11 minute read

Professional graphics 101: A guide to choosing the right GPU.

Modern graphics cards (or GPUs) are complex pieces of hardware which should improve performance within the viewport, but should also improve visual clarity and accuracy. Although there is no reason they should be daunting pieces of hardware. This article aims to offer some simple guidance on how GPUs work and considerations to help increase software performance. Let’s begin with the most common question:

Do I choose a gaming GPU or a professional GPU?

Both are designed for different tasks and software needs. If you want to mostly play games, then choose a purpose-built gaming GPU. If you use business critical software requiring hardware validation or certifications, then a professional GPU is right for you. These are optimized for 24x7 usage with warranties that characteristically last for a lengthy 3 years. Professional GPUs can carry more memory than their gaming counterparts, although the underlying graphics architecture can be similar. Other main differences are the physical card design and layouts, Pro GPUs are built for workstation case needs, which requires different power connector positions, different fan designs, and have different thermal considerations to their counterparts - particularly how hot air is exhausted out the GPU and overall system. The next consideration is overall host system portability.

Do I choose a mobile or deskside system?

Recent mobile laptops (or mobile workstations) are now as powerful as many tower or deskside equivalents. There are benefits to a larger system, such as component upgradeability and multiple GPU support, but for typical CAD workflows a mobile system can be adequate. When looking to matching GPUs in both choices, you won’t see much performance or feature difference between the comparable GPUs, although mobile laptops can mean less dedicated graphics memory.

Windows can require more RAM, so GPU requirements are increasing.

6GB is a great sweet spot for traditional CAD.

Scott Jackson, Intel,

Director, Product Management.

Typical GPU performance needs by task

High-end GPUs: are great for real time experiences, simulations and GPU rendering tasks. They often draw the most power.

Medium workload GPUs: are great for 2D and 3D CAD/BIM projects, along with typical image and video editing.

Does expensive graphics mean better software performance?

No, not always. Normally more expensive discrete GPUs have extra dedicated memory and cores which can aid some software’s speed, but like a traditional processor, the real questions are what software do you use, and will it directly benefit? For some the answer is a firm No. So always start by looking at your software’s hardware requirements, before selecting a GPU as you may not need to spend so much.

Light work workload GPUs: are great options for modern office productivity tasks.

Integrated GPUs: (iGPUs) are great for many software uses for example ones that don’t require much memory combined with long-battery life.

Tip: Look to your existing workflow and see how much of the GPU it’s using. It’s unlikely you are using just one application, so explore a few of your common software tools.

What does ‘discrete’ GPU mean?

This is normally a way of distinguishing that the GPU has dedicated memory on board. This can offer enhanced performance, as it does not need to share it with other system resources. The GPU (or dGPU) will also be separate to the processor.

Generally, there are three essential components to all discrete graphics cards:

1 The GPU chip: The brains of the card, processing various complex tasks.

2 The memory: Where things like viewport textures are stored.

3 The fan and heat sink: Helping regulate thermals, keeping the card running at it’s optimum.

QUICk TIP

Resizeble BAR (Base Address Register) Is a new consideration for many. It is recommended to enable this for Intel® Arc™ GPUs to optimize advanced system resources via the PCIe® device and how it transfers information from the CPU to the GPU. It can result in performance improvements by enabling this overall system functionality. Many modern system vendors already enable this by default within the VBIOS. If unsure, check with your system provider.

1 Dual slot vs single slot card

Graphics cards are available in different form factors to suit the range of professional workstations that exist. The term refers to how many slots it takes up on the motherboard and workstation case. Dual slot cards have higher performance, requiring more power to run.

2 End bracket

These help to hold the GPU in place with their fixing ‘ears’.

3 Graphics cores

GPUs are made up of huge amounts of calculation cores, with each GPU vendor giving them different names and using different architectures, for example, 8x NVIDIA CUDA cores, does not directly equal 8x Intel Xe Cores. More cores do however mean more performance when comparing each vendor to itself.

4 Display connectors

For workstation GPUs look for matching connectors that help outputs to match. HDMi is used for home entertainment with most professional GPUs standardizing on DisplayPort® Mini-DisplayPort (mDP) offers the same functionality but condensed.

5 Gold Fingers

Gold-plated vertical rows (or lanes) on the graphics (PCB) board for connecting to the systems motherboard expansion slots. The ‘fingers’ are used to communicate with other system components, with gold alloy used for superior strength and conductivity.

6 PCIe® connector

Graphics cards are typically x16 ‘lane’ devices, and more lanes used directly relates to more bandwidth speed. Note that PCIe gen 3.0 is half the speed of PCIe gen 4.0. Meaning PCIe 4 x8, and PCIe 3 x16 offer similar speeds.

7 Cable locking mechanisms

Look for a small slot above each output on the GPU for a display cable to lock into, preventing the compatible cable being accidentally removed.

8 Memory

For professional graphics, GDDR6 is today’s common high-performance memory type, but the amount can vary. Memory (RAM) can be expensive, and more RAM can increase the price of your GPU. However, you don’t always need lots of RAM for your software. Generally, 6-8GB is a great choice for modern CAD and design tasks.

9 Fan

The fan on your GPU has the important task of cooling your card. If too hot, thermal throttling occurs, slowing the GPU.

10 Multiple outputs

Numerous third-party reports have shown the tangible efficiency benefits of adding at least a second monitor to your setup. By adding more screen space, you save time hunting for menus, or finding content hidden behind multiple windows.

11 Vents

These help to efficiently expel air directly out the GPU and overall system. As with a GPU, if the host system gets too hot the complete system will start to slow down or worse, critical components may start to fail.

12 Teraflop

Is the average number of (floating-point) calculations completed each second, with tera equating to one thousand. While teraflops (TFLOPs) are not the sole indication of final GPU performance, they’re generally seen as key to faster viewports. Some CAD and design software will not benefit from huge TFLOP values though.

Power

If the total board power (TBP) requirements of the graphics card are 75w or below, then the card can be powered directly by the PCIe® slot. Not needing a dedicated power connector can mean a much smaller workstation. The industry standard for high power consumption GPUs is 6-pin, 8-pin or a combination.

Graphics drivers

When you purchase a GPU, you are also investing in robust drivers for your software needs. Each new driver typically brings performance improvements, and a regular driver release cycle can bring frequent performance uplifts and new software support. Look for a 3-month release cycle from the vendor.

Form

A workstation graphics card is designed to meet the requirements of professional workstation cases. In particular, look for the power connector block on the edge, a high-performant fan, and a robust aluminium shroud (or protective casing).

Display resolution

More pixels mean greater line detail displayed, although with ultrawide (UWD) monitors growing in popularity it’s important to check your GPU specifications can drive one. (Remember application interfaces rarely run above 4K resolution.)

Accurate colors

HDR (High Dynamic Range) technology allows the representation of more colors on your compatible display. In some CAD circumstances this isn’t needed, but for image production or renders this means greater depth and sharper contrast.

To learn more about Intel graphics visit intel.com/ArcProGraphics

Scan 3XS GWP-ME A132C & GWP-ME A132R

Between these two new desktop workstations, Scan has most bases covered in product development, from CAD and simulation to rendering and beyond, writes Greg

Corke

Scan is always one of the first out of the blocks with new technologies. And with the 3XS GWP-ME A132C and 3XS GWP-ME A132R it has delivered two powerful desktop workstations with the very latest processors from Intel and AMD.

The ‘C’ and ‘R’ suffixes refer to ‘Core’ and ‘Ryzen’, specifically the brand-new 13th Gen Intel Core and AMD Ryzen 7000 Series processors. As you will see from our indepth review on page WS4 these powerful new chips are extremely well suited to a range of professional workflows, from CAD and BIM to reality modelling and rendering.

Both of our test machines look identical and include several common components, but they differ in three main areas — CPU, motherboard, and GPU. So how do they fare in the typical workflows of designers?

The 13th Gen Intel Core workstation

Our Scan 3XS GWP-ME A132C test unit arrived with a top-end Intel Core i913900K CPU, paired with Nvidia’s entry- level pro ray tracing and AI-accelerated GPU, the Nvidia RTX A2000. This combination of processors is well suited to CAD, BIM and entry-level visualisation, as well as more CPU-intensive workflows such as point cloud registration, photogrammetry, and simulation. Together with 64 GB of Corsair Vengeance DDR5 5,600MHz memory, a 2TB Samsung 980 Pro SSD and an Asus Z790-P WiFi motherboard, the unit will set you back £2,583 + VAT.

Everything is housed inside a 542 x 240 x 474 mm Fractal Design Meshify 2 chassis, adorned with Scan’s trademark 3XS custom front panel. It’s a solid, well-built case, with a ready supply of ports. Up front and top, there are two USB 3.2 Type A and one USB 3.2 Type C, with plenty more at the rear (four USB 2.0 Type A, three USB 3.2 Type A and one USB 3.2 Type C). Access is easy. Simply lift off the top panel and pull off the side to get to the parts inside. With the SSD mounted directly on the motherboard, a compact GPU, no hard disk drive (HDD), and all the cabling tucked neatly away, everything feels a little lost inside the spacious interior. But modern-day workstations are as much about keeping components cool as they are about expansion, and with the power-hungry Intel Core i9-

13900K CPU, Scan certainly has its work cut out here.

When rendering in KeyShot we recorded over 450W of power draw at the plug, pushing 530W in Solidworks Visualize, which can use both CPU and GPU. The Corsair H100i Pro XT liquid CPU cooler is well regarded as a thermal solution, but fan noise in this system is very noticeable under these heavy loads.

Product spec

■ Intel Core i9-13900K processor (3.0 GHz, 5.8 GHz turbo) (8 P-cores, 16 E-cores, 32 threads)

■ Nvidia RTX A2000 GPU (12 GB GDDR6)

■ 64 GB (2 x 32 GB)

Corsair Vengeance DDR5 5,600 memory

■ 2 TB Samsung 980 Pro NVMe SSD

■ Asus Z790-P WiFi motherboard

■ Corsair H100i Pro XT hydrocooler

■ 750W Corsair RMX, 80PLUS Gold PSU

■ Fractal Design

Meshify 2 chassis, adorned with 3XS custom front panel (542 x 240 x 474mm)

■ Microsoft Windows 11 Pro 64-bit

■ 3 Years warranty –1st Year Onsite, 2nd and 3rd Year RTB (Parts and Labour)

■ £2,583 (Ex VAT)

■ scan.co.uk/3xs

Performance is top notch, especially in CAD and BIM software. It delivered very impressive single threaded and lightly threaded CPU benchmark scores in Revit, Inventor, and Solidworks. The machine also set a new record when processing point clouds in Leica Cyclone. All four tests run entirely on the Core i9-13900K’s eight superfast P-Cores.

The processor’s 16 E-cores come into play when rendering. While performance in V-Ray and KeyShot is impressive, it doesn’t hit the heights of the AMD-based Scan workstation, propelled by its 16-core Ryzen 9 7950X CPU. Performance in Cinebench is much closer.

The processor is helped along by its 64 GB of DDR5 memory, which takes up two of the four slots on the Asus Z790-P WiFi motherboard. It is supported by a single 2TB Samsung 980 Pro SSD. Additional storage can is well equipped to handle some fairly sizeable datasets for GPU rendering and real-time viz. But it has its limitations in real-time workflows. While it can comfortably handle complex models at FHD resolution, 4K is a bit of a stretch.

With our 9.5 GB Enscape office model, it dropped from 39 FPS @ FHD to 17 FPS @ 4K. And the slowdown is more dramatic as demands on the GPU grow – going from 43.3 FPS to 12.6 FPS with the Audi car configurator in Unreal Engine, and from 38.2 FPS to 16.2 FPS in our Autodesk VRED Professional car model with medium anti-aliasing.

As you might expect, GPU rendering performance is significantly lower than pro viz-focused GPUs like the RTX A4500. In the KeyShot benchmark 11.3.1 it recorded a score of 32 compared to 67 for the RTX A4500. In the V-Ray benchmark 5.02 it was 1,012 versus 2,119.

The Ryzen 7000 Series workstation

With the top-of-the-range AMD Ryzen 7950X CPU and powerful Nvidia RTX A4500 GPU, our Scan GWP-ME A132R test workstation is tuned for all types of demanding visualisation workflows. But this balance does come at a premium. At £3,583 Ex VAT, it’s precisely £1,000 more than the Intel machine.

The 16-core processor makes light work of ray trace rendering, second only to the 32-core and 64-core AMD

V-Ray and KeyShot, it demonstrates a 10% lead over its Intel-based sibling.

But with the powerful Nvidia RTX A4500 GPU with 20 GB of memory, users have choice. Both KeyShot and V-Ray, plus many other rendering tools, can take advantage of the dedicated ray-tracing and AI hardware within the dual slot card. And with careful juggling of CPU and GPU resources, this can bring new efficiencies to day-to-day workflows.

For real time viz, expect a silky-smooth viewport at 4K in all but the most demanding of workflows. It’s only when enabling real time ray tracing in Unreal Engine that frame rates drop below the golden 30 FPS, but 17.37 FPS is still acceptable.

Of course, a GPU this powerful is overkill for CAD and BIM. And with Revit and Inventor in particular, users will do just as well with an Nvidia RTX A2000, if not an Nvidia T1000. In fact, because these applications are so CPU limited, the Intel machine with its RTX A2000 actually wins out in viewport performance, as it does in core application workflows from model creation to data translation.

The workstation shares machines, extremely well built with a 3-year warranty (1st year onsite) as standard. The big question on everyone’s lips is which one is best? That very much depends on what you do, day in day out.

Product spec

■ AMD Ryzen 9 7950X processor (4.5 GHz, 5.7 GHz boost) (16 cores, 32 threads)

■ Nvidia RTX A4500 GPU (20 GB GDDR6)

■ 64 GB (2 x 32 GB)

If your workflows centre on CAD or BIM, with a little bit of visualisation, then the 3XS GWP-ME A132C is a great choice. It has single-threaded performance in abundance, it’s no slouch in multi-threaded workflows either, and the GPU is a great entry point to realtime viz. However, fan noise really kicks in when it hits top gear. This is certainly not a quiet machine.

Corsair Vengeance DDR5 5,600 memory

■ 2 TB Samsung

980 Pro NVMe SSD

■ Asus TUF B650Plus WiFi mainboard

■ Corsair H100i Pro XT hydrocooler

■ 750W Corsair RMX, 80PLUS Gold PSU

■ Fractal Design

Meshify 2 chassis, adorned with 3XS custom front panel (542 x 240 x 474mm)

■ Microsoft Windows

11 Pro 64-bit

■ 3 Years warranty –

1st Year Onsite, 2nd and 3rd Year RTB (Parts and Labour)

■ £3,583 (Ex VAT)

■ scan.co.uk/3xs

Meanwhile, the 3XS GWPME A132R delivers in all areas of visualisation, with the bestin-class CPU for rendering, a powerful pro GPU and good acoustics. But having this level of all-round performance does come at a premium, with our test machine costing a full £1,000 more than the Intel.

Of course, both machines are fully customisable, so you can pick and choose components to match your specific workflows. And there’s plenty of room to grow with an additional 64 GB of memory and buckets of storage.

This article is from: