27 minute read
Intel Xeon
‘Sapphire Rapids’ AMD Ryzen Threadripper Pro for rendering, simulation, reality modelling, CAD and beyond
Rapids’ workstation
surpass AMD’s Ryzen Threadripper
Pro? Greg Corke puts these high-end CPUs through their paces
Ten years ago, it would have been unthinkable that Intel today would be playing catchup with AMD in workstation processors. But, the overwhelming success of AMD Ryzen Threadripper Pro, coupled with Intel’s failure to launch a true workstation-class processor since 2019, has led us to this precise situation. Intel desperately needs its new ‘Sapphire Rapids’ Xeon processors — specifically the Intel Xeon W-2400 and W-3400 — to be a success.
The chip giant certainly has its work cut out here. With Threadripper Pro, AMD delivered the holy grail of workstation processors, combining vast numbers of cores (up to 64) with high turbo frequencies and high-memory bandwidth to deliver impressive performance wherever your workflows may take you — single threaded CAD, multithreaded rendering, or memory intensive simulation, Threadripper Pro can handle pretty much anything you throw at it.
Not surprisingly, Intel has followed a similar tack for its new ‘Sapphire Rapids’ workstation processors — up to 56-cores, up to 4.8 GHz turbo and 8-channel DDR5 memory. It also follows AMD in terms of architecture. Like Threadripper Pro, ‘Sapphire Rapids’ processors feature a ‘chiplet’ design where several smaller chips are packaged together as one. This is in contrast to traditional monolithic designs, where all cores are on a single chip, making it more prone to manufacturing defects, and therefore lower yields and higher cost.
Intel has a much wider workstationfocused product range than AMD, with a total of fifteen models across its Intel Xeon W-2400 and W-3400 series (see chart on page WS6) . In contrast, there are only six “Zen 3” Ryzen Threadripper Pro 5000 WX-Series models, sporting 12,
16, 24, 32 or 64 cores. All have 8-channel DDR4 3200 memory.
Intel Xeon W-2400 / W-3400
Intel differentiates its Xeon W-2400 and Xeon W-3400 processor families in two main ways: by number of cores and by memory channels.
The Xeon W-2400 Series is classified as a ‘mainstream’ workstation processor with eight models ranging from 6 to 24 cores and 4-channel DDR5 4800 memory.
Meanwhile, the Intel Xeon W-3400 Series is for ‘experts’ with seven models ranging from 12 to 56 cores and 8-channel DDR5 4400/4800 memory.
The new processors are comprised entirely of ‘Golden Cove’ cores — they do not have the hybrid Performance Core (P-Core) / Efficiency Core (E-core) architecture pioneered by 12th Gen and 13th Gen Intel Core processors.
‘Golden Cove’ is not Intel’s latest CPU architecture. It formed the foundation for the P-Cores in 12th Gen Intel Core.
Beyond the cores, there are some other significant differences between the two processor families. Compared to the Intel Xeon W-2400, the Intel Xeon W-3400 has more memory capacity (4 TB vs 2 TB), more PCIe lanes (112 vs 64) (so it can support more add-in GPUs), more Intel Smart Cache (L3), and a higher max base power (350W vs 225W).
As a first for Xeon processors, certain models — those with an X suffix — are unlocked so the processor can be overclocked. A range of tuning features are available through the Intel Extreme Tuning Utility (Intel XTU).
While it’s highly unlikely that major OEMs will ever go down the overclocking route, this level of control could leave the gates open for specialist workstation manufacturers to differentiate themselves by squeezing more performance out of the platform. This might be one for the future, however. Currently, there are no off-the shelf All-in-One (AIO) water coolers that we know of for the power-hungry processors, although UK firm Armari has developed a custom liquid cooling solution for its Intel Xeon W-3400 rack workstation (see box out on page WS11)
Among the Intel Xeon W-2400 Series, the processors that stand out are the Xeon w7-2495X and w7-2475X which combine high core counts with the highest boost frequencies. The lower-end models may be suited to certain Finite Element Analysis (FEA) or other simulation tools that benefit from higher memory bandwidth but can’t necessarily take advantage of large numbers of cores. They can also provide a platform for multi-GPU workflows, such as GPU rendering.
There’s a similar pattern with the Intel Xeon W-3400 Series, with the higher end models featuring the largest number of cores and highest boost frequencies. The range tops out with the 56-core Intel
Xeon w9-3495X with a base frequency of 1.9 GHz and a Turbo Boost Max 3.0 of 4.80 GHz.
The lower-end CPUs in the family, such as the Intel Xeon w5-3425, could offer similar potential benefits for engineering simulation, plus support for even more GPUs. You can see the full specs in the tables below.
Meanwhile, Xeon W-2400 and Xeon W-3400 supports the latest technologies, including PCIe Gen 5, DDR5 4400/4800 memory (which offers more memory bandwidth than Threadripper Pro’s DDR4 3200) and Intel WiFi 6E.
While the majority of workstations focus on the single socket, high core count Intel Xeon W-2400 and Xeon W-3400 Series, ‘Sapphire Rapids’ does not spell the end for dual processor workstations.
4th Gen Intel Xeon Scalable processors, which are primarily designed for servers, have already made their way into workstations from HP and Lenovo. The top-end model, the Intel Xeon Platinum 8490H, offers 60-cores per processor, which gives you a whopping 120 cores in a dual socket workstation. However, among the major OEMs, you’ll only see this chip in the Lenovo ThinkStation PX (read our review on page WS14) and, at $17,000 per processor, the market it somewhat limited. The HP Z8 G5 also comes with 4th Gen Intel Xeon Scalable processors, but only those models with up to 32-cores.
Test setup
For our testing we focused on the top end workstation processors from Intel and AMD — the 56-core Intel Xeon w9-3495X and 64-core AMD Ryzen Threadripper Pro 5995WX. We also tested the dual socket 60-core Intel Xeon Platinum 8490H.
You’ll find details of our test machines below. However, it should be noted that both Lenovo workstations were preproduction units, so they may be slightly different to the final shipping machines. Performance, for example, may increase with BIOS updates, so our test results should not be treated as gospel.
Lenovo ThinkStation P7
• Intel Xeon w9-3495X CPU (56-cores) (1.9 GHz base, 4.80 GHz Turbo Boost 3.0)
• 256 GB (8 x 32 GB) DDR5 4,800MHz memory
• 4 x Nvidia RTX A4000 GPU (16 GB)
• 2 TB Samsung PM9A1 SSD
• Microsoft Windows 11 Pro for workstations
• (read our review on page WS14)
Benchmarks: processor comparisons
Lenovo ThinkStation PX
• 2 x Intel Xeon Platinum 8490H CPUs (60-cores) (1.9 GHz base, 3.5 GHz Max Turbo)
• 256 GB (16 x 16 GB) DDR5
4,800MHz memory
• Nvidia RTX 6000 Ada Generation
GPU (48 GB)
• 2 TB Samsung PM9A1 SSD
• Microsoft Windows 11 Pro for workstations
• (read our review on page WS14)
Scan 3XS GWP-ME A1128T
• AMD Ryzen Threadripper Pro 5995WX processor (64-cores) (2.7 GHz base, 4.5 GHz boost)
• 256 GB (8 x 32GB) Samsung ECC
Registered DDR4 3200MHz memory
• Nvidia RTX 6000 Ada Generation
GPU (48 GB)
• 2TB Samsung 990 Pro NVMe PCIe
4.0 SSD
• Microsoft Windows 11 Pro
• (read our review on page WS22)
Power hungry
To put it bluntly, Intel’s ‘Sapphire Rapids’ processors are very power hungry. Both the Intel Xeon w9-3495X and Intel Xeon Platinum 8490H processors have a base power of 350W. But this is only part of the story.
When rendering in Cinebench, for example, we observed 530W at the socket with the ThinkStation P7 and 1,000W at the socket with the ThinkStation PX. Even when rendering with a single core, the Lenovo ThinkStation P7 drew a substantial 305W.
That’s not to say that the Threadripper Pro 5995WX is that much better. With a default TDP of 280W, the Scan 3XS GWP-ME A1128T workstation still drew 474W at the socket when rendering in
Cinebench with all 64-cores. Finally, it’s important to note that all our tests were done with the ‘ultimate performance’ Windows power plan and power draw may be different with future BIOS updates.
On test
We tested all three workstations with a range of real-world applications used in AEC and product development. We also compared performance figures from Intel’s and AMD’s ‘consumer’ processors, including 12th Gen Intel Core (Core i912900K), 13th Gen Intel Core (Core i913900K), and ‘Zen 4’ AMD Ryzen 7000 Series (AMD Ryzen 7950X), although we did not have a data for all our benchmarks.
Computer Aided Design
CAD isn’t a key target workflow for Intel ‘Sapphire Rapids’ or AMD Ryzen Threadripper Pro. In fact architects, engineers and designers that only use bread-and-butter design tools like Solidworks, Inventor and Revit, will almost certainly be better served by 12th or 13th Gen Intel Core processors or AMD Ryzen 7000 (read our comparison article – www.tinyurl.com/ D3D-CoreRyzen ).
Intel and AMD’s entrylevel CPU families generally have fewer cores and less memory bandwidth, but higher clock speeds and higher Instructions Per Clock (IPC), which are important for these largely single threaded applications.
But these days, CAD is often just one of many tools used by architects, engineers and designers, some of which do benefit from having more cores or higher memory bandwidth. So, it’s important to understand how ‘Sapphire Rapids’ performs in CAD.
We used Solidworks 2022 as our yardstick, a mechanical CAD application that is largely single threaded or lightly threaded, so only uses a few CPU cores.
As expected, the Intel Core i9-12900K, Intel Core i9-13900K and AMD Ryzen 7950X had a clear lead. With fewer cores, higher turbo frequencies, and (apart from the Core i9-12900K) better IPC, Intel and AMD’s high-end workstation processors simply can’t keep up.
The Xeon w9-3495X did show a small but significant lead over the Threadripper Pro 5995WX in the rebuild, convert and simulate tests. But the Xeon w9-3495X didn’t have things all its own way, lagging behind in the mass properties and boolean operations tests.
To get an idea of pure single threaded performance, albeit through a synthetic rendering test, we also used the Cinebench ST benchmark. Here the Xeon w9-3495X had a clear lead of 22% over the Threadripper Pro 5995WX. Interestingly, despite its significantly lower turbo frequency, the Intel Xeon Platinum 8490H wasn’t that far behind the AMD processor.
Reality modelling
Reality modelling is becoming much more prevalent in the AEC sector. Agisoft Metashape 1.73 is a photogrammetry tool that generates a mesh from multiple hires photos. It is multi-threaded, but uses multiple CPU cores in fits and starts. It also uses some GPU processing, but to a much lesser extent.
We tested using a benchmark from specialist US workstation manufacturer Puget Systems. The Threadripper Pro 5995WX just about edged out the Xeon w9-3495X in the smaller Rock model test but was 13% faster in the larger school map test. Interestingly, the Xeon Platinum 8490H was way off the pace. We wonder if the software spreads the load across both CPUs but is not optimised for this. It’s hard to explain this by the lower frequency alone.
Point cloud processing software, Leica Cyclone Register 360, assigns threads according to the amount of system memory. On a machine with 64 GB it will run on five threads and on one with 128 GB or more it will run on six.
Impact of memory channels on performance (testing with Intel Xeon w9-3495X)
The Threadripper Pro 5995WX was 10% faster than the Xeon w9-3495X when registering our 99 GB dataset. Both CPUs lagged behind AMD’s and Intel’s consumer processors. Even though those test machines only had 64 GB of memory, so only ran on 5 threads, their higher frequencies and IPC gave them the lead.
Rendering
Ray trace rendering is highly scalable. Roughly speaking, double the number of CPU cores to half the render time (if frequencies are maintained).
The Threadripper Pro 5995WX significantly outperformed the Xeon w9-3495X in KeyShot and V-Ray, two of the most popular tools for design visualisation, and in Cinebench 23, the benchmark for Cinema4D. The Threadripper Pro 5995WX was 35% faster in Keyshot, 27% faster in V-Ray and 20% faster in Cinebench. This is a considerable lead.
But the advantage that AMD’s top-end workstation processor holds over the Xeon w9-3495X is not just down to it having 8 more cores. The relative energy efficiency of both processors and, therefore, the allcore frequencies they can maintain, has a major impact on performance.
In Cinebench, for example, the Threadripper Pro 5995WX maintained 3.05 GHz on all 64-cores while the Xeon w9-3495X went down to 2.54 GHz. The Xeon w9-3495X’s relationship between power, frequency and threads can be seen in more detail in the charts to the left.
Meanwhile, the dual Intel Xeon Platinum 8490H beat both single socket processors considerably. But with 120 cores and 240 threads to play with this came as little surprise.
Engineering simulation
Engineering simulation includes Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD). FEA can help predict how a product reacts to real-world forces or temperatures. CFD can be used to optimise aerodynamics in cars or predict the impact of wind on buildings. Both types of software are extremely demanding computationally.
There are many different types of ‘solvers’ used in FEA and CFD and each behaves differently, as do different datasets.
In general, CFD scales very well and studies should solve much quicker with more CPU cores. Importantly, CFD can also benefit greatly from memory bandwidth, as each CPU core can be fed data quicker. This is one area in which ‘Sapphire Rapids’ can outperform Threadripper Pro. Both have 8-channel memory, but ‘Sapphire Rapids’ uses faster DDR5 4,800MHz whereas Threadripper Pro uses DDR4 3,200MHz. For our testing we used three select workloads from the SPECworkstation 3.1 benchmark. This includes two CFD benchmarks (Rodinia, which represents compressible flow, and WPCcfd, which models combustion and turbulence) and one FEA benchmark (CalculiX, which models a jet engine turbine’s internal temperature).
In Rodinia, the Xeon w9-3495X outperformed the Threadripper Pro 5995WX by a whopping 101%. In WPCcfd, the lead was smaller but, at 13%, still significant. Performance of both processors were dwarfed by the dual Intel Xeon Platinum 8490H.
Both Intel processors fared much worse in the Calculix (FEA) test, where the Threadripper Pro 5995WX took a substantial lead.
Memory bandwidth
In addition to cores, memory bandwidth is one of the main differentiators between workstation processors and their consumer counterparts.
This is governed largely by the number of memory channels each processor supports, but also by the type of memory.
Memory channels act as pathways between the system memory and the CPU. The more channels a CPU has, the faster data can be delivered.
13th Gen Intel Core and the AMD Ryzen 7000 Series have two memory channels, while the Intel Xeon W-2400 Series has four, and Intel Xeon W-3400 Series, 4th Generation Intel Xeon Scalable and Threadripper Pro 5000 Series all have eight. To get the full memory bandwidth, all memory channels must be populated with memory modules, as was the case with all our test machines.
As mentioned earlier, ‘Sapphire Rapids’ Xeons have an advantage over the AMD Ryzen Threadripper 5000 Series as they support faster memory – DDR5 4,800MHz compared to DDR4 3,200MHz.
A quick run through the SiSoft Sandra benchmark shows the comparative memory bandwidth one can expect. The Threadripper Pro 5995WX recorded 139.27 GB/sec, while the Intel Xeon w93495X pulled 184.64 GB/sec and the dual Intel Xeon Platinum 8490H went up to 325.6 GB/sec. These figures help explain why Sapphire Rapids does so well in our memory intensive CFD benchmarks.
To see how memory bandwidth impacts performance in different workflows, we tested the Xeon w9-3495X with a variety of different memory configurations, from 1-channel with a single 32 GB DIMM, all the way up to 8-channels with 8 x 32 GB DIMMs. Interestingly, even with 6-channels, the Xeon w9-3495X edged out the Threadripper Pro 5995WX in memory bandwidth, delivering 141.21 GB/sec in SiSoft Sandra.
As most of our benchmarks fit into 32 GB of memory, the fact that we reduced the capacity should have minimal impact on results, although it can’t be ignored altogether. The exception is our Leica Cyclone Register 360 test, which adjusts
Intel’s single socket ‘Sapphire Rapids’ workstation processors can be overclocked. This requires more power to be pumped into the CPU, which, of course, means more heat and therefore liquid cooling. While none of the major OEMs get involved with this, UK firm Armari is an expert.
For the Intel Xeon w9-3495X, Armari has developed a custom water-cooling solution for its 2UR56SR Node, a rack workstation available the number of cores used in relation to system memory. This is why performance drops off massively with 32 GB.
As you can see from the charts on page WS9, memory bandwidth in the WPCcfd benchmark has a massive impact on performance. Interestingly, even with 6-channels filled, the Intel Xeon w9-3495X outperforms the AMD Ryzen Threadripper Pro 5995WX.
Another workflow massively influenced by memory bandwidth is recompiling shaders in Unreal Engine 4.26 which uses all available cores. However, where Threadripper Pro 5995WX loses out in GB/sec it makes up for in cores and all-core frequency, as it still managed to beat the Xeon w9-3495X in our automotive benchmark.
Performance in CAD (Solidworks), ray trace rendering (V-Ray) and reality modelling (Leica Cyclone Register 360 and Agisoft MetaShape Professional 1.73) appears to be virtually unaffected by memory bandwidth. There are a couple of caveats in Solidworks. In the simulation test, performance dropped a little when going from 4-channels to 1-channel. In boolean operations, 1-channel memory actually delivered marginally better results.
From our tests, however, Sapphire Rapids is not going to be the Threadripper Pro 5000 WX-Series killer we thought it might be, at least in the broader product development sector.
In ray trace rendering, the 64-core Threadripper Pro 5995X still has a considerable lead over the 56-core Xeon w93495X. And while Intel may possibly win out at certain price points, simply because it has so many different models across its Xeon W-2400 and W-3400 families, we certainly don’t expect viz specialists to move to ‘Sapphire Rapids’ en masse. Plus, as you move down the range, it will face more competition from 13th Gen Intel Core.
But ‘Sapphire Rapids’ does have some big plusses. In single threaded workflows it appears to have a lead over Threadripper Pro, which could make a real difference in some CAD/BIM applications. Better single threaded performance should also boost 3D frame rates in CPU-limited applications.
Conclusion
The importance to Intel of ‘Sapphire Rapids’ Xeon W-2400 and Xeon W-3400 being a success cannot be overstated. For the last few years AMD has had little in the way of competition in workflows that benefit from many cores or high memory bandwidth. Intel will have certainly felt the impact of Threadripper Pro.
through its ‘Ripper Rentals’ cloud workstation service. It allows the CPU to support up to 500W on all-core boost — a full 150W above its default TDP.
Armari also has a similar offering for the Threadripper Pro 5995WX, the 2UR64TP-RW Node.
We put both machines through their paces in Cinebench R23.
The Intel Xeon w93495X machine hit 2.88 GHz on all cores, 0.3 GHz faster than the air-cooled Lenovo ThinkStation P7.
We found the biggest potential benefit for ‘Sapphire Rapids’ to come from engineering simulation, specifically CFD. Our tests show that ‘Sapphire Rapids’ can deliver a massive performance boost, largely thanks to its superior memory bandwidth. While solvers and datasets vary, serious users of tools from Ansys, Altair and others should certainly explore what the Xeon W-3400 and 4th Gen Intel Xeon Scalable processors can do for them. Extremely complex simulations can take hours, even days to run. Cutting this time in half could deliver monumental benefits to a project.
All of this is exciting, but one can’t help but keep one eye on the future. AMD is expected to launch its next generation ‘Zen 4’ Threadripper Pro CPUs later this year. And, if rumours of 96-cores and 12-channel memory (DDR5) become a reality, then any lead Intel might have could be short lived.
This delivered a score of 69,811, equating to a significant 19% performance uplift.
The Threadripper Pro
76,117, corresponding to an 8% performance uplift.
Armari also offers an overclocked desktop Threadripper Pro workstation, which we reviewed in the January/February 2023 workstation special report.
■ www.armari.com
Workstations for every workflow
Speed up modelling, animating and rendering with workstations optimised for M & E applications such as 3DS Max, Cinema4D & Unreal Engine £ 3,999.99 INC VAT
4,499.99 INC VAT
10,999.99 INC VAT
19,999.99 INC VAT
The aesthetic design, functional design and build quality of the ThinkStation P7 and (in particular) the ThinkStation PX, is simply incredible
These are two of the most well designed and manufactured workstations we’ve ever seen, built for desktop or datacentre, but design firms will need to look closely at which workflows will benefit from the new ‘Sapphire Rapids’ Intel Xeon processors inside
Price £POA
www.lenovo.com/workstations
Lenovo has played its workstation hand extremely well over the last few years. In 2020, while HP and Dell continued to rely on ageing Intel ‘Cascade Lake’ processors to power their high-end workstations, Lenovo embraced AMD Ryzen Threadripper Pro and the ThinkStation P620 was born.
The processor’s 64-cores gave Lenovo a significant performance advantage in a range of multi-threaded workflows, from simulation to ray trace rendering. Intel had nothing that came remotely close, but now with its new ‘Sapphire Rapids’ workstation processors, this is about to change.
And Lenovo is certainly going big with ‘Sapphire Rapids’. Its new workstations, the ThinkStation PX (pronounced P10), P7 and P5 arrived with considerable fanfare in March 2023. The striking black and red design is the result of a collaboration with legendary automaker Aston Martin. The workstation’s front grill and side panel’s flush handle are classic Aston Martin.
The flagship ThinkStation PX is the most expandable of the new machines, featuring dual 4th Gen Intel Xeon Scalable processors (up to 2 x 60-cores), up to 2 TB of DDR5 4,800MHz memory, and up to four dual-slot GPUs, including the Nvidia RTX 6000 Ada Generation. The machine is designed to handle the most demanding multi-threaded or multiGPU workflows such as Computational Fluid Dynamics (CFD), ray trace rendering and video editing.
The ThinkStation P7 comes with a choice of workstation-specific Intel Xeon W-3400 Series processors (up to 56-cores), and up to 1 TB of DDR5 4,800MHz memory. The single socket machine will likely hit the price/performance sweet spot for many visualisation and simulation workflows, especially those that want the combination of high clock speeds for single threaded operations and 56-cores. It can also support up to three dual-slot GPUs.
The ThinkStation P5 features Intel Xeon W-2400 Series CPUs (up to 24 cores) and up to two dual-slot GPUs. Lenovo calls the P5 an ‘industry workhorse’ and it looks well suited to a wide range of workflows from CAD and visualisation to simulation and reality modelling, although we expect it will face stiff competition from Lenovo’s Intel Core-based workstations.
Rack optimised
The ThinkStation PX and P7 were built from the ground up to be ‘rack optimised’ and offer several features to transform these desktop machines into what Lenovo describes as ‘hybrid cloud workstations’, with remote management capabilities like those found in rack servers.
This includes an optional Baseboard Management Controller (BMC) card that gives IT managers ‘full remote management’. According to Lenovo, it will enable them to monitor the workstation, cycle on and off, perform BIOS or firmware updates and re-image the machine if necessary. In addition to data centre deployments, this could be of interest to IT managers supporting those working from home.
The machines also feature enhanced on-board diagnostics with a small LCD display on the front that shows a QR code in the event of a system error – even out of band failure states when a machine won’t turn on. The user simply snaps the code with their smart phone camera, and they will be taken directly to the relevant page on the Lenovo service website.
Lenovo ThinkStation PX design
As Lenovo’s flagship ‘Sapphire Rapids’ desktop workstation, it’s hardly surprising that the ThinkStation PX has the most impressive chassis. The build quality is superb, arguably the best we’ve seen in any workstation. The solid metal chassis has handles built into all four corners. It feels incredibly strong. And it certainly needs to be. Our test machine was heavy enough with a single GPU, single PSU and no Hard Disk Drives (HDDs). Carrying a ThinkStation PX around is a two-person job. Lifting it into a rack could be an Olympic sport.
The ThinkStation PX is primarily a desktop workstation, but it’s also been built from the ground up for the datacentre with a rack optimised ‘5U’ design. Bolt holes are hidden under a removable top cover, making it easy to deploy in a standard 19-inch rack with the optional sliding rack rail kit.
For resiliency and redundancy, the machine comes with an optional second rear hot-swappable 1,850W power supply unit (PSU), so should one PSU fail, the machine will carry on working. There’s also a rear accessible power button and lockable front access hot swap storage, which includes options for both 3.5-inch Hard Disk Drives (HDDs) and Solid State Drives (SSDs). Up to two SSDs can also be mounted on the motherboard but will be hidden under a GPU in multi GPU configs.
Alongside the front drive bays, you’ll find the power button, headphone jack, LCD diagnostics display, two USB Type A and two USB Type C ports, which light up when powered on. This this is a big plus to stop you scrabbling around in the dark.
There are plenty more ports at the rear – 6 x USB Type A and 1 x USB Type C, along with two RJ45 Ethernet ports - 1GbE and 10GbE. There’s also an optional Intel AX210 WIFI PCIe Adapter with antennas built into the top of the chassis.
Inside, the system is essentially split into two distinct sections with the motherboard offset from the side. Above the motherboard you’ll find CPU, memory and GPUs. Beneath the motherboard is storage and power supply units (PSUs).
The beauty of this design is that the components that generate the most heat enjoy uninterrupted airflow from front to back. And considering that a fullyspecced ThinkStation PX can house up to two 350W Intel Xeon Platinum CPUs, up to four 300W Nvidia RTX 6000 Ada Generation GPUs and up to 2TB of DDR5 memory spread across 16 DIMMs, it certainly needs all the help it can get.
To optimise thermals, Lenovo uses a tri-channel cooling system. Fresh air is drawn in through the ‘3D Hexperf’ front grill, the design of which was inspired by Aston Martin’s iconic DBS grand tourer. But it’s not just for looks. The spacing and shape of the rigid plastic grille, which has rounded spikes that protrude at the front, is optimised for maximum airflow.
The engineering star of the show is the redesigned ABS plastic air baffle, that acts as a wall of separation between the trichannel cooling system’s three distinct zones. Each zone is fed by its own fans — the idea being that you don’t get any pre-heated air from the CPUs going into the GPUs and vice versa. The baffle also separates the CPUs and brings a different channel of fresh air to each as well as the memory DIMMs.
Despite the close attention to thermal engineering, the ThinkStation PX is not a silent machine. Fan noise was quite noticeable when rendering or solving Computational Fluid Dynamics (CFD) problems using both Intel Xeon Platinum 8490H processors. But this is hardly surprising, as it drew 1,000W at the socket. Still, compared to a rack mounted server it’s an oasis of calm.
The ThinkStation PX scores very highly on serviceability with tool-free access on everything bar the CPUs. It’s not only one of the most beautifully engineered workstations we’ve ever seen; it also feels like everything has been manufactured to very low tolerances. This starts with the side panel which can be removed easily with a simple press and pull of the stylish flush handle. The panel effortlessly clicks back into place, which can’t be said of many desktop workstations.
All serviceable components are signposted with red touch points, from the replaceable fans with blind mate connectors and the PSU(s) at the rear, to brackets that hold the GPUs in place and levers to ease out the hard drive caddies. Aston Martin’s Cathal Loughnane reckons you don’t need a user manual. We wouldn’t go that far, but it’s certainly intuitive.
Lenovo ThinkStation P7 design
From the outside the ThinkStation P7 looks like a slimmed down version of the PX. It’s the same height, but not as deep or wide (4U, for racks). This means there are no front accessible drive bays, and all interior components are located on one side of the motherboard – CPU and memory in the middle, GPUs either side and PSU and HDD caddies at the bottom.
An air baffle channels cool air directly over the CPU, while both 4 DIMM memory banks have their own cooling fan units which clip off.
As the front CPU fans only need to cool a single Intel Xeon W-3400 series processor, they are much smaller than those used on the ThinkStation PX. And, it seems, they don’t have to work as hard. When rendering in KeyShot, for example with the single Intel Xeon w9-3495X processor, the machine was remarkably quiet, even though it drew 530W at the socket. And it can do this for hours on end. In Keyshot 2023, for example, when rendering a multi-frame animation on all 56-cores, fan noise remained constant, and the CPU maintained a steady 2.85 GHz.
The P7 follows the same design ethos as the PX with red touch points throughout. You don’t get quite the same level of serviceability, however. Once you clip out the cooling fans, for example, you must still disconnect the cables from the motherboard.
Elsewhere the chassis shares many of the same features as the PX – rear power button, built in WiFi, dual Ethernet, etc.
ThinkStation P7 / PX in action
Lenovo lent us a ThinkStation P7 and ThinkStation PX. These are pre-production units, so they may be slightly different to the final shipping workstations. Performance, for example, may increase with BIOS updates, so our benchmark results should not be treated as gospel.
The core specs can be seen below.
Lenovo ThinkStation P7
• Intel Xeon w9-3495X CPU
• 256 GB (8 x 32) DDR5 4,800MHz memory
• 4 x Nvidia RTX A4000 GPU (16 GB)
• 2 TB Samsung PM9A1 SSD
• Microsoft Windows 11 Pro for workstations
Lenovo ThinkStation PX
• 2 x Intel Xeon Platinum 8490H CPUs
• 256 GB (16 x 16) DDR5 4,800MHz memory
• Nvidia RTX 6000 Ada Gen GPU (48 GB)
• 2 TB Samsung PM9A1 SSD
• Microsoft Windows 11 Pro for workstations
CPU workflows
The ThinkStation P7 is built around the new workstation-specific Intel Xeon W-3400 Series processors, supporting up to 56-cores in a single socket. While it can’t match the ThinkStation PX for number of cores, the Intel Xeon W-3400 boasts higher Turbo clock speeds, so will outperform the ThinkStation PX in general system operations and in workflows that can’t take advantage of more than 56-cores.
CAD is a classic single threaded application and in Solidworks 2022 the ThinkStation P7 had a clear lead over the PX in everything but rendering. This lead also extended to reality modelling in MetaShape Pro (photogrammetry) and Leica Cyclone 360 (point cloud processing).
But in such single threaded or lightly threaded workflows, the ThinkStation P7 can’t hit the same heights as Lenovo’s mainstream workstations. The Lenovo ThinkStation P360 Ultra with 12th Gen Intel Core i9-12900K outperformed the ThinkStation P7 by a considerable margin. And this lead should grow even bigger with the P360 Ultra’s successor, the ThinkStation P3 Ultra, which features 13th Gen Intel Core processors.
But CAD users — at least those who only use CAD — are not really the intended audience for Lenovo’s ‘Sapphire Rapids’ workstations. The real beneficiaries will be those that have workflows that either benefit from a) lots of cores, such as ray trace rendering or simulation, b) from high memory bandwidth, such as Computational Fluid Dynamics (CFD), or c) just use colossal datasets that need lots of memory.
Of course, these are also workflows that are ideal for the AMD Ryzen Threadripper Pro 5000WX Series, the processor at the heart of the Lenovo ThinkStation P620.
While we don’t have benchmark figures for that specific machine, we do have them for another 64-core AMD Ryzen Threadripper Pro 5995WX-based workstation, the Scan 3XS GWP-ME A1128T workstation.
We found the Scan workstation (64-core Threadripper Pro 5995WX) outperformed the ThinkStation P7
(56-core Xeon w9-3495X) in all of our rendering benchmarks – V-Ray, KeyShot, Blender and Cinebench. Here the additional eight cores and higher all-core frequencies appear to make a big difference. In Cinebench for example, Scan’s Threadripper Pro 5995WX maintained a 3.05 GHz Turbo, while Lenovo’s Xeon w9-3495X peaked at 2.54 GHz. Of course, frequencies cannot be compared directly, as both processors deliver different Instructions Per Clock (IPC).
There was a different story with Computational Fluid Dynamics (CFD), testing the WPCcfd and rodiniaCFD workloads in the SPECworkstation 3.1 benchmark. The ThinkStation P7 had a small lead with WPCcfd and a substantial lead with rodiniaCFD. Here, we think Sapphire Rapids’ superior memory bandwidth gives it an advantage as it is able to feed its cores much quicker. While both AMD and Intel processors feature 8-channel memory, Intel has DDR5 4,800MHz which is much faster.
As one might expect, with 120 cores to play with, the ThinkStation PX had quite a considerable lead in both our rendering and CFD benchmarks.
We explore ‘Sapphire Rapids vs Threadripper Pro’ in more detail in the article on page WS4
GPU workflows
Of course, the ThinkStation P7 and PX offer much more than just ‘Sapphire Rapids’ processors. They can also host multiple highperformance Nvidia pro GPUs, up to the Nvidia RTX 6000 Ada Generation (read our review on page WS24)
The main difference between the two machines is that the PX can support four double height GPUs or eight single height GPUs, whereas the ThinkStation P7 can support three double height or six single height.
Our ThinkStation PX came loaded with a single Nvidia RTX 6000 Ada Generation GPU. This is an incredibly powerful GPU for pro viz workflows with 48 GB of memory to handle colossal datasets. We got incredibly smooth graphics in our real-time viz tests with very high frame rates at 4K resolution in Enscape (118 FPS) and in Unreal Engine with the Audi Car Configurator model (64.5 FPS / 39.4 FPS with Ray tracing disabled / enabled).
Not surprisingly, it also delivered incredible scores in our GPU ray tracing benchmarks (KeyShot, V-Ray and, Blender). To provide some context of what this might mean for day-to-day workflows, in Solidworks Visualize with the 3ds Stellar rendering engine it finished a 4K resolution 1,000 pass render in 81 seconds and a 100-pass render with denoising in a mere 8 seconds. In KeyShot, with denoising enabled, it rendered our bike scene at 8K resolution with 128 samples in 24 secs.
The ThinkStation P7 was configured rather differently, with four Nvidia RTX A4000 GPUs, each with 16 GB of memory. The obvious use case for this setup is virtualisation where the ThinkStation P7 could be carved up into four Virtual Machines (VMs) each with their own dedicated GPU.
The four GPUs could also be put to work in a single workstation, and we found enough collective power there to edge out a single Nvidia RTX 6000 Ada Generation in V-Ray, even though the Nvidia RTX A4000 is built on Nvidia’s older ‘Ampere’ architecture. With the seems to have added real value.
The big question for many design and engineering firms is whether ‘Sapphire Rapids’ is the right workstation platform for them? Or might they be better off with AMD Ryzen Threadripper Pro, available in the Lenovo ThinkStation P620.
Much of this depends on workflows. Our tests show that the ThinkStation P7 with 56-core Intel Xeon w9-3495X wins out in single threaded software, such as CAD, and those that are typically heavily bottlenecked by memory bandwidth such as CFD. But the 64-core Threadripper Pro 5995WX offers significantly better performance for rendering, thanks in part to its additional eight cores.
Meanwhile, the ThinkStation PX with its dual Intel Xeon Platinum 8490H processors sits top of tree in all our highly multi-threaded tests, but at $17,000 per processor it feels the market for this level of performance will be quite limited. Plus, you must take a substantial hit in single threaded workflows.
Of course, ‘Sapphire Rapids’ for Lenovo’s workstations is not just about these top-end processors. For the ThinkStation P7, Lenovo offers a total of seven Intel Xeon W-3400 processors, ranging from 12 to 56 cores, compared to five for the Threadripper Pro 5000 WX-Series, so customers may find sweet spots where Intel wins out on price/performance.
Nvidia RTX 4000 Ada Generation GPU, which should launch later this year, we would expect a considerable performance uplift, probably more memory per GPU, and four GPUs to still cost less than a single Nvidia RTX 6000 Ada.
Of course, in a single workstation setup there are two big downsides to spreading all that GPU power across multiple boards – a) you’ll mostly only be able to harness the power of one of those GPUs for real-time visualisation, and b) the size of datasets will be limited by the memory capacity of a single board.
Conclusion
Lenovo has done an incredible job with its ‘Sapphire Rapids’ workstations. The aesthetic design, functional design and build quality of the ThinkStation P7 and (in particular) the ThinkStation PX, is simply incredible. Partnerships with leading brands often feel very surface level, but the one with Aston Martin
The options for the ThinkStation PX feel more limited, with lower core Intel Xeon Scalable processors competing with higher core count Intel Xeon W-3400 Series processors in the ThinkStation P7. Such configs may become more attractive when customers want to load up the workstation with four double height GPUs and don’t necessarily need tonnes of CPU performance.
Finally, it’s important to state that the ThinkStation P7 and PX are much more than just desktop workstations. By making them easily rack mountable, and offering server grade remote management and serviceability, they also give design and engineering firms the flexibility to support staff wherever they need to work.
Importantly, Lenovo’s ’hybrid cloud workstation’ approach means companies can manage the transition to hybrid working at their own pace, without having to jump in with both feet when investing in a centralised datacentre workstation resource.