 1.45 1.50 1.75 1.85
4.49 4.43 5.30 5.23 6.06 5.89
8.82 9.47 11.0 12.0 14.2 16.9
4.27 4.26 5.24 5.23 6.21 6.17
Channel
Angle
in.
4
S2 = I / x2
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 118
DIMENSIONS AND PROPERTIES
COMBINATION SECTIONS Channels and angles Properties of sections
Y
y
2
X
X
y , yp
1
1
x1 xp
Short leg of angle turned out
2
x2 Y
Total Weight per ft
Total Area 2
3
in.
S2 = I / y2 3
in.
r
y1
Z
yp 3
in.
in.
in.
in.
L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16
12.7 13.1 14.0 16.4 18.0
3.71 3.84 4.09 4.80 5.27
6.0 6.1 6.4 7.5 7.7
5.9 6.2 6.2 6.4 6.8
2.61 2.68 2.63 2.55 2.56
4.21 4.56 4.46 4.16 4.45
7.86 8.23 8.32 8.77 9.32
2.79 3.25 3.18 3.00 3.46
C 7×9.8
L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16
14.3 14.7 15.6 18.0 19.6
4.18 4.31 4.56 5.27 5.74
8.0 8.0 8.5 10.0 10.3
7.8 8.2 8.2 8.5 8.9
3.00 3.07 3.03 2.95 2.96
4.70 5.05 4.93 4.60 4.87
10.5 10.9 1 1.0 11.6 12.2
2.95 3.38 3.29 3.11 3.50
C 8×11.5
L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16
16.0 16.4 17.3 19.7 21.3
4.69 4.82 5.07 5.78 6.25
10.4 10.4 10.9 12.9 13.3
10.2 10.6 10.6 11.0 11.4
3.39 3.45 3.42 3.36 3.36
5.20 5.55 5.42 5.06 5.31
13.7 14.2 14.3 14.9 15.6
3.52 3.73 3.42 3.21 3.61
C 9×13.4
L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16
17.9 18.3 19.2 21.6 23.2
5.25 5.38 5.63 6.34 6.81
13.1 13.1 13.8 16.2 16.7
12.9 13.4 13.5 13.9 14.4
3.78 3.84 3.81 3.76 3.77
5.71 6.07 5.93 5.54 5.78
17.4 18.0 18.3 19.0 19.7
4.18 4.42 3.88 3.32 3.71
C10×15.3
L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16
19.8 20.2 21.1 23.5 25.1
5.80 5.93 6.18 6.89 7.36
16.2 16.1 17.0 19.9 20.5
16.0 16.5 16.6 17.1 17.7
4.17 4.22 4.20 4.17 4.18
6.22 6.58 6.43 6.02 6.25
21.4 22.1 22.5 23.5 24.2
4.77 5.01 4.48 3.44 3.81
C12×20.7
L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16
25.2 25.6 26.5 28.9 30.5
7.40 7.53 7.78 8.49 8.96
24.3 24.0 25.3 29.2 30.1
24.7 25.3 25.5 26.3 27.1
4.90 4.95 4.95 4.94 4.97
7.32 7.69 7.54 7.11 7.33
32.6 33.4 34.3 36.4 37.5
6.17 6.45 6.01 4.74 4.41
C15×33.9
L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16
38.8 39.7 42.1 43.7
11.40 11.65 12.36 12.83
42.7 44.5 50.1 51.4
47.2 47.7 49.1 50.3
5.95 5.96 6.01 6.05
9.45 9.31 8.91 9.15
61.1 62.5 66.5 69.0
8.70 8.39 7.50 7.41
Angle
in.
S1 = I / y1
C 6×8.2
Channel
lb
Axis X-X
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
COMBINATION SECTIONS
1 - 119
COMBINATION SECTIONS Channels and angles Properties of sections
Y
y
2
X
Short leg of angle turned out
X
y , yp
1
1
x1 xp
2
x2 Y
Axis Y-Y
S1 = I / x1
r
x1
Z
xp 3
in.
in.
in.
in.
L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16
2.4 2.8 3.8 6.0 8.4
4.4 4.6 6.6 9.3 12.1
1.22 1.26 1.64 2.05 2.47
2.25 2.18 2.85 3.33 3.82
3.70 4.01 5.46 8.29 11.3
2.65 2.59 3.46 4.12 4.84
C 7×9.8
L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16
2.6 2.9 3.9 6.1 8.6
5.0 5.2 7.5 10.5 13.6
1.19 1.23 1.60 2.01 2.44
2.32 2.25 2.95 3.47 3.98
4.03 4.35 5.82 8.71 11.8
2.72 2.67 3.55 4.24 4.99
C 8×11.5
L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16
2.7 3.0 4.0 6.3 8.7
5.6 5.8 8.3 11.7 15.2
1.16 1.20 1.55 1.97 2.40
2.37 2.31 3.03 3.58 4 13
4.40 4.73 6.21 9.16 12.3
2.78 2.73 3.62 4.34 5.12
C 9×13.4
L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16
2.8 3.2 4.2 6.4 8.9
6.2 6.5 9.2 12.9 16.9
1.14 1.18 1.51 1.92 2.36
2.40 2.35 3.10 3.68 4.26
4.81 5.15 6.65 9.66 12.8
2.84 2.79 3.70 4.43 5.23
C10×15.3
L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16
3.0 3.4 4.3 6.5 9.0
6.8 7.1 10.0 14.0 18.3
1.12 1.16 1.48 1.88 2.31
2.42 2.37 3.15 3.76 4.36
5.25 5.59 7.10 10.1 13.3
2.88 2.84 3.74 4.49 5.31
C12×20.7
L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16
3.6 4.0 4.7 6.9 9.3
8.6 8.9 12.2 17.0 22.4
1.10 1.13 1.40 1.78 2 19
2.47 2.43 3.25 3.92 4.59
6.47 6.82 8.37 11.5 14.8
3.01 2.97 3.89 4.67 5.52
C15×33.9
L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16
5.6 5.9 7.8 10.2
13.5 17.2 23.4 30.7
1.10 1.30 1.61 1.97
2.48 3.35 4.12 4.88
9.54 11.1 14.5 18.0
3.12 4.11 5.02 5.90
Angle
in.
3
C 6×8.2
Channel
in.
3
S2 = I / x2
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 120
DIMENSIONS AND PROPERTIES
STEEL PIPE AND STRUCTURAL TUBING General
When designing and specifying steel pipe or tubing as compression members, refer to comments in the notes for Columns, Steel Pipe, and Structural Tubing, in Part 3. For standard mill practices and tolerances, refer to page 1-183. For material specifications and availability, see Tables 1-4 through 1-6, Part 1. Steel Pipe
The Tables of Dimensions and Properties of Steel Pipe (unfilled) list a selected range of sizes of standard, extra strong, and double-extra strong pipe. For a complete range of sizes manufactured, refer to catalogs of the manufacturers or to the American Institute for Hollow Structural Sections (AIHSS). Structural Tubing
The Tables of Dimensions and Properties of Square and Rectangular Structural Tubing (unfilled) list a selected range of frequently used sizes. For dimensions and properties of other sizes, refer to catalogs from the manufacturers or AIHSS. The tables are based on an outside corner radius equal to two times the specified wall thickness. Material specifications stipulate that the outside corner radius may vary up to three times the specified wall thickness. This variation should be considered in those details where a close match or fit is important.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STEEL PIPE AND STRUCTURAL TUBING
1 - 121
PIPE Dimensions and properties Dimensions
Weight Nominal Outside Inside Wall per ft lbs Diameter Diameter Diameter Thickness Plain Ends in. in. in. in.
Properties Area
I
S
r
J
Z
in.2
in.4
in.3
in.
in.4
in.3
0.041 0.071 0.133 0.235 0.326 0.561 1.06 1.72 2.39 3.21 5.45 8.50 16.8 29.9 43.8
0.261 0.334 0.421 0.540 0.623 0.787 0.947 1.16 1.34 1.51 1.88 2.25 2.94 3.67 4.38
0.034 0.074 0.175 0.389 0.620 1.33 3.06 6.03 9.58 14.5 30.3 56.3 145 321 559
0.059 0.100 0.187 0.324 0.448 0.761 1.45 2.33 3.22 4.31 7.27 11.2 22.2 39.4 57.4
0.048 0.085 0.161 0.291 0.412 0.731 1.34 2.23 3.14 4.27 7.43 12.2 24.5 39.4 56.7
0.250 0.321 0.407 0.524 0.605 0.766 0.924 1.14 1.31 1.48 1.84 2.19 2.88 3.63 4.33
0.040 0.090 0.211 0.484 0.782 1.74 3.85 8.13 12.6 19.2 41.3 81.0 211 424 723
0.072 0.125 0.233 0.414 0.581 1.02 1.87 3.08 4.32 5.85 10.1 16.6 33.0 52.6 75.1
1.10 2.00 3.42 6.79 12.1 20.0 37.6
0.703 0.844 1.05 1.37 1.72 2.06 2.76
2.62 5.74 12.0 30.6 67.3 133 324
1.67 3.04 5.12 9.97 17.5 28.9 52.8
Standard Weight 1⁄ 2 3⁄ 4
0.840 1.050 1.315 1.660 1.900 2.375 2.875 3.500 4.000 4.500 5.563 6.625 8.625 10.750 12.750
0.622 0.824 1.049 1.380 1.610 2.067 2.469 3.068 3.548 4.026 5.047 6.065 7.981 10.020 12.000
0.109 0.113 0.133 0.140 0.145 0.154 0.203 0.216 0.226 0.237 0.258 0.280 0.322 0.365 0.375
0.85 1.13 1.68 2.27 2.72 3.65 5.79 7.58 9.11 10.79 14.62 18.97 28.55 40.48 49.56
1 11⁄4 11⁄2 2 21⁄2 3 31⁄2 4 5 6 8 10 12
0.840 1.050 1.315 1.660 1.900 2.375 2.875 3.500 4.000 4.500 5.563 6.625 8.625 10.750 12.750
0.546 0.742 0.957 1.278 1.500 1.939 2.323 2.900 3.364 3.826 4.813 5.761 7.625 9.750 11.750
0.147 0.154 0.179 0.191 0.200 0.218 0.276 0.300 0.318 0.337 0.375 0.432 0.500 0.500 0.500
1.09 1.47 2.17 3.00 3.63 5.02 7.66 10.25 12.50 14.98 20.78 28.57 43.39 54.74 65.42
2 21⁄2 3 4 5 6 8
2.375 2.875 3.500 4.500 5.563 6.625 8.625
1.503 1.771 2.300 3.152 4.063 4.897 6.875
0.436 0.552 0.600 0.674 0.750 0.864 0.875
1 11⁄4 11⁄2 2 21⁄2 3 31⁄2 4 5 6 8 10 12
0.250 0.333 0.494 0.669 0.799 1.07 1.70 2.23 2.68 3.17 4.30 5.58 8.40 11.9 14.6
0.017 0.037 0.087 0.195 0.310 0.666 1.53 3.02 4.79 7.23 15.2 28.1 72.5 161 279
Extra Strong 1⁄ 2 3⁄ 4
0.320 0.433 0.639 0.881 1.07 1.48 2.25 3.02 3.68 4.41 6.11 8.40 12.8 16.1 19.2
0.020 0.045 0.106 0.242 0.391 0.868 1.92 3.89 6.28 9.61 20.7 40.5 106 212 362
Double-Extra Strong 9.03 13.69 18.58 27.54 38.59 53.16 72.42
2.66 4.03 5.47 8.10 11.3 15.6 21.3
1.31 2.87 5.99 15.3 33.6 66.3 162
The listed sections are available in conformance with ASTM Specification A53 Grade B or A501. Other sections are made to these specifications. Consult with pipe manufacturers or distributors for availability.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 122
DIMENSIONS AND PROPERTIES
STRUCTURAL TUBING Square Dimensions and properties Dimensions
Properties**
Nominal* Size
Wall Thickness
Weight per ft
Area
I
S
r
J
Z
in.
in.
lb
in.2
in.4
in.3
in.
in.4
in.3
0.6250
5⁄ 8
246.47
72.4
10300
690
12.0
16000
794
28×28
0.6250
5⁄ 8
229.45
67.4
8360
597
11.1
13000
689
26×26
0.6250
5⁄ 8
212.44
62.4
6650
511
10.3
10400
591
24×24 24×24 24×24
0.6250 0.5000 0.3750
5⁄ 8 1⁄ 2 3⁄ 8
195.43 157.74 119.35
57.4 46.4 35.1
5180 4240 3250
432 353 270
9.50 9.56 9.62
8100 6570 4990
500 407 310
22×22 22×22 22×22
0.6250 0.5000 0.3750
5⁄ 8 1⁄ 2 3⁄ 8
178.41 144.13 109.15
52.4 42.4 32.1
3950 3240 2490
359 294 226
8.68 8.74 8.80
6200 5030 3830
418 340 259
20×20 20×20 20×20
0.6250 0.5000 0.3750
5⁄ 8 1⁄ 2 3⁄ 8
161.40 130.52 98.94
47.4 38.4 29.1
2940 2410 1850
294 241 185
7.87 7.93 7.99
4620 3760 2870
342 279 213
18×18 18×18 18×18
0.6250 0.5000 0.3750
5⁄ 8 1⁄ 2 3⁄ 8
144.39 116.91 88.73
42.4 34.4 26.1
2110 1740 1340
234 193 149
7.05 7.11 7.17
3340 2720 2080
274 224 172
30×30
*Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STEEL PIPE AND STRUCTURAL TUBING
1 - 123
STRUCTURAL TUBING Square Dimensions and properties Dimensions
Properties**
Nominal* Size
Wall Thickness
Weight per ft
Area
I
S
r
J
Z
in.
in.
lb
in.2
in.4
in.3
in.
in.4
in.3
127.37 103.30 78.52 65.87
37.4 30.4 23.1 19.4
1450 1200 931 789
182 150 116 98.6
6.23 6.29 6.35 6.38
2320 1890 1450 1220
214 175 134 113
110.36 89.68 68.31 57.36
32.4 26.4 20.1 16.9
952 791 615 522
136 113 87.9 74.6
5.42 5.48 5.54 5.57
1530 1250 963 812
161 132 102 86.1
93.34 76.07 58.10 48.86 39.43
27.4 22.4 17.1 14.4 11.6
580 485 380 324 265
96.7 80.9 63.4 54.0 44.1
4.60 4.66 4.72 4.75 4.78
943 777 599 506 410
116 95.4 73.9 62.6 50.8
76.33 62.46 47.90 40.35 32.63 24.73
22.4 18.4 14.1 11.9 9.59 7.27
321 271 214 183 151 116
64.2 54.2 42.9 36.7 30.1 23.2
3.78 3.84 3.90 3.93 3.96 3.99
529 439 341 289 235 179
77.6 64.6 50.4 42.8 34.9 26.6
16×16
14×14
12×12
10×10
0.6250 0.5000 0.3750 0.3125 0.6250 0.5000 0.3750 0.3125 0.6250 0.5000 0.3750 0.3125 0.2500 0.6250 0.5000 0.3750 0.3125 0.2500 0.1875
5⁄ 1⁄ 3⁄
8 2
8 5⁄ 16 5⁄ 1⁄
8 2
3⁄ 8 5⁄ 16 5⁄ 1⁄
8 2
3⁄ 8 5⁄ 16 1⁄ 4 5⁄ 1⁄ 3⁄
8 2
8 5⁄ 16 1⁄ 4 3⁄ 16
*Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 124
DIMENSIONS AND PROPERTIES
STRUCTURAL TUBING Square Dimensions and properties Dimensions
Properties**
Nominal* Size
Wall Thickness
Weight per ft
Area
I
S
r
J
Z
in.
in.
lb
in.2
in.4
in.3
in.
in.4
in.3
8×8
0.6250 0.5000 0.3750 0.3125 0.2500 0.1875
5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
59.32 48.85 37.69 31.84 25.82 19.63
17.4 14.4 11.1 9.36 7.59 5.77
153 131 106 90.9 75.1 58.2
38.3 32.9 26.4 22.7 18.8 14.6
2.96 3.03 3.09 3.12 3.15 3.18
258 217 170 145 118 90.6
47.2 39.7 31.3 26.7 21.9 16.8
7×7
0.6250 0.5000 0.3750 0.3125 0.2500 0.1875
5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
50.81 42.05 32.58 27.59 22.42 17.08
14.9 12.4 9.58 8.11 6.59 5.02
97.5 84.6 68.7 59.5 49.4 38.5
27.9 24.2 19.6 17.0 14.1 11.0
2.56 2.62 2.68 2.71 2.74 2.77
166 141 112 95.6 78.3 60.2
34.8 29.6 23.5 20.1 16.5 12.7
6×6
0.6250 0.5000 0.3750 0.3125 0.2500 0.1875 0.1250
5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
42.30 35.24 27.48 23.34 19.02 14.53 9.86
12.4 10.4 8.08 6.86 5.59 4.27 2.90
57.3 50.5 41.6 36.3 30.3 23.8 16.5
19.1 16.8 13.9 12.1 10.1 7.93 5.52
2.15 2.21 2.27 2.30 2.33 2.36 2.39
99.5 85.6 68.5 58.9 48.5 37.5 25.7
24.3 20.9 16.8 14.4 11.9 9.24 6.35
51⁄2×51⁄2
0.3750 0.3125 0.2500 0.1875 0.1250
3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
24.93 21.21 17.32 13.25 9.01
7.33 6.23 5.09 3.89 2.65
31.2 27.4 23.0 18.1 12.6
11.4 9.95 8.36 6.58 4.60
2.07 2.10 2.13 2.16 2.19
51.9 44.8 37.0 28.6 19.7
13.8 12.0 9.91 7.70 5.31
5×5
0.5000 0.3750 0.3125 0.2500 0.1875 0.1250
1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
28.43 22.37 19.08 15.62 11.97 8.16
8.36 6.58 5.61 4.59 3.52 2.40
27.0 22.8 20.1 16.9 13.4 9.41
10.8 9.11 8.02 6.78 5.36 3.77
1.80 1.86 1.89 1.92 1.95 1.98
46.8 38.2 33.1 27.4 21.3 14.7
13.7 11.2 9.70 8.07 6.29 4.36
*Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STEEL PIPE AND STRUCTURAL TUBING
1 - 125
STRUCTURAL TUBING Square Dimensions and properties Dimensions
Properties**
Nominal* Size
Wall Thickness
Weight per ft
Area
I
S
r
J
Z
in.
in.
lb
in.2
in.4
in.3
in.
in.4
in.3
41⁄2×41⁄2
0.3750 0.3125 0.2500 0.1875 0.1250
3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
19.82 16.96 13.91 10.70 7.31
5.83 4.98 4.09 3.14 2.15
16.0 14.2 12.1 9.60 6.78
7.10 6.30 5.36 4.27 3.02
1.66 1.69 1.72 1.75 1.78
27.1 23.6 19.7 15.4 10.6
8.81 7.68 6.43 5.03 3.50
4×4
0.5000 0.3750 0.3125 0.2500 0.1875 0.1250
1⁄
5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
21.63 17.27 14.83 12.21 9.42 6.46
6.36 5.08 4.36 3.59 2.77 1.90
12.3 10.7 9.58 8.22 6.59 4.70
6.13 5.35 4.79 4.11 3.30 2.35
1.39 1.45 1.48 1.51 1.54 1.57
21.8 18.4 16.1 13.5 10.6 7.40
8.02 6.72 5.90 4.97 3.91 2.74
31⁄2×31⁄2
0.3125 0.2500 0.1875 0.1250
5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
12.70 10.51 8.15 5.61
3.73 3.09 2.39 1.65
6.09 5.29 4.29 3.09
3.48 3.02 2.45 1.76
1.28 1.31 1.34 1.37
10.4 8.82 6.99 4.90
4.35 3.69 2.93 2.07
3×3
0.3125 0.2500 0.1875 0.1250
5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
10.58 8.81 6.87 4.75
3.11 2.59 2.02 1.40
3.58 3.16 2.60 1.90
2.39 2.10 1.73 1.26
1.07 1.10 1.13 1.16
6.22 5.35 4.28 3.03
3.04 2.61 2.10 1.49
21⁄2×21⁄2
0.3125 0.2500 0.1875 0.1250
5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
8.45 7.11 5.59 3.90
2.48 2.09 1.64 1.15
1.87 1.69 1.42 1.06
1.50 1.35 1.14 0.847
0.868 0.899 0.930 0.961
3.32 2.92 2.38 1.71
1.96 1.71 1.40 1.01
2×2
0.3125 0.2500 0.1875 0.1250
5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
6.32 5.41 4.32 3.05
1.86 1.59 1.27 0.897
0.815 0.766 0.668 0.513
0.815 0.766 0.668 0.513
0.662 0.694 0.726 0.756
1.49 1.36 1.15 0.846
1.11 1.00 0.840 0.621
11⁄2×11⁄2
0.1875
3⁄ 16
3.04
0.894
0.242
0.323
0.521
0.431
0.423
3⁄
2 8
*Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 126
DIMENSIONS AND PROPERTIES
Y
X
X
STRUCTURAL TUBING Rectangular Dimensions and properties
Y
Dimensions
Properties**
Nominal* Wall Weight Size Thickness per ft Area in.
in.
2
X-X Axis
S
I 4
Z 3
Y-Y Axis
r 3
S
I 4
Z 3
3
r
J
lb
in.
in.
in.
in.
in.
in.
in.
in.
in.
in.4
178.16 134.67 112.66
52.4 39.6 33.1
7110 474 5430 362 4570 305
555 422 354
11.7 11.7 11.7
5070 3870 3260
422 323 272
477 363 304
9.84 9.89 9.92
9170 6960 5830
30×24
0.5000 0.3750 0.3125
1⁄ 2 3⁄ 8 5⁄ 16
28×24
0.5000 0.3750 0.3125
1⁄ 2 3⁄ 8 5⁄ 16
171.35 129.56 108.41
50.4 38.1 31.9
6050 432 4630 331 3890 278
503 383 321
11.0 11.0 11.1
4790 3660 3080
399 305 257
454 345 290
9.75 9.81 9.84
8280 6290 5270
26×24
0.5000 0.3750 0.3125
1⁄ 2 3⁄ 8 5⁄ 16
164.55 124.46 104.15
48.4 36.6 30.6
5100 392 3900 300 3280 253
454 345 290
10.3 10.3 10.4
4510 3460 2910
376 288 242
430 327 275
9.66 9.72 9.75
7410 5630 4720
24×22
0.5000 0.3750 0.3125
1⁄ 2 3⁄ 8 5⁄ 16
150.93 114.25 95.64
44.4 33.6 28.1
3960 330 3040 253 2560 213
383 292 245
9.45 3470 9.51 2660 9.54 2240
315 242 204
361 275 231
8.84 8.90 8.93
5740 4370 3660
22×20
0.5000 0.3750 0.3125
1⁄ 2 3⁄ 8 5⁄ 16
137.32 104.04 87.14
40.4 30.6 25.6
3010 273 2310 210 1950 177
318 243 204
8.63 2600 8.69 2000 8.72 1690
260 200 169
298 228 192
8.03 8.09 8.12
4350 3310 2780
20×18
0.5000 0.3750 0.3125
1⁄ 2 3⁄ 8 5⁄ 16
123.71 93.83 78.63
36.4 27.6 23.1
2220 222 1710 171 1440 144
259 198 167
7.81 1890 7.88 1460 7.91 1230
210 162 137
242 185 155
7.21 7.27 7.30
3190 2440 2050
20×12
0.5000 0.3750 0.3125
1⁄ 2 3⁄ 8 5⁄ 16
103.30 78.52 65.87
30.4 23.1 19.4
1650 165 1280 128 1080 108
201 154 130
7.37 7.45 7.47
750 583 495
125 141 97.2 109 82.5 91.8
4.97 5.03 5.06
1650 1270 1070
20×8
0.5000 0.3750 0.3125
1⁄ 2 3⁄ 8 5⁄ 16
89.68 68.31 57.36
26.4 20.1 16.9
1270 127 162 988 98.8 125 838 83.8 105
6.94 7.02 7.05
300 236 202
20×4
0.5000 0.3750 0.3125
1⁄ 2 3⁄ 8 5⁄ 16
76.07 58.10 48.86
22.4 17.1 14.4
889 699 596
88.9 123 69.9 95.3 59.6 80.8
6.31 6.40 6.44
61.6 50.3 43.7
75.1 59.1 50.4
84.7 65.6 55.6
3.38 3.43 3.46
806 625 529
30.8 25.1 21.8
36.0 28.5 24.3
1.66 1.72 1.74
205 165 143
*Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STEEL PIPE AND STRUCTURAL TUBING
1 - 127
STRUCTURAL TUBING Rectangular Dimensions and properties
Y
X
X
Y
Dimensions
Properties**
Nominal* Wall Weight Size Thickness per ft Area in.
in.
lb
in.2
X-X Axis
Y-Y Axis
I
S
Z
r
I
S
Z
r
J
in.4
in.3
in.3
in.
in.4
in.3
in.3
in.
in.4
6.71 6.78 6.81
684 533 452
114 130 88.8 100 75.3 84.5
4.91 4.97 5.00
1420 1090 920
53.9 42.1 35.8 29.2
2.52 2.57 2.60 2.63
410 322 274 224
103 118 80.3 91.3 68.2 77.2
4.84 4.90 4.93
1200 922 777
18×12
0.5000 0.3750 0.3125
1⁄ 2 3⁄ 8 5⁄ 16
96.49 73.42 61.62
28.4 21.6 18.1
18×6
0.5000 0.3750 0.3125 0.2500
1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4
76.07 58.10 48.86 39.43
22.4 17.1 14.4 11.6
818 641 546 447
90.9 119 71.3 92.2 60.7 78.1 49.6 63.5
6.05 6.13 6.17 6.21
141 113 97.0 80.0
16×12
0.5000 0.3750 0.3125
1⁄ 2 3⁄ 8 5⁄ 16
89.68 68.31 57.36
26.4 20.1 16.9
962 748 635
120 144 93.5 111 79.4 93.8
6.04 6.11 6.14
618 482 409
16×8
0.5000 0.3750 0.3125
1⁄ 2 3⁄ 8 5⁄ 16
76.07 58.10 48.86
22.4 17.1 14.4
722 565 481
90.2 113 70.6 87.6 60.1 74.2
5.68 5.75 5.79
244 193 165
16×4
0.5000 0.3750 0.3125
1⁄ 2 3⁄ 8 5⁄ 16
62.46 47.90 40.35
18.4 14.1 11.9
481 382 327
60.2 47.8 40.9
82.2 64.2 54.5
5.12 5.21 5.25
14×12
0.5000 0.3750
1⁄ 2 3⁄ 8
82.88 63.21
24.4 18.6
699 546
99.9 119 78.0 91.7
5.36 5.42
14×10
0.5000 0.3750 0.3125
1⁄ 2 3⁄ 8 5⁄ 16
76.07 58.10 48.86
22.4 17.1 14.4
608 476 405
86.9 105 68.0 81.5 57.9 69.0
14×6
0.6250 0.5000 0.3750 0.3125 0.2500
5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4
76.33 62.46 47.90 40.35 32.63
22.4 18.4 14.1 11.9 9.59
504 426 337 288 237
72.0 60.8 48.1 41.2 33.8
1280 142 172 991 110 132 840 93.3 111
94.0 78.3 61.1 51.9 42.3
47.2 37.6 32.3 26.7
61.0 48.2 41.2
69.7 54.2 45.9
3.30 3.36 3.39
599 465 394
24.6 20.2 17.6
29.0 23.0 19.7
1.64 1.69 1.72
157 127 110
552 431
91.9 107 71.9 82.6
4.76 4.82
983 757
5.22 5.28 5.31
361 284 242
72.3 56.8 48.4
83.6 64.8 54.9
4.02 4.08 4.11
730 564 477
4.74 4.82 4.89 4.93 4.97
130 111 89.1 76.7 63.4
43.3 37.1 29.7 25.6 21.1
51.2 42.9 33.6 28.7 23.4
2.41 2.46 2.52 2.54 2.57
352 296 233 199 162
49.3 40.4 35.1
*Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 128
DIMENSIONS AND PROPERTIES
Y
X
X
STRUCTURAL TUBING Rectangular Dimensions and properties
Y
Dimensions
Properties**
Nominal* Wall Weight Size Thickness per ft Area in.
in.
lb
in.2
X-X Axis
Y-Y Axis
I
S
Z
r
I
S
Z
r
J
in.4
in.3
in.3
in.
in.4
in.3
in.3
in.
in.4
49.0 43.1 35.4 30.9 25.8 20.2
24.5 21.5 17.7 15.4 12.9 10.1
30.0 25.5 20.3 17.4 14.3 11.1
1.57 1.62 1.68 1.71 1.73 1.76
154 134 108 93.1 77.0 59.7
14×4
0.6250 0.5000 0.3750 0.3125 0.2500 0.1875
5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
67.82 55.66 42.79 36.10 29.23 22.18
19.9 16.4 12.6 10.6 8.59 6.52
392 335 267 230 189 146
56.0 47.8 38.2 32.8 27.0 20.9
77.3 64.8 50.8 43.3 35.4 27.1
4.44 4.52 4.61 4.65 4.69 4.74
12×10
0.5000 0.3750 0.3125 0.2500
1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4
69.27 53.00 44.60 36.03
20.4 15.6 13.1 10.6
419 330 281 230
69.9 55.0 46.9 38.4
83.9 65.2 55.2 44.9
4.54 4.60 4.63 4.66
316 249 213 174
63.3 49.8 42.6 34.9
74.1 57.6 48.8 39.7
3.94 4.00 4.03 4.06
581 450 381 309
12×8
0.6250 0.5000 0.3750 0.3125 0.2500 0.1875
5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
76.33 62.46 47.90 40.35 32.63 24.73
22.4 18.4 14.1 11.9 9.59 7.27
418 353 279 239 196 151
69.7 58.9 46.5 39.8 32.6 25.1
87.1 72.4 56.5 47.9 39.1 29.8
4.32 4.39 4.45 4.49 4.52 4.55
221 188 149 128 105 81.1
55.3 46.9 37.3 32.0 26.3 20.3
65.6 54.7 42.7 36.3 29.6 22.7
3.14 3.20 3.26 3.28 3.31 3.34
481 401 312 265 216 165
12×6
0.6250 0.5000 0.3750 0.3125 0.2500 0.1875
5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
67.82 55.66 42.79 36.10 29.23 22.18
19.9 16.4 12.6 10.6 8.59 6.52
337 287 228 196 161 124
56.2 47.8 38.1 32.6 26.9 20.7
72.9 60.9 47.7 40.6 33.2 25.4
4.11 4.19 4.26 4.30 4.33 4.37
112 96.0 77.2 66.6 55.2 42.8
37.2 32.0 25.7 22.2 18.4 14.3
44.5 37.4 29.4 25.1 20.6 15.8
2.37 2.42 2.48 2.51 2.53 2.56
286 241 190 162 132 101
12×4
0.6250 0.5000 0.3750 0.3125 0.2500 0.1875
5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
59.32 48.85 37.69 31.84 25.82 19.63
17.4 14.4 11.1 9.36 7.59 5.77
257 221 178 153 127 98.2
42.8 36.8 29.6 25.5 21.1 16.4
58.6 49.4 39.0 33.3 27.3 21.0
3.84 3.92 4.01 4.05 4.09 4.13
41.8 36.9 30.5 26.6 22.3 17.5
20.9 18.5 15.2 13.3 11.1 8.75
25.8 22.0 17.6 15.1 12.5 9.63
1.55 1.60 1.66 1.69 1.71 1.74
127 110 89.0 76.9 63.6 49.3
12×3
0.3125 0.2500 0.1875
5⁄ 16 1⁄ 4 3⁄ 16
29.72 24.12 18.35
8.73 132 7.09 109 5.39 85.1
22.0 18.2 14.2
29.7 24.4 18.8
3.89 3.93 3.97
13.8 11.7 9.28
9.19 10.6 7.79 8.80 6.19 6.84
1.26 1.28 1.31
43.6 36.5 28.7
*Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STEEL PIPE AND STRUCTURAL TUBING
1 - 129
STRUCTURAL TUBING Rectangular Dimensions and properties
Y
X
X
Y
Dimensions
Properties**
Nominal* Wall Weight Size Thickness per ft Area in.
in.
X-X Axis
Y-Y Axis
I
S
Z
r
I
S
Z
r
J
lb
in.2
in.4
in.3
in.3
in.
in.4
in.3
in.3
in.
in.4
92.2 15.4 72.0 12.0
21.4 16.6
3.74 3.79
12×2
0.2500 0.1875
1⁄ 4 3⁄ 16
22.42 17.08
6.59 5.02
10×8
0.5000 0.3750 0.3125 0.2500 0.1875
1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
55.66 42.79 36.10 29.23 22.18
16.4 12.6 10.6 8.59 6.52
226 180 154 127 97.9
45.2 35.9 30.8 25.4 19.6
55.1 43.1 36.7 30.0 23.0
3.72 3.78 3.81 3.84 3.87
160 127 109 90.2 69.7
39.9 31.8 27.3 22.5 17.4
47.2 37.0 31.5 25.8 19.7
3.12 3.18 3.21 3.24 3.27
306 239 203 166 127
10×6
0.5000 0.3750 0.3125 0.2500 0.1875
1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
48.85 37.69 31.84 25.82 19.63
14.4 11.1 9.36 7.59 5.77
181 145 125 103 79.8
36.2 29.0 25.0 20.6 16.0
45.6 35.9 30.7 25.1 19.3
3.55 3.62 3.65 3.69 3.72
80.8 65.4 56.5 46.9 36.5
26.9 21.8 18.8 15.6 12.2
31.9 25.2 21.5 17.7 13.6
2.37 2.43 2.46 2.49 2.51
187 147 126 103 79.1
10×5
0.3750 0.3125 0.2500 0.1875
3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
35.13 29.72 24.12 18.35
10.3 128 8.73 110 7.09 91.2 5.39 70.8
25.5 22.0 18.2 14.2
32.3 27.6 22.7 17.4
3.51 3.55 3.59 3.62
42.9 37.2 31.1 24.3
17.1 14.9 12.4 9.71
19.9 17.0 14.0 10.8
2.04 2.07 2.09 2.12
107 91.5 75.2 58.0
10×4
0.5000 0.3750 0.3125 0.2500 0.1875
1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
42.05 32.58 27.59 22.42 17.08
12.4 136 9.58 110 8.11 95.5 6.59 79.3 5.02 61.7
27.1 22.0 19.1 15.9 12.3
36.1 28.7 24.6 20.2 15.6
3.31 3.39 3.43 3.47 3.51
30.8 25.5 22.4 18.8 14.8
15.4 12.8 11.2 9.39 7.39
18.5 14.9 12.8 10.6 8.20
1.58 1.63 1.66 1.69 1.72
86.9 70.4 60.8 50.4 39.1
10×3
0.3750 0.3125 0.2500 0.1875
3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
30.0 25.5 20.72 15.80
8.83 7.48 6.09 4.64
92.8 80.8 67.4 52.7
18.6 16.2 13.5 10.5
25.1 21.6 17.8 13.8
3.24 3.29 3.33 3.37
13.0 11.5 9.79 7.80
8.66 10.3 7.68 8.92 6.53 7.42 5.20 5.79
1.21 1.24 1.27 1.30
39.8 34.9 29.3 23.0
10×2
0.3750 0.3125 0.2500 0.1875
3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
27.48 23.34 19.02 14.53
8.08 6.86 5.59 4.27
75.4 15.1 66.1 13.2 55.5 11.1 43.7 8.74
21.5 18.5 15.4 11.9
3.06 3.10 3.15 3.20
4.85 4.42 3.85 3.14
4.85 4.42 3.85 3.14
0.775 0.802 0.830 0.858
16.5 14.9 12.8 10.3
4.62 3.76
4.62 3.76
5.38 0.837 4.24 0.865
6.05 5.33 4.50 3.56
*Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
15.9 12.8
1 - 130
DIMENSIONS AND PROPERTIES
Y
X
X
STRUCTURAL TUBING Rectangular Dimensions and properties
Y
Dimensions
Properties**
Nominal* Wall Weight Size Thickness per ft Area in.
in.
lb
in.2
X-X Axis
Y-Y Axis
I
S
Z
r
I
S
Z
r
J
in.4
in.3
in.3
in.
in.4
in.3
in.3
in.
in.4
8×6
0.5000 0.3750 0.3125 0.2500 0.1875
1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
42.05 32.58 27.59 22.42 17.08
12.4 103 9.58 83.7 8.11 72.4 6.59 60.1 5.02 46.8
25.8 20.9 18.1 15.0 11.7
32.2 25.6 21.9 18.0 13.9
2.89 2.96 2.99 3.02 3.05
65.7 53.5 46.4 38.6 30.1
21.9 17.8 15.5 12.9 10.0
26.4 21.0 18.0 14.8 11.4
2.31 2.36 2.39 2.42 2.45
135 107 91.3 74.9 57.6
8×4
0.6250 0.5000 0.3750 0.3125 0.2500 0.1875 0.1250
5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
42.30 35.24 27.48 23.34 19.02 14.53 9.86
12.4 10.4 8.08 6.86 5.59 4.27 2.90
21.3 18.8 15.5 13.5 11.3 8.83 6.14
28.8 24.7 19.9 17.1 14.1 11.0 7.53
2.62 2.69 2.77 2.80 2.84 2.88 2.91
27.4 24.6 20.6 18.1 15.3 12.0 8.45
13.7 12.3 10.3 9.05 7.63 6.02 4.23
17.3 15.0 12.2 10.5 8.72 6.77 4.67
1.49 1.54 1.60 1.62 1.65 1.68 1.71
73.2 64.1 52.2 45.2 37.5 29.1 20.0
8×3
0.5000 0.3750 0.3125 0.2500 0.1875 0.1250
1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
31.84 24.93 21.21 17.32 13.25 9.01
9.36 7.33 6.23 5.09 3.89 2.65
61.0 15.3 51.0 12.7 44.7 11.2 37.6 9.40 29.6 7.40 20.7 5.17
21.0 17.0 14.7 12.2 9.49 6.55
2.55 2.64 2.68 2.72 2.76 2.80
12.1 10.4 9.25 7.90 6.31 4.48
8.05 10.1 6.92 8.31 6.16 7.24 5.26 6.05 4.21 4.73 2.99 3.29
1.14 1.19 1.22 1.25 1.27 1.30
35.7 29.9 26.3 22.1 17.3 12.1
8×2
0.3750 0.3125 0.2500 0.1875 0.1250
3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
22.37 19.08 15.62 11.97 8.16
6.58 5.61 4.59 3.52 2.40
40.1 10.0 14.2 35.5 8.87 12.3 30.1 7.52 10.3 23.9 5.97 8.02 16.8 4.20 5.56
2.47 2.51 2.56 2.60 2.65
3.85 3.52 3.08 2.52 1.83
3.85 3.52 3.08 2.52 1.83
4.83 4.28 3.63 2.88 2.03
0.765 0.792 0.819 0.847 0.875
12.6 11.4 9.84 7.94 5.66
7×5
0.5000 0.3750 0.3125 0.2500 0.1875 0.1250
1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
35.24 27.48 23.34 19.02 14.53 9.86
10.4 8.08 6.86 5.59 4.27 2.90
63.5 52.2 45.5 38.0 29.8 20.7
23.1 18.5 15.9 13.2 10.2 7.00
2.48 2.54 2.58 2.61 2.64 2.67
37.2 30.8 26.9 22.6 17.7 12.4
14.9 12.3 10.8 9.04 7.10 4.95
18.2 14.6 12.6 10.4 8.10 5.58
1.90 1.95 1.98 2.01 2.04 2.07
79.9 64.2 55.3 45.6 35.3 24.2
7×4
0.3750 0.3125 0.2500 0.1875 0.1250
3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
24.93 21.21 17.32 13.25 9.01
7.33 6.23 5.09 3.89 2.65
44.0 12.6 16.0 38.5 11.0 13.8 32.3 9.23 11.5 25.4 7.26 8.91 17.7 5.07 6.15
2.45 2.49 2.52 2.55 2.59
18.1 16.0 13.5 10.7 7.51
9.06 10.8 7.98 9.36 6.75 7.78 5.34 6.06 3.76 4.19
1.57 1.60 1.63 1.66 1.68
43.3 37.5 31.2 24.2 16.7
85.1 75.1 61.9 53.9 45.1 35.3 24.6
18.1 14.9 13.0 10.9 8.50 5.91
*Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STEEL PIPE AND STRUCTURAL TUBING
1 - 131
STRUCTURAL TUBING Rectangular Dimensions and properties
Y
X
X
Y
Dimensions
Properties**
Nominal* Wall Weight Size Thickness per ft Area in.
in.
X-X Axis
Y-Y Axis
I
S
Z
r
I
S
Z
r
J
lb
in.2
in.4
in.3
in.3
in.
in.4
in.3
in.3
in.
in.4
7×3
0.3750 0.3125 0.2500 0.1875 0.1250
3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
22.37 19.08 15.62 11.97 8.16
6.58 5.61 4.59 3.52 2.40
35.7 31.5 26.6 21.1 14.8
10.2 13.5 9.00 11.8 7.61 9.79 6.02 7.63 4.22 5.29
2.33 2.37 2.41 2.45 2.48
9.08 8.11 6.95 5.57 3.96
6.05 5.41 4.63 3.71 2.64
7.32 6.40 5.36 4.20 2.93
1.18 1.20 1.23 1.26 1.29
25.1 22.0 18.5 14.6 10.2
6×4
0.5000 0.3750 0.3125 0.2500 0.1875 0.1250
1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
28.43 22.37 19.08 15.62 11.97 8.16
8.36 6.58 5.61 4.59 3.52 2.40
35.3 29.7 26.2 22.1 17.4 12.2
11.8 15.4 9.90 12.5 8.72 10.9 7.36 9.06 5.81 7.06 4.08 4.88
2.06 2.13 2.16 2.19 2.23 2.26
18.4 15.6 13.8 11.7 9.32 6.57
9.21 7.82 6.92 5.87 4.66 3.29
11.5 9.44 8.21 6.84 5.34 3.71
1.48 1.54 1.57 1.60 1.63 1.66
42.1 34.6 30.1 25.0 19.5 13.5
6×3
0.5000 0.3750 0.3125 0.2500 0.1875 0.1250
1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
25.03 19.82 16.96 13.91 10.70 7.31
7.36 5.83 4.98 4.09 3.14 2.15
27.7 23.8 21.1 17.9 14.3 10.1
9.25 12.6 7.92 10.4 7.03 9.11 5.98 7.62 4.76 5.97 3.36 4.15
1.94 2.02 2.06 2.09 2.13 2.17
8.91 7.78 6.98 6.00 4.83 3.45
5.94 5.19 4.65 4.00 3.22 2.30
7.59 6.34 5.56 4.67 3.68 2.57
1.10 1.16 1.18 1.21 1.24 1.27
23.9 20.3 17.9 15.1 11.9 8.27
6×2
0.3750 0.3125 0.2500 0.1875 0.1250
3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
17.27 14.83 12.21 9.42 6.46
5.08 4.36 3.59 2.77 1.90
17.8 16.0 13.8 11.1 7.92
5.94 5.34 4.60 3.70 2.64
8.33 7.33 6.18 4.88 3.42
1.87 1.92 1.96 2.00 2.04
2.84 2.62 2.31 1.90 1.39
2.84 2.62 2.31 1.90 1.39
3.61 3.22 2.75 2.20 1.56
0.748 0.775 0.802 0.829 0.857
8.72 7.94 6.88 5.56 3.98
5×4
0.3750 0.3125 0.2500 0.1875
3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16
19.82 16.96 13.91 10.70
5.83 4.98 4.09 3.14
18.7 16.6 14.1 11.2
7.50 6.65 5.65 4.49
9.44 8.24 6.89 5.39
1.79 1.83 1.86 1.89
13.2 11.7 9.98 7.96
6.58 5.85 4.99 3.98
8.08 7.05 5.90 4.63
1.50 1.53 1.56 1.59
26.3 22.9 19.1 14.9
5×3
0.5000 0.3750 0.3125 0.2500 0.1875 0.1250
1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
21.63 17.27 14.83 12.21 9.42 6.46
6.36 5.08 4.36 3.59 2.77 1.90
16.9 14.7 13.2 11.3 9.06 6.44
6.75 5.89 5.27 4.52 3.62 2.58
9.20 7.71 6.77 5.70 4.49 3.14
1.63 1.70 1.74 1.77 1.81 1.84
7.33 6.48 5.85 5.05 4.08 2.93
4.88 4.32 3.90 3.37 2.72 1.95
6.34 5.35 4.72 3.98 3.15 2.21
1.07 1.13 1.16 1.19 1.21 1.24
18.2 15.6 13.8 11.7 9.21 6.44
*Outside dimensions across flatsides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 132
DIMENSIONS AND PROPERTIES
Y
X
X
STRUCTURAL TUBING Rectangular Dimensions and properties
Y
Dimensions
Properties**
Nominal* Wall Weight Size Thickness per ft Area in.
in.
2
X-X Axis
S
I 4
Z 3
Y-Y Axis
r 3
S
I 4
Z 3
3
r
J
lb
in.
in.
in.
in.
in.
in.
in.
in.
in.
in.4
12.70 10.51 8.15 5.61
3.73 3.09 2.39 1.65
9.74 8.48 6.89 4.96
3.90 3.39 2.75 1.98
5.31 4.51 3.59 2.53
1.62 1.66 1.70 1.73
2.16 1.92 1.60 1.17
2.16 1.92 1.60 1.17
2.70 2.32 1.86 1.32
0.762 0.789 0.816 0.844
6.24 5.43 4.40 3.15
5×2
0.3125 0.2500 0.1875 0.1250
5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
4×3
0.3125 0.2500 0.1875 0.1250
5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
12.70 10.51 8.15 5.61
3.73 3.09 2.39 1.65
7.45 6.45 5.23 3.76
3.72 3.23 2.62 1.88
4.75 4.03 3.20 2.25
1.41 1.45 1.48 1.51
4.71 4.10 3.34 2.41
3.14 2.74 2.23 1.61
3.88 3.30 2.62 1.85
1.12 1.15 1.18 1.21
9.89 8.41 6.67 4.68
4×2
0.3750 0.3125 0.2500 0.1875 0.1250
3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
12.17 10.58 8.81 6.87 4.75
3.58 3.11 2.59 2.02 1.40
5.75 5.32 4.69 3.87 2.82
2.87 2.66 2.35 1.93 1.41
4.00 3.60 3.09 2.48 1.77
1.27 1.31 1.35 1.38 1.42
1.83 1.71 1.54 1.29 0.954
1.83 1.71 1.54 1.29 0.954
2.39 2.17 1.88 1.52 1.09
0.715 0.743 0.770 0.798 0.826
4.97 4.58 4.01 3.26 2.34
3×2
0.3125 0.2500 0.1875 0.1250
5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8
8.45 7.11 5.59 3.90
2.48 2.09 1.64 1.15
2.44 2.21 1.86 1.38
1.63 1.47 1.24 0.920
2.20 1.92 1.57 1.13
0.992 1.03 1.06 1.10
1.26 1.15 0.977 0.733
1.26 1.15 0.977 0.733
1.64 1.44 1.18 0.855
0.714 0.742 0.771 0.800
2.97 2.63 2.16 1.57
21⁄2×11⁄2
0.2500 0.1875
1⁄ 4 3⁄ 16
5.41 4.32
1.59 1.27
1.05 0.844 1.15 0.815 0.920 0.736 0.964 0.852
0.458 0.405
0.610 0.793 0.537 1.14 0.540 0.669 0.565 0.976
*Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
BARS AND PLATES
1 - 133
BARS AND PLATES Product Availability
Plates are readily available in seven of the structural steel specifications listed in Section A3.1 of the AISC LRFD Specification. These are: ASTM A36, A242, A529, A572, A588, A514, and A852. Bars are available in all of these steels except A514 and A852. Table 1-1 shows the availability of each steel in terms of plate thickness. The Manual user is referred to the discussion on p. 1-5, Selection of the Appropriate Structural Steel, for guidance in selection of both plate and structural shapes. Classification
Bars and plates are generally classified as follows: Bars: 6 in. or less in width, .203 in. and over in thickness. Over 6 in. to 8 in. in width, .230 in. and over in thickness. Plates: Over 8 in. to 48 in. in width, .230 in. and over in thickness. Over 48 in. in width, .180 in. and over in thickness. Bars
Bars are available in various widths, thicknesses, diameters, and lengths. The preferred practice is to specify widths in 1⁄4-in. increments and thickness and diameter in 1⁄8-in. increments. Plates
Defined according to rolling procedure: Sheared plates are rolled between horizontal rolls and trimmed (sheared or gas cut) on all edges. Universal (UM) plates are rolled between horizontal and vertical rolls and trimmed (sheared or gas cut) on ends only. Stripped plates are furnished to required widths by shearing or gas cutting from wider sheared plates. Sizes
Plate mills are located in various districts, but the sizes of plates produced differ greatly and the catalogs of individual mills should be consulted for detail data. The extreme width of UM plates currently rolled is 60 inches and for sheared plates it is 200 inches, but their availability together with limiting thickness and lengths should be checked with the mills before specifying. The preferred increments for width and thickness are: Widths:
Various. The catalogs of individual mills should be consulted to determine the most economical widths. Thickness: 1⁄32-in. increments up to 1⁄2-in. 1⁄ -in. increments over 1⁄ -in. to 1 in. 16 2 1⁄ -in. increments over 1 in. to 3 in. 8 1⁄ -in. increments over 3 in. 4 Ordering
Plate thickness may be specified in inches or by weight per square foot, but no decimal edge thickness can be assured by the latter method. Separate tolerance tables apply to each method. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 134
DIMENSIONS AND PROPERTIES
Table 1-7. Theoretical Weights of Rolled Floor Plates Gauge No.
Theoretical Weight per sq. ft lb
Nominal Thickness in.
18
2.40
1⁄ 8
16
3.00
3⁄
14 13 12
Nominal Thickness in.
Theoretical Weight per sq. ft, lb
6.16
1⁄ 2
21.47
8.71
9⁄ 16
24.02
3.75
1⁄ 4
11.26
5⁄ 8
26.58
4.50
5⁄
13.81
3⁄ 4
31.68
5.25
3⁄ 8
16.37
7⁄ 8
36.78
7⁄
18.92
1
41.89
16
16
16
Theoretical Weight per sq. ft, lb
Note: Thickness is measured near the edge of the plate, exclusive of raised pattern.
Invoicing
Standard practice is to invoice plates to the fabricator at theoretical weight at point of shipment. Permissible variations in weight are in accordance with the tables of ASTM Specification A6. All plates are invoiced at theoretical weight and, except as noted, are subject to the same weight variations which apply to rectangular plates. Odd shapes in most instances require gas cutting, for which gas cutting extras are applicable. All plates ordered gas cut for whatever reason, or beyond published shearing limits, take extras for gas cutting in addition to all other extras. Rolled steel bearing plates are often gas cut to prevent distortion due to shearing but would also take the regular extra for the thickness involved. Extras for thickness, width, length, cutting, quality and quantity, etc., which are added to the base price of plates, are subject to revision, and should be obtained by inquiry to the producer. The foregoing general statements are made as a guide toward economy in design. Floor Plates
Floor plates having raised patterns are available from several mills, each offering its own style of surface projections and in a variety of widths, thicknesses, and lengths. A maximum width of 96 inches and a maximum thickness of one inch are available, but availability of matching widths, thicknesses, and lengths should be checked with the producer. Floor plates are generally not specified to chemical composition limits or mechanical property requirements; a commercial grade of carbon steel is furnished. However, when strength or corrosion resistance is a consideration, raised pattern floor plates are procurable in any of the regular steel specifications. As in the case of plain plates, the individual manufacturers should be consulted for precise information. The nominal or ordered thickness is that of the flat plate, exclusive of the height or raised pattern. The usual weights are as shown in Table 1-7.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
BARS AND PLATES
1 - 135
SQUARE AND ROUND BARS Weight and area Weight lb per ft
Area Sq in.
Size in. 0
Weight lb per ft
Area Sq in.
Size in.
1⁄ 16 1⁄ 8 3⁄ 16
0.013 0.053 0.120
0.010 0.042 0.094
0.0039 0.0156 0.0352
0.0031 0.0123 0.0276
1⁄ 16 1⁄ 8 3⁄ 16
30.63 31.91 33.23 34.57
24.05 25.07 26.10 27.15
9.000 9.379 9.766 10.160
7.069 7.366 7.670 7.980
1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16
0.213 0.332 0.479 0.651
0.167 0.261 0.376 0.512
0.0625 0.0977 0.1406 0.1914
0.0491 0.0767 0.1104 0.1503
1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16
35.94 37.34 38.76 40.21
28.23 29.32 30.44 31.58
10.563 10.973 11.391 11.816
8.296 8.618 8.946 9.281
1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16
0.851 1.077 1.329 1.608
0.668 0.846 1.044 1.263
0.2500 0.3164 0.3906 0.4727
0.1964 0.2485 0.3068 0.3712
1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16
41.68 43.19 44.71 46.27
32.74 33.92 35.12 36.34
12.250 12.691 13.141 13.598
9.621 9.968 10.321 10.680
3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16
1.914 2.246 2.605 2.991
1.503 1.764 2.046 2.349
0.5625 0.6602 0.7656 0.8789
0.4418 0.5185 0.6013 0.6903
3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16
47.85 49.46 51.09 52.76
37.58 38.85 40.13 41.43
14.063 14.535 15.016 15.504
11.045 11.416 11.793 12.177
1⁄ 16 1⁄ 8 3⁄ 16
3.403 3.841 4.307 4.798
2.673 3.017 3.382 3.769
1.0000 1.1289 1.2656 1.4102
0.7854 0.8866 0.9940 1.1075
1⁄ 16 1⁄ 8 3⁄ 16
54.44 56.16 57.90 59.67
42.76 44.11 45.47 46.86
16.000 16.504 17.016 17.535
12.566 12.962 13.364 13.772
1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16
5.317 5.862 6.433 7.032
4.176 4.604 5.053 5.523
1.5625 1.7227 1.8906 2.0664
1.2272 1.3530 1.4849 1.6230
1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16
61.46 63.28 65.13 67.01
48.27 49.70 51.15 52.63
18.063 18.598 19.141 19.691
14.186 14.607 15.033 15.466
1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16
7.656 8.308 8.985 9.690
6.013 6.525 7.057 7.610
2.2500 2.4414 2.6406 2.8477
1.7672 1.9175 2.0739 2.2365
1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16
68.91 70.83 72.79 74.77
54.12 55.63 57.17 58.72
20.250 20.816 21.391 21.973
15.904 16.349 16.800 17.257
3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16
10.421 11.179 11.963 12.774
8.185 8.780 9.396 10.032
3.0625 3.2852 3.5156 3.7539
2.4053 2.5802 2.7612 2.9483
3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16
76.78 78.81 80.87 82.96
60.30 61.90 63.51 65.15
22.563 23.160 23.766 24.379
17.721 18.190 18.666 19.147
1⁄ 16 1⁄ 8 3⁄ 16
13.611 14.475 15.366 16.283
10.690 11.369 12.068 12.789
4.0000 4.2539 4.5156 4.7852
3.1416 3.3410 3.5466 3.7583
1⁄ 16 1⁄ 8 3⁄ 16
85.07 87.21 89.38 91.57
66.81 68.49 70.20 71.92
25.000 25.629 26.266 26.910
19.635 20.129 20.629 21.135
1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16
17.227 18.197 19.194 20.217
13.530 14.292 15.075 15.879
5.0625 5.3477 5.6406 5.9414
3.9761 4.2000 4.4301 4.6664
1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16
93.79 96.04 98.31 100.61
73.66 75.43 77.21 79.02
27.563 28.223 28.891 29.566
21.648 22.166 22.691 23.221
1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16
21.267 22.344 23.447 24.577
16.703 17.549 18.415 19.303
6.2500 6.5664 6.8906 7.2227
4.9087 5.1573 5.4119 5.6727
1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16
102.93 105.29 107.67 110.07
80.84 82.69 84.56 86.45
30.250 30.941 31.641 32.348
23.758 24.301 24.851 25.406
3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16
25.734 26.917 28.126 29.362
20.211 21.140 22.090 23.061
7.5625 7.9102 8.2656 8.6289
5.9396 6.2126 6.4918 6.7771
3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16
112.50 114.96 117.45 119.96
88.36 90.29 92.24 94.22
33.063 33.785 34.516 35.254
25.967 26.535 27.109 27.688
1
2
3
4
5
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 136
DIMENSIONS AND PROPERTIES
SQUARE AND ROUND BARS Weight and area Weight lb per ft
Area Sq in.
Size in. 6
Weight lb per ft
Area Sq in.
Size in.
1⁄ 16 1⁄ 8 3⁄ 16
122.50 125.07 127.66 130.28
96.21 98.23 100.26 102.32
36.000 36.754 37.516 38.285
28.274 28.867 29.465 30.069
1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16
132.92 135.59 138.29 141.02
104.40 106.49 108.61 110.75
39.063 39.848 40.641 41.441
1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16
143.77 146.55 149.35 152.18
112.91 115.10 117.30 119.52
3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16
155.04 157.92 160.83 163.77
1⁄ 16 1⁄ 8 3⁄ 16
275.63 279.47 283.33 287.23
216.48 219.49 222.53 225.59
81.000 82.129 83.266 84.410
63.617 64.504 65.397 66.296
30.680 31.296 31.919 32.548
1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16
291.15 295.10 299.07 303.07
228.67 231.77 234.89 238.03
85.563 86.723 87.891 89.066
67.201 68.112 69.029 69.953
42.250 43.066 43.891 44.723
33.183 33.824 34.472 35.125
1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16
307.10 311.15 315.24 319.34
241.20 244.38 247.59 250.81
90.250 91.441 92.641 93.848
70.882 71.818 72.760 73.708
121.77 124.03 126.32 128.63
45.563 46.410 47.266 48.129
35.785 36.451 37.122 37.800
3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16
323.48 327.64 331.82 336.04
254.06 257.33 260.61 263.92
95.063 96.285 97.516 98.754
74.662 75.622 76.589 77.561
1⁄ 16 1⁄ 8 3⁄ 16
166.74 169.73 172.74 175.79
130.95 133.30 135.67 138.06
49.000 49.879 50.766 51.660
38.485 39.175 39.871 40.574
1⁄ 16 1⁄ 8 3⁄ 16
340.28 344.54 348.84 353.16
267.25 270.61 273.98 277.37
100.000 101.254 102.516 103.785
78.540 79.525 80.516 81.513
1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16
178.86 181.96 185.08 188.23
140.48 142.91 145.36 147.84
52.563 53.473 54.391 55.316
41.283 41.997 42.718 43.446
1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16
357.50 361.88 366.28 370.70
280.78 284.22 287.67 291.15
105.063 106.348 107.641 108.941
82.516 83.525 84.541 85.563
1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16
191.41 194.61 197.84 201.10
150.33 152.85 155.38 157.94
56.250 57.191 58.141 59.098
44.179 44.918 45.664 46.415
1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16
375.16 379.64 384.14 388.67
294.65 298.17 301.70 305.26
110.250 111.566 112.891 114.223
86.590 87.624 88.664 89.710
3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16
204.38 207.69 211.03 214.39
160.52 163.12 165.74 168.38
60.063 61.035 62.016 63.004
47.173 47.937 48.707 49.483
3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16
393.23 397.82 402.43 407.07
308.85 312.45 316.07 319.71
115.563 116.910 118.266 119.629
90.763 91.821 92.886 93.957
1⁄ 16 1⁄ 8 3⁄ 16
217.78 221.19 224.64 228.11
171.04 173.73 176.43 179.15
64.000 65.004 66.016 67.035
50.266 51.054 51.849 52.649
1⁄ 16 1⁄ 8 3⁄ 16
411.74 416.43 421.15 425.89
323.38 327.06 330.77 334.50
121.000 122.379 123.766 125.160
95.033 96.116 97.206 98.301
1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16
231.60 235.12 238.67 242.25
181.90 184.67 187.45 190.26
68.063 69.098 70.141 71.191
53.456 54.269 55.088 55.914
1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16
430.66 435.46 440.29 445.14
338.24 342.01 345.80 349.61
126.563 127.973 129.391 130.816
99.402 100.510 101.623 102.743
1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16
245.85 249.48 253.13 256.82
193.09 195.94 198.81 201.70
72.250 73.316 74.391 75.473
56.745 57.583 58.426 59.276
1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16
450.02 454.92 459.85 464.81
353.44 357.30 361.17 365.06
132.250 133.691 135.141 136.598
103.869 105.001 106.139 107.284
3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16
260.53 264.26 268.02 271.81
204.62 207.55 210.50 213.48
76.563 77.660 78.766 79.879
60.132 60.994 61.863 62.737
3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16
469.80 474.81 479.84 484.91
368.98 372.91 376.87 380.85
138.063 139.535 141.016 142.504
108.434 109.591 110.754 111.923
490.00
384.85
144.000
113.098
7
8
9
10
11
12
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
BARS AND PLATES
1 - 137
AREA OF RECTANGULAR SECTIONS Square inches Width in.
Thickness, inches 3⁄ 16
1⁄ 4
5⁄ 16
3⁄ 8
7⁄ 16
1⁄ 2
9⁄ 16
5⁄ 8
11⁄ 16
3⁄ 4
13⁄ 16
1
0.047 0.093 0.141 0.188
0.063 0.125 0.188 0.250
0.078 0.156 0.234 0.313
0.094 0.188 0.281 0.375
0.109 0.219 0.328 0.438
0.125 0.250 0.375 0.500
0.141 0.281 0.422 0.563
0.156 0.313 0.469 0.625
0.172 0.344 0.516 0.688
0.188 0.375 0.563 0.75
0.203 0.406 0.609 0.813
0.219 0.438 0.656 0.875
0.234 0.469 0.703 0.938
0.250 0.500 0.750 1.00
11⁄4 11⁄2 13⁄4 2
0.234 0.281 0.328 0.375
0.313 0.375 0.438 0.500
0.391 0.469 0.547 0.625
0.469 0.563 0.656 0.750
0.547 0.656 0.766 0.875
0.625 0.750 0.875 1.00
0.703 0.844 0.984 1.13
0.781 0.938 1.09 1.25
0.859 1.03 1.20 1.38
0.938 1.13 1.31 1.50
1.02 1.22 1.42 1.63
1.09 1.31 1.53 1.75
1.17 1.41 1.64 1.88
1.25 1.50 1.75 2.00
21⁄4 21⁄2 23⁄4 3
0.422 0.469 0.516 0.563
0.563 0.625 0.688 0.750
0.703 0.781 0.859 0.938
0.844 0.938 1.03 1.13
0.984 1.09 1.20 1.31
1.13 1.25 1.38 1.50
1.27 1.41 1.55 1.69
1.41 1.56 1.72 1.88
1.55 1.72 1.89 2.06
1.69 1.88 2.06 2.25
1.83 2.03 2.23 2.44
1.97 2.19 2.41 2.63
2.11 2.34 2.58 2.81
2.25 2.50 2.75 3.00
31⁄4 31⁄2 33⁄4 4
0.609 0.656 0.703 0.750
0.813 0.875 0.938 1.00
1.02 1.09 1.17 1.25
1.22 1.31 1.41 1.50
1.42 1.53 1.64 1.75
1.63 1.75 1.88 2.00
1.83 1.97 2.11 2.25
2.03 2.19 2.34 2.50
2.23 2.41 2.58 2.75
2.44 2.63 2.81 3.00
2.64 2.84 3.05 3.25
2.84 3.06 3.28 3.50
3.05 3.28 3.52 3.75
3.25 3.50 3.75 4.00
41⁄4 41⁄2 43⁄4 5
0.797 0.844 0.891 0.938
1.06 1.13 1.19 1.25
1.33 1.41 1.48 1.56
1.59 1.69 1.78 1.88
1.86 1.97 2.08 2.19
2.13 2.25 2.38 2.50
2.39 2.53 2.67 2.81
2.66 2.81 2.97 3.13
2.92 3.09 3.27 3.44
3.19 3.38 3.56 3.75
3.45 3.66 3.86 4.06
3.72 3.94 4.16 4.38
3.98 4.22 4.45 4.69
4.25 4.50 4.75 5.00
51⁄4 51⁄2 53⁄4 6
0.984 1.03 1.08 1.13
1.31 1.38 1.44 1.50
1.64 1.72 1.80 1.88
1.97 2.06 2.16 2.25
2.30 2.41 2.52 2.63
2.63 2.75 2.88 3.00
2.95 3.09 3.23 3.38
3.28 3.44 3.59 3.75
3.61 3.78 3.95 4.13
3.94 4.13 4.31 4.50
4.27 4.47 4.67 4.88
4.59 4.81 5.03 5.25
4.92 5.16 5.39 5.63
5.25 5.50 5.75 6.00
61⁄4 61⁄2 63⁄4 7
1.17 1.22 1.27 1.31
1.56 1.63 1.69 1.75
1.95 2.03 2.11 2.19
2.34 2.44 2.53 2.63
2.73 2.84 2.95 3.06
3.13 3.25 3.38 3.50
3.52 3.66 3.80 3.94
3.91 4.06 4.22 4.38
4.30 4.47 4.64 4.81
4.69 4.88 5.06 5.25
5.08 5.28 5.48 5.69
5.47 5.69 5.91 6.13
5.86 6.09 6.33 6.56
6.25 6.50 6.75 7.00
71⁄4 71⁄2 73⁄4 8
1.36 1.41 1.45 1.50
1.81 1.88 1.94 2.00
2.27 2.34 2.42 2.50
2.72 2.81 2.91 3.00
3.17 3.28 3.39 3.50
3.63 3.75 3.88 4.00
4.08 4.22 4.36 4.50
4.53 4.69 4.84 5.00
4.98 5.16 5.33 5.50
5.44 5.63 5.81 6.00
5.89 6.09 6.30 6.50
6.34 6.56 6.78 7.00
6.80 7.03 7.27 7.50
7.25 7.50 7.75 8.00
81⁄2 9
1.59 1.69
2.13 2.25
2.66 2.81
3.19 3.38
3.72 3.94
4.25 4.50
4.78 5.06
5.31 5.63
5.84 6.19
6.38 6.75
6.91 7.31
7.44 7.88
7.97 8.44
8.50 9.00
91⁄2 10
1.78 1.88
2.38 2.50
2.97 3.13
3.56 3.75
4.16 4.38
4.75 5.00
5.34 5.63
5.94 6.25
6.53 6.88
7.13 7.50
7.72 8.13
8.31 8.75
8.91 9.38
9.50 10.0
101⁄2 11
1.97 2.06
2.63 2.75
3.28 3.44
3.94 4.13
4.59 4.81
5.25 5.50
5.91 6.19
6.56 6.88
7.22 7.56
7.88 8.25
8.53 8.94
9.19 9.63
9.84 10.3
10.5 11.0
111⁄2 12
2.16 2.25
2.88 3.00
3.59 3.75
4.31 4.50
5.03 5.25
5.75 6.00
6.47 6.75
7.19 7.50
7.91 8.63 8.25 9.00
9.34 9.75
10.8 11.3
11.5 12.0
1⁄ 4 1⁄ 2 3⁄ 4
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
7⁄ 8
10.1 10.5
15⁄ 16
1
1 - 138
DIMENSIONS AND PROPERTIES
WEIGHT OF RECTANGULAR SECTIONS Pounds per linear foot Width in.
Thickness, inches 3⁄ 16
1⁄ 4
5⁄ 16
3⁄ 8
7⁄ 16
1⁄ 2
9⁄ 16
5⁄ 8
11⁄ 16
3⁄ 4
13⁄ 16
7⁄ 8
15⁄ 16
1
0.160 0.319 0.479 0.638
0.213 0.425 0.638 0.851
0.266 0.532 0.798 1.06
0.319 0.638 0.957 1.28
0.372 0.744 1.12 1.49
0.425 0.851 1.28 1.70
0.479 0.957 1.44 1.91
0.532 1.06 1.60 2.13
0.585 1.17 1.75 2.34
0.638 1.28 1.91 2.55
0.691 1.38 2.07 2.76
0.744 1.49 2.23 2.98
0.798 1.60 2.39 3.19
0.851 1.70 2.55 3.40
11⁄4 11⁄2 13⁄4 2
0.798 0.957 1.12 1.28
1.06 1.28 1.49 1.70
1.33 1.60 1.86 2.13
1.60 1.91 2.23 2.55
1.86 2.23 2.61 2.98
2.13 2.55 2.98 3.40
2.39 2.87 3.35 3.83
2.66 3.19 3.72 4.25
2.92 3.51 4.09 4.68
3.19 3.83 4.47 5.10
3.46 4.15 4.84 5.53
3.72 4.47 5.21 5.95
3.99 4.79 5.58 6.38
4.25 5.10 5.95 6.81
21⁄4 21⁄2 23⁄4 3
1.44 1.60 1.75 1.91
1.91 2.13 2.34 2.55
2.39 2.66 2.92 3.19
2.87 3.19 3.51 3.83
3.35 3.72 4.09 4.47
3.83 4.25 4.68 5.10
4.31 4.79 5.26 5.74
4.79 5.32 5.85 6.38
5.26 5.85 6.43 7.02
5.74 6.38 7.02 7.66
6.22 6.91 7.60 8.29
6.70 7.44 8.19 8.93
7.18 7.98 8.77 9.57
7.66 8.51 9.36 10.2
31⁄4 31⁄2 33⁄4 4
2.07 2.23 2.39 2.55
2.76 2.98 3.19 3.40
3.46 3.72 3.99 4.25
4.15 4.47 4.79 5.10
4.84 5.21 5.58 5.95
5.53 5.95 6.38 6.81
6.22 6.70 7.18 7.66
6.91 7.44 7.98 8.51
7.60 8.19 8.77 9.36
8.29 8.93 9.57 10.2
8.99 9.68 10.4 11.1
9.68 10.4 11.2 11.9
10.4 11.2 12.0 12.8
11.1 11.9 12.8 13.6
41⁄4 41⁄2 43⁄4 5
2.71 2.87 3.03 3.19
3.62 3.83 4.04 4.25
4.52 4.79 5.05 5.32
5.42 5.74 6.06 6.38
6.33 6.70 7.07 7.44
7.23 7.66 8.08 8.51
8.13 8.61 9.09 9.57
9.04 9.57 10.1 10.6
9.94 10.5 11.1 11.7
10.8 11.5 12.1 12.8
11.8 12.4 13.1 13.8
12.7 13.4 14.1 14.9
13.6 14.4 15.2 16.0
14.5 15.3 16.2 17.0
51⁄4 51⁄2 53⁄4 6
3.35 3.51 3.67 3.83
4.47 4.68 4.89 5.10
5.58 5.85 6.11 6.38
6.70 7.02 7.34 7.66
7.82 8.19 8.56 8.93
8.93 9.36 9.78 10.2
10.0 10.5 11.0 11.5
11.2 11.7 12.2 12.8
12.3 12.9 13.5 14.0
13.4 14.0 14.7 15.3
14.5 15.2 15.9 16.6
15.6 16.4 17.1 17.9
16.7 17.5 18.3 19.1
17.9 18.7 19.6 20.4
61⁄4 61⁄2 63⁄4 7
3.99 4.15 4.31 4.47
5.32 5.53 5.74 5.95
6.65 6.91 7.18 7.44
7.98 8.29 8.61 8.93
9.30 9.68 10.0 10.4
10.6 11.1 11.5 11.9
12.0 12.4 12.9 13.4
13.3 13.8 14.4 14.9
14.6 15.2 15.8 16.4
16.0 16.6 17.2 17.9
17.3 18.0 18.7 19.4
18.6 19.4 20.1 20.8
19.9 20.7 21.5 22.3
21.3 22.1 23.0 23.8
71⁄4 71⁄2 73⁄4 8
4.63 4.79 4.94 5.10
6.17 6.38 6.59 6.81
7.71 7.98 8.24 8.51
9.25 9.57 9.89 10.2
10.8 11.2 11.5 11.9
12.3 12.8 13.2 13.6
13.9 14.4 14.8 15.3
15.4 16.0 16.5 17.0
17.0 17.5 18.1 18.7
18.5 19.1 19.8 20.4
20.0 20.7 21.4 22.1
21.6 22.3 23.1 23.8
23.1 23.9 24.7 25.5
24.7 25.5 26.4 27.2
81⁄2 9
5.42 5.74
7.23 7.66
9.04 9.57
10.8 11.5
12.7 13.4
14.5 15.3
16.3 17.2
18.1 19.1
19.9 21.1
21.7 23.0
23.5 24.9
25.3 26.8
27.1 28.7
28.9 30.6
91⁄2 10
6.06 6.38
8.08 8.51
10.1 10.6
12.1 12.8
14.1 14.9
16.2 17.0
18.2 19.1
20.2 21.3
22.2 23.4
24.2 25.5
26.3 27.6
28.3 29.8
30.3 31.9
32.3 34.0
101⁄2 11
6.70 7.02
8.93 9.36
11.2 11.7
13.4 14.0
15.6 16.4
17.9 18.7
20.1 21.1
22.3 23.4
24.6 25.7
26.8 28.1
29.0 30.4
31.3 32.8
33.5 35.1
35.7 37.4
111⁄2 12
7.34 7.66
9.78 10.2
12.2 12.8
14.7 15.3
17.1 17.9
19.6 20.4
22.0 23.0
24.5 25.5
26.9 28.1
29.3 30.6
31.8 33.2
34.2 35.7
36.7 38.3
39.1 40.8
1⁄ 4 1⁄ 2 3⁄ 4
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1
CRANE RAILS
1 - 139
CRANE RAILS General Notes
The ASCE rails and the 104- to 175-lb crane rails shown in Figure 1-2 are recommended for crane runway use. For complete details and for profiles and properties of rails not listed, consult manufacturers’ catalogs. Rails should be arranged so that joints on opposite sides of the crane runway will be staggered with respect to each other and with due consideration to the wheelbase of the crane. Rail joints should not occur at crane girder splices. Light 40-lb rails are available in 30-ft lengths, 60-lb rails in 30-, 33- or 39-ft lengths, standard rails in 33- or 39-ft lengths and crane rails up to 80 ft. Consult manufacturer for availability of other lengths. Odd lengths, which must be included to complete a run or obtain the necessary stagger, should be not less than 10 feet long. For crane rail service, 40-lb rails are furnished to manufacturers’ specifications and tolerances. 60- and 85-lb rails are furnished to manufacturers’ specifications and tolerances, or to ASTM A1. Crane rails are furnished to ASTM A759. Rails will be furnished with standard drilling in both standard and odd lengths unless stipulated otherwise on order. For controlled cooling, heat treatment, and rail end preparation, see manufacturers’ catalogs. Purchase orders for crane rails should be noted “For crane service.” (See Table 1-8.) For maximum wheel loadings see manufacturers’ catalogs. Splices
Bolted Splices
It is often more desirable to use properly installed and maintained bolted splice bars in making up rail joints for crane service than welded splice bars. Standard rail drilling and joint-bar punching, as furnished by manufacturers of light standard rails for track work, include round holes in rail ends and slotted holes in joint bars to receive standard oval-neck tack bolts. Holes in rails are oversize and punching in joint bars is spaced to allow 1⁄16- to 1⁄8-in. clearance between rail ends (see manufacturers’ catalogs for spacing and dimensions of holes and slots). Although this construction is satisfactory for track and light crane service, its use in general crane service may lead to joint failure. For best service in bolted splices, it is recommended that tight joints be stipulated for all rails for crane service. This will require rail ends to be finished by milling or grinding, and the special rail drilling and joint-bar punching tabulated below. Special rail drilling is accepted by some mills, or rails may be ordered blank for shop drilling. End finishing of standard rails can be done at the mill; light rails must be end-finished in the fabricating shop or ground at the site prior to erection. In the crane rail range, from 104 to 175 lbs per yard, rails and joint bars are manufactured to obtain a tight fit and no further special end finishing, drilling, or punching is required. Because of cumulative tolerance variations in holes, bolt diameters, and rail ends, a slight gap may sometimes occur in the so-called tight joints. Conversely, it may sometimes be necessary to ream holes through joined bar and rail to permit entry of bolts. Joint bars for crane service are provided in various sections to match the rails. Joint bars for light and standard rails may be purchased blank for special shop punching to obtain tight joints. See Bethlehem Steel Corp. Booklet 3351 for dimensions, material specifications, and the identification necessary to match the crane rail section. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 140
DIMENSIONS AND PROPERTIES
c
Bars can be sheared off r
13°
c of g y
13°
1/ 4 Rad.
R
X
X
h
1/ 4 Rad.
t
1/ 2 Rad.
d
1/ 2 Rad.
h
g
13°
13°
m
m
n
b
A.S.C.E. 40, 60 & 85 lb. c
BETHLEHEM 104 lb. c 4
3 (approx.)
12°
13° 3 4
Rad.
3 4
Rad.
7/ 8
7/ 8 Rad.
h
13°
h
12° m
BETHLEHEM 135 lb.
Rad.
m
BETHLEHEM 171 lb.
c 4 1/32 (approx.)
12°
2 Rad.
11/8 Rad. 12°
h 2 53/64 m
BETHLEHEM 175 lb. Nomenclature of sketch for A.S.C.E. rails also applies to the other sections.
Fig. 1-2. Crane rails. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
CRANE RAILS
1 - 141
Table 1-8. Crane Rails Dimensions and Properties
Type
Nominal Wt. per Classi- Yd. d fication lb in.
Sx
Gage g
b
m
n
c
r
t
h
R
Area
lx
in.
in.
in.
in.
in.
in.
in.
in.
in.
in.2
in.4
17⁄ 32 5⁄ 8 11⁄ 16 48⁄ 64 13⁄ 16 7⁄ 8 57⁄ 64 31⁄ 32 11⁄16 11⁄16 11⁄4 19⁄64
11⁄ 64 7⁄ 32 1⁄ 4 9⁄ 32 9⁄ 32 19⁄ 64 19⁄ 64 10⁄ 32 1⁄ 2 15⁄ 32 5⁄ 8 1⁄ 2
111⁄16
12
12
3.00 4.10 2.55
12
155⁄64
12
3.94 6.54 3.59 3.89 1.68
21⁄8
12
23⁄8
12
27⁄16
12
21⁄2
12
29⁄16
12
23⁄4
12
21⁄ 64 25⁄ 64 7⁄ 16 31⁄ 64 33⁄ 64 35⁄ 64 9⁄ 16 9⁄ 16
123⁄32
17⁄8
21⁄2
12
1
ASCE
Light
30
31⁄8
125⁄64
31⁄8
ASCE
Light
40
31⁄2
171⁄128
31⁄2
ASCE
Light
50
37⁄8
123⁄32
37⁄8
ASCE
Light
60
41⁄4 1115⁄128 41⁄4
ASCE
70
45⁄8
23⁄64
45⁄8
ASCE
80
5
23⁄16
5
ASCE
Std.
85
53⁄16
217⁄64
53⁄16
ASCE
Std.
100
53⁄4
265⁄128
53⁄4
Bethlehem
Crane
104
5
27⁄16
5
Bethlehem
Crane
135
53⁄4
215⁄32
53⁄16
Bethlehem
Crane
171
6
25⁄8
6
Bethlehem
Crane
175
6
221⁄32
6
Hd. Base
y
in.3
in.3
in.
—
—
21⁄16
12
4.90 10.1
5.10
217⁄64
12
5.93 14.6
6.64 7.12 2.05
215⁄32
12
6.81 19.7
8.19 8.87 2.22
25⁄8
12
7.86 26.4 10.1 11.1 2.38
23⁄4
12
8.33 30.1 11.1 12.2 2.47
25⁄64
12
9.84 44.0 14.6 16.1 2.73
27⁄16
31⁄2
10.3 29.8 10.7 13.5 2.21
12
13.3 50.8 17.3 18.1 2.81
—
1.88
37⁄16
14
11⁄4 213⁄16
4.3
Flat
11⁄4
23⁄4 Vert. 16.8 73.4 24.5 24.4 3.01
41⁄4
18
11⁄2
37⁄64 Vert. 17.1 70.5 23.4 23.6 2.98
Joint-bar bolts, as distinguished from oval-neck track bolts, have straight shanks to the head and are manufactured to ASTM A449 specifications. Nuts are manufactured to ASTM A563 Gr. B specifications. ASTM A325 bolts and nuts may be used. Bolt assembly includes an alloy steel spring washer, furnished to AREA specifications. After installation, bolts should be retightened within 30 days and every three months thereafter. Welded Splices
When welded splices are specified, consult the manufacturer for recommended rail-end preparation, welding procedure, and method of ordering. Although joint continuity, made possible by this method of splicing, is desirable, it should be noted that the careful control required in all stages of the welding operation may be difficult to meet during crane rail installation. Rails should not be attached to structural supports by welding. Rails with holes for joint bar bolts should not be used in making welded splices. Fastenings
Hook Bolts
Hook bolts (Figure 1-3) are used primarily with light rails when attached to beams too narrow for clamps. Rail adjustment to ±1⁄2-in. is inherent in the threaded shank. Hook bolts are paired alternately three to four inches apart, spaced at about 24-in. centers. The special rail drilling required must be done at the fabricator’s shop. Hook bolts are not recommended for use with heavy duty cycle cranes (CMAA Classes, D, E, and F). It is generally recommended that hook bolts should not be used in runway systems which are longer than 500 feet because the bolts do not allow for longitudinal movement of the rail. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 142
DIMENSIONS AND PROPERTIES
Table 1-9. Splices for Tight Joints
g
A
B
C
C
B
D
C
B
L
Rail End
Joint Bar
l
l
Grip
Grip H
H
G Cut when specified 40-60-85-104
Rail
Joint Bar
Drilling Wt. Per Yard
g
lb
in.
40 171⁄128 60 1115⁄128 85 217⁄64 104
27⁄16
135 215⁄32 171
25⁄8
175
221⁄32
Hole Dia. A in. 13⁄ * 16 13⁄ * 16 15⁄ * 16 11⁄16 13⁄16 13⁄16 13⁄16
105-135-171-175
B C
in. in. in. 21⁄2 5
—
21⁄2 5
—
21⁄2 5
—
4
5
6
4
5
6
4
5
6
4
Bolt
Washer
Punching
5
6
Wt. 2 Bars Bolts, Nuts, Washers
ThickIn- ness side and With Less Dia. Width Fig. Fig.
Hole Dia.
D
B C
L
G
Dia.
Grip
I
H
in.
in.
in. in. in.
in.
in.
in.
in.
in.
in.
in.
lb
lb
13⁄ * 16 13⁄ * 16 15⁄ * 16 11⁄16 13⁄16 13⁄16 13⁄16
415⁄16*
5
— 20 23⁄16
3⁄
4
115⁄16
31⁄2
21⁄2
16.5
5
— 24 211⁄16
3⁄
4
219⁄32
4
211⁄16
36.5
29.6
415⁄16*
5
— 24 311⁄32
7⁄
8
35⁄32
43⁄4
33⁄16
56.6
45.3
715⁄16
5
6
34
31⁄2
1
31⁄2
51⁄4
31⁄2
715⁄16
5
6
34
—
11⁄8
35⁄8
51⁄2
311⁄16
715⁄16
5
6
34
—
11⁄8
47⁄16
61⁄4
41⁄16
—
11⁄8
41⁄8
61⁄4
315⁄16
7⁄ ×3⁄ 16 8 7⁄ ×3⁄ 16 8 7⁄ ×3⁄ 16 8 7⁄ ×1⁄ 16 2 7⁄ ×1⁄ 16 2 7⁄ ×1⁄ 16 2 7⁄ ×1⁄ 16 2
20.0
415⁄16*
13⁄ 16 13⁄ 16 15⁄ 16 11⁄16 13⁄16 13⁄16 13⁄16
715⁄16
5
6
34
73.5
55.4
—
75.3
—
90.8
—
87.7
*Special rail drilling and joint-bar punching.
Rail Clips
Rail clips are forged or cast devices which are shaped to match specific rail profiles. They are usually bolted to the runway girder flange with one bolt or are sometimes welded. Rail clips have been used satisfactorily with all classes of cranes. However, one drawback is that when a single bolt is used the clip can rotate in response to rail longitudinal movement. This clip rotation can cause a camming action, thus forcing the rail out of alignment. Because of this limitation, rail clips should only be used in crane systems subject to infrequent use, and for runways less than 500 feet in length. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
CRANE RAILS
1 - 143
Rail Clamps
Rail clamps are a common method of attachment for heavy duty cycle cranes. Rail clamps are detailed to provide two types: tight and floating (Figure 1-4). Each clamp consists of two plates: an upper clamp plate and a lower filler plate. The lower plate is flat and roughly matches the height of the toe of the rail flange. The upper plate covers the lower plate and extends over the top of the lower rail flange. In the tight clamp the upper plate is detailed to fit tightly to the lower tail flange top, thus “clamping� it tightly in place when the fasteners are tightened. In the past, the tight clamp had been illustrated with the filler plates fitted tightly against the rail flange toe. This tight fit-up was rarely achieved in practice and is not considered to be necessary to achieve a tight type clamp. In the floating type clamp, the pieces are detailed to provide a clearance both alongside the rail flange toe and below the upper plate. The floating type does not, in reality, clamp the rail but merely holds the rail within the limits of the clamp clearances.
Fig. 1-3. Hook bolts. Reversible 1 1/2 fillers
Reversible fillers
Clamp plates
3
Off-center punching
11/2
Clamp plates
3
Off-center punching
11/2
1 1/2
Rail base + 1/ 4
( 1/2 to 9/16 ) "float"
Max. adjustment
Self-locking nut or nut and lock washer Filler Machine bolt Gage
Gage
Tight clamp
Floating clamp
Fig. 1-4. Rail clamps. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 144
DIMENSIONS AND PROPERTIES
High strength bolts are recommended for both clamp types. Both types should be spaced three feet or less apart. Dimensions shown above are suggested. See manufacturers’ catalogs for recommended gages, bolt sizes, and detail dimensions not shown. Patented Rail Clips
Each manufacturer’s literature presents in detail the desirable aspects of the various designs. In general patented rail clips are easy to install due to their range of adjustment while providing the proper limitations of lateral movement and allowance for longitudinal movement. Patented rail clips should be considered as a viable alternative to conventional hook bolts, clips, or clamps. Because of their desirable characteristics, patented rail clips can be used without restriction except as limited by the specific manufacturer’s recommendations. Installations using patented rail clips sometimes incorporate pads beneath the rail. When this is done the lateral float of the rail should be limited as in the case of the tight rail clamps.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
TORSION PROPERTIES
1 - 145
TORSION PROPERTIES
Torsional analysis is not required for the routine design of most structural steel members. When torsional analysis is required, the Table of Torsion Properties will be of assistance in utilizing current analysis methods. The reader is referred to the AISC publication Torsional Analysis of Steel Members (American Institute of Steel Construction, 1983) for additional information and appropriate design aids. Torsion Properties are also required to determine the design compressive strength for torsional and flexural-torsional buckling as specified in the AISC LRFD Specification Appendix E3. Nomenclature
= warping constant for section, in.6* = modulus of elasticity of steel (29,000 ksi) = shear modulus of elasticity of steel (11,200 ksi) = flexural constant in Equation E3-1, LRFD Specification = torsional constant for a section, in.4 = statical moment for a point in the flange directly above the vertical edge of the web, in.3 3 _Qw = statical moment at mid-depth of the section, in. ro = polar radius of gyration about the shear center, in. Sw = warping statical moment at a point in the section, in.4 Wno = normalized warping function at a point at the flange edge, in.2 Cw E G H J Qf
*Calculated values of Cw are given for all tabulated shapes. However, for many angles and T shapes, Cw is so small that for practical purposes it can be taken as zero. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 146
DIMENSIONS AND PROPERTIES
TORSION PROPERTIES W shapes
√ EC w GJ
Normalized Warping Constant Wno
Warping Statical Moment Sw
Qf
Qw
in.
in.2
in.4
in.3
in.3
137 153 167 190
168 166 165 164
1190 1040 922 789
282 251 225 194
811 709 636 551
989000 649000 577000 511000 446000 397000 378000 333000 283000 245000 189000
75.4 95.1 103 110 121 130 138 151 173 187 209
166 158 156 154 152 151 151 149 149 148 147
2240 1540 1380 1240 1100 986 940 836 714 621 481
484 354 323 294 264 240 230 208 179 157 119
1380 992 894 813 730 665 624 560 481 434 364
393000 306000 242000 192000 181000 161000 140000 119000 99300 79600
60.6 67.9 76.8 87.6 91.3 101 109 125 136 147
125 121 118 115 114 113 112 111 111 110
1160 940 762 622 589 530 468 402 336 270
322 272 228 192 184 168 151 134 113 92.0
1030 856 715 596 566 506 453 391 346 299
1620000 1480000 1090000 816000 637000 554000 493000 441000 398000 366000 330000 306000 282000
57.5 59.8 68.6 80.0 92.0 100 108 116 127 134 143 151 160
172 169 162 156 152 150 148 146 146 145 144 143 143
3530 3270 2520 1960 1570 1390 1240 1130 1020 944 858 799 740
674 634 513 415 344 309 281 258 235 219 200 187 175
1910 1790 1420 1130 928 830 757 691 628 585 538 505 472
168000 148000 128000 116000 107000 98500 90200 82200 68100
90.3 98.1 109 116 123 130 137 145 159
109 108 108 107 106 105 105 105 104
576 512 446 407 378 349 321 294 245
408000 357000 319000 281000 250000 224000 198000
95.8 105 113 122 134 145 158
135 133 132 130 130 129 128
1130 1000 906 808 721 650 580
Torsional Constant J
Warping Constant Cw
Designation
in.4
in.6
W44×335 W ×290 W ×262 W ×230
74.4 51.5 37.7 24.9
536000 463000 406000 346000
W40×593 W ×503 W ×431 W ×372 W ×321 W ×297 W ×277 W ×249 W ×215 W ×199 W ×174
451 186 142 109 79.4 61.2 51.1 37.7 24.4 18.1 11.2
W40×466 W ×392 W ×331 W ×278 W ×264 W ×235 W ×211 W ×183 W ×167 W ×149
277 172 106 64.7 56.1 41.3 30.4 19.6 14.0 9.60
W36×848 W ×798 W ×650 W ×527 W ×439 W ×393 W ×359 W ×328 W ×300 W ×280 W ×260 W ×245 W ×230 W36×256 W ×232 W ×210 W ×194 W ×182 W ×170 W ×160 W ×150 W ×135 W33×354 W ×318 W ×291 W ×263 W ×241 W ×221 W ×201 W33×169 W ×152 W ×141 W ×130 W ×118
1270 1070 600 330 195 143 109 84.5 64.2 52.6 41.5 34.6 28.6 53.3 39.8 28.0 22.2 18.4 15.1 12.4 10.1 6.99 115 84.4 65.0 48.5 35.8 27.5 20.5 17.7 12.4 9.70 7.37 5.30
82400 71700 64400 56600 48300
110 122 131 141 154
93.7 93.8 93.3 92.8 92.2
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
329 286 258 228 196
Statical Moment
176 159 138 128 120 111 103 95.1 79.9
520 468 416 383 359 334 312 291 255
263 237 216 195 174 158 142
709 634 577 519 469 428 386
109 95.1 86.5 76.9 66.6
314 279 257 233 207
TORSION PROPERTIES
1 - 147
TORSION PROPERTIES W shapes
Designation W30×477 W ×391 W ×326 W ×292 W ×261 W ×235 W ×211 W ×191 W ×173 W30×148 W ×132 W ×124 W ×116 W ×108 W ×99 W ×90 W27×539 W ×448 W ×368 W ×307 W ×258 W ×235 W ×217 W ×194 W ×178 W ×161 W ×146
√ EC w GJ
Normalized Warping Constant Wno
Warping Statical Moment Sw
Qf
Qw
in.6
in.
in.2
in.4
in.3
in.3
480000 364000 286000 249000 215000 190000 166000 146000 129000
63.6 73.6 84.8 92.8 102 111 124 135 148
329 268 223 200 177 160 141 126 113
896 716 595 530 470 422 374 337 303
49400 42100 38600 34900 30900 26800 24000
93.6 106 112 119 127 136 146
77.3 77.3 76.9 76.5 76.1 75.7 75.0
239 204 188 171 152 133 119
86.8 74.0 68.8 62.8 56.1 49.5 45.0
250 219 204 189 173 156 142
440000 336000 254000 199000 159000 140000 128000 111000 98300 87300 77200
47.8 54.1 62.4 71.4 82.2 88.5 94.6 104 114 124 135
111 106 102 99.4 98.2 96.0 95.0 93.9 93.7 92.9 92.2
1490 1190 930 750 613 548 503 442 393 352 314
342 283 231 192 161 146 135 120 107 96.6 87.0
940 766 620 511 424 384 354 314 284 256 231
Torsional Constant J
Warping Constant Cw
in.4 307 174 103 74.9 53.8 40.0 27.9 20.6 15.3 14.6 9.72 7.99 6.43 4.99 3.77 2.92 499 297 169 101 61.0 46.3 37.0 26.5 19.5 14.7 10.9
124 120 117 115 114 112 112 111 110
1450 1140 919 812 710 633 556 494 439
Statical Moment
W27×129 W ×114 W ×102 W ×94 W ×84
11.2 7.33 5.29 4.03 2.81
32500 27600 24000 21300 17900
86.7 98.7 108 117 128
66.4 66.4 65.7 65.4 64.9
183 155 137 122 103
69.5 59.2 52.7 47.3 40.6
197 171 153 139 122
W24×492 W ×408 W ×335 W ×279 W ×250 W ×229 W ×207 W ×192 W ×176 W ×162 W ×146 W ×131 W ×117 W ×104
456 271 154 91.7 67.3 51.8 38.6 31.0 24.1 18.5 13.4 9.50 6.72 4.72
283000 214000 160000 125000 108000 95800 83900 76200 68400 62600 54600 47100 40800 35200
40.1 45.2 51.9 59.4 64.5 69.2 75.0 79.8 85.7 93.6 103 113 125 139
92.1 88.1 84.6 82.0 80.6 79.6 78.5 77.7 77.0 77.0 76.3 75.6 74.9 74.3
1150 909 709 570 502 451 401 367 333 304 268 233 204 178
281 233 189 157 141 128 116 107 97.8 89.4 79.5 69.7 61.5 54.1
774 626 509 418 372 338 303 280 255 234 209 185 164 144
W24×103 W ×94 W ×84 W ×76 W ×68
7.10 5.26 3.70 2.68 1.87
16600 15000 12800 11100 9430
77.8 85.9 94.6 104 114
53.0 53.1 52.6 52.2 51.9
117 105 91.3 79.8 68.0
49.4 44.4 39.0 34.4 29.5
140 127 112 100 88.3
W24×62 W ×55
1.71 1.18
4620 3870
83.6 92.2
40.7 40.4
42.3 35.7
23.2 19.8
76.6 67.1
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 148
DIMENSIONS AND PROPERTIES
TORSION PROPERTIES W shapes
√ EC w GJ
Normalized Warping Constant Wno
Warping Statical Moment Sw
Qf
Qw
in.6
in.
in.2
in.4
in.3
in.3
41.3 31.1 23.9 15.4 11.3 8.98 6.83 5.21
61800 54300 48500 41100 36000 32700 29200 26200
62.2 67.2 72.5 83.1 90.8 97.1 105 114
67.0 66.0 65.6 65.4 64.7 64.2 63.7 63.2
345 307 277 235 208 191 172 155
W21×93 W ×83 W ×73 W ×68 W ×62
6.03 4.34 3.02 2.45 1.83
9940 8630 7410 6760 5960
65.3 71.8 79.7 84.5 91.8
43.6 43.0 42.5 42.3 42.0
85.3 75.0 65.2 59.9 53.2
38.2 34.2 30.3 28.0 25.1
110 98.0 86.2 79.9 72.2
W21×57 W ×50 W ×44
1.77 1.14 0.77
3190 2570 2110
68.3 76.4 84.2
33.4 33.1 32.8
35.6 28.9 24.0
20.9 17.2 14.5
64.3 55.0 47.7
75700 65600 57400 49900 43200 37900 33200 28900 25700 22700
33.3 35.5 37.8 40.3 43.4 46.6 50.1 54.3 58.6 63.2
58.8 57.5 56.4 55.2 54.2 53.3 52.5 51.6 51.0 50.4
483 427 382 339 299 267 237 210 189 169
Torsional Constant J
Warping Constant Cw
Designation
in.4
W21×201 W ×182 W ×166 W ×147 W ×132 W ×122 W ×111 W ×101
W18×311 W ×283 W ×258 W ×234 W ×211 W ×192 W ×175 W ×158 W ×143 W ×130
177 135 104 79.7 59.3 45.2 34.2 25.4 19.4 14.7
Statical Moment
102 92.3 84.4 71.4 64.0 59.2 53.7 49.0
141 127 116 105 94.3 85.7 77.2 69.4 63.2 57.1
265 238 216 187 167 154 139 127
376 338 306 274 245 221 199 178 161 145
W18×119 W ×106 W ×97 W ×86 W ×76
10.6 7.48 5.86 4.10 2.83
20300 17400 15800 13600 11700
70.4 77.6 83.6 92.7 103
50.4 49.8 49.4 48.9 48.4
151 131 120 104 90.7
50.6 44.6 41.2 36.3 31.9
131 115 105 92.8 81.4
W18×71 W ×65 W ×60 W ×55 W ×50
3.48 2.73 2.17 1.66 1.24
4700 4240 3850 3430 3040
59.1 63.4 67.8 73.1 79.7
33.7 33.4 33.1 32.9 32.6
52.1 47.5 43.5 39.0 34.9
25.8 23.8 22.1 19.9 18.0
72.7 66.6 61.4 55.9 50.4
W18×46 W ×40 W ×35
1.22 0.81 0.51
1710 1440 1140
60.2 67.8 76.1
26.4 26.1 25.9
24.2 20.6 16.5
15.3 13.3 10.7
45.3 39.2 33.2
W16×100 W ×89 W ×77 W ×67
7.73 5.45 3.57 2.39
11900 10200 8590 7300
63.1 69.6 78.9 88.9
41.7 41.1 40.6 40.1
107 93.3 79.3 68.2
39.0 34.4 29.7 25.9
99.0 87.3 75.0 64.9
W16×57 W ×50 W ×45 W ×40 W ×36
2.22 1.52 1.11 0.79 0.54
2660 2270 1990 1730 1460
55.7 62.2 68.1 75.3 83.7
28.0 27.6 27.4 27.1 26.9
35.6 30.8 27.2 23.9 20.2
19.0 16.7 15.0 13.4 11.4
52.6 46.0 41.1 36.5 32.0
W16×31 W ×26
0.46 0.26
739 565
64.5 75.0
21.3 21.1
13.0 10.0
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
9.17 7.20
27.0 22.1
TORSION PROPERTIES
1 - 149
TORSION PROPERTIES W shapes Torsional Constant J Designation W14×808 W ×730 W ×665 W ×605 W ×550 W ×500 W ×455 W14×426 W ×398 W ×370 W ×342 W ×311 W ×283 W ×257 W ×233 W ×211 W ×193 W ×176 W ×159 W ×145
4
in. 1860 1450 1120 870 670 514 395
331 273 222 178 136 104 79.1 59.5 44.6 34.8 26.5 19.8 15.2
Warping Constant Cw 6
in.
√
EC w GJ
Normalized Warping Constant Wno 2
Warping Statical Moment Sw 4
Statical Moment
Qf 3
Qw in.3
in.
in.
in.
in.
433000 362000 305000 258000 219000 187000 160000
24.6 25.4 26.6 27.7 29.1 30.7 32.4
82.2 78.3 75.5 73.0 70.6 68.5 66.5
1950 1720 1510 1320 1160 1020 899
337 319 287 259 233 209 189
916 831 740 660 588 524 468
144000 129000 116000 103000 89100 77700 67800 59000 51500 45900 40500 35600 31700
33.6 35.0 36.8 38.7 41.2 44.0 47.1 50.7 54.7 58.4 62.9 68.2 73.5
65.3 64.1 62.9 61.6 60.3 59.1 57.9 56.9 55.9 55.1 54.4 53.7 53.0
827 756 689 623 553 493 438 389 345 312 279 248 224
176 163 151 138 125 113 102 91.7 82.3 75.4 68.0 61.3 55.8
434 401 368 336 301 271 243 218 195 177 160 143 130
190 171 154 138 125
49.9 45.3 41.2 37.2 33.7
117 106 95.9 86.6 78.3
W14×132 W ×120 W ×109 W ×99 W ×90
12.3 9.37 7.12 5.37 4.06
25500 22700 20200 18000 16000
73.3 79.2 85.7 93.2 101
50.2 49.7 49.1 48.7 48.3
W14×82 W ×74 W ×68 W ×61
5.08 3.88 3.02 2.20
6710 5990 5380 4710
58.5 63.2 67.9 74.5
34.1 33.7 33.4 33.1
73.8 66.6 60.4 53.3
28.1 25.7 23.5 21.0
69.3 62.8 57.3 51.1
W14×53 W ×48 W ×43
1.94 1.46 1.05
2540 2240 1950
58.2 63.0 69.3
26.7 26.5 26.2
35.5 31.6 27.8
17.3 15.6 13.9
43.6 39.2 34.8
W14×38 W ×34 W ×30
0.80 0.57 0.38
1230 1070 887
63.1 69.7 77.7
23.0 22.8 22.6
20.0 17.5 14.7
11.5 10.2 8.59
30.7 27.3 23.6
W14×26 W ×22
0.36 0.21
405 314
54.0 62.2
16.9 16.8
6.98 5.58
20.1 16.6
243 185 143 108 83.8 64.7 48.8 35.6 25.8 18.5 12.9 9.13 6.86 5.10 3.84 2.93 2.18
57000 48600 42000 35800 31200 27200 23600 20100 17200 14700 12400 10700 9410 8270 7330 6540 5780
24.6 26.1 27.6 29.3 31.0 33.0 35.4 38.2 41.5 45.4 49.9 55.1 59.6 64.8 70.3 76.0 82.9
46.4 45.0 44.0 42.8 41.8 41.0 40.1 39.2 38.4 37.7 37.0 36.4 35.9 35.5 35.2 34.9 34.5
W12×336 W ×305 W ×279 W ×252 W ×230 W ×210 W ×190 W ×170 W ×152 W ×136 W ×120 W ×106 W ×96 W ×87 W ×79 W ×72 W ×65
8.94 7.02 459 403 357 313 279 249 220 192 168 146 126 110 98.2 87.2 78.1 70.3 62.7
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
119 107 96.3 86.4 78.4 71.1 64.1 56.9 50.4 44.5 38.9 34.6 31.3 28.0 25.3 22.9 20.6
301 269 241 214 193 174 156 137 121 107 93.2 81.9 73.6 66.0 59.5 53.9 48.4
1 - 150
DIMENSIONS AND PROPERTIES
TORSION PROPERTIES W shapes
√ EC w GJ
Normalized Warping Constant Wno
Warping Statical Moment Sw
Qf
Qw
in.
in.2
in.4
in.3
in.3
3570 3160
66.3 72.0
28.9 28.7
46.3 41.2
18.2 16.3
43.2 39.0
1.78 1.31 0.95
1880 1650 1440
52.3 57.1 62.6
23.3 23.1 22.9
30.2 26.7 23.6
14.7 13.1 11.8
36.2 32.4 28.8
W12×35 W ×30 W ×26
0.74 0.46 0.30
879 720 607
55.5 63.7 72.4
19.6 19.4 19.2
16.8 13.9 11.8
W12×22 W ×19 W ×16 W ×14
0.29 0.18 0.10 0.07
164 131 96.9 80.4
38.3 43.4 50.1 54.5
12.0 11.8 11.7 11.6
W10×112 W ×100 W ×88 W ×77 W ×68 W ×60 W ×54 W ×49
15.1 10.9 7.53 5.11 3.56 2.48 1.82 1.39
6020 5150 4330 3630 3100 2640 2320 2070
32.1 35.0 38.6 42.9 47.5 52.5 57.5 62.1
26.3 25.8 25.3 24.8 24.4 24.0 23.8 23.6
85.7 74.7 64.2 54.9 47.6 41.2 36.6 33.0
30.8 27.2 23.8 20.7 18.1 15.9 14.3 13.0
73.7 64.9 56.4 48.8 42.6 37.3 33.3 30.2
W10×45 W ×39 W ×33
1.51 0.98 0.58
1200 992 790
45.4 51.2 59.4
19.0 18.7 18.5
23.6 19.8 16.0
11.5 9.77 7.98
27.5 23.4 19.4
W10×30 W ×26 W ×22
0.62 0.40 0.24
414 345 275
41.6 47.3 54.5
14.5 14.3 14.1
10.7 9.05 7.30
7.09 6.08 4.95
18.3 15.6 13.0
W10×19 W ×17 W ×15 W ×12
0.23 0.16 0.10 0.05
104 85.1 68.3 50.9
34.2 37.1 42.1 51.3
3.93 3.24 2.62 1.99
3.76 3.13 2.56 2.00
10.8 9.33 8.00 6.32
W8×67 W ×58 W ×48 W ×40 W ×35 W ×31
5.06 3.34 1.96 1.12 0.77 0.54
1440 1180 931 726 619 530
27.1 30.2 35.1 41.0 45.6 50.4
16.7 16.3 15.8 15.5 15.3 15.1
14.7 12.5 10.4 8.42 7.39 6.46
35.1 29.9 24.5 19.9 17.3 15.2
W8×28 W ×24
0.54 0.35
312 259
38.7 43.8
12.4 12.2
9.43 7.94
5.64 4.83
13.6 11.6
W8×21 W ×18
0.28 0.17
152 122
37.5 43.1
10.4 10.3
5.47 4.44
4.03 3.31
10.2 8.52
W8×15 W ×13 W ×10
0.14 0.09 0.04
51.8 40.8 30.9
31.0 34.3 44.7
7.82 7.74 7.57
2.47 1.97 1.53
2.39 1.93 1.56
6.78 5.70 4.43
W6×25 W ×20 W ×15
0.46 0.24 0.10
150 113 76.5
29.1 34.9 44.5
9.01 8.78 8.58
6.23 4.82 3.34
3.92 3.10 2.18
9.46 7.45 5.39
W6×16 W ×12 W ×9
0.22 0.09 0.04
38.2 24.7 17.7
21.2 26.7 33.8
5.92 5.75 5.60
2.42 1.61 1.19
2.28 1.55 1.19
5.84 4.15 3.12
W5×19 W ×16
0.31 0.19
50.8 40.6
20.6 23.5
5.94 5.81
3.21 2.62
2.44 2.02
5.81 4.82
W4×13
0.15
14.0
15.5
3.87
1.36
1.27
3.14
Torsional Constant J
Warping Constant Cw
Designation
in.4
in.6
W12×58 W ×53
2.10 1.58
W12×50 W ×45 W ×40
9.89 9.80 9.72 9.56
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
5.13 4.14 3.09 2.59
32.3 27.2 22.0 17.5 15.2 13.1
Statical Moment
9.86 8.30 7.15
25.6 21.6 18.6
4.87 4.01 3.04 2.59
14.7 12.4 10.0 8.72
TORSION PROPERTIES
1 - 151
TORSION PROPERTIES M shapes
√ EC w GJ
Normalized Warping Constant Wno
Warping Statical Moment Sw
Qf
Qw
in.6
in.
in.2
in.4
in.3
in.3
0.05 0.04
34.0 31.3
42.0 45.0
9.02 9.01
1.56 1.45
1.98 1.86
7.14 6.58
M10×9 M ×8
0.03 0.02
14.6 12.8
35.5 40.7
6.59 6.57
0.91 0.80
1.32 1.18
4.60 4.06
M8×6.5
0.02
26.0
4.45
0.48
0.82
2.72
M5×18.9
0.34
17.7
5.73
2.98
2.28
5.53
Torsional Constant J
Warping Constant Cw
Designation
in.4
M12×11.8 M ×10.8
5.23 41.3
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Statical Moment
1 - 152
DIMENSIONS AND PROPERTIES
TORSION PROPERTIES S shapes
Designation S24×121 S ×106
√ EC w GJ
Normalized Warping Constant Wno
Warping Statical Moment Sw
Qf
Qw
in.6
in.
in.2
in.4
in.3
in.3
11400 10600
48.0 52.1
47.1 46.1
103 98.8
47.1 47.1
154 141 121 112 103
Torsional Constant J
Warping Constant Cw
in.4 12.8 10.1
Statical Moment
S24×100 S ×90 S ×80
7.58 6.04 4.88
6380 6000 5640
46.7 50.7 54.7
41.9 41.2 40.5
66.0 63.8 61.6
33.5 33.5 33.5
S20×96 S ×86
8.39 6.64
4710 4390
38.1 41.4
34.9 34.2
57.8 55.5
29.2 29.2
99.7 92.5
S20×75 S ×66
4.59 3.58
2750 2550
39.4 42.9
30.7 30.0
38.9 37.3
22.6 22.6
77.0 70.5
S18×70 S ×54.7
4.15 2.37
1800 1560
33.5 41.3
27.0 26.0
29.2 26.9
17.1 17.1
63.0 52.9
S15×50 S ×42.9
2.12 1.54
811 744
31.5 35.4
20.3 19.8
17.8 16.9
11.8 11.8
39.0 35.1
S12×50 S ×40.8
2.82 1.75
505 437
21.5 25.4
15.5 14.9
14.0 12.9
9.30 9.30
31.0 26.9
S12×35 S ×31.8
1.08 0.90
324 307
27.9 29.7
14.5 14.3
10.0 9.74
7.48 7.48
22.7 21.3
S10×35 S ×25.4
1.29 0.60
189 153
19.5 25.7
11.8 11.1
7.13 6.34
5.24 5.24
17.9 14.4
S8×23 S ×18.4
0.55 0.34
61.8 53.5
17.1 20.2
7.90 7.58
3.50 3.22
3.10 3.10
9.74 8.38
S6×17.25 S ×12.5
0.37 0.17
18.4 14.5
11.3 14.9
5.03 4.70
1.61 1.41
1.63 1.63
5.35 4.30
S5×10
0.11
6.66
12.3
3.51
0.86
1.11
2.88
S4×9.5 S ×7.7
0.12 0.07
3.10 2.62
8.18 9.84
2.59 2.47
0.53 0.48
0.70 0.70
2.05 1.79
S3×7.5 S ×5.7
0.09 0.04
1.10 0.85
5.63 7.42
1.72 1.60
0.28 0.24
0.40 0.40
1.20 1.00
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
TORSION PROPERTIES
1 - 153
TORSION PROPERTIES HP shapes
√ EC w GJ
Normalized Warping Constant Wno
Warping Statical Moment Sw
Qf
Qw
in.6
in.
in.2
in.4
in.3
in.3
8.02 5.40 3.60 2.01
19900 16800 14200 11200
80.2 89.8 101 120
49.9 49.2 48.5 47.8
149 128 110 88.0
38.5 33.5 29.1 23.8
97.2 84.3 72.9 59.2
HP13×100 HP ×87 HP ×73 HP ×60
6.25 4.12 2.54 1.39
11300 9430 7680 6020
68.4 77.0 88.5 106
40.9 40.2 39.6 39.0
103 87.7 72.8 57.8
29.9 25.8 21.8 17.7
76.3 65.6 55.2 44.5
HP12×84 HP ×74 HP ×63 HP ×53
4.24 2.98 1.83 1.12
7160 6170 4990 4090
66.1 73.2 84.0 97.2
35.6 35.2 34.6 34.2
75.0 65.5 54.1 44.7
23.5 20.8 17.5 14.7
59.8 52.7 44.2 37.0
HP10×57 HP ×42
1.97 0.81
2240 1540
54.3 70.2
24.1 23.4
34.8 24.7
13.1 9.64
33.2 24.2
HP8×36
0.77
578
44.1
15.4
14.0
6.62
16.8
Torsional Constant J
Warping Constant Cw
Designation
in.4
HP14×117 HP ×102 HP ×89 HP ×73
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Statical Moment
1 - 154
DIMENSIONS AND PROPERTIES
FLEXURAL-TORSIONAL PROPERTIES Channels
Designation
Torsional Constant J
Warping Constant Cw
Polar Radius of Gyration _ ro*
Flexural Constant H*
in.4
in.6
in.
No Units
C15×50 C15×40 C15×33.9
2.67 1.46 1.02
492 411 358
5.49 5.72 5.94
.937 .927 .920
C12×30 C15×25 C15×20.7
0.87 0.54 0.37
151 130 112
4.55 4.72 4.93
.919 .909 .899
C10×30 C1××25 C5××20 C10×15.3
1.23 0.69 0.37 0.21
79.3 68.4 56.9 45.6
3.63 3.75 3.93 4.19
.921 .912 .900 .883
C9×20 C9×15 C9×13.4
0.43 0.21 0.17
39.4 31.0 28.2
3.46 3.69 3.79
.899 .882 .874
C8×18.75 C9×13.75 C9×11.5
0.44 0.19 0.13
25.1 19.2 16.5
3.06 3.27 3.42
.894 .874 .862
C7×12.25 C9×9.8
0.16 0.10
11.2 9.18
2.87 3.02
.862 .846
C6×13 C9×10.5 C9×8.2
0.24 0.13 0.08
7.22 5.95 4.72
2.37 2.49 2.65
.858 .843 .824
C5×9 C9×6.7
0.11 0.06
2.93 2.22
2.10 2.26
.814 .790
C4×7.25 C9×5.4
0.08 0.04
1.24 0.92
1.75 1.89
.768 .741
C3×6 C9×5 C9×4.1
0.07 0.04 0.03
0.46 0.38 0.31
1.39 1.45 1.53
.689 .674 .656
*See LRFD Specification Appendix E3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
TORSION PROPERTIES
1 - 155
FLEXURAL-TORSIONAL PROPERTIES Channels
Designation
Torsional Constant J
Warping Constant Cw
Polar Radius of Gyration _ ro*
Flexural Constant H*
in.4
in.6
in.
No Units
MC18×58 MC10×51.9 MC10×45.8 MC10×42.7
2.81 2.03 1.45 1.23
1070 986 897 852
6.56 6.70 6.88 6.97
.944 .939 .933 .930
MC13×50 MC10×40 MC10×35 MC10×31.8
2.98 1.57 1.14 0.94
558 463 413 380
5.07 5.33 5.50 5.64
.875 .860 .849 .842
MC12×50 MC10×45 MC10×40 MC10×35 MC10×31 MC10×10.6
3.24 2.35 1.70 1.25 1.01 0.06
411 374 336 297 268 11.7
4.77 4.87 5.01 5.18 5.34 4.27
.859 .851 .842 .832 .821 .983
MC10×41.1 MC10×33.6 MC10×28.5
2.27 1.21 0.79
270 224 194
4.26 4.47 4.68
.790 .771 .752
MC10×25 MC10×22
0.64 0.51
125 111
4.46 4.63
.802 .790
MC10×8.4
0.04
3.68
.972
MC9×25.4 MC9×23.9
0.69 0.60
4.08 4.15
.770 .763
MC8×22.8 MC9×21.4 MC9×20 MC9×18.7 MC9×8.5
0.57 0.50 0.44 0.38 0.06
75.3 70.9 47.9 45.1 8.22
3.85 3.91 3.59 3.65 3.24
.716 .709 .780 .773 .910
MC7×22.7 MC9×19.1
0.63 0.41
58.5 49.4
3.53 3.71
.662 .638
MC6×18
0.38
34.6
3.46
.562
MC6×16.3 MC9×15.1
0.34 0.29
22.1 20.6
3.11 3.18
.643 .634
MC6×12
0.15
11.2
2.80
.740
7.01 104 98.2
*See LRFD Specification Appendix E3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 156
DIMENSIONS AND PROPERTIES
FLEXURAL-TORSIONAL PROPERTIES Single Angles Polar Radius of Gyration _ ro*
Flexural Constant H*
in.6
in.
No Units
×1 ×17⁄8 ×13⁄4 ×15⁄8 ×19⁄16 ×11⁄2
7.13 5.08 3.46 2.21 1.30 0.960 0.682
32.5 23.4 16.1 10.4 6.16 4.55 3.23
4.31 4.35 4.37 4.41 4.45 4.47 4.48
0.632 0.630 0.629 0.627 0.627 0.627 0.624
L8×6×1 L × × 3⁄4 L × ×19⁄16 L × ×11⁄2 L × ×17⁄16
4.35 1.90 0.822 0.584 0.396
16.3 7.28 3.20 2.28 1.55
3.89 3.96 4.01 4.02 4.04
— — — — —
L8×4×1 L8×4×17⁄8 L × ×13⁄4 L8×4×15⁄8 L × ×19⁄16 L × ×11⁄2 L8×4×17⁄16
3.68 2.48 1.61 0.933 0.704 0.501 0.328
12.9 8.89 5.75 3.42 2.53 1.80 1.22
3.77 3.79 3.82 3.85 3.86 3.88 3.89
— — — — — — —
L7×4×3⁄4 L × ×5⁄8 L × ×1⁄2 L7×4×7⁄16 L × ×3⁄8
1.47 0.873 0.459 0.300 0.200
3.33 3.36 3.38 3.40 3.42
— — — — —
Designation L8×8×11⁄8 L L L L L L
× × × × × ×
Torsional Constant J
Warping Constant Cw
in.4
3.97 2.37 1.25 0.851 0.544
*See LRFD Specification Appendix E3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
TORSION PROPERTIES
1 - 157
FLEXURAL-TORSIONAL PROPERTIES Single Angles Torsional Constant J
Warping Constant Cw
Polar Radius of Gyration _ ro*
Flexural Constant H*
in.4
in.6
in.
No Units
L6×6×1 L6×6×17⁄8 L6×6×13⁄4 L6×6×15⁄8 L6×6×19⁄16 L6×6×11⁄2 L6×6×17⁄16 L6×6×13⁄8 L6×6×15⁄16
3.68 2.51 1.61 0.954 0.704 0.501 0.340 0.218 0.129
9.24 6.41 4.17 2.50 1.85 1.32 0.899 0.575 0.338
3.19 3.22 3.26 3.29 3.31 3.32 3.34 3.36 3.38
0.637 0.632 0.629 0.628 0.627 0.627 0.627 0.626 0.625
L6×4×3⁄4 L6×4×5⁄8 L6×4×9⁄16 L6×4×1⁄2 L6×4×7⁄16 L6×4×3⁄8 L6×4×5⁄16
1.33 0.792 0.585 0.417 0.284 0.183 0.108
2.64 1.59 1.18 0.843 0.575 0.369 0.217
2.86 2.89 2.9 2.92 2.94 2.96 2.97
— — — — — — —
L6×31⁄2×1⁄2 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16
0.396 0.174 0.103
0.779 0.341 0.201
2.88 2.92 2.93
— — —
L5×5×7⁄8 L6×4×3⁄4 L6×4×5⁄8 L6×4×1⁄2 L6×4×7⁄16 L6×4×3⁄8 L6×4×5⁄16
2.07 1.33 0.792 0.417 0.284 0.183 0.108
3.53 2.32 1.40 0.744 0.508 0.327 0.193
2.65 2.68 2.71 2.74 2.77 2.79 2.81
0.634 0.634 0.630 0.630 0.629 0.627 0.626
Designation
*See LRFD Specification Appendix E3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 158
DIMENSIONS AND PROPERTIES
FLEXURAL-TORSIONAL PROPERTIES Single Angles Torsional Constant J
Warping Constant Cw
Polar Radius of Gyration _ ro*
Flexural Constant H*
in.4
in.6
in.
No Units
L5×31⁄2×3⁄4 L5×31⁄2×5⁄8 L5×31⁄2×1⁄2 L5×31⁄2×3⁄8 L5×31⁄2×5⁄16 L5×31⁄2×1⁄4
1.11 0.660 0.348 0.153 0.0905 0.0479
1.52 0.918 0.491 0.217 0.128 0.0670
2.37 2.40 2.44 2.47 2.49 2.50
— — — — — —
L5×3×1⁄2 L5×3×7⁄16 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4
0.322 0.219 0.141 0.0832 0.0438
0.444 0.304 0.196 0.116 0.0606
2.39 2.41 2.42 2.43 2.45
— — — — —
L4×4×3⁄4 L5×3×5⁄8 L5×3×1⁄2 L5×3×7⁄16 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4
1.02 0.610 0.322 0.219 0.141 0.0832 0.0438
1.12 0.680 0.366 0.252 0.162 0.0963 0.0505
2.11 2.14 2.17 2.19 2.20 2.22 2.23
0.639 0.631 0.632 0.631 0.625 0.623 0.627
L4×31⁄2×1⁄2 L5×31⁄2×3⁄8 L5×31⁄2×5⁄16 L5×31⁄2×1⁄4
0.301 0.132 0.0782 0.0412
0.302 0.134 0.0798 0.0419
2.04 2.08 2.09 2.11
— — — —
Designation
*See LRFD Specification Appendix E3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
TORSION PROPERTIES
1 - 159
FLEXURAL-TORSIONAL PROPERTIES Single Angles Torsional Constant J
Warping Constant Cw
Polar Radius of Gyration _ ro*
Flexural Constant H*
in.4
in.6
in.
No Units
L4×3×5⁄8 L4×3×1⁄2 L4×3×7⁄16 L4×3×3⁄8 L4×3×5⁄16 L4×3×1⁄4
0.529 0.281 0.192 0.123 0.0731 0.0386
0.472 0.255 0.176 0.114 0.0676 0.0356
1.91 1.95 1.96 1.98 2.00 2.01
— — — — — —
L31⁄2×31⁄2×1⁄2 L31⁄2×31⁄2×7⁄16 L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×5⁄16 L31⁄2×31⁄2×1⁄4
0.281 0.192 0.123 0.0731 0.0386
0.238 0.164 0.106 0.0634 0.0334
1.89 1.91 1.91 1.93 1.95
0.631 0.629 0.628 0.627 0.626
L31⁄2×3×1⁄2 L31⁄2×3×3⁄8 L31⁄2×3×5⁄16 L31⁄2×3×1⁄4
0.260 0.114 0.0680 0.0360
0.191 0.0858 0.0512 0.0270
1.76 1.79 1.81 1.83
— — — —
L31⁄2×21⁄2×1⁄2 L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×1⁄4
0.234 0.103 0.0322
0.159 0.0714 0.0225
1.67 1.70 1.73
— — —
L3×3×1⁄2 L4×3×7⁄16 L4×3×3⁄8 L4×3×5⁄16 L4×3×1⁄4 L4×3×3⁄16
0.234 0.160 0.103 0.0611 0.0322 0.0142
0.144 0.100 0.0652 0.0390 0.0206 0.00899
1.60 1.61 1.63 1.65 1.66 1.68
0.634 0.632 0.629 0.628 0.627 0.626
Designation
*See LRFD Specification Appendix E3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 160
DIMENSIONS AND PROPERTIES
FLEXURAL-TORSIONAL PROPERTIES Single Angles Torsional Constant J
Warping Constant Cw
Polar Radius of Gyration _ ro*
Flexural Constant H*
in.4
in.6
in.
No Units
L3×21⁄2×1⁄2 L3×21⁄2×7⁄16 L3×21⁄2×3⁄8 L3×21⁄2×5⁄16 L3×21⁄2×1⁄4 L3×21⁄2×3⁄16
0.213 0.146 0.0943 0.0560 0.0296 0.0131
0.112 0.0777 0.0507 0.0304 0.0161 0.00705
1.47 1.49 1.50 1.52 1.54 1.55
— — — — — —
L3×2×1⁄2 L2×2×3⁄8 L2×2×5⁄16 L2×2×1⁄4 L2×2×3⁄16
0.192 0.0855 0.0509 0.0270 0.0120
0.0908 0.0413 0.0248 0.0132 0.00576
1.40 1.43 1.45 1.46 1.48
— — — — —
L21⁄2×21⁄2×1⁄2 L21⁄2×21⁄2×3⁄8 L21⁄2×21⁄2×5⁄16 L21⁄2×21⁄2×1⁄4 L21⁄2×21⁄2×3⁄16
0.185 0.0816 0.0483 0.0253 0.0110
0.0791 0.0362 0.0218 0.0116 0.00510
1.31 1.34 1.36 1.37 1.39
0.639 0.632 0.630 0.628 0.627
L21⁄2×2×3⁄8 L3×21⁄2×5⁄16 L3×21⁄2×1⁄4 L3×21⁄2×3⁄16
0.0728 0.0432 0.0227 0.00990
0.0268 0.0162 0.00868 0.00382
1.22 1.24 1.25 1.27
— — — —
L2×2×3⁄8 L2×2×5⁄16 L2×2×1⁄4 L2×2×3⁄16 L2×2×1⁄8
0.0640 0.0381 0.0201 0.00880 0.00274
0.0174 0.0106 0.00572 0.00254 0.00079
1.05 1.07 1.09 1.10 1.12
0.637 0.633 0.630 0.628 0.626
Designation
*See LRFD Specification Appendix E3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
TORSION PROPERTIES
1 - 161
FLEXURAL-TORSIONAL PROPERTIES Structural Tees Polar Radius of Gyration _ ro*
Flexural Constant H*
in.6
in.
No Units
37.2 25.7 18.9 12.4
434 279 204 139
8.81 8.67 8.65 8.67
0.724 0.733 0.731 0.723
WT20×296.5** WT ×251.5** WT ×215.5 WT ×186 WT ×160.5 WT ×148.5 WT ×138.5 WT ×124.5 WT ×107.5 WT ×99.5 WT ×87
223 140 88.5 58.2 37.7 30.6 25.8 19.1 12.4 9.14 5.60
2340 1420 881 559 350 279 218 158 101 83.5 65.3
8.30 8.17 8.09 8.00 7.92 7.88 7.75 7.71 7.66 7.83 8.12
0.761 0.760 0.756 0.756 0.756 0.756 0.770 0.770 0.770 0.746 0.699
WT20×233** WT ×196** WT ×165.5 WT ×139 WT ×132 WT ×117.5 WT ×105.5 WT ×91.5 WT ×83.5 WT ×74.5
139 86.1 53.0 32.4 28.0 20.6 15.2 10.0 7.01 4.68
1360 802 485 278 233 156 113 72.1 62.9 51.9
8.39 8.27 8.19 8.07 8.02 7.88 7.84 7.79 8.02 8.24
0.680 0.678 0.674 0.676 0.680 0.690 0.690 0.691 0.658 0.626
WT18×424** WT ×399** WT ×325** WT ×263.5** WT ×219.5** WT ×196.5** WT ×179.5** WT ×164** WT ×150 WT ×140 WT ×130 WT ×122.5 WT ×115
622 527 295 163 96.7 70.7 54.3 42.1 32.0 26.2 20.7 17.3 14.3
6880 5700 3010 1570 894 637 480 363 278 226 181 151 125
8.08 8.02 7.82 7.63 7.52 7.44 7.38 7.32 7.30 7.27 7.28 7.28 7.27
0.802 0.801 0.797 0.797 0.794 0.796 0.797 0.799 0.797 0.796 0.791 0.788 0.784
Designation WT22×167.5 WT ×145 WT ×131 WT ×115
Torsional Constant J
Warping Constant Cw
in.4
*See LRFD Specification Section E3. **Group 4 or Group 5 shape. See Notes in Table 1-2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 162
DIMENSIONS AND PROPERTIES
FLEXURAL-TORSIONAL PROPERTIES Structural Tees Torsional Constant J
Warping Constant Cw
Polar Radius of Gyration _ ro*
Flexural Constant H*
in.4
in.6
in.
No Units
WT18×128 WT ×116 WT ×105 WT ×97 WT ×91 WT ×85 WT ×80 WT ×75 WT ×67.5
26.6 19.8 13.9 11.1 9.19 7.51 6.17 5.04 3.48
205 151 119 92.7 77.6 63.2 53.6 46.0 37.3
7.43 7.40 7.49 7.45 7.45 7.44 7.46 7.50 7.65
0.703 0.703 0.687 0.687 0.686 0.684 0.678 0.670 0.644
WT16.5×177** WT ×159** WT ×145.5** WT ×131.5** WT ×120.5 WT ×110.5 WT ×100.5
57.2 42.1 32.4 24.2 17.9 13.7 10.2
468 335 256 188 146 113 84.9
7.00 6.94 6.90 6.86 6.91 6.90 6.89
0.802 0.803 0.801 0.802 0.792 0.788 0.784
8.83 6.16 4.84 3.67 2.64
55.4 43.0 35.4 29.3 23.4
6.74 6.82 6.85 6.93 7.02
0.714 0.700 0.691 0.678 0.659
151 85.9 50.8 37.2 26.7 19.9 13.9 10.3 7.61
1170 636 361 257 184 132 96.4 71.2 53.0
6.65 6.54 6.40 6.34 6.31 6.25 6.27 6.25 6.25
0.819 0.815 0.817 0.818 0.815 0.817 0.809 0.806 0.802
7.27 4.85 3.98 3.21 2.49 1.88 1.42
37.6 28.5 23.9 20.5 17.3 14.3 10.5
6.10 6.19 6.20 6.24 6.31 6.38 6.34
0.716 0.698 0.693 0.683 0.669 0.654 0.655
Designation
WT16.5×84.5 WT ×76 WT ×70.5 WT ×65 WT ×59 WT15×238.5** WT ×195.5** WT ×163** WT ×146** WT ×130.5 WT ×117.5 WT ×105.5 WT ×95.5 WT ×86.5 WT15×74 WT ×66 WT ×62 WT ×58 WT ×54 WT ×49.5 WT ×45
*See LRFD Specification Section E3. **Group 4 or Group 5 shape. See Notes in Table 1-2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
TORSION PROPERTIES
1 - 163
FLEXURAL-TORSIONAL PROPERTIES Structural Tees
Designation WT13.5×269.5** WT ×224** WT ×184** WT ×153.5** WT ×140.5** WT ×129 WT ×117.5 WT ×108.5 WT ×97 WT ×89 WT ×80.5 WT ×73 WT13.5×64.5 WT ×57 WT ×51 WT ×47 WT ×42 WT12×246** WT ×204** WT ×167.5** WT ×139.5** WT ×125** WT ×114.5 WT ×103.5 WT ×96 WT ×88 WT ×81 WT ×73 WT ×65.5 WT ×58.5 WT ×52
Torsional Constant J
Warping Constant Cw
Polar Radius of Gyration _ ro*
Flexural Constant H*
in.4
in.6
in.
No Units
245 146 83.6 49.8 39.0 30.2 23.0 18.5 13.2 9.74 7.31 5.44
1740 977 532 304 232 178 135 105 74.3 57.7 42.7 31.7
6.27 6.11 5.97 5.85 5.80 5.77 5.74 5.72 5.66 5.70 5.67 5.65
0.830 0.829 0.828 0.828 0.830 0.828 0.825 0.830 0.826 0.815 0.813 0.810
5.48 5.54 5.52 5.57 5.63
0.731 0.716 0.714 0.703 0.685
5.71 5.55 5.40 5.28 5.22 5.19 5.14 5.11 5.09 5.09 5.08 5.09 5.08 5.07
0.838 0.836 0.837 0.837 0.838 0.836 0.836 0.836 0.835 0.831 0.827 0.818 0.813 0.809
5.60 3.65 2.64 2.01 1.40 223 133 76.0 45.3 33.3 25.7 19.1 15.4 12.0 9.22 6.70 4.74 3.35 2.35
24.0 17.5 12.6 10.2 7.79 1340 748 405 230 165 125 91.3 72.5 55.8 43.8 31.9 23.1 16.4 11.6
WT12×51.5 WT ×47 WT ×42 WT ×38 WT ×34
3.54 2.62 1.84 1.34 0.932
12.3 9.57 6.90 5.30 4.08
4.88 4.89 4.89 4.93 4.99
0.733 0.727 0.721 0.709 0.692
WT12×31 WT ×27.5
0.850 0.588
3.92 2.93
5.13 5.18
0.619 0.606
*See LRFD Specification Section E3. **Group 4 or Group 5 shape. See Notes in Table 1-2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 164
DIMENSIONS AND PROPERTIES
FLEXURAL-TORSIONAL PROPERTIES Structural Tees
Designation WT10.5×100.5 WT10.5×91 WT10.5×83 WT10.5×73.5 WT10.5×66 WT10.5×61 WT10.5×55.5 WT10.5×50.5
Torsional Constant J
Warping Constant Cw
Polar Radius of Gyration _ ro*
Flexural Constant H*
in.4
in.6
in.
No Units
20.6 15.4 11.9 7.69 5.62 4.47 3.40 2.60
85.4 63.0 47.3 32.5 23.4 18.4 13.8 10.4
4.67 4.64 4.59 4.64 4.61 4.58 4.56 4.54
0.859 0.859 0.861 0.847 0.845 0.846 0.846 0.846
WT10.5×46.5 WT10.5×41.5 WT10.5×36.5 WT10.5×34 WT10.5×31
3.01 2.16 1.51 1.22 0.513
9.33 6.50 4.42 3.62 2.78
4.37 4.33 4.31 4.31 4.31
0.729 0.732 0.732 0.727 0.722
WT10.5×28.5 WT10.5×25 WT10.5×22
0.884 0.570 0.383
2.50 1.89 1.40
4.36 4.44 4.49
0.665 0.640 0.623
4.42 4.36 4.30 4.23 4.19 4.14 4.10 4.06 4.03 3.99
0.875 0.873 0.874 0.875 0.873 0.875 0.872 0.872 0.874 0.874
WT9×155.5** WT9×141.5** WT9×129** WT9×117** WT9×105.5** WT9×96 WT9×87.5 WT9×79 WT9×71.5 WT9×65
87.2 66.5 51.5 39.4 29.4 22.4 17.0 12.6 9.70 7.30
339 251 189 140 102 75.7 56.5 41.2 30.7 22.8
WT9×59.5 WT9×53 WT9×48.5 WT9×43 WT9×38
5.30 3.73 2.92 2.04 1.41
17.4 12.1 9.29 6.42 4.37
4.03 4.00 3.97 3.95 3.92
0.862 0.860 0.862 0.860 0.862
WT9×35.5 WT9×32.5 WT9×30 WT9×27.5 WT9×25
1.74 1.36 1.08 0.829 0.613
3.96 3.01 2.35 1.84 1.36
3.72 3.69 3.67 3.68 3.66
0.751 0.755 0.756 0.749 0.748
WT9×23 WT9×20 WT9×17.5
0.609 0.403 0.252
1.20 0.788 0.598
3.67 3.65 3.74
0.694 0.692 0.662
*See LRFD Specification Section E3. **Group 4 or Group 5 shape. See Notes in Table 1-2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
TORSION PROPERTIES
1 - 165
FLEXURAL-TORSIONAL PROPERTIES Structural Tees Torsional Constant J
Warping Constant Cw
Polar Radius of Gyration _ ro*
Flexural Constant H*
in.4
in.6
in.
No Units
WT8×50 WT ×44.5 WT ×38.5 WT ×33.5
3.85 2.72 1.78 1.19
10.4 7.19 4.61 3.01
3.62 3.60 3.56 3.53
0.877 0.877 0.877 0.879
WT8×28.5 WT ×25 WT ×22.5 WT ×20 WT ×18
1.10 0.760 0.655 0.396 0.271
1.99 1.34 0.974 0.673 0.516
3.30 3.28 3.27 3.24 3.30
0.770 0.770 0.767 0.769 0.745
WT8×15.5 WT ×13
0.229 0.130
0.366 0.243
3.26 3.32
0.695 0.667
5.67 5.47 5.36 5.25 5.15 5.06 4.98
0.959 0.966 0.966 0.966 0.967 0.967 0.967
4.92 4.87 4.81 4.77 4.71 4.66 4.61 4.56 4.52 4.49 4.46 4.42 4.40
0.968 0.968 0.968 0.968 0.968 0.969 0.969 0.970 0.970 0.971 0.971 0.971 0.971
Designation
WT7×404** WT ×365** WT ×332.5** WT ×302.5** WT ×275** WT ×250** WT ×227.5**
918 714 555 430 331 255 196
6970 5250 3920 2930 2180 1620 1210
WT7×213** WT ×199** WT ×185** WT ×171** WT ×155.5** WT ×141.5** WT ×128.5** WT ×116.5** WT ×105.5 WT ×96.5 WT ×88 WT ×79.5 WT ×72.5
164 135 110 88.3 67.5 51.8 39.3 29.6 22.2 17.3 13.2 9.84 7.56
991 801 640 502 375 281 209 154 113 87.2 65.2 47.9 36.3
*See LRFD Specification Section E3. **Group 4 or Group 5 shape. See Notes in Table 1-2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 166
DIMENSIONS AND PROPERTIES
FLEXURAL-TORSIONAL PROPERTIES Structural Tees Torsional Constant J
Warping Constant Cw
Polar Radius of Gyration _ ro*
Flexural Constant H*
in.4
in.6
in.
No Units
WT7×66 WT ×60 WT ×54.5 WT ×49.5 WT ×45
6.13 4.67 3.55 2.68 2.03
26.6 20.0 15.0 11.1 8.31
4.21 4.18 4.16 4.14 4.12
0.966 0.966 0.968 0.968 0.968
WT7×41 WT ×37 WT ×34 WT ×30.5
2.53 1.94 1.51 1.10
5.63 4.19 3.21 2.29
3.25 3.21 3.19 3.18
0.912 0.917 0.915 0.915
WT7×26.5 WT ×24 WT ×21.5
0.970 0.726 0.524
1.46 1.07 0.751
2.89 2.87 2.85
0.868 0.866 0.866
WT7×19 WT ×17 WT ×15
0.398 0.284 0.190
0.554 0.400 0.287
2.87 2.86 2.90
0.800 0.793 0.772
WT7×13 WT ×11
0.179 0.104
0.207 0.134
2.82 2.86
0.713 0.691
Designation
*See LRFD Specification Section E3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
TORSION PROPERTIES
1 - 167
FLEXURAL-TORSIONAL PROPERTIES Structural Tees
Designation WT6×168** WT ×152.5** WT ×139.5** WT ×126** WT ×115** WT ×105** WT ×95 WT ×85 WT ×76 WT ×68 WT ×60 WT ×53 WT ×48 WT ×43.5 WT ×39.5 WT ×36 WT ×32.5
Torsional Constant J
Warping Constant Cw
Polar Radius of Gyration _ ro*
Flexural Constant H*
in.4
in.6
in.
No Units
120 92.0 70.9 53.5 41.6 32.2 24.4 17.7 12.8 9.22 6.43 4.55 3.42 2.54 1.92 1.46 1.09
481 356 267 195 148 112 82.1 58.3 41.3 28.9 19.7 13.6 10.1 7.34 5.43 4.07 2.97
4.07 4.00 3.94 3.88 3.84 3.79 3.74 3.69 3.65 3.61 3.58 3.54 3.51 3.49 3.46 3.45 3.43
0.958 0.959 0.957 0.958 0.958 0.958 0.959 0.960 0.960 0.960 0.959 0.961 0.961 0.960 0.960 0.961 0.960
WT6×29 WT ×26.5
1.05 0.788
2.08 1.53
3.01 3.00
0.944 0.940
WT6×25 WT ×22.5 WT ×20
0.889 0.656 0.476
1.23 0.885 0.620
2.67 2.64 2.62
0.899 0.898 0.901
WT6×17.5 WT ×15 WT ×13
0.369 0.228 0.150
0.437 0.267 0.174
2.56 2.55 2.54
0.835 0.830 0.826
WT6×11 WT ×9.5 WT ×8 WT ×7
0.146 0.0899 0.0511 0.0350
0.137 0.0934 0.0678 0.0493
2.52 2.54 2.62 2.64
0.683 0.663 0.624 0.610
*See LRFD Specification Section E3. **Group 4 or Group 5 shape. See Notes in Table 1-2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 168
DIMENSIONS AND PROPERTIES
FLEXURAL-TORSIONAL PROPERTIES Structural Tees Torsional Constant J
Warping Constant Cw
Polar Radius of Gyration _ ro*
Flexural Constant H*
in.4
in.6
in.
No Units
WT5×56 WT5×50 WT5×44 WT5×38.5 WT5×34 WT5×30 WT5×27 WT5×24.5
7.50 5.41 3.75 2.55 1.78 1.23 0.909 0.693
16.9 11.9 8.02 5.31 3.62 2.46 1.78 1.33
3.04 3.00 2.98 2.93 2.92 2.89 2.87 2.85
0.963 0.964 0.964 0.964 0.965 0.965 0.966 0.966
WT5×22.5 WT5×19.5 WT5×16.5
0.753 0.487 0.291
0.981 0.616 0.356
2.44 2.42 2.40
0.940 0.936 0.927
WT5×15 WT5×13 WT5×11
0.310 0.201 0.119
0.273 0.173 0.107
2.17 2.15 2.17
0.848 0.848 0.831
WT5×9.5 WT5×8.5 WT5×7.5 WT5×6
0.116 0.0776 0.0518 0.0272
0.0796 0.061 0.0475 0.0255
2.08 2.12 2.16 2.16
0.728 0.702 0.672 0.662
Designation
*See LRFD Specification Section E3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
TORSION PROPERTIES
1 - 169
FLEXURAL-TORSIONAL PROPERTIES Structural Tees Torsional Constant J
Warping Constant Cw
Polar Radius of Gyration _ ro*
Flexural Constant H*
in.4
in.6
in.
No Units
WT4×33.5 WT ×29 WT ×24 WT ×20 WT ×17.5 WT ×15.5
2.52 1.66 0.979 0.559 0.385 0.268
3.56 2.28 1.30 0.715 0.480 0.327
2.41 2.39 2.34 2.31 2.29 2.29
0.962 0.961 0.966 0.961 0.963 0.961
WT4×14 WT ×12
0.268 0.173
0.230 0.144
1.97 1.96
0.935 0.936
WT4×10.5 WT ×9
0.141 0.0855
0.0916 0.0562
1.80 1.81
0.877 0.863
WT4×7.5 WT ×6.5 WT ×5
0.0679 0.0433 0.0212
0.0382 0.0269 0.0114
1.72 1.74 1.69
0.762 0.732 0.748
WT3×12.5 WT ×10 WT ×7.5
0.229 0.120 0.0504
0.171 0.0858 0.0342
1.76 1.73 1.71
0.952 0.952 0.937
WT3×8 WT ×6 WT ×4.5
0.111 0.0449 0.0202
0.0426 0.0178 0.0074
1.37 1.37 1.34
0.880 0.846 0.852
WT2.5×9.5 WT ×8
0.154 0.0930
0.0775 0.0453
1.44 1.43
0.964 0.962
WT2×6.5
0.0750
0.0213
1.16
0.947
Designation
*See LRFD Specification Section E3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 170
DIMENSIONS AND PROPERTIES
FLEXURAL-TORSIONAL PROPERTIES Structural Tees Polar Radius of Gyration _ ro*
Flexural Constant H*
in.6
in.
No Units
0.0307 0.0196
0.0330 0.0252
2.69 2.67
0.564 0.572
MT5×4.5 MT ×4
0.0213 0.0116
0.0133 0.00916
2.21 2.21
0.584 0.582
MT4×3.25
0.0146
0.00421
1.73
0.611
MT2.5×9.45**
0.165
0.0732
1.37
0.951
Torsional Constant J
Warping Constant Cw
in.4
MT6×5.9 MT ×5.4
Designation
*See LRFD Specification Section E3. **This shape has tapered flanges while other MT shapes have parallel flanges.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
TORSION PROPERTIES
1 - 171
FLEXURAL-TORSIONAL PROPERTIES Structural Tees
Designation
Torsional Constant J
Warping Constant Cw
Polar Radius of Gyration _ ro*
Flexural Constant H*
in.4
in.6
in.
No Units
ST12×60.5 ST ×53
6.38 5.04
27.5 15.0
5.14 4.87
0.640 0.685
ST12×50 ST ×45 ST ×40
3.76 3.01 2.43
19.5 12.1 6.94
5.27 5.12 4.89
0.584 0.616 0.657
ST10×48 ST ×43
4.15 3.30
15.0 9.17
4.36 4.20
0.625 0.661
ST10×37.5 ST ×33
2.28 1.78
7.21 4.02
4.28 4.10
0.612 0.655
ST9×35 ST ×27.35
2.05 1.18
7.03 2.26
4.01 3.71
0.583 0.662
ST7.5×25 ST ×21.45
1.05 0.767
2.02 0.995
3.22 3.04
0.637 0.689
ST6×25 ST ×20.4
1.39 0.872
1.97 0.787
2.60 2.42
0.663 0.733
ST6×17.5 ST ×15.9
0.538 0.449
0.556 0.364
2.49 2.39
0.697 0.731
ST5×17.5 ST ×12.7
0.633 0.300
0.725 0.173
2.23 1.98
0.653 0.768
ST4×11.5 ST ×9.2
0.271 0.167
0.168 0.0642
1.74 1.59
0.707 0.789
ST3×8.625 ST ×6.25
0.182 0.0838
0.0772 0.0197
1.36 1.21
0.706 0.820
ST2.5×5
0.0568
0.0100
1.02
0.842
ST2×4.75 ST ×3.85
0.0589 0.0364
0.00995 0.00457
0.907 0.841
0.800 0.872
ST1.5×3.75 ST ×2.85
0.0440 0.0220
0.00496 0.00189
0.737 0.672
0.832 0.913
*See LRFD Specification Section E3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 172
DIMENSIONS AND PROPERTIES
FLEXURAL-TORSIONAL PROPERTIES Double Angles Long Legs Vertical
Short Legs Vertical
Back to Back of Angles, in. 3⁄ 8
0
Back to Back of Angles, in.
3⁄ 4
3⁄ 8
0
3⁄ 4
Designation
ro*
H*
ro*
H*
ro*
H*
ro*
H*
ro*
H*
ro*
H*
L8×8×11⁄8 L × ×1 L × × 7⁄8 L × × 3⁄4 L × × 5⁄8 L × × 1⁄2
4.58 4.58 4.58 4.58 4.58 4.59
0.837 0.833 0.831 0.828 0.825 0.822
4.68 4.68 4.68 4.68 4.68 4.69
0.844 0.840 0.838 0.835 0.832 0.829
4.79 4.79 4.78 4.78 4.78 4.78
0.851 0.847 0.845 0.842 0.839 0.836
4.58 4.58 4.58 4.58 4.58 4.59
0.837 0.833 0.831 0.828 0.825 0.822
4.68 4.68 4.68 4.68 4.68 4.69
0.844 0.840 0.838 0.835 0.832 0.829
4.79 4.79 4.78 4.78 4.78 4.78
0.851 0.847 0.845 0.842 0.839 0.836
L8×6×1 L × × 3⁄4 L × × 1⁄2
4.07 4.08 4.11
0.721 0.714 0.708
4.15 4.16 4.18
0.731 0.724 0.718
4.23 4.24 4.26
0.742 0.735 0.728
4.19 4.17 4.17
0.925 0.919 0.914
4.31 4.29 4.28
0.929 0.924 0.919
4.44 4.41 4.40
0.933 0.928 0.923
L8×4×1 L × × 3⁄4 L × × 1⁄2
3.87 3.89 3.93
0.566 0.562 0.558
3.93 3.94 3.97
0.578 0.573 0.568
3.99 4.00 4.03
0.591 0.586 0.580
4.12 4.08 4.05
0.982 0.980 0.977
4.26 4.22 4.19
0.983 0.981 0.979
4.41 4.36 4.33
0.984 0.982 0.980
L7×4×3⁄4 L × ×1⁄2 L × ×3⁄8
3.42 3.45 3.46
0.609 0.604 0.602
3.48 3.5 3.51
0.623 0.616 0.614
3.55 3.57 3.57
0.637 0.629 0.627
3.58 3.55 3.54
0.968 0.965 0.963
3.71 3.68 3.67
0.971 0.967 0.965
3.85 3.82 3.80
0.973 0.969 0.968
L6×6×1 L × × 7⁄8 L × × 3⁄4 L × × 5⁄8 L × × 1⁄2 L × × 3⁄8
3.43 3.43 3.44 3.44 3.44 3.44
0.843 0.838 0.833 0.830 0.827 0.822
3.54 3.54 3.54 3.54 3.54 3.54
0.852 0.847 0.842 0.839 0.836 0.831
3.65 3.65 3.65 3.64 3.64 3.64
0.861 0.856 0.852 0.848 0.845 0.841
3.43 3.43 3.44 3.44 3.44 3.44
0.843 0.838 0.833 0.830 0.827 0.822
3.54 3.54 3.54 3.54 3.54 3.54
0.852 0.847 0.842 0.839 0.836 0.831
3.65 3.65 3.65 3.64 3.64 3.64
0.861 0.856 0.852 0.848 0.845 0.841
L6×4×3⁄4 L × ×5⁄8 L × ×1⁄2 L × ×3⁄8
2.98 2.98 3.00 3.01
0.672 0.668 0.663 0.661
3.05 3.05 3.06 3.07
0.687 0.683 0.678 0.675
3.13 3.13 3.14 3.15
0.704 0.699 0.693 0.690
3.10 3.09 3.08 3.07
0.948 0.946 0.943 0.940
3.23 3.21 3.20 3.19
0.952 0.950 0.947 0.944
3.36 3.34 3.34 3.32
0.956 0.954 0.951 0.948
L6×31⁄2×3⁄8 L × 1⁄2×5⁄16
2.97 2.97
0.610 0.610
3.02 3.02
0.624 0.624
3.09 3.09
0.640 0.639
3.05 3.03
0.961 0.960
3.17 3.16
0.964 0.963
3.31 3.29
0.967 0.966
L5×5×7⁄8 L × ×3⁄4 L × ×1⁄2 L × ×3⁄8 L × ×5⁄16
2.87 2.85 2.86 2.87 2.87
0.844 0.839 0.830 0.824 0.821
2.97 2.96 2.96 2.96 2.97
0.855 0.850 0.841 0.835 0.833
3.09 3.07 3.07 3.07 3.07
0.865 0.861 0.852 0.846 0.844
2.87 2.85 2.86 2.87 2.87
0.844 0.839 0.830 0.824 0.821
2.97 2.96 2.96 2.96 2.97
0.855 0.850 0.841 0.835 0.833
3.09 3.07 3.07 3.07 3.07
0.865 0.861 0.852 0.846 0.844
*See LRFD Specification Section E3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
TORSION PROPERTIES
1 - 173
FLEXURAL-TORSIONAL PROPERTIES Double Angles Long Legs Vertical
Short Legs Vertical
Back to Back of Angles, in.
Back to Back of Angles, in.
3⁄ 8
0
3⁄ 4
3⁄ 8
0
3⁄ 4
Designation
ro*
H*
ro*
H*
ro*
H*
ro*
H*
ro*
H*
ro*
H*
L5×31⁄2×3⁄4 L5×31⁄2×1⁄2 L5×31⁄2×3⁄8 L5×31⁄2×5⁄16
2.50 2.51 2.52 2.53
0.697 0.685 0.682 0.679
2.58 2.59 2.59 2.60
0.715 0.703 0.699 0.695
2.67 2.67 2.67 2.68
0.734 0.722 0.717 0.713
2.61 2.59 2.58 2.58
0.943 0.936 0.932 0.930
2.74 2.71 2.70 2.70
0.948 0.941 0.938 0.936
2.87 2.84 2.83 2.82
0.953 0.947 0.943 0.942
L5×3×1⁄2 L3×3×3⁄8 L3×3×5⁄16 L3×3×1⁄4
2.45 2.46 2.47 2.48
0.626 0.623 0.621 0.618
2.52 2.52 2.53 2.54
0.645 0.641 0.638 0.634
2.59 2.60 2.60 2.61
0.665 0.661 0.657 0.653
2.55 2.54 2.54 2.53
0.962 0.959 0.957 0.956
2.69 2.67 2.67 2.66
0.965 0.963 0.961 0.960
2.82 2.80 2.80 2.79
0.969 0.966 0.965 0.964
L4×4×3⁄4 L3×3×5⁄8 L3×3×1⁄2 L3×3×3⁄8 L3×3×5⁄16 L3×3×1⁄4
2.29 2.29 2.29 2.29 2.29 2.29
0.847 0.839 0.834 0.827 0.824 0.823
2.40 2.40 2.39 2.39 2.39 2.39
0.861 0.853 0.848 0.841 0.838 0.837
2.52 2.51 2.50 2.50 2.50 2.49
0.873 0.867 0.862 0.855 0.852 0.850
2.29 2.29 2.29 2.29 2.29 2.29
0.847 0.839 0.834 0.827 0.824 0.823
2.40 2.40 2.39 2.39 2.39 2.39
0.861 0.853 0.848 0.841 0.838 0.837
2.52 2.51 2.50 2.50 2.50 2.49
0.873 0.867 0.862 0.855 0.852 0.850
L4×31⁄2×1⁄2 L5×31⁄2×3⁄8 L5×31⁄2×5⁄16 L5×31⁄2×1⁄4
2.15 2.15 2.15 2.16
0.783 0.774 0.774 0.770
2.24 2.24 2.24 2.24
0.801 0.792 0.791 0.787
2.34 2.34 2.34 2.34
0.818 0.809 0.808 0.805
2.17 2.17 2.17 2.17
0.881 0.875 0.872 0.870
2.29 2.28 2.28 2.28
0.892 0.887 0.884 0.882
2.41 2.40 2.40 2.39
0.903 0.898 0.895 0.893
L4×3×1⁄2 L3×3×3⁄8 L3×3×5⁄16 L3×3×1⁄4
2.04 2.04 2.05 2.06
0.719 0.714 0.710 0.706
2.12 2.12 2.13 2.13
0.740 0.735 0.731 0.726
2.22 2.21 2.22 2.22
0.762 0.757 0.752 0.747
2.10 2.09 2.09 2.09
0.924 0.919 0.917 0.914
2.22 2.21 2.21 2.20
0.933 0.928 0.925 0.923
2.35 2.34 2.33 2.33
0.940 0.935 0.933 0.931
L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×1⁄4
2.00 2.01
0.831 0.824
2.10 2.10
0.847 0.839
2.22 2.21
0.862 0.855
2.00 2.01
0.831 0.824
2.10 2.10
0.847 0.839
2.22 2.21
0.862 0.855
L31⁄2×3×3⁄8 L5×31⁄2×5⁄16 L5×31⁄2×1⁄4
1.86 1.87 1.87
0.771 0.766 0.762
1.95 1.96 1.96
0.791 0.787 0.782
2.06 2.06 2.06
0.812 0.807 0.803
1.89 1.89 1.89
0.884 0.881 0.878
2.00 2.00 2.00
0.897 0.894 0.891
2.13 2.12 2.12
0.909 0.906 0.903
L31⁄2×21⁄2×3⁄8 L31⁄2×31⁄2×1⁄4
1.76 1.77
0.696 0.691
1.84 1.85
0.721 0.715
1.94 1.93
0.748 0.740
1.82 1.81
0.932 0.927
1.94 1.93
0.941 0.936
2.08 2.06
0.948 0.944
L3×3×1⁄2 L3×3×3⁄8 L3×3×5⁄16 L3×3×1⁄4 L3×3×3⁄16
1.72 1.72 1.72 1.72 1.72
0.842 0.834 0.830 0.825 0.822
1.83 1.82 1.82 1.82 1.82
0.860 0.852 0.848 0.844 0.841
1.95 1.94 1.93 1.93 1.93
0.877 0.869 0.866 0.862 0.858
1.72 1.72 1.72 1.72 1.72
0.842 0.834 0.830 0.825 0.822
1.83 1.82 1.82 1.82 1.82
0.860 0.852 0.848 0.844 0.841
1.95 1.94 1.93 1.93 1.93
0.877 0.869 0.866 0.862 0.858
*See LRFD Specification Section E3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 174
DIMENSIONS AND PROPERTIES
FLEXURAL-TORSIONAL PROPERTIES Double Angles Long Legs Vertical
Short Legs Vertical
Back to Back of Angles, in. 3⁄ 8
0
Back to Back of Angles, in.
3⁄ 4
3⁄ 8
0
3⁄ 4
Designation
ro*
H*
ro*
H*
ro*
H*
ro*
H*
ro*
H*
ro*
H*
L3×21⁄2×3⁄8 L3×21⁄2×1⁄4 L3×21⁄2×3⁄16
1.58 1.59 1.59
0.763 0.754 0.750
1.67 1.67 1.67
0.789 0.779 0.775
1.78 1.78 1.77
0.813 0.804 0.800
1.61 1.61 1.61
0.896 0.889 0.885
1.73 1.72 1.72
0.910 0.903 0.899
1.86 1.84 1.84
0.922 0.916 0.912
L3×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 L3×2×3⁄16
1.49 1.50 1.50 1.50
0.672 0.667 0.664 0.661
1.57 1.57 1.57 1.57
0.704 0.698 0.694 0.690
1.66 1.66 1.66 1.66
0.737 0.730 0.726 0.721
1.55 1.55 1.54 1.54
0.949 0.946 0.943 0.940
1.68 1.68 1.67 1.66
0.956 0.954 0.951 0.949
1.82 1.82 1.80 1.80
0.963 0.961 0.958 0.956
L21⁄2×21⁄2×3⁄8 L21⁄2×21⁄2×5⁄16 L21⁄2×21⁄2×1⁄4 L21⁄2×21⁄2×3⁄16
1.43 1.43 1.43 1.43
0.839 0.834 0.829 0.825
1.54 1.54 1.53 1.53
0.861 0.856 0.851 0.847
1.66 1.66 1.65 1.65
0.880 0.876 0.871 0.867
1.43 1.43 1.43 1.43
0.839 0.834 0.829 0.825
1.54 1.54 1.53 1.53
0.861 0.856 0.851 0.847
1.66 1.66 1.65 1.65
0.880 0.876 0.871 0.867
L21⁄2×2×3⁄8 L3×21⁄2×5⁄16 L3×21⁄2×1⁄4 L3×21⁄2×3⁄16
1.29 1.30 1.30 1.31
0.752 0.746 0.741 0.736
1.39 1.39 1.39 1.39
0.785 0.779 0.773 0.767
1.50 1.50 1.50 1.49
0.816 0.810 0.804 0.798
1.33 1.33 1.33 1.32
0.912 0.908 0.903 0.899
1.45 1.45 1.45 1.44
0.927 0.923 0.919 0.915
1.59 1.58 1.58 1.57
0.939 0.935 0.932 0.928
L2×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 L3×2×3⁄16 L3×2×1⁄8
1.15 1.15 1.15 1.15 1.15
0.846 0.840 0.834 0.828 0.822
1.26 1.26 1.25 1.25 1.25
0.873 0.867 0.861 0.855 0.850
1.39 1.38 1.38 1.37 1.37
0.896 0.890 0.885 0.880 0.875
1.15 1.15 1.15 1.15 1.15
0.846 0.840 0.834 0.828 0.822
1.26 1.26 1.25 1.25 1.25
0.873 0.867 0.861 0.855 0.850
1.39 1.38 1.38 1.37 1.37
0.896 0.890 0.885 0.880 0.875
*See LRFD Specification Section E3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
SURFACE AREAS AND BOX AREAS
1 - 175
SURFACE AREAS AND BOX AREAS W shapes Square feet per foot of length
Case A Case B Case C Case D
Designation
Case A Case B Case C Case D
Designation
W44×335 W44×290 W44×262 W44×230 W44 W40×593 W44×503 W44×431 W44×372 W44×321 W44×297 W44×277 W44×249 W44×215 W44×199 W44×174
11.0 11.0 10.9 10.9
12.4 12.3 12.2 12.2
8.67 8.59 8.53 8.46
10.0 9.91 9.84 9.78
10.9 10.7 10.5 10.4 10.3 10.3 10.3 10.2 10.2 10.1 10.0
12.3 12.1 11.9 11.8 11.6 11.6 11.6 11.5 11.5 11.4 11.3
8.56 8.38 8.23 8.11 8.01 7.96 7.93 7.88 7.81 7.76 7.68
9.95 9.75 9.58 9.45 9.33 9.28 9.25 9.19 9.12 9.07 8.99
W40×466 W44×392 W44×331 W44×278 W44×264 W44×235 W36×211 W36×183 W36×167 W36×149
9.79 9.61 9.47 9.35 9.32 9.28 9.22 9.17 9.11 9.05
10.8 10.6 10.5 10.3 10.3 10.3 10.2 10.2 10.1 10.0
8.13 7.96 7.81 7.69 7.66 7.61 7.55 7.48 7.42 7.35
9.18 8.99 8.83 8.69 8.66 8.60 8.53 8.47 8.40 8.34
W36×848 W36×798 W36×650 W36×527 W36×439 W36×393 W36×359 W36×328 W36×300 W36×280 W36×260 W36×245 W36×230
11.1 11.0 10.7 10.4 10.3 10.2 10.1 10.0 9.99 9.95 9.90 9.87 9.84
12.6 12.5 12.1 11.9 11.7 11.6 11.5 11.4 11.4 11.3 11.3 11.2 11.2
8.59 8.49 8.21 7.97 7.79 7.70 7.63 7.57 7.51 7.47 7.42 7.39 7.36
10.1 9.99 9.67 9.41 9.20 9.10 9.02 8.95 8.90 8.85 8.80 8.77 8.73
W36×256 W44×232 W44×210 W44×194 W36×182 W36×170 W36×160 W36×150 W36×135
9.02 8.96 8.91 8.88 8.85 8.82 8.79 8.76 8.71
10.0 9.97 9.93 9.89 9.85 9.82 9.79 9.76 9.70
7.26 7.20 7.13 7.09 7.06 7.03 7.00 6.97 6.92
8.27 8.21 8.15 8.10 8.07 8.03 8.00 7.97 7.92
W33×354 W36×318 W36×291 W36×263 W36×241 W36×221 W33×201
9.66 9.58 9.52 9.46 9.42 9.38 9.33
11.0 10.9 10.8 10.8 10.7 10.7 10.6
7.27 7.19 7.13 7.07 7.02 6.97 6.93
8.61 8.52 8.46 8.39 8.34 8.29 8.24
W33×169 W36×152 W36×141 W36×130 W36×118
8.30 8.27 8.23 8.20 8.15
9.26 9.23 9.19 9.15 9.11
6.60 6.55 6.51 6.47 6.43
7.55 7.51 7.47 7.43 7.39
W30×477 W36×391 W36×326 W36×292 W36×261 W36×235 W36×211 W36×191 W36×173
9.30 9.11 8.96 8.88 8.81 8.75 8.71 8.66 8.62
10.6 10.4 10.2 10.2 10.1 10.0 9.97 9.92 9.87
7.02 6.83 6.68 6.61 6.53 6.47 6.42 6.37 6.32
8.35 8.13 7.96 7.88 7.79 7.73 7.67 7.62 7.57
W30×148 W36×132 W36×124 W36×116 W36×108 W36×99 W36×90
7.53 7.49 7.47 7.44 7.41 7.37 7.35
8.40 8.37 8.34 8.31 8.28 8.25 8.22
5.99 5.93 5.90 5.88 5.84 5.81 5.79
6.86 6.81 6.78 6.75 6.72 6.68 6.66
Case A: Shape perimeter, minus one flange surface. Case B: Shape perimeter. Case C: Box perimeter, equal to one flange surface plus twice the depth. Case D: Box perimeter, equal to two flange surfaces plus twice the depth.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 176
DIMENSIONS AND PROPERTIES
SURFACE AREAS AND BOX AREAS W shapes Square feet per foot of length
Case A Case B Case C Case D
Designation
Case A Case B Case C Case D
Designation
W27×539 W ×448 W ×368 W ×307 W ×281 W ×258 W ×235 W ×217 W ×194 W ×178 W ×161 W ×146
8.82 8.61 8.42 8.27 8.21 8.15 8.09 8.04 7.98 7.95 7.91 7.87
10.09 9.86 9.64 9.47 9.40 9.34 9.27 9.22 9.15 9.12 9.08 9.03
6.69 6.48 6.29 6.14 6.08 6.02 5.96 5.91 5.85 5.81 5.77 5.73
7.96 7.73 7.51 7.34 7.27 7.21 7.14 7.09 7.02 6.98 6.94 6.89
W27×129 W ×114 W ×102 W ×94 W ×84
6.92 6.88 6.85 6.82 6.78
7.75 7.72 7.68 7.65 7.61
5.44 5.39 5.35 5.32 5.28
6.27 6.23 6.18 6.15 6.11
W24×492 W ×408 W ×335 W ×279 W ×250 W ×229 W ×207 W ×192 W ×176 W ×162 W ×146 W ×131 W ×117 W ×104
8.07 7.86 7.66 7.51 7.44 7.38 7.32 7.27 7.23 7.22 7.17 7.12 7.08 7.04
9.25 9.01 8.79 8.62 8.54 8.47 8.40 8.35 8.31 8.30 8.24 8.19 8.15 8.11
6.12 5.91 5.71 5.56 5.49 5.43 5.37 5.32 5.28 5.25 5.20 5.15 5.11 5.07
7.29 7.06 6.84 6.67 6.59 6.52 6.45 6.40 6.35 6.33 6.27 6.22 6.18 6.14
W24×103 W ×94 W ×84 W ×76 W ×68
6.18 6.16 6.12 6.09 6.06
6.93 6.92 6.87 6.84 6.80
4.84 4.81 4.77 4.74 4.70
5.59 5.56 5.52 5.49 5.45
W24×62 W ×55
5.57 5.54
6.16 6.13
4.54 4.51
5.13 5.10
W21×201 W18×182 W18×166 W18×147 W18×132 W18×122 W18×111 W18×101
6.75 6.69 6.65 6.61 6.57 6.54 6.51 6.48
7.80 7.74 7.68 7.66 7.61 7.57 7.54 7.50
4.89 4.83 4.78 4.72 4.68 4.65 4.61 4.58
5.93 5.87 5.82 5.76 5.71 5.68 5.64 5.61
W21×93 W18×83 W18×73 W ×68 W18×62
5.54 5.50 5.47 5.45 5.42
6.24 6.20 6.16 6.14 6.11
4.31 4.27 4.23 4.21 4.19
5.01 4.96 4.92 4.90 4.87
W21×57 W18×50 W18×44
5.01 4.97 4.94
5.56 5.51 5.48
4.06 4.02 3.99
4.60 4.56 4.53
W18×311 W18×283 W18×258 W18×234 W18×211 W18×192 W18×175 W18×158 W18×143 W18×130
6.41 6.32 6.24 6.17 6.10 6.03 5.97 5.92 5.87 5.83
7.41 7.31 7.23 7.14 7.06 6.99 6.92 6.86 6.81 6.76
4.72 4.63 4.56 4.48 4.41 4.35 4.29 4.23 4.18 4.14
5.72 5.62 5.54 5.45 5.37 5.30 5.24 5.17 5.12 5.07
W18×119 W18×106 W18×97 W ×86 W18×76
5.81 5.77 5.74 5.70 5.67
6.75 6.70 6.67 6.62 6.59
4.10 4.06 4.03 3.99 3.95
5.04 4.99 4.96 4.91 4.87
W18×71 W18×65 W18×60 W ×55 W18×50
4.85 4.82 4.80 4.78 4.76
5.48 5.46 5.43 5.41 5.38
3.71 3.69 3.67 3.65 3.62
4.35 4.32 4.30 4.27 4.25
Case A: Shape perimeter, minus one flange surface. Case B: Shape perimeter. Case C: Box perimeter, equal to one flange surface plus twice the depth. Case D: Box perimeter, equal to two flange surfaces plus twice the depth.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
SURFACE AREAS AND BOX AREAS
1 - 177
SURFACE AREAS AND BOX AREAS W shapes Square feet per foot of length
Case A Case B Case C Case D
Designation
Case A Case B Case C Case D
Designation
W18×46 W ×40 W ×35
4.41 4.38 4.34
4.91 4.88 4.84
3.51 3.48 3.45
4.02 3.99 3.95
W16×100 W ×89 W ×77 W ×67
5.28 5.24 5.19 5.16
6.15 6.10 6.05 6.01
3.70 3.66 3.61 3.57
4.57 4.52 4.47 4.43
W16×57 W ×50 W ×45 W ×40 W ×36
4.39 4.36 4.33 4.31 4.28
4.98 4.95 4.92 4.89 4.87
3.33 3.30 3.27 3.25 3.23
3.93 3.89 3.86 3.83 3.81
W16×31 W ×26
3.92 3.89
4.39 4.35
3.11 3.07
3.57 3.53
W14×808 W ×730 W ×665 W ×605 W ×550 W ×500 W ×455
7.74 7.61 7.46 7.32 7.19 7.07 6.96
9.28 9.10 8.93 8.77 8.62 8.49 8.36
5.35 5.23 5.08 4.94 4.81 4.68 4.57
6.90 6.72 6.55 6.39 6.24 6.10 5.98
W14×426 W ×398 W ×370 W ×342 W ×311 W ×283 W ×257 W ×233 W ×211 W ×193 W ×176 W ×159 W ×145
6.89 6.81 6.74 6.67 6.59 6.52 6.45 6.38 6.32 6.27 6.22 6.18 6.14
8.28 8.20 8.12 8.03 7.94 7.86 7.78 7.71 7.64 7.58 7.53 7.47 7.43
4.50 4.43 4.36 4.29 4.21 4.13 4.06 4.00 3.94 3.89 3.84 3.79 3.76
5.89 5.81 5.73 5.65 5.56 5.48 5.40 5.32 5.25 5.20 5.15 5.09 5.05
W14×132 W ×120 W ×109 W ×99 W ×90
5.93 5.90 5.86 5.83 5.81
7.16 7.12 7.08 7.05 7.02
3.67 3.64 3.60 3.57 3.55
4.90 4.86 4.82 4.79 4.76
W14×82 W14×74 W14×68 W ×61
4.75 4.72 4.69 4.67
5.59 5.56 5.53 5.50
3.23 3.20 3.18 3.15
4.07 4.04 4.01 3.98
W14×53 W14×48 W14×43
4.19 4.16 4.14
4.86 4.83 4.80
2.99 2.97 2.94
3.66 3.64 3.61
W14×38 W14×34 W14×30
3.93 3.91 3.89
4.50 4.47 4.45
2.91 2.89 2.87
3.48 3.45 3.43
W14×26 W ×22
3.47 3.44
3.89 3.86
2.74 2.71
3.16 3.12
W12×336 W ×305 W14×279 W14×252 W14×230 W14×210 W14×190 W14×170 W14×152 W ×136 W14×120 W14×106 W14×96 W14×87 W14×79 W14×72 W14×65
5.77 5.67 5.59 5.50 5.43 5.37 5.30 5.23 5.17 5.12 5.06 5.02 4.98 4.95 4.92 4.89 4.87
6.88 6.77 6.68 6.58 6.51 6.43 6.36 6.28 6.21 6.15 6.09 6.03 5.99 5.96 5.93 5.90 5.87
3.92 3.82 3.74 3.65 3.58 3.52 3.45 3.39 3.33 3.27 3.21 3.17 3.13 3.10 3.07 3.05 3.02
5.03 4.93 4.83 4.74 4.66 4.58 4.51 4.43 4.37 4.30 4.24 4.19 4.15 4.11 4.08 4.05 4.02
W12×58 W14×53
4.39 4.37
5.22 5.20
2.87 2.84
3.70 3.68
W12×50 W14×45 W ×40
3.90 3.88 3.86
4.58 4.55 4.52
2.71 2.68 2.66
3.38 3.35 3.32
Case A: Shape perimeter, minus one flange surface. Case B: Shape perimeter. Case C: Box perimeter, equal to one flange surface plus twice the depth. Case D: Box perimeter, equal to two flange surfaces plus twice the depth.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 178
DIMENSIONS AND PROPERTIES
SURFACE AREAS AND BOX AREAS W shapes Square feet per foot of length
Case A Case B Case C Case D
Designation
Case A Case B Case C Case D
Designation
W12×35 W12×30 W12×26
3.63 3.60 3.58
4.18 4.14 4.12
2.63 2.60 2.58
3.18 3.14 3.12
W12×22 W12×19 W12×16 W12×14
2.97 2.95 2.92 2.90
3.31 3.28 3.25 3.23
2.39 2.36 2.33 2.32
2.72 2.69 2.66 2.65
W10×112 W12×100 W12×88 W12×77 W12×68 W12×60 W12×54 W12×49
4.30 4.25 4.20 4.15 4.12 4.08 4.06 4.04
5.17 5.11 5.06 5.00 4.96 4.92 4.89 4.87
2.76 2.71 2.66 2.62 2.58 2.54 2.52 2.50
3.63 3.57 3.52 3.47 3.42 3.38 3.35 3.33
W10×45 W12×39 W12×33
3.56 3.53 3.49
4.23 4.19 4.16
2.35 2.32 2.29
3.02 2.98 2.95
W10×30 W12×26 W12×22
3.10 3.08 3.05
3.59 3.56 3.53
2.23 2.20 2.17
2.71 2.68 2.65
W10×19 W12×17 W12×15 W12×12
2.63 2.60 2.58 2.56
2.96 2.94 2.92 2.89
2.04 2.02 2.00 1.97
2.38 2.35 2.33 2.30
W8×67 W8×58 W8×48 W8×40 W8×35 W8×31
3.42 3.37 3.32 3.28 3.25 3.23
4.11 4.06 4.00 3.95 3.92 3.89
2.19 2.14 2.09 2.05 2.02 2.00
2.88 2.83 2.77 2.72 2.69 2.67
W8×28 W8×24
2.87 2.85
3.42 3.39
1.89 1.86
2.43 2.40
W8×21 W8×18
2.61 2.59
3.05 3.03
1.82 1.79
2.26 2.23
W8×15 W8×13 W8×10
2.27 2.25 2.23
2.61 2.58 2.56
1.69 1.67 1.64
2.02 2.00 1.97
W6×25 W ×20 W8×15
2.49 2.46 2.42
3.00 2.96 2.92
1.57 1.54 1.50
2.08 2.04 2.00
W6×16 W8×12 W8×9
1.98 1.93 1.90
2.31 2.26 2.23
1.38 1.34 1.31
1.72 1.67 1.64
W5×19 W8×16
2.04 2.01
2.45 2.43
1.28 1.25
1.70 1.67
W4×13
1.63
1.96
1.03
1.37
Case A: Shape perimeter, minus one flange surface. Case B: Shape perimeter. Case C: Box perimeter, equal to one flange surface plus twice the depth. Case D: Box perimeter, equal to two flange surfaces plus twice the depth.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
CAMBER
1 - 179
CAMBER Beams and Girders
Camber and sweep are used to form a desired curvature in either rolled beams or welded girders. Camber denotes a curve in the vertical plane. Beams and girders can be cambered to compensate for the anticipated deflection or for architectural reasons. Note that the required camber is determined at service (unfactored) load levels. Sweep denotes a curve in the horizontal plane. Camber and sweep may be induced through cold bending or through the application of heat. The minimum radius for cold cambering in members up to a nominal depth of 30 inches is between 10 and 14 times the depth of the member; deeper members will require a larger minimum radius. Cold bending may be used to provide sweep in members to practically any radius desired. Note that a length limit of 40 to 50 feet is practical. Heat cambering, sweeping, and straightening are provided through controlled heat application. The member is rapidly heated in selected areas which tend to expand, but are restrained by the adjacent cooler areas, causing plastic deformation of the heated areas and a change in the shape of the cooled member. The mechanical properties of steels are largely unaffected by such heating operations, provided the maximum temperature does not exceed 1,100°F for quenched and tempered alloy steels, and 1,300°F for other steels. The temperature should be carefully checked by temperature-indicating crayons or other suitable means during the heating process. Cambering and sweeping induces residual stresses similar to those that develop in rolled structural shapes as elements of the shape cool from the rolling temperature at different rates. In general, these residual stresses do not affect the ultimate strength of structural members. Additionally, the effect of residual stresses is incorporated in the provisions of the LRFD Specification. Note that when a cambered beam bearing on a wall or other support is loaded, expansion of the unrestrained end must be considered. In Figure 1-5(a), the end will move a distance ∆, where ∆=
4Cd L
If instead the cambered beam is supported on a simple shear connection at both ends, the top and bottom flange will each move a distance of one-half ∆ since end rotation will occur approximately about the neutral axis. The designer should be aware of the magnitude of these movements and make provisions to accommodate them. Figure 1-5(a) considers the geometry of a girder in the horizontal position, and Figure 1-5(b) illustrates the condition when the girder is not level. Trusses
“Cambering” of trusses is accomplished by geometric relocation of panel points and adjustment of member lengths; it does not involve physical cold bending or the application of heat as with beams and girders. The following discussion of cambering to compensate for the anticipated deflection of a truss is applicable for any parabolic condition; large-radius circular curves will be approximated very closely by the technique described. Cambering to compensate for the axial deformation of the members of a truss is beyond the scope of this Manual; refer to a textbook on mechanics of materials. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 180
DIMENSIONS AND PROPERTIES
Distances approximately equal for small angles
Distances equal for parabolic curve, approximately equal for circular curve. See sketch below.
∆
∆ θ
d C
90°
C L /2
∆
L /2
tanθ = 2C
Fixed End
L /2
∆ = d tanθ
Unrestrained End
∆ = 4Cd L
θ 2θ for circular curve 2C for parabolic curve (a) Beam or Girder Ends at
Same Elevations
4Cd ∆= L
4Cd ∆= L
∆ = 4Cd L
∆ = 4Cd L d
B Grade angle
B L
L approx
.
(b) Beam or Girder Ends at Different Elevations
Fig. 1-5. Camber for beams and girders. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
B
A+B A
B
A
Horiz. line
Vert.
A
°
90
A
B
°
e
B 90
Grade lin
A+B A
C
A
CAMBER
1 - 181
The usual method of providing camber in building trusses is to progressively raise each panel point. The lengths of the verticals are not changed, but the lengths of the diagonals are calculated on the basis of the adjusted elevation for the several panel points. For any simple-span truss, the offset above a straight base line, at the several panel points, can be computed from the following equations if the vertical curve forming the camber is taken as a parabola. 2
2
B B D = C − C = C 1 − A A where A = Horizontal distance from end panel point to mid-span of the truss (half the truss span). B = Horizontal distance from mid-span of the truss to panel point for which offset is to be determined. C = Required mid-span camber. D = Offset from the base-line at panel point corresponding to distance B. A and B must be expressed in the same units; similarly C and D must be expressed in the same units, but not necessarily the same units as A and B. When the truss is divided into any number of approximately equal panels, it may be convenient to express distances A and B in panel lengths. For the truss of Figure 1-6(a) with eight equal panels, distance A is taken as four panel lengths. Assuming the camber at the midpoint is specified as 11⁄2-in., the offset at panel point 1, where B equals three panel lengths, is: 2
3 D = 1 -in. 1 − 4 = 21⁄32-in. 1⁄ 2
The offset at panel point 2, where B equals two panel lengths, is: 2
2 D = 1 -in. 1 − 4 = 11⁄8-in. 1⁄ 2
The offset at panel point 3, where B equals one panel length, is: 2
1 D = 1 -in. 1 − 4 = 113⁄32-in. 1⁄ 2
Finally, the offset at panel point 4, where B equals zero, is D = C = 11⁄2-in. An alternative method of determining the amount of camber at intermediate panel points when all panel points are approximately the same distance apart is as follows. Using the truss in Figure 1-6(a) as an example, sketch the camber diagram and number the panel points, starting with the first panel point from the end of the truss, from 1 to 4, AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 182
DIMENSIONS AND PROPERTIES
as shown in Figure 1-6(b) on line A. Next, on line B, reverse the numbering as shown. Finally, on line C, enter the product of the numbers on lines A and B. The camber at any panel point is the amount of camber at the centerline of the truss multiplied by the fraction whose numerator is the figure on line C at the given panel point, and whose denominator is the figure on line C at the center line of the truss. Thus, at panel point 1, the camber is 7⁄
16
× 11⁄2jin. = 21⁄32jin.
at panel point 2, the camber is 12⁄
16
× 11⁄2jin. = 11⁄8jin.
at panel point 3, the camber is 15⁄
16
× 11⁄2jin. = 113⁄32jin.
and at panel point 4, the camber is 16⁄
16
× 11⁄2jin. = 11⁄2jin.
cL
4
3 2 1 21/ 32
0
1 1/2
1 13/32
11/8
Baseline
EQ
EQ
EQ
EQ
(a) Calculated camber ordinates by formula
1
2
3
cL 4
line A line B
1 x7
2 x6
3 x5
4 x4
line C
7
12
15
16
Panel point
(b) Alternative calculation method for approximately equal panels
Fig. 1-6. Camber for trusses. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STANDARD MILL PRACTICE
1 - 183
STANDARD MILL PRACTICE General Information
Rolling structural shapes and plates involves such factors as roll wear, subsequent roll dressing, temperature variations, etc., which cause the finished product to vary from published profiles. Such variations are limited by the provisions of the American Society for Testing and Materials Specification A6. Contained in this section is a summary of these provisions, not a reproduction of the complete specification. In its entirety, A6 covers a group of common requirements, which, unless otherwise specified in the purchase order or in an individual specification, apply to rolled steel plates, shapes, sheet piling, and bars. As indicated in Table 1-1, carbon steel refers to ASTM designations A36 and A529; high-strength, low-alloy steel refers to designations A242, A572, and A588; alloy steel refers to designation A514; and low-alloy steel refers to A852. For further information on mill practices, including permissible variations for rolled tees, zees, and bulb angles in structural and bar sizes, pipe, tubing, sheets, and strip, and for other grades of steel, see ASTM A6, A53, A500, A568, and A618; the Steel Products Manuals of the Iron and Steel Society (American Institute of Mining, Metallurgical, and Petroleum Engineers); and producers’ catalogs. The data on spreading rolls to increase areas and weights, and mill cambering of beams, is not a part of ASTM A6. Additional material on mill practice is included in the descriptive material preceding the “Dimensions and Properties” tables for shapes and plates. Letter symbols representing dimensions on sketches shown herein are in accordance with ASTM A6, AISI and mill catalogs and not necessarily as defined by the general nomenclature of this manual. Methods of increasing areas and weights by spreading rolls Cambering of rolled beams . . . . . . . . . . . . . . . . . . Positions for measuring camber and sweep . . . . . . . . . W Shapes, permissible variations . . . . . . . . . . . . . . S Shapes, M Shapes, and Channels, permissible variations . Tees split from W , M, and S Shapes, permissible variations Angles split from Channels, permissible variations . . . . . Angles, structural size, permissible variations . . . . . . . . Angles, bar size, permissible variations . . . . . . . . . . . Steel Pipe and Tubing, permissible variations . . . . . . . . Plates, permissible variations for sheared, length and width . Plates, permissible variations for universal mill, length . . . Plates, permissible variations for universal mill, width . . . Plates, permissible variations for camber . . . . . . . . . . Plates, permissible variations for flatness . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
1-183 1-186 1-187 1-188 1-190 1-191 1-191 1-192 1-193 1-194 1-196 1-196 1-196 1-197 1-198
Methods of Increasing Areas and Weights by Spreading Rolls
W Shapes
To vary the area and weight within a given nominal size, the flange width, the flange thickness, and the web thickness are changed as shown in Figure 1-7(a). AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 184
DIMENSIONS AND PROPERTIES
S Shapes and American Standard Channels
To vary the area and weight within a given nominal size, the web thickness and the flange width are changed by an equal amount as shown in Figures 1-7(b) and (c). Angles
To vary area and weight for a given leg length, the thickness of each leg is changed. Note that the leg length is changed slightly by this method (Figure 1-7(d)).
Constant for a given nominal size
(a)
Constant for a given nominal size (except S24 and S20)
(b)
Constant for a given nominal size
(c)
(d) Fig. 1-7. Varying areas and weights. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STANDARD MILL PRACTICE
1 - 185
Cambering of Rolled Beams
All beams are straightened after rolling to meet permissible variations for sweep and camber listed hereinafter for W shapes and S shapes. The following data refer to the subsequent cold cambering of beams to produce a predetermined dimension. The maximum lengths that can be cambered depend on the length to which a given section can be rolled, with a maximum of 100 feet. Table 1-10 outlines the maximum and minimum induced camber of W shapes and S shapes. Consult the producer for specific camber and/or lengths outside the above listed available lengths and sections. Mill camber in beams of less depth than tabulated should not be specified. A single minimum value for camber, within the ranges shown above for the length ordered, should be specified. Camber is measured at the mill and will not necessarily be present in the same amount in the section of beam as received due to release of stress induced during the cambering operation. In general 75 percent of the specified camber is likely to remain. Camber will approximate a simple regular curve nearly the full length of the beam, or between any two points specified. Camber is ordinarily specified by the ordinate at the mid-length of the portion of the beam to be curved. Ordinates at the other points should not be specified. Although mill cambering to achieve reverse or other compound curves is not considered practical, fabricating shop facilities for cambering by heat can accomplish such results as well as form regular curves in excess of the limits tabulated above. Refer to the earlier section Effect of Heat of Steel for further information.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 186
DIMENSIONS AND PROPERTIES
Table 1-10. Cambering of Rolled Beams Maximum and Minimum Induced Camber Sections, Nominal Depth, in.
Specified Length of Beam, ft Over 30 to 42, incl.
Over 42 to 52, incl.
Over 52 to 65, incl.
Over 65 to 85, incl.
Over 85 to 100, incl.
Max. and Min. Camber Acceptable, in. W shapes, 24 and over
W shapes, 14 to 21, incl. and S shapes, 12 in. and over
1 to 2, incl. 3⁄ 4
to 21⁄2, incl.
1 to 3, incl.
2 to 4, incl.
3 to 5, incl.
3 to 6, incl.
1 to 3, incl.
—
—
—
Permissible Variations for Camber Ordinate Lengths
Plus Variation 1⁄
50 ft and less Over 50 ft
1⁄ -in. 2
2-in.
1⁄ -in. 8
plus for each 10 ft or fraction thereof in excess of 50 ft
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Minus Variation 0 0
STANDARD MILL PRACTICE
1 - 187
Table 1-11. Positions for Measuring Camber and Sweep
Camber
Sweep
Camber
Sweep*
Horizontal surface
W SHAPES
Camber
S SHAPES and M SHAPES
Sweep*
Camber
Horizontal surface
Horz
Camber
onta
CHANNELS
ANGLES
l sur
face
TEES
*Due to the extreme variations in flexibility of these shapes, straightness tolerances for sweep are subject to negotiations between manufacturer and purchaser for individual sections involved.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 188
DIMENSIONS AND PROPERTIES
Table 1-12. W Shapes, HP Shapes B
1/ 2 B±
B
1/ 2 B±
E
E
T′
C
T′
C
A
A
T
T 1/2 B±E
1/ 2 B±
E
Permissible Variations in Cross Section Section Nominal Size, in.
A, Depth, in.
B, Fig. Width, in.
Over Theoretical
Under Theoretical
Over Theoretical
To 12, inc.
1⁄
2
1⁄ 8
1⁄ 4
3⁄
Over 12
1⁄
8
1⁄ 8
1⁄ 4
3⁄
T+T′ Flanges, out of square, Max, in.
E a, Web off Center, Max, in.
C, Max. Depth at any Crosssection over Theoretical Depth, in.
16
1⁄ 4
3⁄ 16
1⁄
4
16
5⁄
3⁄ 16
1⁄
4
Under Theoretical
16
Permissible Variations in Length Variations from Specified Length for Lengths for Given, in. 30 ft and Under W Shapes
Over 30 ft
Over
Under
Over
Under
Beams 24 in. and under in nominal depth
3⁄
8
3⁄ 8
3⁄
1 8 plus ⁄16 for each additional 5 ft or fraction thereof
3⁄ 8
Beams over 24 in. nom. depth; all columns
1⁄
2
1⁄ 2
1⁄
1⁄ 2
1 2 plus ⁄16 for each additional 5 ft or fraction thereof
Notes: aVariation of 5⁄ in. max. for sections over 426 lb / ft. 16
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Continued on next page
STANDARD MILL PRACTICE
1 - 189
Table 1-12 (cont.). WP Shapes, HP Shapes Other Permissible Variations Area and weight variation: ±2.5 percent theorectical or specified amount. Ends out-of-square: 1⁄64-in. per in. of depth, or of flange width if it is greater than the depth.
Camber and Sweep Permissible Variation, in. Sizes
Length
Sizes with flange width equal to or greater than 6 in.
All
Sizes with flange width less than 6 in.
All
45 ft. and under
Certain sections with a flange width approx. equal to depth & specified on order as b columns
Over 45 ft.
Camber 1⁄ 8
1⁄ 8
in. ×
Sweep in. ×
(total length ft.) 10
(total length ft.) 10
1⁄ 8
in. ×
(total length ft.) 5
(total length ft.) with 3⁄8 in. max. 10
1⁄ 8
in. ×
3⁄ 8
(total length ft. − 45) in. + 1⁄8 in. × 10
bApplies only to W8×31 and heavier, W10×49 and heavier, W12×65 and heavier, W14×90 and heavier. If the other sections are specified on the order as columns, the tolerance will be subject to negotiation with the manufacturer.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 190
DIMENSIONS AND PROPERTIES
Table 1-13. S Shapes, M Shapes, and Channels Permissible Variations in Cross Section B B
T′
T′
*
A
A
T
T
* Back of square and centerline of web to be parallel when measuring “out-of-square”
A, Depth in.a
Section
T + T ′b, Out of Square per Inch of Over Under Over Under B, in. Theoretical Theoretical Theoretical Theoretical
Nominal Size in.
S shapes 3 to 7, incl. Over 7 to 14, and M incl. shapes Over 14 to 24, incl.
1⁄ 2 1⁄ 8
1⁄ 16 3⁄ 32
1⁄ 8 5⁄ 32
1⁄ 8 5⁄ 32
1⁄
3⁄
16
1⁄ 8
3⁄ 16
3⁄ 16
1⁄
32
32 1⁄ 8
1⁄ 16 3⁄ 32
1⁄ 8 1⁄ 8
1⁄ 8 5⁄ 32
1⁄
32
3⁄
1⁄ 8
1⁄ 8
3⁄ 16
1⁄
3⁄
Channels 3 to 4, incl. Over 7 to 14, incl. Over 14
B, Flange Width, in.
16
1⁄
1⁄
32 32
32 32
Permissible Variations in Length Variations from Specified Length for Lengths Given, in. Over 30 to 40 ft., incl.
to 30 ft., incl. Section S shapes, M shapes and Channels
Over 40 to 50 ft., incl.
Over
Under
Over
Under
Over
1⁄
1⁄ 4
3⁄ 4
1⁄
1
2
4
Under 1⁄
4
Over 50 to 65 ft., incl.
Over 65 ft.
Over
Under
Over
Under
11⁄8
1⁄ 4
11⁄4
1⁄ 4
Other Permissible Variations
Area and weight variation: ±2.5 percent theoretical or specified amount. Ends out-of square: S shapes and channels 1⁄64-in. per in. of depth. total length,ft Camber = 1⁄8-in. × 5 Notes: aA is measured at center line of web for beams; and at back of web for channels. bT + T′ applies when flanges of channels are toed in or out.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STANDARD MILL PRACTICE
1 - 191
Table 1-14. Tees Split from W, M, and S Shapes, Angles Split from Channels Permissible Variations in Depth A
A
A
Dimension A may be approximately one-half beam or channel depth, or any dimension resulting from off-center splitting, or splitting on two lines as specified on the order. Depth of Beam from which Tees or Angles are Split
Variations in Depth A Over and Under Tees
Angles
To 6 in., excl.
1⁄ 8
1⁄ 8
6 to 16, excl.
3⁄ 16
3⁄ 16
16 to 20, excl.
1⁄ 4
1⁄ 4
20 to 24, excl.
5⁄ 16
—
24 and over
3⁄ 8
—
The above variations for depths to tees or angles include the permissible variations in depth for the beams and channels before splitting.
Other Permissible Variations Other permissible variations in cross section as well as permissible variations in length, area, and weight variation, and ends out-of-square will correspond to those of the beam or channel before splitting, except total length,ft Camber = 1⁄8-in. × 5
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 192
DIMENSIONS AND PROPERTIES
Table 1-15. Angles, Structural Size Permissible Variations in Cross Section T
B
B
T
B Length of Leg, in. Nominal Size, in.a
Section Angles
Over Theoretical
Under Theoretical
T, Out of Square per in. of B, in.
1⁄ 8
3⁄ 32
b 3⁄ 128
3 to 4, incl. Over 4 to 6, incl.
1⁄ 8
1⁄ 8
b 3⁄ 128
Over 6
3⁄ 16
1⁄ 8
b 3⁄ 128
Permissible Variations in Length Variations from Specified Length for Lengths Given, in. Over 30 to 40 ft., incl.
to 30 ft., incl. Section Angles
Over 40 to 50 ft., incl.
Over 50 to 65 ft., incl.
Over 65 ft.
Over
Under
Over
Under
Over
Under
Over
Under
Over
Under
1⁄ 2
1⁄ 4
3⁄ 4
1⁄ 4
1
1⁄ 4
11⁄8
1⁄ 4
11⁄4
1⁄ 4
Other Permissible Variations Area and weight variation: ±2.5 percent theoretical or specified amount. Ends out-of square: 3⁄128-in. per in. of leg length, or 11⁄2 degrees. Variations based on the longer leg of unequal angle. total length,ft Camber = 1⁄8-in. × , applied to either leg 5 Notes; aFor unequal leg angles, longer leg determines classification. 1 b1⁄ 128 in. per in. = 1 ⁄2 deg.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STANDARD MILL PRACTICE
1 - 193
Table 1-16. Angles, Bar Size* Permissible Variation in Cross Section T
B
B
a
Specified Length of Leg, in.
T
Variations from Thickness for Thicknesses Given, Over and Under, in. 3⁄ 16
and Under
Over 3⁄16 to 3⁄ incl. 8
1 and Under
0.008
0.010
Over 1 to 2, incl.
0.010
0.010
Over 2 to 3, excl.
0.012
0.015
Over 3⁄8
B Length of T, Out of Leg Over Square per and Under, in. Inch of B, in. 1⁄ 32
b 3⁄ 128
0.012
3⁄ 64
b 3⁄ 128
0.015
1⁄ 16
b 3⁄ 128
Permissible Variations in Length Variations Over Specified Length for Lengths Given No Variation Under Section All sizes of barsize angles
50 to 10 ft. excl.
10 to 20 ft. excl.
20 to 30 ft. excl.
30 to 40 ft. excl.
40 to 65 ft. excl.
5⁄ 8
1
11⁄2
2
21⁄2
Other Permissible Variations total length,ft 5 Straightness: Because of warpage, permissible variations for straightness do not apply to bars if any subsequent heating operation has been performed. Ends out-of-square: 3⁄128-in. per inch of leg length or 11⁄2 degrees. Variation based on longer leg of an unequal angle. Camber: 1⁄4-in. in any 5 feet, or 1⁄4 in. ×
Notes: *A member is ‘‘bar size’’ when its greatest cross-sectional dimension is less than three inches. aFor unequal leg angles, longer leg determines classification. 1 b1⁄ 128 in. per in. = 1 ⁄2 degrees.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 194
DIMENSIONS AND PROPERTIES
Table 1-17. Steel Pipe and Tubing Dimensions and Weight Tolerances Round Tubing and Pipe (see also Table 1-4) ASTM A53 Weight—The weight of the pipe as specified in Table X2 and Table X3 (ASTM Specification A53) shall not vary by more than ±10 percent. Note that the weight tolerance of ±10 percent is determined from the weights of the customary lifts of pipe as produced for shipment by the mill, divided by the number of feet of pipe in the lift. On pipe sizes over four inches where individual lengths may be weighed, the weight tolerance is applicable to the individual length. Diameter—For pipe two inches and over in nominal diameter, the outside diameter shall not vary more than ±1 percent from the standard specified. Thickness—The minimum wall thickness at any point shall not be more than 12.5 percent under the nominal wall thickness specified. ASTM 500 Diameter—For pipe two inches and over in nominal diameter, the outside diameter shall not vary more than ±0.75 percent from the standard specified. Thickness—The wall thickness at any point shall not be more than 10 percent under or over the nominal wall thickness specified. ASTM A501 and ASTM 618 Outside dimensions—For round hot-formed structural tubing two inches and over in nominal size, the outside diameter shall not vary more than ±1 percent from the standard specified. Weight (A501 only)—The weight of structural tubing shall be less than the specified value by more than 3.5 percent. Mass (A618 only)—The mass of structural tubing shall not be less than the specified value by more than 3.5 percent. Length—Structural tubing is commonly produced in random mill lengths and in definite cut lengths. When cut lengths are specified for structural tubing, the length tolerances shall be in accordance with the following table: Over 22 to 44 ft, incl.
22 ft and under
Length tolerance for specified cut lengths, in.
Over
Under
Over
Under
1⁄
1⁄
3⁄
1⁄
2
4
4
4
Straightness—The permissible variation for straightness of structural tubing shall be 1⁄8-in. times the number of feet of total length divided by 5. Continued on next page
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STANDARD MILL PRACTICE
1 - 195
Table 1-17 (cont.). Steel Pipe and Tubing Dimensions and Weight Tolerances Square and Rectangular Tubing (see also Table 1-4) ASTM A500 and ASTM A618 Outside Dimensions—The specified dimensions, measured across the flats at positions at least two inches from either end-of-square or rectangular tubing and including an allowance for convexity or concavity, shall not exceed the plus and minus tolerance shown in the following table: a
Largest Outside Dimension Across Flats, in.
Tolerance Plus an Minus, in.
21⁄2 and under Over 21⁄2 to 31⁄2, incl. Over 31⁄2 to 51⁄2, incl. Over 51⁄2
0.020 0.025 0.030 1 percent
aThe respective outside dimension tolerances
include the allowances for convexity and concavity.
Lengths—Structural tubing is commonly produced in random lengths, in multiple lengths, and in definite cut lengths. When cut lengths are specified for structural tubing, the length tolerances shall be in accordance with the following table: 22 ft and under
Length tolerance for specified cut lengths, in.
Over 22 to 44 ft, incl.
Over
Under
Over
Under
1⁄
1⁄
3⁄
1⁄
2
4
4
4
Mass (A618 only)—The mass of structural tubing shall not be less than the specified value by more than 3.5 percent. Straightness—The permissible variation for straightness of structural tubing shall be 1⁄8-in. times the number of feet of total length divided by five. Squareness of sides—For square or rectangular structural tubing, adjacent sides may deviate from 90 degrees by a tolerance of plus or minus two degrees maximum. Radius of corners—For square or rectangular structural tubing, the radius of any outside corner of the section shall not exceed three times the specified wall thickness. Twists—The tolerances for twist or variation with respect to axial alignment of the section, for square and rectangular structural tubing, shall be as shown in the following table: Specified Dimension of Longest Side, in.
Maximum Twist per 3 ft of Length, in.
11⁄
2 and under Over 11⁄2 to 21⁄2, incl. Over 21⁄2 to 4, incl. Over 4 to 6 incl. Over 6 to 8, incl. Over 8
0.050 0.062 0.075 0.087 0.100 0.112
Twist is measured by holding down one end of a square or rectangular tube on a flat surface plate with the bottom side of the tube parallel to the surface plate and noting the height that either corner, at the opposite end of the bottom side of the tube, extends above the surface plate. Wall thickness (A500 only)—The tolerance for wall thickness exclusive of the weld area shall be plus and minus 10 percent of the nominal wall thickness specified. The wall thickness is to be measured at the center of the flat.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 196
DIMENSIONS AND PROPERTIES
Table 1-18. Rectangular Sheared Plates and Universal Mill Plates Permissible Variations in Width and Length for Sheared Plates (11⁄2-in. and under in thickness) Permissible Variations in Length Only for Universal Mill Plates (21⁄2-in. and under in thickness) Specified Dimensions, in.
Variations over Specified Width and Length for Thickness, in., and Equivalent Weights, lb per sq. ft., Given To 3⁄8 excl. To 15.3, excl.
Length To 120, excl.
Width
to 5⁄8 excl.
15.3 to 25.5, excl.
5⁄ 8
to 1, excl.
1 to 2, incl.a
25.5 to 40.8, excl.
40.8 to 81.7, incl.
Width Length Width Length Width Length Width Length
To 60, excl. 60 to 84, excl. 84 to 108, excl 108 and over
120 to 240, excl. To 60, excl. 60 to 84, excl. 84 to 108, excl. 108 and over 240 to 360, excl. To 60, excl. 60 to 84, excl. 84 to 108, excl. 108 and over
3⁄ 8 7⁄ 16 1⁄ 2 5⁄ 8
1⁄ 2 5⁄ 8 3⁄ 4 7⁄ 8
7⁄ 16 1⁄ 2 5⁄ 8 3⁄ 4
3⁄
3⁄
1⁄
1⁄
16 5⁄ 8
1
9⁄
3⁄ 1⁄
8 2
9⁄ 16 11⁄ 16
480 to 600, excl. To 60, excl. 60 to 84, excl. 84 to 108, excl. 108 and over
7⁄
To 60, excl. 60 to 84, excl. 84 to 108, excl. 108 and over
4
3⁄
7⁄
600 to 720, excl. To 60, excl. 60 to 84, excl. 84 to 108, excl. 108 and over
8 2
360 to 480, excl. To 60, excl. 60 to 84, excl. 84 to 108, excl. 108 and over
720 and over, excl.
3⁄ 8
16 1⁄ 2 9⁄ 16 3⁄ 4 16 1⁄ 2 5⁄ 8 3⁄ 4 1⁄ 5⁄ 5⁄ 7⁄
2 8 8 8
9⁄
16 3⁄ 4 3⁄ 4
1
7⁄
4 8
5⁄
11⁄
2 8
16 3⁄ 4
1 1 1 11 ⁄8
1⁄
11 ⁄8 11 ⁄4 11 ⁄4 13 ⁄8
1⁄
11 ⁄4 13 ⁄8 13 ⁄8 11 ⁄2
1⁄
11 ⁄4 13 ⁄8 13 ⁄8 11 ⁄2
5⁄
2 2 2 2
3⁄
5⁄ 3⁄ 7⁄ 5⁄ 3⁄ 7⁄ 5⁄ 3⁄ 7⁄ 3⁄ 3⁄
2 8 4 8 2 8 4 8 2 8 4 8 8 4 4
1 7⁄ 7⁄
4 8 8
11 ⁄8
5⁄ 8
11⁄
16
7⁄
8
1 7⁄ 7⁄
15 ⁄
8 8 16
11 ⁄8
1⁄ 2
5⁄ 3⁄
7⁄ 5⁄ 3⁄
13 ⁄ 7⁄
11 ⁄8 11 ⁄8 11 ⁄8 11 ⁄4
5⁄
11 ⁄4 13 ⁄8 13 ⁄8 11 ⁄2
5⁄
11 ⁄2 11 ⁄2 11 ⁄2 15 ⁄8
5⁄
17 ⁄8 17 ⁄8 17 ⁄8 2
3⁄
21 ⁄8 21 ⁄8 21 ⁄8 23 ⁄8
3⁄ 7⁄
8 4 8 8 4 16 8 8 4 8
1 3⁄ 7⁄
8 4 8
1 3⁄ 7⁄
8 4 8
1 7⁄ 7⁄
4 8 8
11 ⁄8 7⁄
8
1 1 11 ⁄4
3⁄ 4 7⁄ 8
5⁄ 8 3⁄ 4
1 11 ⁄8
1 11 ⁄8
1 1 11 ⁄8 11 ⁄4
3⁄
11 ⁄4 11 ⁄4 13 ⁄8 13 ⁄8 13 ⁄8 11 ⁄2 11 ⁄2 15 ⁄8 15 ⁄8 15 ⁄8 15 ⁄8 13 ⁄4
7⁄
4 8
1 11 ⁄8 3⁄ 7⁄
4 8
1 11 ⁄4 3⁄ 7⁄
4 8
1 11 ⁄4 3⁄ 7⁄
4 8
1 11 ⁄4 7⁄
1 1 11 ⁄ 8 11 ⁄ 4 11 ⁄ 8 11 ⁄ 4 13 ⁄ 8 13 ⁄ 8 11 ⁄ 2 11 ⁄ 2 11 ⁄ 2 13 ⁄ 4 15 ⁄ 8 15 ⁄ 8 17 ⁄ 8 17 ⁄ 8 17 ⁄ 8 17 ⁄ 8 17 ⁄ 8 17 ⁄ 8
17 ⁄8 17 ⁄8 17 ⁄8 21 ⁄4
1 11 ⁄8 11 ⁄4
21 ⁄ 4 21 ⁄ 4 21 ⁄ 4 21 ⁄ 2
21 ⁄4 21 ⁄4 21 ⁄4 21 ⁄2
1 11 ⁄8 11 ⁄4 13 ⁄8
23 ⁄ 4 23 ⁄ 4 23 ⁄ 4 3
8
Notes: aPermissible variations in length apply also to Universal Mill plates up to 12 in. width for thicknesses over 2 to 21⁄2-in., incl. except for alloy steels up to 13⁄4-in. thick. Permissible variations under specified width and length, 1⁄4-in. Table applies to all steels listed in ASTM A6.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
STANDARD MILL PRACTICE
1 - 197
Table 1-19. Rectangular Sheared Plates and Universal Mill Plates Permissible Variations from Flatness (Carbon Steel Only) Variations from Flatness for Specified Widths, in.
Specified Thickness, in.
To 36 excl.
To 1⁄4, excl. 1⁄ to 3⁄ , excl. 4 8 3⁄ to 1⁄ , excl. 8 2 1⁄ to 3⁄ , excl. 2 4 3⁄ to 1, excl. 4 1 to 2, excl. 2 to 4, excl. 4 to 6, excl. 6 to 8, excl.
9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 5⁄ 16 3⁄ 8 7⁄ 16
36 to 48, 48 to 60, 60 to 72, 72 to 84, 84 to 96, 96 to 108, 108 to excl. excl. excl. excl. excl. excl. 120, excl. 3⁄ 4 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 1⁄ 2 3⁄ 8 7⁄ 16 1⁄ 2
15⁄ 3⁄ 5⁄
16 4
8 9⁄ 16 9⁄ 16 1⁄ 2 7⁄ 16 1⁄ 2 1⁄ 2
11⁄4 15⁄ 16 5⁄ 8 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 5⁄ 8
13⁄8 11⁄8 3⁄ 4 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2 9⁄ 16 11⁄ 16
11⁄2 11⁄4 7⁄ 8 3⁄ 4 5⁄ 8 5⁄ 8 1⁄ 2 9⁄ 16 3⁄ 4
15⁄8 13⁄8 1 1 3⁄ 4 5⁄ 8 1⁄ 2 5⁄ 8 7⁄ 8
13⁄4 11⁄2 11⁄8 1 7⁄ 8 5⁄ 8 9⁄ 16 3⁄ 4 7⁄ 8
Permissible Variations in Camber for Carbon Steel Sheared and Gas Cut Rectangular Plates Maximum permissible camber, in. (all thicknesses) = 1⁄8-in. ×
total length,ft 5
Permissible Variations in Camber for Carbon Steel Universal Mill Plates, High-Strength Low-Alloy Steel Sheared and Gas Cut Rectangular Plates, Universal Mill Plates, Special Cut Plates Dimension, in. Thickness To 2, incl. Over 2 to 15, incl. Over 2 to 15, incl.
Width
Camber for Thicknesses and Widths Given
All To 30, incl. Over 30 to 60, incl.
1⁄ in. × (total length, ft / 5) 8 3⁄ in. × (total length, ft / 5) 16 1⁄ in. × (total length, ft / 5) 4
General Notes: 1. The longer dimension specified is considered the length, and permissible variations in flatness along the length should not exceed the tabular amount for the specified width in plates up to 12 feet in length. 2. The flatness variations across the width should not exceed the tabular amount for the specified width. 3. When the longer dimension is under 36 inches, the permissible variation should not exceed 1⁄4-in. When the longer dimension is from 36 to 72 inches, inclusive, the permissible variation should not exceed 75 percent of the tabular amount for the specified width, but in no case less than 1⁄4-in. 4. These variations apply to plates which have a specified minimum tensile strength of not more than 60 ksi or compatible chemistry or hardness. The limits in the table are increased 50 percent for plates specified to a higher minimum tensile strength or compatible chemistry or hardness. See also next page.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1 - 198
DIMENSIONS AND PROPERTIES
Table 1-20. Rectangular Sheared Plates and Universal Milled Plates Permissible Variations from Flatness (High-Strength Low-Alloy and Alloy Steel, Hot Rolled or Thermally Treated) Variations from Flatness for Specified Widths, in.
Specified Thickness, in.
To 36 excl.
To 1⁄4, excl. 1⁄ to 3⁄ , excl. 4 8 3⁄ to 1⁄ , excl. 8 2 1⁄ to 3⁄ , excl. 2 4 3⁄ to 1, excl. 4 1 to 2, excl. 2 to 4, excl. 4 to 6, excl. 6 to 8, excl.
13⁄ 16 3⁄ 4 3⁄ 4 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2 9⁄ 16 5⁄ 8
36 to 48, 48 to 60, 60 to 72, 72 to 84, 84 to 96, 96 to 108, 108 to excl. excl. excl. excl. excl. excl. 120, excl. 11⁄8
15⁄ 7⁄ 3⁄ 3⁄ 5⁄
13⁄8 11⁄8 15⁄ 16 15⁄ 16 7⁄ 8 3⁄ 4 9⁄ 16 3⁄ 4 3⁄ 4
16 8 4 4
8 9⁄ 16 11⁄ 16 3⁄ 4
17⁄8 13⁄8 15⁄ 16 7⁄ 8 7⁄ 8 13⁄ 16 3⁄ 4 3⁄ 4 15⁄ 16
21⁄4 17⁄8 15⁄16 11⁄8 1 15⁄ 16 3⁄ 4 7⁄ 8 11⁄8
2 13⁄4 11⁄8 1 15⁄ 16 7⁄ 8 3⁄ 4 7⁄ 8 1
23⁄8 2 11⁄2 11⁄4 11⁄8 1 3⁄ 4 15⁄ 16 11⁄4
25⁄8 21⁄4 15⁄8 13⁄8 15⁄16 1 7⁄ 8 11⁄8 15⁄16
General Notes: 1. The longer dimension specified is considered the length, and variations from a flat surface along the length should not exceed the tabular amount for the specified width in plates up to 12 feet in length. 2. The flatness variation across the width should not exceed the tabular amount for the specified width. 3. When the longer dimension is under 36 inches, the variation should not exceed 3⁄8-in. When the longer dimension is from 36 to 72 inches, inclusive the variation should not exceed 75 percent of the tabular amount for the specified width.
Permissible Variations in Width for Universal Mill Plates (15 inches and under in thickness) Variations Over Specified Width for Thickness, in., and Equivalent Weights, lb per sq. ft., Given To 3⁄8, excl.
3⁄ 8
to 5⁄8 excl.
5⁄ 8
to 1, excl.
Specified Width, in.
To 15.3, excl.
15.3 to 25.5, excl.
25.5 to 40.8, excl.
Over 8 to 20, excl. 20 to 36, excl. 36 and over
1⁄ 8 3⁄ 16 5⁄ 16
1⁄
1⁄
3⁄ 16 5⁄ 16 7⁄ 16
3⁄
8 4 8
1 to 2, excl.
Over 2 to 10, incl.
Over 10 to 15, incl.
40.8 to 81.7 to 409.0 to 81.7, incl. 409.0, incl. 613.0, incl. 1⁄ 3⁄ 1⁄
4 8 2
Notes: Permissible variation under specified width, 1⁄8-in. Table applies to all steels listed in ASTM A6.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3⁄ 8 7⁄ 16 9⁄ 16
1⁄ 2 9⁄ 16 5⁄ 8
REFERENCES
1 - 199
REFERENCES
American Institute of Steel Construction, 1973, “Commentary on Highly Restrained Welded Connections,” Engineering Journal, 3rd Qtr., AISC, Chicago, IL. American Iron and Steel Institute, 1979, Fire Safe Structural Steel: A Design Guide, AISI, Washington, DC. AISI, 1980, Designing Fire Protection for Steel Columns, 3rd Edition. AISI, 1981, Designing Fire Protection for Steel Trusses, 2nd Edition. AISI, 1984, Designing Fire Protection for Steel Beams. Brockenbrough, R. L. and B. G. Johnston, 1981, USS Steel Design Manual, R. L. Brockenbrough & Assoc. Inc., Pittsburgh, PA. Dill, F. H., 1960, “Structural Steel After a Fire,” Proceedings of the 1960 National Engineering Conference, AISC, New York, NY. Fisher, J. W. and A. W. Pense, 1987, “Experience with Use of Heavy W Shapes in Tension,” Engineering Journal, 2nd Qtr., AISC, Chicago. Lightner, M. W. and R. W. Vanderbeck, 1956, “Factors Involved in Brittle Fracture,” Regional Technical Meetings, AISI, Washington, DC. Rolfe, S. T. and J. M. Barsom, 1986, Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics, Prentice-Hall, Inc., Englewood Cliffs, NJ. Rolfe, S. T., 1977, “Fracture and Fatigue Control in Steel Structures,” Engineering Journal, 1st Qtr., AISC, Chicago. Welding Research Council, 1957, Control of Steel Construction to Avoid Brittle Failure, New York.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2-1
PART 2 ESSENTIALS OF LRFD OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 INTRODUCTION TO LRFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 A. GENERAL PROVISIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 B. DESIGN REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 C. FRAMES AND OTHER STRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 D. TENSION MEMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 E. COLUMNS AND OTHER COMPRESSION MEMBERS . . . . . . . . . . . . . . . . 2-22 F. BEAMS AND OTHER FLEXURAL MEMBERS . . . . . . . . . . . . . . . . . . . . 2-27 H. MEMBERS UNDER COMBINED FORCES AND TORSION . . . . . . . . . . . . . 2-34 I. COMPOSITE MEMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42 COMPUTER SOFTWARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2-2
ESSENTIALS OF LRFD
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
OVERVIEW
2-3
OVERVIEW The following LRFD topics are covered herein (with the letters A through I in the section headings referring to the corresponding chapters in the LRFD Specification): INTRODUCTION TO LRFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 LRFD Versus ASD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 LRFD Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 A. GENERAL PROVISIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 Loads and Load Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 B. DESIGN REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 Gross, Net, and Effective Net Areas for Tension Members . . . . . . . . . . . . . . . . 2-11 Gross, Net, and Effective Net Areas for Flexural Members . . . . . . . . . . . . . . . . 2-12 Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 Limiting Slenderness Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13 C. FRAMES AND OTHER STRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 Second Order Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 Effective Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 “Leaning” Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 D. TENSION MEMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 Design Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 Built-Up Members, Eyebars, and Pin-Connected Members . . . . . . . . . . . . . . . . 2-21 E. COLUMNS AND OTHER COMPRESSION MEMBERS . . . . . . . . . . . . . . . . 2-22 Effective Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 Design Compressive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 Flexural-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27 Built-Up and Pin-Connected Members . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27 F. BEAMS AND OTHER FLEXURAL MEMBERS . . . . . . . . . . . . . . . . . . . . 2-27 Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27 Design for Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29 Design for Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33 Web Openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34 H. MEMBERS UNDER COMBINED FORCES AND TORSION . . . . . . . . . . . . . 2-34 Symmetric Members Subject to Bending and Axial Tension . . . . . . . . . . . . . . . 2-34 Symmetric Members Subject to Bending and Axial Compression . . . . . . . . . . . . 2-37 Bending and Axial Compression—Preliminary Design . . . . . . . . . . . . . . . . . . 2-37 Torsion and Combined Torsion, Flexure, and/or Axial Force . . . . . . . . . . . . . . . 2-40 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2-4
ESSENTIALS OF LRFD
I. COMPOSITE MEMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42 Compression Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42 Flexural Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43 Combined Compression and Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44 COMPUTER SOFTWARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44 ELRFD (Electronic LRFD Specification) . . . . . . . . . . . . . . . . . . . . . . . . . 2-44 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
INTRODUCTION TO LRFD
2-5
INTRODUCTION TO LRFD
The intent of this part of the LRFD Manual is to provide a general introduction to the subject. It was written primarily for: (1) engineers experienced in allowable stress design (ASD) who are unfamiliar with LRFD and (2) students and novice engineers. The emphasis is on understanding the most common cases, rather than on completeness and efficiency in design. Regular users of LRFD may also find it helpful to refer to the information provided herein. It should be noted, however, that the governing document is the LRFD Specification (in Part 6 of this volume of the Manual). For optimum design the use of the design aids elsewhere in this Manual is recommended. Among the topics not covered herein are: (1) connections, the subject of Volume II, and (2) noncompact beams and plate girders, for which the reader is referred to Appendices F and G of the LRFD Specification and Part 4 of this volume of the Manual. LRFD Versus ASD
The primary objective of the LRFD Specification is to provide a uniform reliability for steel structures under various loading conditions. This uniformity cannot be obtained with the allowable stress design (ASD) format. The ASD method can be represented by the inequality ΣQi ≤ Rn / F.S.
(2-1)
The left side is the summation of the load effects, Qi (i.e., forces or moments). The right side is the nominal strength or resistance Rn divided by a factor of safety. When divided by the appropriate section property (e.g., area or section modulus), the two sides of the inequality become the calculated stress and allowable stress, respectively. The left side can be expanded as follows: ΣQi = the maximum (absolute value) of the combinations D + L′ (D + L′ + W) × 0.75* (D + L′ + E) × 0.75* D−W D−E where D, L′, W, and E are, respectively, the effects of the dead, live, wind, and earthquake loads; total live load L′ = L + (Lr or S or R) L = Live load due to occupancy Lr = Roof live load S = Snow load R = Nominal load due to initial rainwater or ice exclusive of the ponding contribution *0.75 is the reciprocal of 1.33, which represents the 1/3 increase in allowable stress permitted when wind or earthquake is taken simultaneously with live load. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2-6
ESSENTIALS OF LRFD
ASD, then, is characterized by the use of unfactored service loads in conjunction with a single factor of safety applied to the resistance. Because of the greater variability and, hence, unpredictability of the live load and other loads in comparison with the dead load, a uniform reliability is not possible. LRFD, as its name implies, uses separate factors for each load and for the resistance. Considerable research and experience were needed to establish the appropriate factors. Because the different factors reflect the degree of uncertainty of different loads and combinations of loads and the accuracy of predicted strength, a more uniform reliability is possible. The LRFD method may be summarized by the formula ΣγiQi ≤ φRn
(2-2)
On the left side of the inequality, the required strength is the summation of the various load effects Qi multiplied by their respective load factors γi. The design strength, on the right side, is the nominal strength or resistance Rn multiplied by a resistance factor φ. Values of φ and Rn for columns, beams, etc. are provided throughout the LRFD Specification and will be covered here, as well. According to the LRFD Specification (Section A4.1), ΣγiQi = the maximum absolute value of the following combinations 1.4D 1.2D + 1.6L + 0.5(Lr or S or R) 1.2D + 1.6(Lr or S or R) + (0.5L or 0.8W) 1.2D + 1.3W + 0.5L + 0.5(Lr or S or R) 1.2D ± 1.0E + 0.5L + 0.2S 0.9D ± (1.3W or 1.0E)
(A4-1) (A4-2) (A4-3) (A4-4) (A4-5) (A4-6)
(Exception: The load factor on L in combinations A4-3, A4-4, A4-5 shall equal 1.0 for garages, areas occupied as places of public assembly, and all areas where the live load is greater than 100 psf). The load effects D, L, Lr, S, R, W, and E are as defined above. The loads should be taken from the governing building code or from ASCE 7, Minimum Design Loads in Buildings and Other Structures (American Society of Civil Engineers, 1988). Where applicable, L should be determined from the reduced live load specified for the given member in the governing code. Earthquake loads should be from the AISC Seismic Provisions for Structural Steel Buildings, which appears in Part 6 of this Manual. LRFD Fundamentals
The following is a brief discussion of the basic concepts of LRFD. A more complete treatment of the subject is available in the Commentary on the LRFD Specification (Section A4 and A5) and in the references cited therein. LRFD is a method for proportioning structures so that no applicable limit state is exceeded when the structure is subjected to all appropriate factored load combinations. Strength limit states are related to safety and load carrying capacity (e.g., the limit states of plastic moment and buckling). Serviceability limit states (e.g., deflections) relate to performance under normal service conditions. In general, a structural member will have several limit states. For a beam, for example, they are flexural strength, shear strength, vertical deflection, etc. Each limit state has associated with it a value of Rn, which defines the boundary of structural usefulness. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
INTRODUCTION TO LRFD
2-7
Because the AISC Specification is concerned primarily with safety, strength limit states are emphasized. The load combinations for determining the required strength were given in expressions A4-1 through A4-6. (Other load combinations, with different values of γi, are appropriate for serviceability; see Chapter L in the LRFD Specification and Commentary.) The AISC load factors (A4-1 through A4-6) are based on ASCE 7. They were originally developed by the A58 Load Factor Subcommittee of the American National Standards Institute, ANSI, (U.S. Department of Commerce, 1980) and are based strictly on load statistics. Being material-independent, they are applicable to all structural materials. Although others have written design codes similar in format to the LRFD Specification, the AISC was the first specification group to adopt the ANSI probability-based load factors. The AISC load factors recognize that when several loads act in combination, only one assumes its maximum lifetime value at a time, while the others are at their “arbitrarypoint-in-time” (APT) values. Each combination models the total design loading condition when a different load is at its maximum: Load Combination A4-1 A4-2 A4-3 A4-4 A4-5 A4-6
Load at its Lifetime (50-year) Maximum D (during construction; other loads not present) L Lr or S or R (a roof load) W (acting in direction of D) E (acting in direction of D) W or E (opposing D)
The other loads, which are APT loads, have mean values considerably lower than the lifetime maximums. To achieve a uniform reliability, every factored load (lifetime maximum or APT) is larger than its mean value by an amount depending on its variability. The AISC resistance factors are based on research recommendations published by Washington University in St. Louis (Galambos et al., 1978) and reviewed by the AISC Specification Advisory Committee. Test data were analyzed to determine the variability of each resistance. In general, the resistance factors are less than one (φ < 1). For uniform reliability, the greater the scatter in the data for a given resistance, the lower its φ factor. Several representative LRFD φ factors for steel members (referenced to the corresponding chapters in the LRFD Specification) are: φt = 0.90 for tensile yielding (Chapter D) φt = 0.75 for tensile fracture (Chapter D) φc = 0.85 for compression (Chapter E) φb = 0.90 for flexure (Chapter F) φv = 0.90 for shear yielding (Chapter F) Resistance factors for other member and connection limit states are given in the LRFD Specification. The following sections (A through I) summarize and explain the corresponding chapters of the LRFD Specification. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2-8
ESSENTIALS OF LRFD
A. GENERAL PROVISIONS
In the LRFD Specification, Sections A4 and A5 define Load and Resistance Factor Design. The remainder of Chapter A contains general provisions which are essentially the same as in the earlier ASD editions of the Specification. Reference is made to the Code of Standard Practice for Steel Buildings and Bridges (adopted in 1992 by AISC), which appears with a Commentary in Part 6 of this LRFD Manual. The Code defines the practices and commonly accepted standards in the structural steel fabricating industry. In the absence of other instructions in the contract documents, these trade practices govern the fabrication and erection of structural steel. The types of construction recognized by the AISC Specification have not changed, except that both “simple framing” (formerly Type 2) and “semi-rigid framing” (formerly Type 3) have been combined into one category, Type PR (partially restrained). “Rigid framing” (formerly Type 1) is now Type FR (fully restrained). Type FR construction is permitted unconditionally. Type PR is allowed only upon evidence that the connections to be used are capable of furnishing, as a minimum, a predictable portion of full end restraint. Type PR construction may necessitate some inelastic, but self-limiting, deformation of a structural steel part. When specifying Type PR construction, the designer should take into account the effects of reduced connection stiffness on the stability of the structure, lateral deflections, and second order bending moments. Semi-rigid connections, once common, are again becoming popular. They offer economies in connection fabrication (compared with FR connections) and reduced member size (compared with simple framing). For information on connections, please refer to Volume II of this LRFD Manual. The yield stresses of the grades of structural steel approved for use range from 36 ksi for the common A36 steel to 100 ksi for A514 steel. Not all rolled shapes and plate thicknesses are available for every yield stress. Availability tables for structural shapes, plates and bars are at the beginning of Part 1 of this LRFD Manual. A36, for many years the dominant structural steel for buildings, is being replaced by the more economical 50 ksi steels. ASTM designations for structural steels with 50 ksi yield stress are: A572 for most applications, A529 for thin-plate members only, and A242 and A588 weathering steels for atmospheric corrosion resistance. A more complete explanation is provided by Table 1-1 in Part 1 of this Manual. However, A36 is still normally specified for connection material, where no appreciable savings can be realized from higher strength steels. Complete and accurate drawings and specifications are necessary for all stages of steel construction. The requirements for design documents are set forth in Section A7 of the LRFD Specification and Section 3 of the AISC Code of Standard Practice. When beam end reactions are not shown on the drawings, the structural steel detailer will refer to the appropriate tables in Part 4 of the LRFD Manual. These tables, which are for uniform loads, may significantly underestimate the effects of the concentrated loads. The recording of beam end reactions on design drawings, which is recommended in all cases, is, therefore, absolutely essential when there are concentrated loads. Beam reactions, column loads, etc., shown on design drawings should be the required strengths calculated from the factored load combinations and should be so noted. Loads and Load Combinations
LRFD Specification Sections A4 (Loads and Load Combinations) and A5 (Design Basis) describe the basic criteria of LRFD. This information was discussed above under AMERICAN INSTITUTE OF STEEL CONSTRUCTION
A. GENERAL PROVISIONS
2-9
Introduction to LRFD. To illustrate the application of load factors, the AISC load combinations will be repeated here with design examples. The required strength is the maximum absolute value of the combinations 1.4D 1.2D + 1.6L + 0.5(Lr or S or R) 1.2D + 1.6(Lr or S or R) + (0.5L or 0.8W) 1.2D + 1.3W + 0.5L + 0.5(Lr or S or R) 1.2D ± 1.0E + 0.5L + 0.2S 0.9D ± (1.3W or 1.0E)
(A4-1) (A4-2) (A4-3) (A4-4) (A4-5) (A4-6)
(The load factor on L in combinations A4-3, A4-4 and A4-5 shall equal 1.0 for garages, areas occupied as placed of public assembly, and all areas where the live load is greater than 100 psf). In the combinations the loads or load effects (i.e., forces or moments) are: D = dead load due to the weight of the structural elements and the permanent features on the structure L = live load due to occupancy and moveable equipment (reduced as permitted by the governing code) Lr = roof live load W= wind load S = snow load E = earthquake load R = nominal load due to initial rainwater or ice exclusive of the ponding contribution The loads are to be taken from the governing building code. In the absence of a code, one may use ASCE 7 Minimum Design Loads for Buildings and Other Structures (American Society of Civil Engineers, 1988). Earthquake loads should be determined from the AISC Seismic Provisions for Structural Steel Buildings, in Part 6 of this Manual. Whether the loads themselves or the load effects are combined, the results are the same, provided the principle of superposition is valid. This is usually true because deflections are small and the stress-strain behavior is linear elastic; consequently, second order effects can usually be neglected. (The analysis of second order effects is covered in Chapter C of the LRFD Specification.) The linear elastic assumption, although not correct at the strength limit states, is valid under normal in-service loads and is permissible as a design assumption under the LRFD Specification. In fact, the Specification (in Section A.5.1) allows the designer the option of elastic or plastic analysis using the factored loads. However, to simplify this presentation, it is assumed that the more prevalent elastic analysis option has been selected.
EXAMPLE A-1
Given:
Solution:
Roof beams W16×31, spaced 7′′-0 center-to-center, support a superimposed dead load of 40 psf. Code specified roof loads are 30 psf downward (due to roof live load, snow, or rain) and 20 psf upward or downward (due to wind). Determine the critical loading for LRFD. D
= 31 plf + 40 psf × 7.0 ft = 311 plf AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2 - 10
ESSENTIALS OF LRFD
L =0 (Lr or S or R) = 30 psf × 7.0 ft = 210 plf W = 20 psf × 7.0 ft = 140 plf E =0 Load Combinations A4-1 A4-2 A4-3 A4-4 A4-5 A4-6a A4-6b
Factored Loads 1.4(311 plf) 1.2(311 plf) + 0 + 0.5(210 plf) 1.2(311 plf) + 1.6 (210 plf) + 0.8(140 plf) 1.2(311 plf) + 1.3(140 plf) + 0 + 0.5(210 plf) 1.2(311 plf) + 0 + 0 + 0.2(210 plf) 0.9 (311 plf) + 1.3 (140 plf) 0.9(311 plf) − 1.3(140 plf)
= 435 plf = 478 plf = 821 plf = 660 plf = 415 plf = 462 plf = 98 plf
The critical factored load combination for design is the third, with a total factored load of 821 plf.
EXAMPLE A-2
Given:
Solution:
The axial loads on a building column resulting from the code-specified service loads have been calculated as: 100 kips from dead load, 150 kips from (reduced) floor live load, 30 kips from the roof (Lr or S or R), 60 kips due to wind, and 50 kips due to earthquake. Determine the required strength of this column. Load Combination A4-1 A4-2 A4-3a A4-3b A4-4 A4-5a A4-5b A4-6a A4-6b A4-6c A4-6d
Factored Axial Load 1.4(100 kips) 1.2(100 kips) + 1.6(150 kips) + 0.5(30 kips) 1.2(100 kips) + 1.6(30 kips) + 0.5(150 kips) 1.2(100 kips) + 1.6(30 kips) + 0.8(60 kips) 1.2(100 kips) + 1.3(60 kips) + 0.5(150 kips) + 0.5(30 kips) 1.2(100 kips) + 1.0(50 kips) + 0.5(150 kips) + 0.2(30 kips) 1.2(100 kips) − 1.0(50 kips) + 0.5(150 kips) + 0.2(30 kips) 0.9(100 kips) + 1.3(60 kips) 0.9(100 kips) − 1.3(60 kips) 0.9(100 kips) + 1.0(50 kips) 0.9(100 kips) − 1.0(50 kips)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
= 140 kips = 375 kips = 243 kips = 216 kips = 288 kips = 251 kips = 151 kips = 168 kips = 12 kips = 140 kips = 40 kips
B. DESIGN REQUIREMENTS
2 - 11
The required strength of the column is 375 kips based on the second combination of factored axial loads. As none of the results above are negative, net tension need not be considered in the design of this column. B. DESIGN REQUIREMENTS Gross, Net, and Effective Net Areas for Tension Members
The concept of effective net area, which in earlier editions of the Specification was applied only to bolted members, has been extended to cover members connected by welding as well. As in the past, when tensile forces are transmitted directly to all elements of the member, the net area is used to determine stresses. However, when the tensile forces are transmitted through some, but not all, of the cross-sectional elements of the member, a reduced effective net area Ae is used instead. According to Section B3 of the LRFD Specification Ae = AU
(B3-1)
where A = area as defined below U = reduction coefficient _ = 1 − (x / L) ≤ 0.9, or as defined in (c) or (d) (B3-2) _ x = connection eccentricity. (See Commentary on the LRFD Specification, Section B3 and Figure C-B3.1.) L = length of connection in the direction of loading a. When the forces are transmitted only by bolts A = An = net area of member, in.2 b. When the forces are transmitted by longitudinal welds only or in combination with transverse welds A = Ag = gross area of member, in.2 c. When the forces are transmitted only by transverse welds A = area of directly connected elements, in.2 U = 1.0 d. When the forces are transmitted to a plate by longitudinal welds along both edges at the end of the plate A = area of plate, in.2 l ≥w For l ≥ 2w For 2w > l ≥ 1.5w For 1.5w > l ≥ w
U = 1.00 U = 0.87 U = 0.75 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2 - 12
ESSENTIALS OF LRFD
where l = weld length w = plate width (distance between welds), in. In computing the net area for tension and shear, the width of a bolt hole is taken as 1⁄16-in. greater than the nominal dimension of the hole, which, for standard holes, is 1⁄16-in. larger than the diameter of the bolt. Chains of holes, treated as in the past, are covered in Section B2 of the LRFD Specification. Gross, Net, and Effective Net Areas for Flexural Members
Gross areas are used for elements in compression, in beams and columns. According to Section B10 of the LRFD Specification, the properties of beams and other flexural members are based on the gross section (with no deduction for holes in the tension flange) if 0.75Fu Afn ≥ 0.9Fy Afg
(B10-1)
where Afg = gross flange area, in.2 Afn = net flange area (deducting bolt holes), in.2 Fy = specified minimum yield stress, ksi Fu = minimum tensile strength, ksi Otherwise, an effective tension flange area Afe is used to calculate flexural properties Afe =
5 Fu A 6 Fy fn
(B10-3)
Local Buckling
Steel sections are classified as either compact, noncompact, or slender element sections: • If the flanges are continuously connected to the web and the width-thickness ratios of all the compression elements do not exceed λp, then the section is compact. • If the width-thickness ratio of at least one of its compression elements exceeds λp, but does not exceed λr, the section is noncompact. • If the width-thickness ratio of any compression element exceeds λr, that element is called a slender compression element. Columns with compact and noncompact cross sections are covered by Chapter E of the LRFD Specification. Column cross sections with slender elements require the special design procedure in Appendix B5.3 of the Specification. Beams with compact sections are covered by Chapter F of the LRFD Specification. All other cross sections in bending must be designed in accordance with Appendices B5.3, F1 and/or G. In general, reference to the appendices of the Specification is required for the design of members controlled by local buckling. In slender element sections, local buckling, occurring prior to initial yielding, will limit the strength of the member. Noncompact sections will yield first, but local buckling will precede the development of a fully plastic stress distribution. In actual practice, such cases are not common and can be easily avoided by designing so that: AMERICAN INSTITUTE OF STEEL CONSTRUCTION
B. DESIGN REQUIREMENTS
2 - 13
Table B-1. Limiting Width-Thickness Ratios for Compression Elements* WidthThickness Ratio
Beam Element
Limiting Width-Thickness Ratio, λp General
For Fy = 50 ksi
Flanges of I shapes and channels
b/t
65 / √ F y
9.2
Flanges of square and rectangular box beams
b/t
190 / √ Fy
26.9
Webs in flexural compression
h / tw
640 / √ Fy
90.5
Webs in combined flexural and axial compression
h / tw
253 / √ Fy **
35.8
Column Element
WidthThickness Ratio
Limiting Width-Thickness Ratio, λr General
For Fy = 50 ksi
Flanges of I shapes and channels and plates projecting from compression elements
b/t
95 / √ F y
13.4
Webs in axial compression
h / tw
253 / √ Fy
35.8
*For the complete table, see LRFD Specification, Section B5, Table B5.1. **This is a simplified, conservative version of the corresponding entry in Table B5.1 of the LRFD Specification.
• for beams, the width-thickness ratios of all compression elements ≤ λp; • for columns, the width-thickness ratios of all elements ≤ λr. Table B-1, which is an abridged version of Table B5.1 in the LRFD Specification, should be useful for this purpose. The formulas for λp for beam elements and λr for column elements are tabulated, together with the corresponding numerical values for 50 ksi steel. The definitions of “width” for use in determining the width-thickness ratios of the elements of various structural shapes are stated in Section B5 of the LRFD Specification. They are shown graphically in Figure B-1. Compact section criteria for W shapes and other I-shaped cross sections are listed in the Properties Tables in Part 1 of LRFD Manual. Limiting Slenderness Ratios
For members whose design is based on compressive force, the slenderness ratio Kl / r preferably should not exceed 200. For members whose design is based on tensile force, the slenderness ratio l / r preferably should not exceed 300. The above limitation does not apply to rods in tension. K = effective length factor, defined in Section C below l = distance between points of lateral support (lx or ly), in. r = radius of gyration (rx or ry), in. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2 - 14
ESSENTIALS OF LRFD
C. FRAMES AND OTHER STRUCTURES Second Order Effects
As stated in Section C1 of the LRFD Specification, an analysis of second order effects is required; i.e., the additional moments due to the axial loads acting on the deformed structure must be considered. In lieu of a second order analysis for Mu, the required flexural strength, the LRFD Specification (in Section C1) presents the following simplified method: Mu = B1Mnt + B2Mlt
(C1-1)
The components of the total factored moment, determined from a first order elastic analysis (neglecting second order effects) are divided into two groups, Mnt and Mlt. Each group is in turn multiplied by a magnification factor B1 or B2 and the results are added to approximate the actual second order factored moment Mu. (The method, as explained here, is valid where the moment connections are Type FR, fully restrained. The analysis for Type PR, or partially restrained, moment connections is beyond the scope of this section.) Beam-columns are generally columns in frames, which are either braced (Mlt = 0) or unbraced (Mlt ≠ 0). Mnt is the moment in the member assuming there is no lateral translation of the frame; Mlt is the moment due to lateral translation. Mnt includes the moments resulting from the gravity loads, as determined manually or by computer, using one of the customary (elastic, first order) methods. The moments from the lateral loads are classified as Mlt; i.e., due to lateral translation. If both the frame and its vertical loads are symmetric, Mlt from the vertical loads is zero. However, if either the vertical loads or the frame is asymmetric and the frame is not braced, lateral translation occurs and Mlt ≠ 0. The procedure for obtaining Mlt in this case involves:
b=
bf
b=
2
bf
bf
b = bf
2
bf
bf
h
h
h
bf
b
t
hw
t
h
b = b f – 3t h = h w – 3t
Fig. B-1. Definitions of widths (b and h) for use in Table B-1. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
C. FRAMES AND OTHER STRUCTURES
2 - 15
a. applying fictitious horizontal reactions at each floor level to prevent lateral translation, and b. using the reverse of these reactions as the “sway forces” for determining Mlt. In general, Mlt for an unbraced frame is the sum of the moments due to the lateral loads and these “sway forces,” as illustrated in Figure C-1. The magnification factors applied to Mnt and Mlt are, respectively, B1 and B2. As shown in Figure C-2, B1 accounts for the secondary Pδ member effect in all frames (including sway-inhibited) and B2 covers the P∆ story effect in unbraced frames. The expressions for B1 and B2 follow: B1 =
Cm ≥ 1.0 (1 − Pu / Pe1 )
(C1-2)
where Pu = the factored axial compressive force on the member, kips Pe1 = Pe as listed in Table C-1 as a function of the slenderness ratio Kl / r, with effective length factor K = 1.0 and considering l / r in the plane of bending only l = unbraced length of the member, in. r = radius of gyration of its cross section, in. Cm = a coefficient to be taken as follows: V1 V2
V3
P1
P1
R1
V1 +R1
P2
P2 R 2
V2 +R2
P3
P3
Original Frame
=
R3
Nonsway Frame for M nt
V3 +R3
Sway Frame for M t
+
Fig. C-1. Frame models for Mnt and Mlt.
∆P
P
H
δ
M1=Mnt+Pδ =B1Mnt
(a) Column in Braced Frame
L
M t =HL M2=M t +P∆ =B2M t
(b) Column in Unbraced Frame
Fig. C-2. Illustrations of secondary effects. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2 - 16
ESSENTIALS OF LRFD
Table C-1. Values of Pe / Ag for Use in Equation C1-2 and C1-5 for Steel of Any Yield Stress Note: Multiply tabulated values by Ag (the gross cross-sectional area of the member) to obtain Pe
Kl / r 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Pe / Ag Pe / Ag Pe / Ag Pe / Ag Pe / Ag Pe / Ag (ksi) Kl / r (ksi) Kl / r (ksi) Kl / r (ksi) Kl / r (ksi) Kl / r (ksi) 649.02 591.36 541.06 496.91 457.95 423.40 392.62 365.07 340.33 318.02 297.83 279.51 262.83 247.59 233.65 220.85 209.07 198.21 188.18 178.89 170.27 162.26 154.80 147.84 141.34 135.26 129.57 124.23 119.21 114.49
Note: Pe / Ag =
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
110.04 105.85 101.89 98.15 94.62 91.27 88.08 85.08 82.22 79.51 76.92 74.46 72.11 69.88 67.74 65.71 63.76 61.90 60.12 58.41 56.78 55.21 53.71 52.57 50.88 49.55 48.27 47.04 45.86 44.72
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
43.62 42.57 41.55 40.56 39.62 38.70 37.81 36.96 36.13 35.34 34.56 33.82 33.09 32.39 31.71 31.06 30.42 29.80 29.20 28.62 28.06 27.51 26.98 26.46 25.96 25.47 25.00 24.54 24.09 23.65
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
23.23 22.82 22.42 22.02 21.64 21.27 20.91 20.56 20.21 19.88 19.55 19.23 18.92 18.61 18.32 18.03 17.75 17.47 17.20 16.94 16.68 16.43 16.18 15.94 15.70 15.47 15.25 15.03 14.81 14.60
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
14.40 14.19 14.00 13.80 13.61 13.43 13.25 13.07 12.89 12.72 12.55 12.39 12.23 12.07 11.91 11.76 11.61 11.47 11.32 11.18 11.04 10.91 10.77 10.64 10.51 10.39 10.26 10.14 10.02 9.90
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
9.79 9.67 9.56 9.45 9.35 9.24 9.14 9.03 8.93 8.83 8.74 8.64 8.55 8.45 8.36 8.27 8.18 8.10 8.01 7.93 7.85 7.76 7.68 7.60 7.53 7.45 7.38 7.30 7.23 7.16
Ď&#x20AC;2E (K l /r)2
a. For compression members not subject to transverse loading between their supports in the plane of bending, Cm = 0.6 â&#x2C6;&#x2019; 0.4(M1 / M2)
(C1-3)
where M1 / M2 is the ratio of the smaller to larger moment at the ends of that portion of the member unbraced in the plane of bending under consideration. M1 / M2 is positive when the member is bending in reverse curvature, negative when bending in single curvature. b. For compression members subjected to transverse loading between their supports, the value of Cm can be determined by rational analysis, or the following values may be used: AMERICAN INSTITUTE OF STEEL CONSTRUCTION
C. FRAMES AND OTHER STRUCTURES
2 - 17
for members with ends restrained against rotation . . . . . . . . . . Cm = 0.85 for members with ends unrestrained against rotation . . . . . . . . . Cm = 1.0 Two alternative equations are given for B2 in the LRFD Specification B2 =
1 ΣPu ∆oh 1− ΣH L
B2 =
1 ΣPu 1− ΣPe2
(C1-4)
(C1-5)
where ΣPu = required axial strength of all columns in a story, i.e., the total factored gravity load above that level, kips ∆oh = translational deflection of the story under consideration, in. ΣH = sum of all story horizontal forces producing ∆oh, kips L = story height, in. ΣPe2 = the summation of Pe2 for all rigid-frame columns in a story; Pe2 is determined from Table C-1, considering the actual slenderness ratio Kl / r of each column in its plane of bending K = effective length factor (see below) Of the two expressions for B2, the first (Equation C1-4) is better suited for design office practice. The quantity (∆oh / L) is the story drift index. For many structures, particularly tall buildings, a maximum drift index is one of the design criteria. Using this value in Equation C1-4 will facilitate the evaluation of B2. In general, two values of B2 are obtained for each story of a building, one for each of the major directions. B1 is evaluated separately for every column; two values of B1 are needed for biaxial bending. Using Equations C1-1 through C1-5, the appropriate Mux and Muy are determined for each column. Effective Length
As in previous editions of the AISC Specification, the effective length of Kl is used (instead of the actual unbraced length l) to account for the influence of end-conditions in the design of compression members. A number of acceptable methods have been utilized to evaluate K, the effective length factor. They are discussed in Section C2 of the Commentary on the LRFD Specification. One method will be shown here. Table C-2, which is also Table C-C2.1 in the Commentary, is taken from the Structural Stability Research Council (SSRC) Guide to Stability Design Criteria for Metal Structures. It relates K to the rotational and translational restraints at the ends of the column. Theoretical values for K are given, as well as the recommendations of the SSRC. The basic case is d, the classical pin-ended column, for which K = 1.0. Theoretical K values for the other cases are determined by the distances between points of inflection. The more conservative SSRC recommendations reflect the fact that perfect fixity can never be attained in actual structures. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2 - 18
ESSENTIALS OF LRFD
Table C-2. Effective Length Factors (K) for Columns Buckled shape of column is shown by dashed line
(a)
(b)
(c)
Theoretical K value
0.5
0.7
1.0
Recommended design value when ideal conditions are approximated
0.65
0.80
1.2
End condition code
(d)
(e)
(f)
1.0
2.0
2.0
1.0
2.10
2.0
Rotation fixed and translation fixed Rotation free and translation fixed Rotation fixed and translation free Rotation free and translation free
Like its predecessors, the LRFD Specification (in Section C2) distinguishes between columns in braced and unbraced frames. In braced frames, sidesway is inhibited by attachment to diagonal bracing or shear walls. Cases a, b, and d in Table C-2 represent columns in braced frames; K ≤ 1.0. The LRFD Specification requires that for compression members in braced frames, K “shall be taken as unity, unless structural analysis shows that a smaller value may be used.” Common practice is to assume conservatively K = 1.0 for columns in braced frames and compression members in trusses. The other cases in Table C-2, c, e, and f, are in unbraced frames (sidesway uninhibited); K ≥ 1.0. The SSRC recommendations given in Table C-2 are appropriate for design. “Leaning” Columns
The concept of the “leaning” column, although not related exclusively to LRFD, is new to the 1993 LRFD Specification. A leaning column is one which is pin ended and does not participate in providing lateral stability to the structure. As a result it relies on the columns in other parts of the structure for stability. In analyzing and designing unbraced frames, the effects of the leaning columns must be considered (as required by Section C2.2 of the LRFD Specification). For further information the reader is referred to: (1) Part 3 of this Manual. (2) the Commentary on the LRFD Specification, Section C2, and (3) a paper on this subject (Geschwindner, 1993). AMERICAN INSTITUTE OF STEEL CONSTRUCTION
D. TENSION MEMBERS
2 - 19
D. TENSION MEMBERS Design Tensile Strength
The design philosophy for tension members is the same in the LRFD and ASD Specifications: a. The limit state of yielding in the gross section is intended to prevent excessive elongation of the member. Usually, the portion of the total member length occupied by fastener holes is small. The effect of early yielding at the reduced cross sections on the total member elongation is negligible. Use of the area of the gross section is appropriate. b. The second limit state involves fracture at the section with the minimum effective net area. The design strength of tension members, φtPn, as given in Section D1 of the LRFD Specification, is the lesser of the following: a. For yielding in the gross section, φt = 0.90 Pn = Fy Ag
(D1-1)
b. For fracture in the net section, φt = 0.75 Pn = Fu Ae
(D1-2)
where Ae Ag Fy Fu Pn
= effective net area, in.2 (see Section B, above) = gross area of member, in.2 = specified minimum yield stress, ksi = specified minimum tensile strength, ksi = nominal axial strength, kips
For 50 ksi steels, Fy = 50 ksi and minimum Fu = 65 ksi. Accordingly a. For yielding in the gross section, φtPn = 0.9 × 50 ksi × Ag = 45.0 ksi × Ag
(2-3)
b. For fracture in the net section, φtPn = 0.75 × 65 ksi × Ae = 48.8 ksi × Ae
(2-4)
The limit state of block shear rupture may govern the design tensile strength. For information on block shear, see Section J4.3 of the LRFD Specification and Part 8 (in Volume II) of this LRFD Manual. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2 - 20
ESSENTIALS OF LRFD
EXAMPLE D-1
Given:
Determine the design strength of a W8×24 as a tension member in 50 ksi steel. How much dead load can it support?
Solution:
If there are no holes in the member, Ae = Ag and Equation 2-3 governs φtPn = 45.0 ksi × Ag = 45.0 ksi × 7.08 in.2 = 319 kips Assuming that dead load is the only load, the governing load combination from Section A is 1.4D. Then, the required tensile strength Pu = 1.4PD ≤φtPn = 319 kips PD≤ 319 kips/1.4 = 228 kips maximum dead load that can be supported by the member.
EXAMPLE D-2
Given:
Repeat Example D-1 for a W8×24 in 50 ksi steel with four 1-in. diameter holes, two per flange, along the member (i.e., not at its ends) for miscellaneous attachments. See Figure D-1(a).
Solution:
a. For yielding in the gross section φtPn = 319 kips, as in Example D-1. b. For fracture in the net section Ae = An = Ag − 4 × (dhole + 1⁄16-in.) × tf = 7.08 in.2 − 4 × (1 + 1⁄16-in.) × 0.400 in. = 5.38 in.2 φtPn = 48.8 ksi × Ae = 48.8 ksi × 5.38 in.2 = 263 kips < 319 kips Fracture in the net section governs. Pu = 1.4 PD ≤ φtPn = 263 kips PD ≤ 263 kips / 1.4 = 188 kips
W8x24
x=y=0.695 in.
tf
WT4x12 WT4x12
(a)
(b)
Fig. D-1 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
D. TENSION MEMBERS
2 - 21
Note: If the holes had been at the end connection of the tension member, the U reduction coefficient would apply in the calculation of an effective net area.
EXAMPLE D-3
Given:
Repeat Example D-2 for holes at a bolted end-connection. There are a total of eight 1-in. diameter holes, as shown in Figure D-1(a), on two planes, 4 in. center-to-center.
Solution:
a. For yielding in the gross section φtPn = 319 kips, as in Example D-1. b. For fracture in the net section, according to Equation B3-1 in Section B above, the effective net area Ae = AU = AnU where An = 5.38 in.2 as in Example D-2 _ x U = 1 − , L = 4 in.* L
_ According to Commentary Figure C-B3.1(a), x for a W8×24 in this case is taken as that for a WT4×12. _ From the properties of a WT4×12 given in Part 1 of this Manual, x = y = 0.695 in. See Figure D-1(b). U=1−
0.695 in. = 0.826 4 in.
Thus Ae = 5.38 in.2 × 0.826 = 4.45 in.2 φtPn = 48.8 ksi × Ae = 48.8 ksi × 4.45 in.2 = 217 kips < 319 kips Fracture in the net section governs. Again, assuming that dead load is the only load, Pu = 1.4PD ≤ φtPn = 217 kips PD ≤ 217 kips / 1.4 = 155 kips maximum dead load that can be supported by the member. Built-Up Members, Eyebars, and Pin-Connected Members
See Section D2 and D3 in the LRFD Specification. *In lieu of calculating U, the Commentary on the LRFD Specification (Section B3) permits the use of more conservative values of U listed therein. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2 - 22
ESSENTIALS OF LRFD
E. COLUMNS AND OTHER COMPRESSION MEMBERS Effective Length
For a discussion of the effective length Kl for columns, refer to Section C above. Design Compressive Strength
Although the column strength equations have been revised for compatibility with LRFD and recent research on column behavior, the philosophy and procedures of column design in LRFD are similar with those in ASD. The direct design of columns with W and other rolled shapes is facilitated by the column strength tables in Part 3 of this LRFD Manual, which show the design compressive strength φcPn as a function of KL (the effective unbraced length in feet). Columns with cross sections not tabulated (e.g., built-up columns) can be designed iteratively, as in the past, with the aid of tables listing design stresses versus Kl / r, the slenderness ratio. Such tables are given in the Appendix of the LRFD Specification for 36 and 50 ksi structural steels, and below (Table E-1) for 50 ksi steel. There are two equations governing column strength, based on the limit state of flexural buckling, one for inelastic buckling (Equation E2-2) and the other (Equation E2-3) for elastic, or Euler, buckling. Equation E2-2 is an empirical relationship for the inelastic range, while Equation E2-3 is the familiar Euler formula multiplied by 0.877. Both equations include the effects of residual stresses and initial out-of-straightness. The boundary between inelastic and elastic instability is λc = 1.5, where the parameter λc =
Kl rπ
√
Fy E
(E2-4)
For axially loaded columns with all elements having width-thickness ratios < λr (in Section B5.1 of the LRFD Specification), the design compressive strength = φcPn where φc = 0.85 Pn = AgFcr
(E2-1)
Ag = gross area of member, in.2 a. For λc ≤ 1.5 2
Fcr = (0.658λc)Fy
(E2-2)
As is done in the Commentary on Section E2, this equation can be expressed in exponential form Fcr = [exp (−0.419λ2c )]Fy where exp(x) = ex AMERICAN INSTITUTE OF STEEL CONSTRUCTION
(C-E2-1)
E. COLUMNS AND OTHER COMPRESSION MEMBERS
2 - 23
Table E-1. Design Stress for Compression Members of 50 ksi Specified Minimum Yield Stress Steel, φc = 0.85* Kl r
F cr (ksi)
Kl r
F cr (ksi)
1 2 3 4 5
42.50 42.49 42.47 42.45 42.42
41 42 43 44 45
37.59 37.36 37.13 36.89 36.65
6 7 8 9 10
42.39 42.35 42.30 42.25 42.19
46 47 48 49 50
11 12 13 14 15
42.13 42.05 41.98 41.90 41.81
16 17 18 19 20
Kl r
F cr (ksi)
Kl r
F cr (ksi)
Kl r
F cr (ksi)
81 82 83 84 85
26.31 26.00 25.68 25.37 25.06
121 122 123 124 125
14.57 14.33 14.10 13.88 13.66
161 162 163 164 165
8.23 8.13 8.03 7.93 7.84
36.41 36.16 35.91 35.66 35.40
86 87 88 89 90
24.75 24.44 24.13 23.82 23.51
126 127 128 129 130
13.44 13.23 13.02 12.82 12.62
166 167 168 169 170
7.74 7.65 7.56 7.47 7.38
51 52 53 54 55
35.14 34.88 34.61 34.34 34.07
91 92 93 94 95
23.20 22.89 22.58 22.28 21.97
131 132 133 134 135
12.43 12.25 12.06 11.88 11.71
171 172 173 174 175
7.30 7.21 7.13 7.05 6.97
41.71 41.61 41.51 41.39 41.28
56 57 58 59 60
33.79 33.51 33.23 32.95 32.67
96 97 98 99 100
21.67 21.36 21.06 20.76 20.46
136 137 138 139 140
11.54 11.37 11.20 11.04 10.89
176 177 178 179 180
6.89 6.81 6.73 6.66 6.59
21 22 23 24 25
41.15 41.02 40.89 40.75 40.60
61 62 63 64 65
32.38 32.09 31.80 31.50 31.21
101 102 103 104 105
20.16 19.86 19.57 19.28 18.98
141 142 143 144 145
10.73 10.58 10.43 10.29 10.15
181 182 183 184 185
6.51 6.44 6.37 6.30 6.23
26 27 28 29 30
40.45 40.29 40.13 39.97 39.79
66 67 68 69 70
30.91 30.61 30.31 30.01 29.70
106 107 108 109 110
18.69 18.40 18.12 17.83 17.55
146 147 148 149 150
10.01 9.87 9.74 9.61 9.48
186 187 188 189 190
6.17 6.10 6.04 5.97 5.91
31 32 33 34 35
39.62 39.43 39.25 39.06 38.86
71 72 73 74 75
29.40 20.09 28.79 28.48 28.17
111 112 113 114 115
17.27 16.99 16.71 16.42 16.13
151 152 153 154 155
9.36 9.23 9.11 9.00 8.88
191 192 193 194 195
5.85 5.79 5.73 5.67 5.61
36 37 38 39 40
38.66 38.45 38.24 38.03 37.81
76 77 78 79 80
27.86 27.55 27.24 26.93 26.62
116 117 118 119 120
15.86 15.59 15.32 15.07 14.82
156 157 158 159 160
8.77 8.66 8.55 8.44 8.33
196 197 198 199 200
5.55 5.50 5.44 5.39 5.33
* When element width-to-thickness ratio exceeds λr, see Appendix B5.3 of LRFD Specification
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2 - 24
ESSENTIALS OF LRFD
b. For λc > 1.5 0.877 Fcr = 2 Fy λc
(E2-3)
where Fy = specified minimum yield stress, ksi E = modulus of elasticity, ksi K = effective length factor l = unbraced length of member, in. r = governing radius of gyration about plane of buckling, in. For 50 ksi steel λc =
Kl 1 r π
√
Kl Kl 50 ksi = 0.0132 or = 75.7λc r r 29,000 ksi
(2-5)
The boundary between inelastic and elastic buckling (λc = 1.5) for 50 ksi steel is Kl = 75.7 × 1.5 = 113.5 r The column strength equations in terms of Kl / r for 50 ksi steel become φcPn = (φcFcr )Ag
(2-6)
Fcr = {exp[−7.3 × 10−5(Kl / r)2]} × 50 ksi
(2-7)
where φc = 0.85 a. For Kl / r ≤ 113.5
b. For Kl / r ≤ 113.5 Fcr =
2.51 × 105 ksi (Kl / r)2
(2-8)
Based on Equations 2-7 and 2-8, Table E-1 gives the design stresses for 50 ksi steel columns for the full range of slenderness ratios. Determining the design strength of a given 50 ksi steel column merely involves using Equation 2-6 in connection with Table E-1. The appropriate design stress (φcFcr) from Table E-1 is multiplied by the cross-sectional area to obtain the design strength φcPn.
EXAMPLE E-1
Given:
Design a 25-ft high, free standing A618 (Fy = 50 ksi) steel pipe column to support a water tank with a weight of 75 kips at full capacity. See Figure E-1.
Solution:
For a live load of 75 kips, the required column strength (from Section A) is Pu = 1.6PL = 1.6 × 75 kips = 120 kips. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
E. COLUMNS AND OTHER COMPRESSION MEMBERS
2 - 25
From Table C-2, case e, recommended K = 2.1. KL = 2.1 × 25.0 ft = 52.5 ft. Try a standard 12-in. diameter pipe (A = 14.6 in.2, I = 279 in.4): r =√ I/A =√ 279 in. / 14.6 in.2 = 4.37 in. Kl 52.5 ft × 12 in./ft = = 144.2 4.37 in r From Table E-1, φcFcr = 10.3 ksi The design compressive strength φcPn = (φcFcr )Ag = 10.3 ksi × 14.6 in.2 = 150 kips > 120 kips required o.k. To complete the design, bending due to lateral loads (i.e., wind and earthquake) should also be considered. See Sections F and H. EXAMPLE E-2
Determine the adequacy of a W14×120 building column.
Given:
50 ksi steel; K = 1.0; story height = 12.0 ft; required strength based on the maximum total factored load is 1,300 kips. KxLx = Ky Ly = 1.0 × 12.0 ft = 12.0 ft Because ry < rx, Kl Ky Ly 12.0 ft × 12 in./ft = = 38.5 maximum = ry 3.74 in. r From Table E-1, φcFcr = 38.14 ksi Design compressive strength φcPn = (φcFcr)Ag = 38.14 ksi × 35.3 in.2 = 1,346 kips > 1,300 kips required o.k.
L = 25.0 ft.
Solution:
Fig. E-1 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2 - 26
Select the most economical W14 column for the case shown in Figures E-2 and E-3.
Lower Level
Intermediate Level
Upper Level
Fig. E-2. Plan views.
12 -0
Upper Level
Intermediate Level
12 -0
EXAMPLE E-3
ESSENTIALS OF LRFD
Lower Level
Fig. E-3. Elevation. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
F. BEAMS AND OTHER FLEXURAL MEMBERS
2 - 27
Given:
50 ksi steel; K = 1.0; required strength based on the maximum total factored load is 1,300 kips. The column is braced in both directions at the upper and lower levels, and in the weak direction at the intermediate level.
Solution:
Try a W14×120 (as in Example E-2): Kx lx rx
=
1.0 × 24.0 ft × 12 in./ft = 46.2 6.24 in.
Ky ly ry
=
1.0 × 12.0 ft × 12 in./ft = 38.5 3.74 in.
Kx lx Kl max = = 46.2 rx r From Table E-1, φcFcr = 36.35 ksi Required Ag =
1,300 kips = 35.8 in.2 > 35.3 in.2 provided 36.35 ksi
W14×120 n.g. By inspection W14×132 is o.k. Use W14×132 Flexural-Torsional Buckling
As stated in Section E3 of the LRFD Specification and Commentary, torsional and flexural-torsional buckling generally do not govern the design of doubly symmetric rolled shapes in compression. For other cross sections, see Section E3 and Appendix E3 of the LRFD Specification. Built-Up and Pin-Connected Members
These members are covered, respectively, in Section E4 and E5 of the LRFD Specification. F. BEAMS AND OTHER FLEXURAL MEMBERS
Chapter F of the LRFD Specification covers compact beams. Compactness criteria are given in Table B5.1 of the LRFD Specification and are summarized in Table B-1 above. To prevent torsion, wide-flange shapes must be loaded in either plane of symmetry, channels must be loaded through the shear center parallel to the web, or restraint against twisting must be provided at load points and points of support. Torsion combined with flexure and axial force combined with flexure are covered in Chapter H of the LRFD Specification. This section explains the provisions of the LRFD Specification for compact rolled beams. For other compact and noncompact flexural members, refer to Appendix F of the Specification; plate girders are in Appendix G. Flexure
To understand the provisions of the LRFD Specification regarding flexural design, it is helpful to review briefly some aspects of elementary beam theory. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2 - 28
ESSENTIALS OF LRFD
Under working loads (and until initial yielding) the distributions of flexural strains and stresses over the cross-section of a beam are linear. As shown in Figure F-1, they vary from maximum compression at the extreme fibers on one side (the top) to zero at the neutral, or centroidal, axis to maximum tension at the extreme fibers on the other side (the bottom). The relationship between moment and maximum bending stress (tension or compression) at a given cross section is M = Sfb
(2-9)
where M= bending moment due to the applied loads, kip-in. S = elastic section modulus, in the direction of bending, in.3 I = c fb = maximum bending stress, ksi I = moment of inertia of the cross section about its centroidal axis, in.4 c = distance from the elastic neutral axis to the extreme fiber, in. Similarly, at initial yielding Mr = SFy
(2-10)
where Mr = bending moment coinciding with first yielding, kip-in. If additional load is applied, the strains continue to increase; the stresses, however, are, limited to Fy. Yielding proceeds from the outer fibers inward until a plastic hinge is developed, as shown in Figure F-1. At full plastification of the cross section Mp = ZFy
(2-11)
where Mp = plastic moment, kip-in Z = plastic section modulus, in the direction of bending, in.3 Due to the presence of residual stresses (prior to loading, as a consequence of the rolling operation), yielding begins at an applied stress of (Fy â&#x2C6;&#x2019; Fr). Equation 2-10 should be modified to
STRAINS
BEAM
Cross Section
Compression
STRESSES Fy
Fy
Working Load
Fy Initial Yielding
Tension
Fig. F-1. Flexural strains and stresses. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Fy Plastic Hinge
F. BEAMS AND OTHER FLEXURAL MEMBERS
Mr = S(Fy − Fr )
2 - 29
(2-12)
where Fr = the maximum compressive residual stress in either flange, ksi = 10 ksi for rolled shapes, 16.5 ksi for welded shapes The definition of plastic moment in Equation 2-11 is still valid, because it is not affected by residual stresses. Design for Flexure
a. Assuming Cb = 1.0 Compact sections will not experience local buckling before the formation of a plastic hinge. The occurrence of lateral-torsional buckling of the member depends on the unbraced length Lb. As implied by the term lateral-torsional buckling, overall instability of a beam requires that twisting of the member occur simultaneously with lateral buckling of the compression flange. Lb is the distance between points braced to prevent twist of the cross section. Many beams can be considered continuously braced; e.g., beams supporting a metal deck, if the deck is intermittently welded to the compression flange. Compact wide flange and channel members bending about their major (or x) axes can develop their full plastic moment Mp without buckling if Lb ≤ Lp. If Lb = Lr, the nominal flexural strength is Mr, the moment at first yielding adjusted for residual stresses. The nominal moment capacity (Mn) for Lp < Lb < Lr is Mr < Mn < Mp. Compact shapes bent about their minor (or y) axes will not buckle before developing Mp, regardless of Lb. Flexural design strength, governed by the limit state of lateral-torsional buckling, is φbMn, where φb = 0.90 and Mn the nominal flexural strength is as follows: Mn = Mp = ZxFy for bending about the major axis if Lb ≤ Lp Mn = Mp = ZyFy for bending about the minor axis regardless of Lb Lp =
300ry = 42.4ry for 50 ksi steel Fy √
Mn = Mr = Sx(Fy − Fr ) = Sx(Fy − 10 ksi) for rolled shapes bending about the major axis if Lb = Lr
(2-13) (2-14) (2-15) (2-16)
Mn for bending about the major axis, if Lp < Lb < Lr, is determined by linear interpolation between Equations 2-13 and 2-16; i.e., Lb − Lp Mn = Mp − (Mp − Mr) Lr − Lp
(2-17)
The definition for the limiting laterally unbraced length Lr is given in the LRFD Specification (in Equations F1-6, 8, and 9) and will not be repeated here. For bending about the major axis if Lb > Lr, Mn = Mcr ≤ Mr
(2-18)
The case of Lb > Lr is beyond the scope of this section. The reader is referred to Section F1.2b of LRFD Specification (specifically Equation F1-13, where the critical moment AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2 - 30
ESSENTIALS OF LRFD
Table F-1. Values of Cb for Simply Supported Beams Braced at Ends of Span Load
Lateral Bracing Along Span
Cb
Concentrated at center
None
1.32
At centerline only
1.67
None
1.14
At centerline only
1.30
Uniform
Mcr is controlled by lateral-torsional buckling). This case is also covered in the beam graphs in Part 4 of this LRFD Manual. b. All values of Cb Cb is the bending coefficient. A new expression for Cb is given in the LRFD Specification. (It is more accurate than the one previously shown.) Cb =
12.5Mmax 2.5Mmax + 3MA + 4MB + 3Mc
(F1-3)
where M is the absolute value of a moment in the unbraced beam segment as follows: Mmax, the maximum MA, at the quarter point MB, at the centerline Mc, at the three-quarter point The purpose of Cb is to account for the influence of moment gradient on lateral-torsional buckling. The flexural strength equations with Cb = 1.0 are based on a uniform moment along a laterally unsupported beam segment causing single curvature buckling of the member. Other loadings are less severe, resulting in higher flexural strengths; Cb ≥ 1.0. Typical values of Cb are given in Table F-1. For unbraced cantilevers, Cb = 1.0. Cb can conservatively be taken as 1.0 for all cases. For all values of Cb, the flexural design strength φbMn, where φb = 0.90, is given in the LRFD Specification in terms of a nominal flexural strength Mn varying as follows: Mn = Mp = ZxFy
(2-13)
for bending about the major axis if Lb ≤ Lm Mn = CbMr = CbSx(Fy − 10 ksi) ≤ Mp
(2-19)
for bending about the major axis if Lb = Lr. For bending about the major axis if Lm < Lb < Lr, linear interpolation is used Lb − Lp Mn = Cb Mp − (Mp − Mr) ≤ Mp Lr − Lp
(F1-2)
Mn = Mcr ≤ CbMr and Mp
(2-20)
If Lb > Lr,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
F. BEAMS AND OTHER FLEXURAL MEMBERS
2 - 31
The determination of Mn for a given Lb can best be done graphically, as illustrated in Figure F-2. The required parameters for each W shape are given in the beam design table in Part 4 of the LRFD Manual, an excerpt of which is shown herein as Table F-2. If Cb = 1.0, the coordinates for constructing the graph are (Lp, Mp), and (Lr, Mr). For Cb > 1.0, the key coordinates are (Lp, Cb Mp) and (Lr, Cb Mr). Note that Mn cannot exceed the plastic moment Mp. Lm, then, can be derived graphically as the upper limit of Lb for which Mn = Mp. If Lb > Lr, the beam graphs in Part 4 of the LRFD Manual can be used to determine Mcr.
EXAMPLE F-1
Select the required W shape for a 30-foot simple floor beam with full lateral support carrying a dead load (including its own weight) of 1.5 kips per linear foot and a live load of 3.0 kips per linear foot. Assume 50 ksi steel and:
Given:
a. There is no member depth limitation b. The deepest member is a W18 The governing load combination in Section A is A4-2:
Solution:
1.2D + 1.6L + 0.5(Lr or S or R) = 1.2 × 1.5 klf + 1.6 × 3.0 klf + 0 = 6.6 klf Required Mu =
wL2 6.6 klf × (30.0 ft)2 = = 743 kip-ft 8 8
Flexural design strength φbMn ≥ 743 kip-ft
CbMp Mn for Cb=1.0
Mn for Cb>1.0
Mp
Mn
Mcr for Cb=1.0
CbMr
Mcr for Cb >1.0
Mr
Lm
Lp
Lr
Lb
Fig. F-2. Determination of nominal flexural strength M n. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2 - 32
ESSENTIALS OF LRFD
Table F-2. Excerpt from Load Factor Design Selection Table (LRFD Manual, Part 4) For Fy = 50 ksi
Zx (in.3)
Shape
φbMp (kip-ft)
φbMr (kip-ft)
Lp (ft)
Lr (ft)
224 221 212 211
W24× ×84 W21×93 W14×120 W18×97
840 829 795 791
588 576 570 564
6.9 6.5 13.2 9.4
18.6 19.4 46.2 27.4
200 198 196 192 186 186
W24× ×76 W16×100 W21×83 W14×109 W18×86 W12×120
750 743 735 720 698 698
528 525 513 519 498 489
6.8 8.9 6.5 13.2 9.3 11.1
18.0 29.3 18.5 43.2 26.1 50.0
177 175
W24× ×68 W16×89
664 656
462 465
6.6 8.8
17.4 27.3
Note: Flexural design strength φbMn = φbMp, as tabulated is valid for Lb ≤ Lm. If Cb = 1.0, Lm = Lp; otherwise, Lm > Lp. φb = 0.90.
a. In Table F-2, the most economical beams are in boldface print. Of the boldfaced beams, the lightest one with φbMn = φbMp ≥ 743 kip-ft is a W24×76 b. By inspection of Table F-2, the lightest W18 with φbMn = φbMp ≥ 743 kip-ft is a W18×97.
EXAMPLE F-2
Given:
Determine the flexural design strength of a 30-ft long simply supported W24×76 girder (of 50 ksi steel) with a concentrated load and lateral support, both at midspan.
Solution:
From Table F-1, Cb = 1.67 Lb = 30.0 ft/2 = 15.0 ft From Equation F1-2: Lb − Lp φbMn = Cb φbMp − (φbMp − φbMr) ≤ φbMp Lr − Lp From Table F-2 for a W24×76: φbMp = 750 kip-ft φbMr = 528 kip-ft Lp = 6.8 ft AMERICAN INSTITUTE OF STEEL CONSTRUCTION
F. BEAMS AND OTHER FLEXURAL MEMBERS
Lr
2 - 33
= 18.0 ft
15.0 ft − 6.8 ft φbMn = 1.67 750 kip−ft − (750 − 528) kip−ft × 18.0 ft − 6.8 ft = 981 kip-ft > 750 kip-ft Use φb Mn = φb Mp = 750 kip-ft In this case, even though the unbraced length Lb > Lp, the design flexural strength is φbMp because Cb > 1.0. Design for Shear
The design shear strength is defined by the equations in Section F2 of the LRFD Specification. Shear in wide-flange and channel sections is resisted by the area of the web (Aw), which is taken as the overall depth d times the web thickness tw. For webs of 50 ksi steel without transverse stiffeners, the design shear strength φvVn, where φv = 0.90, and the nominal shear strength Vn are as follows: For
h ≤ 59 (including all rolled W and channel shapes), tw
Vn = 30.0 ksi × dtw φvVn= 27.0 ksi × dtw For 59 <
(2-21)
h ≤ 74, tw
= 30.0 ksi × dtw ×
59 h / tw
φvVn = 27.0 ksi × dtw ×
59 h / tw
Vn
For
(2-22)
h > 74, tw =
132,000 dtw ksi (h / tw)2
φvVn =
118,000 dtw ksi (h / tw)2
Vn
h
(2-23)
tw
d
tw
h
Fig. F-3. Definitions of d, h, and tw for W and channel shapes. AMERICAN INSTITUTE OF
STEEL CONSTRUCTION
2 - 34
ESSENTIALS OF LRFD
Shear strength is governed by the following limit states; Equation 2-21 by yielding of the web; Equation 2-22, by inelastic buckling of the web; and Equation 2-23 by elastic buckling.
EXAMPLE F-3
Given:
Solution:
Check the adequacy of a W30×99 beam of 50 ksi steel to carry a load resulting in maximum shears of 100 kips due to dead load and 150 kips due to live load. Required shear strength = Vu = 1.2D + 1.6L = 1.2 × 100 kips + 1.6 × 150 kips = 360 kips Design shear strength = φvVn = 27.0 ksi × dtw = 27.0 ksi × 29.65 in. × 0.520 in. = 416 kips > 360 kips required o.k.
Web Openings
See Section F4 of the LRFD Specification and Commentary, and the references given in the Commentary. H. MEMBERS UNDER COMBINED FORCES AND TORSION Symmetric Members Subject to Bending and Axial Tension
The interaction of flexure and tension in singly and doubly symmetric shapes is governed by Equations H1-1a and H1-1b, as follows: For
For
Pu ≥ 0.2, φPn
Pu < 0.2, φPn
Muy Pu 8 Mux + + ≤ 1.0 9 φPn φb Mnx φb Mny
(H1-1a)
Mux Muy Pu + + ≤ 1.0 2φPn φb Mnx φb Mny
(H1-1b)
where = required tensile strength; i.e., the total factored tensile force, kips = design tensile strength, φtPn, kips = resistance factor for tension, φt = 0.90 = nominal tensile strength as defined in Chapter D of the LRFD Specification, kips Mu = required flexural strength; i.e., the moment due to the total factored load, kipin. or kip-ft. (Subscript x or y denotes the axis about which bending occurs.) φb Mn = design flexural strength, kip-in. or kip-ft = resistance factor for flexure = 0.90 φb
Pu φPn φ Pn
AMERICAN INSTITUTE OF
STEEL CONSTRUCTION
H. MEMBERS UNDER COMBINED FORCES AND TORSION
Mn
2 - 35
= nominal flexural strength determined in accordance with the appropriate equations in Chapter F of the LRFD Specification, kip-in. or kip-ft
Interaction Equations H1-1a and H1-1b cover the general case of biaxial bending combined with axial force. They are also valid for uniaxial bending (i.e., when Mux = 0 or Muy = 0). In this case, they reduce to the form plotted in Figure H-1. Pure biaxial bending (with Pu = 0) is covered by Equation H1-1b. EXAMPLE H-1
Given:
Check the adequacy of a W10×22 tension member of 50 ksi steel to carry loads resulting in the following factored load combination: Pu = 55 kips Muy = 20 kip-ft Mux = 0
Solution:
From Section D above for 50 ksi steel, φPn = φtPn = 45.0 ksi × Ag = 45.0 ksi × 6.49 in.2 = 292 kips Pu 55 kips = = 0.188 < 0.20; therefore, Equation H1-1b governs. φPn 292 kips For bending about the y axis only, Equation H1-1b becomes: Pu Muy + ≤ 1.0 2φPn φb Mny φ Pn
Pu
Pu
φ Pn
+
8 Mu = 9 φb M n
0.2 φPn
( )
1 Pu 2 φPn
Mu
+
Mu =1 φb M n 0.9 φb M n
φb M n
Fig. H-1. Interaction Equations H1-1a and H1-1b modified for axial load combined with bending about one axis only. AMERICAN INSTITUTE OF
STEEL CONSTRUCTION
2 - 36
ESSENTIALS OF LRFD
From Section F above for 50 ksi steel, Mn = Mp = ZyFy = 50 ksi × Zy for minor-axis bending (regardless of the unbraced length). φbMny = 0.90 × 50 ksi × Zy = 45.0 ksi × Zy = 45.0 ksi ×
6.10 in.3 12 in./ft
= 22.9 kip-ft for a W10×22 member 20 kip−ft Pu Muy 0.188 + = + = 0.094 + 0.873 2 22.9 kip−ft 2φPn φb Mny = 0.967 < 1.0 o.k.
EXAMPLE H-2
Given:
Check the same tension member, a W10×22 in 50 ksi steel, 4.0 ft long, subjected to the following combination of factored loads: Pu = 140 kips Mux = 55 kip-ft Muy = 0 Cb = 1.0
Solution:
Again, φPn = 292 kips Pu
φPn
=
140 kips = 0.479 > 0.20; Equation H1-1a governs. 292 kips
For bending about the x axis only, Equation H1-1a becomes Pu 8 Mux + ≤ 1.0 φPn 9 φb Mnx From Section F above for 50 ksi steel, Mn = Mp = ZxFy = 50 ksi × Zx for major-axis bending if Lb ≤ Lp for (Cb = 1.0). Assume unbraced length, Lb = 4.0 ft. By Equation 2-15 in Section F, Lp = 42.4ry for 50 ksi steel. For a W10×22, ry = 1.33 in., Zx = 26.0 in.3 Lp =
42.4 × 1.33 in. = 4.7 ft 12 in./ft
Lb = 4.0 ft < Lp = 4.7 ft Then Mnx = 50 ksi × Zx φb Mnx
0.90 × 50 ksi × 26.0 in.3 12 in./ft = 97.5 kip-ft for a W10×22 member =
AMERICAN INSTITUTE OF
STEEL CONSTRUCTION
H. MEMBERS UNDER COMBINED FORCES AND TORSION
2 - 37
55 kip−ft Pu 8Mux 8 + = 0.479 + × 9 97.5 kip−ft φPn 9φb Mnx = 0.479 + 0.501 = 0.980 < 1.0 o.k. Symmetric Members Subject to Bending and Axial Compression
The interaction of compression and flexure in beam-columns with singly and doubly symmetric cross sections is governed by Equations H1-1a and H1-1b, repeated here for convenience: For
For
Pu ≥ 0.2, φPn
Pu < 0.2, φPn
Muy Pu 8 Mux + + ≤ 1.0 φPn 9 φb Mnx φb Mny
(H1-1a)
Mux Muy Pu + + ≤ 1.0 2φPn φb Mnx φb Mny
(H1-1b)
The definitions of the ter ms in the for mulas, which differ in some cases from those given above, are as follows: = required compressive strength; i.e., the total factored compressive force, kips = design compressive strength, φc Pn, kips = resistance factor for compression, φc = 0.85 = nominal compressive strength as defined in Chapter E of the LRFD Specification, kips Mu = required flexural strength including second-order effects, kip-in. or kip-ft φb Mn = design flexural strength, kip-in. or kip-ft = resistance factor for flexure = 0.90 φb Mn = nominal flexural strength from Chapter F of the LRFD Specification, kip-in. or kip-ft
Pu φPn φ Pn
The second-order analysis required for Mu involves the determination of the additional moment due to the action of the axial compressive forces on a deformed structure. In lieu of a second-order analysis, the simplified method given in Chapter C of the LRFD Specification (and in Section C above) may be used. However, in applying the simplified method, the additional moments obtained for beam-columns must also be distributed to connected members and connections (to satisfy equilibrium). Bending and Axial Compression—Preliminary Design
The design of a beam-column is a trial and error process which can become tedious, particularly with the repeated solution of Interaction Equation H1-1a or H1-1b. A rapid method for the selection of a trial section is given in this LRFD Manual, Part 3, under the heading Combined Axial and Bending Loading (Interaction). As in earlier editions of the AISC Manual, the Interaction Equations are approximated by an equation which converts bending moments to equivalent axial loads: Pu eq = Pu + Muxm + Muymu AMERICAN INSTITUTE OF
STEEL CONSTRUCTION
2 - 38
ESSENTIALS OF LRFD
where = equivalent axial load to be checked against the column load table, kips Pu eq Pu, Mux, Muy are defined in the Interaction Equations for compression and bending m, u are factors tabulated in this LRFD Manual, Part 3 As soon as a satisfactory trial section has been found (i.e., one for which Pu eq ≤ tabulated φc Pn), a final verification should be made with the appropriate Interaction Equation, H1-1a or H1-1b
EXAMPLE H-3
Given:
Check the adequacy of a W14×176 beam-column, 14.0 ft in height floor-to-floor, in a braced symmetrical frame in 50 ksi steel. The member is subjected to the following factored forces due to symmetrical gravity loads: Pu = 1,400 kips; Mx = 200 kip-ft, My = 70 kip-ft (reverse curvature bending with equal end moments about both axes); and no loads along the member.
Solution:
For a braced frame, K = 1.0 KxLx = KyLy = 14.0 ft For a W14×176: A Zx Zy rx ry Kl / rx Kl / ry
= 51.8 in.2 = 320 in.3 = 163 in.3 = 6.43 in. = 4.02 in. = (14.0 ft × 12 in./ft) / 6.43 in. = 26.1 = (14.0 ft × 12 in./ft) / 4.02 in. = 41.8
From Table E-1, above, φcFcr = 37.4 ksi for Kl / r = 41.8 in 50 ksi steel. φcPn = (φc Fcr) A = 37.4 ksi × 51.8 in.2 = 1,940 kips Pu 1,400 kips = = 0.72 > 0.2, Interaction Equation H1-1a φc Pn 1,940 kips governs.
Since
For a braced frame, Mlt = 0. From Equation C1-1: Mux = B1x Mntx , where Mntx = 200 kip-ft; and Muy = B1y Mnty , where Mnty = 70 kip-ft From Equations C1-2 and C1-3: B1 =
Cm > 1.0 (1 − Pu / Pe1 )
where in this case (a braced frame with no transverse loading), Cm = 0.6 − 0.4(M1 / M2) AMERICAN INSTITUTE OF
STEEL CONSTRUCTION
H. MEMBERS UNDER COMBINED FORCES AND TORSION
2 - 39
For reverse curvature bending and equal end moments: M1 / M2 = +1.0 = 0.6 − 0.4(1.0) = 0.2
Cm
From Table C-1: Pe1x = 420 ksi × Ag = 420 ksi × 51.8 in.2 = 21,756 kips From Table C-1: Pe1y = 164 ksi × Ag = 164 ksi × 51.8 in.2 = 8,495 kips B1x =
Cmx 0.2 = = 0.2 (1 − Pu / Pe1x ) (1 − 1,400 kips / 21,756 kips)
Use B1x = 1.0, per Equation C1-2. B1y =
Cmy 0.2 = = 0.2 (1 − Pu / Pe1y ) 1 − 1,400 kips / 8,495 kips)
Use B1y = 1.0, per Equation C1-2. Mux = 1.0 × 200 kip-ft Muy = 1.0 × 70 kip-ft From Equation 2-15 for 50 ksi steel, Lp = 42.4ry =
42.4 × 4.02 in. = 14.2 ft 12 in./ft
Since Lb = 14.0 ft < Lp = 14.2 ft, Mnx = Mpx = ZxFy Mny
= Mpy = Zy Fy
φbFy
= 0.90 × 50 ksi = 45.0 ksi
φb Mnx = φbFy Zx =
45.0 ksi × 320 in.3 = 1,200 kip-ft 12 in./ft
φb Mny = φbFy Zy =
45.0 ksi × 163 in.3 = 611 kip-ft 12 in./ft
By Interaction Equation H1-1a 70 kip−ft 8 1,400 kips 8 200 kip−ft + + = 0.72 + (0.17+0.11) 1,940 kips 9 1,200 kip−ft 611 kip−ft 9 = 0.72 + 0.25 = 0.97 < 1.0 W14×176 is o.k. AMERICAN INSTITUTE OF
STEEL CONSTRUCTION
2 - 40
ESSENTIALS OF LRFD
EXAMPLE H-4
Given:
Check the adequacy of a W14×176 beam-column (Fy = 50 ksi) in an unbraced symmetrical frame subjected to the following factored forces: Pu Mux My KxLx
= 1,400 kips (due to gravity plus wind) = 300 kip-ft (due to wind only) =0 = Ky Ly = 14.0 ft
Drift index, ∆oh / L ≤ 0.0025 (or 1⁄400) ΣPu = 24,000 kips ΣH = 800 kips Solution:
As in Example H-3, for a W14×176 with KL = 14.0 ft, φcPn = 1,940 kips. Pu 1,400 kips = = 0.72 > 0.2, Interaction Equation H1-1a φcPn 1,940 kips governs.
Since
Because Mntx = Mnty = Mlty = 0 and only Mltx ≠ 0, Mux = B2Mltx and Muy = 0. Mltx = 300 kip-ft According to Equation C1-4, B2 =
1 1 = = 1.08 ΣPu ∆oh 1 − 24,000 kips (0.0025) 1− 800 kips ΣH L
Mux = 1.08 × 300 kip-ft = 324 kip-ft Because Lb < Lp = 14.2 ft, Mnx = Mpx = ZxFy; φb Mnx = 1,200 kip-ft as in Example H-3. By Interaction Equation H1-1a: 8 1,400 kips 8 324 kip−ft + = 0.72 + 0.27 = 0.96 < 1.0 9 1,940 kips 9 1,200 kip−ft W14×176 is o.k. Torsion and Combined Torsion, Flexure, and/or Axial Force
Criteria for members subjected to torsion and torsion combined with other forces are given in Section H2 of the LRFD Specification. They require the calculation of normal and shear stresses by elastic analysis of the member under the factored loads. The AISC book Torsional Analysis of Steel Members (American Institute of Steel Construction, 1983) provides design aids and examples for the determination of torsional stresses. Extensive coverage is given there to wide-flange shapes (W, S, and HP), channels (C and MC) and Z shapes. For these members, the charts and formulas simplify considerably AMERICAN INSTITUTE OF
STEEL CONSTRUCTION
H. MEMBERS UNDER COMBINED FORCES AND TORSION
2 - 41
the calculation of torsional rotations, torsional normal and shear stresses, and the combination of torsional with flexural stresses. In the LRFD Specification, fun = the total normal stress under factored load (ksi) from torsion and all other causes fuv = the total shear stress under factored load (ksi) from torsion and all other causes The criteria are as follows: a. For the limit state of yielding under normal stress fun ≤ φFy, where φ = 0.90
(H2-1)
fun ≤ 0.90 × 50 ksi = 45.0 ksi
(2-24)
For 50 ksi steel,
b. For the limit state of yielding under shear stress, fuv ≤ 0.60φFy, where φ = 0.90
(H2-2)
fuv ≤ 0.60 × 0.90 × 50 ksi = 27.0 ksi
(2-25)
For 50 ksi steel,
c. For the limit state of buckling, fun ≤ φcFcr or fuv ≤ φcFcr, as applicable, where φc = 0.85
(H2-3)
For 50 ksi steel, values of φcFcr are given in Table E-1, in Section E above. Torsion will accompany flexure when the line of action of a lateral load does not pass through the shear center. For wide flange and other doubly symmetric shapes, the shear center is located at the centroid. Singly symmetric shapes have their shear centers on the axis of symmetry, but not at the centroid. (The location of the shear center of channel sections is given in the Properties tables in Part 1 of this LRFD Manual.) Open sections, such as wide-flange and channel, are very inefficient in resisting torsion; i.e., torsional rotations can be large and torsional stresses relatively high. It is best to avoid torsion by detailing the loads and reactions to act through the shear center of the member. In the case of spandrel members supporting building facade elements, this may not be possible. Heavy exterior masonry walls and stone panels can impose severe torsional loads on spandrel beams. The following are suggestions for eliminating or reducing this kind of torsion: 1. Wall elements may span between floors. The moment due to the eccentricity of the wall with respect to the edge beams can be resisted by lateral forces acting through the floor diaphragms. Torsion would not be imposed on the spandrel beams. 2. If facade panels extend only a partial story height below the floor line, the use of diagonal steel “kickers” may be possible. These light members would provide lateral support to the wall panels. Torsion from the panels would be resisted by forces originating from structural elements other than the spandrel beams. 3. Even if torsion must be resisted by the edge members, providing intermediate torsional supports can be helpful. Reducing the span over which the torsion acts will reduce torsional stresses. If there are secondary beams framing into a spandrel girder, AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2 - 42
ESSENTIALS OF LRFD
the beams can act as intermediate torsional supports for the girder. By adding top and bottom moment plates to the connections of the beams with the girder, the bending resistances of the beams can be mobilized to provide the required torsional reactions along the girder. 4. Closed sections provide considerably better resistance to torsion than open sections; torsional rotations and stresses are much lower for box beams than for wide-flange members. For members subjected to torsion, it may be advisable to use box sections or to simulate a box shape by welding one or two side plates to a W shape. I. COMPOSITE MEMBERS
Chapter I of the LRFD Specification covers composite members. Included are concreteencased and concrete-filled steel columns and beam columns, as well as steel beams interactive with the concrete slabs they support and steel beams encased in concrete. Unlike traditional structural steel design, which considers only the strength of the steel, composite design assumes that the steel and concrete work together in resisting loads. This results in more economical designs, as the quantity of steel can be reduced. Compression Members
Composite columns (concrete-encased and concrete-filled) must satisfy the limitations in Section I2 of the LRFD Specification. The design strength of axially loaded composite columns is φcPn, where φc = 0.85 and the nominal axial compressive strength is determined from Equations E2-1 through E2-4 above with the following modifications: As replaces Ag, rm replaces r, Fmy replaces Fy, and Em replaces E. Fmy = Fy + c1Fyr
Ar Ac + c2 fc′ As As
(I2-1)
Ac As
(I2-2)
Em = E + c3Ec
rm = radius of gyraton of the steel shape, pipe, or tubing, in. (For steel shapes it shall not be less than 0.3 times the overall thickness of the composite cross section in the plane of buckling.) where Ec = w1.5√ fc′ and Fmy Fy Fyr fc′ Em E Ec w Ac Ar
= modified yield stress for the design of composite columns, ksi = specified minimum yield stress of the structural steel shape, ksi = specified minimum yield stress of the longitudinal reinforcing bars, ksi = specified compressive strength of the concrete, ksi = modified modulus of elasticity for the design of composite columns, ksi = modulus of elasticity of steel = 29,000 ksi = modulus of elasticity of concrete, ksi = unit weight of concrete, lb/ft3 = cross-sectional area of concrete, in.2 = cross-sectional area of longitudinal reinforcing bars, in.2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
I. COMPOSITE MEMBERS
2 - 43
As = cross-sectional area of structural steel, in.2 c1, c2, c3 = numerical coefficients. For concrete-filled pipe and tubing: c1 = 1.0, c2 = 0.85, and c3 = 0.4; for concrete-encased shapes c1 = 0.7, c2 = 0.6, and c3 = 0.2 Composite columns can be designed by using the Composite Columns Tables in Part 5 of this LRFD Manual (or the numerous tables in AISC Steel Design Guide No. 6: Load and Resistance Factor Design of W-Shapes Encased in Concrete) for the cross sections tabulated therein, or the above equations for all cross sections. Flexural Members
The most common case of a composite flexural member is a steel beam interacting with a concrete slab by means of stud or channel shear connectors. The slab can be a solid reinforced concrete slab, but is usually concrete on a corrugated metal deck. The effective width of concrete slab acting compositely with a steel beam is determined by three criteria. On either side of the beam centerline, the effective width of concrete slab cannot exceed: a. one-eighth of the beam span, b. one-half the distance to the centerline of the adjacent beam, or c. the distance to the edge of the slab. The following pertains to rolled W shapes in regions of positive moment, the predominant use of composite beam design. Other cases (e.g., plate girders and negative moments) are covered in Chapter I of the LRFD Specification. The horizontal shear force between the steel beam and concrete slab, to be transferred by the shear connectors between the points of zero and maximum positive moments, is the minimum of: a. 0.85fc′Ac (the maximum possible compressive force in the concrete), b. AsFy (the maximum possible tensile force in the steel), and c. ΣQn (the strength of the shear connectors). For W shapes, the design flexural strength φb Mn, with φb = 0.85, is based on: a. a uniform compressive stress of 0.85fc′ and zero tensile strength in the concrete b. a uniform steel stress of Fy in the tension area and compression area (if any) of the steel section, and c. equilibrium; i.e., the sum of the tensile forces equals the sum of the compressive forces. The above is valid for shored and unshored construction. However, in the latter case, it is also necessary to check the bare steel beam for adequacy to support the wet concrete and other construction loads (properly factored). The number of shear connectors required between a point of maximum moment and the nearest location of zero moment is n=
Vh Qn
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
(2-26)
2 - 44
ESSENTIALS OF LRFD
where Vh = the total horizontal shear force to be transferred, kips = the minimum of 0.85fc′Ac, AsFy, and ΣQn Qn = the shear strength of one connector The nominal strength of a single stud shear connector in a solid concrete slab is fc′Ec ≤ AscFu Qn = 0.5Asc√
(I5-1)
where Asc = cross-sectional area of a stud shear connector, in.2 fc′ = specified compressive strength of concrete, ksi Fu = minimum specified tensile strength of a stud shear connector, ksi Ec = modulus of elasticity of concrete, ksi Special provisions for shear connectors embedded in concrete on formed steel deck are given in Section I3.5 of the LRFD Specification. Among them are reduction factors (given by Equation I3-1 and I3-2) to be applied to the middle term of Equation I5-1 above. The design of composite beams and the selection of shear connectors can be accomplished with the tables in Part 5 of this LRFD Manual. The design shear strength for composite beams is determined by the shear strength of the steel web, as for noncomposite beams; see Section F above. Combined Compression and Flexure
Composite beam-columns are covered in Section I4 of the LRFD Specification. COMPUTER SOFTWARE ELRFD* (Electronic LRFD Specification)
ELRFD is a sophisticated computer program for interactively checking structural steel building components for compliance with the AISC Specification. All provisions of Chapters A through H and K of the LRFD Specification are included in the knowledge base of ELRFD. The ELRFD program checks whether the member satisfies all limit states and limitation requirements set by the LRFD Specification and reports which sections of the specification are satisfied or violated. One can review in detail the formulas and rules used in the evaluation and interactively assess any mathematical expression appearing on the screen. Design data produced by the software can be viewed and/or printed in report form for permanent record. ELRFD has a fully interactive Windows-based user interface.
*ELRFD is copyright AISC and Visual Edge Software, Ltd. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
REFERENCES
2 - 45
REFERENCES
American Institute of Steel Construction, Inc., 1983, Torsional Analysis of Steel Members, AISC, Chicago, IL. American Society of Civil Engineers, 1988, Minimum Design Loads for Buildings and Other Structures, ASCE 7-88, New York, NY. Galambos, T. V., et al., 1978, Eight LRFD Papers, Journal of the Structural Division, ASCE, Vol. 104, No. ST9 (September 1978), New York. Geschwindner, L., 1993, “The ‘Leaning’ Column in ASD and LRFD,” Proceedings of the 1993 National Steel Construction Conference, AISC, Chicago. U.S. Department of Commerce, 1980, Development of a Probability Based Criterion for American National Standard A58, NBS (National Bureau of Standards) Special Publication 577, Washington, DC.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3-1
PART 3 COLUMN DESIGN OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 DESIGN STRENGTH OF COLUMNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 W and HP Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 Steel Pipe and Structural Tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-35 Double Angles and WT Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-53 Single-Angle Struts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-104 COLUMN BASE PLATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-117 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-117
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3-2
COLUMN DESIGN
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
OVERVIEW
3-3
OVERVIEW Column tables with design compressive strengths, in kips, are located as follows: W shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 HP shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31 Steel pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36 Structural tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39 Double angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-57 WT shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-83 Single angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-104 Additional information related to column design is provided as follows: Effective length factor (K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Alignment charts, Figure 3-1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Stiffness reduction factors (SRF), Table 3-1 . . . . . . . . . . . . . . . . . . . . . . . . 3-7 “Leaning” columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Combined axial and bending loading (Interaction) . . . . . . . . . . . . . . . . . . . . 3-11 Preliminary design of beam-columns, Table 3-2 . . . . . . . . . . . . . . . . . . . . 3-12
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3-4
COLUMN DESIGN
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3-5
DESIGN STRENGTH OF COLUMNS General Notes
Column Load Tables
Column Load Tables are presented for W, WT, and HP shapes, pipe, structural tubing, double angles, and single angles. Tabular loads are computed in accordance with the AISC LRFD Specification, Sections E2 and E3 and Appendix E3, for axially loaded members having effective unsupported lengths indicated to the left of each table. The effective length KL is the actual unbraced length, in feet, multiplied by the factor K, which depends on the rotational restraint at the ends of the unbraced length and the means available to resist lateral movements. Table C-C2.1 in the Commentary on the LRFD Specification is a guide in selecting the K-factor. Interpolation between the idealized cases is a matter of engineering judgment. Once sections have been selected for the several framing members, the alignment charts in Figure 3-1 [reproduced from the Structural Stability Research Council Guide (Galambos, 1988) here and in Figure C-C2.2 of the Commentary on the LRFD Specification] afford a means to obtain more precise values for K, if desired. For column behavior in the inelastic range, the values of G as defined in Figure 3-1 may be reduced by the values given in Table 3-1, as illustrated in Example 3-3. Tables for W, WT, and HP shapes and for double and single angles are provided for 36 ksi and 50 ksi yield stress steels. Tables for steel pipe are provided for 36 ksi, and for structural tubing for 46 ksi yield stress steel. All design strengths are tabulated in kips. Values are not shown when Kl / r exceeds 200. In all tables, except double angle and WT tables, design strengths are given for effective lengths with respect to the minor axis calculated by LRFD Specification Section E2. When the minor axis is braced at closer intervals than the major axis, the strength of the column must be investigated with reference to both major (X-X) and minor (Y-Y) axes. The ratio rx / ry included in these tables provides a convenient method for investigating the strength of a column with respect to its major axis. To obtain an effective length with respect to the minor axis equivalent in load carrying capacity to the actual effective length about the major axis, divide the major axis effective length by rx / ry ratio. Compare this length with the actual effective length about the minor axis. The longer of the two lengths will control the design, and the design strength may be taken from the table opposite the longer of the two effective lengths with respect to the minor axis. The double angle and WT tables show values for effective lengths about both axes. Properties useful to the designer are listed at the bottom of the column design strength tables. Additional notes relating specifically to the W and HP shape tables, the steel pipe and structural tubing tables, and the double and single angle tables precede each of these groups of tables.
EXAMPLE 3-1
Given:
Design the lightest W shape of Fy = 50 ksi steel to support a factored concentric load of 1,400 kips. The effective length with respect to its minor axis is 16 feet. The effective length with respect to its major axis is 31 feet. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3-6
COLUMN DESIGN
Solution:
Enter the appropriate Column Load Table for W shapes at effective length of KL = 16 ft. Since W14 columns are generally most efficient, begin with the W14 table and work downward, weightwise. Select W14×145, good for 1,530 kips > 1,400 kips rx / ry = 1.59. Equivalent L = 31 ft / 1.59 = 19.5 ft > 16 ft Equivalent effective length for X-X axis controls.
GA ∞ 50.0
K
GB ∞
1.0
50.0 10.0
10.0 5.0 3.0
5.0 0.9
5.0
100.0 50.0 30.0
20.0
4.0
20.0
10.0 9.0 8.0 7.0
3.0
2.0
0.5
0.5
0.4
0.4
0.3
0.3
pl
am
2
0.6
0.7
6.0 5.0
10.0 9.0 8.0 7.0
-3 e3
Ex
3-
0.8 0.7
ple
1.0
0.8 0.7
am
1.0
Ex
0.8
0.2
GB ∞ 20.0 10.0
100.0 50.0 30.0
3.0
2.0
0.6
K
GA ∞
6.0 5.0
2.2
4.0
4.0
2.0
3.0
3.0
1.75 2.0
2.36
2.0 1.5
0.6
0.2 1.0
0.1
1.0
0.1
0.26 0
0.5
0
SIDESWAY INHIBITED
1.0
0
0
SIDESWAY UNINHIBITED
Fig. 3-1. Alignment charts for effective length of columns in continuous frames. The subscripts A and B refer to the joints at the two ends of the column section being considered. G is defined as Σ(Ic / Lc) G= Σ(Ig / Lg) in which Σ indicates a summation of all members rigidly connected to that joint and lying on the plane in which buckling of the column is being considered. Ic is the moment of inertia and Lc the unsupported length of a column section, and Ig is the moment of inertia and Lg is the unsupported length of a girder or other restraining member. Ic and Ig are taken about axes perpendicular to the plane of buckling being considered. For column ends supported but not rigidly connected to a footing or foundation, G is theoretically infinity, but, unless actually designed a true friction free pin, may be taken as 10 for practical designs. If the column end is rigidly attached to a properly designed footing, G may be taken as 1.0. Smaller values may be used if justified by analysis. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3-7
Table 3-1. Stiffness Reduction Factors (SRF) for Columns Pu / A
Fy
Pu / A
ksi 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27
Fy
ksi 36 ksi
50 ksi
— — — — — — — — — — — — 0.05 0.14 0.22 0.30
0.03 0.09 0.16 0.21 0.27 0.33 0.38 0.44 0.49 0.53 0.58 0.63 0.67 0.71 0.75 0.79
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11
36 ksi
50 ksi
0.38 0.45 0.52 0.58 0.65 0.70 0.76 0.81 0.85 0.89 0.92 0.95 0.97 0.99 1.00 ↓
0.82 0.85 0.88 0.90 0.93 0.95 0.97 0.98 0.99 1.00 ↓
— indicates not applicable.
Re-enter table for effective length of 19.5 ft to satisfy axial load of 1,400 kips, select W14×145. By interpolation, the column is good for 1,410 kips. Use W14×145 column
EXAMPLE 3-2
Given:
Design an 11-ft long W12 interior bay column to support a factored concentric axial roof load of 1,100 kips. The column is rigidly framed at the top by 30-ft long W30×116 girders connected to each flange. Column moment is zero due to the assumption of equal and offsetting moments in the girders. The column is braced normal to its web at top and base so that sidesway is inhibited in this plane. Use Fy = 50 ksi steel.
Solution:
a. Check Y-Y axis: Assume the column is pin-connected at the top and bottom with sidesway inhibited. From Table C-C2.1 in the Commentary for condition (d), K = 1.0: Effective length = 11 ft Enter Column Load Table: W12×106 good for 1,160 kips > 1,100 kips o.k. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3-8
COLUMN DESIGN
b. Check X-X axis: 1. Preliminary selection: Assume sidesway uninhibited and pin-connected at base. From Table C-C2.1 for condition (f): K = 2.0 Approximate effective length relative to X-X axis: 2.0 × 11 = 22.0 ft From Properties section in tables, for W12 column: rx / ry ≈ 1.76 Equivalent effective length relative to the Y-Y axis: 22.0
1.76
≈ 12.5 ft > 11.0 ft
Therefore, effective length for X-X axis is critical. Enter Column Load Table with an effective length of 12.5 ft: W12×106 column, by interpolation, good for 1,115 kips > 1,100 kips o.k. 1. Final selection Try W12×106 Using Figure 3-1 (sidesway uninhibited): Ix for W12×106 column = 933 in.4 Ix for W30×116 girder = 4,930 in.4 G (base)
= 10 (assume supported but not rigidly connected)
G (top)
=
933 / 11 = 0.258, say 0.26 (4,930 × 2) / 30
Connect points GA = 10 and GB = 0.26, read K = 1.75 For W12×106, rx / ry = 1.76 Actual effective length relative to Y-Y axis: 1.75 × 11.0 = 10.9 ft < 11.0 ft 1.76 Since the effective length for Y-Y axis is not critical, Use W12×106 column AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3-9
EXAMPLE 3-3
Given:
Using the alignment chart, Figure 3-1 (sidesway uninhibited) and Table 3-1 (Stiffness Reduction Factors), design columns for the bent shown, by the inelastic K-factor procedure. Let Fy = 50 ksi. Assume continuous support in the transverse direction.
Solution:
The alignment charts in Figure 3-1 are applicable to elastic columns. By multiplying G-values times the stiffness reduction factor Et / E, the charts may be used for inelastic columns. Since Et / E ≈ Fcr, inelastic / Fcr, elastic, the relationship may be written as Ginelastic = (Fcr, inelastic / Fcr, elastic)Gelastic. By utilizing the calculated stress Pu / A a direct solution is possible, using the following steps: 1. For a known value of factored axial load, Pu = 1,100 kips, select a trial column size. Assume W12×120 A = 35.3 in.2, Ix = 1,070 in.4, rx = 5.51 in. 2. Calculate Pu / A: Pu / A = 1,100 kips / 35.3 in.2 = 31.2 ksi 3. From Table 3-1, determine the Stiffness Reduction Factor (SRF); SRF = 0.62. For values of Pu / A smaller than those with entries in Table 3-1, the column is elastic, and the reduction factor is 1.0. 4. Determine Gelastic: Gelastic (bottom) = 10 1,100 k
1,100 k
W16x31 IX = 375 15′
20′
Fig. 3-2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 10
COLUMN DESIGN
Gelastic (top)
=
1,070 / 15 = 3.80 375 / 20
5. Calculate Ginelastic = SRF × Gelastic: Ginelastic(top) = 0.62 × 3.80 = 2.36 6. Determine K from Figure 3-1 using Ginelastic For G (top) = 2.36 and G (bottom) = 10, Read from Figure 3-1, K = 2.2 7. KLx = 2.2 × 15 ft = 33.0 ft 8. Calculate equivalent of KLy: KLx 33.0 ft = = 18.75 ft 1.76 rx / ry 9. From the column tables (for 50 ksi steel): φc Pn = 1,030 kips < 1,100 kips req’d. n.g. Try a stronger column. 1. Try a W12×136 A = 39.9 in.2, Ix = 1,240 in.4, rx = 5.58 in. 2. Pu / A = 1,100 kips / 39.9 in.2 = 27.6 ksi 3. From Table 3-1: SRF = 0.77 4. Gelastic (top) =
1,240 / 15 = 4.41 375 / 20
5. Ginelastic(top) = 0.77 × 4.41 = 3.39 6. K = 2.3 7. KLx = 2.3 × 15 ft = 34.5 ft 8. Equivalent KLy:
KLx 34.5 ft = = 19.5 ft 1.77 rx / ry
9. φc Pn = 1,135 kips > 1,100 kips req’d o.k. Use W12×136 “Leaning” Columns
A “leaning” column is one which is considered pin-ended and does not participate in providing lateral stability to the structure. As a result, it relies on other parts of the structure for stability. The LRFD Specification in Section C2.2 requires that for unbraced frames, “the destabilizing effects of gravity-loaded columns whose simple connections AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 11
to the frame do not provide resistance to lateral loads shall be included in the design of the moment-frame columns.” Normal practice is to design leaning columns for their required strength with an effective length factor K = 1. To account for the effects of leaning columns on unbraced frames, one of the methods given in the Commentary on the LRFD Specification (Section C2) or in Geschwindner (1993) may be utilized. The simplest methods are: 1. The slightly conservative approach of adjusting the effective lengths of the rigidframe columns, Ki′ = √NKi where Ki′ = the modified effective length factor of a column Ki = the actual effective length factor of a column N = ratio of the factored gravity load supported by all columns in the given story to that supported by the columns in the rigid frame 2. The more conservative approach of providing sufficient design compressive strength in the rigid-frame columns of a story to enable them to support the total factored gravity load of the story at their actual effective lengths. Combined Axial and Bending Loading (Interaction)
Loads given in the Column Tables are for concentrically loaded columns. For columns subjected to both axial and bending stress, see Chapters C and H of the LRFD Specification. The design of a beam-column is a trial and error process in which a trial section is checked for compliance with Equations H1-1a and H1-1b. A fast method for selecting an economical trial W section, using an equivalent axial load, is illustrated in the example problem, using Table 3-2 and the u values listed in the column properties at the bottom of the column load tables. The procedure is as follows: 1. With the known value of KL (effective length), select a first approximate value of m from Table 3-2. Let u equal 2. 2. Solve for Pu eq = Pu + Mux m + Muy mu where Pu Mux Muy m u
= actual factored axial load, kips = factored bending moment about the strong axis, kip-ft = factored bending moment about the weak axis, kip-ft = factor taken from Table 3-2 = factor taken from column load table
3. From the appropriate Column Load Table, select a tentative section to support Pu eq. 4. Based on the section selected in Step 3, select a “subsequent approximate” value of m from Table 3-2 and a u value from the column load table. 5. With the values selected in Step 4, solve for Pu eq. 6. Repeat Steps 3 and 4 until the values of m and u stabilize. 7. Check section obtained in Step 6 per Equation H1-1a or H1-1b, as applicable. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 12
COLUMN DESIGN
Table 3-2. Preliminary Beam-Column Design Fy = 36 ksi, Fy = 50 ksi Values of m
Fy KL (ft)
36 ksi 10
12
14
16
18
50 ksi 20
22 and over
10
12
14
16
18
20
22 and over
1.8
1.7
1.6
1.4
1.3
1.2
1.4 1.7 1.8 2.0 1.8 1.5 1.4
1.1 1.4 1.5 1.7 1.7 1.5 1.3
1.0 1.1 1.3 1.5 1.5 1.4 1.3
0.9 1.0 1.2 1.3 1.4 1.3 1.2
0.8 0.9 1.1 1.2 1.3 1.2 1.2
1st Approximation All Shapes
2.0
1.9
1.8
1.7
1.6
1.5
1.3
1.9
Subsequent Approximation W4 W6 W8 W8 W10 W12 W14
3.1 3.2 2.8 2.5 2.1 1.7 1.5
2.3 2.7 2.5 2.3 2.0 1.7 1.5
1.7 2.1 2.1 2.2 1.9 1.6 1.4
1.4 1.7 1.8 2.0 1.8 1.5 1.4
1.1 1.4 1.5 1.8 1.7 1.5 1.3
1.0 1.2 1.3 1.6 1.6 1.4 1.3
0.8 1.0 1.1 1.4 1.4 1.3 1.2
2.4 2.8 2.5 2.4 2.0 1.7 1.5
1.8 2.2 2.2 2.2 1.9 1.6 1.4
This table is from a paper in AISC Engineering Journal by Uang, Wattar, and Leet (1990).
EXAMPLE 3-4
Given:
Design the following column: Pu = 400 kips Mntx = 250 kip-ft Mltx = 0 (braced frame) Mnty = 80 kip-ft Mlty = 0 (braced frame) KLx = KLy = 14 ft Lb = 14 ft Cm = 0.85 Fy = 50 ksi
Solution:
1. For KL = 14 ft, from Table 3-2 select a first trial value of m = 1.7. Let u = 2 2. Pu eq = Pu + Mux m + Muy mu = 400 + 250 × 1.7 + 80 × 1.7 × 2 = 1,097 kips 3. From Column Load Tables select W14×109 (φc Pn = 1,170 kips) or W12×120 (φc Pn = 1,220 kips). 4. Select the W14 column, so the second trial value of m is 1.4. (Note: If a W14 column were required for architectural or other reasons, AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 13
the selection process could have started with m = 1.4). With m = 1.4 and u = 1.97 (for a W14×109) from Column Load Table, Pu eq = 400 + 250 × 1.4 + 80 × 1.4 × 1.97 = 971 kips 5. From Column Load Tables select W14×90 (φc Pn = 969 kips). 6. For W14×90, m = 1.4, u = 1.94. Repeat of Steps 3 and 4 not required. 7. Check W14×90 with the appropriate interaction formula. A
= 26.5 in.2
ry
= 3.70 in.,
Kl 14 × 12 = 45.4 = 3.70 ry
rx
= 6.14 in.,
Kl 14 × 12 = 27.4 = 6.14 rx
Thesecond-or der moments,Mux and Muy, will be evaluated using the approximate method given in Section C1 of the LRFD Specification. Because Mltx = Mlty = 0 (braced frames in both directions), Specification Equation C1-1 reduces to Mu = B1Mnt, where B1 is a function of Pe1 (Equation C1-2). The values of Pe1 with respect to the x and y axes can be determined from LRFD Specification Table 8 as follows:
Pex Pey
= 382 × 26.5 = 10,123 kips = 139 × 26.5 = 3,684 kips
B1x
=
0.85 < 1.0. Use B1x = 1.0 1 − 400 / 10,123
B1y
=
0.85 < 1.0. Use B1y = 1.0 1 − 400 / 3,684
= 1.0 × 250 = 250 kip-ft = 1.0 × 80 = 80 kip-ft 0.9 × 50 × 75.6 = 284 kip-ft φb Mny = φb Mpy = 12
Mux Muy
From the beam selection table in Part 4 of this Manual: φb Mnx = 577 kip-ft for Lb < Lp = 15.0 ft Pu φcPn
=
400 = 0.412 > 0.2. Therefore, Equation H1-1a applies. 969
400 8 250 80 + + = 0.412 + 0.636 = 1.05 < 1.0 n.g. 969 9 577 284 Use W14×99 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 14
COLUMN DESIGN
Column Stiffening
Values of Pwo, Pwi, Pwb, and Pfb, listed in the Properties Section of the Column Load Tables for W and HP shapes, are useful in determining if a column requires stiffening because of forces transmitted into it from the flanges or connecting flange plates of a rigid beam connection to the column flange. The parameters are defined as follows: Pwo Pwi Pwb Pfb
= φ5Fyw tw k (kips), φ = 1.0 = φFyw tw (kips/in.), φ = 1.0 = φ4,100tw3 √ Fyw / h (kips), φ = 0.9 = φ6.25tf2Fyf (kips), φ = 0.9
Column stiffening or a heavier column* is required if Pbf, the factored force transmitted into the column web, exceeds any one of the following three resisting forces: Pwb Pfb Pwi tb + Pwo, where tb is the thickness of the beam flange delivering the concentrated force. For a complete explanation of these design parameters, see the section Column Stiffening in Part 10 (Volume II) of this LRFD Manual.
*The designer should consider selecting a heavier column section to eliminate the need for stiffening. Although this will increase the material cost of the column, this heavier section may provide a more economical solution due to the reduction in labor cost associated with the elimination of stiffening. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 15
W and HP Shapes
The design strengths in the tables that follow are tabulated for the effective lengths in feet KL (with respect to the minor axis), indicated at the left of each table. They are applicable to axially loaded members in accordance with Section E2 of the LRFD Specification. Two yield stresses are covered, 36 and 50 ksi. The heavy horizontal lines appearing within the tables indicate Kl / r = 200. No values are listed beyond Kl / r = 200. For discussion of effective length, range of l / r, strength about the major axis, combined axial and bending stress, and sample problems, see General Notes, above. Properties and factors are listed at the bottom of the tables for checking strength about the strong axis, combined loading conditions, and column stiffener requirements.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 16
COLUMN DESIGN Y
Fy = 36 ksi Fy = 50 ksi
X
COLUMNS W shapes Design axial strength in kips (φ = 0.85)
X
Y
Designation
W14
Wt./ft
808
Effective length KL (ft) with respect to least radius of gyration ry
Fy
730
665
605
550
36
50
36
50
36
50
36
50
36
50
0
7250
10100
6580
9140
6000
8330
5450
7570
4960
6890
11 12 13 14 15
5610 5480 5350 5230 5110
7440 7240 7040 6850 6660
6310 6260 6210 6150 6090
8620 8530 8430 8320 8200
5750 5700 5650 5590 5540
7850 7760 7660 7560 7450
5210 5170 5120 5070 5020
7110 7030 6940 6850 6750
4740 4700 4650 4600 4560
6460 6390 6300 6220 6120
16 17 18 19 20
4990 4870 4760 4650 4540
6480 6310 6130 5970 5810
6020 5960 5880 5810 5730
8080 7960 7820 7690 7550
5480 5410 5350 5280 5200
7340 7220 7100 6970 6840
4960 4900 4840 4770 4700
6640 6530 6420 6300 6170
4500 4450 4390 4330 4260
6020 5920 5810 5700 5590
22 24 26 28 30
4340 4140 3950 3770 3600
5490 5200 4920 4660 4410
5570 5390 5210 5020 4820
7250 6940 6610 6280 5940
5050 4890 4720 4540 4360
6560 6270 5970 5660 5340
4560 4410 4250 4090 3920
5910 5640 5360 5080 4790
4130 3990 3840 3690 3530
5350 5100 4840 4570 4300
32 34 36 38 40
3430 3280 3130 2980 2850
4170 3950 3740 3540 3350
4620 4420 4210 4000 3790
5600 5250 4910 4580 4250
4170 3980 3790 3590 3400
5030 4710 4400 4090 3780
3740 3570 3390 3210 3030
4490 4200 3910 3630 3350
3370 3210 3050 2880 2720
4030 3760 3500 3240 2990
42 44 46 48 50
2720 2590 2470 2360 2250
3170 3000 3860 3540 3260
3580 3380 3170 2970 2780
3930 3620 3310 3040 2800
3210 3020 2830 2650 2470
3490 3200 2930 2690 2480
2860 2680 2510 2340 2180
3080 2820 2580 2370 2180
2550 2390 2240 2080 1940
2740 2500 2290 2100 1940
2.03 2.03 2.03 3910 5430 3070 135 187 111 103000 122000 56400 5310 7370 4880 20.1 17.0 19.5 415 270 372
2.03 4270 154 66500 6780 16.6 241
2.02 3670 142 52200 5750 16.3 222
2.02 2250 93.4 33900 3500 19.0 313
2.01 3120 130 39900 4870 16.1 203
2.02 1930 85.7 26100 2950 18.7 288
2.01 2680 119 30800 4100 15.9 188
Properties u P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
237 16000 5510 4.82 1.70 457000 158000
215 14300 4720 4.69 1.74 411000 135000
2.02 2640 102 44300 4140 19.3 342
196 12400 4170 4.62 1.73 357000 120000
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
178 10800 3680 4.55 1.71 310000 105000
162 9430 3250 4.49 1.70 270000 93500
DESIGN STRENGTH OF COLUMNS
3 - 17 Y
Fy = 36 ksi Fy = 50 ksi
COLUMNS W shapes Design axial strength in kips (φ = 0.85)
X
X
Y
Designation
W14
Wt./ft
500
Fy
455
426
398
370
50
36
50
36
50
36
50
36
50
4500
6250
4100
5700
3830
5310
3580
4970
3340
4630
11 12 13 14 15
4290 4250 4210 4170 4120
5850 5780 5710 5620 5540
3910 3870 3840 3790 3750
5330 5260 5190 5110 5030
3640 3610 3570 3530 3490
4970 4900 4830 4760 4680
3410 3380 3340 3300 3270
4640 4580 4520 4450 4380
3170 3140 3110 3070 3040
4320 4260 4200 4140 4070
16 17 18 19 20
4070 4020 3970 3910 3850
5450 5350 5250 5150 5040
3710 3660 3610 3560 3500
4950 4860 4770 4670 4570
3450 3400 3360 3310 3260
4600 4520 4430 4340 4250
3230 3180 3140 3090 3040
4300 4220 4140 4050 3960
3000 2960 2920 2870 2820
4000 3920 3840 3760 3680
22 24 26 28 30
3730 3600 3460 3320 3180
4820 4590 4350 4100 3850
3390 3270 3140 3010 2870
4370 4150 3930 3700 3480
3150 3030 2910 2790 2660
4050 3850 3640 3430 3210
2940 2830 2720 2600 2480
3780 3590 3390 3190 2990
2730 2630 2520 2410 2290
3500 3320 3140 2950 2750
32 34 36 38 40
3030 2880 2730 2580 2420
3610 3360 3120 2880 2650
2740 2600 2460 2320 2180
3250 3020 2800 2580 2370
2530 2400 2270 2140 2010
3000 2780 2570 2370 2170
2360 2230 2110 1990 1860
2780 2580 2390 2190 2010
2180 2060 1950 1830 1710
2560 2380 2190 2010 1840
42 44 46 48 50
2280 2130 1990 1850 1710
2420 2210 2020 1860 1710
2040 1910 1780 1650 1520
2160 1970 1800 1650 1520
1880 1750 1630 1510 1400
1980 1800 1650 1510 1400
1740 1620 1510 1400 1290
1830 1660 1520 1400 1290
1600 1490 1380 1280 1180
1670 1520 1390 1280 1180
P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
2.01 1650 78.8 20400 2480 18.5 264
2.00 2290 110 24100 3450 15.7 172
1.99 1410 72.5 15800 2090 18.3 242
1.99 1950 101 18600 2900 15.5 157
1.99 1730 93.8 15000 2590 15.3 148
1.99 1120 63.7 10800 1640 18.0 213
1.98 1550 88.5 12800 2280 15.2 139
1.98 987 59.6 8790 1430 17.8 199
1.97 1370 82.8 10400 1990 15.1 129
Effective length KL (ft) with respect to least radius of gyration ry
36 0
Properties u
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
147 8210 2880 4.43 1.69 235000 82600
134 7190 2560 4.38 1.67 206000 73600
2.00 1240 67.5 12800 1870 18.1 227
125 6600 2360 4.34 1.67 189000 67400
117 6000 2170 4.31 1.66 172000 62200
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
109 5440 1990 4.27 1.66 156000 56900
3 - 18
COLUMN DESIGN Y
Fy = 36 ksi Fy = 50 ksi
X
COLUMNS W shapes Design axial strength in kips (φ = 0.85)
X
Y
Designation
W14
Wt./ft
342
Fy
311
283
257
233
50
36
50
36
50
36
50
36
50
3090
4290
2800
3880
2550
3540
2310
3210
2100
2910
6 7 8 9 10
3040 3030 3010 2990 2960
4200 4170 4130 4090 4050
2750 2740 2720 2700 2680
3800 3770 3740 3700 3660
2510 2500 2480 2460 2440
3460 3440 3410 3370 3330
2280 2260 2250 2230 2210
3140 3120 3090 3060 3020
2060 2050 2040 2020 2000
2850 2820 2800 2770 2730
11 12 13 14 15
2940 2910 2880 2850 2810
4000 3950 3890 3830 3760
2660 2630 2600 2570 2540
3610 3560 3510 3460 3400
2420 2390 2370 2340 2310
3290 3240 3200 3140 3090
2190 2170 2150 2120 2090
2980 2940 2890 2850 2800
1980 1960 1940 1920 1890
2700 2660 2620 2570 2530
16 17 18 19 20
2770 2740 2700 2650 2610
3690 3620 3550 3470 3400
2510 2470 2430 2390 2360
3330 3270 3200 3130 3060
2280 2250 2210 2180 2140
3030 2970 2910 2850 2780
2060 2030 2000 1970 1940
2740 2690 2630 2570 2510
1870 1840 1810 1780 1750
2480 2430 2380 2320 2270
22 24 26 28 30
2520 2420 2320 2220 2110
3230 3060 2890 2710 2530
2270 2180 2090 2000 1900
2910 2750 2590 2430 2270
2060 1980 1900 1810 1720
2640 2500 2350 2200 2050
1870 1790 1710 1630 1550
2380 2250 2120 1980 1840
1690 1620 1550 1470 1400
2150 2030 1910 1780 1660
32 34 36 38 40
2010 1900 1790 1680 1570
2360 2180 2010 1840 1680
1800 1700 1600 1500 1410
2110 1950 1790 1640 1490
1630 1540 1450 1360 1270
1900 1760 1620 1480 1340
1470 1380 1300 1220 1140
1710 1570 1440 1320 1190
1320 1240 1170 1090 1020
1530 1410 1290 1180 1070
P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
1.98 866 55.4 7100 1240 17.7 185
1.97 1200 77.0 8360 1720 15.0 120
1.97 746 50.8 5430 1030 17.5 168
1.96 1040 70.5 6400 1440 14.8 110
1.95 887 64.5 4930 1210 14.7 100
1.96 542 42.3 3150 723 17.2 140
1.94 753 58.8 3710 1000 14.6 91.6
1.95 457 38.5 2370 599 17.1 127
1.93 635 53.5 2790 832 14.5 83.4
Effective length KL (ft) with respect to least radius of gyration ry
36 0
Properties u
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
101 4900 1810 4.24 1.65 141000 52000
91.4 4330 1610 4.2 1.64 124000 46100
1.97 639 46.4 4190 868 17.4 154
83.3 3840 1440 4.17 1.63 110000 41500
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
75.6 3400 1290 4.13 1.62 97400 36900
68.5 3010 1150 4.1 1.62 86200 33000
DESIGN STRENGTH OF COLUMNS
3 - 19 Y
Fy = 36 ksi Fy = 50 ksi
COLUMNS W shapes Design axial strength in kips (φ = 0.85)
X
X
Y
Designation
W14
Wt./ft
211
Fy
193
176
159
145
50
36
50
36
50
36
50
36
50
1900
2640
1740
2410
1590
2200
1430
1980
1310
1810
6 7 8 9 10
1870 1860 1840 1830 1810
2580 2550 2530 2500 2470
1710 1700 1690 1670 1660
2360 2340 2320 2290 2260
1560 1550 1540 1530 1510
2150 2130 2110 2090 2060
1400 1400 1390 1380 1360
1940 1920 1900 1880 1860
1280 1280 1270 1260 1250
1770 1760 1740 1720 1700
11 12 13 14 15
1790 1780 1760 1730 1710
2440 2400 2370 2330 2280
1640 1630 1610 1590 1570
2230 2200 2170 2130 2090
1500 1480 1460 1450 1430
2030 2000 1970 1940 1900
1350 1330 1320 1300 1280
1830 1810 1780 1740 1710
1230 1220 1210 1190 1170
1670 1650 1620 1590 1560
16 17 18 19 20
1690 1660 1640 1610 1580
2240 2190 2140 2090 2040
1540 1520 1500 1470 1440
2050 2010 1960 1910 1870
1410 1380 1360 1340 1310
1860 1820 1780 1740 1700
1270 1250 1230 1200 1180
1680 1640 1600 1570 1530
1160 1140 1120 1100 1080
1530 1500 1460 1430 1390
22 24 26 28 30
1520 1460 1390 1330 1260
1940 1830 1710 1600 1490
1390 1330 1270 1210 1150
1770 1670 1560 1460 1350
1260 1210 1150 1100 1040
1610 1510 1420 1320 1220
1140 1090 1040 990 930
1440 1360 1270 1180 1100
1040 992 946 898 849
1320 1240 1160 1080 998
32 34 36 38 40
1190 1120 1050 980 912
1370 1260 1160 1050 951
1080 1020 955 892 830
1250 1150 1050 956 863
980 920 863 805 748
1130 1040 946 859 775
880 830 773 721 670
1010 928 846 767 692
800 752 703 655 608
919 842 767 694 626
P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
1.95 397 35.3 1830 493 17.0 116
1.93 551 49.0 2160 684 14.4 76.0
1.96 340 32.0 1370 420 16.9 106
1.93 473 44.5 1610 583 14.3 70.1
1.92 415 41.5 1310 483 14.2 64.5
1.94 251 26.8 803 287 16.7 88.6
1.92 349 37.3 947 398 14.1 59.0
1.93 214 24.5 609 241 16.6 81.5
1.90 298 34.0 718 334 14.1 54.7
Effective length KL (ft) with respect to least radius of gyration ry
36 0
Properties u
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
62.0 2660 1030 4.07 1.61 76100 29400
56.8 2400 931 4.05 1.60 68700 26700
1.94 299 29.9 1110 348 16.8 97.5
51.8 2140 838 4.02 1.60 61300 24000
46.7 1900 748 4 1.60 54400 21400
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
42.7 1710 677 3.98 1.59 49000 19400
3 - 20
COLUMN DESIGN Y
Fy = 36 ksi Fy = 50 ksi
X
COLUMNS W shapes Design axial strength in kips (φ = 0.85)
X
Y
Designation
W14
Wt./ft
132
Fy
120
109 50
90
36
50
36
50
36
50†
36
50†
0
1190
1650
1080
1500
979
1360
890
1240
811
1130
6 7 8 9 10
1160 1160 1150 1140 1130
1610 1590 1570 1550 1530
1060 1050 1040 1030 1020
1460 1450 1430 1410 1390
960 953 946 937 927
1320 1310 1300 1280 1260
873 867 860 852 843
1200 1190 1180 1160 1150
795 789 783 775 767
1100 1080 1070 1060 1040
11 12 13 14 15
1110 1100 1080 1070 1050
1510 1480 1450 1430 1390
1010 999 986 971 956
1370 1350 1320 1290 1270
917 905 893 880 866
1240 1220 1200 1170 1150
833 823 811 799 787
1130 1110 1090 1060 1040
758 749 738 727 716
1030 1010 989 969 947
16 17 18 19 20
1030 1020 997 978 958
1360 1330 1300 1260 1220
940 924 906 888 870
1240 1210 1180 1140 1110
852 837 821 804 787
1120 1090 1060 1030 1000
773 759 745 730 714
1020 991 965 938 911
704 691 678 664 650
925 902 878 853 828
22 24 26 28 30
916 872 826 780 733
1150 1070 997 920 844
831 791 749 706 663
1040 972 902 832 762
752 715 677 639 600
943 879 815 751 688
682 648 614 578 542
854 796 737 679 621
620 589 558 525 493
776 723 670 616 564
32 34 36 38
686 639 593 547
769 697 627 563
620 577 535 494
694 628 565 507
560 522 483 446
627 567 509 457
507 471 436 402
565 511 458 411
460 428 396 365
512 463 415 372
P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
2.03 196 23.2 520 215 15.7 73.7
1.99 272 32.3 613 298 13.3 49.7
2.04 173 21.2 399 179 15.6 67.9
1.99 240 29.5 471 249 13.2 46.3
1.97 205 26.3 331 208 13.2 43.2
2.02 125 17.5 222 123 15.5 58.1
1.95 174 24.3 261 171 13.4 40.6
2.02 109 15.8 165 102 15.4 54.2
1.94 151 22.0 195 142 15.0 38.4
Effective length KL (ft) with respect to least radius of gyration ry
36
99
Properties u
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
38.8 1530 548 3.76 1.67 43800 15700
35.3 1380 495 3.74 1.67 39300 14100
2.02 148 18.9 281 150 15.5 62.7
32 1240 447 3.73 1.67 35400 12700
†Flange is noncompact; see discussion preceding column load tables.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
29.1 1110 402 3.71 1.66 31700 11500
26.5 999 362 3.70 1.66 28600 10400
DESIGN STRENGTH OF COLUMNS
3 - 21 Y
Fy = 36 ksi Fy = 50 ksi
COLUMNS W shapes Design axial strength in kips (φ = 0.85)
X
X
Y
Designation
W14
Wt./ft
82
Fy
36
50
68
61
53
48
43
36
50
36
50
36
50
36
50
36
50
36
50†
737 1020 667
927
612
850
548
761
477
663
431
599
386
536
6 7 8 9 10
705 694 682 667 652
963 942 918 892 863
638 628 616 604 590
871 852 830 807 781
585 576 565 553 540
798 781 760 738 714
523 515 505 494 483
714 698 680 660 638
443 432 418 404 389
598 576 552 526 498
400 390 378 365 351
540 520 498 474 449
357 347 337 325 312
482 463 443 422 399
11 12 14 16 18
635 618 579 538 495
833 800 732 661 588
575 559 524 487 447
753 724 662 598 532
526 511 479 444 408
689 662 604 544 484
470 457 428 396 364
615 591 539 486 431
372 355 319 282 245
469 439 379 319 263
336 320 287 253 220
423 395 340 286 235
298 284 254 224 194
375 350 301 252 206
20 22 24 26 28
450 406 363 321 280
516 447 381 325 280
407 367 328 290 253
467 405 345 294 253
371 334 297 262 229
424 366 311 265 229
331 297 265 233 203
377 325 276 236 203
210 176 148 126 109
213 176 148 126 109
188 157 132 113 97
191 157 132 113 97
165 138 116 99 85
167 138 116 99 85
30 31 32 34 36
244 229 214 190 169
244 229 214 190 169
221 207 194 172 153
221 207 194 172 153
199 187 175 155 138
199 187 175 155 138
177 166 155 138 123
177 166 155 138 123
95 89 83
95 89 83
85 79
85 79
74 69
74 69
38
152
152 138
138
124
124
110
110
3.2 2.7 3.12 2.56 2.97 95.7 133 84.2 117 72.1 13.3 18.5 12.2 17.0 11.0 98.4 116 76.4 90.0 55.1 88.2 123 71.7 100 56.9 8.00 6.79 7.96 6.75 7.88 28.0 20.1 26.4 19.2 24.7
2.37 100 15.3 64.9 79.0 6.68 18.2
0
Effective length KL (ft) with respect to least radius of gyration ry
74
Properties u P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
2.85 149 18.4 257 148 10.3 43.0
2.68 207 25.5 303 206 8.77 29.6
24.1 882 148 2.48 2.44 25200 4240
2.82 127 16.2 177 125 10.3 40.0
2.62 176 22.5 209 173 8.77 27.9
21.8 796 134 2.48 2.44 22800 3840
2.80 112 14.9 139 105 10.3 37.3
2.56 156 20.8 163 146 8.70 26.4
20 723 121 2.46 2.44 20700 3460
2.74 97.0 13.5 102 84.2 10.2 34.7
2.44 135 18.8 121 117 8.66 25.0
17.9 640 107 2.45 2.44 18300 3080
15.6 541 57.7 1.92 3.07 15500 1650
14.1 485 51.4 1.91 3.06 13800 1470
12.6 428 45.2 1.89 3.08 12200 1290
†Web may be noncompact for combined axial and bending stress; see AISC LRFD Specification Section B5. Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 22
COLUMN DESIGN Y
Fy = 36 ksi Fy = 50 ksi
X
COLUMNS W shapes Design axial strength in kips (φ = 0.85)
X
Y
Designation
W12
Wt./ft
336
Fy
305
279
252
230
50
36
50
36
50
36
50
36
50
3020
4200
2740
3810
2510
3480
2270
3150
2070
2880
6 7 8 9 10
2960 2930 2900 2870 2840
4070 4020 3970 3910 3850
2680 2660 2630 2600 2570
3690 3640 3590 3540 3480
2450 2430 2400 2370 2350
3370 3330 3280 3230 3170
2210 2190 2170 2150 2120
3040 3010 2960 2920 2870
2020 2000 1980 1960 1930
2780 2740 2710 2660 2610
11 12 13 14 15
2800 2760 2720 2670 2620
3780 3700 3620 3540 3450
2530 2500 2460 2410 2370
3420 3350 3270 3190 3110
2310 2280 2240 2200 2160
3110 3050 2980 2910 2830
2090 2060 2020 1980 1950
2810 2750 2680 2620 2550
1910 1880 1840 1810 1770
2560 2500 2450 2380 2320
16 17 18 19 20
2570 2520 2470 2410 2350
3360 3260 3160 3060 2960
2320 2270 2220 2170 2120
3020 2940 2840 2750 2660
2110 2070 2020 1970 1920
2750 2670 2580 2500 2410
1910 1860 1820 1770 1730
2470 2400 2320 2240 2160
1740 1700 1660 1610 1570
2250 2180 2110 2030 1960
22 24 26 28 30
2230 2100 1980 1850 1720
2750 2540 2330 2120 1910
2000 1890 1770 1650 1530
2460 2270 2070 1880 1690
1820 1710 1600 1490 1380
2230 2050 1870 1690 1520
1630 1530 1430 1330 1230
1990 1830 1660 1500 1350
1480 1390 1300 1200 1110
1810 1650 1500 1350 1210
32 34 36 38 40
1590 1460 1340 1220 1100
1720 1520 1360 1220 1100
1410 1300 1180 1080 971
1510 1340 1200 1080 971
1270 1160 1060 960 866
1350 1200 1070 960 866
1130 1030 940 848 766
1200 1060 945 848 766
1020 931 845 761 687
1070 951 848 761 687
P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
2.18 1180 64 12700 1770 14.5 202
2.17 1640 89 15000 2460 12.3 131
2.18 1010 59 9740 1480 14.3 184
2.16 1400 81 11500 2060 12.1 120
2.15 1220 77 9700 1720 12.0 110
2.16 738 50 6150 1030 13.9 154
2.14 1020 70 7250 1420 11.8 100
2.15 636 46 4810 868 13.8 141
2.13 883 64 5670 1210 11.7 92.0
Effective length KL (ft) with respect to least radius of gyration ry
36 0
Properties u
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
98.8 4060 1190 3.47 1.85 116000 34000
89.6 3550 1050 3.42 1.84 101000 30000
2.16 878 55 8230 1240 14.1 169
81.9 3110 937 3.38 1.82 88900 26800
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
74.1 2720 828 3.34 1.81 77900 23700
67.7 2420 742 3.31 1.80 69100 21200
DESIGN STRENGTH OF COLUMNS
3 - 23 Y
Fy = 36 ksi Fy = 50 ksi
COLUMNS W shapes Design axial strength in kips (φ = 0.85)
X
X
Y
Designation
W12
Wt./ft
210
Fy
190
170
152
136
120
50
36
50
36
50
36
50
36
50
36
50
1890
2630
1710
2370
1530
2120
1370
1900
1220
1700
1080
1500
6 7 8 9 10
1840 1830 1810 1790 1760
2540 2500 2470 2430 2380
1660 1650 1630 1610 1590
2290 2260 2220 2190 2150
1490 1480 1460 1440 1420
2050 2020 1990 1960 1920
1330 1320 1300 1290 1270
1830 1810 1780 1750 1710
1190 1180 1160 1150 1130
1630 1610 1590 1560 1530
1050 1040 1030 1010 1000
1440 1420 1400 1380 1350
11 12 13 14 15
1740 1710 1680 1650 1610
2330 2280 2230 2170 2110
1570 1540 1510 1480 1450
2100 2050 2000 1950 1900
1400 1380 1350 1330 1300
1880 1840 1790 1740 1690
1250 1230 1210 1180 1160
1680 1640 1590 1550 1510
1110 1090 1070 1050 1030
1490 1460 1420 1380 1340
984 966 948 928 908
1320 1290 1250 1220 1180
16 17 18 19 20
1580 1540 1510 1470 1430
2040 1980 1910 1840 1780
1420 1390 1350 1320 1280
1840 1780 1720 1650 1590
1270 1240 1210 1180 1140
1640 1580 1530 1470 1420
1130 1100 1070 1050 1020
1460 1410 1360 1310 1260
1010 980 955 928 901
1290 1250 1210 1160 1110
886 864 841 817 793
1140 1100 1060 1020 976
22 24 26 28 30
1340 1260 1170 1090 1000
1640 1490 1360 1220 1090
1210 1130 1050 973 895
1460 1340 1210 1090 967
1070 1000 933 862 792
1300 1180 1070 959 852
954 891 827 763 700
1150 1050 944 844 749
846 788 731 673 617
1020 924 831 742 656
743 692 640 589 538
892 808 726 646 569
32 34 36 38 40
919 837 759 682 616
962 852 760 682 616
819 745 674 605 546
853 755 674 605 546
724 657 593 532 480
750 664 593 532 480
638 578 520 467 421
658 583 520 467 421
561 508 456 409 369
577 511 456 409 369
489 442 395 355 320
500 443 395 355 320
P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
2.16 558 42 3760 731 13.7 129
2.13 774 59 4430 1020 11.6 84.2
2.14 465 38 2700 610 13.5 117
2.11 646 53 3190 847 11.5 76.6
2.15 333 31 1500 397 13.3 94.7
2.11 462 44 1760 551 11.3 62.1
2.13 276 28 1120 316 13.2 84.6
2.09 383 40 1320 439 11.2 55.7
2.12 232 26 815 247 13.0 75.5
2.07 322 36 960 343 11.1 50.0
Effective length KL (ft) with respect to least radius of gyration ry
36 0
Properties u
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
61.8 2140 664 3.28 1.80 61400 19000
55.8 1890 589 3.25 1.79 54100 16900
2.14 389 35 2020 493 13.4 105
2.11 540 48 2380 684 11.4 68.9
50.0 1650 517 3.22 1.78 47100 14800
44.7 1430 454 3.19 1.77 41000 13000
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
39.9 1240 398 3.16 1.77 35600 11400
35.3 1070 345 3.13 1.76 30700 9900
3 - 24
COLUMN DESIGN Y
Fy = 36 ksi Fy = 50 ksi
X
COLUMNS W shapes Design axial strength in kips (φ = 0.85)
X
Y
Designation
W12
Wt./ft
106
Fy
96
87
79
72
65
50
36
50
36
50
36
50
36
50
36
50†
955
1330
863
1200
783
1090
710
986
646
897
584
812
6 7 8 9 10
928 919 908 896 883
1280 1260 1240 1210 1190
839 830 820 809 797
1150 1140 1120 1100 1070
761 753 744 734 723
1050 1030 1010 994 973
689 682 674 665 654
947 933 917 900 880
627 620 613 604 595
861 848 834 818 800
567 561 554 546 538
779 767 754 739 723
11 12 13 14 15
868 853 836 819 800
1160 1130 1100 1070 1040
784 770 755 739 722
1050 1020 995 966 935
711 698 684 669 654
950 926 901 874 846
643 631 619 605 591
860 838 814 790 764
585 574 562 550 537
781 761 740 717 694
529 519 508 497 485
706 687 668 647 626
16 17 18 19 20
781 761 741 719 698
1000 968 932 895 858
704 686 667 648 628
904 871 838 805 771
638 621 604 586 568
817 788 758 727 696
576 561 545 529 512
738 711 683 655 627
523 509 495 480 465
670 645 620 594 569
472 460 446 433 419
604 581 558 535 512
22 24 26 28 30
653 608 562 516 472
783 708 635 565 497
588 546 505 463 422
703 635 569 505 443
531 493 455 417 380
634 572 511 453 397
479 444 409 375 341
570 514 459 406 355
434 403 371 339 309
517 465 415 367 321
391 362 333 305 277
464 417 372 328 287
32 34 36 38 40
428 386 345 310 279
437 387 345 310 279
383 345 308 276 249
390 345 308 276 249
344 309 276 248 223
349 309 276 248 223
308 277 247 221 200
312 277 247 221 200
279 250 223 200 181
282 250 223 200 181
250 223 199 179 161
252 223 199 179 161
P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
2.12 185 22 518 198 13.0 67.2
2.06 257 31 611 276 11.0 44.9
2.10 161 20 378 164 12.9 61.4
2.04 223 28 446 228 10.9 41.4
2.09 122 17 236 109 12.7 51.8
2.01 169 24 278 152 10.8 35.7
2.08 106 15 181 91 12.7 48.2
1.98 148 22 213 126 10.7 33.6
2.06 92.1 14 135 74 12.6 44.7
1.95 128 20 159 103 11.8 31.7
Effective length KL (ft) with respect to least radius of gyration ry
36 0
Properties u
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
31.2 933 301 3.11 1.76 26700 8640
28.2 833 270 3.09 1.76 23900 7710
2.10 139 19 311 133 12.8 56.3
2.02 193 26 366 185 10.9 38.3
25.6 740 241 3.07 1.75 21200 6910
23.2 662 216 3.05 1.75 18900 6180
†Flange is noncompact; see discussion preceding column load tables.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
21.1 597 195 3.04 1.75 17000 5580
19.1 533 174 3.02 1.75 15200 4990
DESIGN STRENGTH OF COLUMNS
3 - 25 Y
Fy = 36 ksi Fy = 50 ksi
COLUMNS W shapes Design axial strength in kips (φ = 0.85)
X
X
Y
Designation
W12
Wt./ft
58
Fy
53
50
45
40
50
36
50
36
50
36
50
36
50
520
723
477
663
450
625
404
561
361
502
6 7 8 9 10
498 490 482 472 461
680 666 649 631 611
457 449 441 432 422
623 610 594 577 559
419 408 396 383 369
566 546 524 500 475
376 366 355 343 330
507 489 469 447 424
336 327 317 306 295
453 437 419 399 378
11 12 13 14 15
450 437 424 411 397
590 568 545 521 496
411 400 388 375 362
539 518 496 474 451
354 339 322 306 289
448 421 393 365 337
317 302 287 272 257
400 375 350 324 299
282 269 256 242 228
356 334 311 288 266
16 18 20 22 24
382 352 321 291 260
471 420 370 322 276
348 320 292 263 235
428 381 334 290 247
271 237 204 173 145
310 257 209 173 145
241 210 180 152 128
274 227 184 152 128
214 187 160 135 113
243 201 163 135 113
26 28 30 32 34
231 202 176 155 137
235 202 176 155 137
207 181 158 139 123
210 181 158 139 123
124 107 93 82
124 107 93 82
109 94 82 72
109 94 82 72
96 83 72 64
96 83 72 64
38 41
110 94
110 94
98 85
98 85
P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
2.41 89 13 106 83 10.5 38.3
2.22 124 18 125 115 8.9 27.0
2.39 78 12 94 67 10.3 35.8
2.16 108 17 111 93 8.8 25.6
2.51 127 19 136 115 6.9 21.6
2.79 75 12 86 67 8.1 28.4
2.37 105 17 101 93 6.9 20.3
2.69 66 11 59 54 8.0 26.5
2.22 92 15 69 75 6.8 19.3
Effective length KL (ft) with respect to least radius of gyration ry
36 0
Properties u
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
17.0 475 107 2.51 2.10 13600 3070
15.6 425 95.8 2.48 2.11 12200 2750
2.85 92 13 116 83 8.2 30.8
14.7 394 56.3 1.96 2.64 11300 1620
13.2 350 50 1.94 2.65 10000 1420
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
11.8 310 44.1 1.93 2.66 8890 1260
3 - 26
COLUMN DESIGN Y
Fy = 36 ksi Fy = 50 ksi
X
COLUMNS W shapes Design axial strength in kips (φ = 0.85)
X
Y
Designation
W10
Wt./ft
112
Fy
100
88
77
68
50
36
50
36
50
36
50
36
50
1010
1400
900
1250
793
1100
692
961
612
850
6 7 8 9 10
969 956 941 924 906
1330 1300 1270 1240 1210
865 853 840 824 808
1180 1160 1140 1110 1080
762 751 739 725 710
1040 1020 999 973 945
664 655 644 632 618
908 890 869 847 822
588 579 569 558 547
803 787 769 749 727
11 12 13 14 15
886 865 842 819 794
1170 1130 1090 1050 1010
789 770 750 728 706
1040 1010 970 931 892
694 677 659 639 619
916 884 851 817 782
604 588 572 555 537
796 768 738 708 677
534 520 506 490 475
703 678 652 625 597
16 17 18 19 20
768 742 715 688 660
961 915 870 824 778
682 659 634 609 584
851 810 769 727 686
599 577 556 534 511
746 709 672 635 599
519 500 481 461 442
645 612 580 547 515
458 441 424 407 389
569 540 511 482 454
22 24 26 28 30
604 548 493 440 389
688 601 518 447 389
534 483 434 386 340
605 527 453 390 340
466 422 378 336 295
527 458 393 339 295
402 362 324 287 252
452 392 335 289 252
354 319 285 252 221
398 344 294 254 221
32 34 36 38 40
342 303 270 242 219
342 303 270 242 219
299 265 236 212 191
299 265 236 212 191
259 230 205 184 166
259 230 205 184 166
221 196 175 157 141
221 196 175 157 141
194 172 153 138 124
194 172 153 138 124
P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
2.06 255 27 1210 316 11.2 86.4
2.02 354 38 1430 439 9.5 56.5
2.06 214 24 883 254 11.0 77.4
2.01 298 34 1040 353 9.4 50.8
1.99 246 30 735 276 9.3 45.1
2.03 143 19 420 153 10.8 60.0
1.96 199 27 495 213 9.2 39.8
2.01 116 17 293 120 10.8 53.8
1.93 162 24 345 167 9.2 36.0
Effective length KL (ft) with respect to least radius of gyration ry
36 0
Properties u
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
32.9 716 236 2.68 1.74 20400 6760
29.4 623 207 2.65 1.74 17800 5910
2.04 177 22 623 198 11.0 68.4
25.9 534 179 2.63 1.73 15300 5130
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
22.6 455 154 2.60 1.73 13000 4370
20.0 394 134 2.59 1.71 11300 3840
DESIGN STRENGTH OF COLUMNS
3 - 27 Y
Fy = 36 ksi Fy = 50 ksi
COLUMNS W shapes Design axial strength in kips (φ = 0.85)
X
X
Y
Designation
W10
Wt./ft
60
Fy
54
49
45
39
33
50
36
50
36
50
36
50
36
50
36
50
539
748
483
672
441
612
407
565
352
489
297
413
6 7 8 9 10
517 509 500 491 480
706 692 675 657 638
464 457 449 440 431
634 621 606 590 572
422 416 409 401 392
577 565 551 536 520
380 371 361 350 337
515 497 478 458 436
328 320 311 301 290
444 428 412 393 374
276 269 261 252 243
373 360 345 329 312
11 12 13 14 15
469 457 444 430 416
617 595 571 547 523
420 409 398 385 373
553 533 512 490 468
382 372 361 350 338
502 484 464 444 424
324 311 296 282 267
412 388 364 339 314
278 266 254 241 228
353 332 310 289 267
233 222 211 200 189
294 276 257 238 220
16 17 18 19 20
401 387 371 356 340
497 472 446 421 395
360 346 332 318 304
445 422 399 376 353
326 314 301 288 275
403 382 361 340 319
252 237 222 207 192
290 266 243 221 199
215 201 188 175 162
246 225 205 185 167
177 166 155 144 133
202 184 167 150 135
22 24 26 28 30
309 278 248 219 191
346 299 255 220 191
276 248 221 195 170
309 266 227 196 170
250 224 199 175 153
278 239 204 176 153
164 138 118 102 88
164 138 118 102 88
138 116 99 85 74
138 116 99 85 74
112 94 80 69 60
112 94 80 69 60
32 33 34 36
168 158 149 133
168 158 149 133
150 141 133 118
150 141 133 118
134 126 119 106
134 126 119 106
78 73
78 73
65 61
65 61
53
53
P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
2.00 99 15 209 94 10.7 48.1
1.90 138 21 246 130 9.1 32.6
1.97 83 13 143 77 10.7 43.9
1.87 116 19 168 106 9.1 30.2
2.37 79 13 121 78 8.4 35.2
2.17 109 18 142 108 7.1 24.1
2.31 64 11 88 57 8.3 31.2
2.04 89 16 104 79 7.0 21.9
2.23 55 10 69 38 8.1 27.4
1.87 77 14 81 53 6.9 19.7
Effective length KL (ft) with respect to least radius of gyration ry
36 0
Properties u
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
17.6 341 116 2.57 1.71 9710 3330
15.8 303 103 2.56 1.71 8640 2960
1.96 73 12 111 64 10.6 40.7
1.83 101 17 131 88 9.0 28.3
14.4 272 93.4 2.54 1.71 7800 2660
13.3 248 53.4 2.01 2.15 7100 1540
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
11.5 209 45.0 1.98 2.16 6000 1290
9.71 170 36.6 1.94 2.16 4880 1050
3 - 28
COLUMN DESIGN Y
Fy = 36 ksi Fy = 50 ksi
X
COLUMNS W shapes Design axial strength in kips (φ = 0.85)
X
Y
Designation
W8
Wt./ft
67
Fy
58
48
40
35
31
50
36
50
36
50
36
50
36
50
36
50
603
837
523
727
431
599
358
497
315
438
279
388
6 7 8 9 10
567 555 541 526 509
770 746 721 693 662
492 481 469 455 441
667 647 624 599 572
405 396 386 374 362
549 532 513 492 470
335 327 319 309 298
454 439 423 405 386
295 288 280 272 262
399 386 372 356 339
261 255 248 240 232
354 342 329 315 300
11 12 13 14 15
492 473 453 433 412
631 598 564 529 494
425 409 391 374 355
544 515 485 455 425
349 335 321 306 291
446 422 397 372 347
287 275 263 251 238
366 345 324 303 281
252 242 231 220 208
321 303 284 265 246
223 214 204 194 184
284 268 251 234 217
16 17 18 19 20
391 370 349 328 307
460 425 392 359 328
337 318 300 281 263
394 365 335 307 279
276 260 245 229 214
321 297 272 249 226
225 211 198 185 173
260 239 219 199 180
197 185 174 162 151
228 209 191 174 157
174 163 153 143 133
200 184 168 153 138
22 24 26 28 30
266 228 194 167 146
271 228 194 167 146
228 194 165 143 124
231 194 165 143 124
185 157 134 115 100
187 157 134 115 100
148 125 107 92 80
149 125 107 92 80
129 109 93 80 70
130 109 93 80 70
114 96 82 70 61
114 96 82 70 61
32 33 34 35
128 120 113 107
128 120 113 107
109 103 97 91
109 103 97 91
88 83 78
88 83 78
70 66 62
70 66 62
61 58
61 58
54 51
54 51
P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
2.03 147 21 648 177 8.8 64.0
1.96 205 28 764 246 7.5 41.9
2 120 18 464 133 8.8 55.9
1.93 167 26 547 185 7.4 36.8
1.93 69 13 163 64 8.5 39.1
1.8 96 18 192 88 7.2 26.5
1.89 56 11 104 50 8.5 35.1
1.74 78 16 123 69 7.2 24.1
1.85 48 10 81 38 8.4 32.0
1.65 67 14 95 53 7.1 22.4
Effective length KL (ft) with respect to least radius of gyration ry
36 0
Properties u
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
19.7 272 88.6 2.12 1.75 7800 2530
17.1 228 75.1 2.10 1.74 6520 2160
1.97 86 14 224 95 8.7 46.7
1.87 119 20 264 132 7.4 31.1
14.1 184 60.9 2.08 1.74 5260 1750
11.7 146 49.1 2.04 1.73 4170 1390
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
10.3 127 42.6 2.03 1.73 3630 1210
9.13 110 37.1 2.02 1.72 3150 1070
DESIGN STRENGTH OF COLUMNS
3 - 29 Y
Fy = 36 ksi Fy = 50 ksi
COLUMNS W shapes Design axial strength in kips (φ = 0.85)
X
X
Y
Designation
W8
Wt./ft
W6
28
Fy
24
25
20
15 †
50
36
50
36
50
36
50
36
50†
252
351
217
301
225
312
180
249
136
188
6 7 8 9 10
228 219 210 200 189
303 288 271 253 235
195 188 180 171 162
260 247 232 217 200
200 191 182 172 162
265 250 233 216 198
159 152 145 137 128
211 198 185 171 156
119 114 108 102 95
158 148 137 126 115
11 12 13 14 15
178 167 155 143 132
216 197 178 160 142
152 142 132 122 112
184 168 151 136 121
151 140 129 118 107
180 162 144 128 112
119 111 102 93 84
142 127 113 100 87
88 81 74 68 61
104 92 82 71 62
16 17 18 19 20
121 110 99 89 80
125 111 99 89 80
102 93 84 75 68
106 94 84 75 68
97 87 78 70 63
98 87 78 70 63
76 68 60 54 49
76 68 60 54 49
55 48 43 39 35
55 48 43 39 35
22 24 25 26 27
66 56 51 47 44
66 56 51 47 44
56 47 44 40
56 47 44 40
52 44 40
52 44 40
40 34 31
40 34 31
29 24
29 24
P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
2.17 48 10 81 44 6.8 27.2
1.87 67 14 95 61 5.7 18.8
2.07 39 9 52 32 6.7 24.3
1.71 54 12 61 45 5.7 17.2
1.98 65 16 172 58 5.4 21.0
2.03 35 9 78 27 6.3 25.6
1.91 49 13 92 37 5.3 17.6
1.98 26 8 54 14 6.7 20.8
1.75 36 12 64 19 6.8 15.0
Effective length KL (ft) with respect to least radius of gyration ry
36 0
Properties u
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
8.25 98.0 21.7 1.62 2.13 2810 620
7.08 82.8 18.3 1.61 2.12 2370 525
2.07 47 12 146 42 6.3 31.2
7.34 53.4 17.1 1.52 1.78 1530 485
5.87 41.4 13.3 1.50 1.77 1190 378
†Flange is noncompact; see discussion preceding column load tables. Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4.43 29.1 9.32 1.46 1.75 831 270
3 - 30
COLUMN DESIGN Y
Fy = 36 ksi Fy = 50 ksi
X
X
COLUMNS W shapes Design axial strength in kips (φ = 0.85)
Y
Designation
W6
Wt./ft
16
Effective length KL (ft) with respect to least radius of gyration ry
Fy
W5
12
9
W4
19
16
13
36
50
36
50
36
50
36
50
36
50
36
50
0
145
201
109
151
82
114
170
235
143
199
117
163
2 3 4 5 6
140 135 127 118 108
193 182 168 152 134
105 100 94 87 79
144 135 124 110 96
79 75 71 65 59
108 101 93 83 72
166 163 157 151 144
229 222 212 201 187
141 137 133 127 121
194 188 179 169 157
114 109 104 97 89
156 148 138 125 111
7 8 9 10 11
97 86 75 64 54
116 98 81 66 54
70 61 52 44 37
82 68 55 44 37
52 45 39 32 27
61 50 40 33 27
135 126 117 107 97
172 156 140 124 108
114 106 98 90 81
144 131 117 104 90
81 72 63 55 47
97 83 69 57 47
12 13 14 15 16
46 39 33 29 26
46 39 33 29 26
31 26 23 20
31 26 23 20
23 19 17 14
23 19 17 14
87 78 68 60 53
93 80 69 60 53
73 65 57 50 44
78 66 57 50 44
39 34 29 25 22
39 34 29 25 22
47 42 37 34 30
47 42 37 34 30
39 35 31 28 25
39 35 31 28 25
1.84 39 10 115 37 5.3 30.3
1.72 55 14 136 52 4.5 20.1
1.79 32 9 81 26 5.3 26.2
1.63 45 12 95 36 4.5 17.6
1.89 35 10 164 24 4.2 25.5
1.77 48 14 193 33 3.5 16.8
17 18 19 20 21
Properties u P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
2.84 35 9 78 33 4.0 18.3
2.5 49 13 92 46 3.4 12.5
4.74 32.1 4.43 0.966 2.69 917 127
2.62 26 8 54 16 3.8 14.3
2.13 36 12 64 22 3.2 10.2
3.55 22.1 2.99 0.918 2.71 630 85.6
2.24 17 6 22 9 3.8 12.0
1.72 24 9 26 13 3.2 8.9
2.68 16.4 2.19 0.905 2.73 468 62.8
5.54 26.2 9.13 1.28 1.70 747 260
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4.68 21.3 7.51 1.27 1.68 608 216
3.83 11.3 3.86 1.00 1.72 324 110
DESIGN STRENGTH OF COLUMNS
3 - 31 Y
Fy = 36 ksi Fy = 50 ksi
COLUMNS HP shapes Design axial strength in kips (φ = 0.85)
X
X
Y
Designation
HP14
Wt./ft
117
Fy
HP13
102
89
73
100
50
36
50
36
50
36
50
36
50
1050
1460
918
1280
799
1110
655
909
900
1250
6 7 8 9 10
1030 1020 1010 1000 993
1420 1400 1390 1370 1350
898 891 884 875 865
1240 1220 1210 1190 1170
781 775 768 760 752
1080 1060 1050 1040 1020
640 635 629 623 615
882 872 861 848 834
875 867 857 846 834
1200 1190 1170 1150 1120
11 12 13 14 15
980 967 953 938 922
1320 1300 1270 1250 1220
854 842 830 816 802
1150 1130 1110 1080 1060
742 732 721 709 696
1000 982 962 940 917
607 599 589 580 569
819 803 786 768 749
821 806 791 775 758
1100 1070 1050 1020 986
16 17 18 19 20
905 888 870 851 832
1190 1150 1120 1090 1050
788 772 756 740 723
1030 1000 974 945 915
683 670 656 641 626
893 869 844 818 791
558 547 535 523 511
729 708 687 666 644
741 722 703 684 664
954 921 888 854 820
22 24 26 28 30
792 750 707 664 620
985 913 842 771 701
687 650 613 574 536
853 790 727 665 604
595 563 529 496 462
737 682 627 572 519
485 458 430 402 374
599 553 507 462 418
623 581 539 496 454
750 681 613 547 483
32 34 36 38 40
576 533 491 450 411
633 568 507 455 411
498 460 423 387 352
545 487 435 390 352
428 395 363 332 301
467 417 372 334 301
346 319 292 267 241
375 334 298 267 241
413 374 336 301 272
425 376 336 301 272
P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
217 29 1010 131 15.0 66.0
302 40 1191 182 12.7 45.1
174 25 679 101 14.8 59.0
242 35 801 140 12.6 41.1
202 31 533 106 12.5 37.6
108 18 250 52 14.5 46.8
150 25 294 72 12.3 34.2
198 28 953 119 13.2 60.1
275 38 1123 165 11.2 40.9
Effective length KL (ft) with respect to least radius of gyration ry
36 0
Properties
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
34.4 1220 443 3.59 1.66 35000 12700
30.0 1050 380 3.56 1.66 30100 10900
145 22 453 77 14.7 53.0
26.1 904 326 3.53 1.67 25800 9310
21.4 729 261 3.49 1.67 20900 7460
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
29.4 886 294 3.16 1.74 25400 8400
3 - 32
COLUMN DESIGN Y
Fy = 36 ksi Fy = 50 ksi
X
COLUMNS HP shapes Design axial strength in kips (φ = 0.85)
X
Y
Designation
HP13
Wt./ft
87
Fy
HP12
73
60
84
74
50
36
50
36
50
36
50
36
50
780
1080
661
918
536
744
753
1050
667
927
6 7 8 9 10
759 751 743 733 722
1040 1030 1010 993 973
642 636 628 620 611
882 870 856 840 823
520 515 509 502 494
714 704 692 679 665
729 721 712 701 690
1000 985 967 947 926
646 639 630 621 610
886 872 856 838 819
11 12 13 14 15
711 698 685 670 656
952 928 904 878 851
601 590 578 566 553
804 784 763 741 717
486 477 467 457 447
650 633 616 597 578
677 663 649 634 618
902 877 851 823 795
599 587 574 560 546
798 776 752 727 702
16 17 18 19 20
640 624 607 590 573
823 794 765 735 705
540 526 512 497 482
693 669 644 618 592
436 424 413 401 388
559 539 518 497 476
601 584 567 548 530
765 735 705 674 642
531 516 500 484 467
675 648 621 593 565
22 24 26 28 30
537 500 462 425 389
644 584 524 467 411
451 420 388 356 325
540 488 438 389 342
363 337 311 285 260
433 391 350 310 272
492 454 416 378 342
580 518 459 402 350
434 400 366 332 300
510 455 402 351 306
32 34 36 38 40
353 319 286 256 231
361 320 286 256 231
295 266 237 213 192
300 266 237 213 192
235 211 189 169 153
239 211 189 169 153
307 273 243 218 197
308 273 243 218 197
268 238 213 191 172
269 238 213 191 172
P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
165 24 624 90 13.0 53.2
229 33 735 124 11.1 36.9
127 20 384 65 12.9 47.0
177 28 453 90 11.0 33.4
129 23 243 60 10.9 30.2
170 25 732 95 12.3 54.0
235 34 862 132 10.4 36.9
143 22 506 75 12.2 48.9
199 30 597 105 10.3 34.0
Effective length KL (ft) with respect to least radius of gyration ry
36 0
Properties
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
25.5 755 250 3.13 1.74 21700 7150
21.6 630 207 3.10 1.74 18000 5940
93 17 206 43 12.8 41.2
17.5 503 165 3.07 1.75 14400 4720
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
24.6 650 213 2.94 1.75 18600 6090
21.8 569 186 2.92 1.75 16300 5320
DESIGN STRENGTH OF COLUMNS
3 - 33 Y
Fy = 36 ksi Fy = 50 ksi
COLUMNS HP shapes Design axial strength in kips (φ = 0.85)
X
X
Y
Designation
HP12
Wt./ft
HP10
63
Fy
53
HP8
57
42
36
50
36
50
36
50
36
50
36
50
563
782
474
659
514
714
379
527
324
451
6 7 8 9 10
545 538 531 523 514
747 735 721 706 689
459 453 447 440 432
629 618 607 594 579
491 483 474 464 453
670 655 638 619 599
362 356 349 341 333
494 482 469 455 440
302 294 286 276 266
408 393 377 360 342
11 12 13 14 15
504 494 482 471 458
671 651 631 610 588
424 415 406 396 385
564 547 530 512 493
441 429 415 401 387
577 555 531 506 481
324 314 304 294 283
423 406 388 369 350
255 243 232 219 207
322 302 282 262 242
16 17 18 19 20
446 432 419 405 391
565 542 518 495 471
374 363 351 339 327
474 454 434 414 394
372 357 341 326 310
456 430 404 379 354
272 260 249 237 225
331 312 293 274 255
195 182 170 158 146
222 202 184 165 149
22 24 26 28 30
362 333 304 275 247
423 376 332 288 251
303 278 253 229 206
353 314 276 240 209
279 248 219 191 166
305 259 221 191 166
202 179 157 136 119
219 185 158 136 119
123 104 88 76 66
123 104 88 76 66
32 34 36 38 40
221 196 174 157 141
221 196 174 157 141
183 163 145 130 117
183 163 145 130 117
146 129 115 103 93
146 129 115 103 93
104 92 82 74 67
104 92 82 74 67
58 52 46 41 37
58 52 46 41 37
P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft)
116 19 311 54 12.0 43.0
161 26 366 75 10.2 30.7
88 16 188 38 11.9 38.7
122 22 221 53 10.1 28.3
168 28 599 90 8.7 31.1
79 15 202 36 10.0 35.9
110 21 238 50 8.5 25.6
75 16 309 40 8.1 35.7
104 22 364 56 6.9 24.4
Effective length KL (ft) with respect to least radius of gyration ry
36 0
Properties
A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4
18.4 472 153 2.88 1.76 13500 4370
15.5 393 127 2.86 1.76 11200 3630
121 20 508 65 10.2 45.6
16.8 294 101 2.45 1.71 8400 2890
12.4 210 71.7 2.41 1.71 6050 2060
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
10.6 119 40.3 1.95 1.72 3420 1150
3 - 34
COLUMN DESIGN
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 35
Steel Pipe and Structural Tubing
The design strengths in the tables that follow are tabulated for the effective lengths in feet KL (with respect to the least radius of gyration, r or ry), indicated at the left of each table. They are applicable to axially loaded members in accordance with Section E2 of the LRFD Specification. For discussion of effective length, range of l / r, strength about major axis, combined axial and bending stress, and sample problems, see General Notes. Properties and factors are listed at the bottom of the tables for checking strength about the strong axis. Steel Pipe Columns
Design strengths for unfilled pipe columns are tabulated for Fy = 36 ksi. Steel pipe manufactured to ASTM A501 furnishes Fy = 36 ksi, and ASTM A53, Type E or S, Gr. B furnishes Fy = 35 ksi and may be designed for the strengths permitted for Fy = 36 ksi steel. The heavy horizontal lines within the table indicate Kl / r = 200. No values are listed beyond Kl / r = 200. Structural Tube Columns
Design strengths for square and rectangular structural tube columns are tabulated for Fy = 46 ksi. Structural tubing is manufactured to Fy = 46 ksi under ASTM A500, Gr. B. All tubes listed in the column load tables satisfy Section B5 of the LRFD Specification. The heavy horizontal lines appearing within the tables indicate Kl / r = 200. No values are listed beyond Kl / r = 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 36
COLUMN DESIGN
Fy = 36 ksi
COLUMNS Standard steel pipe Design axial strength in kips (φ = 0.85)
Nominal Dia.
12
10
8
6
5
4
31⁄2
3
Wall Thickness
0.375
0.365
0.322
0.280
0.258
0.237
0.226
0.216
Weight per ft
49.56
40.48
28.55
18.97
14.62
10.79
9.11
7.58
Fy
Effective length KL (ft)
36 ksi 0
447
364
257
171
132
97
82
68
6 7 8 9 10
440 438 436 433 429
357 354 351 348 344
249 246 243 239 235
162 159 155 151 147
122 118 115 111 106
86 82 78 74 70
70 67 63 58 54
56 52 48 43 39
11 12 13 14 15
426 422 418 413 409
340 336 331 326 321
231 227 222 216 211
142 138 133 127 122
102 97 92 86 81
65 60 55 51 46
49 45 40 36 32
35 30 26 23 20
16 17 18 19 20
404 399 393 387 381
315 309 303 297 291
205 199 193 187 181
116 111 105 99 94
76 71 66 61 56
41 37 33 30 27
28 25 22 20 18
17 15 14 12
22 24 25 26 28
369 356 349 342 328
277 263 256 249 234
168 155 149 142 129
83 72 67 62 53
47 39 36 33 29
22 19 17
15
30 31 32 34 36
313 306 298 283 268
219 212 205 190 176
117 111 105 93 83
47 44 41 36 32
25 23
37 38 40
260 253 237
169 162 148
79 75 67
31
3.17 7.23 1.51
2.68 4.79 1.34
Properties 2
Area A (in. ) I (in.4) r (in.)
14.6 279 4.38
11.9 161 3.67
8.40 72.5 2.94
5.58 28.1 2.25
4.30 15.2 1.88
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2.23 3.02 1.16
DESIGN STRENGTH OF COLUMNS
3 - 37
Fy = 36 ksi
COLUMNS Extra strong steel pipe Design axial strength in kips (φ = 0.85)
Nominal Dia.
12
10
8
6
5
4
31⁄2
3
Wall Thickness
0.500
0.500
0.500
0.432
0.375
0.337
0.318
0.300
Weight per ft
65.42
54.74
43.39
28.57
20.78
14.98
12.50
10.25
Effective length KL (ft)
Fy
36 ksi 0
588
493
392
257
187
135
113
92
6 7 8 9 10
579 576 573 569 564
483 479 475 470 465
379 375 369 364 357
243 238 232 226 219
172 168 162 156 149
119 114 108 102 95
96 91 85 79 72
75 69 64 58 52
11 12 13 14 15
559 554 549 543 536
460 453 447 440 433
351 343 336 327 319
212 205 197 189 180
143 135 128 121 113
89 82 75 68 62
66 60 53 47 42
46 40 34 30 26
16 18 19 20 21
530 515 508 500 492
425 409 400 391 382
310 291 282 272 262
172 154 145 137 128
105 91 83 76 70
56 44 40 36 32
37 29 26 23 21
23 18 16
22 24 26 28 30
483 465 447 428 408
373 354 334 314 294
252 231 211 191 172
120 103 88 76 66
63 53 45 39 34
30 25
32 34 36 38 40
388 368 348 328 308
273 253 234 215 196
154 136 121 109 98
58 52 46
19.2 362 4.33
16.1 212 3.63
12.8 106 2.88
6.11 20.7 1.84
4.41 9.61 1.48
3.68 6.28 1.31
3.02 3.89 1.14
Properties Area A (in.2) I (in.4) r (in.)
8.40 40.5 2.19
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 38
COLUMN DESIGN
Fy = 36 ksi
COLUMNS Double-extra strong steel pipe Design axial strength in kips (Ď&#x2020; = 0.85)
Nominal Dia.
8
6
5
4
3
Wall Thickness
0.875
0.864
0.750
0.674
0.600
Weight per ft
72.42
53.16
38.55
27.54
18.58
Effective length KL (ft)
Fy
36 ksi 0
652
477
346
248
167
6 7 8 9 10
629 621 612 601 590
448 437 426 413 399
315 305 293 281 268
214 203 191 179 165
131 120 108 96 84
11 12 13 14 15
578 565 551 536 521
385 369 353 336 319
254 239 224 209 194
152 139 125 112 100
73 62 53 46 40
16 17 18 19 20
505 489 472 455 438
302 285 268 250 234
179 165 151 137 124
88 78 70 62 56
35 31
22 24 26 28 30
403 367 333 299 266
201 170 145 125 109
102 86 73 63
47
32 34 36 38 40
235 208 186 166 150
96 85
21.3 162 2.76
15.6 66.3 2.06
11.3 33.6 1.72
8.10 15.3 1.37
Properties Area A (in.2) I (in.4) r (in.)
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
5.47 5.99 1.05
DESIGN STRENGTH OF COLUMNS
3 - 39
Fy = 46 ksi
COLUMNS Square structural tubing Design axial strength in kips (φ = 0.85)
Nominal Size
16× ×16
Thickness
1⁄
Wt./ft
103.30
89.68
68.31
0
1190
1030
786
6 7 8 9 10
1180 1170 1170 1170 1160
1020 1020 1010 1010 1000
11 12 13 14 15
1150 1150 1140 1130 1120
16 17 18 19 20
2
14× ×14 1⁄
2
12× ×12 3⁄
8
8
93.34
1⁄
2
3⁄
8
5⁄
16
76.07
58.10
48.86
1070
876
669
563
777 774 770 766 761
1050 1050 1040 1030 1020
862 857 851 845 838
658 655 650 645 640
554 551 548 544 539
993 985 977 969 960
756 751 745 739 732
1010 1000 992 979 966
830 821 812 803 792
634 628 621 614 606
535 529 524 518 511
1120 1110 1100 1090 1080
950 940 930 919 907
725 717 710 701 693
953 939 924 908 892
781 770 758 746 733
598 590 581 571 562
504 497 490 482 474
21 22 23 24 25
1070 1060 1040 1030 1020
895 883 870 857 844
684 675 665 655 645
875 858 841 823 805
719 706 692 677 663
552 542 531 520 510
466 457 449 440 431
26 27 28 29 30
1010 994 981 967 954
830 816 802 787 772
635 624 614 603 592
786 767 748 729 710
648 633 617 602 586
498 487 475 464 452
421 412 402 392 383
32 34 36 38 40
925 896 865 835 803
742 711 680 648 616
569 546 522 498 474
670 631 592 553 515
555 523 491 460 429
428 404 381 357 333
363 343 323 303 283
30.4 1200 6.29
26.4 791 5.48
27.4 580 4.60
22.4 485 4.66
17.1 380 4.72
14.4 324 4.75
Fy
Effective length KL (ft)
5⁄
46 ksi
Properties A (in2) I (in.4) r (in.)
20.1 615 5.54
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 40
COLUMN DESIGN
Fy = 46 ksi
COLUMNS Square structural tubing Design axial strength in kips (φ = 0.85)
10× ×10
Nominal Size Thickness Wt./ft
76.33
62.46
47.90
40.35
32.63
0
876
719
551
465
375
6 7 8 9 10
855 847 839 829 818
703 697 690 682 674
539 534 529 524 517
455 451 447 442 437
11 12 13 14 15
807 794 781 767 752
664 655 644 633 621
510 503 495 487 478
16 17 18 19 20
736 720 703 686 668
608 595 582 568 553
21 22 23 24 25
650 631 612 593 573
26 27 28 29 30 32 34 36 38 40
8
1⁄
2
3⁄
8× ×8
5⁄
8
5⁄
16
4
5⁄
8
59.32
1⁄
2
3⁄
8
5⁄
16
1⁄
4
48.85
37.69
31.84
25.82
680
563
434
366
297
367 364 360 357 353
654 644 634 622 609
542 535 526 517 507
418 413 407 400 392
353 349 343 338 331
287 283 279 274 269
431 425 418 411 404
348 343 338 332 326
595 580 564 548 531
496 484 471 458 444
384 375 366 356 345
324 317 309 301 293
264 258 252 245 238
468 459 449 438 427
396 388 380 371 362
320 314 307 300 293
513 494 476 456 437
430 415 400 385 369
335 324 312 301 289
284 275 265 256 246
231 224 216 209 201
538 523 508 493 477
416 405 394 382 370
353 343 334 324 314
286 278 270 263 255
418 398 379 360 341
354 338 322 307 291
277 266 254 242 230
236 226 216 206 196
193 185 177 169 161
554 534 515 495 476
461 446 430 414 398
358 347 335 323 311
305 295 285 275 265
247 239 231 223 215
322 304 286 268 251
276 261 246 232 218
219 207 196 185 174
187 177 168 158 149
153 146 138 131 123
437 400 364 328 296
367 337 307 278 251
287 264 242 220 199
245 225 206 188 170
199 184 168 154 139
221 195 174 156 141
191 169 151 136 122
153 136 121 109 98
132 117 104 93 84
109 97 86 77 70
22.4 321 3.78
18.4 271 3.84
14.1 214 3.90
11.9 183 3.93
17.4 153 2.96
14.4 131 3.03
11.1 106 3.09
9.36 90.9 3.12
7.59 75.1 3.15
Fy
Effective length KL (ft)
1⁄
46 ksi
Properties A (in2) I (in.4) r (in.)
9.59 151 3.96
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 41
Fy = 46 ksi
COLUMNS Square structural tubing Design axial strength in kips (φ = 0.85) 7× ×7
Nominal Size Thickness
5⁄ 8
1⁄ 2
3⁄ 8
6× ×6
5⁄ 16
1⁄ 4
3⁄ 16
5⁄ 8
1⁄ 2
3⁄ 8
5⁄ 16
1⁄ 4
3⁄ 16
50.81 42.05 32.58 27.59 22.42 17.08 42.30 35.24 27.48 23.34 19.02 14.53
Fy
46 ksi
Effective length KL (ft)
Wt./ft
0
584
485
375
317
258
196
486
407
316
268
219
167
6 7 8 9 10
553 543 531 518 503
461 452 443 432 421
357 351 344 336 327
302 297 291 285 278
246 242 237 232 226
188 185 181 177 173
451 438 425 410 394
379 369 358 346 333
295 288 280 271 262
251 245 239 231 223
205 200 195 189 183
157 153 149 145 140
11 12 13 14 15
488 472 454 437 418
409 396 382 368 353
318 308 298 288 277
270 262 254 245 236
220 214 207 200 193
168 164 159 153 148
377 359 341 322 303
320 306 291 276 260
252 241 230 219 207
215 206 197 187 178
176 169 162 154 146
135 130 124 119 113
16 17 18 19 20
399 380 361 342 323
338 322 307 291 276
265 254 242 230 218
226 217 207 197 187
185 177 170 162 154
142 136 130 124 118
284 265 246 227 210
245 229 214 199 184
195 184 172 160 149
168 158 148 138 129
138 131 123 115 107
107 101 95 89 83
22 24 26 28 30
285 248 214 184 161
245 215 187 161 140
195 172 151 130 113
167 148 130 113 98
138 123 108 94 81
107 95 84 73 63
175 147 125 108 94
155 131 111 96 84
127 107 91 79 69
111 93 80 69 60
92 78 67 57 50
72 61 52 45 39
32 34
141 125
123 109
100 88
86 76
72 63
56 49
83 73
73 65
60 53
53 47
44 39
34 30
35 36 37 38 39
118 111 106 100 95
103 97 92 87 83
83 79 74 71 67
72 68 64 61 58
60 57 54 51 48
47 44 42 40 38
69
61 58
50 48 45
44 41 39 37
37 35 33 31
29 27 26 24 23
40
90
79
64
55
46
36
12.4 57.3 2.15
10.4 50.5 2.21
8.08 41.6 2.27
6.86 36.3 2.30
5.59 30.3 2.33
4.27 23.8 2.36
Properties 2
A (in ) I (in.4) r (in.)
14.9 97.5 2.56
12.4 84.6 2.62
9.58 68.7 2.68
8.11 59.5 2.71
6.59 49.4 2.74
5.02 38.5 2.77
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 42
COLUMN DESIGN
Fy = 46 ksi
COLUMNS Square structural tubing Design axial strength in kips (φ = 0.85) 51⁄2×51⁄2
Nominal Size
5× ×5
Thickness
3⁄ 8
5⁄ 16
1⁄ 4
3⁄ 16
1⁄ 2
3⁄ 8
5⁄ 16
1⁄ 4
3⁄ 16
1⁄ 8
Wt./ft
24.93
21.21
17.32
13.25
28.43
22.37
19.08
15.62
11.97
8.16
Effective length KL (ft)
Fy
46 ksi 0
286
244
199
152
327
257
219
179
138
94
6 7 8 9 10
264 256 248 238 228
225 219 212 204 195
184 179 173 167 161
141 137 133 129 124
294 282 270 257 242
233 224 215 205 194
199 192 184 176 167
163 158 152 145 138
126 121 117 112 107
86 83 80 77 73
11 12 13 14 15
218 207 195 184 172
187 177 168 158 148
154 146 139 131 123
118 113 107 101 95
228 213 197 182 167
183 172 160 149 137
158 148 139 129 119
131 123 115 107 99
101 95 89 84 78
70 66 62 58 54
16 17 18 19 20
160 149 137 126 115
139 129 119 110 101
115 107 99 92 84
89 83 77 72 66
152 138 124 111 100
126 115 104 93 84
110 100 91 82 74
92 84 77 69 63
72 66 60 55 50
50 46 42 38 35
22 24 26 28 30
96 80 68 59 51
84 70 60 52 45
70 59 50 43 38
55 47 40 34 30
83 70 59 51 45
70 59 50 43 37
61 52 44 38 33
52 44 37 32 28
41 34 29 25 22
29 24 21 18 15
31 32 33 34 35
48 45 43 40
42 40 37 35
35 33 31 29 28
28 26 25 23 22
35
31
26 24
21 19
15 14 13
6.58 22.8 1.86
5.61 20.1 1.89
4.59 16.9 1.92
3.52 13.4 1.95
2.40 9.41 1.98
Properties 2
A (in ) I (in.4) r (in.)
7.33 31.2 2.07
6.23 27.4 2.10
5.09 23.0 2.13
3.89 18.1 2.16
8.36 27.0 1.80
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 43
Fy = 46 ksi
COLUMNS Square structural tubing Design axial strength in kips (φ = 0.85) 41⁄2×41⁄2
Nominal Size
4× ×4
Thickness
3⁄ 8
5⁄ 16
1⁄ 4
3⁄ 16
1⁄ 8
Wt./ft
19.82
16.96
13.91
10.70
7.31
Effective length KL (ft)
Fy
1⁄ 2
3⁄ 8
21.63
17.27
5⁄ 16
1⁄ 4
14.83 12.21
3⁄ 16
1⁄ 8
9.42
6.46
46 ksi 0
228
195
160
123
84
249
199
170
140
108
74
6 7 8 9 10
201 192 182 171 160
172 165 157 148 139
142 136 130 123 115
110 105 100 95 90
75 72 69 65 62
208 195 180 166 151
168 158 148 137 125
145 137 128 119 110
120 114 107 100 92
93 89 83 78 72
64 61 58 54 50
11 12 13 14 15
149 137 125 114 103
129 119 110 100 91
107 100 92 84 76
84 78 72 66 60
58 54 50 46 42
136 121 107 93 81
114 102 91 81 70
100 90 81 72 63
84 76 68 61 54
66 60 54 49 43
46 42 38 34 31
16 17 18 19 20
92 82 73 66 59
81 73 65 58 53
69 62 55 49 45
55 49 44 39 36
38 35 31 28 25
71 63 56 50 46
62 55 49 44 40
55 49 44 39 35
47 42 37 34 30
38 34 30 27 24
27 24 21 19 17
21 22 23 24 25
54 49 45 41 38
48 43 40 36 34
41 37 34 31 29
32 29 27 25 23
23 21 19 17 16
41 38 34
36 33 30 27
32 29 27 25
28 25 23 21 19
22 20 18 17 16
16 14 13 12 11
26
35
31
26
21
15
27 28 29
32
29 27
25 23
20 18 17
14 13 12
10
Properties 2
A (in ) I (in.4) r (in.)
5.83 16.0 1.66
4.98 14.2 1.69
4.09 12.1 1.72
3.14 9.60 1.75
2.15 6.78 1.78
6.36 12.3 1.39
5.08 10.7 1.45
4.36 9.58 1.48
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3.59 8.22 1.51
2.77 6.59 1.54
1.90 4.70 1.57
3 - 44
COLUMN DESIGN
Fy = 46 ksi
COLUMNS Square structural tubing Design axial strength in kips (φ = 0.85)
31⁄2×31⁄2
Nominal Size
3× ×3
Thickness
5⁄ 16
1⁄ 4
3⁄ 16
1⁄ 8
5⁄ 16
1⁄ 4
3⁄ 16
1⁄ 8
Wt./ft
12.7
10.51
8.15
5.61
10.58
8.81
6.87
4.75
0
146
121
93
65
122
101
79
55
6 7 8 9 10
118 109 100 90 81
99 92 84 76 69
77 72 66 60 54
54 50 46 42 39
90 80 71 61 52
76 68 61 53 45
60 54 49 43 37
42 39 35 31 27
11 12 13 14 15
71 62 54 46 40
61 54 46 40 35
49 43 38 32 28
35 31 27 23 20
44 37 31 27 23
38 32 27 24 21
32 27 23 19 17
23 20 17 14 12
16 17 18 19 20
35 31 28 25 23
31 27 24 22 20
25 22 20 18 16
18 16 14 13 11
21 18
18 16 14
15 13 12
11 10 9 8
21 22
21
18
14 13
10 9
3.73 6.09 1.28
3.09 5.29 1.31
2.39 4.29 1.34
3.11 3.58 1.07
2.59 3.16 1.10
2.02 2.60 1.13
1.40 1.90 1.16
Effective length KL (ft)
Fy
46 ksi
Properties A (in2) I (in.4) r (in.)
1.65 3.09 1.37
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 45
Fy = 46 ksi
Y
COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85)
X
X
Y
Nominal Size 16× ×12
16× ×8
14× ×12
14× ×10
Thickness
1⁄
1⁄
1⁄
Wt./ft
89.68
76.07
82.88
63.21
76.07
0
1030
876
952
726
876
6 7 8 9 10
1020 1010 1010 998 990
848 838 827 815 801
938 933 927 920 912
715 712 707 702 697
11 12 13 14 15
982 973 963 952 941
786 771 754 736 717
904 895 886 876 865
16 17 18 19 20
929 916 903 889 875
697 677 657 635 614
22 24 26 28 30
845 813 781 746 711
32 34 36 38 40
676 640 604 568 533
2
2
2
3⁄
8
2
12× ×10
3⁄
8
58.10
1⁄
2
3⁄
8
5⁄
16
1⁄
4
69.27
53.00
44.60
36.03
669
796
609
513
414
857 850 843 834 825
655 650 644 638 631
778 772 765 757 748
596 591 586 580 573
502 498 493 488 483
405 402 399 395 390
691 684 677 669 661
815 803 791 779 765
623 615 606 597 587
738 728 716 704 692
566 558 550 541 531
477 470 463 456 448
386 380 375 369 363
854 842 829 816 803
653 644 634 625 615
751 737 721 705 689
576 565 554 542 530
679 665 650 636 620
522 511 501 489 478
440 431 422 413 404
356 349 342 335 327
569 525 480 436 393
774 744 713 681 648
593 571 548 524 499
655 620 584 547 511
504 478 451 424 396
589 556 522 488 454
454 430 404 379 353
384 363 342 321 300
311 295 278 261 244
352 313 279 250 226
615 581 547 514 480
474 448 423 398 372
474 438 403 369 335
368 341 315 289 264
420 387 355 324 293
328 302 278 254 231
278 257 237 217 197
227 210 193 177 162
17.1 476 284 1.29 4.08
20.4 419 316 1.15 3.94
15.6 330 249 1.15 4.00
13.1 281 213 1.15 4.03
10.6 230 174 1.15 4.06
Fy
Effective length KL (ft) with respect to least radius of gyration
1⁄
46 ksi
Properties 2
A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.)
26.4 962 618 1.25 4.84
22.4 722 244 1.72 3.30
24.4 699 552 1.13 4.76
18.6 546 431 1.13 4.82
22.4 608 361 1.30 4.02
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 46
COLUMN DESIGN
Fy = 46 ksi
Y
X
X
COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85)
Y
12× ×8
Nominal Size
12× ×6
Thickness
5⁄ 8
1⁄ 2
3⁄ 8
5⁄ 16
5⁄ 8
1⁄ 2
3⁄ 8
5⁄ 16
Wt./ft
76.33
62.46
47.90
40.35
67.82
55.66
42.79
36.10
0
876
719
551
465
778
641
493
414
6 7 8 9 10
845 835 822 809 794
695 687 677 666 655
534 527 520 512 503
450 445 439 433 425
731 715 697 677 655
604 591 577 561 543
466 456 445 434 421
392 384 376 366 355
11 12 13 14 15
778 760 742 722 702
642 628 613 598 582
494 483 473 461 449
417 409 400 390 380
632 607 581 555 528
525 505 485 464 442
407 393 378 362 346
344 332 320 307 293
16 17 18 19 20
681 659 637 614 591
565 547 530 511 493
437 424 410 397 383
370 359 348 336 325
500 473 445 418 390
420 398 375 353 331
329 313 296 279 262
280 266 252 238 224
22 24 26 28 30
544 497 451 405 362
455 417 380 343 307
355 326 298 270 243
301 277 253 230 207
338 288 245 211 184
288 247 211 182 158
230 199 170 146 128
197 171 146 126 110
32 34 36 38 39
320 283 252 227 215
273 241 215 193 184
217 192 171 154 146
185 164 146 131 125
162 143 128 115 109
139 123 110 99 94
112 99 89 80 75
97 86 76 69 65
40
205
174
139
119
89
72
62
16.4 287 96.0 1.73 2.42
12.6 228 77.2 1.72 2.48
10.6 196 66.6 1.71 2.51
Effective length KL (ft) with respect to least radius of gyration
Fy
46 ksi
Properties 2
A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.)
22.4 418 221 1.38 3.14
18.4 353 188 1.37 3.20
14.1 279 149 1.37 3.26
11.9 239 128 1.37 3.28
19.9 337 112 1.73 2.37
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 47
Fy = 46 ksi
Y
COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85)
X
X
Y
10× ×8
Nominal Size
10× ×6
Thickness
1⁄ 2
3⁄ 8
5⁄ 16
1⁄ 4
1⁄ 2
3⁄ 8
5⁄ 16
1⁄ 4
Wt./ft
55.66
42.79
36.10
29.23
48.85
37.69
31.84
25.82
0
641
493
414
336
563
434
366
297
6 7 8 9 10
619 611 602 592 581
476 470 463 456 448
401 396 390 384 377
325 321 317 312 306
529 517 504 490 474
409 400 391 380 368
345 338 330 321 312
281 275 269 261 254
11 12 13 14 15
568 556 542 528 513
439 429 419 408 397
370 362 354 345 335
300 294 287 280 273
457 439 421 402 382
356 343 329 315 300
302 291 279 267 255
246 237 228 218 209
16 17 18 19 20
497 481 465 448 431
386 374 361 349 336
326 316 306 295 285
265 257 249 241 232
362 342 322 302 282
285 270 255 240 225
243 230 218 205 193
199 189 179 169 159
22 24 26 28 30
396 361 327 294 262
310 284 258 232 208
263 241 220 198 178
215 197 180 163 146
244 208 177 153 133
196 169 144 124 108
169 146 124 107 93
139 121 103 89 77
32 34 36 38 39
231 205 183 164 156
184 163 146 131 124
158 140 125 112 106
130 116 103 93 88
117 104 92 83 79
95 84 75 67 64
82 73 65 58 55
68 60 54 48 46
40
148
118
101
84
61
52
44
11.1 145 65.4 1.49 2.43
9.36 125 56.5 1.48 2.46
7.59 103 46.9 1.48 2.49
Effective length KL (ft) with respect to least radius of gyration
Fy
46 ksi
Properties 2
A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.)
16.4 226 160 1.19 3.12
12.6 180 127 1.19 3.18
10.6 154 109 1.19 3.21
8.59 127 90.2 1.19 3.24
14.4 181 80.8 1.50 2.37
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 48
COLUMN DESIGN
Fy = 46 ksi
Y
X
COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85)
X
Y
10× ×5
Nominal Size
8× ×6
Thickness
3⁄ 8
5⁄ 16
1⁄ 4
1⁄ 2
3⁄ 8
5⁄ 16
1⁄ 4
Wt./ft
35.13
29.72
24.12
42.05
32.58
27.59
22.42
0
403
341
277
485
375
317
258
6 7 8 9 10
370 359 347 334 319
315 306 295 284 272
256 249 241 232 222
454 444 432 419 404
352 344 335 325 315
298 292 284 276 268
243 238 232 225 218
11 12 13 14 15
304 288 272 255 239
260 246 233 219 205
212 201 191 179 168
389 373 357 340 322
303 292 279 266 253
258 248 238 227 217
211 203 195 186 178
16 17 18 19 20
222 206 189 174 159
191 178 164 151 138
157 146 135 124 114
305 287 269 252 235
240 227 213 200 187
205 194 183 172 161
169 160 151 142 133
22 24 26 28 30
131 110 94 81 71
115 96 82 71 62
95 80 68 59 51
201 170 145 125 109
161 137 117 101 88
140 119 102 88 76
116 99 85 73 64
32 34 36 38 39
62 55
54 48
45 40
96 85 76 68
77 68 61 55 52
67 59 53 48 45
56 49 44 40 38
Effective length KL (ft) with respect to least radius of gyration
Fy
46 ksi
36
40
Properties 2
A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.)
10.3 128 42.9 1.72 2.04
8.73 110 37.2 1.71 2.07
7.09 91.2 31.1 1.72 2.09
12.4 103 65.7 1.25 2.31
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
9.58 83.7 53.5 1.25 2.36
8.11 72.4 46.4 1.25 2.39
6.59 60.1 38.6 1.25 2.42
DESIGN STRENGTH OF COLUMNS
3 - 49
Fy = 46 ksi
Y
COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85)
X
X
Y
8× ×4
Nominal Size
7× ×5
Thickness
5⁄ 8
1⁄ 2
3⁄ 8
5⁄ 16
1⁄ 4
1⁄ 2
3⁄ 8
5⁄ 16
1⁄ 4
3⁄ 16
Wt./ft
42.30
35.24
27.48
23.34
19.02
35.24
27.48
23.34
19.02
14.53
0
486
407
316
268
219
407
316
268
219
167
6 7 8 9 10
415 393 368 341 314
351 333 313 292 270
276 262 248 233 216
235 224 212 199 185
192 184 174 164 153
369 357 342 327 311
288 279 268 257 245
245 238 229 220 210
200 194 187 180 172
154 149 144 138 132
11 12 13 14 15
287 259 233 207 182
248 226 204 183 162
200 183 167 150 135
172 158 144 130 117
142 131 120 109 98
294 276 258 240 222
232 219 205 192 178
199 188 177 165 154
164 155 146 137 127
126 119 113 106 99
16 17 18 19 20
160 141 126 113 102
143 126 113 101 91
120 106 95 85 77
104 92 82 74 67
88 78 70 62 56
205 187 170 154 139
165 151 138 126 114
142 131 120 110 100
118 109 101 92 84
92 85 79 72 66
22 24 25 26 27
84 71
76 63 58
63 53 49 45
55 46 43 39 37
47 39 36 33 31
115 97 89 82 76
94 79 73 67 62
82 69 64 59 55
69 58 54 50 46
54 46 42 39 36
71 66 62 58
58 54 51 47 44
51 47 44 41 39
43 40 37 35 33
34 31 29 27 26
37
31
24 23
6.86 45.5 26.9 1.30 1.98
5.59 38.0 22.6 1.30 2.01
4.27 29.8 17.7 1.29 2.04
Effective length KL (ft) with respect to least radius of gyration
Fy
46 ksi
28 29 30 31 32 33 34
Properties 2
A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.)
12.4 85.1 27.4 1.76 1.49
10.4 75.1 24.6 1.75 1.54
8.08 61.9 20.6 1.73 1.60
6.86 53.9 18.1 1.73 1.62
5.59 45.1 15.3 1.72 1.65
10.40 63.5 37.2 1.31 1.90
8.08 52.2 30.8 1.30 1.95
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 50
COLUMN DESIGN
Fy = 46 ksi
Y
X
X
COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85)
Y
7× ×4
Nominal Size
6× ×4
Thickness
3⁄ 8
5⁄ 16
1⁄ 4
3⁄ 16
1⁄ 2
3⁄ 8
5⁄ 16
1⁄ 4
3⁄ 16
Wt./ft
24.93
21.21
17.32
13.25
28.43
22.37
19.08
15.62
11.97
0
287
244
199
152
327
257
219
179
138
6 7 8 9 10
249 236 223 208 193
213 202 191 179 167
175 166 158 148 138
134 128 121 114 107
279 263 246 228 210
222 211 198 185 171
190 181 171 160 148
157 149 141 132 123
121 115 109 102 96
11 12 13 14 15
178 163 148 133 118
154 141 129 116 104
128 118 107 97 88
99 92 84 76 69
191 173 155 137 121
157 143 129 116 103
136 125 113 102 91
114 104 95 85 77
89 81 74 67 61
16 17 18 19 20
105 93 83 74 67
92 82 73 65 59
78 69 62 56 50
62 55 49 44 40
106 94 84 75 68
90 80 71 64 58
80 71 63 57 51
68 60 54 48 44
54 48 43 38 35
21 22 23 24 25
61 55 51 46 43
54 49 45 41 38
45 41 38 35 32
36 33 30 28 25
62 56 51 47
52 48 44 40 37
46 42 39 36 33
39 36 33 30 28
31 29 26 24 22
26 27
40
35
30 27
23 22
30
26
20 19
5.61 26.2 13.8 1.38 1.57
4.59 22.1 11.7 1.37 1.60
3.52 17.4 9.32 1.37 1.63
Effective length KL (ft) with respect to least radius of gyration
Fy
46 ksi
Properties 2
A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.)
7.33 44.0 18.1 1.56 1.57
6.23 38.5 16.0 1.56 1.60
5.09 32.3 13.5 1.55 1.63
3.89 25.4 10.7 1.54 1.66
8.36 35.3 18.4 1.39 1.48
6.58 29.7 15.6 1.38 1.54
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 51
Fy = 46 ksi
Y
COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85)
X
X
Y
6× ×3
Nominal Size
5× ×4
Thickness
1⁄ 2
3⁄ 8
5⁄ 16
1⁄ 4
3⁄ 16
3⁄ 8
5⁄ 16
1⁄ 4
3⁄ 16
Wt./ft
25.03
19.82
16.96
13.91
10.70
19.82
16.96
13.91
10.70
0
288
228
195
160
123
228
195
160
123
6 7 8 9 10
216 194 172 150 129
176 160 144 127 111
152 138 125 111 97
126 116 105 94 83
98 90 82 74 65
195 185 173 161 148
168 159 149 139 129
139 132 124 116 107
107 102 96 90 84
11 12 13 14 15
109 92 78 67 59
95 81 69 59 52
84 71 61 52 46
72 62 53 45 39
57 50 42 36 32
135 123 110 98 86
118 107 97 87 77
99 90 82 73 65
77 71 64 58 52
16 17 18 19 20
52 46 41
45 40 36 32
40 36 32 28
35 31 27 25 22
28 25 22 20 18
76 67 60 54 49
67 60 53 48 43
58 51 46 41 37
46 41 36 33 29
44 40 37 34 31
39 36 33 30 28
33 30 28 26 24
27 24 22 20 19
22
17
4.09 14.1 9.98 1.19 1.56
3.14 11.2 7.96 1.19 1.59
Effective length KL (ft) with respect to least radius of gyration
Fy
46 ksi
21 22 23 24 25 26
Properties 2
A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.)
7.36 27.7 8.91 1.76 1.10
5.83 23.8 7.78 1.74 1.16
4.98 21.1 6.98 1.75 1.18
4.09 17.9 6.00 1.73 1.21
3.14 14.3 4.83 1.72 1.24
5.83 18.7 13.2 1.19 1.50
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4.98 16.6 11.7 1.20 1.53
3 - 52
COLUMN DESIGN
Fy = 46 ksi
Y
X
X
COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85)
Y
5× ×3
Nominal Size
4× ×3
Thickness
1⁄ 2
3⁄ 8
5⁄ 16
1⁄ 4
3⁄ 16
1⁄ 8
5⁄ 16
1⁄ 4
3⁄ 16
1⁄ 8
Wt./ft
21.63
17.27
14.83
12.21
9.42
6.46
12.70
10.51
8.15
5.61
0
249
199
170
140
108
74
146
121
93
64
6 7 8 9 10
183 164 145 125 107
151 137 122 107 93
132 120 108 95 83
110 100 91 81 71
85 78 71 63 56
59 55 50 45 40
110 100 89 78 67
93 84 76 67 58
73 66 60 53 47
51 47 42 38 33
11 12 13 14 15
89 75 64 55 48
79 67 57 49 43
71 60 51 44 39
61 52 45 38 33
49 42 36 31 27
35 30 26 22 19
57 48 41 35 31
50 42 36 31 27
40 34 29 25 22
29 25 21 18 16
16 17 18 19 20
42 37
38 33 30
34 30 27 24
29 26 23 21
23 21 19 17 15
17 15 13 12 11
27 24 21
24 21 19 17
19 17 15 14
14 12 11 10 9
1.90 6.44 2.93 1.48 1.24
3.73 7.45 4.71 1.26 1.12
3.09 6.45 4.10 1.26 1.15
2.39 5.23 3.34 1.25 1.18
1.65 3.76 2.41 1.25 1.21
Effective length KL (ft) with respect to least radius of gyration
Fy
46 ksi
Properties 2
A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.)
6.36 16.9 7.33 1.52 1.07
5.08 14.7 6.48 1.50 1.13
4.36 13.2 5.85 1.50 1.16
3.59 11.3 5.05 1.49 1.19
2.77 9.06 4.08 1.50 1.21
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 53
Double Angles and WT Shapes
Double Angles
Design strengths are tabulated for the effective length KL in feet with respect to both the X-X and Y-Y axes. Design strengths about the X-X axis are in accordance with LRFD Specification Section E2. For buckling about the Y-Y axis the shear deformation of the connectors may require the slenderness to be increased in accordance with the equations for (Kl / r)m in Section E4. Incorporating this slenderness ratio, the design strengths are determined from Section E2 or E3, whichever governs. In addition to the usual limit state of flexural buckling for columns, double angle and WT shapes in compression may also be governed by the limit state of flexural-torsional buckling, in accordance with Section E3 of the LRFD Specification. This has been included in the tables. Discussion under Section C2 of the LRFD Specification Commentary points out that for trusses it is usual practice to take K = 1.0. No values are listed beyond KL / r = 200. For buckling about the X-X axis, both angles move parallel so that the design strength is not affected by the connectors. For buckling about the Y-Y axis, the design strengths are tabulated for the indicated number n of intermediate connectors. For connectors with snug-tight bolts or different spacings, the design strength must be recalculated using the corresponding modified slenderness and LRFD Specification Section E4. The number of intermediate connectors given in the table was selected so the design strength about the Y-Y axis is 90 percent or greater of that for buckling of the two angles acting as a unit. If fewer connectors are used, the strength must be reduced accordingly. According to Section E4 of the LRFD Specification, the connectors must be spaced so that the slenderness ratio a / rz of the individual angle does not exceed 75 percent of the governing slenderness ratio of the built-up member. In designing members fabricated of two angles connected to opposite faces of a gusset plate, Chapter J of the LRFD Specification states that eccentricity between the gage lines and gravity axis may be neglected. In the following tables, this eccentricity is neglected. The tabulated loads for double angles referred to in the Y-Y axis assume a 3⁄8-in. spacing between angles. These values are conservative when a wider spacing is provided. Example 3-5 illustrates a method for determining the design strength when a 3⁄4-in. gusset plate is used. Examples 3-6 and 3-7 demonstrate how to determine the number of connectors when Klx / rx governs and when the modified (Kly / ry)m governs.
EXAMPLE 3-5
Given:
Solution:
Using 50 ksi steel, determine the design strength with respect to the Y-Y axis of a double angle member of 8×8×1 angles with an effective length equal to 12 ft, and connected to a 3⁄4-in. thick gusset plate. ry = 3.53 in. (from Double Angle Column Design Strength Table for two L8×8×1 with 3⁄8-in. plate) ry′ = 3.67 in. (from Part 1, Properties, Two Equal-Leg Angles, two L8×8×1 with 3⁄4-in. plate) ry 3.53 = = 0.962 ry′ 3.67 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 54
COLUMN DESIGN
Equivalent effective length = 0.962 × 12 ft = 11.5 ft Enter Column Design Strength Table for two L8×8×1 with reference to Y-Y axis for effective lengths between 10 and 15 feet, read 1,120 and 1,000 kips, respectively.
Equivalent design strength = 1,120 − (1,120 − 1,000) ×
11.5 − 10 15 − 10
= 1,084 kips EXAMPLE 3-6
Given:
Solution:
Using a double angle member of 5×3×1⁄2 angles (short legs back to back) and 36 ksi steel, with Lx = 10 ft and Ly = 20 ft, and a factored axial load of 70 kips, determine the number of connectors required. Assume K = 1.0 and that the intermediate connectors are snug-tight bolted. Kx Lx = 10 ft, Kx lx / rx = (10 × 12) / 0.829 = 145 Ky Ly = 20 ft, Ky ly / ry = (20 × 12) / 2.5 = 96 The X-X axis governs. From the X-X axis portion of the table φPn = 76 kips > 70 kips o.k. Find number of connectors required based on Section E4: a / rz ≤ 0.75KLx / rx a ≤ 0.75(KLx / rx)rz = 0.75 (145) 0.648 = 70 in. Assume two connectors are required; a = (10 × 12) / 3 = 40 in. a / rz = 40 / rz = 40.0 / 0.648 = 61.7 Check that modified (Ky ly / ry)m does not govern. According to Specification Equation E4-1, 962 + 61.7 2 = 114 (Ky ly / ry)m = √ Modified ly′ = 114ry / Ky = 114 (2.50 in.) / 1.0 = 285 in. = 23.8 ft Inspection of the tables indicates that Kxlx / rx still governs, therefore one connector is required every 40 inches.
EXAMPLE 3-7
Given:
Using the same steel shape and bolts as Example 3-6, with Lx = 10 ft and Ly = 30 ft, determine the number of connectors required and the corresponding maximum design strength. Assume K = 1.0. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
Solution:
3 - 55
Kx Lx = 10 ft, Kx lx / rx = (10 × 12) / 0.829 = 145 Ky Ly = 30 ft, Ky ly / ry = (30 × 12) / 2.5 = 144 Kx lx / rx appears to govern, so try one connector in the 10-ft length. Check (Ky ly / ry)m with a / rz = 5 × 12 / 0.648 = 93 1442 + 932 = 171 (Ky ly / ry)m = √ Since (Ky ly / ry)m governs, the Y-Y portion of the table gives a design strength of 72 kips provided four connectors are used in the 30-ft length. This gives a spacing of 30 ft / 5 = 6.0 ft. Check if (Kyly / ry)m governs with = (6.0 × 12) / 0.648 = 111 a / rz 1442 + 111 2 = 182 (Kyly / ry)m = √ (Ky ly / ry)m still governs, so four connectors at 6.0 ft would be appropriate. Verify that a / rz < 0.75 governing Kl / r : 111 < (0.75 × 182 = 137) o.k. Modified ly′ = 182ry / Ky = 182(2.5 in.) / 1.0 = 455 in. = 37.9 ft From the tables, the design strength is 45 kips. The design strength can be increased by closer spacing of the connectors, which reduces (Kyly / ry)m .
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 56
COLUMN DESIGN
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 57
Fy = 36 ksi Fy = 50 ksi Y
COLUMNS Double angles
X
X
Design axial strength in kips (φ = 0.85)
Equal legs 8
in. back to back of angles
3/ ′′ 8
8× ×8
Size 11⁄8
Thickness Wt./ft
36
7⁄ 8
1
113.8
Fy
X-X AXIS
Y
102.0
50
3⁄ 4
90.0
5⁄ 8
77.8
1⁄ 2
65.4
52.8
36
50
36
50
36
50
36
50
36
50
0
1030 1420
918
1280
811
1130
701
973
586
763
432
550
10 14 18 22 26
901 1190 795 1000 674 795 548 596 427 430
808 715 608 496 388
1070 902 719 542 391
715 633 539 440 345
945 799 638 482 349
619 549 469 384 303
819 694 556 422 306
518 461 395 325 257
651 559 456 354 261
387 348 302 253 205
478 417 349 278 212
30 34 38 39 40
323 251 201 191 182
323 251 201 191 182
294 229 183 174 165
294 229 183 174 165
262 204 163 155 147
262 204 163 155 147
230 179 143 136 129
230 179 143 136 129
196 153 122 116 110
196 153 122 116 110
159 124 99 94 90
159 124 99 94 90
123
123
105
105
85
85
0
1030 1420
918
1280
811
1130
701
973
586
763
432
550
10 15 20 25 30
939 1260 869 1130 779 975 677 803 570 632
834 772 692 601 506
1120 1000 864 711 560
726 670 599 517 432
965 865 741 606 473
615 569 509 440 368
808 728 626 514 402
495 460 413 359 302
609 555 486 407 325
345 324 297 263 226
406 378 341 295 244
35 40 45 50 55
465 366 290 235 194
477 366 290 235 194
412 324 257 208 172
422 324 257 208 172
349 272 216 175 145
354 272 216 175 145
297 232 184 150 124
301 232 184 150 124
244 191 152 124 103
248 191 152 124 103
188 150 120 98 82
193 150 120 98 82
56 57 58 59
188 181 175 169
188 181 175 169
166 161 155
166 161 155
140 135 130
140 135 130
120 116 112
120 116 112
99 96
99 96
79 76
79 76
No. of a Connectors
3⁄
Effective length KL (ft) with respect to indicated axis
b
Y-Y AXIS
41
2
3
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
33.5 2.42 3.55
30.0 2.44 3.53
26.5 2.45 3.51
22.9 2.47 3.49
19.2 2.49 3.47
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
15.5 2.50 3.45
3 - 58
COLUMN DESIGN
Fy = 36 ksi Fy = 50 ksi Y X
COLUMNS Double angles
X
Design axial strength in kips (φ = 0.85) 3⁄ 8
Equal legs in. back to back of angles 6× ×6
Size Thickness Wt./ft
74.8
Y-Y AXIS
X-X AXIS
Fy
Effective length KL (ft) with respect to indicated axis
7⁄ 8
1
3⁄ 4
66.2
57.4
1⁄ 2
48.4
3⁄ 8
39.2
29.8
36
50
36
50
36
50
36
50
36
50
36
50
0
673
935
597
829
517
718
435
604
352
470
243
309
8 10 12 14 16
580 533 481 426 370
759 676 586 495 407
515 473 428 379 330
675 601 522 441 364
447 412 373 332 290
587 524 457 388 321
377 347 315 280 245
495 442 386 328 272
306 283 257 229 201
389 351 308 265 222
214 200 183 166 147
264 241 216 190 164
18 22 26 30 31
315 218 156 117
326 218 156 117
282 196 140 105
292 196 140 105
248 173 124 93
259 173 124 93
210 147 105 79
220 147 105 79
173 122 87 65 61
182 122 87 65 61
129 94 68 51 48
138 94 68 51 48
0
673
935
597
829
517
718
435
604
352
470
243
309
10 12 14 16 18
595 567 537 503 468
787 738 683 625 565
523 499 472 442 410
690 647 598 547 494
449 428 404 379 352
590 552 511 468 422
371 353 334 313 291
483 453 420 385 348
289 275 260 244 226
359 338 315 289 262
187 180 172 163 153
219 210 199 186 173
20 22 24 26 28
431 394 357 321 286
505 446 389 334 288
378 345 312 280 249
441 388 338 290 250
324 295 267 239 213
377 332 288 247 214
268 244 221 198 176
310 273 238 204 176
208 189 171 152 135
235 207 181 155 135
142 131 120 109 97
158 143 128 113 98
30 32 34 36 38
252 221 196 175 157
252 221 196 175 157
218 192 170 152 137
218 192 170 152 137
187 164 146 130 117
187 164 146 130 117
154 136 120 108 97
154 136 120 108 97
118 104 92 82 74
118 104 92 82 74
86 76 68 61 55
86 76 68 61 55
40 42 43 44 45
142 129 123 117 112
142 129 123 117 112
123 112 107 102 98
123 112 107 102 98
106 96 91 87
106 96 91 87
87 79 76 72
87 79 76 72
67 61 58 56
67 61 58 56
50 45 43
50 45 43
Properties of 2 A (in2) rx (in.) ry (in.)
5⁄ 8
22.0 1.80 2.73
19.5 1.81 2.70
No. of a Connectors
Y
3/ ′′ 8
b
2
3
angles—3⁄8
in. back to back
16.9 1.83 2.68
14.2 1.84 2.66
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
11.5 1.86 2.64
8.72 1.88 2.62
DESIGN STRENGTH OF COLUMNS
3 - 59
Fy = 36 ksi Fy = 50 ksi Y
COLUMNS Double angles
X
X
Design axial strength in kips (φ = 0.85)
Equal legs in. back to back of angles 5× ×5
Size 7⁄ 8
Thickness Wt./ft
X-X AXIS
3⁄ 4
54.5
Fy
Effective length KL (ft) with respect to indicated axis
1⁄ 2
47.2
3⁄ 8
32.4
5⁄ 16
24.6
20.6
36
50
36
50
36
50
36
50
36
50
0
490
680
425
591
291
404
217
282
169
215
6 8 10 12 14
433 393 348 299 251
573 502 423 343 268
377 344 305 264 222
500 440 372 304 239
259 237 211 183 155
344 304 259 213 169
194 178 160 140 119
244 219 189 159 129
152 141 127 113 97
189 171 150 128 107
16 18 20 22 24
204 162 132 109 91
206 162 132 109 91
182 145 117 97 82
183 145 117 97 82
128 103 83 69 58
130 103 83 69 58
99 80 65 54 45
102 80 65 54 45
82 68 55 46 38
86 68 55 46 38
75
75
53
53
42 39
42 39
35 33
35 33
25 26
Y-Y AXIS
3/ ′′ 8
Y
0
490
680
425
591
291
404
217
282
169
215
6 8 10 12 14
457 438 414 388 358
617 582 540 492 441
394 377 357 334 309
531 501 464 423 379
260 249 236 221 204
345 326 303 277 249
184 176 168 157 145
224 214 201 186 168
136 131 126 119 111
160 154 146 137 127
16 18 20 22 24
327 295 263 231 201
389 337 287 240 202
282 254 226 199 172
334 289 246 205 173
186 168 149 131 114
219 190 161 135 114
133 120 107 93 81
150 132 113 95 81
103 94 84 75 66
115 103 90 78 66
26 28 30 32 34
172 149 130 114 101
172 149 130 114 101
148 127 111 98 87
148 127 111 98 87
97 84 73 65 57
97 84 73 65 57
69 60 52 46 41
69 60 52 46 41
57 49 43 38 34
57 49 43 38 34
36 37 38
90 85 81
90 85 81
77 73 69
77 73 69
51 48
51 48
37 35
37 35
30
30
A (in ) rx (in.) ry (in.)
16.0 1.49 2.30
13.9 1.51 2.28
b
2
3
Properties of 2 angles—3⁄8 in. back to back 2
No. of a Connectors
3⁄ 8
9.50 1.54 2.24
7.22 1.56 2.22
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
6.05 1.57 2.21
3 - 60
COLUMN DESIGN
Fy = 36 ksi Fy = 50 ksi Y X
COLUMNS Double angles
X
Design axial strength in kips (φ = 0.85) 3⁄ 8
Equal legs in. back to back of angles 4× ×4
Size 3⁄ 4
Thickness Wt./ft
37.0
X-X AXIS
Fy
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
5⁄ 8
1⁄ 2
31.4
3⁄ 8
25.6
5⁄ 16
19.6
1⁄ 4
16.4
13.2
36
50
36
50
36
50
36
50
36
50
36
50
0
334
463
282
392
230
319
175
243
146
191
108
138
4 6 8 10 12
306 275 237 195 154
411 354 288 220 159
259 233 201 167 132
349 301 245 189 137
212 191 166 138 110
285 247 203 157 115
162 146 127 106 85
217 189 156 121 89
135 123 107 90 72
172 152 127 101 76
101 92 82 70 57
126 112 96 78 61
14 16 18 19 20
117 89 71 63
117 89 71 63
100 77 61 54 49
100 77 61 54 49
84 65 51 46 41
84 65 51 46 41
65 50 40 36 32
65 50 40 36 32
56 43 34 30 27
56 43 34 30 27
45 35 28 25 22
46 35 28 25 22
0
334
463
282
392
230
319
175
243
146
191
108
138
6 8 10 12 14
303 284 262 237 210
406 371 332 288 245
254 238 219 198 176
339 311 277 241 204
204 191 176 158 140
270 247 220 191 161
151 141 130 117 104
196 180 161 141 119
121 114 106 96 85
148 138 125 110 95
85 81 76 70 63
100 94 87 79 70
16 18 20 22 24
183 157 132 109 92
202 163 132 109 92
153 131 109 91 76
168 135 109 91 76
122 104 86 72 60
133 106 86 72 60
90 77 64 53 45
98 79 64 53 45
74 63 53 44 37
79 64 53 44 37
56 48 41 35 29
60 50 41 35 29
26 28 29 30 31
78 67 63 59 55
78 67 63 59 55
65 56 52 49 46
65 56 52 49 46
51 44 41 39
51 44 41 39
38 33 31 29
38 33 31 29
32 27 26 24
32 27 26 24
25 22 20
25 22 20
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
10.9 1.19 1.88
9.22 1.20 1.86
7.50 1.22 1.83
5.72 1.23 1.81
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4.80 1.24 1.80
3.88 1.25 1.79
No. of a Connectors
Y
3/ ′′ 8
b
3
DESIGN STRENGTH OF COLUMNS
3 - 61
Fy = 36 ksi Fy = 50 ksi Y
COLUMNS Double angles
X
X
Design axial strength in kips (φ = 0.85)
Equal legs 8
in. back to back of angles 31⁄2×31⁄2
Size 3⁄ 8
Thickness Wt./ft
X-X AXIS
5⁄ 16
17.0
Fy
Effective length KL (ft) with respect to indicated axis
Y
1⁄ 4
14.4
11.6
36
50
36
50
36
50
0
152
211
128
175
100
129
2 4 6 8 10
148 137 120 100 78
204 182 152 117 84
125 115 101 84 67
169 152 127 99 72
97 90 80 67 54
125 114 97 77 58
12 14 16 17 18
59 43 33 29
59 43 33 29
50 37 28 25 22
50 37 28 25 22
41 30 23 21 18
41 30 23 21 18
0
152
211
128
175
100
129
6 8 10 12 14
130 120 108 94 81
170 152 131 109 88
107 98 89 78 67
136 123 106 89 72
80 74 67 60 52
96 88 78 67 56
16 18 20 22 24
67 54 44 37 31
69 54 44 37 31
56 45 37 30 26
57 45 37 30 26
43 36 29 24 20
44 36 29 24 20
26
26
26
22
22
17
17
3/ ′′ 8
No. of a Connectors
3⁄
b
Y-Y axis
3
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
4.97 1.07 1.61
4.18 1.08 1.60
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3.38 1.09 1.59
3 - 62
COLUMN DESIGN
Fy = 36 ksi Fy = 50 ksi Y X
COLUMNS Double angles
X
Design axial strength in kips (φ = 0.85) Y
3⁄ 8
Equal legs in. back to back of angles 3× ×3
Size 1⁄ 2
Thickness Wt./ft
18.8
X-X AXIS
Fy
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
3⁄ 8
5⁄ 16
14.4
1⁄ 4
12.2
3⁄ 16
9.8
7.42
36
50
36
50
36
50
36
50
36
50
0
168
234
129
179
109
151
88
118
61
77
2 4 5 6 7
162 145 133 120 106
222 190 169 146 123
125 112 103 93 83
171 147 131 114 97
105 94 87 79 70
144 124 111 97 82
85 77 71 64 57
112 98 88 77 66
59 54 50 46 41
74 66 60 54 47
8 9 10 11 12
92 79 66 54 46
101 81 66 54 46
72 62 52 43 36
80 64 52 43 36
61 53 45 37 31
68 55 45 37 31
50 43 37 31 26
56 46 37 31 26
37 32 28 24 20
41 34 28 24 20
13 14 15
39 34
39 34
31 27 23
31 27 23
26 23 20
26 23 20
22 19 16
22 19 16
17 15 13
17 15 13
0
168
234
129
179
109
151
88
118
61
77
2 4 6 8 10
163 155 143 128 111
223 209 187 161 132
123 117 108 97 84
167 156 140 121 99
101 97 89 80 70
136 128 115 99 82
79 75 70 63 55
100 95 86 75 63
50 48 45 42 37
59 57 53 48 42
12 14 16 18 20
94 76 60 47 38
104 78 60 47 38
70 57 45 36 29
78 58 45 36 29
58 47 37 29 24
64 48 37 29 24
46 38 29 23 19
50 38 29 23 19
32 27 22 17 14
35 28 22 17 14
22 23
32 29
32 29
24 22
24 22
20 18
20 18
16 14
16 14
12 11
12 11
A (in ) rx (in.) ry (in.)
b
3
Properties of 2 angles—3⁄8 in. back to back 2
No. of a Connectors
3/ ′′ 8
5.50 0.898 1.43
4.22 0.913 1.41
3.55 0.922 1.40
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2.88 0.930 1.39
2.18 0.939 1.38
DESIGN STRENGTH OF COLUMNS
3 - 63
Fy = 36 ksi Fy = 50 ksi Y
COLUMNS Double angles
X
X
Design axial strength in kips (φ = 0.85)
Equal legs 8
in. back to back of angles 21⁄2×21⁄2
Size 3⁄ 8
Thickness Wt./ft
X-X AXIS Y-Y AXIS
5⁄ 16
11.8
Fy
Effective length KL (ft) with respect to indicated axis
Y
1⁄ 4
10.0
3⁄ 16
8.2
6.14
36
50
36
50
36
50
36
50
0
106
147
90
125
73
101
54
70
2 3 4 5 6
101 94 86 76 66
137 125 110 93 76
85 80 73 65 56
116 106 93 79 65
69 65 59 53 46
94 86 76 65 53
52 48 44 40 35
66 61 54 47 40
7 8 9 10 11
55 45 36 29 24
59 46 36 29 24
47 39 31 25 21
51 39 31 25 21
39 32 26 21 17
42 33 26 21 17
30 25 20 16 13
32 25 20 16 13
12
20
20
17
17
14
14
11
11
0
106
147
90
125
73
101
54
70
2 3 4 5 6
101 99 95 90 85
138 133 126 118 109
84 82 79 75 71
114 110 105 98 90
67 65 63 60 56
89 86 82 77 71
46 45 44 42 40
57 55 53 50 47
7 8 9 10 11
79 73 66 60 53
98 88 77 67 57
66 61 55 50 44
82 73 64 55 47
52 48 44 40 35
64 58 51 44 37
37 35 32 29 26
44 40 35 31 27
12 13 14 15 16
47 41 35 31 27
48 41 35 31 27
39 34 29 26 22
40 34 29 26 22
31 27 23 20 18
32 27 23 20 18
23 20 17 15 13
23 20 17 15 13
17 18 19 20
24 21 19 17
24 21 19 17
20 18 16 14
20 18 16 14
16 14 13
16 14 13
12 11 9
12 11 9
Properties of 2 angles—3⁄8 in. back to back A (in2) rx (in.) ry (in.)
3.47 0.753 1.21
2.93 0.761 1.20
2.38 0.769 1.19
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1.80 0.778 1.18
3/ ′′ 8
No. of a Connectors
3⁄
b
3
3 - 64
COLUMN DESIGN
Fy = 36 ksi Fy = 50 ksi Y X
COLUMNS Double angles
X
Design axial strength in kips (φ = 0.85) Y
3⁄ 8
Equal legs in. back to back of angles 2× ×2
Size 3⁄ 8
Thickness Wt./ft
9.4
X-X AXIS
Fy
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
5⁄ 16
1⁄ 4
7.84
3⁄ 16
6.38
1⁄ 8
4.88
3.30
36
50
36
50
36
50
36
50
36
50
0
83
116
70
98
58
80
44
61
27
34
2 3 4 5 6
76 69 59 49 38
103 88 72 55 39
65 58 50 42 33
87 75 61 47 34
53 48 41 35 28
71 62 51 39 29
40 37 32 27 21
54 47 39 30 22
25 23 20 17 14
31 28 24 19 15
7 8 9 10
29 22 18
29 22 18
25 19 15 12
25 19 15 12
21 16 13 10
21 16 13 10
16 13 10 8
16 13 10 8
11 9 7 6
11 9 7 6
0
83
116
70
98
58
80
44
61
27
34
2 3 4 5 6
79 76 72 67 61
108 102 95 86 76
67 64 60 56 51
90 86 79 72 63
54 51 49 45 41
72 68 63 57 51
39 38 36 33 31
52 49 46 42 37
22 21 20 19 18
26 25 24 22 20
7 8 9 10 11
55 49 43 37 31
66 55 46 37 31
46 41 36 30 26
55 46 38 31 26
37 33 29 24 21
44 37 30 25 21
27 24 21 18 15
32 27 22 18 15
16 15 13 11 10
18 16 14 12 10
12 13 14 15 16
26 22 19 17 15
26 22 19 17 15
22 18 16 14 12
22 18 16 14 12
17 15 13 11 10
17 15 13 11 10
13 11 9 8 7
13 11 9 8 7
8 7 6 5 5
8 7 6 5 5
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
2.72 0.594 1.01
2.30 0.601 1.00
1.88 0.609 0.989
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1.43 0.617 0.977
0.960 0.626 0.965
No. of a Connectors
3/ ′′ 8
b
3
DESIGN STRENGTH OF COLUMNS
3 - 65
Fy = 36 ksi Fy = 50 ksi
Y
COLUMNS Double angles
X
X
Design axial strength in kips (φ = 0.85)
Unequal legs
3/ ′′ 8
Long legs 3⁄8 in. back to back of angles 3⁄ 4
1⁄ 2
Wt./ft
88.4
67.6
46.0
Fy
36
X-X AXIS
1⁄ 2
57.4
39.2
36
50
36
50
36
50
846
376
479
0
673
935 517 718 321 408
10 12 14 16 18
704 667 626 582 535
932 865 792 715 637
541 513 483 450 415
717 667 613 555 496
339 323 306 287 267
419 395 368 340 310
10 12 14 16 18
597 567 533 496 457
792 736 676 612 546
460 437 412 384 354
611 569 523 475 425
289 276 262 246 230
358 338 315 292 267
20 22 24 26 28
488 440 393 348 305
560 486 415 353 305
379 343 308 273 241
438 381 328 279 241
247 226 205 185 165
280 250 221 193 167
20 22 24 26 28
418 378 338 300 264
482 419 359 306 264
324 294 264 235 207
376 328 283 241 208
212 195 177 160 143
242 216 192 168 146
30 32 34 36 38
265 233 207 184 165
265 233 207 184 165
210 184 163 146 131
210 184 163 146 131
146 128 113 101 91
146 128 113 101 91
30 32 34 36 38
230 230 202 202 179 179 160 160 143 143
181 159 141 126 113
181 127 127 159 112 112 141 99 99 126 88 88 113 79 79
41 42
142
142 112 107
112 107
78 74
78 74
40 42 43
129 129 102 102 117 117 92 92
0
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
3⁄ 4
74.8
796 1110 609
0
50
8× ×4 1
b
50
36
50
71 65 62
796 1110 609
846
376
479
0
729 703 672 636 595
978 932 876 811 741
537 519 496 470 440
709 677 638 593 543
301 293 282 270 256
357 346 331 314 295
6 8 10 12 14
568 741 416 533 234 275 520 657 381 473 217 251 464 562 339 405 197 223 404 463 294 333 175 192 342 368 248 263 150 159
935 517 718 321 408
16 18 20 22 24
551 506 459 412 366
667 592 517 445 378
408 375 340 305 271
490 435 381 328 279
240 223 205 187 169
273 249 225 200 176
16 18 20 22 24
282 238 194 160 135
300 238 194 160 135
203 162 132 110 93
26 28 32
321 279 214
323 279 214
238 207 159
239 207 159
151 133 103
152 133 103
25 26
125 115
125 115
85
34 36 40 41 42
190 170 138 131 125
190 170 138 131 125
141 126 103 98
141 126 103 98
92 82 67
92 82 67
A
rx (in.) ry (in.)
26.0 2.49 2.52
19.9 2.53 2.48
13.5 2.56 2.44
22.0 2.52 1.61
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2
204 126 127 162 103 103 132 84 84 110 70 70 93 60 60 85
55
55 3
Properties of 2 angles—3⁄8 in. back to back (in2)
b
71 65 62
6 8 10 12 14
2
673
36
No. of a Connectors
1
No. of a Connectors
8× ×6
Size Thickness
Y
16.9 2.55 1.55
11.5 2.59 1.51
3 - 66
COLUMN DESIGN
Fy = 36 ksi Fy = 50 ksi
Y X
COLUMNS Double angles
X
Design axial strength in kips (φ = 0.85)
Unequal legs
3/ ′′ 8
3⁄ 4
1⁄ 2
3⁄ 8
Wt./ft
52.4
35.8
27.2
Fy
36
50
36
50
36
50
X-X AXIS
Effective length KL (ft) with respect to indicated axis
0 471 655 310 401 205 254
3⁄ 4
5⁄ 8
1⁄ 2
3⁄ 8
47.2
40.0
32.4
24.6
36 0
50
36
50
36
50
36
50
425 591 358 497 291 388 201 256
8 10 12 14 16
427 404 378 349 318
571 529 481 431 379
283 268 252 233 214
355 332 306 278 248
189 181 171 161 149
230 218 204 188 172
8 10 12 14 16
371 343 312 279 246
488 439 385 329 276
313 290 265 237 209
413 371 327 281 236
18 20 22 24 26
286 255 224 194 166
328 278 232 195 166
194 174 154 135 117
219 190 162 137 117
137 125 113 101 89
155 138 121 105 90
18 20 22 24 26
212 180 150 126 108
225 182 150 126 108
181 155 129 109 93
193 148 158 110 119 156 127 128 96 100 129 106 106 82 82 109 89 89 69 69 93 76 76 59 59
28 143 143 100 100 30 125 125 88 88 32 110 110 77 77 34 97 97 68 68
78 68 59 53
78 68 59 53
28 30 31 32
93 81 76
93 81 76
80 70 65
36 37
47 44
47 44
87 82
87 82
61 58
61 58
b
0 471 655 310 401 205 254
Y-Y AXIS
6× ×4
No. of a Connectors
7× ×4
Size Thickness
6 8 10 12 14
394 362 325 284 242
511 456 393 327 262
238 221 200 176 151
286 260 229 196 161
146 137 127 115 101
167 156 142 126 108
16 18 20 22 24
201 162 132 110 92
204 126 128 162 103 103 132 84 84 110 70 70 92 59 59
87 74 61 51 43
90 74 61 51 43
25 26 27
85 79 73
40
40
0
80 70 65
254 236 216 193 171
65 57 53
325 294 260 225 191
65 57 53
179 167 154 140 125
51 44 41 39
220 202 182 161 140 b
51 44 41 39
425 591 358 497 291 388 201 256
6 8 10 12 14
367 339 306 270 232
481 432 375 315 256
302 279 252 222 191
394 354 308 259 210
236 218 197 174 150
293 266 233 198 162
153 144 132 118 104
181 167 151 132 112
16 18 20 22 24
195 160 136 113 95
211 161 165 126 129 167 132 132 103 103 136 107 107 84 84 113 89 89 70 70 95 75 75 59 59
89 75 61 51 43
93 75 61 51 43
26 27 28
81 75 70
37 35
37 35
2
85 79 73
55 51
55 51
2
81 75 70
64 59
64 59
50 47
50 47
3
Properties of 2 angles—3⁄8 in. back to back A (in2) rx (in.) ry (in.)
No. of a Connectors
Long legs 3⁄8 in. back to back of angles
Y
15.4 2.22 1.62
10.5 2.25 1.57
7.97 2.27 1.55
13.9 1.88 1.69
11.7 1.90 1.67
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
9.50 1.91 1.64
7.22 1.93 1.62
DESIGN STRENGTH OF COLUMNS
3 - 67
Fy = 36 ksi Fy = 50 ksi
Y
COLUMNS Double angles
X
X
Design axial strength in kips (φ = 0.85)
Unequal legs
3/ ′′ 8
Long legs 3⁄8 in. back to back of angles
Wt./ft
23.4
Y-Y AXIS
X-X AXIS
Fy
Effective length KL (ft) with respect to indicated axis
5⁄ 16
19.6
36
50
36
50
0
191
243
145
179
8 10 12 14 16
170 159 146 133 119
209 192 173 153 133
130 123 114 105 95
157 146 134 120 106
18 20 22 24 26
105 92 78 66 56
114 95 79 66 56
85 75 65 56 48
93 79 67 56 48
28 30 32
49 42 37
49 42 37
41 36 32
0
191
243
4 6 8 10 12
148 139 127 113 98
14 16 18 20 22 23
3⁄ 4
1⁄ 2
39.6
3⁄ 8
27.2
5⁄ 16
20.8
50
36
50
0
355
493
245
340 183 238 143 182
4 6 8 10 12
337 317 290 259 225
460 233 421 219 372 202 318 181 262 158
14 16 18 20 22
191 158 127 103 85
209 161 127 103 85
41 36 32
24 25 26
72 66
72 66
51 47 44
145
179
0
355
493
245
176 163 147 127 105
107 101 94 85 75
122 115 106 94 80
4 6 8 10 12
325 303 274 241 206
437 215 396 200 345 182 289 160 232 136
284 258 226 189 152
152 142 129 114 98
81 66 53 43 36
84 66 53 43 36
64 53 43 35 29
66 53 43 35 29
14 16 18 20 22
170 144 114 93 77
188 144 114 93 77
113 90 72 58 48
117 90 72 58 48
82 65 52 43 35
84 65 52 43 35
65 53 43 35 29
68 53 43 35 29
33
33
27
27
24 25
65 60
65 60
41
41
30
30
25
25
b
318 292 260 223 185
36
17.4
36
175 165 152 137 120
50
36
50
224 208 187 163 138
137 130 120 109 97
172 161 146 129 111
135 149 104 113 113 116 87 90 91 91 71 71 74 74 58 58 61 61 48 48
85 72 60 49 41
93 76 61 49 41
34 31 29
34 31 29
51 47 44
40 37 34
40 37 34
A (in ) rx (in.) ry (in.)
186 113 134 171 107 125 152 98 114 130 88 99 107 77 84
2
6.84 1.94 1.39
5.74 1.95 1.38
b
340 183 238 143 182
2
3
Properties of 2 angles—3⁄8 in. back to back 2
No. of a Connectors
3⁄ 8
Thickness
5× ×31⁄2
No. of a Connectors
6× ×31⁄2
Size
Y
11.6 1.55 1.53
8.00 1.58 1.49
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
6.09 1.60 1.46
5.12 1.61 1.45
3 - 68
COLUMN DESIGN
Fy = 36 ksi Fy = 50 ksi
Y X
COLUMNS Double angles
X
Design axial strength in kips (φ = 0.85)
Unequal legs
3/ ′′ 8
5× ×3
Size 1⁄ 2
Thickness Wt./ft
25.6
X-X AXIS
Fy
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
3⁄ 8
5⁄ 16
19.6
1⁄ 4
16.4
13.2
36
50
36
50
36
50
36
50
0
230
319
172
223
134
170
95
117
2 4 6 8 10
227 219 206 189 170
313 298 274 244 210
170 164 155 143 129
220 210 195 176 154
132 128 122 113 103
168 161 151 137 121
95 92 88 82 76
115 112 105 97 88
12 14 16 18 20
149 128 107 87 70
175 141 110 87 70
114 98 82 68 55
130 107 86 68 55
91 79 68 56 46
104 88 71 57 46
68 61 53 45 38
78 67 56 47 38
22 24 26 27
58 49 42
58 49 42
45 38 32
45 38 32
38 32 27
38 32 27
31 26 22 21
31 26 22 21
0
230
319
172
223
134
170
95
117
2 4 6 8 10
207 195 177 153 128
276 255 223 184 143
146 138 125 110 92
179 167 149 126 101
107 102 94 84 72
128 121 110 95 78
71 68 64 58 51
80 77 72 64 55
12 14 16 18 20
101 81 62 49 40
109 81 62 49 40
74 57 44 35 28
76 57 44 35 28
59 46 36 29 23
61 46 36 29 23
43 35 28 22 18
45 35 28 22 18
No. of a Connectors
Long legs 3⁄8 in. back to back of angles
Y
b
2
3
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
7.50 1.59 1.25
5.72 1.61 1.23
4.80 1.61 1.22
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3.88 1.62 1.21
DESIGN STRENGTH OF COLUMNS
3 - 69
Fy = 36 ksi Fy = 50 ksi
Y
COLUMNS Double angles
X
X
Design axial strength in kips (φ = 0.85)
Unequal legs
3/ ′′ 8
Long legs 3⁄8 in. back to back of angles 1⁄ 2
Thickness Wt./ft
23.8
Fy
X-X AXIS
3⁄ 8
5⁄ 16
18.2
15.4
12.4
36
50
36
50
36
50
36
50
0
214
298
163
227
137
179
101
129
2 4 6 8 10
210 198 179 155 130
289 266 232 191 148
160 151 137 120 101
221 204 178 147 116
134 127 115 101 85
174 162 143 120 96
99 94 87 77 66
126 118 106 91 75
12 14 16 18 20
104 80 61 48 39
109 80 61 48 39
81 63 48 38 31
86 63 48 38 31
69 54 41 33 26
73 54 41 33 26
55 44 34 27 22
59 44 34 27 22
24
24
20
20
0
214
298
163
227
137
179
101
129
2 4 6 8 10
203 196 183 167 148
276 262 240 211 180
150 144 135 124 110
200 190 174 155 132
121 116 110 101 90
150 143 133 120 104
84 81 77 72 65
99 96 91 83 74
12 14 16 18 20
128 108 88 74 60
147 116 93 74 60
95 80 66 53 43
108 86 66 53 43
78 66 54 43 35
87 70 54 43 35
58 50 42 34 28
64 53 42 34 28
22 24 25 26
50 42 39 36
50 42 39 36
35 30 28 25
35 30 28 25
29 25 23
29 25 23
23 20 18
23 20 18
b
21
Y-Y AXIS
1⁄ 4
No. of a Connectors
4× ×31⁄2
Size
Effective length KL (ft) with respect to indicated axis
Y
2
3
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
7.00 1.23 1.58
5.34 1.25 1.56
4.49 1.26 1.55
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3.63 1.27 1.54
3 - 70
COLUMN DESIGN
Fy = 36 ksi Fy = 50 ksi
Y X
COLUMNS Double angles
X
Design axial strength in kips (φ = 0.85)
Unequal legs
3/ ′′ 8
4× ×3
Size 1⁄ 2
Thickness Wt./ft
22.2
X-X AXIS
Fy
Effective length KL (ft) with respect to indicated axis
3⁄ 8
17.0
1⁄ 4
14.4
11.6
36
50
36
50
36
50
36
50
0
199
276
152
211
127
166
94
120
2 4 6 8 10
195 184 167 146 122
269 248 217 179 141
149 141 128 112 94
206 190 166 138 109
125 118 108 94 80
162 151 133 112 90
93 88 81 72 62
117 110 99 85 70
12 14 16 18 20
99 77 59 46 38
105 77 59 46 38
76 60 46 36 29
81 60 46 36 29
65 51 39 31 25
69 51 39 31 25
51 41 32 25 21
55 42 32 25 21
27
27
23
23
19
19
0
199
276
152
211
127
166
94
120
2 4 6 8 10
187 177 161 142 120
253 235 207 173 137
138 131 119 105 89
183 171 151 127 101
111 105 96 85 73
137 129 116 99 81
77 74 69 62 54
92 88 80 71 59
12 14 16 18 20
97 76 61 49 39
108 80 61 49 39
72 56 43 35 28
76 56 43 35 28
59 46 36 29 23
62 46 36 29 23
45 36 28 23 18
47 36 28 23 18
21 22
36 33
36 33
25
25
21
21
17
17
b
21
Y-Y AXIS
5⁄ 16
2
3
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
No. of a Connectors
Long legs 3⁄8 in. back to back of angles
Y
6.50 1.25 1.33
4.97 1.26 1.31
4.18 1.27 1.30
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3.38 1.28 1.29
DESIGN STRENGTH OF COLUMNS
3 - 71
Fy = 36 ksi Fy = 50 ksi
Y
COLUMNS Double angles
X
X
Design axial strength in kips (φ = 0.85)
Unequal legs
3/ ′′ 8
Long legs 3⁄8 in. back to back of angles
Wt./ft
15.8
X-X AXIS
Fy
Effective length KL (ft) with respect to indicated axis
5⁄ 16
1⁄ 4
13.2
10.8
36
50
36
50
36
50
0
140
195
118
162
92
119
2 4 6 8 10
137 127 112 93 74
188 169 142 111 80
115 107 95 79 63
157 141 119 94 69
90 84 75 63 51
116 106 91 73 55
12 14 16 17 18
56 41 32 28 25
56 41 32 28 25
48 35 27 24 21
48 35 27 24 21
39 29 22 20 18
0
140
195
118
162
2 4 6 8 10
131 124 114 101 86
176 164 146 123 99
107 102 94 83 71
12 14
71 56
76 59
16 18 20
45 36 29
22
24
3⁄ 8
1⁄ 4
14.4
9.8
36
50
36
50
0
129
179
85
110
2 4 6 8 10
126 117 103 86 69
173 156 131 103 75
83 77 69 59 47
107 97 84 68 52
40 29 22 20 18
12 14 16 18
52 39 30 23
53 39 30 23
37 27 21 17
37 27 21 17
92
119
0
129
179
85
110
140 131 118 100 81
79 76 70 63 54
97 92 83 73 60
2 4 6 8 10
118 109 96 80 63
158 142 119 92 69
71 67 59 50 40
87 80 69 56 42
59 46
62 47
45 36
48 36
12 14
49 36
49 36
30 22
30 22
45 36 29
36 29 23
36 29 23
28 22 18
28 22 18
16 18
28 22
28 22
17 14
17 14
24
19
19
15
15
b
No. of a Connectors
3⁄ 8
Thickness
31⁄2×21⁄2
No. of a Connectors
31⁄2×3
Size
Y
b
2
Y-Y AXIS
2
3
3
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
4.59 1.09 1.36
3.87 1.10 1.35
3.13 1.11 1.33
4.22 1.10 1.11
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2.88 1.12 1.09
3 - 72
COLUMN DESIGN
Fy = 36 ksi Fy = 50 ksi
Y X
COLUMNS Double angles
X
Design axial strength in kips (φ = 0.85)
Unequal legs
3/ ′′ 8
3⁄ 8
Thickness
13.2
Wt./ft
Y-Y AXIS
X-X AXIS
Fy
Effective length KL (ft) with respect to indicated axis
1⁄ 4
36
3⁄ 16
9.0
6.77
50
36
50
36
50
0 118 163
80
107
55
71
2 113 155 3 109 146 4 102 134 5 94 120 6 86 105
78 75 70 65 59
103 97 90 81 71
54 52 49 46 42
68 65 60 55 50
3× ×2
No. of a Connectors
3× ×21⁄2
Size
3⁄ 8
5⁄ 16
11.8
36
1⁄ 4
10.0
3⁄ 16
8.2
36
6.1
50
36
50
50
0
106 147
90
125
73
97
50
64
2 3 4 5 6
103 98 93 86 78
141 132 122 109 96
87 83 78 73 66
119 112 103 93 82
70 68 64 59 54
93 88 81 74 65
49 47 45 42 38
61 59 55 50 45
7 8 9 10 11
70 61 53 45 38
82 69 56 45 38
59 52 45 39 32
70 59 48 39 32
49 43 37 32 27
57 48 40 32 27
35 31 28 24 20
40 35 30 25 21
12 13 14 15 16
32 27 23 20
32 27 23 20
27 23 20 17
27 23 20 17
22 19 16 14
22 19 16 14
17 15 13 11 10
17 15 13 11 10
7 8 9 10 11
76 67 58 49 40
90 75 60 49 40
53 47 40 34 29
62 52 43 35 29
38 34 30 26 22
44 38 32 27 22
12 13 14 15
34 29 25 22
34 29 25 22
24 21 18 15
24 21 18 15
19 16 14 12
19 16 14 12
0 118 163
80
107
55
71
0
106 147
90
125
73
97
50
64
2 110 149 3 107 143 4 102 135 5 97 125 6 90 114
71 69 66 63 59
90 87 83 77 71
45 44 43 41 39
54 53 51 48 45
2 3 4 5 6
97 131 93 122 86 111 79 98 71 84
80 76 71 65 58
107 100 91 81 69
63 60 56 51 46
79 74 68 61 53
40 39 37 34 31
48 46 43 39 35
7 8 9 10 11
62 53 47 39 32
70 60 48 39 32
51 44 37 32 27
58 49 39 32 27
40 35 29 25 21
45 37 31 25 21
28 24 21 17 15
30 26 21 17 15
12 13 14 15
27 23 20 18
27 23 20 18
22 19 17 14
22 19 17 14
18 15 13
18 15 13
12 11 10
12 11 10
7 8 9 10 11
83 102 76 90 68 77 61 66 53 58
54 50 45 40 35
64 57 49 42 35
36 34 31 28 25
41 38 34 30 26
12 13 14 15 16
48 42 36 31 28
49 42 36 31 28
30 26 23 20 18
30 26 23 20 18
22 19 16 14 13
22 19 16 14 13
17 18 19
24 22 20
24 22 20
16 14
16 14
11 10
11 10
b
2
3
Properties of 2 angles—3⁄8 in. back to back A
(in2)
rx (in.) ry (in.)
3.84 0.928 1.16
2.63 0.945 1.13
1.99 0.954 1.12
3.47 0.940 0.917
2.93 0.948 0.903
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2.38 0.957 0.891
1.80 0.966 0.879
No. of a Connectors
Long legs 3⁄8 in. back to back of angles
Y
b
2
3
DESIGN STRENGTH OF COLUMNS
3 - 73
Fy = 36 ksi Fy = 50 ksi
Y
COLUMNS Double angles
X
X
Design axial strength in kips (φ = 0.85)
Unequal legs
3/ ′′ 8
Long legs 3⁄8 in. back to back of angles 3⁄ 8
Thickness Wt./ft
10.6
X-X AXIS
Fy
Y-Y AXIS
5⁄ 16
1⁄ 4
9.0
3⁄ 16
7.2
5.5
36
50
36
50
36
50
36
50
0
95
131
80
111
65
91
49
63
2 3 4 5 6
90 84 77 69 60
122 112 99 84 69
76 72 66 59 51
104 95 84 72 59
62 58 54 48 42
85 78 69 59 49
46 44 40 36 32
59 55 49 43 36
7 8 9 10 11
50 42 33 27 22
55 42 33 27 22
43 36 29 23 19
47 37 29 23 19
36 30 24 19 16
39 30 24 19 16
27 23 19 15 12
30 24 19 15 12
12 13
19
19
16
16
13 11
13 11
10 9
10 9
0
95
131
80
111
65
91
49
63
2 3 4 5 6
89 85 80 74 67
120 113 104 93 82
74 71 66 61 55
99 93 85 76 66
58 56 52 48 44
77 73 67 60 52
41 39 37 34 31
50 48 44 40 36
7 8 9 10 11
60 52 45 38 32
70 58 47 38 32
49 42 36 32 26
56 48 39 32 26
39 33 28 25 21
44 36 31 25 21
28 24 21 17 15
31 26 22 18 15
12 13 14 15 16
27 23 20 17 15
27 23 20 17 15
22 19 16 14
22 19 16 14
17 15 13 11
17 15 13 11
13 11 10 8
13 11 10 8
b
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
No. of a Connectors
21⁄2×2
Size
Effective length KL (ft) with respect to indicated axis
Y
3.09 0.768 0.961
2.62 0.776 0.948
2.13 0.784 0.935
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1.62 0.793 0.923
2
3
3 - 74
COLUMN DESIGN
Fy = 36 ksi Fy = 50 ksi
COLUMNS Double angles
Y X
X
Unequal legs
8× ×6
Size Thickness Wt./ft
88.4
Fy
36
X-X AXIS Y-Y AXIS
67.6
46.0
50
36
50
796 1110 609
846
376
479
8 12 16 20 24
677 552 416 288 200
882 666 449 288 200
521 428 325 228 159
680 518 354 228 159
328 276 217 159 111
402 323 237 160 111
28 29
147
147 116 109
116 109
82 76
796 1110 609
846
12 16 20 24 28
725 681 628 569 506
970 890 796 695 591
547 514 474 429 382
32 36 40 44 48
443 380 320 265 223
490 396 321 265 223
52 56 60 61 62
190 164 143 138 134
190 164 143 138 134
63
130
130
0
50
1⁄ 2
36
0
Effective length KL (ft) with respect to indicated axis
3⁄ 4
1
8× ×4 3⁄ 4
1 74.8
1⁄ 2
57.4
50
0
673
935 517 718 321 408
4 6 8 10 12
600 521 426 329 240
798 654 495 346 240
82 76
14 16 17 18
176 176 141 141 101 101 135 135 108 108 78 78 120 120 96 96 69 69 61 61
376
479
0
673
935 517 718 321 408
727 667 598 522 444
325 308 287 263 237
393 368 338 304 267
12 16 20 24 28
628 596 558 514 467
849 790 720 643 563
480 455 426 392 355
647 602 548 489 426
295 281 264 245 224
365 344 318 290 258
333 286 240 199 168
368 297 241 199 168
210 183 156 131 110
229 192 157 131 110
32 36 40 44 48
418 369 320 274 231
483 405 333 275 231
317 279 242 206 174
364 305 250 206 174
202 179 157 135 115
227 195 165 137 115
143 123 108 104 101
143 123 108 104 101
94 81 71 69
94 81 71 69
52 56 60 64 66
197 170 148 130 122
197 148 148 170 128 128 148 111 111 130 98 98 122 92 92
98 85 74 65 61
98 85 74 65 61
67 68
119 119 115 115
b
3
36
39.2
36
463 404 333 260 192
50
616 509 390 276 192
89
36
292 259 219 177 137
50
361 311 252 192 138
89
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
26.0 1.73 3.78
19.9 1.76 3.74
13.5 1.79 3.69
22.0 1.03 4.10
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.9 1.05 4.05
11.5 1.08 4.00
No. of a Connectors
Short legs 3⁄8 in. back to back of angles No. of a Connectors
Y
Design axial strength in kips (φ = 0.85)
3/ ′′ 8
b
6
DESIGN STRENGTH OF COLUMNS
3 - 75
Fy = 36 ksi Fy = 50 ksi
COLUMNS Double angles
Y X
X
Unequal legs
7× ×4
Size 3⁄ 4
Thickness Wt./ft
1⁄ 2
52.4
Fy
36
50
3⁄ 8
35.8
36
50
27.2
36
50
No. of a Connectors
Short legs 3⁄8 in. back to back of angles
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
X-X AXIS
0 471 655 310 401 205 254 4 6 8 10 12
426 375 313 249 188
568 476 371 270 188
282 250 212 171 132
354 304 245 186 133
189 171 149 124 100
230 203 171 137 104
14 138 138 16 106 106 18 84 84
98 75 59
98 75 59
77 59 47
3/ ′′ 8
Y
6× ×4 3⁄ 4
5⁄ 8
47.2
50 0
36
50
1⁄ 2
40.0
36
3⁄ 8
32.4
50
36
24.6
50
36
50
425 591 358 497 291 388 201 256
4 6 8 10 12
386 342 289 232 178
436 370 293 218 154
265 236 201 164 127
343 295 238 181 129
186 168 146 122 97
231 203 170 135 102
77 59 47
14 16 18 19
132 132 113 113 101 101 86 86 80 80 68 68
95 73 57 52
95 73 57 52
75 57 45 41
75 57 45 41
0 471 655 310 401 205 254
0
8 12 16 20 24
449 427 397 362 324
611 570 516 454 389
291 277 259 236 212
368 346 317 282 245
28 32 36 40 44
283 243 204 168 139
323 261 207 168 139
186 160 135 111 92
207 129 143 171 113 122 137 98 102 111 83 83 92 69 69
48 117 117 52 99 99 56 86 86 57 83 83 58 80 80
77 66 57 55
77 66 57 55
188 181 171 158 144
58 49 43 41
b
225 215 201 184 164
58 49 43 41
5
517 437 345 255 179
326 289 245 198 152
A (in ) rx (in.) ry (in.)
15.4 1.09 3.49
10.5 1.11 3.44
7.97 1.13 3.42
b
425 591 358 497 291 388 201 256
8 12 16 20 24
398 370 334 293 249
538 486 422 352 282
28 32 36 40 44
206 166 131 106 88
216 172 179 138 143 100 105 165 138 138 110 110 81 82 131 109 109 87 87 65 65 106 88 88 71 71 52 52 88 73 73 58 58 43 43
45 46 47 48 49
84 80 77 74 71
84 80 77 74 71
333 310 279 245 208
70 67 64 61
449 406 352 294 235
70 67 64 61
267 249 224 197 167
56 53 51 49
346 314 275 230 186
56 53 51 49
181 170 155 138 119
42 40 38
222 205 184 158 131
42 40 38
Properties of 2 angles—3⁄8 in. back to back 2
No. of a Connectors
Design axial strength in kips (φ = 0.85)
13.9 1.12 2.94
11.7 1.13 2.92
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
9.50 1.15 2.90
7.22 1.17 2.87
4
3 - 76
COLUMN DESIGN
Fy = 36 ksi Fy = 50 ksi
COLUMNS Double angles
Y X
X
Unequal legs
6× ×31⁄2
Size 3⁄ 8
Thickness Wt./ft
23.4
Y-Y AXIS
X-X AXIS
Fy
Effective length KL (ft) with respect to indicated axis
5⁄ 16
19.6
36
50
36
50
0
191
243
145
179
4 6 8 10
170 148 121 94
210 175 136 99
131 115 97 77
158 135 109 82
12 14 16
69 50 39
69 50 39
58 43 33
59 43 33
0
191
243
145
8 12 16 20 24
173 160 144 125 112
213 194 170 142 124
28 32 36 40 44
94 76 63 51 42
48 49
36 34
5× ×31⁄2 3⁄ 4
1⁄ 2
39.6
3⁄ 8
27.2
5⁄ 16
20.8
50
36
50
0
355
493
245
340 183 238 143 182
2 4 6 8 10
344 313 267 214 160
472 238 326 413 217 288 331 187 234 243 152 176 164 116 121
12 14 16 17
114 84 64
114 84 64
84 62 47
179
0
355
493
245
340 183 238 143 182
130 122 111 98 84
154 143 128 110 98
8 10 12 14 16
318 300 279 257 233
423 390 354 334 297
217 205 191 175 159
287 265 240 214 201
99 80 63 51 42
75 62 53 43 35
80 66 53 43 35
18 20 22 24 26
224 201 179 157 144
260 225 201 169 144
152 136 121 106 96
175 106 127 151 101 111 134 90 95 113 79 84 96 69 72
36 34
30 29
30 29
28 30 32 34 36
125 109 95 85 75
125 109 95 85 75
83 72 64 56 50
83 72 64 56 50
62 54 48 42 38
62 54 48 42 38
49 43 38 33 30
49 43 38 33 30
38 39 40
68 64 61
68 64 61
45 43 41
45 43 41
34 32 31
34 32 31
27 25
27 25
41
58
58
b
5
36
17.4
36
178 163 141 116 89
84 62 47
50
50
229 139 176 205 129 159 170 113 135 131 94 107 94 74 79
65 48 37 32
160 151 141 130 118
36
65 48 37 32
198 185 169 153 143
56 41 31 28
123 117 110 102 94
6.84 0.988 2.95
5.74 0.996 2.94
11.6 0.977 2.48
8.00 1.01 2.43
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
6.09 1.02 2.41
b
56 41 31 28
149 140 130 119 106
85 100 81 89 73 77 65 66 57 57
Properties of 2 angles—3⁄8 in. back to back A (in2) rx (in.) ry (in.)
No. of a Connectors
Short legs 3⁄8 in. back to back of angles No. of a Connectors
Y
Design axial strength in kips (φ = 0.85)
3/ ′′ 8
5.12 1.03 2.39
4
DESIGN STRENGTH OF COLUMNS
3 - 77
Fy = 36 ksi Fy = 50 ksi
COLUMNS Double angles
Y X
X
Unequal legs
Short legs 3⁄8 in. back to back of angles 5× ×3
Size 1⁄ 2
Thickness Wt./ft
X-X AXIS Y-Y AXIS
3⁄ 8
25.6
Fy
Effective length KL (ft) with respect to indicated axis
Y
5⁄ 16
19.6
1⁄ 4
16.4
13.2
36
50
36
50
36
50
36
50
0
230
319
172
223
134
170
95
117
2 4 6 8 10
220 192 154 113 76
300 249 184 119 76
165 146 118 88 61
212 180 137 94 61
129 115 95 73 52
162 140 110 79 52
92 84 71 56 42
112 99 81 61 43
12 13 14
53 45
53 45
42 36 31
42 36 31
36 31 26
36 31 26
30 25 22
30 25 22
0
230
319
172
223
134
170
95
117
8 10 12 14 16
205 194 181 167 152
273 253 230 205 194
152 144 135 125 114
190 178 163 147 139
118 112 106 98 90
144 135 126 115 103
83 79 75 71 66
96 92 87 81 75
18 20 22 24 26
146 132 117 103 95
170 147 132 112 95
109 99 88 78 68
124 109 94 84 71
82 79 71 63 56
98 87 76 66 59
61 56 54 49 44
68 65 58 51 45
28 30 32 34 36
82 72 63 56 50
82 72 63 56 50
62 54 47 42 37
62 54 47 42 37
51 45 39 35 31
51 45 39 35 31
39 36 31 28 25
41 36 31 28 25
38 40 41
45 40 38
45 40 38
34 30 29
34 30 29
28 25 24
28 25 24
22 20 19
22 20 19
3/ ′′ 8
No. of a Connectors
Design axial strength in kips (φ = 0.85)
b
4
5
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
7.50 0.829 2.50
5.72 0.845 2.48
4.80 0.853 2.47
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3.88 0.861 2.46
3 - 78
COLUMN DESIGN
Fy = 36 ksi Fy = 50 ksi
COLUMNS Double angles
Y X
Y
Design axial strength in kips (φ = 0.85)
Unequal legs
3/ ′′ 8
Short legs 3⁄8 in. back to back of angles 4× ×31⁄2
Size 1⁄ 2
Thickness Wt./ft
23.8
X-X AXIS
Fy
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
3⁄ 8
5⁄ 16
18.2
1⁄ 4
15.4
12.4
36
50
36
50
36
50
36
50
0
214
298
163
227
137
179
101
129
2 4 6 8 10
208 191 166 137 106
286 255 210 160 112
159 147 128 106 83
219 195 162 125 89
133 123 108 90 71
172 156 131 103 76
99 92 81 69 55
125 114 98 79 60
12 14 16 17
78 57 44 39
78 57 44 39
62 45 35 31
62 45 35 31
53 39 30 26
53 39 30 26
42 31 24 21
43 31 24 21
0
214
298
163
227
137
179
101
129
4 6 8 10 12
201 190 177 161 143
271 252 228 200 181
150 142 132 120 107
200 187 169 149 127
122 116 108 99 89
152 143 132 117 102
86 83 78 72 66
103 99 92 84 75
14 16 18 20 22
132 115 98 86 71
153 126 106 86 71
94 86 73 61 53
114 94 75 61 53
77 71 61 51 42
92 77 62 51 42
58 54 47 40 33
65 59 49 40 33
24 26 28 30 31
60 51 44 38 36
60 51 44 38 36
45 38 33 29 27
45 38 33 29 27
36 30 26 23 21
36 30 26 23 21
28 24 21 18
28 24 21 18
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
7.00 1.04 1.89
5.34 1.06 1.87
4.49 1.07 1.86
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3.63 1.07 1.85
No. of a Connectors
X
b
3
DESIGN STRENGTH OF COLUMNS
3 - 79
Fy = 36 ksi Fy = 50 ksi
COLUMNS Double angles
Y X
X
Unequal legs
Short legs 3⁄8 in. back to back of angles 4× ×3
Size 1⁄ 2
Thickness Wt./ft
X-X AXIS Y-Y AXIS
3⁄ 8
22.2
Fy
Effective length KL (ft) with respect to indicated axis
Y
5⁄ 16
17.0
1⁄ 4
14.4
11.6
36
50
36
50
36
50
36
50
0
199
276
152
211
127
166
94
120
2 4 6 8 10
191 169 138 104 72
261 220 166 112 72
146 130 107 81 57
200 170 129 88 57
123 109 90 69 49
158 136 106 75 49
91 82 69 54 40
115 101 81 59 40
12 14
50 37
50 37
40 29
40 29
34 25
34 25
28 21
28 21
0
199
276
152
211
127
166
94
120
4 6 8 10 12
190 182 172 160 146
259 245 226 204 180
143 137 130 121 110
193 183 169 153 135
118 113 107 99 91
149 142 132 120 107
85 82 78 73 67
103 99 93 86 78
14 16 18 20 22
131 116 101 86 73
156 131 108 88 73
99 87 76 65 54
117 98 81 66 54
81 72 62 53 44
93 79 65 53 44
61 55 48 41 35
69 60 51 42 35
24 26 28 30 32
61 52 45 39 34
61 52 45 39 34
46 39 34 29 26
46 39 34 29 26
37 32 27 24 21
37 32 27 24 21
30 25 22 19 17
30 25 22 19 17
3/ ′′ 8
No. of a Connectors
Design axial strength in kips (φ = 0.85)
b
3
4
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
6.50 0.864 1.96
4.97 0.879 1.94
4.18 0.887 1.93
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3.38 0.896 1.92
3 - 80
COLUMN DESIGN
Fy = 36 ksi Fy = 50 ksi
COLUMNS Double angles
Y X
X
Unequal legs
31⁄2×3
Size 3⁄ 8
Thickness Wt./ft
15.8
X-X AXIS
Fy
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
5⁄ 16
1⁄ 4
13.2
10.8
36
50
36
50
36
50
0
140
195
118
162
92
2 4 6 8 10
135 121 100 77 55
185 158 122 84 55
114 102 85 65 47
154 132 103 72 47
12 14 15
38 28
38 28
33 24 21
0
140
195
4 6 8 10 12
130 123 114 103 91
14 16 18 20 22 24 26 27
31⁄2×21⁄2 3⁄ 8
1⁄ 4
14.4
9.8
50
36
50
36
50
119
0
129
179
85
110
89 80 67 53 38
114 100 79 58 39
2 4 6 8 10
122 102 76 51 32
165 129 86 51 32
81 68 52 36 23
102 83 59 36 23
33 24 21
27 20 17
27 20 17
11 12
27
27
19 16
19 16
118
162
92
119
0
129
179
85
110
175 162 146 127 107
108 102 94 85 75
142 132 119 104 88
82 77 72 66 58
100 94 86 77 66
4 6 8 10 12
122 116 108 98 87
165 154 139 122 105
78 74 69 63 57
97 91 84 75 65
78 66 54 44 36
87 68 54 44 36
65 55 45 37 30
72 57 45 37 30
51 43 36 29 24
55 45 36 29 24
14 16 18 20 22
76 65 55 45 37
87 70 55 45 37
50 43 36 30 25
55 46 37 30 25
31 26 24
31 26 24
26 22 20
26 22 20
20 17 16
20 17 16
24 26 28 29
31 27 23 21
31 27 23 21
21 18 15
21 18 15
b
3
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
4.59 0.897 1.67
3.87 0.905 1.66
3.13 0.914 1.65
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4.22 0.719 1.74
2.88 0.735 1.72
No. of a Connectors
Short legs 3⁄8 in. back to back of angles No. of a Connectors
Y
Design axial strength in kips (φ = 0.85)
3/ ′′ 8
b
4
DESIGN STRENGTH OF COLUMNS
3 - 81
Fy = 36 ksi Fy = 50 ksi
COLUMNS Double angles
Y X
X
Unequal legs
3× ×21⁄2
Size 3⁄ 8
Thickness Wt./ft
13.2
X-X AXIS
Fy
36
3⁄ 16
9.0
6.77
50
36
50
36
50
0 118 163
80
107
55
71
2 111 151 3 104 137 4 94 120 5 83 100 6 71 81
76 71 65 58 50
100 91 81 69 56
53 50 46 41 36
66 62 55 48 41
45 35 27 22 18
31 26 21 17 14
34 27 21 17 14
3/ ′′ 8
Y
3× ×2 3⁄ 8
5⁄ 16
11.8
50
36
1⁄ 4
10.0
3⁄ 16
8.2
6.1
50
36
50
36
50
36
50
0
106 147
90
125
73
97
50
64
2 3 4 5 6
96 129 85 109 72 86 58 64 44 45
82 73 61 50 38
109 93 74 55 39
66 59 50 41 32
86 74 59 45 32
46 42 36 30 24
58 51 42 33 25
7 8 9
33 25 20
33 25 20
28 22 17
28 22 17
24 18 14
24 18 14
18 14 11
18 14 11
106 147
90
125
73
97
50
64
b 7 8 9 10 11
59 48 38 31 25
63 48 38 31 25
42 34 27 22 18
12
21
b
21
15
15
12
12
0 118 163
80
107
55
71
0
2 113 155 4 109 146 6 101 132 8 91 114 10 79 95
75 72 67 60 53
97 92 84 73 62
49 47 45 41 36
59 57 53 48 41
2 4 6 8 10
104 100 93 85 76
143 135 123 109 92
87 84 78 71 63
119 113 103 91 77
70 67 63 57 51
92 87 80 70 60
47 45 43 39 35
58 55 52 47 41
12 14 16 18 20
67 56 44 35 28
76 58 44 35 28
45 37 29 23 19
50 38 29 23 19
32 27 22 17 14
35 28 22 17 14
12 14 16 18 20
65 55 45 36 29
75 59 46 36 29
54 46 37 30 24
62 49 38 30 24
44 37 30 24 19
49 39 30 24 19
31 26 22 18 14
35 28 22 18 14
22 24
23 20
23 20
16 13
16 13
12 10
12 10
22 24 25
24 20 19
24 20 20 17 19 15
20 16 17 13 15 12
16 13 12
12 10 9
12 10 9
3
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
1⁄ 4
No. of a Connectors
Short legs 3⁄8 in. back to back of angles
No. of a Connectors
Design axial strength in kips (φ = 0.85)
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
3.84 0.736 1.47
2.63 0.753 1.45
1.99 0.761 1.44
3.47 0.559 1.55
2.93 0.567 1.53
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2.38 0.574 1.52
1.80 0.583 1.51
4
3 - 82
COLUMN DESIGN
Fy = 36 ksi Fy = 50 ksi
COLUMNS Double angles
Y X
Y
Design axial strength in kips (φ = 0.85)
Unequal legs
3/ ′′ 8
Short legs 3⁄8 in. back to back of angles 21⁄2×2
Size 3⁄ 8
Thickness Wt./ft
10.6
X-X AXIS
Fy
Effective length KL (ft) with respect to indicated axis
5⁄ 16
1⁄ 4
9.0
3⁄ 16
7.2
5.5
36
50
36
50
36
50
36
50
0
95
131
80
111
65
91
49
63
2 3 4 5 6
86 77 66 54 42
116 99 79 60 42
73 66 56 46 36
98 84 68 51 37
60 54 46 38 30
80 69 56 43 31
45 40 35 29 23
57 50 41 32 24
7 8 9 10
31 24 19
31 24 19
27 21 16
27 21 16
23 17 14
23 17 14
18 14 11 9
18 14 11 9
0
95
131
80
111
65
91
49
63
2 4 6 8 10
92 86 78 69 58
126 116 101 84 66
77 73 66 57 47
105 97 84 69 54
62 58 53 46 38
84 77 67 55 43
45 42 38 33 28
56 52 46 39 31
12 14 16 18 20
46 36 28 22 18
49 36 28 22 18
38 29 22 17 14
39 29 22 17 14
30 23 18 14 11
31 23 18 14 11
22 17 13 10 9
23 17 13 10 9
21
16
16
13
13
No. of a Connectors
X
b
Y-Y AXIS
3
4
Properties of 2 angles—3⁄8 in. back to back 2
A (in ) rx (in.) ry (in.)
3.09 0.577 1.28
2.62 0.584 1.26
2.13 0.592 1.25
aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1.62 0.600 1.24
DESIGN STRENGTH OF COLUMNS
3 - 83
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Structural tees cut from W shapes
X
Design axial strength in kips (φ = 0.85) Designation
X-X AXIS Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
Y
WT 18 150
Wt./ft
Fy
X
140
130
122.5
115
36
50
36
50
36
50
36
50
36
50
0
1350
1730
1260
1510
1150
1330
1040
1170
925
1030
10 12 14 16 18
1310 1300 1280 1260 1240
1670 1650 1620 1590 1550
1230 1210 1190 1180 1150
1470 1440 1420 1390 1360
1120 1100 1090 1070 1050
1290 1270 1250 1220 1200
1010 998 985 970 953
1140 1130 1110 1090 1070
903 893 882 869 855
998 986 972 956 939
20 22 24 26 28
1210 1180 1150 1120 1090
1510 1460 1420 1370 1320
1130 1100 1080 1050 1020
1330 1290 1250 1210 1170
1030 1010 983 957 930
1170 1140 1110 1070 1040
935 915 893 870 847
1050 1020 993 964 934
839 822 803 784 763
920 899 876 853 828
30 32 34 36 38
1060 1020 984 947 910
1260 1210 1160 1100 1040
984 951 917 883 847
1120 1080 1030 987 940
901 871 841 810 778
1000 965 926 886 847
822 796 769 742 714
903 871 838 804 770
742 719 696 673 649
802 776 748 720 692
40
872
989
812
893
746
806
686
736
624
663
0
1350
1730
1260
1510
1150
1330
1040
1170
925
1030
10 12 14 16 18
1210 1190 1160 1130 1090
1510 1470 1430 1370 1320
1120 1100 1070 1040 1010
1320 1290 1250 1210 1160
1010 990 966 938 908
1140 1120 1090 1050 1010
906 888 867 843 817
1010 985 959 930 898
803 788 770 750 728
874 857 836 812 786
20 22 24 26 28
1050 1010 962 916 868
1260 1190 1130 1060 988
972 932 891 848 804
1110 1060 1000 943 884
876 841 804 766 726
971 927 880 833 784
789 759 727 693 659
863 826 787 747 705
704 679 651 623 593
758 728 696 662 628
30 32 34 36 38
820 771 721 672 624
918 848 780 713 647
758 713 667 622 577
825 766 708 650 595
686 645 604 563 523
734 684 634 585 537
623 587 551 515 480
662 619 577 534 493
563 532 501 469 438
592 557 521 485 450
40
577
585
533
540
484
490
445
452
408
415
Properties A (in2) rx (in.) ry (in.)
44.1 5.27 3.83
41.2 5.25 3.81
38.2 5.26 3.78
36.0 5.26 3.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
33.8 5.25 3.73
3 - 84
COLUMN DESIGN
Fy = 36 ksi
Y
Fy = 50 ksi X
COLUMNS Structural tees cut from W shapes
X
Design axial strength in kips (Ď&#x2020; = 0.85)
Y
Designation 105
Wt./ft
X-X AXIS
Fy
36
97
50
91
85
80
75
67.5
36
50
36
50
36
50
36
50
36
50
36
50
0
908 1040 772
851
683
726
587
601
518
521
458
457
385
385
10 12 14 16 18
887 1010 755 878 1000 748 868 986 740 856 971 731 843 954 720
831 822 812 801 788
670 664 657 649 640
710 704 696 687 677
576 571 566 560 553
590 585 579 572 565
509 505 500 495 489
512 508 503 498 492
451 448 444 440 435
449 446 442 438 433
380 377 374 371 367
380 377 374 371 367
20 22 24 26 28
828 813 796 778 759
935 915 893 870 846
709 696 683 668 653
775 759 743 726 708
631 620 609 597 584
667 655 642 629 614
545 537 528 518 508
557 548 539 529 518
483 476 468 460 452
486 479 471 463 454
429 424 417 411 403
428 422 416 409 402
363 359 354 348 343
363 359 354 348 343
30 32 36 40
739 719 675 630
821 795 740 684
637 621 586 549
689 669 628 585
571 557 527 496
599 584 551 517
497 486 462 437
507 495 470 444
443 433 413 392
445 436 415 394
396 388 371 353
395 387 370 352
337 331 317 303
337 331 317 303
908 1040 772
851
683
726
587
601
518
521
458
457
385
385
10 12 14 16 18
716 687 654 617 578
791 756 715 670 622
607 585 559 530 499
653 627 597 563 527
534 515 494 470 444
558 538 515 488 460
457 442 425 406 385
465 450 432 412 391
397 385 371 356 339
399 387 373 357 340
344 335 323 311 297
344 334 323 310 296
268 261 253 244 234
268 261 253 244 234
20 22 24 26 28
537 494 450 407 364
572 521 469 418 367
465 431 395 360 325
489 449 409 369 330
416 387 358 327 297
430 398 366 333 301
363 340 315 291 266
368 344 319 293 268
320 301 280 260 239
321 302 281 260 239
281 265 248 231 213
281 265 248 231 213
223 211 198 185 172
223 211 198 185 172
30 32 34 36 39
323 285 254 228 195
323 285 254 228 195
291 258 230 206 176
291 258 230 206 176
268 239 213 191 164
269 239 213 191 164
242 218 194 174 150
242 218 194 174 150
218 197 177 159 137
218 197 177 159 137
196 178 161 144 124
195 178 161 144 124
158 144 131 118 102
158 144 131 118 102
41 42 43
177 169 161
177 160 169 153 161
160 153
149 142
149 142
136 130
136 130
124
124
113
113
0
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
WT 18
Properties A (in2) rx (in.) ry (in.)
30.9 5.65 2.58
28.5 5.62 2.56
26.8 5.62 2.55
25.0 5.61 2.53
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
23.5 5.61 2.50
22.1 5.62 2.47
19.9 5.66 2.38
DESIGN STRENGTH OF COLUMNS
3 - 85
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Structural tees cut from W shapes
X
X
Design axial strength in kips (Ď&#x2020; = 0.85) Designation
Y-Y AXIS
X-X AXIS
Fy
Effective length KL (ft) with respect to indicated axis
WT 16.5 120.5
Wt./ft
Y
36
50
110.5
36
50
100.5
76
70.5
65
59
36
50
36
50
36
50
36
50
0 1080 1300 964 1110 810
899
532
548
463
467
402
401
330
330
10 12 14 16 18
1050 1040 1020 1000 980
1260 1240 1210 1190 1160
935 923 909 893 875
1070 1050 1030 1010 990
788 779 767 755 741
872 860 847 831 814
521 516 510 503 495
535 530 524 516 508
453 449 444 439 433
457 453 448 442 436
394 391 387 383 378
393 390 386 382 377
324 321 318 315 311
324 321 318 315 311
20 22 24 26 28
958 933 907 880 851
1120 1090 1050 1020 975
855 834 811 787 762
965 937 908 878 846
725 708 690 672 652
795 775 753 730 706
487 478 468 458 447
500 490 480 469 458
426 419 411 402 393
429 422 414 405 396
372 366 360 353 345
371 365 359 352 345
307 303 298 293 287
307 303 298 293 287
30 32 34 36 40
821 790 759 727 662
934 892 849 806 720
737 710 682 654 598
813 779 745 710 639
631 610 588 565 520
681 656 630 603 549
436 424 411 399 373
446 433 420 407 379
384 374 364 354 332
387 377 366 356 334
338 330 321 313 295
337 329 321 312 295
282 276 269 263 249
282 276 269 263 249
0 1080 1300 964 1110 810
899
532
548
463
467
402
401
330
330
10 12 14 16 18
951 929 904 876 845
1110 1080 1050 1010 967
833 815 793 769 743
934 911 884 854 821
692 678 661 643 622
753 736 717 695 671
420 406 389 370 349
429 414 396 377 355
358 346 333 318 301
360 348 335 319 302
300 291 280 268 255
299 290 280 268 255
234 228 220 212 203
234 228 220 212 203
20 22 24 26 28
811 775 738 699 659
922 874 824 772 720
714 683 651 617 583
785 747 707 666 624
600 576 551 525 497
644 616 587 556 525
327 305 281 257 234
332 309 284 260 235
283 264 245 225 206
284 266 246 226 206
241 226 211 195 179
241 226 210 195 178
192 181 170 158 146
192 181 170 158 146
30 34 36 38 39
618 537 497 458 439
667 564 514 464 441
548 477 442 408 391
581 496 455 414 394
470 413 385 357 343
492 427 395 363 348
211 167 150 135 129
211 167 150 135 129
186 149 134 121 115
187 149 134 121 115
162 131 118 107 102
162 131 118 107 102
134 109 98 89
134 109 98 89
40 41
420 401
420 375 401 358
375 330 358 316
332 317
123 117
123 117
109
109
Properties A (in2) rx (in.) ry (in.)
35.4 4.96 3.63
32.5 4.96 3.59
29.5 4.95 3.56
22.4 5.14 2.47
20.8 5.15 2.43
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
19.2 5.18 2.39
17.3 5.20 2.32
3 - 86
COLUMN DESIGN
Fy = 36 ksi
Y
Fy = 50 ksi X
COLUMNS Structural tees cut from W shapes
X
Design axial strength in kips (Ď&#x2020; = 0.85)
Y
Designation 105.5
Wt./ft
Fy
36
Effective length KL (ft) with respect to indicated axis
X-X AXIS
0
50
95.5
36
50
86.5
36
66
50
36
62
50
36
58
50
36
54
50
36
49.5
50
36
50
949 1180 844 974 708 791 505 546 447 465 402 412 357 361 304 303
10 12 14 16 18
913 897 879 859 837
1130 1100 1080 1050 1010
812 799 783 765 746
932 914 894 870 845
684 673 661 647 632
761 748 733 715 696
490 484 477 468 459
529 521 513 503 492
434 429 423 416 408
452 446 439 432 423
392 387 382 376 369
401 396 391 384 377
348 344 340 335 329
352 348 343 338 332
297 294 290 286 282
296 293 290 286 281
20 22 24 26 28
813 787 759 731 701
976 938 897 855 811
724 702 678 652 626
817 787 756 724 690
615 597 578 558 537
676 654 630 606 581
449 437 426 413 400
480 467 454 439 424
399 390 380 370 359
414 404 393 382 370
361 353 345 336 326
369 361 352 343 333
323 316 309 301 293
326 319 311 304 295
277 271 266 259 253
276 271 265 259 253
30 32 34 36 40
670 639 607 575 511
767 723 678 634 547
599 571 543 515 459
656 621 586 551 482
515 493 471 448 402
555 528 501 474 421
387 373 358 344 314
409 393 377 360 327
347 335 323 311 285
358 345 332 319 292
316 306 295 284 262
322 311 300 289 266
284 276 267 257 238
287 278 269 259 240
246 239 232 224 209
246 239 232 224 209
0
Y-Y AXIS
WT 15
949 1180 844 974 708 791 505 546 447 465 402 412 357 361 304 303
10 12 14 16 18
838 1010 734 828 609 667 817 982 716 805 595 651 793 946 695 778 579 631 766 907 672 749 561 610 736 864 646 717 541 586
389 371 350 328 303
411 391 368 343 316
340 325 308 290 269
350 335 317 297 275
298 286 271 256 238
303 290 276 259 241
254 244 233 220 206
256 246 234 221 207
207 199 191 181 170
206 199 191 181 170
20 22 24 26 28
704 670 635 598 561
818 769 720 669 617
619 589 559 527 495
682 645 607 568 528
520 497 473 448 422
561 533 505 475 445
278 252 227 201 176
288 259 231 203 176
248 226 204 183 161
253 230 207 184 161
220 201 182 163 145
223 203 183 164 145
191 175 159 143 127
192 176 160 143 127
159 147 134 121 108
159 146 134 121 108
30 32 34 35 36
523 486 449 430 412
567 517 468 444 420
462 429 397 381 365
488 448 410 391 372
396 370 344 331 318
415 384 354 339 325
155 137 122 115 109
155 137 122 115 109
142 125 112 106 100
142 127 127 112 112 125 113 113 100 100 112 100 100 89 89 106 95 95 84 84 100 90 90
96 85 76
96 85 76
37 38 40
395 377 342
398 349 353 305 310 103 103 378 334 335 293 296 342 303 303 268 268
95
95
Properties A (in2) rx (in.) ry (in.)
31.0 4.43 3.49
28.1 4.42 3.46
25.4 4.42 3.43
19.4 4.66 2.25
18.2 4.66 2.23
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
17.1 4.67 2.19
15.9 4.69 2.15
14.5 4.71 2.10
DESIGN STRENGTH OF COLUMNS
3 - 87
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Structural tees cut from W shapes
X
X
Design axial strength in kips (Ď&#x2020; = 0.85) Designation
WT 13.5 89
Wt./ft
Fy
36
X-X AXIS
50
73
57
51
47
42
50
36
50
36
50
36
50
36
50
36
50
799 1040 725
857
617
698
453
498
358
369
308
311
251
250
10 12 14 16 18
761 745 727 707 684
978 951 921 887 850
691 676 660 641 620
810 790 767 741 712
589 577 564 549 532
663 648 631 612 591
436 428 420 410 399
477 468 458 447 434
346 341 334 328 320
356 350 344 337 329
298 294 289 284 278
301 297 292 286 280
244 241 238 234 229
243 240 236 232 228
20 22 24 26 28
660 634 606 578 549
811 770 727 683 638
598 574 549 523 496
682 650 617 583 548
514 495 474 453 431
568 544 519 493 466
388 375 362 348 334
420 405 390 373 357
312 303 293 283 273
320 310 300 290 279
271 264 256 248 240
273 266 258 250 241
224 219 213 207 201
223 218 212 206 200
30 32 34 36 38
519 489 459 430 400
594 550 506 464 423
469 442 415 388 361
513 478 443 409 376
409 387 364 342 319
439 412 385 358 332
319 304 289 274 259
339 322 304 287 269
262 251 240 229 218
268 256 244 233 221
231 222 213 204 194
233 223 214 205 195
194 187 180 173 166
193 187 180 173 165
371
40
383 335
344
298
306
244
252
206
209
185
186
159
158
799 1040 725
857
617
698
453
498
358
369
308
311
251
250
10 12 14 16 18
701 681 658 632 604
877 845 808 768 725
627 609 588 565 540
720 696 669 639 606
527 513 497 479 459
583 566 546 524 500
349 331 311 288 264
374 353 330 304 277
275 263 248 232 215
281 268 253 236 218
231 221 210 197 184
233 223 211 198 185
181 174 166 157 147
180 173 165 156 147
20 22 24 26 28
574 542 509 476 442
678 631 582 533 484
513 485 456 426 395
571 534 497 458 420
437 415 391 367 342
474 446 418 389 359
240 215 191 167 145
249 221 193 167 145
197 179 160 142 125
199 180 161 143 125
169 154 140 125 110
170 155 140 125 110
137 126 114 103 92
136 125 114 103 92
30 32 34 35 36
408 374 342 326 310
436 390 347 328 310
365 335 305 291 277
382 345 309 292 277
317 292 268 256 244
330 301 273 259 245
127 112 100 94 89
127 112 100 94 89
109 97 86 81
109 97 86 81
97 86 76 72
97 86 76 72
81 72 64
81 72 64
40
252
252 225
225
200
200
0
Y-Y AXIS
80.5
36
0
Effective length KL (ft) with respect to indicated axis
Y
Properties A (in2) rx (in.) ry (in.)
26.1 3.98 3.26
23.7 3.96 3.24
21.5 3.95 3.21
16.8 4.15 2.18
15.0 4.14 2.15
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
13.8 4.16 2.12
12.4 4.18 2.07
3 - 88
COLUMN DESIGN
Fy = 36 ksi
Y
Fy = 50 ksi X
COLUMNS Structural tees cut from W shapes
X
Design axial strength in kips (Ď&#x2020; = 0.85)
Y
Designation
WT 12 81
Wt./ft
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
X-X AXIS
Fy
73
65.5
58.5
52
36
50
36
50
36
50
36
50
36
50
0
731
1020
658
864
591
726
506
580
410
450
10 12 14 16 18
687 669 648 624 598
932 898 858 815 769
618 602 583 562 538
797 769 737 702 664
556 541 524 505 484
673 652 627 599 569
477 465 451 435 418
542 526 508 487 465
389 379 369 357 344
424 413 401 387 371
20 22 24 26 28
571 542 512 481 450
720 670 619 568 518
514 488 461 433 405
624 583 541 499 457
462 439 415 391 366
537 504 471 437 403
400 380 360 339 318
442 418 392 367 341
331 316 301 285 269
355 338 320 302 283
30 32 34 36 38
419 388 358 328 299
469 421 375 335 300
377 349 322 295 269
416 376 338 301 270
341 316 291 267 244
369 336 304 273 245
297 276 255 235 215
315 290 265 241 217
252 236 220 204 188
264 246 227 209 192
40
271
271
244
244
221
221
196
196
173
175
0
731
1020
658
864
591
726
506
580
410
450
10 12 14 16 18
648 626 601 574 544
858 819 775 727 675
575 555 533 508 482
723 691 656 617 575
505 487 468 446 422
597 573 545 515 482
424 410 395 377 358
472 455 435 414 390
338 328 317 304 290
363 352 339 324 308
20 22 24 26 28
512 480 446 412 378
622 568 514 460 409
453 424 393 363 332
532 487 442 398 355
397 371 345 317 290
448 412 376 340 305
338 316 294 272 249
365 339 313 286 259
275 260 243 226 209
291 273 254 235 216
30 32 34 36 38
345 312 281 251 225
359 316 281 251 225
303 273 245 219 197
313 276 245 219 197
264 238 213 190 171
271 239 213 190 171
227 206 184 165 149
233 207 184 165 149
192 175 159 143 129
196 178 159 143 129
40
204
204
178
178
155
155
135
135
117
117
Properties A (in2) rx (in.) ry (in.)
23.9 3.50 3.05
21.5 3.50 3.01
19.3 3.52 2.97
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
17.2 3.51 2.94
15.3 3.51 2.91
DESIGN STRENGTH OF COLUMNS
3 - 89
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Structural tees cut from W shapes
X
X
Design axial strength in kips (Ď&#x2020; = 0.85) Designation
WT 12 47
Wt./ft
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
X-X AXIS
Fy
Y
42
38
34
31
27.5
36
50
36
50
36
50
36
50
36
50
36
50
0
378
419
307
321
254
258
209
208
202
203
155
155
10 12 14 16 18
360 352 343 332 321
396 387 376 363 350
293 287 280 273 265
306 299 292 284 275
244 240 234 229 222
247 243 237 231 225
201 198 194 189 185
200 197 193 189 184
194 191 187 183 178
196 192 188 184 179
150 148 145 142 139
150 148 145 142 139
20 22 24 26 28
309 296 283 269 255
335 320 304 287 271
256 246 236 225 215
265 255 244 233 221
215 208 200 192 184
218 210 202 194 185
179 174 168 162 155
179 173 167 161 155
173 168 162 156 150
174 169 163 157 150
136 132 128 124 120
136 132 128 124 120
30 32 34 36 38
240 226 211 197 183
254 237 220 203 187
204 192 181 170 159
209 197 185 173 161
175 166 157 148 140
176 167 158 149 140
148 142 135 128 121
148 141 135 128 121
143 136 130 123 116
144 137 130 123 117
115 111 106 101 96
115 111 106 101 96
40
169
171
148
150
131
131
114
114
109
110
92
92
0
378
419
307
321
254
258
209
208
202
203
155
155
10 12 14 16 18
288 269 248 226 202
310 288 263 237 211
231 218 202 185 168
239 224 208 190 171
188 178 166 154 140
190 179 167 155 141
148 140 132 123 113
147 140 132 123 113
121 110 97 84 71
122 110 98 84 71
91 84 75 67 57
91 84 75 67 57
20 22 23 24 26
179 156 145 134 115
184 158 145 134 115
150 132 124 115 99
152 134 124 115 99
126 113 106 99 86
127 113 106 99 86
103 92 87 82 71
103 92 87 82 71
59 49 46
59 49 46
48 41
48 41
28 30 31 32 33
99 87 82 77 72
99 87 82 77 72
86 75 71 66
86 75 71 66
74 65 61 58
74 65 61 58
62 55 51
62 55 51
Properties A (in2) rx (in.) ry (in.)
13.8 3.67 1.98
12.4 3.67 1.95
11.2 3.68 1.92
10.0 3.70 1.87
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
9.11 3.79 1.38
8.10 3.80 1.34
3 - 90
COLUMN DESIGN
Fy = 36 ksi
Y
Fy = 50 ksi X
COLUMNS Structural tees cut from W shapes
X
Design axial strength in kips (Ď&#x2020; = 0.85)
Y
Designation
WT 10.5 73.5
Wt./ft
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
X-X AXIS
Fy
66
61
55.5
50.5
36
50
36
50
36
50
36
50
36
50
0
661
918
594
825
548
757
499
637
452
524
10 12 14 16 18
610 589 565 539 510
822 782 739 691 641
547 528 507 483 457
737 701 661 618 573
505 487 466 444 420
676 643 606 566 524
459 443 424 404 382
573 547 518 486 453
416 401 384 366 346
476 457 434 410 384
20 22 24 26 28
480 449 417 385 353
589 536 484 434 385
429 401 372 343 315
526 478 431 386 341
395 368 341 315 288
481 437 394 352 311
358 334 310 285 261
418 382 347 312 279
324 303 280 258 236
357 329 301 274 247
30 32 34 36 38
322 292 262 234 210
337 296 263 234 210
286 259 233 208 186
299 263 233 208 186
262 236 212 189 170
272 239 212 189 170
237 214 192 171 154
246 217 192 171 154
214 193 173 154 139
221 195 173 154 139
40
190
190
168
168
153
153
139
139
125
125
0
661
918
594
825
548
757
499
637
452
524
10 12 14 16 18
587 566 542 515 486
778 740 697 650 601
522 503 482 458 432
689 655 617 576 532
478 461 441 419 396
626 596 562 524 485
430 415 397 377 356
526 503 476 447 415
385 372 356 339 320
434 417 397 375 352
20 22 24 26 28
456 424 392 360 328
550 498 447 397 349
405 377 348 320 291
487 441 395 351 308
371 345 319 293 267
444 402 361 321 281
334 311 287 263 239
383 349 316 283 251
300 279 258 237 216
327 301 275 249 223
30 32 34 36 38
297 267 238 213 191
305 268 238 213 191
263 237 210 188 169
269 237 210 188 169
241 216 193 172 155
246 217 193 172 155
216 194 172 154 139
220 194 172 154 139
195 175 156 139 125
199 175 156 139 125
40
173
173
153
153
140
140
125
125
113
113
Properties A (in2) rx (in.) ry (in.)
21.6 3.08 2.95
19.4 3.06 2.93
17.9 3.04 2.92
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3 3.03 2.90
14.9 3.01 2.89
DESIGN STRENGTH OF COLUMNS
3 - 91
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Structural tees cut from W shapes
X
X
Design axial strength in kips (Ď&#x2020; = 0.85) Designation
Fy
36
X-X AXIS
Effective length KL (ft) with respect to indicated axis
0
50
41.5
36
50
36.5
36
34
50
36
31
50
36
28.5
50
36
50
25
36
22
50
36
50
419 562 373 444 297 331 261 283 219 225 203 210 165 167 127 127
6 8 10 12 14
409 400 390 378 364
543 529 511 489 466
364 356 347 336 323
430 420 407 392 374
290 284 278 270 260
322 316 307 297 286
255 251 245 239 231
276 271 264 256 247
214 211 206 201 195
221 217 212 207 201
199 196 192 187 182
206 203 199 194 188
162 160 157 153 149
164 161 158 155 151
125 123 121 119 116
125 123 121 119 116
16 18 20 22 24
349 332 315 296 277
439 412 383 353 323
310 295 279 262 245
355 335 314 291 269
250 239 227 215 202
274 260 246 231 216
222 213 203 192 182
237 227 215 203 191
189 181 174 165 157
194 186 178 169 160
176 170 163 155 147
182 175 167 159 151
145 140 134 129 123
146 141 136 130 124
113 110 106 102 98
113 110 106 102 98
26 28 30 32 34
258 239 220 201 183
293 264 236 209 185
228 210 193 177 160
247 225 203 182 162
189 176 163 150 137
200 185 169 155 140
170 159 148 137 126
178 165 153 140 128
148 139 130 121 112
151 142 132 123 114
139 131 123 115 107
143 117 118 134 111 111 125 104 105 117 98 98 108 91 92
94 90 85 81 76
94 90 85 81 76
36 38 40
165 165 145 145 125 126 115 117 104 104 148 148 130 130 113 113 105 105 95 96 134 134 117 117 102 102 95 95 87 87
71 67 63
71 67 63
0
Y-Y AXIS
WT 10.5 46.5
Wt./ft
Y
99 100 91 92 84 84
85 79 73
85 79 73
419 562 373 444 297 331 261 283 219 225 203 210 165 167 127 127
6 8 10 12 14
357 337 313 285 256
452 420 381 338 293
311 294 273 250 224
357 334 307 276 243
245 233 218 201 182
267 252 235 214 192
213 203 191 177 161
227 215 202 186 168
152 147 141 133 123
153 142 128 113 97
16 18 20 21 22
226 195 166 151 138
247 203 166 151 138
198 171 145 132 121
210 177 145 132 121
162 142 122 113 103
169 146 124 113 103
145 128 111 103 95
150 112 113 131 101 102 112 90 90 103 84 84 95 78 78
81 66 54 49 45
24 26 28 29 30
117 117 102 102 100 100 88 88 86 86 76 76 80 80 71 71 75 75 66 66
87 75 65 60 57
87 75 65 60 57
80 69 60 56 52
80 69 60 56 52
149 145 138 131 122
67 58 51 47
157 116 117 145 108 109 131 99 99 115 88 88 98 76 76 82 66 54 49 45
64 52 43 39
64 52 43 39
85 80 74 67 59
85 80 74 67 59
51 42 35 32
51 42 35 32
67 58 51 47
Properties A
(in2)
rx (in.) ry (in.)
13.7 3.25 1.84
12.2 3.22 1.83
10.7 3.21 1.81
10.0 3.20 1.80
9.13 3.21 1.77
8.37 3.29 1.35
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
7.36 3.30 1.30
6.49 3.31 1.26
3 - 92
COLUMN DESIGN
Fy = 36 ksi
Y
Fy = 50 ksi X
COLUMNS Structural tees cut from W shapes
X
Design axial strength in kips (Ď&#x2020; = 0.85)
Y
Designation
WT 9 59.5
Wt./ft
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
X-X AXIS
Fy
53
48.5
43
38
36
50
36
50
36
50
36
50
36
50
0
536
744
477
663
438
608
389
507
339
393
10 12 14 16 18
479 456 430 402 372
636 594 548 499 449
426 406 383 357 331
567 529 487 444 399
390 370 349 325 301
518 482 444 403 361
346 329 309 288 266
436 407 376 344 310
302 287 270 252 233
343 323 302 278 254
20 22 24 26 28
342 311 281 251 222
399 350 303 259 224
304 276 249 222 197
354 310 268 229 198
275 250 225 200 177
320 279 241 205 177
244 221 199 177 156
276 243 211 181 156
213 193 174 155 136
229 205 181 158 137
30 34 38 42 43
195 152 121 99 95
195 152 121 99 95
172 134 107 88 84
172 134 107 88 84
154 120 96 79
154 120 96 79
136 106 85 69
136 106 85 69
119 93 74 61
119 93 74 61
0
536
744
477
663
438
608
389
507
339
393
10 12 14 16 18
471 450 427 401 374
622 584 543 499 453
415 397 376 353 329
546 513 477 438 397
379 362 343 322 300
496 467 434 398 361
331 317 300 282 263
411 388 362 334 305
285 272 258 243 226
320 304 287 267 246
20 22 24 26 28
346 318 289 260 233
407 361 317 274 237
304 279 253 228 203
356 315 276 238 206
277 254 230 207 185
324 286 251 216 187
242 222 201 181 161
275 245 216 188 163
209 192 174 156 139
225 203 182 161 140
30 34 38 42 43
206 161 129 106 101
206 161 129 106 101
180 140 112 92 88
180 140 112 92 88
163 127 102 84 80
163 127 102 84 80
142 111 89 73 70
142 111 89 73 70
123 96 77 63 61
123 96 77 63 61
44
96
96
84
84
76
76
Properties A (in2) rx (in.) ry (in.)
17.5 2.60 2.69
15.6 2.59 2.66
14.3 2.56 2.65
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
12.7 2.55 2.63
11.2 2.54 2.61
DESIGN STRENGTH OF COLUMNS
3 - 93
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Structural tees cut from W shapes
X
X
Design axial strength in kips (Ď&#x2020; = 0.85) Designation
Fy
36
X-X AXIS
Effective length KL (ft) with respect to indicated axis
0
32.5
50
36
30
50
36
27.5
50
36
25
50
36
23
50
36
20
50
36
17.5
50
36
50
318 426 292 356 261 299 226 253 184 194 172 183 124 124 101 101
10 12 14 16 18
288 275 261 246 229
372 351 327 302 275
264 252 239 225 210
314 297 279 259 238
236 226 214 202 189
266 253 239 223 206
206 197 188 178 167
227 217 206 193 180
169 163 156 148 140
177 171 163 154 145
168 161 154 146 138
116 112 108 104 99
116 112 108 104 99
95 92 89 86 82
95 92 89 86 82
20 22 24 26 28
212 195 178 161 144
248 222 196 171 148
194 178 162 146 131
216 195 173 153 134
175 161 147 133 119
189 172 155 138 122
155 143 131 120 108
166 152 138 124 111
131 122 113 103 94
135 124 129 126 116 120 116 107 111 106 99 101 96 90 92
94 89 84 78 72
94 89 83 78 72
78 74 70 66 62
78 74 70 66 62
30 32 34 36 38
128 129 116 116 106 107 113 113 102 102 94 94 100 100 91 91 83 83 89 89 81 81 74 74 80 80 72 72 66 66
97 86 76 68 61
98 86 76 68 61
85 77 68 61 55
86 77 68 61 55
82 74 67 59 53
83 75 67 59 53
67 61 56 51 46
67 61 56 51 46
57 53 49 45 41
57 53 49 45 41
55 50 48 44
55 50 48 44
49 45 43 39
49 45 43 39
48 44 42 38 36
48 44 42 38 36
41 38 36 33 31
41 38 36 33 31
37 34 32 29 28
37 34 32 29 28
40 42 43 45 46 0
Y-Y AXIS
WT 9 35.5
Wt./ft
Y
72 66 63 57
72 66 63 57
65 59 57 52
65 59 57 52
60 54 52 47
60 54 52 47
318 426 292 356 261 299 226 253 184 194 172 183 124 124 101 101
10 12 14 16 18
231 207 182 157 132
279 242 204 167 133
210 188 165 142 119
238 209 179 149 120
187 168 149 129 109
204 182 158 134 111
161 146 130 113 96
20 21 22 24 26
109 109 99 99 90 90 76 76 65 65
98 89 82 69 59
98 89 82 69 59
90 82 75 63 54
90 82 75 63 54
80 73 67 57 48
80 73 67 57 48
70 64 59 50 43
70 64 59 50 43
55 51
55 51
50 47
50 47
45
45
40
40
27 28
159 153 147 140 132
60 56
60 56
173 132 137 107 111 155 121 125 92 94 136 109 111 77 78 117 96 98 62 62 98 83 84 50 50 40 37
40 37
80 71 61 51 41
80 71 61 51 41
61 54 47 40 32
61 54 47 40 32
34 31
34 31
27
27
Properties A (in2) rx (in.) ry (in.)
10.4 2.74 1.70
9.55 2.72 1.69
8.82 2.71 1.69
8.10 2.71 1.67
7.33 2.70 1.65
6.77 2.77 1.29
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
5.88 2.76 1.27
5.15 2.79 1.22
3 - 94
COLUMN DESIGN
Fy = 36 ksi
Y
Fy = 50 ksi X
COLUMNS Structural tees cut from W shapes
X
Design axial strength in kips (Ď&#x2020; = 0.85)
Y
Designation
WT 8 50
Wt./ft
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
X-X AXIS
Fy
44.5
38.5
33.5
36
50
36
50
36
50
36
50
0
450
625
401
557
346
476
301
361
10 12 14 16 18
389 365 338 310 280
510 467 420 372 324
346 324 300 275 249
454 415 373 330 287
297 278 257 235 212
386 353 316 279 243
258 241 223 203 183
300 277 251 225 199
20 22 24 26 28
251 222 194 167 144
278 234 197 167 144
223 197 172 148 128
246 207 174 148 128
189 166 145 124 107
207 174 146 124 107
163 143 124 106 92
173 148 125 106 92
30 32 34 36 37
126 111 98 87 83
126 111 98 87 83
111 98 87 77 73
111 98 87 77 73
93 82 73 65 61
93 82 73 65 61
80 70 62 55 52
80 70 62 55 52
38
78
78
0
450
625
401
557
346
476
301
361
10 12 14 16 18
391 371 349 325 300
514 479 440 399 357
346 328 309 287 265
453 422 388 351 314
295 280 263 245 226
382 356 327 297 265
254 241 226 211 194
294 276 257 236 214
20 22 24 26 28
274 248 223 198 174
315 275 236 201 174
242 219 196 173 152
277 241 206 176 152
206 186 166 147 129
234 203 174 149 129
177 160 143 127 111
192 170 148 128 111
30 32 34 36 38
151 133 118 105 95
151 133 118 105 95
133 117 103 92 83
133 117 103 92 83
112 99 88 78 70
112 99 88 78 70
97 85 75 67 61
97 85 75 67 61
41
81
81
71
71
60
60
52
52
Properties A (in2) rx (in.) ry (in.)
14.7 2.28 2.51
13.1 2.27 2.49
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
11.3 2.24 2.47
9.84 2.22 2.46
DESIGN STRENGTH OF COLUMNS
3 - 95
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Structural tees cut from W shapes
X
X
Design axial strength in kips (Ď&#x2020; = 0.85) Designation
Y-Y AXIS
X-X AXIS
Fy
Effective length KL (ft) with respect to indicated axis
WT 8 28.5
Wt./ft
Y
25
22.5
20
18
15.5
13
36
50
36
50
36
50
36
50
36
50
36
50
36
50
0
256
336
223
259
184
205
141
145
122
124
93
93
66
66
6 8 10 12 14
245 236 225 212 199
316 301 283 262 240
213 205 196 185 173
245 235 223 208 193
176 170 163 154 145
195 188 179 169 157
136 132 127 121 115
140 136 130 124 117
118 114 111 106 101
120 116 112 108 102
91 88 86 83 79
90 88 85 82 79
65 63 62 60 58
65 63 62 60 58
16 18 20 22 24
184 168 152 136 121
217 193 169 147 125
160 146 133 119 105
176 159 141 125 108
135 124 114 103 92
145 133 120 107 95
108 100 92 85 77
110 102 94 86 78
95 89 82 76 69
96 90 83 76 70
75 71 67 62 57
75 71 66 62 57
55 53 50 47 44
55 53 50 47 44
26 28 30 32 34
106 92 80 70 62
107 92 80 70 62
93 80 70 61 54
93 80 70 61 54
82 72 62 55 49
83 72 62 55 49
69 62 54 48 42
70 62 54 48 42
63 56 50 44 39
63 57 50 44 39
53 48 44 39 35
53 48 44 39 35
41 38 35 32 29
41 38 35 32 29
36 38 39 40 41
56 50 47 45
56 50 47 45
49 44 41 39
49 44 41 39
43 39 37
43 39 37
38 34 32
38 34 32
35 31 30 28
35 31 30 28
31 28 27 25
31 28 27 25
27 24 23 22 21
27 24 23 22 21
0
256
336
223
259
184
205
141
145
122
124
93
93
66
66
6 8 10 12 14
216 200 181 160 138
268 243 214 182 151
185 171 155 137 119
207 190 170 148 125
153 143 130 116 101
167 155 140 123 106
116 110 102 92 82
119 112 104 94 84
95 90 84 76 68
97 91 85 77 69
70 65 58 50 42
70 64 57 50 42
47 44 40 35 30
47 44 40 35 30
16 18 20 22
116 96 78 65
120 96 78 65
100 83 67 56
103 83 67 56
87 72 59 49
89 72 59 49
72 62 52 43
73 62 52 43
60 51 43 36
60 51 43 36
34 27
34 27
25 21
25 21
24 25 26
54 50 46
54 50 46
47 43 40
47 43 40
41 38 35
41 38 35
36 34 31
36 34 31
30 28
30 28
Properties A (in2) rx (in.) ry (in.)
8.38 2.41 1.60
7.37 2.40 1.59
6.63 2.39 1.57
5.89 2.37 1.57
5.28 2.41 1.52
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4.56 2.45 1.17
3.84 2.47 1.12
3 - 96
COLUMN DESIGN
Fy = 36 ksi
Y
Fy = 50 ksi X
COLUMNS Structural tees cut from W shapes
X
Design axial strength in kips (Ď&#x2020; = 0.85)
Y
Designation
WT 7 66
Wt./ft
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
X-X AXIS
Fy
60
54.5
49.5
45
36
50
36
50
36
50
36
50
36
50
0
594
825
542
752
490
680
447
621
404
561
2 4 6 8 10
588 570 542 505 461
813 779 726 658 580
536 520 493 459 418
741 710 661 597 525
484 469 444 412 374
670 641 595 536 468
442 428 405 375 340
611 584 542 487 425
399 387 366 339 307
552 528 489 439 383
12 14 16 18 20
412 361 310 261 215
497 414 335 266 215
373 326 279 234 192
448 371 299 237 192
333 289 246 205 167
397 327 261 207 167
302 262 223 185 151
360 296 236 186 151
272 236 200 166 135
324 265 211 166 135
22 24 26 27 28
178 149 127 118 110
178 149 127 118 110
158 133 113 105 98
158 133 113 105 98
138 116 99 92 85
138 116 99 92 85
125 105 89 83
125 105 89 83
111 94 80 74
111 94 80 74
0
594
825
542
752
490
680
447
621
404
561
6 8 10 12 14
578 570 559 546 531
794 778 758 734 706
526 519 509 497 483
722 708 689 667 642
475 468 459 448 436
651 638 621 601 578
432 426 418 408 396
591 579 564 546 525
389 384 376 367 357
531 520 506 490 472
16 18 20 22 24
514 496 476 455 434
675 642 607 571 533
468 451 433 414 394
614 584 551 518 484
422 407 391 373 355
553 526 497 467 436
384 370 355 339 322
502 477 451 423 395
346 333 320 305 290
451 429 405 381 355
26 28 30 32 34
411 388 365 341 318
495 457 420 383 347
373 352 331 309 288
449 414 380 346 314
337 317 298 279 260
404 373 342 311 282
305 288 270 253 235
366 337 309 281 255
275 259 243 227 211
329 303 278 253 229
36 38 40
295 273 251
312 281 253
267 247 227
282 253 229
241 222 204
253 227 205
218 201 184
228 205 185
196 180 166
205 184 166
Properties A (in2) rx (in.) ry (in.)
19.4 1.73 3.76
17.7 1.71 3.74
16.0 1.68 3.73
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
14.6 1.67 3.71
13.2 1.66 3.70
DESIGN STRENGTH OF COLUMNS
3 - 97
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Structural tees cut from W shapes
X
X
Design axial strength in kips (Ď&#x2020; = 0.85) Designation
WT 7 41
Wt./ft
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
X-X AXIS
Fy
Y
37
34
30.5
26.5
24
21.5
36
50
36
50
36
50
36
50
36
50
36
50
36
50
0
367
510
334
463
306
425
274
370
239
318
216
265
183
208
4 6 8 10 12
354 339 319 294 267
486 457 419 375 327
322 307 288 265 240
440 413 378 337 293
295 281 264 243 219
403 378 346 308 267
264 252 236 217 196
352 330 302 270 235
231 221 208 193 175
303 287 265 239 211
209 200 188 174 158
254 241 224 203 181
177 170 160 149 136
200 191 179 164 148
14 16 18 20 22
238 208 179 151 126
279 232 188 152 126
213 186 159 134 111
248 205 165 134 111
194 169 144 121 100
226 186 150 121 100
173 151 128 108 89
199 165 133 108 89
157 138 119 101 85
182 153 126 102 85
141 124 107 91 76
158 134 112 92 76
122 108 93 80 67
131 114 97 81 67
24 26 28 30 31
106 90 78 68
106 90 78 68
93 79 68 59
93 79 68 59
84 72 62 54
84 72 62 54
75 64 55 48
75 64 55 48
71 61 52 45 43
71 61 52 45 43
64 54 47 41 38
64 54 47 41 38
56 48 41 36 34
56 48 41 36 34
0
367
510
334
463
306
425
274
370
239
318
216
265
183
208
8 10 12 14 16
334 320 303 285 265
447 421 391 359 324
303 290 275 258 240
405 382 355 325 294
276 265 251 235 218
369 347 322 295 267
246 236 223 210 195
320 302 281 258 233
203 189 173 156 139
256 233 208 181 154
183 170 156 140 124
215 197 177 156 135
154 144 132 119 106
171 158 144 128 112
18 20 22 24 26
244 222 201 179 159
289 254 221 188 161
221 202 182 163 144
262 231 200 171 146
201 183 165 147 130
238 209 181 154 131
179 163 147 131 116
209 184 160 137 117
121 104 87 73 63
129 105 87 73 63
108 93 78 66 56
114 94 78 66 56
93 80 68 57 49
97 82 68 57 49
28 30 31 32 34
139 121 113 106 94
139 121 113 106 94
126 110 103 97 86
126 110 103 97 86
113 99 93 87 77
113 99 93 87 77
101 88 82 77 69
101 88 82 77 69
54 47 44 41
54 47 44 41
48 42 40
48 42 40
42 37 34
42 37 34
36 40 41
84 68 65
84 68 65
76 62 59
76 62 59
69 56 53
69 56 53
61 50
61 50
Properties A
(in2)
rx (in.) ry (in.)
12.0 1.85 2.48
10.9 1.82 2.48
9.99 1.81 2.46
8.96 1.80 2.45
7.81 1.88 1.92
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
7.07 1.87 1.91
6.31 1.86 1.89
3 - 98
COLUMN DESIGN
Fy = 36 ksi
Y
Fy = 50 ksi X
COLUMNS Structural tees cut from W shapes
X
Design axial strength in kips (Ď&#x2020; = 0.85)
Y
Designation
WT 7 19
Wt./ft
X-X AXIS Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
Fy
17
15
13
11
36
50
36
50
36
50
36
50
36
50
0
159
180
131
142
109
114
87
88
62
62
2 4 6 8 10
158 155 150 143 134
178 174 168 159 148
130 128 124 119 112
141 138 134 127 120
109 107 104 100 95
114 112 108 104 98
87 85 83 80 77
88 86 84 81 78
62 61 60 58 56
62 61 60 58 56
12 14 16 18 20
125 114 103 92 81
136 123 110 97 83
105 96 88 79 70
111 102 92 82 72
89 83 76 69 62
92 85 78 70 63
73 68 63 58 53
73 69 64 58 53
53 51 48 44 41
53 51 48 44 41
22 24 26 28 30
70 60 51 44 38
71 60 51 44 38
62 53 46 39 34
63 54 46 39 34
55 48 42 36 31
55 48 42 36 31
48 42 37 33 28
48 43 38 33 28
38 34 31 28 24
38 34 31 28 24
32 34 35
34 30
34 30
30 27
30 27
27 24
27 24
25 22 21
25 22 21
22 19 18
22 19 18
0
159
180
131
142
109
114
87
88
62
62
6 8 10 12 14
132 123 111 99 86
146 134 120 105 89
108 101 92 82 72
115 107 97 86 74
86 81 74 67 59
89 83 76 68 60
65 58 50 41 32
66 58 50 41 32
45 41 35 30 24
45 41 35 30 24
16 17 18 20 22
72 66 60 49 40
74 66 60 49 40
61 56 51 42 35
63 57 52 42 35
50 46 42 35 29
51 47 42 35 29
25 22 20
25 22 20
19 17
19 17
24 25
34 31
34 31
30 27
30 27
25
25
Properties A (in2) rx (in.) ry (in.)
5.58 2.04 1.55
5.00 2.04 1.53
4.42 2.07 1.49
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3.85 2.12 1.08
3.25 2.14 1.04
DESIGN STRENGTH OF COLUMNS
3 - 99
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Structural tees cut from W shapes
X
Design axial strength in kips (Ď&#x2020; = 0.85) Designation
X-X AXIS Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
Y
WT 6 29
Wt./ft
Fy
X
26.6
25
22.5
20
36
50
36
50
36
50
36
50
36
50
0
261
362
238
331
225
312
202
280
180
221
2 4 6 8 10
257 247 231 210 186
355 336 306 268 227
235 226 211 192 171
325 307 280 246 208
222 214 202 186 167
307 292 269 240 207
200 193 181 167 149
276 262 241 214 184
178 172 161 148 133
218 208 193 174 152
12 14 16 18 20
160 135 110 88 71
185 145 111 88 71
147 124 102 81 66
170 134 103 81 66
147 126 105 86 70
173 139 109 86 70
131 112 93 75 61
153 123 96 75 61
116 99 82 66 54
129 106 84 66 54
22 24 25 26
59 49 45
59 49 45
54 46 42
54 46 42
58 48 45 41
58 48 45 41
51 42 39 36
51 42 39 36
44 37 34 32
44 37 34 32
0
261
362
238
331
225
312
202
280
180
221
6 8 10 12 14
246 238 228 216 203
333 318 300 279 257
223 216 206 196 184
301 287 271 252 231
205 194 181 166 150
274 255 232 206 179
183 174 162 148 134
244 227 206 183 159
162 154 143 131 118
194 182 167 150 132
16 18 20 22 24
189 175 160 144 129
233 208 184 160 137
171 157 144 130 116
209 187 164 143 122
134 117 101 86 72
152 127 103 86 72
119 104 89 75 63
135 112 91 75 63
105 92 79 66 56
114 97 80 66 56
26 28 30 32 34
115 101 88 77 69
117 101 88 77 69
103 90 78 69 61
104 90 78 69 61
61 53 46 41
61 53 46 41
54 47 41 36
54 47 41 36
48 41 36 32
48 41 36 32
36 38 41
61 55 47
61 55 47
54 49 42
54 49 42
Properties A
(in2)
rx (in.) ry (in.)
8.52 1.50 2.51
7.78 1.51 2.48
7.34 1.60 1.96
6.61 1.58 1.94
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
5.89 1.57 1.93
3 - 100
COLUMN DESIGN
Fy = 36 ksi
Y
Fy = 50 ksi X
COLUMNS Structural tees cut from W shapes
X
Design axial strength in kips (Ď&#x2020; = 0.85)
Y
Designation 17.5
Wt./ft
X-X AXIS
Fy
15
13
11
9.5
8
7
36
50
36
50
36
50
36
50
36
50
36
50
36
50
0
158
188
120
132
90
92
88
98
68
71
53
54
40
40
2 4 6 8 10
157 152 145 135 124
186 179 169 156 140
119 116 111 104 96
131 127 121 113 104
89 87 84 80 74
91 89 86 81 76
88 86 83 78 73
97 95 91 86 80
68 66 64 61 58
70 69 67 63 60
53 52 51 48 46
54 53 51 49 46
40 39 38 37 35
40 39 38 37 35
12 14 16 18 20
111 98 85 72 59
124 106 89 73 59
87 78 68 59 50
93 82 71 60 50
68 62 55 48 42
70 63 56 49 42
68 61 55 48 42
73 65 58 50 43
54 49 44 40 35
55 50 45 40 35
43 40 36 33 29
43 40 36 33 29
33 31 29 26 24
33 31 29 26 24
22 24 26 28 29
49 41 35 30 28
49 41 35 30 28
41 35 30 25 24
41 35 30 25 24
36 30 26 22 21
36 30 26 22 21
36 30 26 22 21
36 30 26 22 21
30 26 22 19 18
30 26 22 19 18
26 22 19 16 15
26 22 19 16 15
21 19 17 14 14
21 19 17 14 14
19 18
19 18
17 16
17 16
14 13 13
14 13 13
13 12 11
13 12 11
30 31 32
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
WT 6
0
158
188
120
132
90
92
88
98
68
71
53
54
40
40
2 4 6 8 10
147 142 134 123 110
172 165 154 139 123
109 106 101 93 85
119 115 109 100 90
81 79 75 71 65
83 80 77 72 66
73 67 57 45 33
80 72 60 46 33
54 49 43 34 26
55 51 44 35 26
37 34 30 24 18
37 34 30 25 18
26 25 22 19 15
26 25 22 19 15
12 13 14 16 18
96 89 82 68 55
105 95 87 69 55
75 70 65 55 45
79 73 67 56 45
59 55 52 45 38
59 56 52 45 38
23 20 17
23 20 17
18 16
18 16
13
13
11
11
20 22 24 25
45 37 31 29
45 37 31 29
37 31 26 24
37 31 26 24
31 26 22 20
31 26 22 20
Properties A
(in2)
rx (in.) ry (in.)
5.17 1.76 1.54
4.40 1.75 1.52
3.82 1.75 1.51
3.24 1.90 0.847
2.79 1.90 0.822
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2.36 1.92 0.773
2.08 1.92 0.753
DESIGN STRENGTH OF COLUMNS
3 - 101
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Structural tees cut from W shapes
X
X
Design axial strength in kips (Ď&#x2020; = 0.85) Designation
WT 5 22.5
Wt./ft
19.5
16.5
15
13
11
36
50
36
50
36
50
36
50
36
50
36
50
0
203
282
175
244
148
206
135
188
117
146
99
115
2 4 6 8 10
199 187 170 148 124
274 253 220 182 142
172 162 147 128 107
237 218 190 157 123
146 137 125 109 92
201 185 162 135 106
133 128 119 107 94
184 173 157 136 114
115 110 102 92 81
144 136 124 109 92
98 94 87 79 69
113 108 99 88 76
12 14 16 18 20
100 77 59 47 38
105 77 59 47 38
86 67 51 40 33
91 67 51 40 33
75 58 45 35 29
79 58 45 35 29
80 67 54 42 34
91 70 54 42 34
69 57 46 36 29
76 60 46 36 29
59 49 40 32 26
64 51 40 32 26
26
26
31 28 24
31 28 24
27 24 20
27 24 20
23 21 18
23 21 18
21 22 24
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
X-X AXIS
Fy
Y
0
203
282
175
244
148
206
135
188
117
146
99
115
2 4 6 8 10
199 195 188 178 167
274 266 253 235 214
171 167 161 153 143
235 227 216 201 183
143 140 134 127 119
194 188 179 166 151
128 122 113 101 88
174 163 147 126 104
109 104 96 86 75
134 126 115 100 84
89 85 78 70 61
101 96 88 78 66
12 14 16 18 20
153 139 125 110 95
191 167 143 120 99
131 119 106 93 80
163 142 121 101 83
109 98 87 76 66
134 116 99 82 67
74 60 47 38 30
82 62 47 38 30
63 51 40 32 26
68 52 40 32 26
51 41 32 26 21
54 42 32 26 21
22 24 26 28 30
81 69 59 50 44
82 69 59 50 44
68 57 49 42 37
68 57 49 42 37
55 47 40 34 30
55 47 40 34 30
25
25
21
21
17
17
32 33
39 36
39 36
32 30
32 30
26
26
Properties A (in2) rx (in.) ry (in.)
6.63 1.24 2.01
5.73 1.24 1.98
4.85 1.26 1.94
4.42 1.45 1.37
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3.81 1.44 1.36
3.24 1.46 1.33
3 - 102
COLUMN DESIGN
Fy = 36 ksi
Y
Fy = 50 ksi X
COLUMNS Structural tees cut from W shapes
X
Design axial strength in kips (Ď&#x2020; = 0.85)
Y
Designation
WT 5 9.5
Wt./ft
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
X-X AXIS
Fy
8.5
7.5
6
36
50
36
50
36
50
36
50
0
86
104
77
90
66
76
43
45
2 4 6 8 10
85 82 77 70 62
103 98 91 81 71
76 73 68 63 56
88 85 79 71 62
65 63 59 54 49
75 72 67 61 54
43 41 39 37 34
44 43 41 38 35
12 14 16 18 20
54 46 38 30 25
60 49 39 30 25
49 42 34 28 23
53 44 35 28 23
43 37 31 25 20
46 39 31 25 20
30 27 23 19 16
31 27 23 20 16
22 24 25 26
20 17 16
20 17 16
19 16 14 13
19 16 14 13
17 14 13 12
17 14 13 12
13 11 10 10
13 11 10 10
0
86
104
77
90
66
76
43
45
2 4 6 8 10
74 67 56 43 31
87 77 62 46 31
62 56 47 36 25
70 62 51 37 25
49 45 37 29 20
54 48 40 29 20
30 28 24 19 14
30 28 24 20 14
12 13 14
22 18 16
22 18 16
18 15 13
18 15 13
14 12
14 12
10 9
10 9
Properties A (in2) rx (in.) ry (in.)
2.81 1.54 0.874
2.50 1.56 0.844
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2.21 1.57 0.810
1.77 1.57 0.785
DESIGN STRENGTH OF COLUMNS
3 - 103
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Structural tees cut from W shapes
X
X
Design axial strength in kips (Ď&#x2020; = 0.85) Designation
WT 4 14
Wt./ft
12
10.5
9
7.5
6.5
5
36
50
36
50
36
50
36
50
36
50
36
50
36
50
0
126
175
108
150
94
131
80
112
68
94
59
82
41
46
2 3 4 5 6
122 118 112 105 96
168 160 148 135 121
105 101 96 90 82
144 137 127 116 103
92 89 86 81 76
127 121 114 106 97
79 76 73 70 65
108 104 98 91 83
67 65 63 60 57
92 89 84 79 73
58 56 54 52 49
79 77 73 69 64
41 40 38 37 35
45 44 42 40 38
8 10 12 14 16
78 60 43 32 24
90 62 43 32 24
67 51 36 27 20
77 52 36 27 20
64 52 39 29 22
76 57 40 29 22
55 45 35 26 20
67 50 35 26 20
49 41 33 25 19
60 47 34 25 19
43 36 29 22 17
52 41 30 22 17
30 26 21 16 12
33 27 21 16 12
18
18
16 14
16 14
15 14 12
15 14 12
13 12 11
13 12 11
10 9 8
10 9 8
18 19 20
Y-Y AXIS
Effective length KL (ft) with respect to indicated axis
X-X AXIS
Fy
Y
0
126
175
108
150
94
131
80
112
68
94
59
82
41
46
2 4 6 8 10
123 119 112 104 93
169 161 149 133 116
105 101 96 88 80
143 137 127 113 98
89 85 77 68 57
121 113 99 83 66
75 70 64 56 47
100 93 82 68 54
60 54 45 35 25
79 68 53 37 25
49 44 36 28 19
63 55 43 29 19
33 30 25 20 15
35 32 27 21 15
12 14 16 18 20
82 71 60 49 40
97 79 62 49 40
70 60 51 42 34
83 67 53 42 34
47 37 28 22 18
49 37 28 22 18
38 30 23 18 15
40 30 23 18 15
17 13
17 13
14 10
14 10
10 8
10 8
21 22 24 26 27
36 33 28 24 22
36 33 28 24 22
31 28 24 20
31 28 24 20
16
16
Properties A
(in2)
rx (in.) ry (in.)
4.12 1.01 1.62
3.54 .999 1.61
3.08 1.12 1.26
2.63 1.14 1.23
2.22 1.22 0.876
Note: Heavy line indicates Kl / r of 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1.92 1.23 0.843
1.48 1.20 0.841
3 - 104
COLUMN DESIGN
Single-Angle Struts
Design strengths of single-angle struts were formerly not tabulated in this Manual because of the difficulty in loading such struts concentrically. Concentric loading can be accomplished by milling the ends of an angle and loading it through bearing plates. However, in common practice, the eccentricity of loading is relatively large, and its neglect in design may lead to an under-designed member. The design of single-angle struts is governed by the AISC Specification for Load and Resistance Factor Design of Single-Angle Members, which is reproduced in Part 6 of this Manual. The following example illustrates the design procedure for an equal-leg angle loaded eccentrically. The design strengths for concentric loading, tabulated below, are useful in solving the interaction equations for combined axial force and bending. The tables below are based on Zureick (1993), revised to conform with the AISC Single-Angle Specification (LRFD). EXAMPLE 3-8
An angle 2×2×1⁄4 is loaded by a gusset plate attached to one leg with an eccentricity of 0.8 in. from the centroid, as shown in Figure 3-3. Determine the factored compressive load Pu which may be applied. The effective length KL is 4.0 ft.
Given:
A = 0.938 in.2 rz = 0.391 in. Ix = Iy = 0.348 in.4
3 84
′
7′
′′
7 .2
0
0.
Z
Pn
W
0.8′′
0.592 ′′
37
′′
α
8 0.
W
Z
′ 4′
41
1.
Fig. 3-3 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 105
α = 45° Fy = 50 ksi Solution:
Determine the properties for the principal axes Z-Z and W-W as follows: Iz = Arz2 = 0.938(0.391)2 = 0.143 in.2 Iw + Iz = Ix + Iy Iw = 0.348 + 0.348 − 0.143 = 0.552 in.4 rw
=
√ √ Iw = A
0.552 = 0.767 in. 0.938
From the tables which follow, the design compressive strength φcPn = 14 kips for KL = 4 ft. For combined axial compression and bending, the latter is taken about the principal axes in accordance with the Single-Angle LRFD Specification (Section 6). For equal leg angles— Major principal axis (W-W) bending (Section 5.3.1): 0.46Eb2t 2 l 0.46(29,000 ksi)(2 in.)2(0.25 in.)2 = 1.0 × 48 in. = 69.5 k-in. Iw 0.552 in.4 My = Fy Sw = Fy = 50 ksi × cw 1.414 in. = 19.5 k-in.
Mob = Cb
Since Mob > My (Section 5.1.3), Mnw = [1.58 − 0.83 √ My / Mob ] My ≤ 1.25My = [1.58 − 0.83 √ 19.5 / 69.5 ] My = 1.14My = 1.14 × 19.5 k-in. = 22 k-in. According to Section 5.1.1, (= 2 in. / 0.25 in. = 8) < 0.382 √ E /Fy (= 0.382 √ 29,000 / 50 = 9.2), Mnw ≤ 1.25Fy Sc = 1.25Fy Sw = 1.25My
for b / t
This is satisfied since Mnw = 1.14My. Minor principal axis (Z-Z) bending (Section 5.3.1): With the leg tips of the angle in tension and the angle corner in compression AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 106
COLUMN DESIGN
Mnz = 1.25My = 1.25Fy Sz = 1.25Fy = 1.25 × 50 ksi ×
Iz cz
0.143 in.4 0.837 in.
= 11 k-in. Assuming
Pu ≥ 0.2, Interaction Equation 6-1a governs. φcPn
Muz Pu 8 Muw φ P + 9 φ M + φ M ≤ 1.0 b nz b nw c n According to Section 6.1.1, for flexural compression Mu shall be multiplied by B1 (Equation 6-2). Major principal axis (W-W) bending:
Kl / rw = 1.0 × 48 / 0.767 = 62.2 From LRFD Specification Table 8, Pe / Ag = 73.1
Pe1w = 73.1(0.938) = 68.6 kips B1w =
Cm 0.85 = < 1. Use B1w = 1.0. 1 − Pu / Pe1w 1 − Pu / 68.6
Minor principal axis (Z-Z) bending:
Kl / rw = 1.0 × 48 / 0.391 = 122.8 From LRFD Specification Table 8, Pe / Ag = 19.0
Pe1z = 19.0(0.938) = 17.8 kips B1z =
Cm 0.85 = 1 − Pu / Pe1z 1 − Pu / 17.8
Conservatively adding the maximum axial and flexural terms, Equation 6-1a becomes Pu ×0.277 in. Pu 8 Pu ×0.843 in. × 1.0 0.85 + + ≤ 1.0 14 kips 9 0.9×22 kip−in. 0.9×11 kip−in. 1−Pu / 17.8
Pu = 7 kips Checking
Pu 7 kips = = 0.5 > 0.2 o.k. 14 kips φcPn
A less conservative approach would have involved applying the interaction equation separately at the corner and the two leg tips of the angle, with the proper signs (+ or −) for compression and tension. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 107
Fy = 36 ksi
z
Y
Fy = 50 ksi
COLUMNS Single angles
w x
Design axial strength in kips (φ = 0.90)
x
w Y z
8× ×6
Size Thickness
1
7⁄ 8
3⁄ 4
5⁄ 8
9⁄ 16
1⁄ 2
7⁄ 16
Wt./ft
44.2
39.1
33.8
28.5
25.7
23.0
20.2
Effective length KL (ft)
Fy
36
50
36
50
36
50
36
50
36
50
36
50
36
50
0
421
585
373
518
322
447
270
352
235
303
199
253
163
203
1 2 3 4 5
406 398 393 384 371
555 541 531 515 490
355 347 342 336 325
484 468 460 448 429
301 292 288 284 277
408 391 383 375 363
246 235 231 228 224
311 294 287 282 276
210 199 195 193 190
262 245 239 235 230
174 163 160 158 156
213 197 192 188 185
138 128 125 123 122
166 151 146 144 141
6 7 8 9 10
353 333 311 287 263
458 422 383 344 305
311 293 274 253 232
402 371 338 303 268
266 252 236 219 201
343 319 291 262 233
217 208 195 182 167
265 250 231 210 189
186 179 170 159 148
224 214 200 184 167
153 149 143 135 126
181 175 166 155 142
120 118 115 110 104
139 136 131 124 116
11 12 13 14 15
239 215 192 169 147
266 230 196 169 147
211 190 169 149 130
235 203 173 149 130
183 165 147 130 114
204 177 151 130 114
152 137 123 109 95
167 146 125 109 95
135 123 111 99 87
149 131 114 99 87
117 107 96 87 77
128 114 101 88 77
97 90 82 75 67
107 97 87 77 67
16 17 18 19 20
130 115 103 92 83
130 115 103 92 83
115 102 91 81 74
115 102 91 81 74
100 89 79 71 64
100 89 79 71 64
84 74 66 60 54
84 74 66 60 54
77 68 61 55 49
77 68 61 55 49
68 60 54 49 44
68 60 54 49 44
60 53 48 43 39
60 53 48 43 39
21
76
76
67
67
58
58
49
49
45
45
40
40
35
35
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 108
COLUMN DESIGN
z
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Single angles
w x
x
Design axial strength in kips (φ = 0.90)
w Y z
8× ×4
Size Thickness Wt./ft
37.4
Fy
Effective length KL (ft)
7⁄ 8
1
3⁄ 4
33.1
5⁄ 8
28.7
24.2
1⁄ 2
21.9
7⁄ 16
19.6
17.2
36
50
36
50
36
50
36
50
36
50
36
50
36
50
0
356
495
315
438
273
380
230
299
200
258
170
216
139
174
1 2 3 4 5
342 331 315 293 267
468 446 417 378 332
300 289 275 257 234
408 387 363 330 290
256 245 235 220 201
346 326 307 280 248
209 198 190 179 165
264 246 233 216 194
179 169 162 154 142
223 207 197 184 167
149 139 134 128 119
182 168 160 150 138
118 109 105 101 95
142 128 122 116 108
6 7 8 9 10
238 208 177 148 121
283 234 187 149 121
209 183 156 131 107
248 205 164 131 107
180 157 135 113 92
212 176 141 113 92
148 130 112 94 77
169 142 117 94 77
129 114 99 84 70
146 125 104 84 70
109 98 86 73 61
123 107 90 74 61
88 80 71 62 53
98 87 75 63 53
11 12 13 14
100 85 72 62
100 85 72 62
89 75 64 55
89 75 64 55
77 65 56 48
77 65 56 48
65 55 47 41
65 55 47 41
58 49 42 37
58 49 42 37
52 44 38 33
52 44 38 33
45 38 33 29
45 38 33 29
7× ×4
Size 3⁄ 4
Thickness Wt./ft
5⁄ 8
26.2
Fy
Effective length KL (ft)
9⁄ 16
1⁄ 2
22.1
7⁄ 16
17.9
3⁄ 8
15.7
13.6
36
50
36
50
36
50
36
50
36
50
0
249
346
210
288
164
212
136
173
108
134
1 2 3 4 5
236 228 219 205 188
320 306 289 264 233
194 187 180 170 156
258 245 233 215 191
146 139 134 128 119
182 171 164 154 140
118 111 107 103 97
144 133 128 122 113
90 85 82 79 76
107 99 95 91 86
6 7 8 9 10
168 147 126 106 87
200 166 134 107 87
140 123 106 89 73
165 138 113 90 73
108 96 84 71 59
124 106 89 72 59
89 80 71 61 51
101 88 75 62 51
70 64 57 50 43
79 70 61 52 43
11 12 13 14
72 61 52 45
72 61 52 45
61 52 44 38
61 52 44 38
49 42 36 31
49 42 36 31
43 37 31 27
43 37 31 27
37 31 27 23
37 31 27 23
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 109
Fy = 36 ksi
z
Y
Fy = 50 ksi
COLUMNS Single angles
w x
Design axial strength in kips (φ = 0.90)
Wt./ft
7⁄ 8
3⁄ 4
27.2
Fy
Effective length KL (ft)
Y z
6× ×4
Size Thickness
36
5⁄ 8
23.6
50
36
9⁄ 16
20.0
50
36
1⁄ 2
18.1
50
36
7⁄ 16
16.2
50
36
3⁄ 8
14.3
50
36
5⁄ 16
10.3
12.3
50
36
50
36
50
0
259 359 225 312 190 264 172 239 154 205 132 171 107 136
81
100
1 2 3 4 5
250 244 233 217 198
343 331 310 282 248
91 111 87 105 85 102 82 97 78 91
66 63 61 59 57
78 73 70 68 65
6 7 8 9 10
177 155 133 111 91
212 154 184 129 155 117 139 104 121 176 135 153 113 129 102 116 91 102 142 115 124 98 105 88 94 79 84 112 97 98 82 83 74 75 67 67 91 80 80 67 67 61 61 55 55
89 102 79 87 68 73 58 59 48 48
72 65 57 49 41
82 72 61 50 41
54 50 45 39 34
61 55 48 41 34
11 12 13 14
75 63 54 47
40 34 29 25
34 29 25 22
34 29 25 22
29 24 21 18
29 24 21 18
75 63 54 47
215 210 201 188 172
293 284 268 244 215
66 55 47 41
66 55 47 41
178 174 168 157 144
56 47 40 35
241 233 222 203 180
56 47 40 35
159 155 150 141 130
51 43 37 32
214 206 197 182 162
139 135 131 125 115
51 43 37 32
46 38 33 28
180 172 166 155 139
46 38 33 28
116 112 109 105 98
145 138 133 126 116
40 34 29 25
6× ×31⁄2
Size 1⁄ 2
Thickness Wt./ft
3⁄ 8
15.3
Fy
Effective length KL (ft)
x
w
5⁄ 16
11.7
9.8
36
50
36
50
36
50
0
146
195
101
128
77
95
1 2 3 4 5
132 127 121 112 100
171 162 152 137 118
86 82 79 75 69
105 99 94 88 79
63 59 57 55 51
74 69 66 63 58
6 7 8 9 10
87 74 60 48 39
98 78 61 48 39
61 53 44 36 30
68 56 45 36 30
47 41 36 30 25
51 44 37 30 25
11 12
33 28
33 28
25 21
25 21
21 18
21 18
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 110
COLUMN DESIGN
z
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Single angles
w x
x
Design axial strength in kips (φ = 0.90)
w Y z
5× ×31⁄2
Size 3⁄ 4
Thickness Wt./ft
19.8
Fy
Effective length KL (ft)
5⁄ 8
1⁄ 2
16.8
3⁄ 8
13.6
10.4
1⁄ 4
8.7
7.0
36
50
36
50
36
50
36
50
36
50
36
50
0
188
261
159
221
130
180
97
126
76
96
54
66
1 2 3 4 5
182 176 165 150 133
249 238 218 192 162
152 148 139 127 113
207 199 183 162 137
120 117 112 103 91
162 156 146 130 111
85 82 80 75 68
107 102 98 90 79
64 61 60 57 53
77 74 71 67 61
43 41 40 38 36
49 47 45 44 41
6 7 8 9 10
115 96 79 63 51
132 103 79 63 51
97 82 67 53 43
112 88 67 53 43
79 67 55 44 35
90 71 55 44 35
59 50 42 33 27
66 54 42 33 27
47 41 34 28 23
52 44 35 28 23
34 30 26 22 18
37 32 27 22 18
11 12
42 35
42 35
36 30
36 30
29 25
29 25
23 19
23 19
19 16
19 16
15 13
15 13
5× ×3
Size 1⁄ 2
Thickness Wt./ft
7⁄ 16
12.8
Fy
Effective length KL (ft)
5⁄ 16
3⁄ 8
11.3
5⁄ 16
9.8
1⁄ 4
8.2
6.6
36
50
36
50
36
50
36
50
36
50
0
122
169
107
146
91
118
71
90
51
62
1 2 3 4 5
112 108 100 88 75
151 143 128 108 87
97 93 87 77 66
127 120 109 93 76
80 76 72 65 56
100 94 87 76 63
60 57 54 50 44
72 68 64 58 49
40 38 36 34 31
46 44 42 39 34
6 7 8 9 10
62 49 38 30 24
66 49 38 30 24
54 43 33 27 22
58 43 33 27 22
46 37 29 23 19
49 37 29 23 19
37 30 24 19 16
40 31 24 19 16
27 23 19 15 13
29 24 19 15 13
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 111
Fy = 36 ksi
z
Y
Fy = 50 ksi
COLUMNS Single angles
w x
Design axial strength in kips (φ = 0.90)
1⁄
Thickness Wt./ft
3⁄ 8
2
11.9
Fy
Effective length KL (ft)
Y z
4× ×31⁄2
Size
5⁄ 16
9.1
1⁄ 4
7.7
6.2
36
50
36
50
36
50
36
50
0
113
158
87
120
73
95
53
68
1 2 3 4 5
107 105 99 90 79
146 142 131 114 95
78 77 75 68 60
104 102 98 87 73
63 61 60 57 51
79 76 74 69 59
43 42 42 41 38
52 50 49 48 44
6 7 8 9 10
67 56 45 35 29
76 58 45 35 29
51 43 35 27 22
58 45 34 27 22
43 36 29 23 19
48 38 29 23 19
33 28 23 19 15
37 30 24 19 15
11 12
24 20
24 20
18 15
18 15
15 13
15 13
13 11
13 11
4× ×3
Size 5⁄ 8
Thickness Wt./ft
1⁄ 2
13.6
Fy
Effective length KL (ft)
x
w
7⁄ 16
11.1
3⁄ 8
9.8
5⁄ 16
8.5
1⁄ 4
7.2
5.8
36
50
36
50
36
50
36
50
36
50
36
50
0
129
179
105
146
93
129
80
112
67
88
50
63
1 2 3 4 5
124 119 108 95 81
170 160 141 118 93
100 96 88 78 66
136 129 114 96 76
87 84 78 68 58
117 112 101 84 67
73 71 66 59 50
98 94 86 73 58
59 57 55 49 42
74 71 67 58 47
41 40 39 36 32
50 48 46 42 36
6 7 8 9 10
66 52 39 31 25
70 51 39 31 25
54 42 32 26 21
57 42 32 26 21
47 37 29 23 18
51 37 29 23 18
41 32 25 20 16
44 32 25 20 16
35 27 21 17 14
37 27 21 17 14
27 22 17 14 11
29 22 17 14 11
31⁄2×3
Size Thickness
1⁄ 2
3⁄ 8
5⁄ 16
1⁄ 4
Wt./ft
10.2
7.9
6.6
5.4
Effective length KL (ft)
Fy
36
50
36
50
36
50
36
0
97
135
75
104
63
86
49
63
1 2 3 4 5
93 89 81 71 59
127 120 105 87 68
69 67 62 54 46
93 90 81 67 53
56 55 52 46 38
73 71 66 56 44
41 40 39 36 30
51 49 48 42 34
6 7 8 9 10
48 37 28 22 18
50 37 28 22 18
37 29 22 17 14
39 29 22 17 14
31 24 19 15 12
33 24 19 15 12
25 20 15 12 10
27 20 15 12 10
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
50
3 - 112
COLUMN DESIGN
z
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Single angles
w x
x
Design axial strength in kips (φ = 0.90)
w Y z
31⁄2×21⁄2
Size 1⁄ 2
Thickness
3⁄ 8
9.4
Wt./ft
Effective length KL (ft)
Fy
1⁄ 4
7.2
4.9
36
50
36
50
36
50
0
89
124
68
95
45
58
1 2 3 4 5 6 7 8 9
85 79 70 58 46
116 105 88 68 49 34 25 19
63 60 53 44 35 26 19 15
85 79 67 52 38 26 19 15
38 37 34 29 24 18 13 10 8
47 45 41 33 25 18 13 10 8
34 25 19
3× ×21⁄2
Size Thickness
1⁄ 2
3⁄ 8
5⁄ 16
1⁄ 4
3⁄ 16
Wt./ft
8.5
6.6
5.6
4.5
3.39
Effective length KL (ft)
Fy
36
50
36
50
36
50
36
50
36
50
0
81
113
62
86
52
73
42
57
29
37
1 2 3 4 5
78 72 63 52 40
107 96 79 60 42
58 55 48 40 31
79 73 61 46 33
48 46 41 34 26
65 61 51 39 28
37 36 33 27 21
48 46 40 31 23
24 23 22 19 16
29 28 26 22 17
6 7 8
29 22 17
29 22 17
23 17 13
23 17 13
19 14 11
19 14 11
16 12 9
16 12 9
12 9 7
12 9 7
3× ×2
Size 1⁄ 2
Thickness
7.7
Wt./ft
Fy Effective length KL (ft)
3⁄ 8
5⁄ 16
5.9
5.0
3⁄ 16
4.1
3.07
36
50
36
50
36
50
36
50
36
50
0 1 2 3 4 5
73 69 61 50 37 26
101 94 80 60 40 26
56 52 47 38 29 20
78 71 61 46 31 20
47 43 39 32 24 17
66 58 51 39 26 17
39 34 31 26 20 14
51 43 39 30 21 14
27 22 21 18 14 10
34 27 25 21 15 10
6 7
18 13
18 13
14 10
14 10
12 9
12 9
10 7
10 7
7 5
7 5
21⁄2×2
Size 3⁄ 8
Thickness
5⁄ 16
5.3
Wt./ft
Fy Effective length KL (ft)
1⁄ 4
0 1 2 3 4 5 6 7
1⁄ 4
4.5
3⁄ 16
3.62
2.75
36
50
36
50
36
50
36
50
50 48 42 34 25 17 12 9
70 65 55 41 27 17 12 9
42 40 36 29 21 15 10 7
59 54 46 34 23 15 10 7
34 31 29 23 17 12 8 6
48 42 37 28 18 12 8 6
26 22 21 17 13 9 6 5
33 27 25 20 14 9 6 5
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 113
Fy = 36 ksi
z
Y
Fy = 50 ksi
COLUMNS Single angles
w x
Design axial strength in kips (φ = 0.90)
Y z
8× ×8
Size 11⁄8
Thickness Wt./ft
7⁄ 8
1
56.9
Fy
Effective length KL (ft)
x
w
51.0
3⁄ 4
45.0
5⁄ 8
38.9
9⁄ 16
32.7
1⁄ 2
29.6
26.4
36
50
36
50
36
50
36
50
36
50
36
50
36
50
0
541
752
486
675
428
594
369
513
310
405
270
348
229
291
6 7 8 9 10
484 465 444 421 397
643 608 570 530 488
435 417 398 378 356
578 546 512 476 438
383 368 351 334 315
510 482 452 421 388
320 318 304 289 273
420 417 392 365 337
254 252 251 243 230
311 309 306 294 273
213 212 210 209 202
256 255 253 250 240
173 172 171 170 168
203 202 201 199 197
11 12 13 14 15
372 346 320 294 269
446 404 363 323 283
334 311 288 264 242
401 363 326 290 255
295 275 255 234 215
355 322 289 258 227
256 239 221 204 187
308 280 252 225 198
215 201 186 172 157
251 230 208 187 167
191 178 166 154 141
222 204 186 169 151
165 155 144 134 124
191 177 162 148 133
16 17 18 19 20
244 221 197 177 159
249 221 197 177 159
219 198 177 159 143
224 198 177 159 143
195 176 158 141 128
199 177 158 141 128
170 154 138 124 112
174 154 138 124 112
143 130 116 104 94
147 130 116 104 94
129 118 107 95 86
134 119 106 95 86
114 104 95 85 77
120 106 95 85 77
21 22 23 24 25
145 132 121 111 102
145 132 121 111 102
130 118 108 99 92
130 118 108 99 92
116 105 96 89 82
116 105 96 89 82
101 92 84 78 71
101 92 84 78 71
85 78 71 65 60
85 78 71 65 60
78 71 65 60 55
78 71 65 60 55
70 64 58 53 49
70 64 58 53 49
26
94
94
85
85
76
76
66
66
56
56
51
51
45
45
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 114
COLUMN DESIGN
z
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Single angles
w x
x
Design axial strength in kips (φ = 0.90)
w Y z
6× ×6
Size Thickness Wt./ft
7⁄ 8
1 37.4
Fy
36
3⁄ 4
33.1
50
36
5⁄ 8
28.7
50
36
9⁄ 16
24.2
50
36
50
1⁄ 2
21.9
36
7⁄ 16
19.6
50
36
3⁄ 8
17.2
50
36
5⁄ 16
14.9
50
36
12.4
50
36
50
Effective length KL (ft)
0 356 495 315 438 273 380 230 320 208 289 186 249 159 206 129 164 98 120 1 2 3 4 5
346 343 339 326 310
476 469 462 438 409
304 300 298 289 275
416 408 404 387 361
260 255 253 250 238
354 345 342 336 314
214 209 207 205 201
289 279 275 273 265
190 184 182 181 180
255 244 241 238 236
166 160 158 157 155
213 202 199 197 195
137 131 129 128 127
170 107 129 77 160 100 119 71 157 99 117 69 156 98 115 69 154 97 114 68
89 81 79 78 77
6 7 8 9 10
292 272 250 228 205
376 340 303 266 230
258 241 221 202 181
332 301 268 235 203
224 209 192 175 157
288 261 232 204 176
189 177 163 148 134
244 221 197 174 151
171 160 147 134 121
221 200 179 157 136
153 143 132 120 108
192 174 156 138 120
126 124 114 105 95
152 149 134 120 105
96 113 68 95 112 67 94 110 66 87 99 66 79 88 63
76 76 75 74 71
11 12 13 14 15
183 161 140 121 105
196 164 140 121 105
162 142 124 107 93
173 140 150 119 128 108 116 145 123 126 105 108 95 98 124 108 107 92 92 83 83 107 92 92 79 79 72 72 93 81 81 69 69 62 62
97 103 85 87 74 74 64 64 56 56
85 75 66 57 50
92 78 67 57 50
71 64 57 49 43
77 67 57 49 43
58 52 47 42 37
63 56 49 42 37
16 17 18 19
92 82 73 65
92 82 73 65
82 72 64 58
49 43 39 35
44 39 35 31
44 39 35 31
38 34 30 27
38 34 30 27
32 29 25 23
32 29 25 23
82 72 64 58
71 63 56 50
71 63 56 50
61 54 48 43
61 54 48 43
55 49 43 39
49 43 39 35
5× ×5
Size 7⁄ 8
Thickness Wt./ft
3⁄ 4
27.2
Fy
Effective length KL (ft)
55 49 43 39
5⁄ 8
23.6
1⁄ 2
20.0
7⁄ 16
16.2
3⁄ 8
14.3
5⁄ 16
12.3
10.3
36
50
36
50
36
50
36
50
36
50
36
50
36
50
0
259
359
225
312
190
264
154
214
135
184
115
149
89
114
1 2 3 4 5
251 249 241 228 212
345 341 325 301 272
216 214 209 198 184
296 291 283 262 237
179 177 176 167 156
244 239 236 221 200
141 138 137 135 127
189 183 181 179 163
121 117 116 115 112
157 152 150 148 141
99 95 94 93 92
122 117 115 114 112
73 70 69 68 67
88 83 81 80 79
6 7 8 9 10
194 175 155 135 116
241 209 177 146 119
169 152 135 118 102
210 182 154 128 104
143 129 114 100 86
178 154 131 108 88
116 105 93 82 70
145 126 107 89 72
102 93 82 72 62
126 110 94 78 64
87 79 71 62 54
105 92 80 67 56
67 64 57 51 45
78 74 65 55 47
11 12 13 14 15
98 82 70 60 53
98 82 70 60 53
86 72 61 53 46
86 72 61 53 46
73 61 52 45 39
73 61 52 45 39
60 50 43 37 32
60 50 43 37 32
53 44 38 33 28
53 44 38 33 28
46 39 33 28 25
46 39 33 28 25
38 33 28 24 21
39 33 28 24 21
16
46
46
40
40
34
34
28
28
25
25
22
22
18
18
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF COLUMNS
3 - 115
Fy = 36 ksi
z
Y
Fy = 50 ksi
COLUMNS Single angles
w x
Design axial strength in kips (φ = 0.90)
Wt./ft
3⁄ 4
Effective length KL (ft)
5⁄ 8
18.5
Fy
1⁄ 2
15.7
7⁄ 16
12.8
3⁄ 8
11.3
5⁄ 16
9.8
1⁄ 4
8.2
6.6
36
50
36
50
36
50
36
50
36
50
36
50
36
50
0
176
245
149
207
122
169
107
149
93
129
78
101
57
73
1 2 3 4 5
171 168 158 144 129
236 228 209 185 159
144 142 134 122 109
196 194 178 157 135
114 113 109 100 89
155 152 145 128 110
99 97 96 88 79
133 130 128 113 97
83 81 80 76 68
110 107 106 98 84
66 64 64 63 57
82 79 78 77 68
46 44 44 43 43
55 52 51 51 50
6 7 8 9 10
112 96 79 64 52
131 105 81 64 52
95 81 67 54 44
111 89 69 54 44
78 66 55 44 36
91 73 56 44 36
69 59 49 40 32
81 65 50 40 32
60 51 43 34 28
70 56 44 34 28
50 43 36 29 24
57 47 37 29 24
39 34 29 24 19
44 37 30 24 19
11 12 13
43 36
43 36
36 30
36 30
30 25 21
30 25 21
26 22 19
26 22 19
23 19 16
23 19 16
19 16 14
19 16 14
16 13 11
16 13 11
31⁄2×31⁄2
Size 1⁄ 2
Thickness Wt./ft
7⁄ 16
11.1
Fy Effective length KL (ft)
Y z
4× ×4
Size Thickness
3⁄ 8
9.8
5⁄ 16
8.5
1⁄ 4
7.2
5.8
36
50
36
50
36
50
36
50
36
50
0
105
146
93
129
80
112
68
93
53
68
1 2 3 4 5
100 99 91 81 70
137 134 119 102 83
87 86 80 72 62
118 116 106 90 74
74 73 70 62 54
99 97 91 78 64
60 59 58 53 46
78 76 75 65 54
44 43 42 41 36
53 52 51 50 42
6 7 8 9 10
59 48 37 29 24
65 49 37 29 24
52 42 33 26 21
58 43 33 26 21
45 37 29 23 18
50 37 29 23 18
38 31 24 19 16
42 32 24 19 16
31 25 20 16 13
34 26 20 16 13
11
20
20
17
17
15
15
13
13
11
11
3× ×3
Size 1⁄ 2
Thickness Wt./ft
7⁄ 16
9.4
Fy Effective length KL (ft)
x
w
3⁄ 8
8.3
5⁄ 16
7.2
1⁄ 4
6.1
3⁄ 16
4.9
3.71
36
50
36
50
36
50
36
50
36
50
36
50
0
89
124
79
109
68
95
58
80
47
62
32
41
1 2 3 4 5
86 82 73 62 51
117 109 94 76 57
75 72 65 55 45
102 97 83 67 51
64 63 56 48 40
86 84 72 58 44
52 52 47 41 33
70 69 61 49 38
40 39 38 33 27
51 50 48 39 30
25 25 24 24 20
30 29 29 28 22
6 7 8 9
40 30 23 18
41 30 23 18
36 27 20 16
36 27 20 16
31 23 18 14
32 23 18 14
26 20 15 12
27 20 15 12
21 16 12 10
22 16 12 10
16 12 9 7
17 12 9 7
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
3 - 116
COLUMN DESIGN
z
Fy = 36 ksi
Y
Fy = 50 ksi
COLUMNS Single angles
w x
x
Design axial strength in kips (φ = 0.90)
w Y z
21⁄2×21⁄2
Size 1⁄ 2
Thickness Wt./ft
7.7
Fy Effective length KL (ft)
3⁄ 8
5⁄ 16
5.9
1⁄ 4
5.0
3⁄ 16
4.1
3.07
36
50
36
50
36
50
36
50
36
50
0
73
101
56
78
47
66
39
54
29
37
1 2 3 4 5
71 64 55 44 33
97 85 68 50 33
53 49 42 34 25
73 65 52 38 26
44 42 36 29 21
59 55 44 33 22
34 34 29 23 18
46 45 36 27 18
24 23 22 18 13
29 28 26 20 14
6 7 8
23 17 13
23 17 13
18 13 10
18 13 10
15 11 9
15 11 9
13 9 7
13 9 7
10 7 5
10 7 5
2× ×2
Size Thickness
3⁄ 8
5⁄ 16
1⁄ 4
3⁄ 16
1⁄ 8
Wt./ft
4.7
3.92
3.19
2.44
1.65
Fy
50
36
50
36
50
36
50
36
50
44
61
37
52
30
42
23
32
14
18
1 2 3 4 5
42 36 28 20 13
57 46 33 20 13
35 31 24 17 11
48 39 28 17 11
28 25 19 14 9
38 32 23 14 9
20 19 15 11 7
27 25 18 11 7
11 11 10 7 5
13 13 11 8 5
6
9
9
8
8
6
6
5
5
3
3
Effective length KL (ft)
36 0
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
REFERENCES
3 - 117
COLUMN BASE PLATES
The design of column base plates is covered in Part 11 (Volume II) of this LRFD Manual. REFERENCES
Galambos, T. V. (ed.), 1988, Guide to Stability Design Criteria for Metal Structures, Fourth Edition, Structural Stability Research Council, John Wiley & Sons, New York, NY. Geschwindner, L., 1993, “The ‘Leaning’ Column in ASD and LRFD,” Proceedings of the 1993 National Steel Construction Conference, AISC, Chicago, IL. Uang, C. M., S. W. Wattar, and K. M. Leet, 1990, “Proposed Revision of the Equivalent Axial Load Method for LRFD Steel and Composite Beam-Column Design,” Engineering Journal, 1st Qtr., AISC, Chicago. Zureick, A., 1993, “Design Strength of Concentrically Loaded Single-Angle Struts,” Engineering Journal, 4th Qtr., AISC, Chicago.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4-1
PART 4 BEAM AND GIRDER DESIGN OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 DESIGN STRENGTH OF BEAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Design Strength If Elastic Analysis Is Used . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Flexural Design Strength for Cb = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 Flexural Design Strength for Cb > 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 Design Strength If Plastic Analysis Is Used . . . . . . . . . . . . . . . . . . . . . . . . 4-10 LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS . . . 4-11 Use of the Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12 MOMENT OF INERTIA SELECTION TABLES FOR W AND M SHAPES . . . . . . . . 4-23 FACTORED UNIFORM LOAD TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28 General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28 Use of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30 Reference Notes on Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32 Tables, Fy = 36 ksi: W Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-35 Tables, Fy = 36 ksi: S Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-61 Tables, Fy = 36 ksi: Channels (C, MC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-64 Tables, Fy = 50 ksi: W Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-72 Tables, Fy = 50 ksi: S Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-98 Tables, Fy = 50 ksi: Channels (C, MC)) . . . . . . . . . . . . . . . . . . . . . . . . . . 4-101 DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH GREATER THAN Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-109 General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-109 Charts (Fy = 36 ksi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-113 Charts (Fy = 50 ksi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-139 PLATE GIRDER DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-167 General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-167 Flexure and Shear Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-167 Table of Dimensions and Properties of Built-up Wide-Flange Section . . . . . . . . . . 4-167 Design Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-168 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4-2
BEAM AND GIRDER DESIGN
BEAM DIAGRAMS AND FORMULAS . . . . . . . . . . . . . . . . . . . . . . . . . . 4-187 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-187 Frequently Used Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-188 Table of Concentrated Load Equivalents . . . . . . . . . . . . . . . . . . . . . . . . . 4-189 Static Loading Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-190 Design Properties of Cantilevered Beams . . . . . . . . . . . . . . . . . . . . . . . . 4-205 FLOOR DEFLECTIONS AND VIBRATIONS . . . . . . . . . . . . . . . . . . . . . . . 4-207 Serviceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-207 Deflections and Camber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-207 Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-208 BEAMS: OTHER SUBJECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-211 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-213
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
OVERVIEW
4-3
OVERVIEW Beam tables are located as follows: Load Factor Design Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15 Moment of Inertia Selection Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24 Factored Uniform Load Tables, Fy = 36 ksi, begin on . . . . . . . . . . . . . . . . . . . 4-35 Factored Uniform Load Tables, Fy = 50 ksi, begin on . . . . . . . . . . . . . . . . . . . 4-72 Beam charts are located as follows: Beam Design Moments, Fy = 36 ksi, begin on . . . . . . . . . . . . . . . . . . . . . . . 4-113 Beam Design Moments, Fy = 50 ksi, begin on . . . . . . . . . . . . . . . . . . . . . . . 4-139 Plate Girder Design Tables are on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-183 Beam Diagrams and Formulas begin on . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-187 Additional information related to beam design is provided as follows: Floor deflections and vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-207
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4-4
BEAM AND GIRDER DESIGN
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF BEAMS
4-5
DESIGN STRENGTH OF BEAMS General
Beams are proportioned so that no applicable strength limit state is exceeded when subjected to factored load combinations and that no serviceability limit state is exceeded when subjected to service loads. Strength limit states for beams include local buckling, lateral torsional buckling, and yielding. Serviceability limit states may include, but are not limited to, deflection and vibration. The flexural design strength for beams must equal or exceed the required strength based on the factored loads. The design strength φbMn for each applicable limit state shall equal or exceed the maximum moment Mu as determined from the applicable factored load combinations given in Section A4 of the LRFD Specification. Values of φbMn are tabulated in the pages to follow. These values are based on beam behavior as shown in Figure 4-1 and explained in the following discussion. It should be noted that the LRFD Specification expresses values for moments and lengths in kip-in. and inches. In this and other parts of the LRFD Manual, these values are tabulated in kip-ft and feet. The required strength can be determined by either elastic or plastic analysis. Design Strength If Elastic Analysis Is Used
The flexural design strength of rolled I and C shape beams designed using elastic analysis, according to LRFD Specification Section F1 is: φbMn where φb = 0.90
Mp M n′
Mn Mr (CbMn – Mn) CbMn Mn
Lp
L ′p
Lm
Lm′
Lr
Lb
Fig. 4-1 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4-6
BEAM AND GIRDER DESIGN
Mn = nominal flexural strength as determined by the limit state of yielding, lateraltorsional buckling, or local buckling Flexural Design Strength for Cb = 1.0
Compact Sections (Cb = 1.0)
When Lb ≤ Lp
The flexural design strength of compact (flange and web local buckling λ ≤ λp) I-shaped and C-shaped rolled beams (as defined in Section B5 of the LRFD Specification) bent about the major or minor axis is: φbMn = φbMp = φbZFy / 12 In minor axis flexure this is true for all unbraced lengths, but for bending about the major axis the distance Lb between points braced against lateral movement of the compression flange or between points braced to prevent twist of the cross-section shall not exceed the value Lp (see Figure 4-1). Lp =
300ry Fy √
(F1-4)
When Lp < Lb ≤ Lr The flexural design strength of compact I or C rolled shapes bent about the major axis, from LRFD Specification Section F1.2, is: Lb − Lp φbMn = φbMp − φb(Mp − Mr) ≤ φbMp Lr − Lp where the limiting length Lr and the corresponding buckling moment Mr (see Figure 4-1) are determined as follows: Lr =
ryX1 (Fy − Fr )
√ 1+√ 1 + X2(Fy − Fr)2
(F1-6)
where X1 =
π Sx
√
4Cw X2 = Iy
EGJA 2
Sx GJ
(F1-8)
2
φbMr = φbSx(Fy − Fr ) / 12 kip-ft Sx = section modulus about major axis, in.3 E = modulus of elasticity of steel, 29,000 ksi G = shear modulus of steel, 11,200 ksi J = torsional constant, in.4 A = cross-sectional area of beam, in.2 Cw = warping constant, in.6 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
(F1-9)
DESIGN STRENGTH OF BEAMS
4-7
Fr = compressive residual stress in flange: for rolled shapes Fr = 10 ksi; for welded shapes Fr = 16.5 ksi Values of J and Cw are tabulated for some shapes in Part 1 of the LRFD Manual. For values not shown, see Torsional Analysis of Steel Members (AISC, 1983). Compact and Noncompact Sections (Cb = 1.0)
When Lb > Lr
According to LRFD Specification Section F1.2b, the flexural design strength of compact and noncompact I or C rolled shapes bent about the major axis is: π φbMn = φbMcr = φb Lb
√ 2
πE EIyGJ + IyCw Lb
SxX1√ 2 = φb (Lb / ry)
√ 1+
X21X2 ≤ φbMr 2(Lb / ry)2
Noncompact Sections (Cb = 1.0)
When Lb ≤ Lp′
All rolled W shapes are compact except the W40×174, W14×99, W14×90, W12×65, W10×12, W8×10, and W6×15 for 50 ksi and the W6×15 for 36 ksi. The flexural design strength φbMn′ (see Figure 4-1) for noncompact (flange or web local buckling λp < λ ≤ λr) I and C rolled shapes bent about the major or minor axis is the smaller value for either local flange buckling or local web buckling as determined by: λ − λp φbMn′ = φbMp − φb(Mp − Mr) λr − λp For local flange buckling: λ = bf / 2tf for I-shaped members λ = bf / tf for C-shaped members Fy λp = 65 / √ λr = 141 / √ Fy − 10 For local web buckling: λ = h / tw λp = 640 / √ Fy Fy λr = 970 / √ Mp − Mn′ Lp′ = Lp + (Lr − Lp) Mp − Mr Sections with a width-to-thickness ratio exceeding the specified values for λr are slender shapes and must be analyzed using LRFD Specification Appendix B5.3. When Lp′ < Lb ≤ Lr AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4-8
BEAM AND GIRDER DESIGN
The flexural design strength of noncompact I or C rolled shapes bent about the major axis is determined by: Lb − Lp φbMn = φbMp − φb(Mp − Mr) ≤ φbMn′ Lr − Lp In the Load Factor Design Selection Table, in the case of the noncompact shapes, the values of φbMn′ and Lp′ are tabulated as φbMp and Lp. The formula above may be used with the tabulated values. Flexural Design Strength for Cb > 1.0
Cb is a factor which varies with the moment gradient between bracing points (Lb). For Cb greater than 1.0, the design flexural strength is equal to the tabulated value of the design flexural strength (with Cb = 1.0) multiplied by the calculated Cb value. The maximum value is φbMp for compact shapes or φbMn′ for noncompact shapes. The maximum unbraced lengths associated with the maximum flexural design strengths φbMp and φbMn′ are Lm and Lm′ (see Figure 4-1). A new expression for Cb is given in the LRFD Specification. (It is more accurate than the one previously shown.) Cb =
12.5Mmax 2.5Mmax + 3MA + 4MB + 3Mc
(F1-3)
where M is the absolute value of a moment in the unbraced beam segment as follows: Mmax , the maximum MA , at the quarter point MB , at the centerline Mc , at the three-quarter point Values for Cb for some typical loading conditions are given in Table 4-1. Compact Sections (Cb > 1.0)
When Lb ≤ Lm
The flexural design strength for rolled I and C shapes is: φbMn = φbMp When Lb > Lm The flexural design strength is: φbMn = Cb[φbMn (for Cb = 1.0)] ≤ φbMp For Lm ≤ Lr Lm = Lp +
(CbMp − Mp)(Lr − Lp) Cb(Mp − Mr) AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN STRENGTH OF BEAMS
4-9
Table 4-1. Values of Cb for Simply Supported Beams Lateral Bracing Along Span
Load
Cb
None 1.32
At load points 1.67
1.67
None 1.14
At load points 1.67
1.00
1.67
None 1.14
At load points 1.67
1.11
None
At centerline
Cbπ Mp
1.30
√ √ √ EIyGJ 2
1+
1+
4CwM2p IyC2bG2J2
The value of Cb for which Lm or Lm′ equals Lr for any rolled shape is: Cb =
Fy Zx (Fy − 10)Sx
Noncompact Sections (Cb > 1.0)
When Lb ≤ Lm′
The flexural design strength for rolled I and C shapes is: φbMn = φbMn′ < φbMp When Lb > Lm′ The flexural design strength is: φbMn = Cb[φbMn (for Cb = 1.0)] ≤ φbMn′ AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1.67
1.14
For Lm > Lr
Lm =
1.11
1.30
4 - 10
BEAM AND GIRDER DESIGN
For Lm′ ≤ Lr Lm′ = Lp′ +
(CbMn′ − Mn′)(Lr − Lp) Cb(Mp − Mr)
For Lm′ > Lr Lm =
Cbπ Mp
√ √ √ EIyGJ 2
1+
1+
4CwM2p IyC2bG2J2
Design Strength If Plastic Analysis Is Used
The design flexural strength for plastic analysis is: φbMn = φbMp where φb = 0.90 Mp = ZxFy / 12 kip-ft The yield strength of material that may be used with plastic analysis is limited to 65 ksi. Plastic analysis is limited to compact shapes as defined in Table B5.1 of the LRFD Specification as: λp = bf / 2tf ≤ 65 / √ Fy for the flanges of I shapes in flexure Fy for the flanges of C shapes in flexure λp = bf / tf ≤ 65 / √ and λp = h / tw ≤ 640 / √ Fy for beam webs in flexural compression where
.
λp = limiting slenderness parameter for compact element bf = width of flange for I and C shapes, in. tf = flange thickness, in. h = clear distance between flanges less the fillet at each flange, in. tw = beam web thickness, in
In addition, LRFD Specification Section F1.2d states: for a section bent about the major axis, the laterally unbraced length of the compression flange at plastic hinge locations associated with the failure mechanism shall not exceed: Lpd =
3,600 + 2,220(M1 / M2) ry Fy
where Fy M1 M2 ry (M1 / M2)
= specified yield strength of compression flange, ksi = smaller moment at end of unbraced length of beam, kip-in. = larger moment at end of unbraced length of beam, kip-in. = radius of gyration about minor axis, in. is positive when the moments cause reverse curvature AMERICAN INSTITUTE OF STEEL CONSTRUCTION
(F1-17)
LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS
4 - 11
LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS
This table facilitates the selection of beams designed on the basis of flexural strength in accordance with Section F of the LRFD Specification. It includes only W and M shapes designed as beams. A laterally supported beam can be selected by entering the table with the required plastic section modulus or factored bending moment, and comparing it with tabulated values of Zx or φbMp respectively. The table is applicable to adequately braced beams with unbraced lengths not exceeding Lr, i.e., Lb ≤ Lr. For beams with unbraced lengths greater than Lp, it may be convenient to use the unbraced beam charts. For most loading conditions, it is convenient to use this selection table. However, for adequately braced, simply supported beams with a uniform load over the entire length, or equivalent symmetrical loading, the tables of Factored Uniform Loads can also be used. In this table, shapes are listed in groups by descending order plastic section modulus Zx. Included also for steel of Fy = 36 ksi and 50 ksi are values for the maximum flexural design strength φbMp; the limiting buckling moment φbMr; the limiting laterally unbraced compression flange length for full plastic moment capacity and uniform moment (Cb = 1.0) Lp; limiting laterally unbraced length for inelastic lateral-torsional buckling Lr; and BF, a factor that can be used to calculate the resisting moment φbMn for beams with unbraced lengths between the limiting bracing lengths Lp and Lr. For noncompact shapes, as determined by Section B5 of the LRFD Specification, the maximum flexural design strength φbMn, max as determined by LRFD Specification Formula A-F1-3 is tabulated as φbMp. The associated maximum unbraced length is tabulated as Lp. (See the previous discussion under Design Strength of Beams for further explanation.) The symbols used in this table are: Zx = plastic section modulus, X-X axis, in.3 φbMp = design plastic bending moment, kip-ft = φbZxFy / 12 if shape is compact λ − λp = φbM′n = φbMp − φb(Mp − Mr) if shape is noncompact λr − λp φbMr = limiting design buckling moment, kip-ft = φbSx(Fy − Fr ) / 12 where Fr = 10 ksi for rolled shapes Lp = limiting laterally unbraced length for inelastic LTB, ft, uniform moment case (Cb = 1) Lr = limiting laterally unbraced length for elastic lateral-torsional buckling, ft BF = a factor that can be used to calculate the design flexural strength for unbraced lengths Lb, between Lp and Lr, kip-ft φb(Mp − Mr) = Lr − Lp where φbMn = Cb[φbMp − BF(Lb − Lp)] ≤ φbMp AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 12
BEAM AND GIRDER DESIGN
Use of the Table
Determine the required plastic section modulus Zx from the maximum factored moment Mu (kip-ft) using the desired steel yield strength. Zx =
12Mu φbFy
Enter the column headed Zx and find a value equal to or greater than the plastic section modulus required. Alternatively, enter the φbMp column and find a value of φbMp equal to or greater than the required factored load moment. The beam opposite these values (Zx or φbMp) in the shapes column, and all beams above it, have sufficient flexural strength based only on these parameters. The first beam appearing in boldface type adjacent to or above the required Zx or φbMp is the lightest section that will serve for the steel yield stress used in the calculations. If the beam must not exceed a certain depth, proceed up the column headed “Shape” until a beam within the required depth is reached. After a shape has been selected, the following checks should be made. If the lateral bracing of the compressive flange exceeds Lp, but is less than Lr, the design flexural strength may be calculated as follows: φbMn = Cb[φbMp − BF(Lb − Lp)] ≤ φbMp If the bracing length Lb is substantially greater than Lp, i.e., Lb > Lr, it is recommended the unbraced beam charts be used. A check should be made of the beam web shear strength by referring to the Factored Uniform Load Tables or by use of the formula: φvVn = φv0.6FywAw (from LRFD Specification Section F2) where φv = 0.90 If a deflection limitation also exists, the adequacy of the selected beam should be checked accordingly.
EXAMPLE 4-1
Given:
Solution (Zx method):
Select a beam of Fy = 50 ksi steel subjected to a factored uniform bending moment of 256 kip-ft, having its compression flange braced at 5.0 ft intervals. Assume Cb = 1.0. Zx (req’d) =
Mu(12) 256(12) = = 68.3 in.3 φbFy 0.9(50)
Enter the Load Factor Design Selection Table and find the nearest higher tabulated value of Zx is 69.6 in., which corresponds to a W14×43. This beam, however, is not in boldface type. Proceed up the shape column and locate the first beam in boldface, W16×40. Note the values tabulated for φbMp and Lp are 273 kip-ft and 5.6 ft, respectively. Use W16x40 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS
4 - 13
Alternatively, proceed up the shape column and select a W18×40. The tabulated values for φbMp and Lp are 294 kip-ft and 4.5 ft, respectively. Since the bracing length Lb is larger than Lp and smaller than Lr, the maximum resisting moment may be calculated as follows: φbMn = Cb[φbMp − BF(Lb − Lp)] = 1.0[294 − (11.7)(5.0 − 4.5)] = 288 kip-ft > 256 kip-ft req’d o.k. A W18×40 is satisfactory. Alternate solution (Mp method):
Enter the column of φbMp values and note the tabulated value nearest and higher than the required factored moment (Mu) is 261 kip-ft, which corresponds to a W14×43. Scanning the φbMp values for shapes listed higher in the column, a W16×40 is found to be the lightest suitable shape with Lb < Lp. Use W16×40
EXAMPLE 4-2
Given:
Determine the design flexural strength of a W16×40 of Fy = 36 ksi and Fy = 50 ksi steel with the compression flange braced at intervals of 9.0 ft. Assume Cb = 1.1.
Solution:
Enter the Load Factor Design Table and note that for a W16×40, Fy = 36 ksi: φbMp = 197 kip-ft Lp = 6.5 ft Lr = 19.3 ft BF = 5.54 kips φbMn = Cb[φbMp − BF(Lb − Lp)] ≤ φb Mp = 1.1[197 − 5.54(9 − 6.5)] ≤ 197 kip-ft = 197 kip-ft Enter the Load Factor Design Selection Table and note that for a W16×40, Fy = 50 ksi: φbMp = 273 kip-ft Lp = 5.6 ft Lr = 14.7 ft BF = 8.67 kips φbMn = Cb[φbMp − BF(Lb − Lp)] ≤ φb Mp = 1.1[273 − 8.67(9 − 5.6)] ≤ 273 kip-ft = 268 kip-ft AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 14
BEAM AND GIRDER DESIGN
EXAMPLE 4-3
Given:
Select a beam of Fy = 50 ksi steel subjected to a factored uniform bending moment of 30 kip-ft having its compression flange braced at 4.0-ft intervals and a depth of eight inches or less. Assume Cb = 1.0.
Solution (Zx method):
Assume shape is compact and Lb ≤ Lp. Zx req’d =
12Mu 12(30) = = 8.0 in.3 φbFy 0.9(50)
Enter the Load Factor Design Selection Table and note that for a W8×10, Fy = 50 ksi, the shape is noncompact, however, the maximum resisting moment φbMn listed in the φbMp column is adequate. Further note: φbMn = 33.0 kip-ft Lp = 3.1 ft Lr = 7.8 ft BF = 2.03 kips Since Lp < Lb ≤ Lr φbMn = Cb[φbMn − BF(Lb − Lp)] = 1.0[33.0 − 2.03(4.0 − 3.1)] = 33.0 − 1.8 = 31.2 kip-ft > 30 kip-ft req’d o.k. Use: W8×10 Alternate Solution (Mp method):
Enter the Selection Table and note that in the column of φbMp values for W8×10, Fy = 50 ksi, the value of φbMp is 33.0 kip-ft, which is adequate. Also note, however, Lp = 3.1 ft is less than the bracing interval Lb = 4.0 ft, and that BF is equal to 2.03 kips. Therefore: φbMn = 1.0[33.0 − 2.03(4 − 3.1)] = 31.2 kip-ft > 30 kip-ft req’d o.k. Use: W8×10
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS
4 - 15
LOAD FACTOR DESIGN SELECTION TABLE For shapes used as beams φb = 0.90 Fy = 36 ksi
Zx
Fy = 50 ksi
BF
Lr
Lp
φbMr
φbMp
Zx
Kips
Ft
Ft
Kip-ft Kip-ft
in.3
φbMr
Lp
Lr
BF
Kip-ft Kip-ft
Ft
Ft
Kips
34.5
138.2
17.8
6180
10300
3830
W36×848a 14400
9510
15.1
90.5
64.3
34.1
130.1
17.7
5810
9639
3570
W36×798a 13400
8940
15.0
85.3
63.2
33.2
105.9
17.2
4720
7668
2840
W36×650a 10700
7260
14.6
70.0
61.1
41.9
84.8
15.9
4560
7450
2760
W40×593a 10400
7020
13.5
56.8
76.7
41.2 33.2
72.5 86.8
15.5 16.8
3860 3800
6210 6129
2300 2270
W40×503a W36× 527a
8630 8510
5940 5850
13.2 14.2
49.5 58.3
73.9 60.4
46.9
58.2
11.3
3330
5540
2050
W40×466a
7690
5130
9.6
39.4
85.9
41.0 19.3 32.7 23.7
63.3 119.4 73.5 93.6
15.2 15.3 16.5 15.6
3300 3060 3160 2980
5270 5080 5022 4830
1950 1880 1860 1790
W40×431 W27× 539a W36× 439a W30× 477a
7310 7050 6980 6710
5070 4710 4860 4590
12.9 12.9 14.0 13.3
44.1 78.2 50.3 62.0
72.0 35.9 58.2 43.5
46.6
49.8
11.0
2810
4620
1710
W40×392a
6410
4320
9.3
34.3
83.7
39.9 32.5
56.6 67.2
15.0 16.3
2850 2830
4510 4482
1670 1660
W40×372 W36× 393a
6260 6230
4380 4350
12.7 13.8
40.3 46.7
68.4 57.0
48.6 15.3 18.9 32.5
48.0 123.3 99.2 62.4
14.6 14.2 14.9 16.1
2750 2520 2540 2570
4370 4190 4130 4077
1620 1550 1530 1510
W44×335 W24× 492a W27× 448a W36× 359a
6080 5810 5740 5660
4230 3870 3900 3960
12.4 12.1 12.6 13.7
35.5 80.5 65.3 44.0
79.7 28.4 34.9 56.2
46.2 22.9 29.4
43.2 77.5 64.4
10.7 15.3 15.6
2360 2440 2400
3860 3860 3830
1430 1430 1420
W40×331 W30× 391a W33× 354a
5360 5360 5330
3630 3750 3690
9.1 13.0 13.2
30.5 52.1 44.7
80.9 41.2 51.9
46.1 38.4 32.2 38.4
45.3 51.2 58.5 48.9
14.6 14.8 16.0 14.8
2420 2440 2360 2280
3830 3830 3726 3590
1420 1420 1380 1330
W44×290 W40× 321 W36× 328a W40× 297
5330 5330 5180 4990
3720 3750 3630 3510
12.4 12.6 13.6 12.5
34.0 37.2 41.7 35.9
74.1 63.9 54.9 63.2
43.4 28.9 31.6 14.7 37.3 19.0 44.2 23.4 31.0 28.2 43.7
43.1 59.3 55.1 103.0 47.9 82.0 38.2 66.6 53.0 55.7 37.0
14.4 15.5 16.0 13.9 14.9 14.5 10.5 15.0 15.9 15.4 10.5
2180 2160 2160 2070 2150 2070 1990 2010 2010 1970 1890
3430 3430 3402 3380 3380 3350 3210 3210 3159 3110 3050
1270 1270 1260 1250 1250 1240 1190 1190 1170 1150 1130
W44×262 W33× 318a W36× 300 W24× 408a W40× 277 W27× 368a W40× 278 W30× 326a W36× 280 W33× 291a W40× 264
4760 4760 4730 4690 4690 4650 4460 4460 4390 4310 4240
3360 3330 3330 3180 3300 3180 3060 3090 3090 3030 2910
12.2 13.1 13.5 11.8 12.7 12.3 8.9 12.8 13.5 13.0 8.9
32.8 41.8 39.9 67.5 35.5 54.6 27.6 45.7 38.8 39.8 27.0
68.2 49.9 52.9 27.0 60.8 34.8 74.9 41.7 51.3 48.0 73.3
35.6
45.4
14.8
1930
3020
1120
W40×249
4200
2980
12.6
34.1
56.9
Shape
φbMp
aGroup 4 or Group 5 shape. See Notes in Table 1-2 (Part 1).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 16
BEAM AND GIRDER DESIGN
LOAD FACTOR DESIGN SELECTION TABLE For shapes used as beams φb = 0.90
Zx
Fy = 36 ksi
Fy = 50 ksi
BF
Lr
Lp
φbMr
φbMp
Zx
Kips
Ft
Ft
Kip-ft Kip-ft
in.3
φbMr
Lp
Lr
BF
Kip-ft Kip-ft
φbMp
Ft
Ft
Kips
40.1 30.3 23.1 37.0 27.7 15.0 18.7 41.8 29.6
41.2 50.6 60.5 39.7 52.0 84.5 69.4 35.1 48.8
14.3 15.8 14.9 11.0 15.3 13.5 14.3 10.6 15.6
1890 1860 1810 1750 1790 1680 1720 1700 1750
2970 2916 2860 2810 2810 2750 2750 2730 2727
1100 1080 1060 1040 1040 1020 1020 1010 1010
W44×230 W36×260 W30× 292a W36×256 W33× 263a W24× 335a W27× 307a W40×235 W36×245
4130 4050 3980 3900 3900 3830 3830 3790 3790
2910 2860 2780 2690 2750 2590 2650 2620 2690
12.1 13.4 12.7 9.4 12.9 11.4 12.1 9.0 13.3
31.7 37.5 42.1 28.8 37.8 55.8 46.9 26.0 36.4
62.0 49.4 40.4 62.7 46.3 27.8 33.7 68.6 47.7
33.1 28.7 22.8 27.0 36.1
42.7 47.3 55.4 49.2 37.2
14.8 15.5 14.8 15.1 10.9
1670 1630 1610 1620 1580
2600 2550 2540 2540 2530
963 943 941 939 936
W40×215 W36×230 W30×261 W33×241 W36×232
3610 3540 3530 3520 3510
2570 2510 2480 2490 2430
12.5 13.2 12.5 12.8 9.3
32.6 35.6 39.2 36.2 27.3
51.6 45.8 39.2 44.2 59.9
40.2
33.2
10.5
1530
2440
905
W40×211
3390
2360
8.9
24.9
64.7
31.6 26.0 18.6 22.4 14.7 34.9
41.1 46.9 59.6 51.6 71.2 35.0
14.4 15.0 14.0 14.7 13.2 10.8
1500 1480 1450 1450 1400 1400
2340 2310 2300 2280 2250 2250
868 855 850 845 835 833
W40×199 W33×221 W27×258 W30×235 W24× 279a W36×210
3260 3210 3190 3170 3130 3120
2310 2270 2230 2240 2150 2160
12.2 12.7 11.9 12.4 11.2 9.1
31.6 35.0 41.1 37.1 47.6 26.1
48.8 41.9 32.9 37.7 26.9 56.8
37.4 25.0 18.5 34.0 8.40 21.8 14.7
31.2 44.8 55.0 33.5 109.5 47.9 64.3
10.4 14.8 13.9 10.7 12.3 14.5 13.1
1330 1330 1310 1290 1220 1290 1260
2110 2080 2080 2070 2030 2020 2010
781 772 769 767 753 749 744
W40×183 W33×201 W27×235 W36×194 W18× 311a W30×211 W24× 250a
2930 2900 2880 2880 2820 2810 2790
2050 2050 2020 1990 1870 1990 1930
8.8 12.6 11.8 9.1 10.4 12.3 11.1
23.8 33.8 38.5 25.2 71.5 35.1 43.4
59.0 39.7 32.3 54.6 15.6 36.0 26.6
32.7
32.8
10.6
1210
1940
718
W36×182
2690
1870
9.0
24.9
52.0
b
Shape
27.5 18.2
38.4 52.0
13.6 13.8
1250 1220
1930 1910
715 708
W40×174 W27×217
2660 2660
1920 1870
12.0 11.7
29.9 36.8
41.3 31.3
35.6 8.29 14.7 21.0 31.5 28.3 17.8
29.7 99.6 59.3 45.4 31.9 32.6 48.0
10.0 12.1 13.0 14.4 10.5 10.4 13.7
1170 1100 1150 1170 1130 1070 1080
1870 1830 1830 1820 1800 1700 1700
692 676 676 673 668 629 628
W40×167 W18× 283a W24×229 W30×191 W36×170 W33×169 W27×194
2600 2540 2540 2520 2510 2360 2360
1800 1690 1760 1790 1740 1650 1670
8.5 10.3 11.0 12.2 8.9 8.8 11.6
22.8 65.1 40.4 33.7 24.4 24.5 34.6
55.6 15.4 26.2 33.9 49.6 45.4 30.0
30.7 8.21 14.5 20.2
30.9 90.9 54.2 43.2
10.4 12.0 12.8 14.3
1060 1000 1040 1050
1680 1650 1640 1630
624 611 606 605
W36×160 W18× 258a W24×207 W30×173
2340 2290 2270 2270
1630 1540 1590 1620
8.8 10.2 10.9 12.1
23.7 59.5 37.4 32.5
48.0 15.2 25.6 32.0
aGroup 4 or Group 5 shape. See Notes in Table 1-2 (Part 1). bIndicates noncompact shape; F = 50 ksi y
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS
4 - 17
LOAD FACTOR DESIGN SELECTION TABLE For shapes used as beams φb = 0.90 Fy = 36 ksi
Zx
Fy = 50 ksi
BF
Lr
Lp
φbMr
φbMp
Zx
Kips
Ft
Ft
Kip-ft Kip-ft
in.3
φbMr
Lp
Lr
BF
Kip-ft Kip-ft
Ft
Ft
Kips
32.8 29.4 17.5 26.8 14.3 8.09 11.0
28.2 30.2 45.2 31.2 51.3 82.8 60.8
9.5 10.3 13.6 10.3 12.8 11.9 12.6
998 983 979 950 957 909 899
1610 1570 1530 1510 1510 1480 1430
597 581 567 559 559 549 530
W40×149 W36× 150 W27× 178 W33× 152 W24× 192 W18× 234a W21× 201
2240 2180 2130 2100 2100 2060 1990
1540 1510 1510 1460 1470 1400 1380
8.1 8.7 11.5 8.7 10.9 10.1 10.7
21.9 23.4 33.1 23.7 35.7 54.4 41.1
50.8 45.6 28.8 42.3 25.0 14.9 19.9
25.7 16.9 14.3
30.1 42.8 47.8
10.1 13.5 12.7
874 887 878
1390 1380 1380
514 512 511
W33×141 W27× 161 W24× 176
1930 1920 1920
1340 1370 1350
8.6 11.5 10.7
23.1 31.7 33.8
40.2 27.4 24.6
27.5 23.7 8.00 10.9 14.1
28.8 30.6 75.0 55.8 45.2
9.9 9.5 11.8 12.5 12.7
856 850 817 813 807
1370 1350 1320 1290 1260
509 500 490 476 468
W36×135 W30× 148 W18× 211a W21× 182 W24× 162
1910 1880 1840 1790 1760
1320 1310 1260 1250 1240
8.4 8.1 10.0 10.6 10.8
22.4 22.8 49.5 38.1 32.4
42.2 38.6 14.7 19.4 23.8
24.5 16.2 7.98 22.4 10.8 13.8
29.1 40.7 68.3 29.0 51.7 42.0
10.0 13.4 11.6 9.4 12.4 12.5
792 801 741 741 741 723
1260 1240 1190 1180 1170 1130
467 461 442 437 432 418
W33×130 W27× 146 W18× 192 W30× 132 W21× 166 W24× 146
1750 1730 1660 1640 1620 1570
1220 1230 1140 1140 1140 1110
8.4 11.3 9.9 8.0 10.5 10.6
22.5 30.6 45.3 22.0 35.7 30.6
37.9 25.8 14.6 35.6 19.1 22.8
23.1 21.6 7.95 18.9
27.8 28.2 62.3 30.0
9.7 9.3 11.5 9.2
700 692 671 673
1120 1100 1070 1070
415 408 398 395
W33×118 W30× 124 W18× 175 W27× 129
1560 1530 1490 1480
1080 1070 1030 1040
8.2 7.9 9.8 7.8
21.7 21.5 41.5 22.3
35.5 34.1 14.5 30.9
21.1 10.7 13.3 7.87
27.1 46.4 39.3 56.7
9.1 12.3 12.4 11.4
642 642 642 605
1020 1010 999 961
378 373 370 356
W30×116 W21× 147 W24× 131 W18× 158
1420 1400 1390 1340
987 987 987 930
7.7 10.4 10.5 9.7
20.8 32.8 29.1 38.2
33.0 18.4 21.5 14.2
20.2 18.0 10.5 12.7 7.82
26.3 28.2 43.1 37.1 52.2
9.0 9.1 12.2 12.3 11.3
583 583 575 567 550
934 926 899 883 869
346 343 333 327 322
W30×108 W27× 114 W21× 132 W24× 117 W18× 143
1300 1290 1250 1230 1210
897 897 885 873 846
7.6 7.7 10.4 10.4 9.6
20.3 21.3 30.9 27.9 35.5
31.5 28.7 17.7 20.2 14.0
19.0 10.3 17.0 7.79 12.0
25.5 41.0 26.8 48.0 35.2
8.8 12.2 9.0 11.3 12.1
525 532 521 499 503
842 829 824 786 780
312 307 305 291 289
W30×99 W21× 122 W27× 102 W18× 130 W24× 104
1170 1150 1140 1090 1080
807 819 801 768 774
7.4 10.3 7.6 9.5 10.3
19.8 29.8 20.5 33.0 26.8
29.2 17.1 26.7 13.8 18.8
Shape
φbMp
aGroup 4 or Group 5 shape. See Notes in Table 1-2 (Part 1).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 18
BEAM AND GIRDER DESIGN
LOAD FACTOR DESIGN SELECTION TABLE For shapes used as beams φb = 0.90
Zx
Fy = 36 ksi
Fy = 50 ksi
BF
Lr
Lp
φbMr
φbMp
Zx
Kips
Ft
Ft
Kip-ft Kip-ft
in.3
φbMr
Lp
Lr
BF
Kip-ft Kip-ft
Ft
Ft
Kips
17.8 14.8 10.1 16.2 7.72 14.3 9.61
24.8 27.1 38.7 25.9 44.1 25.9 37.1
8.7 8.3 12.1 8.8 11.2 8.3 12.0
478 478 486 474 450 433 443
764 756 753 751 705 686 683
283 280 279 278 261 254 253
W30×90 W24×103 W21×111 W27× 94 W18×119 W24× 94 W21×101
1060 1050 1050 1040 979 953 949
735 735 747 729 693 666 681
7.4 7.0 10.3 7.5 9.5 7.0 10.2
19.4 20.1 28.5 19.9 30.8 19.4 27.6
27.1 24.1 16.4 25.2 13.4 23.0 15.4
15.0 3.87 7.62
24.9 73.6 40.4
8.6 15.7 11.1
415 408 398
659 632 621
244 234 230
W27×84 W14×132 W18×106
915 878 863
639 627 612
7.3 13.3 9.4
19.3 49.6 28.7
23.0 6.89 13.0
13.6 11.8 3.86 7.51
24.5 26.6 67.9 38.1
8.1 7.7 15.6 11.0
382 374 371 367
605 597 572 570
224 221 212 211
W24×84 W21× 93 W14×120 W18× 97
840 829 795 791
588 576 570 564
6.9 6.5 13.2 9.4
18.6 19.4 46.2 27.4
21.5 19.6 6.82 12.6
12.7 6.10 11.3 3.84 2.95 7.27
23.4 42.1 24.9 62.7 75.5 35.5
8.0 10.5 7.6 15.5 13.0 11.0
343 341 333 337 318 324
540 535 529 518 502 502
200 198 196 192 186 186
W24×76 W16×100 W21× 83 W14×109 W12×120 W18× 86
750 743 735 720 698 698
528 525 513 519 489 498
6.8 8.9 6.5 13.2 11.1 9.3
18.0 29.3 18.5 43.2 50.0 26.1
19.8 10.7 18.5 6.70 5.36 11.9
12.1 6.03 3.77 10.7 2.95 6.94
22.4 38.6 58.2 23.5 67.2 33.3
7.8 10.4 15.5 7.5 13.0 10.9
300 302 306 294 283 285
478 473 467 464 443 440
177 175 173 172 164 163
W24×68 W16× 89 W14× 99b W21× 73 W12×106 W18× 76
664 656 647 645 615 611
462 465 471 453 435 438
6.6 8.8 13.4 6.4 11.0 9.2
17.4 27.3 40.6 17.7 44.9 24.8
18.7 10.3 6.46 17.0 5.32 11.1
10.4 3.75
22.8 54.1
7.5 15.4
273 279
432 424
160 157
W21×68 W14× 90b
600 587
420 429
6.4 15.0
17.3 38.4
16.5 6.31
13.8 5.85 2.01 2.91 8.29
17.2 34.9 86.4 61.4 24.4
5.8 10.3 11.2 12.9 7.1
255 261 246 255 248
413 405 397 397 392
153 150 147 147 145
W24×62 W16× 77 W10×112 W12× 96 W18× 71
574 563 551 551 544
393 402 378 393 381
4.9 8.7 9.5 10.9 6.0
13.3 25.2 56.5 41.3 17.8
21.4 9.75 3.68 5.20 13.8
9.84 4.15
21.7 43.0
7.4 10.3
248 240
389 375
144 139
W21×62 W14× 82
540 521
381 369
6.3 8.8
16.6 29.6
15.3 7.31
Shape
φbMp
bIndicates noncompact shape; F = 50 ksi. y
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS
4 - 19
LOAD FACTOR DESIGN SELECTION TABLE For shapes used as beams φb = 0.90 Fy = 36 ksi
Zx
Fy = 50 ksi
BF
Lr
Lp
φbMr
φbMp
Zx
Kips
Ft
Ft
Kip-ft Kip-ft
in.3
φbMr
Lp
Lr
BF
Kip-ft Kip-ft
Ft
Ft
Kips
12.7 8.08 2.90 2.00 5.57 11.3 4.10 7.91 2.88 4.05 1.97
16.6 23.2 56.4 77.4 32.3 17.3 40.0 22.4 51.8 37.3 68.4
5.6 7.0 12.8 11.0 10.3 5.6 10.3 7.0 12.7 10.3 11.0
222 228 230 218 228 216 218 211 209 201 192
362 359 356 351 351 348 340 332 321 311 305
134 133 132 130 130 129 126 123 119 115 113
W24×55 W18× 65 W12× 87 W10× 100 W16× 67 W21× 57 W14× 74 W18× 60 W12× 79 W14× 68 W10× 88
503 499 495 488 488 484 473 461 446 431 424
342 351 354 336 351 333 336 324 321 309 296
4.7 6.0 10.9 9.4 8.7 4.8 8.8 6.0 10.8 8.7 9.3
12.9 17.1 38.4 50.8 23.8 13.1 28.0 16.7 35.7 26.4 45.1
19.6 13.3 5.12 3.66 9.02 18.0 7.12 12.8 5.03 6.91 3.58
7.65
21.4
7.0
192
302
112
W18×55
420
295
5.9
16.1
12.2
10.5 2.87 6.43 3.91
16.2 48.2 22.8 34.7
5.4 12.7 6.7 10.2
184 190 180 180
297 292 284 275
110 108 105 102
W21×50 W12× 72 W16× 57 W14× 61
413 405 394 383
284 292 277 277
4.6 10.7 5.7 8.7
12.5 33.6 16.6 24.9
16.4 4.93 10.7 6.51
7.31 1.95 2.80
20.5 60.1 44.7
6.9 10.8 12.6
173 168 171
273 264 261
101 97.6 96.8
W18×50 W10× 77 W12× 65b
379 366 358
267 258 264
5.8 9.2 11.8
15.6 39.9 31.7
11.5 3.53 4.72
9.68 6.18 8.13 4.17 2.91 1.93 5.91
15.4 21.3 16.6 28.0 38.4 53.7 20.2
5.3 6.6 5.4 8.0 10.5 10.8 6.5
159 158 154 152 152 148 142
258 248 245 235 233 230 222
95.4 92.0 90.7 87.1 86.4 85.3 82.3
W21×44 W16× 50 W18× 46 W14× 53 W12× 58 W10× 68 W16× 45
358 345 340 327 324 320 309
245 243 236 233 234 227 218
4.5 5.6 4.6 6.8 8.9 9.2 5.6
12.0 15.8 12.6 20.1 27.0 36.0 15.2
14.9 10.1 13.0 7.02 4.96 3.46 9.43
7.51 4.06 2.85 1.91
15.7 26.3 35.8 48.1
5.3 8.0 10.3 10.7
133 137 138 130
212 212 210 201
78.4 78.4 77.9 74.6
W18×40 W14× 48 W12× 53 W10× 60
294 294 292 280
205 211 212 200
4.5 6.8 8.8 9.1
12.1 19.2 25.6 32.6
11.7 6.70 4.77 3.38
5.54 3.06 1.30 3.91 1.89
19.3 30.8 64.0 24.7 43.9
6.5 8.2 8.8 7.9 10.7
126 126 118 122 117
197 195 190 188 180
72.9 72.4 70.2 69.6 66.6
W16×40 W12× 50 W8× 67 W14× 43 W10× 54
273 272 263 261 250
194 194 181 188 180
5.6 6.9 7.5 6.7 9.1
14.7 21.7 41.9 18.2 30.2
8.67 5.25 2.38 6.32 3.30
6.95 3.01 5.23 4.41 1.88 1.27 2.92 1.96
14.8 28.5 18.3 20.0 40.7 56.0 26.5 35.1
5.1 8.1 6.3 6.5 10.6 8.8 8.0 8.4
112 113 110 106 106 101 101 95.7
180 175 173 166 163 161 155 148
66.5 64.7 64.0 61.5 60.4 59.8 57.5 54.9
W18×35 W12× 45 W16× 36 W14× 38 W10× 49 W8× 58 W12× 40 W10× 45
249 243 240 231 227 224 216 206
173 174 170 164 164 156 156 147
4.3 6.9 5.4 5.5 9.0 7.4 6.8 7.1
11.5 20.3 14.1 14.9 28.3 36.8 19.3 24.1
10.7 5.07 8.08 7.07 3.25 2.32 4.82 3.45
Shape
φbMp
bIndicates noncompact shape; F = 50 ksi. y
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 20
BEAM AND GIRDER DESIGN
LOAD FACTOR DESIGN SELECTION TABLE For shapes used as beams φb = 0.90
Zx
Fy = 36 ksi
Fy = 50 ksi
BF
Lr
Lp
φbMr
φbMp
Zx
Kips
Ft
Ft
Kip-ft Kip-ft
in.3
φbMr
Lp
Lr
BF
Kip-ft Kip-ft
Ft
Ft
Kips
4.18
19.0
6.4
94.8
147
54.6
W14×34
205
146
5.4
14.4
6.58
5.70 3.47 1.26
14.3 20.6 46.7
4.9 6.4 8.7
92.0 88.9 84.4
146 138 132
54.0 51.2 49.0
W16×31 W12× 35 W8×48
203 192 184
142 137 130
4.1 5.4 7.4
11.0 15.2 31.1
8.85 5.67 2.27
3.92 1.93
17.9 31.2
6.2 8.3
81.9 82.1
128 126
47.3 46.8
W14×30 W10× 39
177 176
126 126
5.3 7.0
13.7 21.8
6.06 3.32
5.15 3.22
13.3 19.1
4.7 6.3
74.9 75.3
119 116
44.2 43.1
W16×26 W12× 30
166 162
115 116
4.0 5.4
10.4 14.4
7.88 5.10
4.44 1.25 1.89
13.4 39.1 27.4
4.5 8.5 8.1
68.8 69.2 68.3
109 107 105
40.2 39.8 38.8
W14×26 W8×40 W10× 33
151 149 146
106 107 105
3.8 7.2 6.9
10.3 26.4 19.7
6.96 2.22 3.15
2.99 2.44 1.23
18.1 20.3 35.1
6.3 5.7 8.5
65.1 63.2 60.8
100 98.8 93.7
37.2 36.6 34.7
W12×26 W10× 30 W8×35
140 137 130
100 97.2 93.6
5.3 4.8 7.2
13.8 14.5 24.1
4.64 4.13 2.16
4.06 2.34 1.21
12.5 18.5 32.0
4.3 5.7 8.4
56.6 54.4 53.6
89.6 84.5 82.1
33.2 31.3 30.4
W14×22 W10× 26 W8×31
125 117 114
87.0 83.7 82.5
3.7 4.8 7.1
9.7 13.5 22.3
6.26 3.85 2.07
3.88 1.27
11.1 27.3
3.5 6.8
49.5 47.4
79.1 73.4
29.3 27.2
W12×22 W8×28
110 102
76.2 72.9
3.0 5.7
8.4 18.9
6.24 2.22
2.19
16.9
5.5
45.2
70.2
26.0
W10×22
97.5
69.6
4.7
12.7
3.50
3.61 1.24
10.4 24.4
3.4 6.7
41.5 40.8
66.7 62.6
24.7 23.2
W12×19 W8×24
92.6 87.0
63.9 62.7
2.9 5.7
7.9 17.2
5.70 2.11
2.60 1.46
12.0 18.6
3.6 5.3
36.7 35.5
58.3 55.1
21.6 20.4
W10×19 W8×21
81.0 76.5
56.4 54.6
3.1 4.5
8.9 13.3
4.26 2.47
3.30 0.741 2.46
9.6 31.3 11.2
3.2 6.3 3.5
33.3 32.6 31.6
54.3 51.0 50.5
20.1 18.9 18.7
W12×16 W6×25 W10× 17
75.4 70.9 70.1
51.3 50.1 48.6
2.7 5.4 3.0
7.4 21.0 8.4
5.12 1.33 3.97
2.97 1.40 2.34 0.728
9.2 16.7 10.3 25.6
3.1 5.1 3.4 6.3
29.1 29.6 26.9 26.1
47.0 45.9 43.2 40.2
17.4 17.0 16.0 14.9
W12×14 W8×18 W10× 15 W6×20
65.3 63.8 60.0 55.9
44.7 45.6 41.4 40.2
2.7 4.3 2.9 5.3
7.2 12.3 7.9 17.7
4.56 2.30 3.69 1.27
3.32 1.53
6.9 12.6
2.3 3.7
23.6 23.0
38.6 36.7
14.3 13.6
M12×11.8 W8×15
53.7 51.0
36.3 35.4
2.0 3.1
5.4 9.2
5.10 2.56
Shape
φbMp
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS
4 - 21
LOAD FACTOR DESIGN SELECTION TABLE For shapes used as beams φb = 0.90 Fy = 36 ksi
Zx
Fy = 50 ksi
BF
Lr
Lp
φbMr
φbMp
Zx
Kips
Ft
Ft
Kip-ft Kip-ft
in.3
3.10 2.03 0.817 0.458 1.44 0.417 0.693 0.444
6.8 9.5 18.3 30.3 11.5 31.1 20.8 26.3
2.3 3.3 4.0 5.3 3.5 5.0 6.7 5.3
21.6 21.3 19.9 19.9 19.3 18.8 19.0 16.6
35.4 34.0 31.6 31.3 30.8 29.7 28.8 25.9
13.1 12.6 11.7 11.6 11.4 11.0 10.8 9.59
M12×10.8 W10× 12b W6× 16 W5× 19 W8× 13 M5× 18.9 W6×15b,c W5× 16
49.2 47.0 43.9 43.5 42.8 41.3 38.6 36.0
2.32 1.30 0.775
6.2 10.2 14.4
2.1 3.5 3.8
15.2 15.2 14.3
24.9 23.9 22.4
9.21 8.87 8.30
M10×9 W8× 10b W6× 12
2.13 0.295 0.724
6.1 25.5 12.0
2.1 4.2 3.8
13.6 10.6 10.8
22.1 17.0 16.8
8.20 6.28 6.23
1.50
5.5
1.8
14.6
5.40
9.01
φbMr
Lp
Lr
BF
Kip-ft Kip-ft
Ft
Ft
Kips
33.3 32.7 30.6 30.6 29.7 28.9 29.2 25.5
2.0 2.9 3.4 4.5 3.0 4.2 6.8 4.5
5.3 7.4 12.5 20.1 8.5 20.5 15.0 17.6
4.74 3.13 1.46 0.830 2.35 0.758 1.16 0.795
34.5 33.0 31.1
23.5 23.4 21.9
1.8 3.1 3.2
4.9 7.8 10.2
3.59 2.03 1.33
M10×8 W4× 13 W6× 9
30.8 23.6 23.4
21.0 16.4 16.7
1.8 3.5 3.2
4.8 16.9 8.9
3.26 0.538 1.17
M8×6.5
20.2
13.9
1.6
4.3
2.35
Shape
φbMp
bIndicates noncompact shape; F = 50 ksi y cIndicates noncompact shape; F = 36 ksi y
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 22
BEAM AND GIRDER DESIGN
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
MOMENT OF INERTIA SELECTION TABLES FOR W AND M SHAPES
4 - 23
MOMENT OF INERTIA SELECTION TABLES FOR W AND M SHAPES
These two tables for moment of inertia (Ix and Iy) are provided to facilitate the selection of beams and columns on the basis of their stiffness properties with respect to the X-X axis or Y-Y axis, as applicable, where Ix = moment of inertia, X-X axis, in.4 Iy = moment of inertia, Y-Y axis, in.4 In each table the shapes are listed in groups by descending order of moment of inertia for all W and M shapes. The boldface type identifies the shapes that are the lightest in weight in each group. Enter the column headed Ix (or Iy) and find a value of Ix (or Iy) equal to or greater than the moment of inertia required. The shape opposite this value, and all shapes above it, have sufficient stiffness. Note that the member selected must also be checked for compliance with specification provisions governing its specific application.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 24
Ix Shape
BEAM AND GIRDER DESIGN
MOMENT OF INERTIA SELECTION TABLE For W and M shapes Ix
Shape
In.4 W36×848*
67400
W36×798*
62600
W40×593* W36× 650*
50400 48900
W40×503* W36× 527*
41700 38300
W40×466*
36300
W40×431
34800
W44×335 W36× 439* W40× 392* W40× 372 W36× 393*
31100 31000 29900 29600 27500
W44×290 W30× 477* W27× 539* W40× 321 W36× 359* W40× 331
27100 26100 25500 25100 24800 24700
W44×262 W40× 297 W36× 328* W40× 277 W33× 354*
24200 23200 22500 21900 21900
W44×230 W30× 391* W40× 278 W27× 448* W36× 300 W33× 318* W40× 249 W40× 264 W24× 492* W36× 280 W33× 291* W40× 235 W36× 260 W30× 326* W36× 256
20800 20700 20500 20400 20300 19500 19500 19400 19100 18900 17700 17400 17300 16800 16800
Ix
W40×215 W27× 368* W36×245 W14× 808* W33× 263*
16700 16100 16100 16000 15800
W40×211 W24× 408* W36×230 W36×232
15500 15100 15000 15000
W40×199 W30× 292* W14× 730* W33×241
14900 14900 14300 14200
W40×183 W36×210 W27× 307* W30×261 W33×221 W14× 665*
13300 13200 13100 13100 12800 12400
W40×174 W36×194 W24× 335* W30×235
12200 12100 11900 11700
W40×167 W33×201 W36×182 W14× 605* W27×258 W36×170 W30× 211
11600 11500 11300 10800 10800 10500 10300
W40×149 W36×160 W27×235 W24× 279* W14× 550* W33×169 W30×191 W36×150 W27×217 W24× 250* W14× 500* W30×173 W33×152 W27×194
9780 9750 9660 9600 9430 9290 9170 9040 8870 8490 8210 8200 8160 7820
Ix
Shape
In.4
Shape
In.4 W36×135 W24× 229 W33× 141 W14×455* W27× 178 W18× 311* W24× 207
7800 7650 7450 7190 6990 6960 6820
W33×130 W30× 148 W14×426* W27× 161 W24× 192 W18×283* W14×398*
6710 6680 6600 6280 6260 6160 6000
W33×118 W30× 132 W24× 176 W27× 146 W18×258* W14×370* W30× 124 W21× 201 W24× 162
5900 5770 5680 5630 5510 5440 5360 5310 5170
W30×116 W18×234* W14×342* W27× 129 W21× 182 W24× 146
4930 4900 4900 4760 4730 4580
W30×108 W18× 211* W14× 311* W21× 166 W27× 114 W12×336* W24× 131
4470 4330 4330 4280 4090 4060 4020
*Group 4 or 5 shape. See Notes in Table 1-2 (Part 1).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Ix In.4
W30×99 W18× 192 W14× 283* W21× 147
3990 3870 3840 3630
W30×90 W27× 102 W12× 305* W24× 117 W18× 175 W14× 257* W27× 94 W21× 132 W12× 279* W24× 104 W18× 158 W14× 233* W24× 103 W21× 122
3620 3620 3550 3540 3450 3400 3270 3220 3110 3100 3060 3010 3000 2960
W27×84 W18× 143 W12× 252* W24× 94 W21× 111 W14× 211 W18× 130 W12× 230* W21× 101 W14× 193
2850 2750 2720 2700 2670 2660 2460 2420 2420 2400
W24×84 W18× 119 W14× 176 W12× 210*
2370 2190 2140 2140
W24×76 W21× 93 W18× 106 W14× 159 W12× 190
2100 2070 1910 1900 1890
MOMENT OF INERTIA SELECTION TABLE FOR W AND M SHAPES
4 - 25
MOMENT OF INERTIA SELECTION TABLE For W and M shapes Shape
Ix
Shape
In.4 W24×68 W21× 83 W18× 97 W14× 145 W12× 170 W21× 73
1830 1830 1750 1710 1650 1600
W24×62 W14× 132 W18× 86 W16× 100 W21× 68 W12× 152 W14× 120
1550 1530 1530 1490 1480 1430 1380
W24×55 W18× 76 W21× 62 W16× 89 W14× 109 W12× 136 W18× 71 W21× 57 W14× 99 W16× 77 W12× 120 W18× 65 W14× 90 W18× 60
1350 1330 1330 1300 1240 1240 1170 1170 1110 1110 1070 1070 999 984
W21×50 W16× 67 W12× 106 W18× 55 W14× 62
984 954 933 890 882
Ix
Shape
In.4
Ix
Shape
In.4
W21×44 W12× 96 W18× 50 W14× 74 W16× 57 W12× 87 W14× 68 W10× 112 W18× 46 W12× 79 W16× 50 W14× 61 W10× 100
843 833 800 796 758 740 723 716 712 662 659 640 623
W16×26 W14× 30 W12× 35 W8× 67 W10× 49 W10× 45
301 291 285 272 272 248
W14×26 W12× 30 W8× 58 W10× 39
245 238 228 209
W12×26
204
W18×40 W12× 72 W16× 45 W14× 53 W10× 88 W12× 65
612 597 586 541 534 533
W14×22 W8× 48 W10× 30 W10× 33
199 184 170 170
W16×40
518
W12×22 W8× 40 W10× 26
156 146 144
W18×35 W14× 48 W12× 58 W10× 77 W16× 36 W14× 43 W12× 53 W12× 50 W10× 68 W14× 38
510 485 475 455 448 428 425 394 394 385
W12×19 W8× 35 W10× 22 W8× 31
130 127 118 110
W12×16 W8× 28 W10× 19
103 98.0 96.3
W16×31 W12× 45 W10× 60 W14× 34 W12× 40 W10× 54
375 350 341 340 310 303
W12×14 W8× 24 W10× 17 W8× 21
88.6 82.8 81.9 75.3
M12×11.8 W10× 15
71.7 68.9
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Ix Ix In.4
M12×10.8 W8× 18 W10×12 W6× 25 W8× 15 W6× 20 W8× 13
65.8 61.9 53.8 53.4 48.0 41.4 39.6
M10×9
38.5
M10×8 W6× 16 W8× 10 W6× 15 W5× 19 M5× 18.9 W6× 12 W5× 16
34.3 32.1 30.8 29.1 26.2 24.1 22.1 21.3
M8×6.5 W6×9 W4× 13
18.1 16.4 11.3
4 - 26
Iy Shape
BEAM AND GIRDER DESIGN
MOMENT OF INERTIA SELECTION TABLE For W and M shapes Iy
Shape
In.4 W14×808*
5510
W14×730* W36× 848* W36× 798*
4720 4550 4200
W14×665*
4170
W14×605*
3680
W14×550* W36× 650*
W14×283* W40×372 W36× 328* W24× 408* W27× 368* W36×300
1440 1420 1420 1320 1310 1300
W14×257* W33× 318* W30× 326* W36×280 W44×335 W12× 336* W40×321 W33× 291*
1290 1290 1240 1200 1200 1190 1190 1160
3250 3230
W14×500*
2880
W14×455* W40× 593* W36× 527*
2560 2520 2490
W14×426*
2360
W14×398* W27× 539* W40× 503*
2170 2110 2050
W14×370* W36× 439* W30× 477*
1990 1990 1970
W14×342* W36× 393* W40× 431 W27× 448* W24× 492*
1810 1750 1690 1670 1670
W14×311* W36× 359* W30× 391* W33× 354*
Iy
1610 1570 1550 1460
W14×233* W30× 292* W40×297 W36×260 W44×290 W27× 307* W12× 305* W40×277 W33× 263* W24× 335*
1150 1100 1090 1090 1050 1050 1050 1040 1030 1030
W14×211 W40× 466* W36×245 W30×261 W36×230 W12× 279* W33×241
1030 1010 1010 959 940 937 932
W14×193 W44×262 W40×249 W27×258 W30×235 W33×221
931 927 926 859 855 840
Iy
Shape
In.4
Shape
In.4 W14×176 W12×252* W24×279* W40×392* W40× 215 W44× 230 W18× 311* W27× 235 W30× 211 W33× 201
838 828 823 803 796 796 795 768 757 749
W14×159 W12×230* W24×250* W18×283* W27× 217 W40× 199
748 742 724 704 704 695
W14×145 W30× 191 W12×210* W24× 229 W40× 331 W18×258* W27× 194 W30× 173 W12× 190 W24× 207 W18×234* W27× 178
677 673 664 651 646 628 618 598 589 578 558 555
W14×132 W21× 201 W40× 174 W24× 192 W36× 256 W40× 278 W12× 170 W27× 161
548 542 541 530 528 521 517 497
*Group 4 or 5 shape. See Notes in Table 1-2 (Part 1).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Iy In.4
W14×120 W40× 264 W18× 211* W21× 182 W24× 176 W36× 232 W12× 152
495 493 493 483 479 468 454
W14×109 W40× 235 W24× 162 W27× 146 W18× 192 W21× 166 W36× 210
447 444 443 443 440 435 411
W14×99 W12× 136 W18× 175 W24× 146 W40× 211 W21× 147 W36× 194
402 398 391 391 390 376 375
W14×90 W36× 182 W18× 158 W12× 120 W24× 131 W40× 183 W21× 132 W36× 170 W18× 143 W33× 169 W21× 122 W12× 106 W24× 117 W36× 160 W40× 167 W18× 130 W21× 111 W33× 152 W36× 150 W12× 96 W24× 104 W18× 119 W21× 101 W33× 141
362 347 347 345 340 336 333 320 311 310 305 301 297 295 283 278 274 273 270 270 259 253 248 246
MOMENT OF INERTIA SELECTION TABLE FOR W AND M SHAPES
4 - 27
MOMENT OF INERTIA SELECTION TABLE For W and M shapes Shape
Iy
Shape
In.4 W12×87 W10× 112 W40× 149 W30× 148 W36× 135 W18× 106 W33× 130
241 236 229 227 225 220 218
W12×79 W10× 100 W18× 97 W30× 132
216 207 201 196
W12×72 W33× 118 W16× 100 W27× 129 W30× 124 W10× 88 W18× 86
195 187 186 184 181 179 175
W12×65 W30× 116 W16× 89 W27× 114 W10× 77 W18× 76 W14× 82 W30× 108 W27× 102 W16× 77 W10× 68 W14× 74 W30× 99 W27× 94 W14× 68 W24× 103 W16× 67
174 164 163 159 154 152 148 146 139 138 134 134 128 124 121 119 119
Iy
Shape
In.4 W10×60 W30× 90 W24× 94
116 115 109
W12×58 W14× 61 W27× 84
107 107 106
W10×54
103
W12×53 W24× 84
95.8 94.4
W10×49 W21× 93 W8× 67 W24× 76 W21× 83 W8× 58 W21× 73 W24× 68 W21× 68
93.4 92.9 88.6 82.5 81.4 75.1 70.6 70.4 64.7
W8×48 W18× 71 W14× 53 W21× 62 W12× 50 W18× 65
60.9 60.3 57.7 57.5 56.3 54.8
W10×45 W14× 48 W18× 60
53.4 51.4 50.1
W12×45
50.0
W8×40 W14× 43
49.1 45.2
Iy
Shape
In.4 W10×39 W18× 55 W12× 40 W16× 57
45.0 44.9 44.1 43.1
W8×35 W18× 50 W16× 50
42.6 40.1 37.2
W8×31 W10× 33 W24× 62 W16× 45 W21× 57 W24× 55 W16× 40 W14× 38 W21× 50 W12× 35 W16× 36 W14× 34 W18× 46
37.1 36.6 34.5 32.8 30.6 29.1 28.9 26.7 24.9 24.5 24.5 23.3 22.5
W8×28 W21× 44 W12× 30 W14× 30 W18× 40
21.7 20.7 20.3 19.6 19.1
W8×24 W12× 26 W6× 25 W10× 30 W18× 35 W10× 26
18.3 17.3 17.1 16.7 15.3 14.1
W6×20 W16× 31 W10× 22 W8× 21 W16× 26
13.3 12.4 11.4 9.77 9.59
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Iy Iy In.4
W6×15 W5× 19 W14×26 W8× 18 M5× 18.9 W5× 16 W14×22 W12×22 W6× 16 W10×19
9.32 9.13 8.91 7.97 7.86 7.51 7.00 4.66 4.43 4.29
W4×13 W12×19 W10×17 W8× 15
3.86 3.76 3.56 3.41
W6×12 W10×15 W12×16 W8× 13 W12×14
2.99 2.89 2.82 2.73 2.36
W6×9 W10×12 W8× 10 M12× 11.8 M12× 10.8
2.19 2.18 2.09 1.09 0.995
M10×9
0.673
M10×8
0.597
M8×6.5
0.371
4 - 28
BEAM AND GIRDER DESIGN
FACTORED UNIFORM LOAD TABLES General Notes
The Tables of Factored Uniform Loads for W and S shapes and channels (C and MC) used as simple laterally supported beams give the maximum uniformly distributed factored loads in kips. The tables are based on the flexural design strengths specified in Section F1 of the LRFD Specification. Separate tables are presented for Fy = 36 ksi and Fy = 50 ksi. The tabulated loads include the weight of the beam, which should be deducted in the calculation to determine the net load that the beam will support. The tables are also applicable to laterally supported simple beams for concentrated loading conditions. A method to determine the beam load capacity for several cases is shown in this discussion. It is assumed, in all cases, that the loads are applied normal to the X-X axis (shown in the Tables of Properties of Shapes in Part 1 of this LRFD Manual) and that the beam deflects vertically in the plane of bending. If the conditions of loading involve forces outside this plane, design strengths must be determined from the general theory of flexure and torsion. Lateral Support of Beams
The flexural design strength of a beam is dependent upon lateral support of its compression flange in addition to its section properties. In these tables the notation Lp is used to denote the maximum unbraced length of the compression flange, in feet, for the uniform moment case (Cb = 1.0) and for which the design strengths for compact symmetrical shapes are calculated with a flexural design strength of: φbMn = φbMp = φbZxFy / 12 Noncompact shapes are calculated with a flexural design strength of: λ − λp φbMn′ = φbMp − φb(Mp − Mr) λr − λp as permitted in the LRFD Specification Appendix F1. The associated maximum unbraced length for φbMn′ is tabulated as Lp. The notation Lr is the unbraced length of the compression flange for which the flexural design strength for rolled shapes is: φbMr = φbSx(Fy − 10) / 12 These tables are not applicable for beams with unbraced lengths greater than Lr. For such cases, the beam charts should be used. Flexural Design Strength and Tabulated Factored Uniform Loads
For symmetrical rolled shapes designated W and S the flexural design strengths and resultant loads are based on the assumption that the compression flanges of the beams are laterally supported at intervals not greater than Lp. The Uniform Load Constant φbWc is obtained from the moment and stress relationship of a simply supported, uniformly loaded beam. The relationship results in the formula: φbWc = φb(2ZxFy / 3), kip-ft for compact shapes AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
4 - 29
The following expression may be used for calculating the tabulated uniformly distributed factored load Wu on a simply supported beam or girder: Wu = φbWc / L, kips For compact shapes, the tabulated constant is based on the yield stress Fy = 36 ksi or 50 ksi and the plastic section modulus Zx. (See Section F1.1 of the LRFD Specification.) For noncompact sections, the tabulated constant is based on the nominal resisting moment as determined by Equation A-F1-3. (See LRFD Specification Appendix F1.) Shear
For relatively short spans, the design strengths for beams and channels may be limited by the shear strength of the web instead of the bending strength. This limit is indicated in the tables by solid horizontal lines. Loads shown above these lines will produce the design shear strength in the beam web. End and Interior Bearing
For a discussion of end and interior bearing and use of the tabulated values φR1 through φr R6 and φR, see Part 9 in Volume II of this LRFD Manual. Vertical Deflection
For rolled shapes designated W, M, S, C, and MC, the maximum vertical deflection may be calculated using the formula: ∆ = ML2 / (C1Ix) where M = maximum service load moment, kip-ft L = span length, ft Ix = moment of inertia, in.4 C1 = loading constant (see Figure 4-2) ∆ = maximum vertical deflection, in.
W
P
C1 = 161
P
C1 = 201
P
P
P
C1 = 158
C1= 170
Fig. 4-2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
P
4 - 30
BEAM AND GIRDER DESIGN
Table 4-2. Recommended Span/Depth Ratios Service Load Ratios
Maximum Span/Depth Ratios
Dead / Total
Dead / Live
Fy = 36 ksi
Fy = 50 ksi
0.2 0.3 0.4 0.5 0.6
0.25 0.43 0.67 1.00 1.50
20.0 22.2 25.0 29.0 —
14.0 16.0 18.0 21.0 26.0
Deflection can be controlled by limiting the span-depth ratio of a simply supported, uniformly loaded beam as shown in Table 4-2. A live-load deflection limit of L / 360 is assumed; i.e.,
∆LL ≤
Span Length 360
For large span/depth ratios, vibration may also be a consideration. Use of Tables
Maximum factored uniform loads are tabulated for steels of Fy = 36 ksi and Fy = 50 ksi. They are based on the design flexural strength determined from the LRFD Specification: Equation F1-1 (in Section F1.1) for compact members, and Equation A-F1-3 (in Appendix F1) for noncompact members. The beams must be braced adequately and have an axis of symmetry in the plane of loading. Factored loads may be read directly from the tables when the distance between points of lateral support of the compression flange Lb does not exceed Lp (tabulated earlier in the Load Factor Design Selection Table for beams). Loads above the heavy horizontal lines in the tables are governed by the design shear strength, determined from Section F2 of the LRFD Specification. EXAMPLE 4-4
Given:
A W16×45 floor beam of Fy = 50 ksi steel spans 20 feet. Determine the maximum uniform load, end reaction, and total service load deflection. The live load equals the dead load.
Solution:
Based on Section A4 of the LRFD Specification, the governing load combination for a floor beam is 1.2 (dead load) + 1.6 (live load). As the two loads are equal, factored load = 1.4 (total load) Enter the Factored Uniform Loads Table for Fy = 50 ksi and note that: Maximum factored uniform load = Wu = 124 kips, or 124/20 = 6.2 kips/ft Factored end reaction = Wu / 2 = 124 / 2 = 61.8 kips AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
4 - 31
Service load moment =
124(20) Wu L = 8(1.4) 8(LF)
= 221 kip-ft Deflection:
∆=
ML2 221(20)2 = = 0.94 in. C1Ix 161(586)
Live load deflection = 0.5 × 0.94 in. = 0.47 in. < (L / 360 = 20 × 12 / 360 = 0.66 in.) o.k. EXAMPLE 4-5
Given:
A W10×45 beam of Fy = 50 ksi steel spans 6 feet. Determine the maximum load and corresponding end reaction.
Solution:
Enter the Factored Uniform Loads Table for Fy = 50 ksi and note that: Maximum factored uniform load = Wu = 191 kips, or 191/6 = 31.8 kips/ft As Wu appears above the horizontal line, it is limited by shear in the web. Factored end reaction = Wu / 2 = 191 / 2 = 96 kips
EXAMPLE 4-6
Given:
Using Fy = 50 ksi steel, select an 18-in. deep beam to span 30 feet and support two equal concentrated loads at the one-third and two-thirds points of the span. The service load intensities are 10 kips dead load and 24 kips live load. The beam is supported laterally at the points of load application and the ends. Determine the beam size and service live load deflection.
Solution:
Refer to the Table of Concentrated Load Equivalents on page 4-189 and note that: Equivalent uniform load = 2.67Pu 1. Required factored uniform load: Wu = 2.67Pu = 2.67[1.2(10) + 1.6(24)] = 2.67(50.4) = 135 kips 2. Enter the Factored Uniform Loads Table for Fy = 50 ksi and Wu ≥ 135 kips For W18×71: Wu = 145 kips > 135 kips; however, Lb = 10 ft > Lp = 6.0 ft. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 32
BEAM AND GIRDER DESIGN
For W18×76: Wu = 163 kips > 135 kips; however, Lb = 10 ft > Lp = 9.2 ft. 3. Since Lp < Lb < Lr, use the Load Factor Design Selection Table. φbMn = Cb[φbMp − BF(Lb − Lp)] For the central third of the span (uniform moment), Cb = 1.0. Required flexural strength: Mu = Pu (L / 3) = 50.4(30 / 3) = 504 kip-ft 4. Try W18×71: φbMn = 1.0[544 − 13.8(10 − 6)] = 489 kip-ft < 504 kip-ft req’d. n.g. 5. Try W18×76: φbMn = 1.0[611 − 11.1(10 − 9.2)] = 602 kip-ft > 504 kip-ft req’d. o.k. Use W18×76 6. Determine service live load deflection: MLL = (PLL / Pu )Mu = (24 / 50.4)504 = 240 kip-ft Maximum ∆ (at midspan) =
240(30)2 MLLL2 = = 1.03 in. C1Ix 158(1,330)
EXAMPLE 4-7
Given:
A W24×55 of 50 ksi steel spans 20 feet and is braced at 4-ft intervals. Determine the maximum factored load and end reaction.
Solution:
1. Enter the Factored Uniform Load Table for Fy = 50 ksi and note that: Maximum factored uniform load = Wu = 201 kips, or 201 / 20 = 10.1 kips/ft This is true for Lb ≤ Lp : 4.0 ft < 4.7 ft o.k. 2. End reaction = R = Wu / 2 = 201 / 2 = 101 kips
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
4 - 33
Reference Notes on Tables
1. Maximum factored uniform loads, in kips, are given for beams with adequate lateral support; i.e., Lb ≤ Lp for Cb = 1.0, Lb ≤ Lm for Cb > 1.0. 2. Loads below the heavy horizontal line are limited by design flexural strength, while loads above the line are limited by design shear strength. 3. Factored loads are given for span lengths up to the smaller of L / d = 30 or 72 ft. 4. The end bearing values at the bottom of the tables are for use in solving LRFD Specification Equations K1-3, K1-5a, and K1-5b. They are defined as follows: φR1 = φ(2.5kFy tw) φR2 = φ(Fy tw)
kips kips/in.
Equation K1-3 becomes φRn = φR1 + N(φR2) Fty tf φrR3 = φr 68t2w √ w
kips 1.5
3 tw φrR4 = φr 68t2w d tf
√Ft t y f
w
kips/in.
Equation K1-5a becomes φrRn = φrR3 + N(φrR4) 1.5
tw φrR5 = φr 68t2w 1 − 0.2 tf
1.5
4 tw φrR6 = φr 68t2w d tf
Fty tf √ w
√Fty t f
w
kips
kips/in.
Equation K1-5b becomes φrRn = φrR5 + N(φrR6) where φ = 1.00, φr = 0.75, N = length of bearing (in.), and the other terms as defined in the LRFD Specification, Section K1. φR (N = 31⁄4) is defined as the design bearing strength for N = 31⁄4-in. For N / d ≤ 0.2, φR is the minimum of φR1 + N(φR2) φrR3 + N(φrR4) For N / d > 0.2, φR is the minimum of φR1 + N(φR2) φrR5 + N(φrR6) For a complete explanation of end and interior bearing and use of the tabulated values, see Part 9 in Volume II of this LRFD Manual. 5. The other terms at the bottom of the tables are: Zx
= plastic section modulus for major axis bending, in.3 AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 34
BEAM AND GIRDER DESIGN
φvVn = design shear strength, kips φbWc = uniform load constant = φb(2ZxFy / 3) kip-ft for compact shapes; per Equation A-F1-3 (LRFD Specification Appendix F1) for noncompact shapes 6. Tabulated maximum factored uniformly distributed load for the given beam and span is the minimum of φbWc and 2φvVn L See also Note 2 above.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 35
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 44
For beams laterally unsupported, see page 4-113 Designation
W 44
Span (ft)
Fy = 36 ksi
Wt./ft
335
290
262
230
20 21 22 23 24 25
1750 1670 1590 1520 1460 1400
1480 1460 1390 1330 1280 1230
1330 1310 1250 1190 1140 1100
1180 1130 1080 1030 990 950
26 27 28 29 30 31
1350 1300 1250 1210 1170 1130
1180 1140 1100 1060 1020 989
1060 1020 980 946 914 885
914 880 849 819 792 766
32 33 34 35 36
1090 1060 1030 1000 972
959 929 902 876 852
857 831 807 784 762
743 720 699 679 660
38 40 42 44 46 48
921 875 833 795 761 729
807 767 730 697 667 639
722 686 653 623 596 572
625 594 566 540 517 495
50 52 54 56 58 60
700 673 648 625 603 583
613 590 568 548 529 511
549 528 508 490 473 457
475 457 440 424 410 396
62 64 66 68 70 72
564 547 530 515 500 486
495 479 465 451 438 426
442 429 416 403 392 381
383 371 360 349 339 330
1270 27400 665 156 28.4 256 7.36 235 9.81 248
1100 23800 592 128 25.6 202 6.28 184 8.37 211
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
1620 35000 873 235 36.7 419 12.5 383 16.7 355
1420 30700 738 186 31.3 312 8.77 287 11.7 288
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 36
BEAM AND GIRDER DESIGN
W 40
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation Wt./ft
W 40 431
372
321
297
277
249
199
174
977 937
965 965 908 858 813 772
985 945 904 867 832 800
893 852 815 781 750 721
735 702 671 644 618 594
896 864 834 806 780 756
770 743 717 693 671 650
694 670 647 625 605 586
572 552 533 515 498 483
818 794 771 750 730 711
733 712 691 672 654 637
630 612 594 578 562 547
568 551 536 521 507 493
468 454 441 429 417 406
718 684 653 625 599 575
675 643 614 587 563 540
605 576 550 526 504 484
520 495 473 452 433 416
469 446 426 408 391 375
386 368 351 336 322 309
590 568 548 529 511 495
552 532 513 495 479 463
519 500 482 466 450 435
465 448 432 417 403 390
400 385 371 359 347 335
361 347 335 323 312 302
297 286 276 266 257 249
479 465 451 438 426
449 435 422 410 399
422 409 397 386 375
378 367 356 346 336
325 315 306 297 289
293 284 276 268 260
241 234 227 221 215
1120 24200 574 190 27.0 237 6.93 219 9.23 259
963 20800 493 154 23.4 177 5.30 163 7.07 194
868 18700 489 143 23.4 165 6.12 150 8.16 185
715 15400 483 117 23.4 146 7.95 126 10.6 172
1830 1800
1560 1530
1440 1440
21 22 23 24 25 26
2010 1910 1830 1760 1680 1620
1720 1640 1570 1500 1440 1390
1460 1390 1330 1280 1230 1180
1370 1310 1250 1200 1150 1100
1280 1230 1170 1130 1080 1040
1150 1100 1050 1010 968 930
27 28 29 30 31 32
1560 1500 1450 1400 1360 1320
1340 1290 1240 1200 1160 1130
1140 1100 1060 1020 989 959
1060 1030 991 958 927 898
1000 964 931 900 871 844
33 34 35 36 37 38
1280 1240 1200 1170 1140 1110
1090 1060 1030 1000 975 949
929 902 876 852 829 807
871 845 821 798 776 756
40 42 44 46 48 50
1050 1000 957 916 878 842
902 859 820 784 752 721
767 730 697 667 639 613
52 54 56 58 60 62
810 780 752 726 702 679
694 668 644 622 601 582
64 66 68 70 72
658 638 619 602 585
564 547 530 515 501
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
1950 42100 1075 430 48.2 729 22.7 667 30.2 586
1670 36100 916 339 41.8 547 17.2 501 22.9 475
Span (ft)
2150 2110
Fy = 36 ksi
15 16 17 18 19 20
215
Properties and Reaction Values 1420 30700 779 264 36.0 407 12.9 373 17.3 381
1330 28700 720 256 33.5 353 11.2 323 15.0 365
1250 27000 640 224 29.9 290 8.40 268 11.2 318
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 37
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 40
For beams laterally unsupported, see page 4-113
Span (ft)
Fy = 36 ksi
Designation Wt./ft
W 40 331
278
264
235
211
167
149
985 937
975 934 879 830
936 921 860 806 759 716
1030 977 931 889 850 815
888 843 803 767 733 703
787 747 712 679 650 623
679 645 614 586 561 537
873 839 808 779 752 727
782 752 724 698 674 652
675 649 625 602 582 562
598 575 554 534 515 498
516 496 478 461 445 430
787 763 740 718 697 678
704 682 661 642 623 606
631 611 592 575 559 543
544 527 511 496 482 469
482 467 453 440 427 415
416 403 391 379 368 358
695 676 643 612 584 559
660 642 610 581 555 531
590 574 545 519 496 474
528 514 489 465 444 425
456 444 422 402 383 367
404 393 374 356 340 325
349 339 322 307 293 280
644 618 594 572 552 533
536 514 494 476 459 443
509 488 469 452 436 421
455 436 420 404 390 376
407 391 376 362 349 337
351 337 324 312 301 291
311 299 287 277 267 258
269 258 248 239 230 222
60 62 64 66 68 70
515 498 483 468 454 441
428 415 402 389 378 367
407 394 381 370 359 349
364 352 341 331 321 312
326 315 305 296 287 279
281 272 264 256 248 241
249 241 234 226 220 214
215 208 201 195 190 184
72
429
357
339
303
272
234
208
179
781 16900 493 154 23.4 177 5.30 163 7.07 194
692 14900 488 143 23.4 162 6.37 146 8.50 183
597 12900 468 128 22.7 139 7.24 121 9.65 163
13 14 15 16 17 18
1930 1930 1820 1720
1590 1510 1430
1490 1440 1360
1280 1210
1150 1090
19 20 21 22 23 24
1630 1540 1470 1400 1340 1290
1350 1290 1220 1170 1120 1070
1280 1220 1160 1110 1060 1020
1150 1090 1040 992 949 909
25 26 27 28 29 30
1240 1190 1140 1100 1070 1030
1030 989 952 918 886 857
976 939 904 872 842 814
31 32 33 34 35 36
996 965 936 908 883 858
829 803 779 756 734 714
37 38 40 42 44 46
835 813 772 735 702 671
48 50 52 54 56 58
183
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
1430 30900 967 364 43.9 602 19.2 550 25.6 506
1190 25700 796 275 36.7 424 13.4 388 17.9 395
1130 24400 746 254 34.6 379 11.7 347 15.6 366
1010 21800 640 205 29.9 290 8.40 268 11.2 303
905 19500 574 177 27.0 236 6.95 218 9.27 259
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 38
BEAM AND GIRDER DESIGN
W 36
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation
W 36
Span (ft)
Fy = 36 ksi
Wt./ft
300
280
260
245
230
1120 1090 1040 992 949 909
1060 1020 970 926 886 849
19 20 21 22 23 24
1350 1300 1240 1180 1130
1260 1200 1150 1100 1050
1180 1170 1110 1060 1010 972
25 26 27 28 29 30
1090 1050 1010 972 938 907
1010 972 936 903 871 842
933 897 864 833 804 778
873 839 808 779 752 727
815 783 754 727 702 679
31 32 33 34 35 36
878 851 825 800 778 756
815 790 766 743 722 702
753 729 707 686 667 648
704 682 661 642 623 606
657 637 617 599 582 566
37 38 39 40 41 42
736 716 698 680 664 648
683 665 648 632 616 602
630 614 598 583 569 555
590 574 559 545 532 519
551 536 522 509 497 485
43 44 46 48 50 52
633 619 592 567 544 523
588 574 549 527 505 486
543 530 507 486 467 449
507 496 474 455 436 420
474 463 443 424 407 392
54 56 58 60 62 64
504 486 469 454 439 425
468 451 436 421 408 395
432 417 402 389 376 365
404 390 376 364 352 341
377 364 351 339 329 318
66 68 70 72
412 400 389 378
383 372 361 351
353 343 333 324
331 321 312 303
309 300 291 283
1010 21800 561 180 28.8 254 9.65 231 12.9 274
943 20400 530 162 27.4 228 8.91 206 11.9 251
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
1260 27200 675 239 34.0 364 12.6 334 16.7 350
1170 25300 628 214 31.9 319 11.1 292 14.8 318
1080 23300 592 194 30.2 283 10.4 258 13.9 292
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 39
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 36
For beams laterally unsupported, see page 4-113 Designation Wt./ft
W 36 256
19 20 21 22 23 24
194
182
170
160
150
135
1260 1190 1120
1180 1120 1060 1000
1090 1040 975 920
1020 969 912 862
956 902 849 802
910 899 842 793 749
871 837 784 738 697
1180 1120 1070 1020 977 936
1060 1010 963 919 879 842
947 900 857 818 782 750
872 828 789 753 720 690
816 775 739 705 674 646
759 721 687 656 627 601
709 674 642 613 586 562
661 627 598 570 546 523
579 550 524 500 478 458
25 26 27 28 29 30
899 864 832 802 775 749
809 778 749 722 697 674
720 692 666 643 620 600
663 637 614 592 571 552
620 596 574 554 535 517
577 555 534 515 498 481
539 518 499 481 465 449
502 483 465 448 433 418
440 423 407 393 379 366
31 32 33 34 35 36
725 702 681 661 642 624
652 632 613 595 578 562
580 562 545 529 514 500
534 518 502 487 473 460
500 485 470 456 443 431
465 451 437 424 412 401
435 421 408 396 385 374
405 392 380 369 359 349
355 344 333 323 314 305
38 40 42 44 46 48
591 562 535 511 488 468
532 505 481 459 440 421
473 450 428 409 391 375
436 414 394 377 360 345
408 388 369 352 337 323
380 361 344 328 314 301
355 337 321 306 293 281
330 314 299 285 273 261
289 275 262 250 239 229
50 52 54 56 58 60
449 432 416 401 387 374
404 389 374 361 349 337
360 346 333 321 310 300
331 319 307 296 286 276
310 298 287 277 267 258
289 277 267 258 249 240
270 259 250 241 232 225
251 241 232 224 216 209
220 211 204 196 190 183
62 64 66 68 70 72
362 351 340 330 321 312
326 316 306 297 289 281
290 281 273 265 257 250
267 259 251 244 237 230
250 242 235 228 222 215
233 225 219 212 206 200
217 211 204 198 193 187
202 196 190 185 179 174
177 172 167 162 157 153
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
1040 22500 699 227 34.6 379 12.5 347 16.7 339
936 20200 628 196 31.3 311 10.4 285 13.8 298
624 13500 455 113 23.4 162 6.86 145 9.15 184
581 12500 436 105 22.5 147 6.65 131 8.87 168
509 11000 415 91.1 21.6 126 7.06 110 9.41 149
Span (ft)
1400 1320 1250
210
829 785 733 687 647 611
Fy = 36 ksi
13 14 15 16 17 18
232
Properties and Reaction Values 833 18000 592 173 29.9 270 10.5 244 14.0 270
767 16600 543 151 27.5 230 8.94 208 11.9 240
718 15500 512 139 26.1 205 8.16 185 10.9 223
668 14400 478 122 24.5 180 7.25 162 9.67 202
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 40
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 33
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation
Span (ft)
Fy = 36 ksi
Wt./ft
W 33 241
221
W 33 201
169
152
141
130
118
755 710 671 635 604 575
694 653 617 584 555 529
630 593 560 531 504 480
560 527 498 472 448 427
16 17 18 19 20 21
1100 1070 1010 966
1020 972 923 879
936 926 878 834 794
849 799 755 715 679 647
22 23 24 25 26 27
922 882 845 811 780 751
839 803 770 739 710 684
758 725 695 667 641 618
618 591 566 543 523 503
549 525 503 483 464 447
505 483 463 444 427 411
459 439 420 403 388 374
407 390 374 359 345 332
28 29 30 31 32 33
724 699 676 654 634 615
660 637 616 596 577 560
596 575 556 538 521 505
485 468 453 438 425 412
431 416 402 389 377 366
397 383 370 358 347 336
360 348 336 325 315 306
320 309 299 289 280 272
34 35 36 37 38 40
597 579 563 548 534 507
543 528 513 499 486 462
490 476 463 451 439 417
400 388 377 367 358 340
355 345 335 326 318 302
327 317 308 300 292 278
297 288 280 273 265 252
264 256 249 242 236 224
42 44 46 48 50 52
483 461 441 423 406 390
440 420 401 385 369 355
397 379 363 347 334 321
323 309 295 283 272 261
287 274 262 252 241 232
264 252 241 231 222 214
240 229 219 210 202 194
213 204 195 187 179 172
54 56 58 60 62 64
376 362 350 338 327 317
342 330 318 308 298 289
309 298 288 278 269 261
252 243 234 226 219 212
224 216 208 201 195 189
206 198 191 185 179 173
187 180 174 168 163 158
166 160 155 149 145 140
66 68 70 72
307 298 290 282
280 272 264 257
253 245 238 232
206 200 194 189
183 178 172 168
168 163 159 154
153 148 144 140
136 132 128 125
514 11100 392 95.3 21.8 141 6.36 127 8.48 162
467 10100 373 88.1 20.9 125 6.33 111 8.44 146
415 8960 351 77.3 19.8 107 6.28 93.6 8.37 128
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
939 20300 552 163 29.9 274 11.0 249 14.6 261
855 18500 511 144 27.9 236 9.88 213 13.2 235
772 16700 468 125 25.7 198 8.66 179 11.6 208
629 13600 440 124 24.1 185 6.69 170 8.92 203
559 12100 413 107 22.9 159 6.65 144 8.87 181
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 41
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 30
For beams laterally unsupported, see page 4-113 Designation
W 30
Span (ft)
Fy = 36 ksi
Wt./ft
261
235
191
173
932 899 851 809 770
847 808 765 727 692
775 769 726 688 653 622
830 794 761 730 702 676
735 703 674 647 622 599
661 632 606 581 559 538
594 568 545 523 503 484
726 701 678 656 635 616
652 629 608 589 570 553
578 558 539 522 506 490
519 501 485 469 454 441
467 451 436 422 408 396
34 36 38 40 42 44
598 565 535 508 484 462
537 507 480 456 435 415
476 449 426 404 385 368
428 404 383 363 346 330
384 363 344 327 311 297
46 48 50 52 54 56
442 423 407 391 376 363
397 380 365 351 338 326
352 337 324 311 300 289
316 303 291 280 269 260
284 272 261 251 242 233
58 60 62 64 66 68
350 339 328 318 308 299
315 304 294 285 277 268
279 270 261 253 245 238
251 242 234 227 220 214
225 218 211 204 198 192
70 72
290 282
261 254
231 225
208 202
187 182
673 14500 423 124 25.6 199 9.04 181 12.0 207
605 13100 388 111 23.6 167 7.96 151 10.6 187
16 17 18 19 20 21
1140 1130 1070 1020 968
1010 961 913 869
22 23 24 25 26 27
924 884 847 813 782 753
28 29 30 31 32 33
211
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
941 20300 571 204 33.5 353 14.2 323 18.9 313
845 18300 505 168 29.9 283 11.2 260 14.9 265
749 16200 466 148 27.9 239 10.5 218 14.0 239
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 42
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 30
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation
Span (ft)
Fy = 36 ksi
Wt./ft
W 30 148
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72
775 771 720 675 635 600 568 540 514 491 470 450 432 415 400 386 372 360 348 338 327 318 300 284 270 257 245 235 225 216 208 200 193 186 180 174 169 164 159 154 150
132
725 674 629 590 555 524 497 472 449 429 410 393 378 363 350 337 325 315 304 295 286 278 262 248 236 225 215 205 197 189 182 175 169 163 157 152 147 143 139 135 131
124 686 678 629 588 551 518 490 464 441 420 401 383 367 353 339 326 315 304 294 284 275 267 259 245 232 220 210 200 192 184 176 169 163 157 152 147 142 138 134 130 126 122
116
108
99
90
659 628 583 544 510 480 454 430 408 389 371 355 340 327 314 302 292 282 272 263 255 247 240 227 215 204 194 186 177 170 163 157 151 146 141 136 132 128 124 120 117 113
632 623 575 534 498 467 440 415 393 374 356 340 325 311 299 287 277 267 258 249 241 234 226 220 208 197 187 178 170 162 156 149 144 138 133 129 125 121 117 113 110 107 104
599 562 518 481 449 421 396 374 355 337 321 306 293 281 270 259 250 241 232 225 217 211 204 198 187 177 168 160 153 147 140 135 130 125 120 116 112 109 105 102 99 96 94
540 509 470 437 408 382 360 340 322 306 291 278 266 255 245 235 226 218 211 204 197 191 185 180 170 161 153 146 139 133 127 122 118 113 109 105 102 99 96 93 90 87 85
346 7470 316 76.6 19.6 107 6.55 94.3 8.74 129
312 6740 300 67.3 18.7 93.9 6.50 81.1 8.66 115
283 6110 270 55.5 16.9 77.0 5.29 66.6 7.05 94.2
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
500 10800 388 117 23.4 174 6.97 160 9.29 193
437 9440 362 96.9 22.1 148 7.05 133 9.39 169
408 8810 343 88.8 21.1 132 6.55 119 8.73 153
378 8160 330 82.6 20.3 120 6.49 107 8.65 141
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 43
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 27
For beams laterally unsupported, see page 4-113 Designation
Span (ft)
Fy = 36 ksi
Wt./ft
W 27 258
235
194
178
161
146
917 900 850 805 765
820 798 754 714 678
784 765 720 680 645 612
708 691 651 614 582 553
644 622 586 553 524 498
791 755 722 692 664 639
728 695 665 637 612 588
646 617 590 565 543 522
583 557 532 510 490 471
527 503 481 461 442 425
474 453 433 415 398 383
680 656 633 612 592 574
615 593 573 554 536 519
566 546 527 510 493 478
502 484 468 452 438 424
454 437 422 408 395 383
410 395 381 369 357 346
369 356 343 332 321 311
33 34 35 36 37 38
556 540 525 510 496 483
503 489 475 461 449 437
463 450 437 425 413 402
411 399 388 377 367 357
371 360 350 340 331 322
335 325 316 307 299 291
302 293 285 277 269 262
40 42 44 46 48 50
459 437 417 399 383 367
415 395 378 361 346 332
382 364 348 332 319 306
339 323 308 295 283 271
306 292 278 266 255 245
276 263 251 240 230 221
249 237 226 216 207 199
52 54 56 58 60 62
353 340 328 317 306 296
319 308 297 286 277 268
294 283 273 264 255 247
261 251 242 234 226 219
236 227 219 211 204 198
213 205 197 191 184 178
191 184 178 172 166 161
64 66
287 278
260 252
239 232
212 206
191 186
173 168
156 151
567 12200 392 122 26.1 206 10.6 186 14.1 207
512 11100 354 108 23.8 171 8.86 154 11.8 185
461 9960 322 91.9 21.8 142 7.62 128 10.2 163
15 16 17 18 19 20
1100 1080 1020 966 918
1010 977 923 874 831
21 22 23 24 25 26
874 835 798 765 734 706
27 28 29 30 31 32
217
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
850 18400 552 221 35.3 395 16.8 362 22.5 335
769 16600 507 189 32.8 337 15.0 308 20.0 296
708 15300 459 163 29.9 283 12.3 260 16.4 261
628 13600 410 139 27.0 230 10.3 211 13.7 227
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 44
BEAM AND GIRDER DESIGN
W 27
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation
W 27
Span (ft)
Fy = 36 ksi
Wt./ft
129
102
94
84
605 570 529 494 463
542 507 471 439 412
513 500 462 429 400 375
478 439 405 376 351 329
502 474 449 427 406 388
436 412 390 370 353 337
388 366 347 329 314 299
353 334 316 300 286 273
310 293 277 264 251 240
23 24 25 26 27 28
371 356 341 328 316 305
322 309 296 285 274 265
286 275 264 253 244 235
261 250 240 231 222 214
229 220 211 203 195 188
29 30 31 32 33 34
294 284 275 267 259 251
255 247 239 232 225 218
227 220 213 206 200 194
207 200 194 188 182 177
182 176 170 165 160 155
36 38 40 42 44 46
237 225 213 203 194 185
206 195 185 176 168 161
183 173 165 157 150 143
167 158 150 143 136 131
146 139 132 125 120 115
48 50 52 54 56 58
178 171 164 158 152 147
154 148 142 137 132 128
137 132 127 122 118 114
125 120 115 111 107 104
110 105 101 98 94 91
60 62 64 66
142 138 133 129
123 119 116 112
110 106 103 100
100 97 94 91
88 85 82 80
278 6000 256 63.4 17.6 90.6 5.39 80.9 7.18 108
244 5270 239 56.9 16.6 76.4 5.23 67.1 6.97 93.4
11 12 13 14 15 16
655 609 569 533
17 18 19 20 21 22
114
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
395 8530 328 99.5 22.0 153 6.86 140 9.14 171
343 7410 302 83.4 20.5 127 6.70 115 8.93 149
305 6590 271 72.4 18.5 103 5.58 93.0 7.44 121
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 45
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 24
For beams laterally unsupported, see page 4-113 Designation
Span (ft)
Fy = 36 ksi
Wt./ft
W 24 229
207
192
176
146
131
117
104
685 674 632 595 562
625 602 564 531 502
576 571 533 500 470 444
519 505 471 441 415 392
468 446 416 390 367 347
581 552 526 502 480 460
532 505 481 459 440 421
475 451 430 410 393 376
421 400 381 363 347 333
372 353 336 321 307 294
329 312 297 284 271 260
483 464 447 431 416 402
442 425 409 394 381 368
404 389 374 361 349 337
361 347 334 322 311 301
320 307 296 285 276 266
283 272 262 252 244 235
250 240 231 223 215 208
422 409 397 385 374 364
389 377 366 355 345 335
356 345 334 325 315 307
326 316 306 297 289 281
291 282 274 266 258 251
258 250 242 235 228 222
228 221 214 208 202 196
201 195 189 184 178 173
384 365 348 332 317 304
344 327 312 297 285 273
318 302 287 274 262 252
290 276 263 251 240 230
266 253 241 230 220 211
238 226 215 205 196 188
210 200 190 182 174 167
186 177 168 161 154 147
164 156 149 142 136 130
292 281 270 261 252 243
262 252 242 234 226 218
241 232 224 216 208 201
221 212 204 197 190 184
202 194 187 181 174 168
181 174 167 161 156 150
160 154 148 143 138 133
141 136 131 126 122 118
125 120 116 111 108 104
676 14600 486 216 34.6 379 18.0 347 24.1 328
606 13100 435 186 31.3 311 15.0 285 20.0 288
370 7990 288 95.3 21.8 141 8.65 127 11.5 166
327 7060 259 80.4 19.8 115 7.41 103 9.88 139
289 6240 234 67.5 18.0 93.7 6.36 83.5 8.48 114
13 14 15 16 17 18
971 913 859 811
870 818 770 727
802 755 710 671
736 736 690 649 613
19 20 21 22 23 24
769 730 695 664 635 608
689 654 623 595 569 545
635 604 575 549 525 503
25 26 27 28 29 30
584 562 541 521 504 487
524 503 485 467 451 436
31 32 33 34 35 36
471 456 442 429 417 406
38 40 42 44 46 48 50 52 54 56 58 60
162
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
559 12100 401 164 29.2 270 13.1 247 17.5 259
511 11000 368 143 27.0 230 11.5 211 15.3 231
468 10100 343 127 25.4 200 10.5 182 14.1 209
418 9030 313 110 23.4 167 9.35 152 12.5 186
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 46
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 24
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation
Span (ft)
Fy = 36 ksi
Wt./ft
W 24 103
94
84
W 24 76
68
62
55
397 367 330 300 275
362 362 322 289 263 241
7 8 9 10 11 12
525 504
487 457
440 440 403
409 393 360
383 382 348 319
13 14 15 16 17 18
465 432 403 378 356 336
422 392 366 343 323 305
372 346 323 302 285 269
332 309 288 270 254 240
294 273 255 239 225 212
254 236 220 207 194 184
223 207 193 181 170 161
19 20 21 22 23 24
318 302 288 275 263 252
289 274 261 249 239 229
255 242 230 220 210 202
227 216 206 196 188 180
201 191 182 174 166 159
174 165 157 150 144 138
152 145 138 132 126 121
25 26 27 28 29 30
242 233 224 216 209 202
219 211 203 196 189 183
194 186 179 173 167 161
173 166 160 154 149 144
153 147 142 137 132 127
132 127 122 118 114 110
116 111 107 103 100 96
31 32 33 34 35 36
195 189 183 178 173 168
177 171 166 161 157 152
156 151 147 142 138 134
139 135 131 127 123 120
123 119 116 112 109 106
107 103 100 97 94 92
93 90 88 85 83 80
38 40 42 44 46 48
159 151 144 137 131 126
144 137 131 125 119 114
127 121 115 110 105 101
114 108 103 98 94 90
101 96 91 87 83 80
87 83 79 75 72 69
76 72 69 66 63 60
50 52 54 56 58 60
121 116 112 108 104 101
110 106 102 98 95 91
97 93 90 86 83 81
86 83 80 77 74
76 74 71 68 66
66 64 61 59 57
58 56 54 52 50
177 3820 191 51.4 14.9 62.6 4.73 55.1 6.30 77.9
153 3300 198 53.2 15.5 66.3 5.21 58.0 6.95 83.2
134 2890 181 46.7 14.2 54.0 4.75 46.5 6.34 69.4
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
280 6050 262 86.6 19.8 124 6.35 113 8.47 144
254 5490 243 75.3 18.5 106 5.89 96.2 7.86 125
224 4840 220 66.1 16.9 86.5 5.14 78.3 6.85 103
200 4320 205 56.9 15.8 73.6 4.81 66.0 6.41 89.3
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 47
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 21
For beams laterally unsupported, see page 4-113 Designation
Span (ft)
Fy = 36 ksi
Wt./ft
W 21 201
182
166
147
132
122
111
101
552 514 480 450 423 400
506 474 442 414 390 368
460 430 402 377 354 335
415 390 364 342 321 304
13 14 15 16 17 18
815 763 716 673 636
733 685 643 605 571
656 622 583 549 518
618 575 537 504 474 448
19 20 21 22 23 24
603 572 545 520 498 477
541 514 490 467 447 428
491 467 444 424 406 389
424 403 384 366 350 336
379 360 343 327 313 300
349 332 316 301 288 276
317 301 287 274 262 251
288 273 260 248 238 228
25 26 27 28 29 30
458 440 424 409 395 382
411 395 381 367 355 343
373 359 346 333 322 311
322 310 298 288 278 269
288 277 266 257 248 240
265 255 246 237 229 221
241 232 223 215 208 201
219 210 202 195 188 182
31 32 33 34 35 36
369 358 347 337 327 318
332 321 312 302 294 286
301 292 283 274 267 259
260 252 244 237 230 224
232 225 218 212 206 200
214 207 201 195 189 184
194 188 183 177 172 167
176 171 166 161 156 152
38 40 42 44 46 48
301 286 273 260 249 239
271 257 245 234 224 214
246 233 222 212 203 194
212 201 192 183 175 168
189 180 171 163 156 150
175 166 158 151 144 138
159 151 143 137 131 126
144 137 130 124 119 114
50 52
229 220
206 198
187 179
161 155
144 138
133 128
121 116
109 105
307 6630 253 91.1 21.6 139 9.53 126 12.7 161
279 6030 230 80.4 19.8 117 8.11 105 10.8 143
253 5460 208 70.3 18.0 96.8 6.72 87.2 8.95 119
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
530 11400 407 195 32.8 339 18.4 311 24.6 301
476 10300 367 168 29.9 281 15.6 258 20.8 265
432 9330 328 143 27.0 232 12.7 213 16.9 231
373 8060 309 122 25.9 200 13.5 181 18.0 206
333 7190 276 106 23.4 163 11.2 147 14.9 182
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 48
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 21
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation
Span (ft)
Fy = 36 ksi
Wt./ft
W 21 93
83
73
W 21 68
62
57
50
44 281 258 229 206 187 172
7 8 9 10 11 12
488 477 434 398
429 423 385 353
376 372 338 310
353 346 314 288
326 311 283 259
332 310 279 253 232
308 297 264 238 216 198
13 14 15 16 17 18
367 341 318 298 281 265
326 302 282 265 249 235
286 265 248 232 219 206
266 247 230 216 203 192
239 222 207 194 183 173
214 199 186 174 164 155
183 170 158 149 140 132
159 147 137 129 121 114
19 20 21 22 23 24
251 239 227 217 208 199
223 212 202 192 184 176
196 186 177 169 162 155
182 173 165 157 150 144
164 156 148 141 135 130
147 139 133 127 121 116
125 119 113 108 103 99
108 103 98 94 90 86
25 26 27 28 29 30
191 184 177 170 165 159
169 163 157 151 146 141
149 143 138 133 128 124
138 133 128 123 119 115
124 120 115 111 107 104
111 107 103 100 96 93
95 91 88 85 82 79
82 79 76 74 71 69
31 32 33 34 35 36
154 149 145 140 136 133
137 132 128 125 121 118
120 116 113 109 106 103
111 108 105 102 99 96
100 97 94 91 89 86
90 87 84 82 80 77
77 74 72 70 68 66
66 64 62 61 59 57
38 40 42 44 46 48
126 119 114 108 104 99
111 106 101 96 92 88
98 93 88 84 81 77
91 86 82 79 75 72
82 78 74 71 68 65
73 70 66 63 61 58
63 59 57 54 52 50
54 52 49 47 45 43
50 52
95 92
85 81
74 71
69 66
62 60
56 54
48 46
41
129 2790 166 50.1 14.6 63.6 4.45 57.3 5.94 78.1
110 2380 154 44.9 13.7 52.4 4.52 46.2 6.03 67.1
95.4 2060 141 37.4 12.6 42.5 4.23 36.7 5.64 56.3
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
221 4770 244 88.1 20.9 130 8.91 118 11.9 156
196 4230 215 72.4 18.5 103 7.01 93.3 9.34 126
172 3720 188 61.4 16.4 80.8 5.50 73.0 7.34 98.7
160 3460 177 55.6 15.5 71.4 5.04 64.3 6.72 87.8
144 3110 163 49.5 14.4 60.7 4.55 54.3 6.07 75.5
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 49
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 18
For beams laterally unsupported, see page 4-113 Designation Wt./ft
W 18 192
175
158
W 18 143
130
119
106
97
86
76
430 414 382 355 331 311
387 380 351 326 304 285
343 335 309 287 268 251
301 293 271 251 235 220
693 661 614 573 537
621 592 549 513 481
553 535 497 464 435
501 484 449 419 393
17 18 19 20 21 22
562 530 502 477 455 434
506 478 452 430 409 391
452 427 405 384 366 350
409 386 366 348 331 316
370 349 331 314 299 286
332 313 297 282 268 256
292 276 261 248 237 226
268 253 240 228 217 207
236 223 211 201 191 183
207 196 185 176 168 160
23 24 25 26 27 28
415 398 382 367 354 341
374 358 344 331 318 307
334 320 308 296 285 275
302 290 278 268 258 248
273 262 251 242 233 224
245 235 226 217 209 201
216 207 199 191 184 177
198 190 182 175 169 163
175 167 161 155 149 143
153 147 141 135 130 126
29 30 31 32 33 34
329 318 308 298 289 281
296 287 277 269 261 253
265 256 248 240 233 226
240 232 224 217 211 205
217 210 203 196 190 185
194 188 182 176 171 166
171 166 160 155 151 146
157 152 147 142 138 134
139 134 130 126 122 118
121 117 114 110 107 104
35 36 37 38 39 40
273 265 258 251 245 239
246 239 232 226 220 215
220 214 208 202 197 192
199 193 188 183 178 174
180 175 170 165 161 157
161 157 152 148 145 141
142 138 134 131 127 124
130 127 123 120 117 114
115 112 109 106 103 100
101 98 95 93 90 88
42 44
227 217
205 195
183 175
166 158
150 143
134 128
118 113
109 104
96 91
84 80
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
442 9550 380 211 34.6 381 22.8 350 30.4 323
398 8600 347 180 32.0 324 20.3 297 27.1 284
230 4970 215 86.3 21.2 134 10.7 121 14.3 155
211 4560 193 75.2 19.3 112 8.69 101 11.6 138
186 4020 172 62.1 17.3 89.3 7.17 80.5 9.56 113
163 3520 150 52.6 15.3 69.9 5.69 63.0 7.59 88.4
Span (ft)
760 734 682 636 597
483 470 434 403 376 352
Fy = 36 ksi
11 12 13 14 15 16
Properties and Reaction Values 356 7690 311 155 29.2 268 17.2 245 22.9 250
322 6960 277 131 26.3 219 13.9 201 18.5 217
291 6290 251 113 24.1 184 12.0 168 15.9 191
261 5640 242 103 23.6 167 12.8 151 17.1 180
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 50
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 18
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation
Span (ft)
Fy = 36 ksi
Wt./ft
W 18 71
65
6 7 8 9 10 11
355 348 313 285
321 319 287 261
12 13 14 15 16 17
261 241 224 209 196 184
18 19 20 21 22 23
60
W 18 55
50
46
40
35
294 266 242
275 269 242 220
248 242 218 198
253 245 218 196 178
219 212 188 169 154
206 205 180 160 144 131
239 221 205 192 180 169
221 204 190 177 166 156
202 186 173 161 151 142
182 168 156 145 136 128
163 151 140 131 122 115
141 130 121 113 106 100
120 110 103 96 90 84
174 165 157 149 142 136
160 151 144 137 131 125
148 140 133 127 121 116
134 127 121 115 110 105
121 115 109 104 99 95
109 103 98 93 89 85
94 89 85 81 77 74
80 76 72 68 65 62
24 25 26 27 28 29
131 125 120 116 112 108
120 115 110 106 103 99
111 106 102 98 95 92
101 97 93 90 86 83
91 87 84 81 78 75
82 78 75 73 70 68
71 68 65 63 60 58
60 57 55 53 51 50
30 31 32 33 34 35
104 101 98 95 92 89
96 93 90 87 84 82
89 86 83 81 78 76
81 78 76 73 71 69
73 70 68 66 64 62
65 63 61 59 58 56
56 55 53 51 50 48
48 46 45 44 42 41
36 38 40 42 44
87 82 78 75 71
80 76 72 68 65
74 70 66 63 60
67 64 60 58 55
61 57 55 52 50
54 52 49 47 45
47 45 42 40 38
40 38 36 34 33
90.7 1960 126 40.5 13.0 51.4 3.92 46.7 5.23 64.2
78.4 1690 110 33.7 11.3 39.2 3.05 35.6 4.07 49.1
66.5 1440 103 30.4 10.8 32.8 3.29 28.9 4.39 43.5
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
145 3130 178 66.8 17.8 95.9 7.44 86.7 9.92 120
133 2870 161 58.2 16.2 80.0 6.08 72.6 8.10 99.8
123 2660 147 51.4 14.9 68.2 5.18 61.9 6.90 85.0
112 2420 137 46.1 14.0 59.2 4.77 53.4 6.36 74.7
101 2180 124 39.9 12.8 48.9 4.01 44.1 5.34 61.9
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 51
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 16
For beams laterally unsupported, see page 4-113 Designation
Span (ft)
Fy = 36 ksi
Wt./ft
W 16 100
89
W 16
77
6 7 8 9 10 11
386
342
292
12 13 14 15 16 17
356 329 305 285 267 252
315 291 270 252 236 222
18 19 20 21 22 23
238 225 214 204 194 186
24 25 26 27 28 29
67
57
50
45
W 16 40
36
31
26 153 136 119 106 95 87
251
275 252 227 206
240 221 199 181
216 198 178 162
190 175 157 143
182 173 154 138 126
170 167 146 130 117 106
270 249 231 216 203 191
234 216 201 187 176 165
189 174 162 151 142 133
166 153 142 132 124 117
148 137 127 119 111 105
131 121 112 105 98 93
115 106 99 92 86 81
97 90 83 78 73 69
80 73 68 64 60 56
210 199 189 180 172 164
180 171 162 154 147 141
156 148 140 134 128 122
126 119 113 108 103 99
110 105 99 95 90 86
99 94 89 85 81 77
87 83 79 75 72 68
77 73 69 66 63 60
65 61 58 56 53 51
53 50 48 45 43 42
178 171 164 158 153 147
158 151 145 140 135 130
135 130 125 120 116 112
117 112 108 104 100 97
95 91 87 84 81 78
83 79 76 74 71 69
74 71 68 66 63 61
66 63 61 58 56 54
58 55 53 51 49 48
49 47 45 43 42 40
40 38 37 35 34 33
30 31 32 33 34 35
143 138 134 130 126 122
126 122 118 115 111 108
108 105 101 98 95 93
94 91 88 85 83 80
76 73 71 69 67 65
66 64 62 60 58 57
59 57 56 54 52 51
52 51 49 48 46 45
46 45 43 42 41 39
39 38 36 35 34 33
32 31 30 29 28 27
36 38 40
119 113 107
105 99 95
90 85 81
78 74 70
63 60 57
55 52 50
49 47 44
44 41 39
38 36
32 31
27 25
198 4280 193 88.8 21.1 136 11.0 123 14.7 157
175 3780 171 73.8 18.9 109 9.06 98.8 12.1 135
72.9 1570 94.9 32.6 11.0 36.6 3.22 33.2 4.30 47.1
64.0 1380 91.0 29.9 10.6 32.2 3.46 28.5 4.61 43.5
54.0 1170 84.9 27.8 9.90 29.3 2.73 26.4 3.64 38.2
44.2 955 76.3 23.9 9.00 22.5 2.65 19.7 3.53 31.2
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
150 3240 146 58.9 16.4 81.9 6.89 74.3 9.18 104
130 2810 125 48.9 14.2 61.9 5.21 56.3 6.95 78.9
105 2270 137 53.2 15.5 73.0 6.21 66.2 8.28 93.2
92.0 1990 120 44.9 13.7 56.9 4.92 51.6 6.56 72.9
82.3 1780 108 38.8 12.4 46.6 4.14 42.2 5.52 60.1
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 52
BEAM AND GIRDER DESIGN
W 14
Fy = 36 ksi
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported For beams laterally unsupported, see page 4-113
Designation Wt./ft
W 14 132
120
109
W 14 99
90
82
74
68
61
248 247 227 209 194 181
227 226 207 191 177 166
203 200 184 169 157 147
332 327 305
292 276
267 267 249
240 226
16 17 18 19 20 21
316 297 281 266 253 241
286 269 254 241 229 218
259 244 230 218 207 197
234 220 208 197 187 178
212 199 188 178 170 161
188 177 167 158 150 143
170 160 151 143 136 130
155 146 138 131 124 118
138 130 122 116 110 105
22 23 24 25 26 27
230 220 211 202 194 187
208 199 191 183 176 170
189 180 173 166 160 154
170 162 156 149 144 138
154 147 141 136 130 126
136 131 125 120 115 111
124 118 113 109 105 101
113 108 104 99 96 92
100 96 92 88 85 82
28 29 30 31 32 33
181 174 168 163 158 153
164 158 153 148 143 139
148 143 138 134 130 126
133 129 125 121 117 113
121 117 113 109 106 103
107 104 100 97 94 91
97 94 91 88 85 82
89 86 83 80 78 75
79 76 73 71 69 67
34
149
135
122
110
100
88
80
73
65
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
234 5050 184 98.0 23.2 161 16.3 145 21.8 173
212 4580 166 86.3 21.2 134 13.9 121 18.5 155
139 3000 142 74.6 18.4 103 9.95 93.6 13.3 134
126 2720 124 63.3 16.2 81.8 7.52 74.7 10.0 107
115 2480 113 56.0 14.9 69.4 6.49 63.3 8.65 91.5
102 2200 101 48.5 13.5 56.4 5.40 51.4 7.20 74.8
Span (ft)
368 361 337
284 273 250 231 214 200
Fy = 36 ksi
10 11 12 13 14 15
Properties and Reaction Values 192 4150 146 73.8 18.9 108 10.8 97.6 14.4 135
173 3740 134 62.7 17.5 91.3 9.48 82.3 12.6 119
157 3390 120 54.5 15.8 75.3 7.86 67.9 10.5 102
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 53
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 14
For beams laterally unsupported, see page 4-113 Designation
Span (ft)
Fy = 36 ksi
Wt./ft
W 14 53
48
5 6 7 8 9 10
200 188
182 169
11 12 13 14 15 16
171 157 145 134 125 118
17 18 19 20 21 22
W 14 43
38
34
W 14 30
26
22
162 150
170 166 148 133
155 147 131 118
145 128 114 102
138 124 109 96 87
123 120 102 90 80 72
154 141 130 121 113 106
137 125 116 107 100 94
121 111 102 95 89 83
107 98 91 84 79 74
93 85 79 73 68 64
79 72 67 62 58 54
65 60 55 51 48 45
111 105 99 94 90 86
100 94 89 85 81 77
88 84 79 75 72 68
78 74 70 66 63 60
69 66 62 59 56 54
60 57 54 51 49 46
51 48 46 43 41 39
42 40 38 36 34 33
23 24 25 26 27 28
82 78 75 72 70 67
74 71 68 65 63 60
65 63 60 58 56 54
58 55 53 51 49 47
51 49 47 45 44 42
44 43 41 39 38 36
38 36 35 33 32 31
31 30 29 28 27 26
29 30 31 32 33 34
65 63 61 59 57 55
58 56 55 53 51 50
52 50 48 47 46 44
46 44 43 42 40 39
41 39 38 37 36 35
35 34 33 32 31 30
30 29 28 27 26 26
25 24 23 22 22 21
47.3 1020 72.6 22.8 9.72 26.6 3.39 23.5 4.52 38.2
40.2 868 69.0 21.5 9.18 25.5 2.61 23.1 3.47 34.4
33.2 717 61.4 18.1 8.28 19.5 2.43 17.3 3.24 27.8
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
87.1 1880 100 47.9 13.3 55.9 5.06 51.3 6.75 73.2
78.4 1690 91.1 42.1 12.2 46.8 4.40 42.8 5.86 61.8
69.6 1500 81.0 36.0 11.0 37.5 3.60 34.2 4.80 49.8
61.5 1330 85.0 29.6 11.2 37.9 3.77 34.4 5.02 50.7
54.6 1180 77.5 25.7 10.3 31.4 3.34 28.3 4.45 42.8
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 54
BEAM AND GIRDER DESIGN
W 12
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation Wt./ft
W 12 120
106
96
87
W 12 79
72
65
58
53 162 153 140 129 120 112
306 295 272 253 236
272 265 244 227 212
251 238 219 204 190
226 214 198 184 171
205 194 179 167 156
184 174 161 149 139
16 17 18 19 20 21
251 236 223 211 201 191
221 208 197 186 177 169
198 187 176 167 159 151
178 168 158 150 143 136
161 151 143 135 129 122
146 137 130 123 117 111
131 123 116 110 105 100
117 110 104 98 93 89
105 99 93 89 84 80
22 23 24 25 26 27
183 175 167 161 155 149
161 154 148 142 136 131
144 138 132 127 122 118
130 124 119 114 110 106
117 112 107 103 99 95
106 101 97 93 90 86
95 91 87 84 80 77
85 81 78 75 72 69
76 73 70 67 65 62
28 29 30
143 139 134
127 122 118
113 109 106
102 98 95
92 89 86
83 80 78
75 72 70
67 64 62
60 58 56
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
186 4020 181 116 25.6 192 22.7 173 30.2 199
164 3540 153 92.6 22.0 145 16.3 131 21.8 164
108 2330 102 53.2 15.5 70.6 8.89 63.4 11.9 102
96.8 2090 91.9 46.1 14.0 58.0 7.43 52.0 9.90 84.1
86.4 1870 85.3 44.6 13.0 52.9 5.49 48.4 7.32 72.2
77.9 1680 80.9 38.8 12.4 47.0 5.44 42.6 7.25 66.2
Span (ft)
362 335 309 287 268
171 170 156 144 133 124
Fy = 36 ksi
10 11 12 13 14 15
Properties and Reaction Values 147 3180 136 80.4 19.8 118 13.4 107 17.8 145
132 2850 125 69.5 18.5 102 12.4 91.5 16.5 130
119 2570 113 60.8 16.9 84.5 10.5 75.9 14.0 116
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 55
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 12
For beams laterally unsupported, see page 4-113 Designation
Span (ft)
Fy = 36 ksi
Wt./ft
W 12 50
45
W 12 40
4 5 6 7 8 9
175 174
157 155
10 11 12 13 14 15
156 142 130 120 112 104
16 17 18 19 20 21
35
30
W 12 26
22
19
16
14
111 107 89 76 67 59
103 87 72 62 54 48
93 75 63 54 47 42
137
146 138 123
125 116 103
109 100 89
124 105 90 79 70
140 127 116 108 100 93
124 113 104 96 89 83
111 101 92 85 79 74
93 85 78 72 66 62
80 73 67 62 57 54
63 58 53 49 45 42
53 49 44 41 38 36
43 39 36 33 31 29
38 34 31 29 27 25
98 92 87 82 78 74
87 82 78 74 70 67
78 73 69 65 62 59
69 65 61 58 55 53
58 55 52 49 47 44
50 47 45 42 40 38
40 37 35 33 32 30
33 31 30 28 27 25
27 26 24 23 22 21
23 22 21 20 19 18
22 23 24 25 26 27
71 68 65 63 60 58
64 61 58 56 54 52
56 54 52 50 48 46
50 48 46 44 43 41
42 40 39 37 36 34
37 35 33 32 31 30
29 28 26 25 24 23
24 23 22 21 21 20
20 19 18 17 17 16
17 16 16 15 14 14
28 29 30
56 54 52
50 48 47
44 43 37
39 38 31
33 32 27
29 28 21
23 22 18
19 18
16 15
13 13
72.4 1560 87.7 45.8 13.3 55.1 5.96 50.3 7.95 76.1
64.7 1400 78.5 37.7 12.1 45.0 4.98 41.0 6.64 62.6
29.3 633 62.2 20.5 9.36 26.4 3.08 23.9 4.11 37.3
24.7 534 55.6 17.2 8.46 20.6 2.80 18.4 3.73 30.5
20.1 434 51.3 14.9 7.92 16.3 3.08 13.8 4.10 27.1
17.4 376 46.3 12.4 7.20 13.0 2.74 10.8 3.65
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
57.5 1240 68.5 33.2 10.6 35.2 3.83 32.1 5.11 48.7
51.2 1110 72.9 27.0 10.8 36.3 3.81 33.1 5.08 49.6
43.1 931 62.4 21.9 9.36 26.9 2.97 24.5 3.96 37.3
37.2 804 54.6 18.1 8.28 20.8 2.41 18.8 3.21 29.3
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
22.7
4 - 56
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 10
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation
W 10 112
100
88
77
68
60
54
49
9 10 11 12 13 14
333 318 289 265 244 227
293 281 255 234 216 201
255 244 222 203 188 174
218 211 192 176 162 151
190 184 167 154 142 132
167 161 146 134 124 115
145 144 131 120 111 103
132 130 119 109 100 93
15 16 17 18 19 20
212 198 187 176 167 159
187 176 165 156 148 140
163 153 144 136 128 122
141 132 124 117 111 105
123 115 108 102 97 92
107 101 95 90 85 81
96 90 85 80 76 72
87 82 77 72 69 65
21 22 23 24
151 144 138 132
134 128 122 117
116 111 106 102
100 96 92 88
88 84 80 77
77 73 70 67
69 65 63 60
62 59 57 54
74.6 1610 83.4 49.6 15.1 68.7 9.79 62.0 13.0 98.8
66.6 1440 72.6 41.6 13.3 54.0 7.49 49.0 9.99 81.4
60.4 1300 66.0 36.3 12.2 45.4 6.46 41.1 8.61 69.1
Span (ft)
Fy = 36 ksi
Wt./ft
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
147 3180 167 127 27.2 224 27.8 203 37.1 216
130 2810 147 107 24.5 182 23.2 164 31.0 187
113 2440 127 88.5 21.8 143 18.9 130 25.3 159
97.6 2110 109 71.5 19.1 110 14.8 99.7 19.8 134
85.3 1840 95.0 58.2 16.9 86.5 11.9 78.3 15.9 113
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 57
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 10
For beams laterally unsupported, see page 4-113 Designation
Span (ft)
Fy = 36 ksi
Wt./ft
W 10 45
3 4 5 6 7 8
137
9 10 11 12 13 14
39
W 10 33
30
26
W 10 22
19
17
15
12 73 68 54 45 39 34
100 93 78 67 58
94 81 67 58 50
89 86 69 58 49 43
121
110 105
122 113 99
104 97 85
95 94 80 70
132 119 108 99 91 85
112 101 92 84 78 72
93 84 76 70 64 60
88 79 72 66 61 56
75 68 61 56 52 48
62 56 51 47 43 40
52 47 42 39 36 33
45 40 37 34 31 29
38 35 31 29 27 25
30 27 25 23 21 19
15 16 17 18 19 20
79 74 70 66 62 59
67 63 59 56 53 51
56 52 49 47 44 42
53 49 47 44 42 40
45 42 40 38 36 34
37 35 33 31 30 28
31 29 27 26 25 23
27 25 24 22 21 20
23 22 20 19 18 17
18 17 16 15 14 14
21 22 23 24
56 54 52 49
48 46 44 42
40 38 36 35
38 36 34 33
32 31 29 28
27 26 24 23
22 21 20 19
19 18 18 17
16 16 15 14
13 12 12 11
54.9 1190 68.7 39.4 12.6 49.9 6.29 45.7 8.38 72.9
46.8 1010 60.7 31.9 11.3 39.4 5.46 35.8 7.28 59.4
21.6 467 49.8 18.3 9.00 24.0 3.55 21.6 4.73 37.0
18.7 404 47.2 16.2 8.64 20.7 3.80 18.1 5.07 34.6
16.0 346 44.7 14.2 8.28 17.5 4.14 14.8 5.52 32.7
12.6 272 36.5 10.7 6.84 11.6 3.04 9.61 4.05 22.8
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
38.8 838 54.9 27.7 10.4 31.5 5.29 28.1 7.05 51.0
36.6 791 61.1 25.3 10.8 35.9 4.64 32.7 6.19 52.8
31.3 676 52.2 20.5 9.36 26.9 3.55 24.5 4.73 39.8
26.0 562 47.4 16.2 8.64 21.6 3.47 19.2 4.62 34.3
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 58
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W8
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation
W8 67
58
48
7 8 9 10 11 12
199 190 168 152 138 126
40
35
31
174 161 144 129 117 108
132 118 106 96 88
115 107 96 86 78 72
98 94 83 75 68 62
89 82 73 66 60 55
13 14 15 16 17 18
117 108 101 95 89 84
99 92 86 81 76 72
81 76 71 66 62 59
66 61 57 54 51 48
58 54 50 47 44 42
51 47 44 41 39 36
19 20
80 76
68 65
56 53
45 43
39 37
35 33
39.8 860 57.7 34.4 13.0 49.5 9.27 44.4 12.4 76.5
34.7 750 48.9 27.9 11.2 37.2 6.80 33.5 9.07 63.0
30.4 657 44.3 24.0 10.3 30.7 6.11 27.4 8.14 53.9
Span (ft)
Fy = 36 ksi
Wt./ft
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
70.2 1520 99.7 73.7 20.5 127 20.2 115 26.9 140
59.8 1290 86.8 60.2 18.4 100 17.2 90.3 22.9 120
49.0 1060 66.1 42.8 14.4 64.1 10.1 58.4 13.5 89.6
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 59
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W8
For beams laterally unsupported, see page 4-113 Designation
W8
Span (ft)
Fy = 36 ksi
Wt./ft
28
W8 24
21
W8 18
15
13
10
71 62 49 41 35 31
52 48 38 32 27 24
3 4 5 6 7 8
89 84 73
76 72 63
80 73 63 55
73 61 52 46
77 73 59 49 42 37
9 10 11 12 13 14
65 59 53 49 45 42
56 50 46 42 39 36
49 44 40 37 34 31
41 37 33 31 28 26
33 29 27 24 23 21
27 25 22 21 19 18
21 19 17 16 15 14
15 16 17 18 19 20
39 37 35 33 31 29
33 31 29 28 26 22
29 28 26 24 23 18
24 23 22 20 19 15
20 18 17 16 15
16 15 14 14 13
13 12 11 11 10
13.6 294 38.6 16.5 8.82 20.8 5.28 18.0 7.05 40.9
11.4 246 35.7 14.2 8.28 17.0 5.48 14.1 7.31 37.9
8.87 192 26.1 9.56 6.12 9.71 2.79 8.24 3.72 20.3
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
27.2 588 44.7 24.0 10.3 31.7 5.67 28.7 7.56 53.3
23.2 501 37.8 19.3 8.82 23.5 4.26 21.2 5.67 39.7
20.4 441 40.2 18.3 9.00 24.2 4.33 21.8 5.77 40.6
17.0 367 36.4 15.5 8.28 19.4 4.16 17.1 5.54 35.2
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 60
BEAM AND GIRDER DESIGN
W 6–5–4
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation
W6 25
2 3 4 5 6 7
79 68 58
8 9 10 11 12 13 14
20
W6 15*
16
W5
12
9
63 54 46
54 46 38 33
63 63 51 42 36
54 45 36 30 26
39 34 27 22 19
51 45 41 37 34 31
40 36 32 29 27 25
29 26 23 21 19 18
32 28 25 23 21 19
22 20 18 16 15 14
17 15 13 12 11 10
29
23
16
18
13
18.9 408 39.7 23.4 11.5 37.4 10.4 33.0 13.8 60.8
14.9 322 31.3 17.5 9.36 24.5 7.13 21.6 9.51 48.0
19
W4 16
13
54 50 42 36
47 41 35 30
45 45 34 27 23 19
31 28 25 23 21
26 23 21 19 17
17 15 14
11.6 251 27.0 19.7 9.72 28.2 8.16 25.4 10.9 51.3
9.59 207 23.4 16.2 8.64 21.6 7.04 19.2 9.38 44.3
6.28 136 22.6 17.3 10.1 26.6 14.0 22.7 18.7 50.1
9.6
Span (ft)
Fy = 36 ksi
Wt./ft
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
10.8 230 26.8 12.9 8.28 17.2 7.17 14.3 9.56 39.8
11.7 253 31.7 17.5 9.36 25.8 6.34 23.2 8.46 48.0
8.30 179 27.0 12.9 8.28 17.9 6.62 15.2 8.82 39.8
6.23 135 19.5 8.61 6.12 9.95 3.56 8.55 4.74 24.0
*Indicates noncompact shape. Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 61
BEAMS S Shapes Maximum factored uniform loads in kips for beams laterally supported
S 24–20
For beams laterally unsupported, see page 4-113 Designation Wt./ft
S 24 121
12 13 14 15 16 17
90
S 20 80
96
S 20 86
75
66
521 494 439 395 359
494 472 413 367 330 300
393 378 336 302 275
591 548
695 648 576 518 471
583 533 480 436
467 441 401
551 508 472 441 413 389
502 464 430 402 377 354
432 399 370 346 324 305
400 369 343 320 300 282
367 339 315 294 275 259
356 329 305 285 267 252
329 304 282 264 247 233
275 254 236 220 207 194
252 233 216 202 189 178
18 19 20 21 22 23
367 348 330 315 300 287
335 317 301 287 274 262
288 273 259 247 236 225
266 252 240 228 218 208
245 232 220 210 200 192
238 225 214 204 194 186
220 208 198 188 180 172
184 174 165 157 150 144
168 159 151 144 137 131
24 25 26 27 28 29
275 264 254 245 236 228
251 241 232 223 215 208
216 207 199 192 185 179
200 192 184 178 171 165
184 176 169 163 157 152
178 171 164 158 153 147
165 158 152 146 141 136
138 132 127 122 118 114
126 121 116 112 108 104
30 32 34 36 38 40
220 207 194 184 174 165
201 188 177 167 159 151
173 162 152 144 136 130
160 150 141 133 126 120
147 138 130 122 116 110
143 134 126 119 113 107
132 124 116 110 104 99
110 103 97 92 87 83
101 95 89 84 80 76
42 44 46 48 50 52
157 150 144 138 132 127
143 137 131 126 121 116
123 118 113 108 104 100
114 109 104 100 96 92
105 100 96 92 88 85
102 97 93 89 86
94 90 86 82 79
79 75 72 69 66
72 69 66 63 60
54 56 58 60
122 118 114 110
112 108 104 100
96 93 89 86
89 86 83 80
82 79 76 73
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
306 6610 381 144 28.8 229 17.6 200 23.5 238
279 6030 295 112 22.3 156 8.19 143 10.9 183
183 3950 260 104 23.8 157 14.1 138 18.8 181
153 3300 247 92.9 22.9 138 14.8 118 19.7 167
140 3020 196 73.9 18.2 97.9 7.44 88.0 9.91 122
Span (ft)
762 734 661 601
100
631 611 535 475 428 389
Fy = 36 ksi
6 7 8 9 10 11
S 24 106
Properties and Reaction Values 240 5180 348 117 26.8 184 18.2 154 24.2 205
222 4800 292 98.4 22.5 141 10.7 124 14.3 172
204 4410 233 78.8 18.0 101 5.50 92.1 7.33 119
198 4280 316 126 28.8 210 25.2 176 33.6 220
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 62
BEAM AND GIRDER DESIGN
S 18–15–12–10
BEAMS S Shapes Maximum factored uniform loads in kips for beams laterally supported
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation
Span (ft)
Fy = 36 ksi
Wt./ft
S 18 70
3 4 5 6 7 8
498 450 386 338
9 10 11 12 13 14
S 15
54.7
50
S 12
42.9
50
S 12
40.8
35
S 10
31.8
35
25.4
121 102 88 77
240 214 187
321 264 220 189 165
216 191 164 143
200 194 161 138 121
163 151 130 113
231 191 153 127 109 96
185 167 151 139 128 119
166 150 136 125 115 107
147 132 120 110 102 94
127 115 104 96 88 82
108 97 88 81 74 69
101 91 82 76 70 65
85 76 70 64 59 55
68 61 56 51 47 44
151 142 133 126 119 113
111 104 98 93 88 83
100 94 88 83 79 75
88 83 78 73 70 66
76 72 67 64 60 57
65 60 57 54 51 48
60 57 53 50 48 45
51 48 45 42 40 38
41 38 36 34 32 31
129 123 117 113 108 104
108 103 99 95 91 87
79 76 72 69 67 64
71 68 65 62 60 58
63 60 57 55 53 51
55 52 50 48 46 44
46 44 42 40 39 37
43 41 39 38 36 35
36 35 33 32 31
29 28 27 26 25
27 28 29 30 31 32
100 96 93 90 87 84
84 81 78 76 73 71
62 59 57 56 54 52
55 53 52 50 48 47
49 47 46 44
42 41 40 38
36 35 33 32
34 32 31 30
33 34 35 36 37 38
82 79 77 75 73 71
69 67 65 63 61 60
50 49 48 46 45
45 44 43 42 40
40 42 44
68 64 61
57 54 52
125 2700 249 96.0 25.6 152 26.5 121 35.4 179
105 2270 161 62.2 16.6 79.6 7.23 70.9 9.64 103
44.8 968 99.8 45.7 15.4 63.2 11.0 54.4 14.7 95.8
42.0 907 81.6 37.4 12.6 46.7 6.03 41.9 8.04 68.0
35.4 765 115 60.1 21.4 98.2 39.2 72.0 52.2 130
28.4 613 60.5 31.5 11.2 37.2 5.62 33.4 7.50 57.8
323 284
321 278 238 208
300 270 245 225 208 193
252 227 206 189 174 162
15 16 17 18 19 20
180 169 159 150 142 135
21 22 23 24 25 26
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
77.1 1670 160 68.1 19.8 98.4 16.4 82.1 21.8 132
69.3 1500 120 50.9 14.8 63.6 6.83 56.8 9.11 86.4
61.2 1320 160 88.9 24.7 141 37.6 111 50.2 169
53.1 1150 108 59.8 16.6 78.0 11.4 68.8 15.3 114
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 63
BEAMS S 8–6–5–4–3 S Shapes Maximum factored uniform loads in kips for beams laterally supported For beams laterally unsupported, see page 4-113
Designation Wt./ft
S8 23
1 2 3 4 5 6
137 104 83 69
7 8 9 10 11 12
S6 18.4
17.25
S5 12.5
10 42 41 31 24 20
60 52 46 42 38 35
51 45 40 36 32 30
33 29 25 23 21 19
26 23 20 18 17 15
17 15 14 12 11 10
13
32
27
18
14
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
19.3 417 68.6 39.7 15.9 58.5 23.1 46.2 30.8 91.3
16.5 356 42.1 24.4 9.76 28.2 5.36 25.3 7.15 48.5
S3 7.7
7.5
5.7
41 25 17 13 10 8.50
20 14 11 8.42 7.02
51 44 29 22 17 15
30 25 19 15 13
12 11 9.70 8.73
11 9.48 8.42 7.58
7.28
6.02
3.51 75.8 15.0 13.0 6.95 14.0 5.63 12.5 7.51 35.6
2.36 51.0 20.4 21.6 12.6 32.2 50.0 22.2 66.7 62.4
1.95 42.1 9.91 10.5 6.12 10.9 5.78 9.78 7.71 30.4
Span (ft)
54 46 37 30
Fy = 36 ksi
84 71 59
108 76 57 46 38
S4 9.5
Properties and Reaction Values 10.6 229 54.2 36.6 16.7 58.1 42.9 41.0 57.1 91.0
8.47 183 27.1 18.3 8.35 20.5 5.32 18.4 7.10 41.4
5.67 122 20.8 15.6 7.70 17.3 5.52 15.5 7.36 39.4
4.04 87.3 25.3 22.0 11.7 30.8 27.1 23.6 36.2 60.1
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 64
BEAM AND GIRDER DESIGN
MC,C 18–15
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation
MC 18
Span (ft)
Fy = 36 ksi
Wt./ft
58
51.9
C 15 45.8
42.7
50
40
33.9
303 247 206 177 154
233 218 181 156 136
3 4 5 6 7 8
490 409 341 292 255
420 374 311 267 234
350 339 282 242 212
315 268 230 201
418 368 295 246 210 184
9 10 11 12 13 14
227 204 186 170 157 146
208 187 170 156 144 133
188 169 154 141 130 121
179 161 146 134 124 115
164 147 134 123 113 105
137 124 112 103 95 88
121 109 99 91 84 78
15 16 17 18 19 20
136 128 120 114 108 102
125 117 110 104 98 93
113 106 100 94 89 85
107 100 95 89 85 80
98 92 87 82 78 74
82 77 73 69 65 62
73 68 64 60 57 54
21 22 23 24 25 26
97 93 89 85 82 79
89 85 81 78 75 72
81 77 74 71 68 65
77 73 70 67 64 62
70 67 64 61 59 57
59 56 54 51 49 48
52 49 47 45 44 42
28 30 32 34 36 38
73 68 64 60 57 54
67 62 58 55 52 49
60 56 53 50 47 45
57 54 50 47 45 42
53 49 46 43 41
44 41 39 36 34
39 36 34 32 30
40 42 44
51 49 46
47 44 42
42 40 38
40 38 37
68.2 1470 209 92.6 25.8 149 34.6 115 46.1 176
57.2 1240 152 67.3 18.7 92.5 13.2 79.3 17.7 128
50.4 1090 117 51.8 14.4 62.4 6.03 56.4 8.03 82.5
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
94.6 2040 245 86.6 25.2 142 28.0 108 37.3 169
86.5 1870 210 74.3 21.6 112 17.6 91.3 23.5 144
78.4 1690 175 61.9 18.0 85.5 10.2 73.3 13.6 119
74.4 1610 157 55.7 16.2 73.0 7.44 64.1 9.91 97.2
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 65
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
MC 13
For beams laterally unsupported, see page 4-113 Designation
MC 13
Span (ft)
Fy = 36 ksi
Wt./ft
50
40
35
31.8
3 4 5 6 7 8
398 327 261 218 187 163
283 275 220 183 157 137
226 200 166 143 125
190 186 155 133 116
9 10 11 12 13 14
145 131 119 109 101 93
122 110 100 92 85 79
111 100 91 83 77 71
103 93 85 78 72 66
15 16 17 18 19 20
87 82 77 73 69 65
73 69 65 61 58 55
67 62 59 55 53 50
62 58 55 52 49 47
21 22 23 24 25 26
62 59 57 54 52 50
52 50 48 46 44 42
48 45 43 42 40 38
44 42 40 39 37 36
27 28 29 30 31 32
48 47 45 44 42 41
41 39 38 37 35 34
37 36 34 33 32 31
34 33 32 31 30 29
46.2 998 113 55.3 16.1 71.4 10.3 62.5 13.8 107
43.1 931 94.8 46.4 13.5 54.9 6.10 49.6 8.14 76.0
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
60.5 1310 199 97.4 28.3 167 56.4 118 75.2 189
50.9 1100 142 69.3 20.2 100 20.3 82.5 27.1 135
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 66
BEAM AND GIRDER DESIGN
C, MC 12
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation Wt./ft
C 12 30
25
MC 12 20.7
50
45
40
MC 12 35
31
10.6
181 158 126 105 90
132 110 91 78
390 303 242 202 173
332 279 223 186 160
275 255 204 170 146
218 185 154 132
173 170 141 121
8 9 10 11 12 13
91 81 73 66 60 56
79 70 63 57 53 49
69 61 55 50 46 42
151 135 121 110 101 93
140 124 112 102 93 86
128 114 102 93 85 79
116 103 92 84 77 71
106 94 85 77 71 65
31 28 25 23 21 19
14 15 16 17 18 19
52 48 45 43 40 38
45 42 39 37 35 33
39 37 34 32 30 29
87 81 76 71 67 64
80 74 70 66 62 59
73 68 64 60 57 54
66 62 58 54 51 49
61 57 53 50 47 45
18 17 16 15 14 13
20 21 22 23 24 25
36 35 33 32 30 29
32 30 29 27 26 25
27 26 25 24 23 22
61 58 55 53 50 48
56 53 51 49 47 45
51 49 46 44 43 41
46 44 42 40 39 37
42 40 39 37 35 34
13 12 11 11 10 10
26 27 28 29 30
28 27 26 25 24
24 23 23 22 21
21 20 20 19 18
47 45 43 42 40
43 41 40 39 37
39 38 36 35 34
36 34 33 32 31
33 31 30 29 28
9.64 9.28 8.95 8.64 8.35
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
33.6 726 119 51.6 18.4 78.9 20.3 62.7 27.0 111
29.2 631 90.3 39.2 13.9 52.1 8.85 45.1 11.8 83.4
47.3 1020 138 69.7 21.2 116 22.4 98.1 29.9 139
42.8 924 109 55.2 16.8 81.7 11.1 72.8 14.8 110
39.3 849 86.3 43.7 13.3 57.6 5.54 53.2 7.38 77.2
11.6 251 44.3 11.8 6.84 14.1 1.70 12.7 2.26 20.1
Span (ft)
238 181 145 121 104
89 84 63 50 42 36
Fy = 36 ksi
2 3 4 5 6 7
Properties and Reaction Values 25.4 549 65.8 28.6 10.2 32.4 3.42 29.7 4.57 44.5
56.1 1210 195 98.6 30.1 195 63.6 144 84.8 196
51.7 1120 166 84.1 25.6 154 39.4 122 52.6 167
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 67
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
C, MC 10
For beams laterally unsupported, see page 4-113 Designation
Span (ft)
Fy = 36 ksi
Wt./ft
C 10
MC 10
30
25
20
2 3 4 5 6 7
262 192 144 115 96 82
205 166 124 99 83 71
8 9 10 11 12 13
72 64 57 52 48 44
14 15 16 17 18 19 20 21 22 23 24
33.6
MC 10 28.5
25
MC 10
15.3
41.1
22
147 139 104 83 69 60
93 85 68 57 49
309 280 210 168 140 120
224 180 144 120 103
165 160 128 107 91
148 139 111 93 80
113 102 85 73
66 57 42 34 28 24
8.4
62 55 50 45 41 38
52 46 42 38 35 32
43 38 34 31 28 26
105 93 84 76 70 65
90 80 72 66 60 55
80 71 64 58 53 49
70 62 56 51 46 43
64 57 51 46 42 39
21 19 17 15 14 13
41 38 36 34 32 30
35 33 31 29 28 26
30 28 26 25 23 22
24 23 21 20 19 18
60 56 53 49 47 44
52 48 45 42 40 38
46 43 40 38 36 34
40 37 35 33 31 29
36 34 32 30 28 27
12 11 11 10 9.4 8.9
29 27 26 25 24
25 24 23 22 21
21 20 19 18 17
17 16 16 15 14
42 40 38 37 35
36 34 33 31 30
32 30 29 28 27
28 27 25 24 23
25 24 23 22 21
8.5 8.1 7.7 7.4 7.1
26.6 575 131 60.6 24.2 112 64.2 68.8 85.6 139
23.0 497 102 47.3 18.9 77.1 30.6 56.7 40.9 109
29.6 639 82.6 47.8 15.3 64.3 12.3 56.1 16.3 97.5
25.8 557 73.9 42.8 13.7 54.4 8.76 48.5 11.7 86.5
23.6 510 56.4 32.6 10.4 36.2 3.89 33.6 5.19 50.5
7.86 170 33.0 10.5 6.12 11.3 1.61 10.3 2.15
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
19.3 417 73.7 34.1 13.6 47.1 11.5 39.5 15.3 78.5
15.8 341 46.7 21.6 8.64 23.8 2.91 21.8 3.88 34.4
38.9 840 155 89.6 28.7 165 80.5 111 107 183
33.4 721 112 64.7 20.7 101 30.4 80.9 40.5 132
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
17.3
4 - 68
BEAM AND GIRDER DESIGN
C, MC 9
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation
C9
Span (ft)
Fy = 36 ksi
Wt./ft
MC 9
20
15
13.4
25.4
23.9
2 3 4 5 6 7
157 121 91 73 60 52
100 97 73 58 49 42
82 68 54 45 39
157 125 100 84 72
140 120 96 80 69
8 9 10 11 12 13
45 40 36 33 30 28
36 32 29 27 24 22
34 30 27 25 23 21
63 56 50 46 42 39
60 53 48 44 40 37
14 15 16 17 18 19
26 24 23 21 20 19
21 19 18 17 16 15
19 18 17 16 15 14
36 33 31 29 28 26
34 32 30 28 27 25
20 21 22
18 17 16
15 14 13
14 13 12
25 24 23
24 23 22
23.2 501 78.7 48.1 16.2 68.5 16.9 58.4 22.5 101
22.2 480 70.0 42.8 14.4 57.4 11.9 50.3 15.8 89.6
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
16.8 363 78.4 37.8 16.1 59.0 22.2 45.6 29.6 90.2
13.5 292 49.9 24.0 10.3 29.9 5.72 26.5 7.62 51.3
12.5 270 40.8 19.7 8.39 22.1 3.12 20.2 4.17 33.8
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 69
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
C, MC 8
For beams laterally unsupported, see page 4-113 Designation
C8
Span (ft)
Fy = 36 ksi
Wt./ft
MC 8
MC 8
MC 8
18.75
13.75
11.5
22.8
21.4
20
18.7
1 2 3 4 5 6
151 149 99 75 60 50
8.5
94 78 59 47 39
68 52 41 34
133 102 81 68
117 97 78 65
124 117 87 70 58
110 83 67 55
56 50 37 30 25
7 8 9 10 11 12
43 37 33 30 27 25
34 29 26 24 21 20
29 26 23 21 19 17
58 51 45 41 37 34
56 49 43 39 35 32
50 44 39 35 32 29
48 42 37 33 30 28
21 19 17 15 14 12
13 14 15 16 17 18
23 21 20 19 18 17
18 17 16 15 14 13
16 15 14 13 12 11
31 29 27 25 24 23
30 28 26 24 23 22
27 25 23 22 21 19
26 24 22 21 20 18
11 11 10 9.3 8.8 8.3
19 20
16 15
12 12
11 10
21 20
20 19
18 17
18 17
7.9 7.5
16.2 350 62.2 40.5 14.4 54.7 14.7 46.9 19.6 87.3,
15.4 333 54.9 35.7 12.7 45.4 10.1 40.0 13.5 77.0
6.91 149 27.8 12.1 6.44 12.9 2.12 11.8 2.82 21.0
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
13.8 298 75.7 41.1 17.5 64.9 34.0 46.8 45.3 98.1
10.9 235 47.1 25.6 10.9 31.9 8.18 27.5 10.9 61.0
9.55 206 34.2 18.6 7.92 19.7 3.13 18.0 4.18 31.6
18.8 406 66.4 45.6 15.4 61.9 17.0 52.8 22.7 95.6
18.0 389 58.3 40.1 13.5 50.9 11.5 44.8 15.4 84.0
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 70
BEAM AND GIRDER DESIGN
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
C, MC 7–6
Fy = 36 ksi
For beams laterally unsupported, see page 4-113 Designation
C7 12.25
MC 7 9.8
22.7
C6
19.1
13
10.5 73 66 44 33 27 22
1 2 3 4 5 6
85 60 45 36 30
57 51 38 31 26
137 117 87 70 58
96 77 62 51
102 78 52 39 31 26
7 8 9 10 11 12
26 23 20 18 16 15
22 19 17 15 14 13
50 44 39 35 32 29
44 39 34 31 28 26
22 20 17 16 14 13
19 17 15 13 12 11
13 14 15 16
14 13 12 11
12 11 10 9.61
27 25 23 22
24 22 21 19
12 11 10
10 9.49 8.86
8.40 181 42.7 24.7 11.3 32.6 11.1 27.4 14.8 61.5
7.12 154 28.6 16.5 7.56 17.8 3.32 16.3 4.42 30.6
MC 6 8.2
MC 6
MC 6
18
16.3
15.1
12
47 37 28 22 18
88 83 62 50 41
87 73 55 44 37
74 70 52 42 35
72 53 40 32 27
16 14 12 11 10 9.23
35 31 28 25 23 21
31 28 24 22 20 18
30 26 23 21 19 17
23 20 18 16 14 13
8.52 7.91 7.39
19 18 17
17 16 15
16 15 14
12 11 11
11.5 248 44.2 36.2 13.6 49.2 17.5 42.2 23.4 80.6
10.2 220 43.7 35.9 13.5 48.4 17.0 41.6 22.6 79.7
9.69 209 36.9 30.2 11.4 37.5 10.2 33.4 13.6 67.2
7.38 159 36.2 22.7 11.2 32.3 12.2 27.5 16.2 58.9
Span (ft)
Fy = 36 ksi
Wt./ft
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
16.2 350 68.4 50.9 18.1 77.2 33.4 61.6 44.5 110
14.3 309 47.9 35.6 12.7 45.2 11.4 39.8 15.3 76.8
7.26 157 51.0 32.0 15.7 51.8 37.2 36.9 49.6 83.1
6.15 133 36.6 23.0 11.3 31.5 13.8 26.0 18.4 59.7
5.13 111 23.3 14.6 7.20 16.0 3.57 14.6 4.76 30.1
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 36 ksi
4 - 71
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
C 5–4–3
For beams laterally unsupported, see page 4-113 Designation
C5
Wt./ft
9 1 2 3 4 5 6
C3
7.25
5.4
6
5
4.1
63 47 31 24 19 16
37 25 19 15 13
50 30 20 15 12 10
29 24 16 12 9.8 8.1
37 19 12 9.3 7.4 6.2
30 16 11 8.1 6.5 5.4
20 14 9.4 7.0 5.6 4.7
13 12 10 9.4 8.6 7.9
11 9.5 8.4 7.6 6.9 6.3
7.0 6.1 5.4 4.9
5.3
4.6
4.0
1.72 37.2 20.8 22.0 12.8 34.0 50.6 23.8 67.4 63.7
1.50 32.4 15.0 16.0 9.29 21.0 19.2 17.1 25.7 46.1
1.30 28.1 9.91 10.5 6.12 11.2 5.51 10.1 7.34 30.4
8.7 7.6 6.7 6.1
Span (ft)
Fy = 36 ksi
7 8 9 10 11 12
C4 6.7
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
4.36 94.2 31.6 21.9 11.7 32.1 19.7 25.5 26.3 60.0
3.51 75.8 18.5 12.8 6.84 14.3 3.94 13.0 5.25 30.1
2.81 60.7 25.0 19.9 11.6 30.3 25.6 23.4 34.2 57.4
2.26 48.8 14.3 11.4 6.62 13.1 4.83 11.9 6.44 32.8
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 72
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 44
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation
W 44
Span (ft)
Fy = 50 ksi
Wt./ft
335
290
262
230
20 21 22 23 24 25
2420 2310 2210 2110 2030 1940
2050 2030 1940 1850 1780 1700
1850 1810 1730 1660 1590 1520
1650 1570 1500 1430 1380 1320
26 27 28 29 30 31
1870 1800 1740 1680 1620 1570
1640 1580 1520 1470 1420 1370
1470 1410 1360 1310 1270 1230
1270 1220 1180 1140 1100 1060
32 33 34 35 36 38
1520 1470 1430 1390 1350 1280
1330 1290 1250 1220 1180 1120
1190 1150 1120 1090 1060 1000
1030 1000 971 943 917 868
40 42 44 46 48 50
1220 1160 1100 1060 1010 972
1070 1010 968 926 888 852
953 907 866 828 794 762
825 786 750 717 688 660
52 54 56 58 60 62
935 900 868 838 810 784
819 789 761 734 710 687
733 706 680 657 635 615
635 611 589 569 550 532
64 66 68 70 72
759 736 715 694 675
666 645 626 609 592
595 577 560 544 529
516 500 485 471 458
1270 38100 924 216 39.5 302 8.67 277 11.6 330
1100 33000 823 178 35.5 238 7.40 217 9.86 262
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
1620 48600 1212 327 51.0 494 14.7 451 19.6 492
1420 42600 1025 258 43.5 368 10.3 338 13.8 400
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 73
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 40
For beams laterally unsupported, see page 4-139 Designation Wt./ft
W 40 431
372
321
297
277
249
199
174*
1360 1300
1340 1330 1250 1180 1120 1070
1370 1310 1260 1200 1160 1110
1240 1180 1130 1090 1040 1000
1010 969 927 888 852 820
1240 1200 1160 1120 1080 1050
1070 1030 996 963 932 903
964 930 898 868 840 814
789 761 735 710 687 666
1140 1100 1070 1040 987 938
1020 988 960 933 884 840
875 850 825 803 760 722
789 766 744 723 685 651
646 627 609 592 561 533
950 907 867 831 798 767
893 852 815 781 750 721
800 764 730 700 672 646
688 657 628 602 578 556
620 592 566 543 521 501
507 484 463 444 426 410
789 761 734 710 687 666
739 713 688 665 644 623
694 670 647 625 605 586
622 600 579 560 542 525
535 516 498 482 466 451
482 465 449 434 420 407
395 381 367 355 344 333
645 626 609 592
605 587 570 554
568 551 536 521
509 494 480 467
438 425 413 401
395 383 372 362
323 313 304 296
1120 33600 797 264 37.5 279 8.16 258 10.9 306
963 28900 684 213 32.5 209 6.25 193 8.33 229
868 26000 679 198 32.5 195 7.21 176 9.62 218
715 21300 670 163 32.5 172 9.37 148 12.5 203
2550 2510
2160 2130
2000 2000
21 22 23 24 25 26
2790 2660 2540 2440 2340 2250
2390 2280 2180 2090 2000 1930
2030 1940 1850 1780 1700 1640
1900 1810 1730 1660 1600 1530
1780 1700 1630 1560 1500 1440
1590 1530 1460 1400 1340 1290
27 28 29 30 31 32
2170 2090 2020 1950 1890 1830
1860 1790 1730 1670 1620 1570
1580 1520 1470 1420 1370 1330
1480 1430 1380 1330 1290 1250
1390 1340 1290 1250 1210 1170
33 34 35 36 38 40
1770 1720 1670 1630 1540 1460
1520 1470 1430 1390 1320 1250
1290 1250 1220 1180 1120 1070
1210 1170 1140 1110 1050 998
42 44 46 48 50 52
1390 1330 1270 1220 1170 1130
1190 1140 1090 1040 1000 963
1010 968 926 888 852 819
54 56 58 60 62 64
1080 1040 1010 975 944 914
928 895 864 835 808 783
66 68 70 72
886 860 836 813
759 737 716 696
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
1950 58500 1493 597 67.0 859 26.7 786 35.6 814
1670 50100 1273 471 58.0 645 20.3 590 27.0 660
Span (ft)
2990 2930
Fy = 50 ksi
15 16 17 18 19 20
215
Properties and Reaction Values 1420 42600 1082 367 50.0 480 15.3 439 20.3 529
1330 39900 1000 356 46.5 415 13.2 380 17.7 458
1250 37500 889 311 41.5 342 9.90 316 13.2 374
*Noncompact shape; Fy = 50 ksi. Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 74
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 40
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation
Span (ft)
Fy = 50 ksi
Wt./ft
W 40 331
278
264
235
211
167
149
1370 1300
1350 1300 1220 1150
1300 1280 1190 1120 1050 995
1430 1360 1290 1230 1180 1130
1230 1170 1120 1070 1020 976
1090 1040 989 944 903 865
943 896 853 814 779 746
1210 1170 1120 1080 1040 1010
1090 1040 1010 970 936 905
937 901 868 837 808 781
830 798 769 741 716 692
716 689 663 640 618 597
1090 1060 1030 997 969 942
977 947 918 891 866 842
876 848 823 799 776 754
756 732 710 689 669 651
670 649 629 611 593 577
578 560 543 527 512 498
939 893 850 811 776 744
892 848 807 770 737 706
797 758 721 689 659 631
714 679 646 617 590 566
617 586 558 533 509 488
546 519 494 472 451 433
471 448 426 407 389 373
858 825 794 766 740 715
714 687 661 638 616 595
678 652 628 605 584 565
606 583 561 541 522 505
543 522 503 485 468 453
469 451 434 418 404 391
415 399 384 371 358 346
358 344 332 320 309 299
692 670 650 631 613 596
576 558 541 525 510 496
547 530 514 499 484 471
489 473 459 446 433 421
438 424 411 399 388 377
378 366 355 345 335 325
335 324 315 305 297 288
289 280 271 263 256 249
781 23400 684 213 32.5 209 6.25 193 8.33 229
692 20800 677 198 32.5 191 7.51 172 10.0 216
597 17900 650 177 31.5 164 8.53 143 11.4 192
13 14 15 16 17 18
2690 2680 2520 2380
2210 2100 1980
2070 1990 1880
1780 1680
1590 1510
19 20 21 22 23 24
2260 2150 2040 1950 1870 1790
1880 1790 1700 1620 1550 1490
1780 1700 1610 1540 1470 1410
1590 1520 1440 1380 1320 1260
25 26 27 28 29 30
1720 1650 1590 1530 1480 1430
1430 1370 1320 1280 1230 1190
1360 1300 1260 1210 1170 1130
31 32 33 34 35 36
1380 1340 1300 1260 1230 1190
1150 1120 1080 1050 1020 992
38 40 42 44 46 48
1130 1070 1020 975 933 894
50 52 54 56 58 60 62 64 66 68 70 72
183
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
1430 42900 1344 505 61.0 709 22.6 648 30.1 703
1190 35700 1106 383 51.0 500 15.8 458 21.1 548
1130 33900 1037 353 48.0 446 13.8 409 18.4 491
1010 30300 889 285 41.5 342 9.90 316 13.2 374
905 27200 797 246 37.5 279 8.19 257 10.9 305
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 75
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 36
For beams laterally unsupported, see page 4-139 Designation
W 36
Span (ft)
Fy = 50 ksi
Wt./ft
300
280
260
245
230
1560 1520 1440 1380 1320 1260
1470 1410 1350 1290 1230 1180
19 20 21 22 23 24
1870 1800 1720 1640 1580
1750 1670 1600 1530 1460
1640 1620 1540 1470 1410 1350
25 26 27 28 29 30
1510 1450 1400 1350 1300 1260
1400 1350 1300 1250 1210 1170
1300 1250 1200 1160 1120 1080
1210 1170 1120 1080 1040 1010
1130 1090 1050 1010 976 943
31 32 33 34 35 36
1220 1180 1150 1110 1080 1050
1130 1100 1060 1030 1000 975
1050 1010 982 953 926 900
977 947 918 891 866 842
913 884 857 832 808 786
38 40 42 44 46 48
995 945 900 859 822 788
924 878 836 798 763 731
853 810 771 736 704 675
797 758 721 689 659 631
744 707 674 643 615 589
50 52 54 56 58 60
756 727 700 675 652 630
702 675 650 627 605 585
648 623 600 579 559 540
606 583 561 541 522 505
566 544 524 505 488 472
62 64 66 68 70 72
610 591 573 556 540 525
566 548 532 516 501 488
523 506 491 476 463 450
489 473 459 446 433 421
456 442 429 416 404 393
1010 30300 779 250 40.0 300 11.4 272 15.2 337
943 28300 737 226 38.0 268 10.5 243 14.0 302
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
1260 37800 937 332 47.3 429 14.8 393 19.7 477
1170 35100 873 297 44.3 376 13.1 344 17.4 419
1080 32400 822 269 42.0 333 12.3 303 16.4 373
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 76
BEAM AND GIRDER DESIGN
W 36
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation Wt./ft
W 36 256
19 20 21 22 23 24
194
182
170
160
150
135
1740 1650 1560
1640 1560 1470 1390
1510 1440 1350 1280
1420 1350 1270 1200
1330 1250 1180 1110
1260 1250 1170 1100 1040
1210 1160 1090 1030 968
1640 1560 1490 1420 1360 1300
1480 1400 1340 1280 1220 1170
1320 1250 1190 1140 1090 1040
1210 1150 1100 1050 1000 959
1130 1080 1030 979 937 898
1050 1000 954 911 871 835
985 936 891 851 814 780
917 872 830 792 758 726
804 764 727 694 664 636
25 26 27 28 29 30
1250 1200 1160 1110 1080 1040
1120 1080 1040 1000 968 936
1000 961 926 893 862 833
920 885 852 822 793 767
862 828 798 769 743 718
802 771 742 716 691 668
749 720 693 669 646 624
697 670 646 623 601 581
611 587 566 545 527 509
31 32 33 34 35 36
1010 975 945 918 891 867
906 878 851 826 802 780
806 781 757 735 714 694
742 719 697 677 657 639
695 673 653 634 615 598
646 626 607 589 573 557
604 585 567 551 535 520
562 545 528 513 498 484
493 477 463 449 436 424
38 40 42 44 46 48
821 780 743 709 678 650
739 702 669 638 610 585
658 625 595 568 543 521
606 575 548 523 500 479
567 539 513 490 468 449
527 501 477 455 436 418
493 468 446 425 407 390
459 436 415 396 379 363
402 382 364 347 332 318
50 52 54 56 58 60
624 600 578 557 538 520
562 540 520 501 484 468
500 481 463 446 431 417
460 443 426 411 397 384
431 414 399 385 371 359
401 385 371 358 346 334
374 360 347 334 323 312
349 335 323 311 301 291
305 294 283 273 263 255
62 64 66 68 70 72
503 488 473 459 446 433
453 439 425 413 401 390
403 390 379 368 357 347
371 360 349 338 329 320
347 337 326 317 308 299
323 313 304 295 286 278
302 293 284 275 267 260
281 272 264 256 249 242
246 239 231 225 218 212
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
1040 31200 970 315 48.0 446 14.8 409 19.7 471
936 28100 872 272 43.5 367 12.2 336 16.3 406
668 20000 664 170 34.0 212 8.55 191 11.4 240
624 18700 632 157 32.5 191 8.09 171 10.8 217
581 17400 605 146 31.3 173 7.84 154 10.5 198
509 15300 576 127 30.0 149 8.32 129 11.1 176
Span (ft)
1940 1840 1730
210
1150 1090 1020 954 898 848
Fy = 50 ksi
13 14 15 16 17 18
232
Properties and Reaction Values 833 25000 822 240 41.5 318 12.4 288 16.5 358
767 23000 754 209 38.3 271 10.5 245 14.0 305
718 21500 711 193 36.3 242 9.62 219 12.8 273
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 77
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 33
For beams laterally unsupported, see page 4-139 Designation
Span (ft)
Fy = 50 ksi
Wt./ft
W 33 241
221
W 33 201
169
152
141
130
118
1050 986 932 883 839 799
964 907 857 812 771 734
876 824 778 737 701 667
778 732 692 655 623 593
16 17 18 19 20 21
1530 1480 1410 1340
1420 1350 1280 1220
1300 1290 1220 1160 1100
1180 1110 1050 993 944 899
22 23 24 25 26 27
1280 1220 1170 1130 1080 1040
1170 1120 1070 1030 987 950
1050 1010 965 926 891 858
858 820 786 755 726 699
762 729 699 671 645 621
701 670 643 617 593 571
637 609 584 560 539 519
566 541 519 498 479 461
28 29 30 31 32 33
1010 971 939 909 880 854
916 884 855 827 802 777
827 799 772 747 724 702
674 651 629 609 590 572
599 578 559 541 524 508
551 532 514 497 482 467
500 483 467 452 438 425
445 429 415 402 389 377
34 35 36 37 38 40
829 805 783 761 741 704
754 733 713 693 675 641
681 662 643 626 609 579
555 539 524 510 497 472
493 479 466 453 441 419
454 441 428 417 406 386
412 400 389 379 369 350
366 356 346 336 328 311
42 44 46 48 50 52
671 640 612 587 563 542
611 583 558 534 513 493
551 526 503 483 463 445
449 429 410 393 377 363
399 381 365 349 335 323
367 350 335 321 308 297
334 318 305 292 280 269
296 283 271 259 249 239
54 56 58 60 62 64
522 503 486 470 454 440
475 458 442 428 414 401
429 414 399 386 374 362
349 337 325 315 304 295
311 299 289 280 270 262
286 275 266 257 249 241
259 250 242 234 226 219
231 222 215 208 201 195
66 68 70 72
427 414 402 391
389 377 366 356
351 341 331 322
286 278 270 262
254 247 240 233
234 227 220 214
212 206 200 195
189 183 178 173
514 15400 544 132 30.3 166 7.49 150 9.99 191
467 14000 518 122 29.0 147 7.46 131 9.95 172
415 12500 488 107 27.5 127 7.40 110 9.87 151
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
939 28200 766 227 41.5 323 12.9 293 17.2 362
855 25700 710 200 38.8 278 11.6 251 15.5 316
772 23200 650 173 35.8 234 10.2 211 13.6 267
629 18900 612 173 33.5 218 7.89 201 10.5 244
559 16800 574 149 31.8 187 7.84 170 10.5 213
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 78
BEAM AND GIRDER DESIGN
W 30
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation
W 30
Span (ft)
Fy = 50 ksi
Wt./ft
261
235
191
173
1290 1250 1180 1120 1070
1180 1120 1060 1010 961
1080 1070 1010 955 908 864
1150 1100 1060 1010 975 939
1020 977 936 899 864 832
918 878 841 808 777 748
825 789 756 726 698 672
1010 973 941 911 882 855
905 874 845 818 792 768
803 775 749 725 702 681
721 696 673 651 631 612
648 626 605 585 567 550
34 36 38 40 42 44
830 784 743 706 672 642
746 704 667 634 604 576
661 624 591 562 535 511
594 561 531 505 481 459
534 504 478 454 432 413
46 48 50 52 54 56
614 588 565 543 523 504
551 528 507 488 469 453
488 468 449 432 416 401
439 421 404 388 374 361
395 378 363 349 336 324
58 60 62 64 66 68
487 471 455 441 428 415
437 423 409 396 384 373
387 375 362 351 340 330
348 337 326 315 306 297
313 303 293 284 275 267
70 72
403 392
362 352
321 312
288 280
259 252
673 20200 588 172 35.5 235 10.7 213 14.2 269
605 18200 538 154 32.8 197 9.38 178 12.5 228
16 17 18 19 20 21
1590 1570 1490 1410 1340
1400 1330 1270 1210
22 23 24 25 26 27
1280 1230 1180 1130 1090 1050
28 29 30 31 32 33
211
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
941 28200 794 283 46.5 415 16.7 380 22.2 434
845 25400 701 233 41.5 334 13.2 306 17.6 368
749 22500 647 206 38.8 282 12.4 257 16.5 322
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 79
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 30
For beams laterally unsupported, see page 4-139 Designation
Span (ft)
Fy = 50 ksi
Wt./ft
W 30 148
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72
1080 1070 1000 938 882 833 789 750 714 682 652 625 600 577 556 536 517 500 484 469 455 441 417 395 375 357 341 326 313 300 288 278 268 259 250 242 234 227 221 214 208
132
1010 936 874 819 771 728 690 656 624 596 570 546 524 504 486 468 452 437 423 410 397 386 364 345 328 312 298 285 273 262 252 243 234 226 219 211 205 199 193 187 182
124 953 942 874 816 765 720 680 644 612 583 556 532 510 490 471 453 437 422 408 395 383 371 360 340 322 306 291 278 266 255 245 235 227 219 211 204 197 191 185 180 175 170
116
108
99
90
916 872 810 756 709 667 630 597 567 540 515 493 473 454 436 420 405 391 378 366 354 344 334 315 298 284 270 258 247 236 227 218 210 203 196 189 183 177 172 167 162 158
878 865 798 741 692 649 611 577 546 519 494 472 451 433 415 399 384 371 358 346 335 324 315 305 288 273 260 247 236 226 216 208 200 192 185 179 173 167 162 157 153 148 144
833 780 720 669 624 585 551 520 493 468 446 425 407 390 374 360 347 334 323 312 302 293 284 275 260 246 234 223 213 203 195 187 180 173 167 161 156 151 146 142 138 134 130
749 708 653 606 566 531 499 472 447 425 404 386 369 354 340 327 314 303 293 283 274 265 257 250 236 223 212 202 193 185 177 170 163 157 152 146 142 137 133 129 125 121 118
346 10400 439 106 27.3 126 7.73 111 10.3 152
312 9360 416 93.4 26.0 111 7.66 95.6 10.2 136
283 8490 375 77.1 23.5 90.8 6.24 78.5 8.31 111
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
500 15000 538 163 32.5 205 8.21 189 10.9 232
437 13100 503 135 30.8 174 8.30 157 11.1 201
408 12200 477 123 29.2 156 7.72 140 10.3 181
378 11300 458 115 28.3 141 7.65 126 10.2 166
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 80
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 27
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation
Span (ft)
Fy = 50 ksi
Wt./ft
W 27 258
235
194
178
161
146
1270 1250 1180 1120 1060
1140 1110 1050 992 942
1090 1060 1000 945 895 851
983 960 904 853 808 768
895 864 814 768 728 692
1100 1050 1000 961 923 887
1010 965 923 885 850 817
897 856 819 785 754 725
810 773 740 709 680 654
731 698 668 640 614 591
659 629 601 576 553 532
944 911 879 850 823 797
854 824 796 769 744 721
787 759 732 708 685 664
698 673 650 628 608 589
630 608 587 567 549 532
569 549 530 512 495 480
512 494 477 461 446 432
33 34 35 36 37 38
773 750 729 708 689 671
699 679 659 641 624 607
644 625 607 590 574 559
571 554 538 523 509 496
515 500 486 473 460 448
465 452 439 427 415 404
419 407 395 384 374 364
40 42 44 46 48 50
638 607 580 554 531 510
577 549 524 502 481 461
531 506 483 462 443 425
471 449 428 410 393 377
425 405 387 370 354 340
384 366 349 334 320 307
346 329 314 301 288 277
52 54 56 58 60 62
490 472 455 440 425 411
444 427 412 398 385 372
408 393 379 366 354 343
362 349 336 325 314 304
327 315 304 293 284 274
295 284 274 265 256 248
266 256 247 238 231 223
64 66
398 386
360 350
332 322
294 285
266 258
240 233
216 210
567 17000 544 170 36.3 243 12.5 220 16.6 283
512 15400 492 150 33.0 201 10.4 182 13.9 235
461 13800 447 128 30.3 168 8.97 151 12.0 197
15 16 17 18 19 20
1530 1500 1420 1340 1280
1410 1360 1280 1210 1150
21 22 23 24 25 26
1210 1160 1110 1060 1020 981
27 28 29 30 31 32
217
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
850 25500 767 306 49.0 465 19.9 427 26.5 466
769 23100 704 263 45.5 397 17.7 363 23.6 411
708 21200 637 227 41.5 334 14.5 306 19.3 362
628 18800 569 193 37.5 271 12.1 248 16.2 311
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 81
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 27
For beams laterally unsupported, see page 4-139 Designation
W 27
Span (ft)
Fy = 50 ksi
Wt./ft
129
102
94
84
840 792 735 686 643
753 704 654 610 572
712 695 642 596 556 521
663 610 563 523 488 458
697 658 624 593 564 539
605 572 542 515 490 468
538 508 482 458 436 416
491 463 439 417 397 379
431 407 385 366 349 333
23 24 25 26 27 28
515 494 474 456 439 423
447 429 412 396 381 368
398 381 366 352 339 327
363 348 334 321 309 298
318 305 293 282 271 261
29 30 31 32 33 34
409 395 382 370 359 349
355 343 332 322 312 303
316 305 295 286 277 269
288 278 269 261 253 245
252 244 236 229 222 215
36 38 40 42 44 46
329 312 296 282 269 258
286 271 257 245 234 224
254 241 229 218 208 199
232 219 209 199 190 181
203 193 183 174 166 159
48 50 52 54 56 58
247 237 228 219 212 204
214 206 198 191 184 177
191 183 176 169 163 158
174 167 160 154 149 144
153 146 141 136 131 126
60 62 64 66
198 191 185 180
172 166 161 156
153 148 143 139
139 135 130 126
122 118 114 111
278 8340 356 88.0 24.5 107 6.35 95.4 8.46 127
244 7320 332 79.1 23.0 90.0 6.16 79.0 8.21 110
11 12 13 14 15 16
910 846 790 741
17 18 19 20 21 22
114
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
395 11900 455 138 30.5 180 8.08 165 10.8 206
343 10300 420 116 28.5 150 7.89 135 10.5 175
305 9150 377 101 25.8 121 6.57 110 8.76 143
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 82
BEAM AND GIRDER DESIGN
W 24
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation Wt./ft
W 24 131
117
104
952 936 878 826 780
868 836 784 738 697
800 793 740 694 653 617
721 701 654 613 577 545
650 619 578 542 510 482
807 767 730 697 667 639
739 702 669 638 610 585
660 627 597 570 545 523
584 555 529 505 483 463
516 491 467 446 427 409
456 434 413 394 377 361
671 645 621 599 578 559
613 590 568 548 529 511
562 540 520 501 484 468
502 482 464 448 432 418
444 427 411 396 383 370
392 377 363 350 338 327
347 333 321 310 299 289
586 568 551 535 519 505
541 524 508 493 479 466
495 479 465 451 438 426
453 439 425 413 401 390
405 392 380 369 358 348
358 347 336 326 317 308
316 307 297 289 280 273
280 271 263 255 248 241
534 507 483 461 441 423
478 455 433 413 395 379
441 419 399 381 365 349
403 383 365 348 333 319
369 351 334 319 305 293
330 314 299 285 273 261
292 278 264 252 241 231
258 245 234 223 213 204
228 217 206 197 188 181
50 52 54 56 58 60
406 390 376 362 350 338
364 350 337 325 313 303
335 323 311 299 289 280
307 295 284 274 264 256
281 270 260 251 242 234
251 241 232 224 216 209
222 213 206 198 191 185
196 189 182 175 169 164
173 167 161 155 149 145
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
676 20300 674 300 48.0 446 21.3 409 28.4 456
606 18200 604 258 43.5 367 17.6 336 23.5 400
370 11100 400 132 30.3 166 10.2 150 13.6 199
327 9810 360 112 27.5 136 8.73 121 11.6 164
289 8670 325 93.8 25.0 110 7.49 98.4 9.99 135
Span (ft)
146
Fy = 50 ksi
229
207
192
176
13 14 15 16 17 18
1350 1270 1190 1130
1210 1140 1070 1010
1110 1050 986 932
1020 1020 958 902 852
19 20 21 22 23 24
1070 1010 966 922 882 845
957 909 866 826 790 758
883 839 799 762 729 699
25 26 27 28 29 30
811 780 751 724 699 676
727 699 673 649 627 606
31 32 33 34 35 36
654 634 615 596 579 563
38 40 42 44 46 48
162
Properties and Reaction Values 559 16800 557 228 40.5 318 15.5 291 20.6 359
511 15300 511 199 37.5 271 13.5 248 18.0 315
468 14000 476 176 35.3 236 12.4 215 16.6 276
418 12500 434 152 32.5 197 11.0 179 14.7 233
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 83
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 24
For beams laterally unsupported, see page 4-139 Designation
Span (ft)
Fy = 50 ksi
Wt./ft
W 24 103
94
84
W 24 76
68
62
55
551 510 459 417 383
503 503 447 402 365 335
7 8 9 10 11 12
729 700
676 635
612 611 560
568 545 500
532 531 483 443
13 14 15 16 17 18
646 600 560 525 494 467
586 544 508 476 448 423
517 480 448 420 395 373
462 429 400 375 353 333
408 379 354 332 312 295
353 328 306 287 270 255
309 287 268 251 236 223
19 20 21 22 23 24
442 420 400 382 365 350
401 381 363 346 331 318
354 336 320 305 292 280
316 300 286 273 261 250
279 266 253 241 231 221
242 230 219 209 200 191
212 201 191 183 175 168
25 26 27 28 29 30
336 323 311 300 290 280
305 293 282 272 263 254
269 258 249 240 232 224
240 231 222 214 207 200
212 204 197 190 183 177
184 177 170 164 158 153
161 155 149 144 139 134
31 32 33 34 35 36
271 263 255 247 240 233
246 238 231 224 218 212
217 210 204 198 192 187
194 188 182 176 171 167
171 166 161 156 152 148
148 143 139 135 131 128
130 126 122 118 115 112
38 40 42 44 46 48
221 210 200 191 183 175
201 191 181 173 166 159
177 168 160 153 146 140
158 150 143 136 130 125
140 133 126 121 115 111
121 115 109 104 100 96
106 101 96 91 87 84
50 52 54 56 58 60
168 162 156 150 145 140
152 147 141 136 131 127
134 129 124 120 116 112
120 115 111 107 103
106 102 98 95 92
92 88 85 82 79
80 77 74 72 69
177 5310 266 71.3 20.8 73.7 5.57 64.9 7.43 91.8
153 4590 276 73.9 21.5 78.1 6.14 68.4 8.19 98.1
134 4020 251 64.8 19.8 63.6 5.60 54.8 7.47 81.8
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
280 8400 364 120 27.5 146 7.49 133 9.98 170
254 7620 338 105 25.8 125 6.95 113 9.26 147
224 6720 306 91.8 23.5 102 6.05 92.2 8.07 122
200 6000 284 79.1 22.0 86.8 5.67 77.8 7.55 105
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 84
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 21
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation
Span (ft)
Fy = 50 ksi
Wt./ft
W 21 201
182
166
147
132
122
111
101
766 714 666 624 588 555
702 658 614 576 542 512
639 598 558 523 492 465
577 542 506 474 446 422
13 14 15 16 17 18
1130 1060 994 935 883
1020 952 893 840 793
910 864 810 762 720
858 799 746 699 658 622
19 20 21 22 23 24
837 795 757 723 691 663
752 714 680 649 621 595
682 648 617 589 563 540
589 560 533 509 487 466
526 500 476 454 434 416
485 461 439 419 400 384
441 419 399 380 364 349
399 380 361 345 330 316
25 26 27 28 29 30
636 612 589 568 548 530
571 549 529 510 492 476
518 498 480 463 447 432
448 430 414 400 386 373
400 384 370 357 344 333
368 354 341 329 318 307
335 322 310 299 289 279
304 292 281 271 262 253
31 32 33 34 35 36
513 497 482 468 454 442
461 446 433 420 408 397
418 405 393 381 370 360
361 350 339 329 320 311
322 312 303 294 285 278
297 288 279 271 263 256
270 262 254 246 239 233
245 237 230 223 217 211
38 40 42 44 46 48
418 398 379 361 346 331
376 357 340 325 310 298
341 324 309 295 282 270
294 280 266 254 243 233
263 250 238 227 217 208
242 230 219 209 200 192
220 209 199 190 182 174
200 190 181 173 165 158
50 52
318 306
286 275
259 249
224 215
200 192
184 177
167 161
152 146
307 9210 351 127 30.0 164 11.2 148 15.0 201
279 8370 319 112 27.5 138 9.56 124 12.8 169
253 7590 288 97.7 25.0 114 7.91 103 10.6 140
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
530 15900 566 270 45.5 400 21.7 366 29.0 418
476 14300 509 233 41.5 332 18.4 304 24.5 368
432 13000 455 199 37.5 273 14.9 251 19.9 321
373 11200 429 169 36.0 236 15.9 213 21.2 286
333 9990 383 147 32.5 192 13.1 173 17.5 235
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 85
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 21
For beams laterally unsupported, see page 4-139 Designation
Span (ft)
Fy = 50 ksi
Wt./ft
W 21 93
83
73
W 21 68
62
57
50
44 390 358 318 286 260 239
7 8 9 10 11 12
677 663 603 553
596 588 535 490
522 516 469 430
491 480 436 400
453 432 393 360
461 430 387 352 323
427 413 367 330 300 275
13 14 15 16 17 18
510 474 442 414 390 368
452 420 392 368 346 327
397 369 344 323 304 287
369 343 320 300 282 267
332 309 288 270 254 240
298 276 258 242 228 215
254 236 220 206 194 183
220 204 191 179 168 159
19 20 21 22 23 24
349 332 316 301 288 276
309 294 280 267 256 245
272 258 246 235 224 215
253 240 229 218 209 200
227 216 206 196 188 180
204 194 184 176 168 161
174 165 157 150 143 138
151 143 136 130 124 119
25 26 27 28 29 30
265 255 246 237 229 221
235 226 218 210 203 196
206 198 191 184 178 172
192 185 178 171 166 160
173 166 160 154 149 144
155 149 143 138 133 129
132 127 122 118 114 110
114 110 106 102 99 95
31 32 33 34 35 36
214 207 201 195 189 184
190 184 178 173 168 163
166 161 156 152 147 143
155 150 145 141 137 133
139 135 131 127 123 120
125 121 117 114 111 108
106 103 100 97 94 92
92 89 87 84 82 80
38 40 42 44 46 48
174 166 158 151 144 138
155 147 140 134 128 123
136 129 123 117 112 108
126 120 114 109 104 100
114 108 103 98 94 90
102 97 92 88 84 81
87 83 79 75 72 69
75 72 68 65 62 60
50 52
133 128
118 113
103 99
96 92
86 83
77 74
66 63
57
129 3870 230 69.6 20.3 74.9 5.25 67.6 7.00 92.0
110 3300 214 62.3 19.0 61.8 5.33 54.4 7.10 79.1
95.4 2860 195 52.0 17.5 50.1 4.99 43.2 6.65 66.3
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
221 6630 339 122 29.0 154 10.5 138 14.0 188
196 5880 298 101 25.8 122 8.26 110 11.0 149
172 5160 261 85.3 22.8 95.2 6.48 86.0 8.64 116
160 4800 245 77.3 21.5 84.2 5.94 75.8 7.92 103
144 4320 227 68.8 20.0 71.5 5.36 64.0 7.15 89.0
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 86
BEAM AND GIRDER DESIGN
W 18
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation
Span (ft)
Fy = 50 ksi
Wt./ft
W 18 192
175
158
W 18 143
130
119
106
97
86
76
597 575 531 493 460 431
537 528 487 452 422 396
477 465 429 399 372 349
418 408 376 349 326 306
11 12 13 14 15 16
1050 1020 947 884 829
963 918 853 796 746
863 822 763 712 668
768 743 690 644 604
696 672 624 582 546
671 653 602 559 522 489
17 18 19 20 21 22
780 737 698 663 631 603
702 663 628 597 569 543
628 593 562 534 509 485
568 537 508 483 460 439
514 485 459 437 416 397
461 435 412 392 373 356
406 383 363 345 329 314
372 352 333 317 301 288
328 310 294 279 266 254
288 272 257 245 233 222
23 24 25 26 27 28
577 553 530 510 491 474
519 498 478 459 442 426
464 445 427 411 396 381
420 403 386 372 358 345
380 364 349 336 323 312
340 326 313 301 290 280
300 288 276 265 256 246
275 264 253 243 234 226
243 233 223 215 207 199
213 204 196 188 181 175
29 30 31 32 33 34
457 442 428 414 402 390
412 398 385 373 362 351
368 356 345 334 324 314
333 322 312 302 293 284
301 291 282 273 265 257
270 261 253 245 237 230
238 230 223 216 209 203
218 211 204 198 192 186
192 186 180 174 169 164
169 163 158 153 148 144
35 36 37 38 39 40
379 368 358 349 340 332
341 332 323 314 306 299
305 297 289 281 274 267
276 268 261 254 248 242
249 243 236 230 224 218
224 218 212 206 201 196
197 192 186 182 177 173
181 176 171 167 162 158
159 155 151 147 143 140
140 136 132 129 125 122
42 44
316 301
284 271
254 243
230 220
208 198
186 178
164 157
151 144
133 127
116 111
442 13300 527 293 48.0 449 26.9 412 35.8 449
398 11900 482 250 44.5 382 23.9 350 31.9 395
230 6900 298 120 29.5 158 12.6 143 16.8 199
211 6330 269 104 26.8 132 10.2 119 13.7 165
186 5580 238 86.3 24.0 105 8.45 94.9 11.3 133
163 4890 209 73.0 21.3 82.4 6.71 74.3 8.94 104
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
356 10700 431 215 40.5 315 20.2 289 27.0 347
322 9660 384 183 36.5 258 16.4 237 21.8 301
291 8730 348 157 33.5 217 14.1 199 18.8 262
261 7830 335 143 32.8 197 15.1 178 20.2 246
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 87
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 18
For beams laterally unsupported, see page 4-139 Designation
Span (ft)
Fy = 50 ksi
Wt./ft
W 18 71
65
6 7 8 9 10 11
494 483 435 395
446 443 399 363
12 13 14 15 16 17
363 335 311 290 272 256
18 19 20 21 22 23
60
W 18 55
50
46
40
35
409 369 335
381 373 336 305
345 337 303 275
351 340 302 272 247
304 294 261 235 214
287 285 249 222 200 181
333 307 285 266 249 235
308 284 264 246 231 217
280 258 240 224 210 198
253 233 216 202 189 178
227 209 194 181 170 160
196 181 168 157 147 138
166 153 143 133 125 117
242 229 218 207 198 189
222 210 200 190 181 173
205 194 185 176 168 160
187 177 168 160 153 146
168 159 152 144 138 132
151 143 136 130 124 118
131 124 118 112 107 102
111 105 100 95 91 87
24 25 26 27 28 29
181 174 167 161 155 150
166 160 153 148 143 138
154 148 142 137 132 127
140 134 129 124 120 116
126 121 117 112 108 104
113 109 105 101 97 94
98 94 90 87 84 81
83 80 77 74 71 69
30 31 32 33 34 35
145 140 136 132 128 124
133 129 125 121 117 114
123 119 115 112 109 105
112 108 105 102 99 96
101 98 95 92 89 87
91 88 85 82 80 78
78 76 74 71 69 67
67 64 62 60 59 57
36 38 40 42 44
121 114 109 104 99
111 105 100 95 91
103 97 92 88 84
93 88 84 80 76
84 80 76 72 69
76 72 68 65 62
65 62 59 56 53
55 53 50 48 45
90.7 2720 176 56.3 18.0 60.6 4.62 55.0 6.16 75.6
78.4 2350 152 46.8 15.8 46.2 3.60 41.9 4.80 57.9
66.5 2000 143 42.2 15.0 38.6 3.88 34.0 5.18 51.3
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
145 4350 247 92.8 24.8 113 8.77 102 11.7 142
133 3990 223 80.9 22.5 94.3 7.16 85.5 9.55 118
123 3690 204 71.3 20.8 80.4 6.10 73.0 8.13 100
112 3360 191 64.0 19.5 69.7 5.62 62.9 7.50 88.0
101 3030 172 55.5 17.8 57.6 4.72 51.9 6.29 72.9
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 88
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 16
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation
Span (ft)
Fy = 50 ksi
Wt./ft
W 16 100
89
77
6 7 8 9 10 11
536
475
406
12 13 14 15 16 17
495 457 424 396 371 349
438 404 375 350 328 309
18 19 20 21 22 23
330 313 297 283 270 258
24 25 26 27 28 29
W 16 67
57
50
45
W 16 40
36
31
26 212 189 166 147 133 121
348
382 350 315 286
334 307 276 251
301 274 247 224
264 243 219 199
253 240 213 192 175
236 231 203 180 162 147
375 346 321 300 281 265
325 300 279 260 244 229
263 242 225 210 197 185
230 212 197 184 173 162
206 190 176 165 154 145
182 168 156 146 137 129
160 148 137 128 120 113
135 125 116 108 101 95
111 102 95 88 83 78
292 276 263 250 239 228
250 237 225 214 205 196
217 205 195 186 177 170
175 166 158 150 143 137
153 145 138 131 125 120
137 130 123 118 112 107
122 115 109 104 99 95
107 101 96 91 87 83
90 85 81 77 74 70
74 70 66 63 60 58
248 238 228 220 212 205
219 210 202 194 188 181
188 180 173 167 161 155
163 156 150 144 139 134
131 126 121 117 113 109
115 110 106 102 99 95
103 99 95 91 88 85
91 87 84 81 78 75
80 77 74 71 69 66
68 65 62 60 58 56
55 53 51 49 47 46
30 31 32 33 34 35
198 192 186 180 175 170
175 169 164 159 154 150
150 145 141 136 132 129
130 126 122 118 115 111
105 102 98 95 93 90
92 89 86 84 81 79
82 80 77 75 73 71
73 71 68 66 64 62
64 62 60 58 56 55
54 52 51 49 48 46
44 43 41 40 39 38
36 38 40
165 156 149
146 138 131
125 118 113
108 103 98
88 83 79
77 73 69
69 65 62
61 58 55
53 51
45 43
37 35
198 5940 268 123 29.2 160 13.0 145 17.3 202
175 5250 237 103 26.2 128 10.7 116 14.2 163
72.9 2190 132 45.3 15.3 43.2 3.80 39.1 5.06 55.6
64.0 1920 126 41.5 14.7 37.9 4.07 33.6 5.43 51.2
54.0 1620 118 38.7 13.8 34.5 3.22 31.1 4.29 45.0
44.2 1330 106 33.2 12.5 26.5 3.12 23.2 4.16 36.7
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
150 4500 203 81.8 22.8 96.5 8.12 87.5 10.8 123
130 3900 174 67.9 19.8 73.0 6.14 66.3 8.19 93.0
105 3150 191 73.9 21.5 86.0 7.32 78.0 9.76 110
92.0 2760 167 62.3 19.0 67.1 5.80 60.8 7.73 85.9
82.3 2470 150 53.9 17.3 54.9 4.87 49.7 6.50 70.8
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 89
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 14
For beams laterally unsupported, see page 4-139 Designation Wt./ft
W 14 132
120
109
W 14 99*
90*
82
74
68
61
344 344 315 291 270 252
315 314 288 265 246 230
281 278 255 235 219 204
461 454 424
406 384
371 370 345
333 329 307
16 17 18 19 20 21
439 413 390 369 351 334
398 374 353 335 318 303
360 339 320 303 288 274
323 304 287 272 259 246
288 271 256 243 230 219
261 245 232 219 209 199
236 222 210 199 189 180
216 203 192 182 173 164
191 180 170 161 153 146
22 23 24 25 26 27
319 305 293 281 270 260
289 277 265 254 245 236
262 250 240 230 222 213
235 225 216 207 199 192
210 200 192 184 177 171
190 181 174 167 160 154
172 164 158 151 145 140
157 150 144 138 133 128
139 133 128 122 118 113
28 29 30 31 32 33
251 242 234 226 219 213
227 219 212 205 199 193
206 199 192 186 180 175
185 178 172 167 162 157
165 159 154 149 144 140
149 144 139 135 130 126
135 130 126 122 118 115
123 119 115 111 108 105
109 106 102 99 96 93
34
206
187
169
152
136
123
111
101
90
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
234 7020 255 136 32.3 190 19.2 171 25.6 241
212 6360 231 120 29.5 158 16.3 143 21.8 213
126 3780 172 87.9 22.5 96.5 8.86 88.1 11.8 126
115 3450 157 77.8 20.8 81.8 7.65 74.6 10.2 108
102 3060 141 67.4 18.8 66.5 6.37 60.6 8.49 88.2
Span (ft)
511 501 468
394 379 348 321 298 278
Fy = 50 ksi
10 11 12 13 14 15
Properties and Reaction Values 192 5760 203 103 26.2 127 12.7 115 16.9 170
173 5170 185 87.1 24.3 108 11.2 97.0 14.9 145
157 4610 167 75.6 22.0 88.7 9.26 80.0 12.3 120
139 4170 197 104 25.5 121 11.7 110 15.6 161
*Noncompact shape; Fy = 50 ksi. Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 90
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 14
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation
Span (ft)
Fy = 50 ksi
Wt./ft
W 14 53
48
5 6 7 8 9 10
278 261
253 235
11 12 13 14 15 16
238 218 201 187 174 163
17 18 19 20 21 22
W 14 43
38
34
W 14 30
26
22
225 209
236 231 205 185
215 205 182 164
202 177 158 142
192 172 151 134 121
171 166 142 125 111 100
214 196 181 168 157 147
190 174 161 149 139 131
168 154 142 132 123 115
149 137 126 117 109 102
129 118 109 101 95 89
110 101 93 86 80 75
91 83 77 71 66 62
154 145 138 131 124 119
138 131 124 118 112 107
123 116 110 104 99 95
109 103 97 92 88 84
96 91 86 82 78 74
83 79 75 71 68 65
71 67 63 60 57 55
59 55 52 50 47 45
23 24 25 26 27 28
114 109 105 101 97 93
102 98 94 90 87 84
91 87 84 80 77 75
80 77 74 71 68 66
71 68 66 63 61 59
62 59 57 55 53 51
52 50 48 46 45 43
43 42 40 38 37 36
29 30 31 32 33 34
90 87 84 82 79 77
81 78 76 74 71 69
72 70 67 65 63 61
64 62 60 58 56 54
56 55 53 51 50 48
49 47 46 44 43 42
42 40 39 38 37 35
34 33 32 31 30 29
47.3 1420 101 31.6 13.5 31.4 4.00 27.7 5.33 45.0
40.2 1210 95.8 29.9 12.8 30.1 3.07 27.2 4.09 40.6
33.2 996 85.3 25.2 11.5 23.0 2.86 20.4 3.81 32.8
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
87.1 2610 139 66.5 18.5 65.9 5.96 60.4 7.95 86.2
78.4 2350 127 58.4 17.0 55.1 5.18 50.4 6.91 72.8
69.6 2090 112 50.0 15.3 44.2 4.24 40.4 5.65 58.7
61.5 1850 118 41.2 15.5 44.7 4.44 40.5 5.92 59.7
54.6 1640 108 35.6 14.3 37.0 3.94 33.3 5.25 50.4
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 91
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 12
For beams laterally unsupported, see page 4-139 Designation Wt./ft
W 12 120
106
96
87
W 12 79
72
65*
58
53 225 212 195 180 167 156
425 410 378 351 328
377 368 339 315 294
348 330 305 283 264
314 298 275 255 238
284 270 249 231 216
255 238 220 204 191
16 17 18 19 20 21
349 328 310 294 279 266
308 289 273 259 246 234
276 259 245 232 221 210
248 233 220 208 198 189
223 210 198 188 179 170
203 191 180 171 162 154
179 168 159 151 143 136
162 152 144 136 130 123
146 137 130 123 117 111
22 23 24 25 26 27
254 243 233 223 215 207
224 214 205 197 189 182
200 192 184 176 170 163
180 172 165 158 152 147
162 155 149 143 137 132
147 141 135 130 125 120
130 124 119 114 110 106
118 113 108 104 100 96
106 102 97 93 90 87
28 29 30
199 192 186
176 170 164
158 152 147
141 137 132
128 123 119
116 112 108
102 99 95
93 89 86
83 81 78
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
186 5580 252 161 35.5 227 26.7 203 35.6 276
164 4920 212 129 30.5 171 19.2 154 25.7 228
96.8 2860 128 64.0 19.5 68.3 8.75 61.2 11.7 99.2
86.4 2590 118 61.9 18.0 62.3 6.47 57.1 8.63 85.1
77.9 2340 112 53.9 17.3 55.4 6.41 50.3 8.54 78.0
Span (ft)
503 465 429 399 372
237 236 216 199 185 173
Fy = 50 ksi
10 11 12 13 14 15
Properties and Reaction Values 147 4410 189 112 27.5 140 15.7 126 21.0 194
132 3960 174 96.6 25.8 120 14.6 108 19.4 171
119 3570 157 84.5 23.5 99.6 12.3 89.4 16.5 143
108 3240 142 73.9 21.5 83.2 10.5 74.7 14.0 120
*Indicates noncompact shape; Fy = 50 ksi. Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 92
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 12
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation
Span (ft)
Fy = 50 ksi
Wt./ft
W 12 50
45
4 5 6 7 8 9
244 241
218 216
10 11 12 13 14 15
217 197 181 167 155 145
16 17 18 19 20 21
W 12 40
35
30
W 12 26
22
19
16
14
154 148 124 106 93 82
142 121 101 86 75 67
129 104 87 75 65 58
190
203 192 171
173 162 144
152 140 124
173 147 126 110 98
194 176 162 149 139 129
173 157 144 133 123 115
154 140 128 118 110 102
129 118 108 99 92 86
112 101 93 86 80 74
88 80 73 68 63 59
74 67 62 57 53 49
60 55 50 46 43 40
52 47 44 40 37 35
136 128 121 114 109 103
121 114 108 102 97 92
108 101 96 91 86 82
96 90 85 81 77 73
81 76 72 68 65 62
70 66 62 59 56 53
55 52 49 46 44 42
46 44 41 39 37 35
38 35 34 32 30 29
33 31 29 27 26 25
22 23 24 25 26 27
99 94 91 87 84 80
88 84 81 78 75 72
78 75 72 69 66 64
70 67 64 61 59 57
59 56 54 52 50 48
51 49 47 45 43 41
40 38 37 35 34 33
34 32 31 30 29 27
27 26 25 24 23 22
24 23 22 21 20 19
28 29 30
78 75 72
69 67 65
62 59 51
55 53 43
46 45 37
40 38 29
31 30 25
26 26
22 21
19 18
72.4 2170 122 63.6 18.5 64.9 7.02 59.2 9.37 89.7
64.7 1940 109 52.3 16.8 53.0 5.87 48.3 7.82 73.7
29.3 879 86.4 28.4 13.0 31.2 3.63 28.2 4.85 43.9
24.7 741 77.2 23.9 11.8 24.3 3.30 21.6 4.40 35.9
20.1 603 71.2 20.6 11.0 19.2 3.63 16.3 4.83 32.0
17.4 522 64.3 17.2 10.0 15.3 3.23 12.7 4.31 26.7
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
57.5 1730 95.1 46.1 14.7 41.5 4.52 37.9 6.02 57.4
51.2 1540 101 37.5 15.0 42.7 4.49 39.0 5.99 58.5
43.1 1290 86.6 30.5 13.0 31.7 3.50 28.8 4.67 44.0
37.2 1120 75.9 25.2 11.5 24.5 2.83 22.2 3.78 34.5
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 93
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 10
For beams laterally unsupported, see page 4-139 Designation
W 10 112
100
88
77
68
60
54
49
9 10 11 12 13 14
463 441 401 368 339 315
408 390 355 325 300 279
354 339 308 283 261 242
303 293 266 244 225 209
264 256 233 213 197 183
232 224 203 187 172 160
202 200 182 167 154 143
183 181 165 151 139 129
15 16 17 18 19 20
294 276 259 245 232 221
260 244 229 217 205 195
226 212 199 188 178 170
195 183 172 163 154 146
171 160 151 142 135 128
149 140 132 124 118 112
133 125 118 111 105 100
121 113 107 101 95 91
21 22 23 24
210 200 192 184
186 177 170 163
161 154 147 141
139 133 127 122
122 116 111 107
107 102 97 93
95 91 87 83
86 82 79 76
74.6 2240 116 68.9 21.0 80.9 11.5 73.1 15.4 123
66.6 2000 101 57.8 18.5 63.6 8.83 57.7 11.8 96.0
60.4 1810 91.6 50.5 17.0 53.5 7.61 48.4 10.1 81.4
Span (ft)
Fy = 50 ksi
Wt./ft
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
147 4410 232 177 37.8 265 32.8 240 43.7 300
130 3900 204 149 34.0 214 27.4 194 36.5 259
113 3390 177 123 30.3 169 22.3 153 29.8 221
97.6 2930 152 99.4 26.5 130 17.5 117 23.3 185
85.3 2560 132 80.8 23.5 102 14.0 92.2 18.7 153
Load above heavy line is limited by design shear strength. Values of φR (N = 31⁄4) in boldface exceed maximum web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 94
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 10
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation
Span (ft)
Fy = 50 ksi
Wt./ft
W 10 45
3 4 5 6 7 8
191
9 10 11 12 13 14
39
W 10 33
30
26
W 10 22
19
17
15
12* 101 94 75 63 54 47
138 130 108 93 81
131 112 94 80 70
124 120 96 80 69 60
169
152 146
170 157 137
145 134 117
132 130 111 98
183 165 150 137 127 118
156 140 128 117 108 100
129 116 106 97 90 83
122 110 100 91 84 78
104 94 85 78 72 67
87 78 71 65 60 56
72 65 59 54 50 46
62 56 51 47 43 40
53 48 44 40 37 34
42 38 34 31 29 27
15 16 17 18 19 20
110 103 97 92 87 82
94 88 83 78 74 70
78 73 68 65 61 58
73 69 65 61 58 55
63 59 55 52 49 47
52 49 46 43 41 39
43 41 38 36 34 32
37 35 33 31 30 28
32 30 28 27 25 24
25 23 22 21 20 19
21 22 23 24
78 75 72 69
67 64 61 59
55 53 51 49
52 50 48 46
45 43 41 39
37 35 34 33
31 29 28 27
27 26 24 23
23 22 21 20
18 17 16 16
54.9 1650 95.4 54.7 17.5 58.8 7.41 53.8 9.88 85.9
46.8 1400 84.4 44.3 15.8 46.4 6.43 42.2 8.58 70.0
21.6 648 69.1 25.4 12.5 28.3 4.18 25.5 5.57 43.6
18.7 561 65.5 22.5 12.0 24.4 4.48 21.3 5.98 40.8
16.0 480 62.0 19.8 11.5 20.7 4.88 17.4 6.51 38.6
12.6 376 50.6 14.8 9.50 13.7 3.58 11.3 4.77 26.8
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
38.8 1160 76.2 38.5 14.5 37.1 6.23 33.1 8.31 60.1
36.6 1100 84.8 35.2 15.0 42.3 5.47 38.5 7.29 62.2
31.3 939 72.5 28.4 13.0 31.7 4.18 28.8 5.58 47.0
26.0 780 65.9 22.5 12.0 25.4 4.08 22.7 5.45 40.4
*Indicates noncompact shape; Fy = 50 ksi. Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 95
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W8
For beams laterally unsupported, see page 4-139 Designation
W8 67
58
48
7 8 9 10 11 12
277 263 234 211 191 175
40
35
31
241 224 199 179 163 150
184 163 147 134 123
160 149 133 119 109 100
136 130 116 104 95 87
123 114 101 91 83 76
13 14 15 16 17 18
162 150 140 132 124 117
138 128 120 112 106 100
113 105 98 92 86 82
92 85 80 75 70 66
80 74 69 65 61 58
70 65 61 57 54 51
19 20
111 105
94 90
77 74
63 60
55 52
48 46
39.8 1190 80.2 47.8 18.0 58.3 10.9 52.3 14.6 99.6
34.7 1040 68.0 38.8 15.5 43.8 8.02 39.5 10.7 74.2
30.4 912 61.6 33.4 14.3 36.2 7.20 32.3 9.60 63.5
Span (ft)
Fy = 50 ksi
Wt./ft
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
70.2 2110 139 102 28.5 150 23.8 136 31.7 195
59.8 1790 120 83.7 25.5 118 20.2 106 27.0 167
49.0 1470 91.8 59.4 20.0 75.5 11.9 68.8 15.9 120
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 96
BEAM AND GIRDER DESIGN
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W8
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation
W8
Span (ft)
Fy = 50 ksi
Wt./ft
28
W8 24
21
W8 18
15
13
10*
99 86 68 57 49 43
72 66 53 44 38 33
3 4 5 6 7 8
124 117 102
105 99 87
112 102 87 77
101 85 73 64
107 102 82 68 58 51
9 10 11 12 13 14
91 82 74 68 63 58
77 70 63 58 54 50
68 61 56 51 47 44
57 51 46 43 39 36
45 41 37 34 31 29
38 34 31 29 26 24
29 26 24 22 20 19
15 16 17 18 19 20
54 51 48 45 43 41
46 44 41 39 37 31
41 38 36 34 32 26
34 32 30 28 27 20
27 26 24 23 21
23 21 20 19 18
18 16 16 15 14
13.6 408 53.6 23.0 12.3 24.5 6.23 21.2 8.30 48.2
11.4 342 49.6 19.8 11.5 20.1 6.46 16.6 8.61 44.6
8.87 264 36.2 13.3 8.50 11.4 3.29 9.72 4.38 24.0
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
27.2 816 62.0 33.4 14.3 37.4 6.68 33.8 8.91 62.8
23.2 696 52.5 26.8 12.3 27.7 5.02 25.0 6.69 46.7
20.4 612 55.9 25.4 12.5 28.5 5.10 25.7 6.81 47.8
17.0 510 50.5 21.6 11.5 22.9 4.90 20.2 6.53 41.4
*Indicates noncompact shape; Fy = 50 ksi. Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 97
BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported
W 6–5–4
For beams laterally unsupported, see page 4-139 Designation Wt./ft
W6 25
2 3 4 5 6 7
110 95 81
8 9 10 11 12 13
20
W6 15*
16
W5
12
9
75 62 50 42 36
54 47 37 31 27
71 63 57 52 47 44
56 50 45 41 37 34
38 34 31 28 26 24
44 39 35 32 29 27
31 28 25 23 21 19
23 21 19 17 16 14
14
41
32
22
25
18
13
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
18.9 567 55.1 32.5 16.0 44.0 12.2 38.8 16.3 84.5
14.9 447 43.5 24.4 13.0 28.9 8.40 25.4 11.2 61.8
W4 16
13
75 70 58 50
65 58 48 41
63 63 47 38 31 27
44 39 35 32 29
36 32 29 26 24
24 21 19
11.6 348 37.5 27.4 13.5 33.2 9.62 29.9 12.8 71.3
9.59 288 32.5 22.5 12.0 25.4 8.29 22.7 11.1 58.6
6.28 188 31.4 24.1 14.0 31.4 16.5 26.8 22.1 69.6
Span (ft)
88 88 70 59 50
Fy = 50 ksi
87 75 64
74 62 51 44
19
Properties and Reaction Values 10.8 308 37.2 18.0 11.5 20.3 8.45 16.9 11.3 53.5
11.7 351 44.1 24.4 13.0 30.4 7.48 27.3 9.97 59.7
8.30 249 37.4 18.0 11.5 21.0 7.80 17.9 10.4 51.7
6.23 187 27.1 12.0 8.50 11.7 4.19 10.1 5.59 28.2
*Indicates noncompact shape; Fy = 50 ksi. Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 98
BEAM AND GIRDER DESIGN
S 24–20
BEAMS S Shapes Maximum factored uniform loads in kips for beams laterally supported
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation Wt./ft
S 24 121
12 13 14 15 16 17
90
S 20 80
96
S 20 86
75
66
723 686 610 549 499
686 656 574 510 459 417
545 525 467 420 382
820 761
966 900 800 720 655
810 740 666 605
648 612 556
765 706 656 612 574 540
698 644 598 558 523 492
600 554 514 480 450 424
555 512 476 444 416 392
510 471 437 408 383 360
495 457 424 396 371 349
458 422 392 366 343 323
383 353 328 306 287 270
350 323 300 280 263 247
18 19 20 21 22 23
510 483 459 437 417 399
465 441 419 399 380 364
400 379 360 343 327 313
370 351 333 317 303 290
340 322 306 291 278 266
330 313 297 283 270 258
305 289 275 261 250 239
255 242 230 219 209 200
233 221 210 200 191 183
24 25 26 27 28 29
383 367 353 340 328 317
349 335 322 310 299 289
300 288 277 267 257 248
278 266 256 247 238 230
255 245 235 227 219 211
248 238 228 220 212 205
229 220 211 203 196 189
191 184 177 170 164 158
175 168 162 156 150 145
30 32 34 36 38 40
306 287 270 255 242 230
279 262 246 233 220 209
240 225 212 200 189 180
222 208 196 185 175 167
204 191 180 170 161 153
198 186 175 165 156 149
183 172 161 153 144 137
153 143 135 128 121 115
140 131 124 117 111 105
42 44 46 48 50 52
219 209 200 191 184 177
199 190 182 174 167 161
171 164 157 150 144 138
159 151 145 139 133 128
146 139 133 128 122 118
141 135 129 124 119
131 125 119 114 110
109 104 100 96 92
100 95 91 88 84
54 56 58 60
170 164 158 153
155 149 144 140
133 129 124 120
123 119 115 111
113 109 106 102
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
306 9180 529 200 40.0 269 20.7 236 27.7 330
279 8370 410 155 31.0 184 9.66 168 12.9 215
183 5490 362 144 33.0 185 16.7 163 22.2 240
153 4590 343 129 31.8 163 17.4 139 23.2 219
140 4200 273 103 25.3 115 8.76 104 11.7 144
Span (ft)
1060 1020 918 835
100
877 849 743 660 594 540
Fy = 50 ksi
6 7 8 9 10 11
S 24 106
Properties and Reaction Values 240 7200 483 163 37.3 216 21.4 182 28.6 284
222 6660 405 137 31.3 166 12.6 146 16.9 207
204 6120 324 109 25.0 119 6.48 109 8.64 140
198 5940 438 175 40.0 248 29.7 207 39.5 305
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 99
BEAMS S 18–15–12–10 S Shapes Maximum factored uniform loads in kips for beams laterally supported For beams laterally unsupported, see page 4-139
Designation
Span (ft)
Fy = 50 ksi
Wt./ft
S 18 70
3 4 5 6 7 8
691 625 536 469
9 10 11 12 13 14
S 15
54.7
50
S 12
42.9
50
S 12
40.8
35
S 10
31.8
35
25.4
168 142 122 107
333 297 260
445 367 306 262 230
299 266 228 199
277 269 224 192 168
227 210 180 158
321 266 212 177 152 133
257 231 210 193 178 165
231 208 189 173 160 149
204 184 167 153 141 131
177 159 145 133 123 114
149 134 122 112 103 96
140 126 115 105 97 90
118 106 97 89 82 76
95 85 77 71 66 61
210 197 185 175 166 158
154 145 136 129 122 116
139 130 122 116 109 104
122 115 108 102 97 92
106 100 94 89 84 80
90 84 79 75 71 67
84 79 74 70 66 63
71 66 62 59 56 53
57 53 50 47 45 43
179 170 163 156 150 144
150 143 137 131 126 121
110 105 101 96 93 89
99 95 90 87 83 80
87 83 80 77 73 71
76 72 69 66 64 61
64 61 58 56 54 52
60 57 55 53 50 48
51 48 46 44 42
41 39 37 36 34
27 28 29 30 31 32
139 134 129 125 121 117
117 113 109 105 102 98
86 83 80 77 75 72
77 74 72 69 67 65
68 66 63 61
59 57 55 53
50 48 46 45
47 45 43 42
33 34 35 36 37 38
114 110 107 104 101 99
95 93 90 88 85 83
70 68 66 64 63
63 61 59 58 56
40 42 44
94 89 85
79 75 72
125 3750 346 133 35.6 180 31.3 142 41.7 249
105 3150 224 86.4 23.1 93.8 8.52 83.6 11.4 122
44.8 1340 139 63.5 21.4 74.5 13.0 64.1 17.3 120
42.0 1260 113 52.0 17.5 55.1 7.11 49.4 9.47 80.2
35.4 1060 160 83.5 29.7 116 46.2 84.9 61.6 180
28.4 852 84.0 43.7 15.5 43.8 6.63 39.4 8.84 68.1
448 394
446 386 330 289
417 375 341 313 288 268
350 315 286 263 242 225
15 16 17 18 19 20
250 234 221 208 197 188
21 22 23 24 25 26
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
77.1 2310 223 94.5 27.5 116 19.3 96.7 25.7 180
69.3 2080 166 70.6 20.6 74.9 8.05 66.9 10.7 102
61.2 1840 223 123 34.3 167 44.4 131 59.1 235
53.1 1590 150 83.0 23.1 91.9 13.5 81.1 18.0 140
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 100
BEAM AND GIRDER DESIGN
S 8–6–5–4–3
BEAMS S Shapes Maximum factored uniform loads in kips for beams laterally supported
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation Wt./ft
S8 23
1 2 3 4 5 6
191 145 116 96
7 8 9 10 11 12
S6 18.4
17.25
S5 12.5
9.5
75 64 51 42
58 57 43 34 28
83 72 64 58 53 48
71 62 55 50 45 41
45 40 35 32 29 27
36 32 28 25 23 21
24 21 19 17 15 14
13
45
38
24
20
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
19.3 579 95.3 55.1 22.1 68.9 27.2 54.4 36.3 127
16.5 495 58.5 33.9 13.6 33.2 6.32 29.8 8.42 57.2
S3 7.7
7.5
5.7
70 61 40 30 24 20
42 35 26 21 18
57 35 24 18 14 12
28 20 15 12 9.75
17 15 13 12
15 13 12 11
10
8.36
4.04 121 35.2 30.6 16.3 36.3 32.0 27.8 42.6 83.5
3.51 105 20.8 18.1 9.65 16.6 6.64 14.8 8.85 43.5
2.36 70.8 28.3 30.0 17.5 37.9 59.0 26.1 78.6 86.7
1.95 58.5 13.8 14.6 8.50 12.9 6.81 11.5 9.09 41.1
Span (ft)
117 99 83
151 106 80 64 53
Fy = 50 ksi
S4
10
Properties and Reaction Values 10.6 318 75.3 50.9 23.3 68.5 50.5 48.3 67.3 126
8.47 254 37.6 25.4 11.6 24.1 6.27 21.6 8.36 48.8
5.67 170 28.9 21.7 10.7 20.4 6.50 18.2 8.67 46.4
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 101
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
MC,C 18–15
For beams laterally unsupported, see page 4-139 Designation
MC 18
Span (ft)
Fy = 50 ksi
Wt./ft
58
51.9
C 15 45.8
42.7
50
40
33.9
421 343 286 245 215
324 302 252 216 189
3 4 5 6 7 8
680 568 473 405 355
583 519 433 371 324
486 470 392 336 294
437 372 319 279
580 511 409 341 292 256
9 10 11 12 13 14
315 284 258 237 218 203
288 260 236 216 200 185
261 235 214 196 181 168
248 223 203 186 172 159
227 205 186 170 157 146
191 172 156 143 132 123
168 151 137 126 116 108
15 16 17 18 19 20
189 177 167 158 149 142
173 162 153 144 137 130
157 147 138 131 124 118
149 140 131 124 117 112
136 128 120 114 108 102
114 107 101 95 90 86
101 95 89 84 80 76
21 22 23 24 25 26
135 129 123 118 114 109
124 118 113 108 104 100
112 107 102 98 94 90
106 101 97 93 89 86
97 93 89 85 82 79
82 78 75 72 69 66
72 69 66 63 60 58
28 30 32 34 36 38
101 95 89 83 79 75
93 87 81 76 72 68
84 78 74 69 65 62
80 74 70 66 62 59
73 68 64 60 57
61 57 54 50 48
54 50 47 44 42
40 42 44
71 68 65
65 62 59
59 56 53
56 53 51
68.2 2050 290 129 35.8 176 40.7 135 54.3 245
57.2 1720 211 93.4 26.0 109 15.6 93.4 20.8 161
50.4 1510 162 71.9 20.0 73.6 7.10 66.5 9.47 97.2
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
94.6 2840 340 120 35.0 167 33.0 127 44.0 234
86.5 2600 292 103 30.0 133 20.8 108 27.7 200
78.4 2350 243 85.9 25.0 101 12.0 86.4 16.0 140
74.4 2230 219 77.3 22.5 86.1 8.76 75.5 11.7 115
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 102
BEAM AND GIRDER DESIGN
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
MC 13
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation
MC 13
Span (ft)
Fy = 50 ksi
Wt./ft
50
40
35
31.8
3 4 5 6 7 8
552 454 363 303 259 227
393 382 305 255 218 191
314 277 231 198 173
263 259 216 185 162
9 10 11 12 13 14
202 182 165 151 140 130
170 153 139 127 117 109
154 139 126 116 107 99
144 129 118 108 99 92
15 16 17 18 19 20
121 113 107 101 96 91
102 95 90 85 80 76
92 87 82 77 73 69
86 81 76 72 68 65
21 22 23 24 25 26
86 83 79 76 73 70
73 69 66 64 61 59
66 63 60 58 55 53
62 59 56 54 52 50
27 28 29 30 31 32
67 65 63 61 59 57
57 55 53 51 49 48
51 50 48 46 45 43
48 46 45 43 42 40
46.2 1390 157 76.8 22.4 84.2 12.2 73.6 16.2 126
43.1 1290 132 64.5 18.8 64.7 7.19 58.4 9.59 89.6
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
60.5 1820 276 135 39.3 197 66.5 139 88.7 263
50.9 1530 197 96.3 28.0 118 24.0 97.3 31.9 187
Load above heavy line is limited by design shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 103
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
C,MC 12
For beams laterally unsupported, see page 4-139 Designation Wt./ft
C 12 50
45
40
251 219 175 146 125
183 152 127 109
541 421 337 281 240
461 388 310 259 222
382 355 284 237 203
126 112 101 92 84 78
110 97 88 80 73 67
95 85 76 69 64 59
210 187 168 153 140 129
194 172 155 141 129 119
14 15 16 17 18 19
72 67 63 59 56 53
63 58 55 52 49 46
54 51 48 45 42 40
120 112 105 99 94 89
20 21 22 23 24 25
50 48 46 44 42 40
44 42 40 38 37 35
38 36 35 33 32 30
26 27 28 29 30
39 37 36 35 34
34 32 31 30 29
29 28 27 26 25
Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
33.6 1010 165 71.7 25.5 93.0 23.9 73.9 31.8 155
29.2 876 125 54.4 19.4 61.5 10.4 53.1 13.9 98.3
Span (ft)
25
2 3 4 5 6 7
330 252 202 168 144
8 9 10 11 12 13
MC 12 20.7
Fy = 50 ksi
30
MC 12 35
31
10.6
303 257 214 183
240 236 197 168
123 116 87 70 58 50
177 158 142 129 118 109
161 143 128 117 107 99
147 131 118 107 98 91
44 39 35 32 29 27
111 103 97 91 86 82
101 95 89 83 79 75
92 86 80 76 71 68
84 79 74 69 66 62
25 23 22 20 19 18
84 80 77 73 70 67
78 74 71 67 65 62
71 68 65 62 59 57
64 61 58 56 54 51
59 56 54 51 49 47
17 17 16 15 15 14
65 62 60 58 56
60 57 55 53 52
55 53 51 49 47
49 48 46 44 43
45 44 42 41 39
13 13 12 12 12
47.3 1420 191 96.8 29.5 137 26.5 116 35.3 193
42.8 1280 151 76.6 23.4 96.3 13.1 85.8 17.5 143
39.3 1180 120 60.7 18.5 67.9 6.52 62.7 8.70 91.0
11.6 348 61.6 16.3 9.50 16.6 2.00 15.0 2.67 23.7
Properties and Reaction Values 25.4 762 91.4 39.7 14.1 38.2 4.04 35.0 5.38 52.5
56.1 1680 271 137 41.8 230 75.0 170 100.0 273
51.7 1550 231 117 35.6 181 46.5 144 62.0 233
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 104
BEAM AND GIRDER DESIGN
C,MC 10
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation
Span (ft)
Fy = 50 ksi
Wt./ft
C 10
MC 10
30
25
20
2 3 4 5 6 7
363 266 200 160 133 114
284 230 173 138 115 99
8 9 10 11 12 13
100 89 80 73 67 61
14 15 16 17 18 19 20 21 22 23 24
33.6
MC 10 28.5
25
MC 10
15.3
41.1
22
205 193 145 116 96 83
130 119 95 79 68
430 389 292 233 195 167
311 251 200 167 143
230 222 178 148 127
205 194 155 129 111
157 142 118 101
92 79 59 47 39 34
8.4
86 77 69 63 58 53
72 64 58 53 48 45
59 53 47 43 40 36
146 130 117 106 97 90
125 111 100 91 84 77
111 99 89 81 74 68
97 86 77 70 65 60
89 79 71 64 59 54
29 26 24 21 20 18
57 53 50 47 44 42
49 46 43 41 38 36
41 39 36 34 32 30
34 32 30 28 26 25
83 78 73 69 65 61
72 67 63 59 56 53
63 59 56 52 49 47
55 52 48 46 43 41
51 47 44 42 39 37
17 16 15 14 13 12
40 38 36 35 33
35 33 31 30 29
29 28 26 25 24
24 23 22 21 20
58 56 53 51 49
50 48 46 44 42
44 42 40 39 37
39 37 35 34 32
35 34 32 31 30
12 11 11 10 9.83
26.6 798 182 84.1 33.6 131 75.6 81.0 101 193
23.0 690 142 65.8 26.3 90.8 36.1 66.8 48.1 151
29.6 888 115 66.4 21.3 75.8 14.4 66.1 19.3 129
25.8 774 103 59.4 19.0 64.1 10.3 57.2 13.8 102
23.6 708 78.3 45.3 14.5 42.7 4.59 39.6 6.12 59.5
7.86 236 45.9 14.6 8.50 13.4 1.90 12.1 2.53 20.3
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
19.3 579 102 47.4 19.0 55.6 13.5 46.6 18.0 105
15.8 474 64.8 30.0 12.0 28.0 3.43 25.7 4.57 40.6
38.9 1170 215 124 39.8 194 94.9 131 127 254
33.4 1000 155 89.8 28.8 119 35.8 95.4 47.7 183
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 105
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
C,MC 9
For beams laterally unsupported, see page 4-139 Designation
C9
Span (ft)
Fy = 50 ksi
Wt./ft
MC 9
20
15
13.4
25.4
23.9
2 3 4 5 6 7
218 168 126 101 84 72
139 135 101 81 68 58
113 94 75 63 54
219 174 139 116 99
194 167 133 111 95
8 9 10 11 12 13
63 56 50 46 42 39
51 45 41 37 34 31
47 42 38 34 31 29
87 77 70 63 58 54
83 74 67 61 56 51
14 15 16 17 18 19
36 34 31 30 28 27
29 27 25 24 23 21
27 25 23 22 21 20
50 46 44 41 39 37
48 44 42 39 37 35
20 21 22
25 24 23
20 19 18
19 18 17
35 33 32
33 32 30
23.2 696 109 66.8 22.5 80.7 19.9 68.8 26.6 140
22.2 666 97.2 59.4 20.0 67.7 14.0 59.3 18.7 120
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
16.8 504 109 52.5 22.4 69.5 26.2 53.8 34.9 125
13.5 405 69.3 33.4 14.3 35.3 6.74 31.2 8.98 60.4
12.5 375 56.6 27.3 11.7 26.1 3.68 23.9 4.91 39.8
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 106
BEAM AND GIRDER DESIGN
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
C,MC 8
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation
C8
Span (ft)
Fy = 50 ksi
Wt./ft
MC 8
MC 8
MC 8
18.75
13.75
11.5
22.8
21.4
20
18.7
8.5
1 2 3 4 5 6
210 207 138 104 83 69
131 109 82 65 55
95 72 57 48
184 141 113 94
162 135 108 90
173 162 122 97 81
152 116 92 77
77 69 52 41 35
7 8 9 10 11 12
59 52 46 41 38 35
47 41 36 33 30 27
41 36 32 29 26 24
81 70 63 56 51 47
77 68 60 54 49 45
69 61 54 49 44 41
66 58 51 46 42 39
30 26 23 21 19 17
13 14 15 16 17 18
32 30 28 26 24 23
25 23 22 20 19 18
22 20 19 18 17 16
43 40 38 35 33 31
42 39 36 34 32 30
37 35 32 30 29 27
36 33 31 29 27 26
16 15 14 13 12 12
19 20
22 21
17 16
15 14
30 28
28 27
26 24
24 23
11 10
16.2 486 86.4 56.3 20.0 64.5 17.3 55.3 23.1 121
15.4 462 76.2 49.6 17.7 53.5 11.9 47.1 15.9 98.7
6.91 207 38.7 16.8 8.95 15.2 2.49 13.9 3.33 24.7
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
13.8 414 105 57.1 24.3 76.5 40.1 55.2 53.4 136
10.9 327 65.4 35.5 15.2 37.6 9.65 32.4 12.9 74.2
9.55 287 47.5 25.8 11.0 23.2 3.69 21.3 4.92 37.3
18.8 564 92.2 63.4 21.3 72.9 20.1 62.2 26.7 133
18.0 540 81.0 55.7 18.8 60.0 13.6 52.8 18.1 112
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FACTORED UNIFORM LOAD TABLES
Fy = 50 ksi
4 - 107
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
C,MC 7–6
For beams laterally unsupported, see page 4-139 Designation
C7 12.25
MC 7 9.8
22.7
C6
MC 6
MC 6
MC 6
19.1
13
10.5
8.2
18
16.3
15.1
12
102 92 62 46 37 31
65 51 38 31 26
123 115 86 69 58
122 102 77 61 51
102 97 73 58 48
100 74 55 44 37
1 2 3 4 5 6
119 84 63 50 42
79 71 53 43 36
190 162 122 97 81
133 107 86 72
142 109 73 54 44 36
7 8 9 10 11 12
36 31 28 25 23 21
31 27 24 21 19 18
69 61 54 49 44 41
61 54 48 43 39 36
31 27 24 22 20 18
26 23 21 18 17 15
22 19 17 15 14 13
49 43 38 35 31 29
44 38 34 31 28 26
42 36 32 29 26 24
32 28 25 22 20 18
13 14 15 16
19 18 17 16
16 15 14 13
37 35 32 30
33 31 29 27
17 16 15
14 13 12
12 11 10
27 25 23
24 22 20
22 21 19
17 16 15
8.40 252 59.3 34.3 15.7 38.4 13.1 32.3 17.4 85.4
7.12 214 39.7 23.0 10.5 21.0 3.91 19.2 5.21 36.1
11.5 345 61.4 50.3 19.0 58.0 20.7 49.7 27.6 112
10.2 306 60.8 49.8 18.8 57.1 20.0 49.1 26.7 111
9.69 291 51.2 42.0 15.8 44.2 12.0 39.4 16.0 91.3
7.38 221 50.2 31.5 15.5 38.1 14.3 32.4 19.1 81.9
Span (ft)
Fy = 50 ksi
Wt./ft
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
16.2 486 95.1 70.7 25.2 91.0 39.3 72.6 52.5 152
14.3 429 66.5 49.5 17.6 53.3 13.5 47.0 18.0 105
7.26 218 70.8 44.4 21.9 61.0 43.9 43.5 58.5 115
6.15 185 50.9 31.9 15.7 37.2 16.3 30.7 21.7 82.9
5.13 154 32.4 20.3 10.0 18.9 4.21 17.2 5.61 35.4
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 108
BEAM AND GIRDER DESIGN
BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported
C 5–4–3
Fy = 50 ksi
For beams laterally unsupported, see page 4-139 Designation
C5 9
C4
C3
6.7
7.25
5.4
69 42 28 21 17 14
40 34 23 17 14 11
1 2 3 4 5 6
88 65 44 33 26 22
51 35 26 21 18
7 8 9 10 11 12
19 16 15 13 12 11
15 13 12 11 9.6 8.8
12 11 9.4 8.4
9.7 8.5 7.5 6.8
6
5
4.1
52 26 17 13 10 8.6
42 23 15 11 9.0 7.5
28 20 13 9.8 7.8 6.5
7.4
6.4
5.6
1.72 51.6 28.8 30.6 17.8 40.0 59.6 28.1 79.5 88.4
1.50 45.0 20.9 22.2 12.9 24.7 22.7 20.2 30.2 64.1
1.30 39.0 13.8 14.6 8.50 13.2 6.49 11.9 8.65 40.0
Span (ft)
Fy = 50 ksi
Wt./ft
Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips
4.36 131 43.9 30.5 16.3 37.8 23.2 30.1 30.9 83.3
3.51 105 25.7 17.8 9.50 16.9 4.64 15.3 6.18 35.4
2.81 84.3 34.7 27.6 16.1 35.7 30.2 27.6 40.3 79.7
2.26 67.8 19.9 15.8 9.20 15.5 5.69 14.0 7.59 38.6
Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp
4 - 109
DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH GREATER THAN Lp General Notes
Spacing of lateral bracing at distances greater than Lp creates a problem in which the designer is confronted with a given laterally unbraced length (usually less than the total span) along the compression flange, and a calculated required bending moment. The beam cannot be selected from its plastic section modulus alone, since depth, flange proportions, and other properties have an influence on its bending strength. The following charts show the design moment φbMn for W and M shapes of Fy = 36 ksi and Fy = 50 ksi steels, used as beams, with respect to the maximum unbraced length for which this moment is permissible. In bending, φb of 0.9 is given in Section F1.2 of the LRFD Specification. The charts extend over varying unbraced lengths, depending upon the flexural strengths of the beams represented. In general, they extend beyond most unbraced lengths frequently encountered in design practice. The design moment φbMn, kip-ft, is plotted with respect to the unbraced length with no consideration of the moment due to weight of the beam. Design moments are shown for unbraced lengths in feet, starting at spans less than Lp, for spans between Lp and Lr and for spans beyond Lr. The unbraced length Lp, in feet, with the limit indicated by a solid symbol, , is the maximum unbraced length of the compression flange, with Cb = 1.0, for which the design moment is given by φbMp, where Fy Lp = 300ry / √ Mp = ZxFy
(F1-4)
For those noncompact rolled shapes, which meet the requirements of compact sections Fy , but is less than 141 / √ Fy −Fr , the design moment is except that bf / 2tf exceeds 65 / √ obtained from Equation A-F1-3 in Appendix F1 of the LRFD Specification. This criterion applies to one W shape when Fy is equal to 36 ksi and to seven W shapes when Fy is equal to 50 ksi. (Noncompact W shapes are given on p. 4-7.) For the case Cb = 1.0 and noncompact shapes: λ − λp Mn′ = Mp − (Mp − Mr) λr − λp
(A-F1-3)
Mp − Mn′ Lp′ = Lp + (Lr − Lp) Mp − Mr λ = bf / 2tf λp = 65 / √ Fy λr = 141 / √ Fy −Fr Lr =
ryX1 √ 1+√ 1 + X2(Fy − Fr)2 Fy − Fr
X1 =
π Sx
√
EGJA 2
(F1-6)
(F1-8) AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 110
BEAM AND GIRDER DESIGN
4Cw X2 = Iy
Sx GJ
2
(F1-9)
Mr = (Fy − Fr )Sx Mp = ZxFy Fr = 10 ksi for rolled shapes
(F1-7)
The unbraced length in the charts may be either the total span or any part of the total span between braced points. The plots shown in these charts were computed for beams for which Cb = 1.0. When a moment gradient exists between points of bracing, Cb may be larger than unity. (See Table 4-1.) Using this larger value of Cb may provide a more liberal flexural strength for the section chosen if the unbraced length is greater than Lp. In these cases, the design moment can be determined using the provisions of Section F1.2a of the LRFD Specification. Lb − Lp φbMn = φbCb Mp − (Mp − Mr) ≤ φbMp Lr − Lp The unbraced length Lr, ft, with the limit indicated by an open symbol , is the maximum unbraced length of the compression flange beyond which the design moment is governed by Specification Section F1.2b. For unbraced lengths greater than Lr:
φbMn = φbMcr = φbCb
π Lb
√ 2
πE EIyGJ + IyCw ≤ φbCbMr and φbMp Lb
In computing the points for the curves, Cb in the above formulas was taken as unity, E = 29,000 ksi and G = 11,200 ksi. The properties of the beams are taken from the Tables of Dimensions and Properties in Part 1 of this LRFD Manual. The beam strengths have been reduced by multiplying the nominal flexural strength Mn by 0.9, the resistance factor φb for flexure. Over a limited range of length, a given beam is the lightest available for various combinations of unbraced length and design moment. The charts are designed to assist in selection of the lightest available beam for the given combination. The solid portion of each curve indicates the most economical section by weight. The dashed portion of each curve indicates ranges in which a lighter weight beam will satisfy the loading conditions. The curves are plotted without regard to shear strength and deflection criteria, therefore due care must be exercised in their use. The curves do not extend beyond an arbitrary span/depth limit of 30. The following examples illustrate the use of the charts.
EXAMPLE 4-8
Given:
Using Fy = 50 ksi steel, determine the size of a “simple” framed girder with a span of 35 feet, which supports two equal concentrated loads. The factored loads produce a required moment of 440 kip-ft in the AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp
4 - 111
center 15-ft section between the loads. The load points are laterally braced. Solution:
For this loading condition, Cb = 1.0 due to nearly uniform moment across the central portion of the span. Center section of 15 feet is longest unbraced length. With total span equal to 35 feet and Mn = 440 kip-ft, assume approximate weight of beam at 70 lbs/ft (equal to 0.07 kips/ft). 0.07 × (35)2 × 1.2 = 453 kip-ft Total Mu = 440 + 8 Entering chart, with unbraced length equal to 15 feet on the bottom scale (abscissa), proceed upward to meet the horizontal line corresponding to a design moment equal to 453 kip-ft on the left hand scale (ordinate). Any beam listed above and to the right of the point so located satisfies the design moment requirement. In this case, the lightest section satisfying this criterion is a W21×68, for which the total design moment with an unbraced length of 15 feet is 457 kip-ft. Use: W21×68 Note: If depth is limited, a W14×82 could be selected, provided deflection conditions are not critical.
EXAMPLE 4-9
Given:
A “fixed end” girder with a span of 60 feet supports a concentrated load at the center. The compression flange is laterally supported at the concentrated load point and at the inflection points. The factored load produces a maximum calculated moment of 440 kip-ft at the load point and the supports. Determine the size of the beam using Fy = 50 ksi steel.
Solution:
For this loading condition, Cb = 1.67 (by comparison with Table 4-1), with an unbraced length of 15 feet. With the total span equal to 60 feet and Mu = 440 kip-ft, assume approximate weight of beam at 60 lbs/ft (0.06 kips/ft). 0.06 × (60)2 Total Mu = 440 + ×1.2 24 = 451 kip-ft at the centerline and 462 at the supports Compute Mequiv by dividing the required design moment by Cb
Mequiv = 462 / 1.67 = 277 kip-ft Enter charts with unbraced length equal to 15 feet and proceed upward to 277 kip-ft. Any beam listed above and to the right of the point satisfies the design moment. AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 112
BEAM AND GIRDER DESIGN
The lightest section satisfying the criteria of a design moment of 277 kip-ft at an unbraced length of 15 feet and φbMp greater than 462 kip-ft is a W21×62. The design moment for a W21×62 with an unbraced length of 15 feet is 406 kip-ft and φbMp is 540 kip-ft. Since (φbMn = 406 kip-ft) > (Mequiv = 277 kip-ft) and (φbMp = 540 kip-ft) > (Mu = 462 kip-ft), a W21×62 is o.k. A 21-in. nominal depth beam spanning 60 feet should be checked for deflection since the span/depth ratio exceeds 30.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 113
4 - 114
BEAM AND GIRDER DESIGN
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 115
4 - 116
BEAM AND GIRDER DESIGN
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 117
BEAM AND GIRDER DESIGN 4 - 118
W3 x3
18
30
3x3 W
97
26
0x2
31
W4 0x3
W44
x26
2
0x2
W
24
W4
49
x3
x2
77
35
0x2
30
W4 61
0x2
78
W4
4x2
30
W
11
35
x2
x2
30
27
W
67
W4
79 x2
0x1
0x2
15
W
24
x2
50
W4
0x
4
24
99
W
0x1
49
W4
17
0x1
x2
07
W
92
30
x1
W
24
x1
91
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
0
92 W4
W
35
11
94
W4
W21x201
28
x2
6x
30
07
4
35 x2
0x2
6x1
W4
8 25 8x W1
W18x234
W
x3
x26
0x2 30
W4
W3
W27x178
29 x2 24 W
W
24 3 28 8x W1
1 31 8x W1
W3
27
W40
W4 W
W40x183
W4
W
W40x199
DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp
4 - 119
W 24 x4 08
W4 0x2 97 W 27 x3 68
W 30 x3 26
W
W
27
30
x3
x2
07
92
W 24 x3 35
30
W3
W
91
61
3x2
x2
W
24
W
x2
27
79
x2 58
W1
W 24 x2 50 W
W1
8x
27
28
3
x2 35
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
8x
31
1
4 - 120
BEAM AND GIRDER DESIGN
W
W3 11 W2
4
4x 9
x169
22
W33
x183
01
W18x211
x17
8
x2
34
W40
17
21
x2
W40
7x
W
18
0x2
W2
W
18
W40x
W 24
167
x1
W21x182
92 W 24 x2 07
W36 x170
W2 7x 19
18
4
W
x1
92
W40 x149
W3 0x1 16
W
18
x1
W 58
18
x1
75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
x2
58
DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp
4 - 121
W2 79
35
W36
7x2
4x2
W2 x245 W
18
x2
83
W2 4x 25 0
W3 0x1 91 W2 4x 22
W
9
W36 x210
W 24 x2 07
W 21 x2 01
W
18
x2
34
W 24 x1 92
W
18
x1
92 W
x1
7x1
21
W2
W
18
x2
11
94
82
W 24 x1 76
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
18
x2
58
4 - 122
BEAM AND GIRDER DESIGN
W30x1 32
W1 15
W1
8x
8x
8
17 5
W 3 3 x1 3 0
W30x90 W24x103
W27 x94 W 36 x1 60
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp
4 - 123
W21 x20 1
W1
W 36 x1 70
8x 21 1
W1 8x1
W 33 x1 69
92
W1 8x1 75 W21 x18 2
W1 8x1 58 W 36 x1 60
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 124
BEAM AND GIRDER DESIGN
W14x132
W
14
x1
32
W30 x90 W27
x90
x94
W30
W12x120
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp
4 - 125
W1 8x 78 5 17 W27x1
W1 8x 15 8
W
W24x
14
x1
32
117
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 126
BEAM AND GIRDER DESIGN
W x1 20
W30x9
12
0
W12x106
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp
4 - 127
W 14 x1 32
W 12 x1 20
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 128
BEAM AND GIRDER DESIGN
W12x96
W 12 x9 6
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp
4 - 129
W 12 x1 20
W 12 x1 06
W
10
x1
12
W 12 x9 6
W
10
x1
00
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4 - 130
BEAM AND GIRDER DESIGN
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp
4 - 131
W
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
10
x1
00
4 - 132
BEAM AND GIRDER DESIGN
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp
4 - 133
W 10 x6 8
AMERICAN INSTITUTE OF STEEL CONSTRUCTION