Sound at a Glance AAR: Augmented Acoustic Realities
Student : Qianhua Fu S u p e r v i s o r s : Pa u l B av i s t e r, F e l i x F a i r e
S ou nd S ou rce : I R Re c or d in g Si te : Phi l i ps Pa v il io n i n 2 01 9
Q | H ow d o yo u s e e s o u n d ?
Histor y of Acoustic Representation
T h e t h e a t r e s : i t s s i t e , fo u n d a t i o n s , a n d a c o u s t i c s , B O O K V, V i t r u v i u s , 4 0 B C
Visual Representation Sound Vibration
Chladni Patter ns 1701
Sound Wave
Manometr ic Flame 1862
S c h l i e r e n P h o t o g r a p hy 1859-1864
Visual Representation Sound t o Confined Shape
Archi tect ur a l Sound Photogr a p h 1920
Sound Intensi ty
Sound Contour s Graph 1913
Visual Representation
Fir st spectrog r aph inst r u men t developed at t he Bell Te lep ho ne lab or ator ie s
1945
Vir tual Acoustics S i mu l a t i o n o f t h e a c o u s t i c s o f a s m a l l c o n c e r t h a l l u s i n g t h e R ay A c o u s t i c s i n t e r f a c e , 2 0 1 7
Vir tual Acoustic O ve r t h e l a s t d e c a d e s , w i t h t h e d e ve l o p m e n t o f c o m p u t e r s c i e n c e , p owe r f u l p r e d i c t i o n m o d e l s h ave b e e n d e ve l o p e d i n a r c h i t e c t u r a l a c o u s t i c s , w h i c h a r e u s e d fo r t h e c a l c u l a t i o n o f s o u n d propagation in door and outdoor scenar ios. Among these vir tual acoustic tools, Pachyder m has widely been u sed to simula t e a coust ics in building s, rooms , ci tie s , and oth er s e ttin gs. Howe ve r, like mos t simu lat ion t ool an d conver g ence algor it h m, its appl ic ation is limi ted on computer use r interface . In this project, Pachyder m is used a s t h e m ain approach to le ar n th e method of si mulation , and ex plore its possibilit ies of con str u cting vir t u al a coustic s pac e i n 1:1 s cal e .
R e s e a r c h i n Pa c hy d e r m
Ac ou stic M odel S et-up
R ay t r a c e A n a ly s e
Source
* C l i c k fo r A n i m a t i o n
R e s e a r c h i n Pa c hy d e r m
Impulse Response Feedback
Impulse Re sp ons e Calculation
Aur alization
Receiver
Acoust ic Simulatio n Receiver
63 Hz.
125 Hz.
250 Hz.
500 Hz.
1000 Hz.
2000 Hz.
4000 Hz.
8000 Hz.
Early Decay Time (EDT)
0.094
0.094
0.092
0.091
0.093
0.092
0.091
0.091
Reverberation Time (T-10)
1.858
1.872
1.819
3.788
1.799
0.085
3.536
3.569
Reverberation Time (T-15)
2.120
2.167
2.139
2.078
2.113
2.073
2.091
2.073
Reverberation Time (T-20)
1.227
1.225
1.239
1.441
1.223
1.430
1.361
1.364
Reverberation Time (T-30)
0.881
0.926
0.975
0.862
0.983
0.895
0.808
0.824
R e s e a r c h i n Pa c hy d e r m
What behind it ?
T h e s e m ay h e l p u s U N D E R S TA N D a c o u s t i c s p a c e s , but do they help us EXPERIENCE acoustic spaces?
Presentation in Unity I
Space
II
3D
2D
Time
*RT: the time required for the sound to “fade away� or decay in a closed space. *In physical space, RT is static. However, in virtual space, RT is fluid according to the space change. This series of exploration describe how RT could respond relating to the expanding space, geometry-changeable space, time-scaled space .
III
Presentation in Unity Par ticle system
(clo se to Retr acin g M eth od)
Au r ali zati on
Ac ou stic S imulation Receiver
63 Hz.
125 Hz.
250 Hz.
500 Hz.
1000 Hz.
2000 Hz.
4000 Hz.
8000 Hz.
Early Decay Time (EDT)
0.094
0.094
0.092
0.091
0.093
0.092
0.091
0.091
Reverberation Time (T-10)
1.858
1.872
1.819
3.788
1.799
0.085
3.536
3.569
Reverberation Time (T-15)
2.120
2.167
2.139
2.078
2.113
2.073
2.091
2.073
Reverberation Time (T-20)
1.227
1.225
1.239
1.441
1.223
1.430
1.361
1.364
Reverberation Time (T-30)
0.881
0.926
0.975
0.862
0.983
0.895
0.808
0.824
* C l i c k fo r A n i m a t i o n S p a c e s i ze : 6 M * 3 M * 3 M Sound propagation speed:3.41M/S
Benefits of AAR
Immersion 1:1 sc ale 3D model Fi r st per son per spective
Interactive Real-time response Multiple-sense exper ience
Philips Pavilion: A Case Study Metastasis and Philips Pavilion, Iannis Xenakis,1958
Philips Pavilion
L o u i s C . K a l f f f r o m P h i l i p s , L e C o r bu s i e r, a n d E d g a r Va r è s e In f ront of the Ph ilips Pav ilion, Br u ssels
1958
Philips Pavilion
Graphic score of Metastasis, Iannis Xenakis,1954
D e ve l o p m e n t o f P h i l i p s Pav i l i o n , S ke t c h i n F o r m a l i ze d M u s i c , I a n n i s X e n a k i s , 1 9 7 1
Two a c o u s t i c e nv i r o n m e n t s a n d t h e i r v i s u a l r e p r e s e n t a t i o n
* I n t h i s t wo a c o u s t i c s i mu l a t i o n , s p e e d o f s o u n d i s s e t a s 3 4 . 1 m / s ( 1 0 - s c a l e d t i m e s p a c e ) . RT i s s e t a s t h e l i fe o f p a r t i c l e s .
Compar ison of Two Pavilions
Environment
Time
Sound speed
Real
1958
341m/s
Virtual
2019
3.41m/s
Material
5mm Concrete 3mm Asbestos
5mm Concrete
State
Venue
Not exist any more.
It was destroyed one year after expo.
Stored in app. Be experienced as real.
Althoug h we have the power to reconstr u ct Philips Pavilion as it used to be , the new possibilities of thi s building without the limit of mater ial sounds more attr active . So in the final prototype , a Pavilion with concrete surface is chosen for its better acoustic perfor mance . This explor ation also demonstr ate our previous assumption: seeing sound and exper iencing it in full scale could aid us to make a better decision in design.
App end ix. So und Odyssey
Journey to be continued… “…music heard so deeply That is not heard at all, But you are the music While the music lasts.” Thomas Stearns Eliot, “Dry Salvages” Four Quartets
Student : Qianhua Fu S u p e r v i s o r s : Pa u l B av i s t e r, F e l i x F a i r e
S ou nd S ou rce : I R Re c or d in g Si te : Phi l i ps Pa v il io n i n 2 01 9