![](https://stories.isu.pub/74998357/images/20_original_file_I345.jpg?width=720&quality=85%2C50)
5 minute read
Hydraulic cylinders
Few things represent a fluid power system the way ahydraulic cylinder does. These trueworkhorses operate in industrial andmobile applications. When compared with pneumatic,mechanical or electric systems, hydraulics can be simpler,more durable and also offer greater power density. Forexample, a hydraulic cylinder has about ten times the powerdensity of an electric linear actuator of similar size.
Selecting the right cylinder for an application is critical to attaining maximum performance and reliability, which means taking into consideration several design and performance parameters. Fortunately, an assortment of cylinder types, mounting methods and “rules of thumb” are available to help select the appropriate cylinder.
CYLINDER TYPES
The three most common types of cylinders are tie-rod, welded and ram, the latter of which is single acting, meaning it is powered in one direction only.
Tie-rod cylinders can be single acting, although they are most often powered in both directions. They have machined, square caps and heads being forced together against the barrel by high-tensile steel tie rods fastened by nuts, making them easy to disassemble and repair in the field. Welded cylinders employ a steel barrel with a cap welded to the bottom and the end treatment subsequently welded to the cap. The rod and piston assembly then has to be assembled around the head — which uses a buttress thread for strength — and is tightened into the barrel. Finally, the single-acting ram is typically just a rod inside a barrel with a single port and requires either a spring or mass to retract.
For all cylinders, the critical measurements include stroke length and bore and rod diameter. Stroke lengths vary from less than an inch to several feet or more, depending on the requirement of the machine. Bore diameters can range from 1 in. up to more than 24 in., and piston rod diameters range from 1-2 in. to more than 20 in. In practice, however, the choice of stroke, bore and rod dimensions may be limited by environmental or design conditions.
CYLINDER MOUNTING METHODS
Mounting methods also play an important role in a cylinder’s performance. Generally, fixed mounts on the centerline of the cylinder are best for straight line force transfer, ideal column loading and avoiding excessive wear. Pivoting mounts, such as clevis or trunnion, require care in application, because of their capacity to move as the cylinder is stroked, resulting in a possible bent rod or excessive wear.
![](https://stories.isu.pub/74998357/images/20_original_file_I345.jpg?width=720&quality=85%2C50)
IMAGE COURTESY OF MILWAUKEE CYLINDER
Common types of mounting include: Flange mounts — Strong and rigid, but have little tolerance for misalignment. It is recommended to use cap end mounts for thrust loads and rod end mounts for loads under tension.
Side-mounted cylinders — Easy to install and service, but the mounts can sometimes create a bending moment as the cylinder applies force to a load, increasing wear and tear. To avoid this, specify a stroke at least as long as the bore size for side mount cylinders (heavy loading tends to make short stroke, large bore cylinders unstable). Side mounts, such as side lugs, need to be well aligned and the load supported and guided.
Centerline lug mounts — Absorb forces on the centerline, but require dowel pins to secure the lugs to prevent movement at higher pressures or as a result of shock loads.
Pivot mounts — Absorb force on the cylinder centerline and let the cylinder change alignment in one plane. Common types include clevises, trunnion mounts and spherical bearings. Because these mounts allow a cylinder to pivot, they should be used with rod-end attachments that also pivot. Pivoting mounts are required for many applications, such as booms and buckets, but are also most prone to rod buckling, especially as the rod reaches end of stroke.
WHAT IS THE MAXIMUM PRESSURE FOR THE APPLICATION?
The hydraulic cylinder must be rated to work within the pressure limit of the hydraulic system it is installed on. An excavator, for example, can operate at 4,000 psi or more, so light-duty snap-ring cylinders rated for 2,000 psi should be avoided. Cylinders are designed with safety factors of 2:1 to 4:1, so sometimes running slightly over-limit might be acceptable, but not double.
WHAT STROKE LENGTH WILL BE REQUIRED?
Ensure that the machine has appropriate clearance, because the longer retracted length of the cylinder should be factored. Also, if stroke is too long, additional support will be required, such as a guided load or stop tube.
WHAT MOUNTING METHOD IS BEING USED?
Flange mounting is often best because the load is transferred along the centerline of the cylinder. Non-centerline mounting calls for additional support to avoid misalignment, but these are required when the mechanism must pivot through an arc, so load calculations must be factored accurately.
PUSH OR PULL OR BOTH?
Any cylinder can be used as single acting, which is powered in one direction only, but it can only push or pull. When a cylinder pushes, protection against rod buckling and bending must be ensured, which can be achieved through oversized rod material or with a stop tube to prevent full extension, taking advantage of the piston’s load-bearing effect. When a cylinder pulls, there is little concern for buckling, but you should ensure your force calculations factored in the smaller rod side of the piston, which experiences reduced force compared to the cap side. A double acting cylinder is powered in both directions to push and pull.
![](https://stories.isu.pub/74998357/images/20_original_file_I347.png?width=720&quality=85%2C50)
IMAGE COURTESY OF PRINCE MANUFACTURING
WHAT PUSH OR PULL TONNAGE IS REQUIRED?
Always assume peak loads will require additional strength. The rule of thumb is to choose a cylinder with a tonnage rating of 20% more than required for the load; however, this is always application-specific, so it’s best to consult a hydraulic professional before you make tonnage assumptions. Cylinder force (lb) is equal to the area of the piston (in. 3 ) times pressure (psi), or F=AxP.
KEY SPECIFICATIONS:
Operating conditions — Cylinders must meet the requirements of the design specification, such as force, maximum pressure and mounting configuration, but consideration for operating conditions must also be heeded. Cylinders must also withstand extreme temperatures, humidity and even salt water for marine hydraulic systems. Also, when ambient temperatures rise to more than 300° F, standard Buna-N nitrile rubber seals may fail and will instead require synthetic rubber seals, such as Viton. When in doubt, err on the safe side and choose a cylinder design capable of more of than you will ask of it.
Fluid type — Most hydraulic systems use a form of mineral oil, but applications using toxic synthetic fluids — such as phosphate esters — require Viton seals, which will not break down or swell in the fluid. Once again, Buna-N seals may not be adequate to handle some synthetic hydraulic fluid, although the gentler synthetics, such as PAO-based stock, will be fine. Hydraulic systems using high water-based fluids may require stainless-steel construction, as well as PTFE (Teflon) seals, especially if no glycol is used in the fluid.
![](https://stories.isu.pub/74998357/images/22_original_file_I352.png?width=720&quality=85%2C50)
IMAGE COURTESY OF PRINCE MANUFACTURING
Seals — Seals are the most vulnerable component of a hydraulic system. Properly applied seals can reduce friction and wear, lengthening service life, but incorrect types can lead to downtime and maintenance headaches as a result of failures. Every manufacturer likes to use a different style, so it is important to replace them with a similar type and material when rebuilding.
Cylinder materials — The type of metal used for cylinder head, cap and bearing can make a big difference in performance and reliability. Most cylinders use bronze for rod bearings and medium-grade carbon steel for heads and bases. But stronger materials, such as 65-45-12 ductile iron for rod bearings, can provide a sizable performance advantage for tough industrial tasks. The type of piston rod material can be important in wet or high-humidity environments (like marine hydraulics) where stainless steel may be more durable than the standard case-hardened carbon steel with chrome plating used for most piston rods. A new option for rod surface treatment is nitriding, which is an oxidation process to increase the surface hardness of metals and corrosion resistance.