Myanmar's LIFT project and earnings a quantitative analysis

Page 1

Myanmar’sLIFTprojectandearnings: aquantitativeanalysis HansR.A.Koster&PeterDas

©2023ZOA&HansKoster

and Version1.0,February2023
Contents 1 Introduction (Executivesummary) ................................4 2 Projectbackgroundandprojectaims ..........................7 3 Data ..........................................................9 3.1 Datapreparation 9 3.2 Descriptivestatistics 10 4 Methodology .................................................14 4.1 Amultivariateregressionapproach 14 4.2 Addressingtheselectioneffect 15 4.3 Allowingforheterogeneityinthetreatmenteffect 16 5 Results .......................................................18 5.1 Baselineresults 18 5.2 Allowingforheterogeneityinthetreatmenteffect 20 6 Conclusions ..................................................23 Literature .....................................................24

1.Introduction (Executivesummary)

TheLivelihoodsandFoodSecurityTrustFund(LIFT)implementedprojectsandactivitiesthat supportpro-poorpolicydevelopmentandtookplacebetween2016and2020inMyanmar.It coveredthreesub-townshipsofThandaunggyiTownshipinNorthernKayinStateandwasin2019 extendedwithafewmorevillages.Theprojecttargetedover 5,000 small-holderfarmerhouseholds. Thistargetareacomprisesamixtureofdisplacedpersons,incumbenthouseholdsandreturnees withafocusonsmallholderfarmersasdirectbeneficiaries(LIFTUplandsProgrammeProject 2017).

Theprojecthelpedtheruralpoorinbothareasto“step-up”andaimedtoimprovetheirposition inthevaluechain,toimprovemarketaccessandsustainableaccesstocreditandotherfinancialand materialinputs.Oneofthemainaimsoftheprojectwastoimproveearningsofthebeneficiariesof theprogrammeastofreethemfortheviciouscycleofincreasingdebt.Nexttoimprovingearnings, theprojecthasfocusedonreducingmalnutrition,asalackofavailabilityandaccesstoadequate drinkingwaterandnutritiousfoodwasconsideredtobeaseriousissue.

Inordertoimprovelivingstandards,severalactivitiesreferredtoas outputs havebeenrolledout. Theseincludesupervisionandtrainingofmotherstoimproveknowledgeonnutrition(output1), homegardeningtrainingandinputs(output2),waterandsanitationtrainings(output3),trainings onagriculturalmethods(output4),theprovisionofagriculturalinputs(output5),improvementsto irrigationinfrastructure(output6 ),thejointconstructionofmotorcyclepathstoimproveaccessibility(output7 ),aswellasloan-and-savingstrainings(output8).Themainideaisthataconsistent setofinterlinkedactivities,trainings,andsupport,shouldimprovethelivingconditionsofthe beneficiaries.

Althoughthepremiseoftheprojectisclear,onlyexploratoryanalyseshaveshownthattheLIFT projectwaseffectiveinimprovingearningsandthenutritionofyoungchildren.However,much istobelearnedhereastheevidenceiscircumstantial,mostlyanecdotal,orbasedonqualitative methods.Thisreportaimstofillthisgapbyquantitativelyevaluatingtheimpactofthevarious activitiesundertakenunderdeumbrellaoftheLIFTproject.Wefocusonsupposedlythesingle

mostimportantoutcome–earnings(orincome).Inseveralwavesofsurveysundertakentomonitor theproject,householdswereaskedtoreporttheirannualincome.Usingmultivariateregression techniques,weinvestigatetowhatextenthouseholdsthathaveparticipatedinmoreLIFT-related activitieswitnesshigherearningsafterprojectparticipation.

Weemphasisethattheevaluationisnotbasedonanexperimentalsettingasadvocatedby, amongothers, Banerjee&Munshi (2004), Banerjee&Duflo (2011)and Banerjeeetal. (2018). Anexperimentalsettingwithatreatmentgroupandcontrolgroupisconsideredtobeidealfrom theviewpointofidentifyingcausaleffects,becausetheselectioneffectintoparticipationisfully addressed.Forexample,particularlyricherandmoreablehouseholdsmayparticipateintheseveral activitiesundertakenbytheLIFTproject.Insuchasituationonedoesnotmeasureacausaleffect oftheprogrammebutinsteadthesortingofricher/ablehouseholdsintotheproject.Unfortunately, randomisedexperimentsareusuallyverycostlyandhardtoimplementinpractice.

Still,wethinkthatwecomeascloseasreasonablypossibletoanexperimentalsettingby adoptingaso-called difference-in-differences setup(see Angrist&Pischke2008).Thisimplies thatwecompare changes inhouseholdearningsandcomparethemtothe intensity ofparticipation. Hence,weexpectthathouseholdsthatparticipatemoreintenselyinthevariousLIFTactivitieswill witnessalargerincreaseinearnings.

Adownsideofstandardquantitativemethods,includingrandomisedexperimentsanddifferencein-differencestechniques,isthatonlyan average treatmenteffectisidentified.However,wewould hopetoseethelargestincrementalchangesintheinitiallypoorhouseholds,whilehouseholds performingalreadyreasonablywellatthestartoftheprogrammearesupposedtobenefitless fromthevarioustrainingsandactivitiesoffered.Totestthishypothesis,weuseaninnovativenew methodreferredtoas UnconditionalQuantileRegressions (see Firpoetal.2009).Thistechnique enablesustoestimatetreatmenteffectsatvariouspointsintheearnings distribution.Forexample, wemayinvestigatewhethertheeffectsarelargerinthelowerendoftheearningsdistribution(i.e. forthelow-incomehouseholds).

Ideally,wewouldalsohaveinvestigatedindetailtheeffectsofthedifferentoutputs,insteadof onlyanalysingtheaggregateimpactsoftheLIFTactivities.However,itappearsthatoursample, consistingofabout 500 households,istoosmalltoobtainenoughstatisticalpowertoidentifythose effects.Indeed, LIFTUplandsProgrammeProject (2017)understandablyarguedforarelatively lownumberofhouseholdsinthesurveystosavecosts.Futureprojectsshouldprobablyincrease thesamplesizeifmoredetailontheexactworkingsoftheinvestigatedprojectiswarranted.

OurresultsshowthatLIFTactivitieshaveincreasedannualearnings.Theresultsindicate that,onaverage,havingparticipatedinoneoftheprogramme’sactivitiesgenerateda 3-4% higher income.Thisestimateisrobusttovariousmethodologies,includingacross-sectionalapproach withhouseholdcontrolvariablesandadifference-in-differencesapproach.Then,turningtoour heterogeneousestimates,weshowthatparticularlylow-incomehouseholdshavebenefitedfrom LIFTactivities.Theeffectforpoorhouseholdswhoareinthelowest 10% oftheearningsdistributionisabout10%,whilewedonotfindstatisticallysignificantpositiveearningseffectsfor the 50% richesthouseholdsinthesample.Hence,theLIFTprogrammeseemstohavecontributed notonlytoincreasesinearnings,butalsotoreductionsinearningsinequality.

5

Thisreportproceedsasfollows.InSection 2 weoutlinetheLIFTprojectandtheintended activities/outputs.Section 3 discussesthepreparationandcleaningofthedatausedfortheanalysis. Wealsoprovidesomeinitialdescriptivestatisticsforthestudiedsample.Section 4 outlinesthe methodology,whichisfollowedbytheresultsinSection 5.Section 6 concludes.

6 Chapter1.Introduction
(Executivesummary)

2.Projectbackgroundandprojectaims

From2016-2019ZOAwithitspartnersimplementedtheprogrammetitled‘Improvedeconomicand nutritionaloutcomeofpoorruralpeopleinMyanmar ’.ItwasaprojectfundedbytheLivelihoods andFoodSecurityFund(LIFT)andcoveredthreesub-townshipsofThandaunggyiTownship inNorthernKayinState(seeFigure 2.1).Theprojecttargetedover 5,000 smallholderfarmer households(HHs)withcommercialpotentialinThandaunggyiTownship.Thisareaemerged fromconflictandconsistsofamixtureofinternallydisplacedpersons(IDPs),IDPreturneesand incumbenthouseholds.

Theoverallpurposeoftheprojectwasformulatedas"improvedeconomicstatusandnutritional outcomesforpoorruralpeopleinMyanmarwithincreasedincomeandstableaccesstofoodfor vulnerablehouseholds".ThiswasinlinewiththepurposethatwasarticulatedbyLIFT’sUplands Programme.

Toachievethishighleveloutcomeandinconsiderationoftheneedsofthetargetgroups,the projectfocusedon (i) farmadvisoryservicesandProducerGroups, (ii) nutrition,and (iii) Social protectionandaccesstocollective/publicservices.Sustainablenaturalresourcemanagement (NRM)andGenderwereso-calledcross-cuttingissues,meaningthattheywereintegratedintoall activitiesoftheprogramme.

Thedirectaimoftheprojectwastohelptheruralpoorinthetargetedareasto‘step-up’and improvetheirpositioninthevaluechain(VC),togetaccesstomarketsandtocreditandother inputs.Besidesimprovingtheirincomeandgettingthemoutofthecircleofdebt,theproject includednutritionandWASHactivitiesasalackofavailabilityandaccesstoadequatedrinking waterandnutritiousfoodwasidentified.

ImprovedeconomicandnutritionaloutcomeofpoorruralpeopleinMyanmar wasimplemented inthenortherntownshipofKayinState,ThandaunggyiTownship(seemapbelow),andtargetsa

totalof100villages.KayinStateislocatedinthesoutheastofMyanmarandisborderedbythe MandalayRegionandShanStatetothenorth,KayahStatetothenortheast,MonStateandBago RegiontotheWest,andThailandtotheEast.

ThandaunggyiTownshipconsistsofthreesub-townships:Leikthosub-township,Thandaunggyi sub-townshipandBawgalisub-township.Therearetwotypesofvillages:Core-villagesandValue Chain-onlyvillages(VC).Core-villagesarethevillagestargetedwithallprojectcomponents.There are40core-villages.VC-onlyvillagesareonlytargetedwiththeactivitiesdescribedunderoutput 4 and5.Thereare60VC-onlyvillages.

8 Chapter2.Projectbackgroundandprojectaims
F IGURE 2.1–M APOFTHETARGETEDAREA

3.Data

3.1 Datapreparation

WeuseseveralsurveysundertakentoevaluatetheLIFTproject.Thefirstisthebaselinesurvey with 373 uniquehouseholdsfrom LIFTUplandsProgrammeProject (2017),whichwasundertaken beforetheLIFTprojectstartedinthefinalquarterof2016.Thesecondsurveycapturesanother 250 householdsinearly2019.Thissecondbaselinesurveywasundertakenbecauseanothersetof villageswasaddedtothe 40 corevillagesinthesample(see LIFTUplandsProgrammeProject 2019).Thenwehavetwo‘endline’surveysaftertheprojectfinishedcapturing 393 householdsfor theinitialvillagesand250forthevillagesaddedin2019.

Foreachofthesesurveys,wekeepthevariablesthatareconsistentlymeasuredacrossthe differentwavesinourdata.Thekey outcome variableofinterestisannualearnings,which ismeasuredinMyanmareseKyat(i.e. Ks.10,000 isabout$4 80).Onemaybeworriedthat earningsaremeasuredwitherror,becauseearningsareselfreported.Fortunately,asearningsisour dependentvariable,withrandommeasurementerror,theestimatedeffectsarenotimpacted(see Koster&VanOmmeren2020).Wethinkitisreasonabletoassumerandommeasurementerror becausepeopleareunlikelytomakesystematicerrorsinreportingtheirearnings.

Toconstructourmain treatment variable,wecountthetypeofactivitiesahouseholdparticipates inineachstudyperiod,whichishalfayear.Forexample,ahouseholdmayhaveparticipatedin mothergroupseninhavereceivedtrainingsonagriculturalmethodsinthefirsthalfof2017.Then, thetreatmentvariableisequalto 2.Alternatively,weconsidertocountthefrequencyofactivities.

Forexample,ahouseholdmayhaveparticipated 5 timesinmothergroups,andhasfollowed 3 activitiesrelatedtobusinessgroups.Then,thisalternativetreatmentvariableequals 8.Werefer totheformvariableas countofactivitiesparticipated,whiletothelattervariableas frequencyof activitiesparticipated.

Further,wehaveinformationonthevillagewherethehouseholdlives,whichenablesusto latercontrolfortrendsintheproductivityofcertainvillages.Fromthesurveys,wealsoobtain informationontheethnicgroupwheretheheadofthehouseholdbelongsto,aswellasthereported religion,whethertherespondentismarried,ownsland,andisafarmer.Usingahouseholdidentifier wecantracehouseholdsovertimetoseehowearningshavedeveloped.Becausewethinkitis unlikelythatethnicityorreligionchanges,wetaketheethnicityandreligionfromthebaseline surveyforeachhousehold.

3.2 Descriptivestatistics

Inthissubsectionwefurtherillustratethecharacteristicsofthedata.InTable 3.1 weshowwhatwe calldescriptivestatisticsforthedependentvariableandthecontrolvariables.Weshowrepresent themean,standarddeviation(i.e. thespread),minimumandmaximumvaluespervariable.Thisis usefultoseeifthereareanyoutliervalues.Theaverageannualearningsinthefirstbaselinesurvey from2016areKs. 909 thousand,whichisabout$ 430,whichisonly$ 1 18 perday.Thisclearly indicatesthathouseholdsinthissurveyandparticipatinginthesupportprogrammeareverypoor. Thespread,however,issubstantial.Thehouseholdwiththehighestearningsisabout$ 4 thousand peryear.Theaverageearningsconsiderablyincreasedovertheyears.Inthefinalsurvey,average earningshaveincreasedbyalmost50%toKs.1 3million(approximately$620)

Lookingatthecontrolvariables,mostparticipantsaremarried(about 95%).Almostalwaysthe headofthehouseholdismale(alsoabout 95%).Further,almostallhouseholdsownlandthatthey useforagriculturalactivities.Further,mosthouseholdsareChristian,withBaptistsandCatholics beingthelargestgroups.However,pleasenotethattheshareofBaptisthouseholdsisconsiderably largerinthefirstbaselinesurvey,ascomparedtothesecondbaselinesurvey.Themostdominant ethnicgroupisKebaKaren(respectively36%and77%inthefirstandsecondbaselinesurvey).

InTable 3.2 weshowthedescriptivesoftheparticipationinvariousactivities(i.e. outputs).For completeness,weshowalsothefirstbaseline.Obviously,asthefirstbaselinesurveytookplace beforeanyactivitieswherelaunched,allvariablesequalzero.Asthesecondbaselinesurveytook placeearly2019,householdsalreadyparticipatedinvariousactivities.Asnotallactivitieswere rolledoutinthevillagesthatwerepartofthesecondbaseline,theoutputs 1, 2 and 3 areequalto zero.

WethinkPanelCinTable 3.2 isthemostinteresting.Onaverage,householdsattheend ofthesampleperiodparticipatedinalmost 8 different activities,whicharecountedeachhalfa year.Despitethesecondbaselinegroupnotparticipating,thefirstoutput,providingknowledge onnutritiontomothers,hasthehighestparticipationacrosshouseholds.Therearehouseholds thathaveparticipatedalotinvariousactivities,asthemaximumis 25.Otheractivitiesthathave highparticipationratesareoutput4(trainingonagriculturalmethods)andoutput5(provisionof agriculturalinputs).Wealsoreportthefrequencyofparticipatinginactivities.Onehousehold hasparticipatedinastunningnumberof 109 activities.Weseethatthefrequencyofactivitiesis dominatedbyoutput1(knowledgeonnutrition)andoutput2(homegardeningandinputs).

Next,wewillinvestigateinFigure 3.1 whetherthemainvariablesofinterestarenormally

10 Chapter3.Data

3.1–D ESCRIPTIVESTATISTICS : DEPENDENTVARIABLEANDCONTROLS

Notes: Thenumberofobservationsindefirstbaselineis348,itis248inthesecondbaselineand623inthe endlinesurvey.

3.2Descriptivestatistics 11 TABLE
PANEL A:Baseline1 (1)(2)(3)(4) meansdminmax Annualearnings (Ks.) 909,070989,96816,0008,500,000 Headofhouseholdismale 0.9740.1590 1 Married 0.9710.1670 1 Householdownsland 0.9630.1900 1 Occupation–Agriculture 0.9660.1830 1 Religionofheadofhousehold–Baptist 0.6440.4800 1 Religionofheadofhousehold–Catholic 0.2180.4140 1 Religionofheadofhousehold–Anglican 0.1090.3120 1 Religionofheadofhousehold–Natureworship0.02010.1410 1 Ethnicityofheadofhousehold–BweKaren 0.2760.4480 1 Ethnicityofheadofhousehold–PakuKaren 0.2270.4200 1 Ethnicityofheadofhousehold–MawNayBwaKaren0.02010.1410 1 Ethnicityofheadofhousehold–KebaKaren 0.3590.4800 1 Ethnicityofheadofhousehold–KayanKekoKaren0.04310.2030 1 Ethnicityofheadofhousehold–Other 0.04600.2100 1 PANEL B:Baseline2 (1)(2)(3)(4) meansdminmax Annualearnings (Ks.) 969,385578,891202,5002,375,000 Headofhouseholdismale 0.9350.2460 1 Married 0.9480.2230 1 Householdownsland 0.9840.1260 1 Occupation–Agriculture 0.9800.1420 1 Religionofheadofhousehold–Baptist 0.2980.4580 1 Religionofheadofhousehold–Catholic 0.5000.5010 1 Religionofheadofhousehold–Anglican 0.02020.1410 1 Religionofheadofhousehold–Natureworship0.1730.3790 1 Ethnicityofheadofhousehold–BweKaren 0.004030.06350 1 Ethnicityofheadofhousehold–PakuKaren 0.02420.1540 1 Ethnicityofheadofhousehold–MawNayBwaKaren0.1770.3830 1 Ethnicityofheadofhousehold–KebaKaren 0.7660.4240 1 Ethnicityofheadofhousehold–KayanKekoKaren0.004030.06350 1 Ethnicityofheadofhousehold–Other 0.02420.1540 1 PANEL C:Endline (1)(2)(3)(4) meansdminmax Annualearnings (Ks.) 1,341,2151,076,640100,0008,840,000 Headofhouseholdismale 0.9480.2230 1 Married 0.9600.1950 1 Householdownsland 0.9920.08870 1 Occupation–Agriculture 0.7750.4180 1 Religionofheadofhousehold–Baptist 0.5090.5000 1 Religionofheadofhousehold–Catholic 0.3340.4720 1 Religionofheadofhousehold–Anglican 0.07120.2570 1 Religionofheadofhousehold–Natureworship0.07910.2700 1 Ethnicityofheadofhousehold–BweKaren 0.1610.3680 1 Ethnicityofheadofhousehold–PakuKaren 0.1570.3640 1 Ethnicityofheadofhousehold–MawNayBwaKaren0.08070.2730 1 Ethnicityofheadofhousehold–KebaKaren 0.5250.5000 1 Ethnicityofheadofhousehold–KayanKekoKaren0.03640.1870 1 Ethnicityofheadofhousehold–Other 0.02370.1520 1

TABLE 3.2–D ESCRIPTIVESTATISTICS : TREATMENTVARIABLES

PANEL

12 Chapter3.Data
A:Baseline1 (1)(2)(3)(4) meansdminmax Countofactivitiesparticipated 0000 Output1–participated 0000 Output2–participated 0000 Output3–participated 0000 Output4–participated 0000 Output5–participated 0000 Output6–participated 0000 Output7–participated 0000 Output8–participated 0000 Frequencyofactivitiesparticipated 0000 Output1–frequency 0000 Output2–frequency 0000 Output3–frequency 0000 Output4–frequency 0000 Output5–frequency 0000 Output6–frequency 0000 Output7–frequency 0000 Output8–frequency 0000 PANEL B:Baseline2 (1)(2)(3)(4) meansdminmax Countofactivitiesparticipated 3.2421.940010 Output1–participated 0000 Output2–participated 0000 Output3–participated 0000 Output4–participated 1.2980.83404 Output5–participated 1.0040.87904 Output6–participated 0.2140.41101 Output7–participated 0.2900.46402 Output8–participated 0.4350.77703 Frequencyofactivitiesparticipated 4.8314.460023 Output1–frequency 0000 Output2–frequency 0000 Output3–frequency 0000 Output4–frequency 1.7101.848016 Output5–frequency 1.0200.92405 Output6–frequency 0.2380.48002 Output7–frequency 0.2900.46402 Output8–frequency 1.5733.080013
C:Endline (1)(2)(3)(4) meansdminmax Countofactivitiesparticipated 7.9314.244025 Output1–participated 2.7561.72607 Output2–participated 0.9271.36303 Output3–participated 0.3240.58403 Output4–participated 1.3080.91204 Output5–participated 1.2161.08208 Output6–participated 0.3020.57403 Output7–participated 0.2590.45602 Output8–participated 0.8400.99103 Frequencyofactivitiesparticipated 23.3920.790109 Output1–frequency 9.4688.898036 Output2–frequency 4.3987.862032 Output3–frequency 0.3270.60405 Output4–frequency 2.7972.951020 Output5–frequency 1.2681.235010 Output6–frequency 0.3750.77606 Output7–frequency 0.2590.45602 Output8–frequency 4.4977.269026 Notes: Thenumberofobservationsindefirstbaselineis348,itis248inthe secondbaselineand623intheendlinesurvey.
PANEL

distributed.InFigure 3.1a weshowthedistributionofearningsinthefirstbaselinesurvey.Because earningsarelikelyaso-calledskeweddistribution,wetakethelogarithmofearnings(see Koster& VanOmmeren2020).Itisshownthatthedistributionismoreorlesslog-normallydistributed.

Figure 3.1b showsthedistributionofearningsfortheendlinesurvey,whichisagainmoreor lesslog-normallydistributed.Pleasenotethatthedistributionshiftedtotherightcomparedtothe baselineearningsdistribution,whichisinlinewiththestrongaverageincreaseinearningsbetween thebaselineandendlinesurveyofabout50%.

InFigure 3.1c weshowthecountofactivitiesparticipated.Itismoreorlessnormallydistributed, apartfromafewoutliersbeyond 20 activities.Pleasenotethatwecannottaketheloghere,because thecountofactivitiescanbezero(whichisparticularlytrueforthefirstbaselinesurvey)andone cannottakethelogarithmofzero.

Finally,thefrequencyofactivities(seeFigure 3.1d)isstronglyskewed.Wethereforepreferto focusonthecountofactivitiesasthemaintreatmentvariabletoavoidtheissuethatoutliershavea disproportionateimpactontheresults.Still,wewillprovideancillaryanalyseswhereweanalyse theimpactofthefrequencyofactivitiesonearnings.

3.2Descriptivestatistics 13
Notes
( A )E ARNINGS , FIRSTBASELINE ( B )E ARNINGS , ENDLINE ( C )C OUNTOFACTIVITIES , ENDLINE ( D )F REQUENCYOFACTIVITIES , ENDLINE
:Theredlineindicatesanormaldistribution.
F IGURE 3.1–H ISTOGRAMS

4.Methodology

4.1 Amultivariateregressionapproach

Astandardwaytoinvestigatetheimpactofatreatmentorindependentvariableonanoutcomeor dependentvariableistoestimatelinearregressions.1 Usually,therelationshipbetweentreatment variableandoutcomevariablesisdescribedbyasimpleequationofthefollowingform:

where yivt aretheannualearningsofhousehold i livinginvillage v intime t and civt isthecount ofactivitiesthatthehouseholdsparticipatedinsofar.Thelattercorrespondstoeitherthefirst baselinesurvey,thesecondbaselinesurveyortheendlinesurvey.Further, α and β areregression parameterstobeestimated,while εivt istheresidual,orthepartofearningsthatwecannotexplain by civt .

Pleasenotethat β hereisthekeyparameterofinterestanddepictswhathappenstoearnings,in percentageterms,ifthecountofactivitiesincreasesby 1.Say,forexample,that β = 0 01,thenfor eachactivitythehouseholdparticipatedin,theannualearningsincreaseby1%.

However,theabovemodelislikelyatoosimplisticdescriptionofrealityasnotonlythe countofactivitieshasanimpactonearnings,butalsotheethnicity,religion,andmaritalstatus ofthehousehold,aswellasthevillagewherethehouseholdlivesdeterminesincome.Iffor examplehouseholdswithacertainethnicityorreligionhavehigherearnings and participatemore inactivities,wemayfalselyattributetheimpactofethnicityandreligiontothetreatmentvariable.

1 Inlinearregressions,therelationshipbetweenthetreatmentvariable(s)andoutcomevariablearemodelledusing linearpredictorfunctionswhoseunknownmodelparametersareestimatedfromthedata.Itappearsthatthebestlinear unbiasedestimatorofthecoefficientofinterest–sotheimpactofthetreatmentvariableontheoutcomevariable–is obtainedbyminimisingthesquaredresiduals.

log yivt = α + β civt + εivt , (4.1)

Toaddressthisissueitisimportantto control forhouseholdandlocationcharacteristicsthatmay alsodeterminetheearningsofthehousehold.Anextendedequationthenlooksasfollows:

log yivt = α + β civt + γ xivt + δv + εivt , (4.2)

where xivt arecontrolvariables,suchasethnicityandreligion,and γ isasetofparameterscapturing theimpactsofthesevariablesonearnings.Wealsoincludeso-calledvillage fixedeffects,denoted by δv .Thisimpliesthatweincludeadummyvariableforeachvillageastocontrolforfactors influencinghouseholds’earningsatthevillagelevelthatarethesameforeveryone.Forexample, somevillagesmayhavebetteraccesstofertilegrounds,whichwillleadtohigheryieldsandinturn higherearnings.Byincludingthesevillagefixedeffectswecontrolforallthosefactors.

4.2 Addressingtheselectioneffect

Amajorconcernwiththeaboveapproachisthepresenceofapotentialselectioneffect Angrist &Krueger (2001), Angrist&Pischke (2008).Thisselectioneffectentailsthathouseholdsthat haveahigherearningspotentialaremorelikelytoparticipatein(many)activitiesoffered.Hence, inthisway,wedonotmeasurethecausaleffectoftheintervention,butinsteadcapturethefact thathouseholdsthatwouldhaveexperiencedhigherearningsgrowthabsentoftheprogramme participatemoreintenselyintheactivitiesoffered.

Acommonsolutionistoapplyrandomisation,meaningthatthetreatment(i.e.,theactivities offered)israndomisedacrosshouseholds.Randomisationobviouslyaddressestheselectioneffect becausehouseholdcouldnotself-selectintotheprogramme Angrist&Pischke (2008).

Unfortunately,wecannotrelyonrandomisationinthecurrentsettingbecauseparticipationin theactivitieswasvoluntary.Instead,weuseaversionofanapproachthatisoftenusedinapplied economics,whichisreferredtoasthe difference-in-differences (DID)approach(Bertrandetal. 2004, Angrist&Pischke2014).WeprovideanexampleofthismethodinFigure 4.1.Theideais thefollowing:oneshouldhaveobservationsofanoutcomevariable(inourcase:earnings)before andaftertreatment.Assumethatacertaingroupofhouseholdsdoesnotreceivetreatment.Absent ofthetreatment,thosepeoplewitnessanincreaseinearningsof B.Thentherearethehouseholds thatreceivetreatment.InFigure 4.1 itcanbeseenthatthosehouseholdsinitiallyhavehigher earnings(i.e.,haveahigherbaselineearningslevel).However,thisisnotanissuebecausewe lookatthechangeinearningsovertime,whichisequalto A.Whatisthenthecausaleffectofthe treatment?Well,thatis A B,becauseabsentofthetreatmentthetreatmentgroupwouldhave experiencedanincreaseinearningsequalto B sothe additional effectofthetreatmenteffectis equalto A B

Inoursettingweonlyhaveveryfewhouseholdsthatdidnotparticipateinanyoftheactivities. However,wecanusethe intensity oftreatmenttocomparechangesinearnings.Hence,ifwe comparethedifferencesinthetrendshouseholdsthathaveparticipatedin2versus1activities,we cantracetheeffectofattendingoneextraactivity.

Formally,theapplicationofthisDIDapproachisstraightforward:wejustincludeso-called

4.2Addressingtheselectioneffect 15

household fixedeffects,whichareessentiallydummyvariablesforeachhousehold:

log yivt = α + β civt + γ xivt + ζi + εivt , (4.3) where ζi capturesthehouseholdfixedeffects.Theinclusionofhouseholdfixedeffectsensurethat wecontrolforbaselinedifferencesinearningsacrosshouseholdsandonlyusevariationinthe trendsinearningsoftimeacrosshouseholds.

Onestillmaybeconcernedthatdifferentvillagesmaybeondifferenttrends,implyingthat,for example,duetochangesinclimaticconditionssomevillagesmayfacelowergrowthinearnings.If thesechangesinclimaticconditionsarecorrelatedtothetreatment,ourestimate β isstillbiased. Toaddressthisissue,inafinalspecificationweincludevillage-by-yearfixedeffectstoabsorball trendsinearningsatthevillagelevel:

log yivt = α + β civt + γ xivt + δvt + ζi + εivt , (4.4) where δvt capturesvillage-by-yearfixedeffects.

4.3 Allowingforheterogeneityinthetreatmenteffect

Thedifference-in-differencedesignisusefulinidentifyingthe average effectofthetreatment. Inmanyapplications,however,oneisinterestedinheterogeneityinthetreatmenteffectacross households.Inoursettingweareparticularlyinterestedwhetherhouseholdsthatareinitiallypoor haveexperiencedlargerbenefitsfromtheprogrammethaninitiallyslightlyricherhouseholds.A veryusefulrecentinnovationtodisentangletheseeffectsiswhat Firpoetal. (2009)refertoas unconditionalquantileregressions.Thismethodallowsustomeasurethetreatmenteffectateach quantileoftheearningsdistribution.Quantilesarecutpointsdividingtherangeoftheearnings distributionintocontinuousintervalswithequalprobabilities.Hence,alowerquantilemeansthata householdhaslowearnings(i.e. isontheleftsideofFigures 3.1a or 3.1b),whileahigherquantile

16 Chapter4.Methodology
F IGURE 4.1–D IFFERENCE - IN - DIFFERENCES : EXAMPLE

4.3Allowingforheterogeneityinthetreatmenteffect 17

meansthatahouseholdisrelativelyricher(i.e. isontherightsideofFigures 3.1a or 3.1b).2

Itisgenerallyconvenienttoapplyunconditionalquantileregressionsbecauseitisshownby Firpoetal. (2009)thatthisjustentailsatransformationofthedependentvariable, log yivt ,bymeans ofaso-calledrecenteredinfluencefunction(RIF).Weaimtoestimatethefollowingspecification:

where RIF ( ) istheRIFforagivenquantile z ofearningsand βz capturestheeffectofinterestfor agivenquantile z oftheearningsdistribution.

2 Letusgiveanexample.Saywehavedataon 100 householdsandwerangethesehouseholdswithearningsfrom hightolow.Then,thefirstobservationsissaidtobethefirstquantileoftheearningsdistribution,the 50th quantileisthe middleobservation,whichisalsocalledthemedian,whilethe 100th quantileisthehouseholdwiththehighestearnings inourdata.

RIF log yivt ; qz , Flog yivt = αz + βz civt + γz xivt + ζi,z + εivt ,z , (4.5)

5.Results

5.1 Baselineresults

Wenowproceedtoreporttheresults.WereportthemainresultsinTable 5.1.Incolumn(1)we estimateaverysimplespecificationonlywithsurveywavefixedeffectstocontrolfortheoverall positivetrendinearningsovertime.Wefindthatparticipatinginanotheradditionalactivityinhalf ayearimpliesanincreaseinearningsof4 2%.

Column(2)furtherincludeshousingcharacteristics,suchasdummiescapturingethnicgroups andreligion,whetherthehouseholdisafarmer,ownslandandismarried.Thecoefficientregarding thecountofactivitiesparticipatedishardlyaffectedbytheinclusionofthosecontrols.

TABLE 5.1–R EGRESSIONRESULTS : EFFECTSOFTREATMENT

Dependentvariable:thelogarithmofearnings (1)(2)(3)(4)

OLSOLSOLSOLS

Countofactivitiesparticipated0.0420***0.0428***0.0405***0.0324** (0.0064)(0.0069)(0.0140)(0.0150)

Housingcharacteristicsincluded

Householdfixedeffects

Villagefixedeffects

Village×surveywavefixedeffects

Surveywavefixedeffects

Notes:Householdcharacteristicsinclude 6 ethnicitygroupdummies, 4 religiondummies,and dummyvariablesindicatingwhethertheoccupationisfarming,whethertheheadofthehousehold ismale,whethertheyownlandandwhethertheyaremarried.Standarderrorsareclusteredatthe householdlevelandinparentheses;*** p < 0 01,** p < 0 5,* p < 0 10.

Numberofobservations 1,2221,219810808 R2 0.10500.31010.70370.7517

TABLE 5.2–R EGRESSIONRESULTS : EFFECTSOFTREATMENT, FREQUENCY Dependentvariable:thelogarithmofearnings

Notes:Householdcharacteristicsinclude 6 ethnicitygroupdummies, 4 religiondummies,and dummyvariablesindicatingwhethertheoccupationisfarming,whethertheheadofthehousehold ismale,whethertheyownlandandwhethertheyaremarried.Standarderrorsareclusteredatthe

Incolumn(3)weapplyour‘differences-in-differences’approachthatcontrolsfortheselection ofhouseholdsinparticipatingintheprogramme.Surprisingly,wefindthattheselectioneffectis reallyimportant,astheeffectisnotmateriallyimpactedbytheinclusionofhouseholdfixedeffects. Becausetheso-called‘degreesoffreedom’areconsiderablylower,thestandarderror(i.e. ahigher standarderrorindicatesthattheeffectislesspreciselyestimated)issomewhathigher.Still,wefind thattheeffectisstatisticallysignificantatthe1%level.

Finally,incolumn(4)inTable 5.1 wedisplaythemostcomprehensivespecificationinwhich wecontrolforalldifferencesinearningsovertimebetweenvillages.Forexample,onevillagemay respondmorefavourablytowardschangesinseasonalweatherconditionssothatvillagershave moretimetojoinprogrammeactivities.Weshowthatthesevillagetrendsplaysomeroleasthe coefficientisabout 20% lower:participatinginanotheractivityincreasesearningsnowby 3 2%. Still,theeffectishighlystatisticallysignificant(atthe1%level).

Onemayarguethatitisnotthecountofactivitiesthatmatterbutalsothe frequency orintensity ofactivitiesparticipatedin.WehaveshowninFigure 3.1d thatthedistributionoffrequencyof activitiesismoreskewedandyieldsmoreoutliers.Moreover,itisquestionablewhetheroneshould treatthefrequencyofparticipationinthesamewaybetweendifferentoutputs(e.g. participating inonemothergroupactivity (output1),istreatedinthesamewayastheprovisionofmotorcycle paths (output7)).Inanycase,asasensitivitycheck,wepresenttheresultsinTable 5.2

Wefollowthesameset-upasinthebaselineresultstable.Weobservestatisticallysignificant effectsofattendinganadditionalactivityincolumn(1),whereweonlyincludesurvey-wavefixed effects.Attendinganadditionalactivityincreasesearningsby 0 7%.Thiseffectreducesinsize whenweaddhouseholdcharacteristicsandvillagefixedeffectsincolumn(2)andhouseholdfixed effectsincolumn(3).Inthelatterspecification,thecoefficientisonlystatisticallysignificantat the 10% level.Notethatthequantitativemagnitudeissomewhatcomparabletotheresultswhere weusethecountofactivities,butbecausethefrequencyofactivitiesisnoisierwefindsomewhat

5.1Baselineresults 19
(1)(2)(3)(4) OLSOLSOLSOLS Frequencyofactivitiesparticipated0.0074***0.0067***0.0050*0.0035 (0.0013)(0.0015)(0.0028)(0.0031)
Householdfixedeffects Villagefixedeffects Village×surveywavefixedeffects Surveywavefixedeffects Numberofobservations 1,2221,219810808 R-squared 0.09750.30110.70050.7500
Housingcharacteristicsincluded
householdlevelandinparentheses;*** p < 0 01,** p < 0 5,* p < 0 10.

lowerestimates.1 Incolumn(4),inthespecificationwithallthecontrolsandfixedeffects,wedo notfindastatisticallysignificanteffect,althoughthepointestimateisstillpositive.

Further,weinvestigateinTable 5.3 theeffectsofdifferentoutputs.Theissueisthatwehave toolittlepower(i.e.,oursampleistoosmall)tomeasuretheeffectsofalloutputsatthesametime. Wetakeanalternativeapproachwherewecountthetotalofactivitiesparticipatedminuseachof theactivitiesineachspecification.Forexample,incolumn(1)wecountthetotalofactivities participatedforoutputs2-8,andseparatelywhetherthehouseholdparticipatedinoutput1.In column(2)wecountthetotalofactivitiesparticipatedforoutput1,and3-8,andseparatelywhether thehouseholdparticipatedinoutput2,etc.

Wedonotfindclear-cutresults,whichconfirmsthatwelackpowertomakeadecisiveanswer onwhatoutputsyieldedeffectiveincreasesinearnings.Mostofthestandarderrorsaretoolarge, butwefindpositivepointestimatesforsupervisionandtrainingofmotherstoimproveknowledge onnutrition(output1),waterandsanitationtrainings(output3),improvementstoirrigation infrastructure(output6 ),thejointconstructionofmotorcyclepathstoimproveaccessibility(output 7 ),aswellasloan-and-savingstrainings(output8).Especiallythelatterseemstohaveyielded largepositiveeffects,whicharealsostatisticallysignificantatthe 5% level,althoughthestandard erroristoolargetomakeprecisestatements.

5.2 Allowingforheterogeneityinthetreatmenteffect

Inthissubsectionweaimtoallowforheterogeneityintheeffectofparticipatinginthevarious activitiesoffered.Inordertodosoweestimateunconditionalquantileregressions,whichimplies thatweestimateaneffectforagivenquantileoftheearningsdistribution(seeequation(4.5)).A lowerquantilemeansthathouseholdsarepoorer,whilehigherquantilesrefertoricherhouseholds inthesample.Inthisway,weinvestigatewhetherthetreatmenthasbeenmoreeffectiveforpoorer households,whicharearguablytheintendedbeneficiariesoftheprogramme.

WereportresultsfordifferentquantilesinFigure 5.1.Werepeatthesamespecifications asreportedincolumn(3)inTable 5.1 sowecontrolfortheselectioneffectbyapplyingthe differences-in-differencesapproach.Weobserveacleardownwardpatterninthepositiveeffect ofthetreatment.Wefindthatforthe 10% pooresthouseholds,theeffectofparticipatinginan additionalactivityincreasesearningsbyabout 10%.Thiseffectreducesessentiallytozeroforthe 50%richesthouseholds.

Hence,Figure 5.1 seemstosuggestthattheprogrammewasparticularlyeffectiveinincreasing earningsofthepoor,whilethericherhouseholddidnotbenefitoratleastbenefitlessfromthe variousactivities.Inthisway,theLIFTprogrammeseemstohavecontributednotonlytoincreases inearnings,butalsotoreductionsinearningsinequality.

20 Chapter5.Results
1 Saythatwecomparea standarddeviation increaseinthefrequencyofactivities,earningsincreaseby 0 0050 × 20 79 = 10 4%,whileforthecountofactivitiesitis0 0405 × 4 24 = 17 5%
5.2Allowingforheterogeneityinthetreatmenteffect 21
EGRESSIONRESULTS
Dependentvariable:thelogarithmofearnings (1)(2)(3)(4)(5)(6)(7)(8) OLSOLSOLSOLSOLSOLSOLSOLS Countofactivitiesparticipated 0.0405**0.0546***0.0399***0.0440**0.0481***0.0412***0.0399***0.0186 respectiveoutput (0.0180)(0.0208)(0.0143)(0.0180)(0.0176)(0.0159)(0.0142)(0.0171) Output1–participated 0.0405 (0.0482) Output2–participated 0.0095 (0.0351) Output3–participated 0.0549 (0.1060) Output4–participated 0.0161 (0.0824) Output5–participated -0.0146 (0.0827) Output6–participated 0.0235 (0.1620) Output7–participated 0.1700 (0.2288) Output8–participated 0.1600** (0.0624) Housingcharacteristicsincluded Householdfixedeffects Villagefixedeffects Surveywavefixedeffects Numberofobservations 810810810810810810810810 R 2 0.70370.70460.70380.70380.70420.70380.70420.7072 Notes :Householdcharacteristicsinclude 6 ethnicitygroupdummies, 4 religiondummies,anddummyvariablesindicatingwhethertheoccupationisfarming, whethertheheadofthehouseholdismale,whethertheyownlandandwhethertheyaremarried.Standarderrorsareclusteredatthehouseholdlevelandin parentheses;*** p < 0 01,** p < 0 5,* p < 0 10.
T ABLE 5.3–R
: EFFECTSOFDIFFERENTOUTPUTS

Notes:Thesolidredlinesindicatetheeffect, βz ,whilethedottedlinesindicate 95% confidencebands.Weincludehousehold characteristics,surveywaveandvillageandhouseholdfixedeffects.Householdcharacteristicsinclude 6 ethnicitygroupdummies, 4 religiondummies,anddummyvariablesindicatingwhethertheoccupationisfarming,whethertheheadofthehouseholdismale, whethertheyownlandandwhethertheyaremarried.Standarderrorsareclusteredatthehouseholdlevelandinparentheses

F IGURE 5.1–H ETEROGENEOUSEFFECTS

22 Chapter5.Results

6.Conclusions

TheLivelihoodsandFoodSecurityTrustFund(LIFT)wasimplementedinMyanmarbetween 2016 and 2020 andtargetedover 5,000 small-holderfarmerhouseholdsinthreesub-townships ofThandaunggyiTownship.Theprojectaimedtoimprovethepositionoftheruralpoorinthe valuechain,increasemarketaccessandaccesstocredit,andreducemalnutrition.Severalactivities suchassupervisionandtraining,homegardening,waterandsanitation,agriculturalmethods,and loan-and-savingstrainingswererolledouttoimprovelivingstandards.Althoughonlyexploratory analyseshaveshowntheeffectivenessoftheprojectinimprovingearningsandnutrition,thisreport aimstofillthegapbyevaluatingtheimpactofthevariousactivitiesthroughmultivariateregression techniques.Thefocusisonearningsasthesinglemostimportantoutcome,withhouseholds reportingtheirannualincomeinseveralwavesofsurveys.

OurfindingsrevealthattheLIFTactivitieshaveresultedinaboostinyearlyearnings.On average,participatingintheprogram’sactivitiesledtoa 3-4% increaseinincome,whichwas consistentacrossvariousanalyticalmethodsincludingacross-sectionalapproachwithhousehold controlvariablesandadifference-in-differencesapproach.Moreimportantly,ouranalysisshows thattheprogramhasparticularlybenefitedlow-incomehouseholds.Theeffectonpoorhouseholds, inthebottom 10% oftheearningsdistribution,wasapproximately 10%,whilenostatistically significantpositiveearningsimpactwasobservedforthetop 50% richesthouseholds.Asaresult,it appearsthattheLIFTprogramhasnotonlyelevatedearningsbutalsoreducedearningsinequality.

Literature

Angrist,J.D.&Pischke,J.S.(2014), Mastering’Metrics:ThePathfromCausetoEffect,Princeton UniversityPress,Princeton.

Angrist,J.&Krueger,A.(2001),‘InstrumentalVariablesandtheSearchforIdentification:From SupplyandDemandtoNaturalExperiments’, TheJournalofEconomicPerspectives 15(4),69–85.

Angrist,J.&Pischke,J.(2008), MostlyHarmlessEconometrics:AnEmpiricist’sCompanion, PrincetonUniversityPress,Princeton.

Banerjee,A.,Barnhardt,S.&Duflo,E.(2018),‘CanIron-FortifiedSaltControlAnemia?Evidence fromTwoExperimentsinRuralBihar’, JournalofDevelopmentEconomics 133,127–146.

Banerjee,A.&Munshi,K.(2004),‘HowEfficientlyisCapitalAllocated?Evidencefromthe KnittedGarmentIndustryinTirupur’, ReviewofEconomicStudies 71(1),19–42.

Banerjee,A.V.&Duflo,E.(2011), Pooreconomics:Rethinkingpovertyandthewaystoendit, RandomHouseIndia.

Bertrand,M.,Duflo,E.&Mullainathan,S.(2004),‘HowMuchShouldWeTrustDifferences-InDifferencesEstimates?’, TheQuarterlyJournalofEconomics 119(1),249–275.

Firpo,S.,Fortin,N.M.&Lemieux,T.(2009),‘UnconditionalQuantileRegressions’, Econometrica 77(3),953–973.

Koster,H.R.A.&VanOmmeren,J.N.(2020),IdentificationandEstimationinSpatialEconomics, Technicalreport,Amsterdam.

LIFTUplandsProgrammeProject(2017),ImprovingtheEconomicandNutritionalOutcomesof RuralPoorinNorthernKayinState:BaselineStudy2016,Technicalreport.

LIFTUplandsProgrammeProject(2019),ImprovingtheEconomicandNutritionalOutcomesof RuralPoorinNorthernKayinState:BaselineStudy2019NewCoreVillages,Technicalreport.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.