hp 7500

Page 1

HP 7500 and 5120 Series Product Configuration

Technical Training By Mr.Napob Oumang

Š2010 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice


Agenda This training is designed for networking professionals who are familiar with: • The general capabilities of the HP network management family of products, which includes ProCurve Manager (PCM+), Network Immunity Manager (NIM), and Mobility Manager (MM) • The basic tasks involved in installing PCM+, and the NIM and MM plug‐ins to PCM+ • How to use the graphical user interface for PCM+, NIM, and MM for configuration and monitoring tasks

2

Rev. 0.4


Introduction 

IDM and PCM Platform Suites Comparison

5 min

PCM Platform Suite Overview

3 min

PCM v3.20 Features

5 min

MM v3.10 Features

5 min

Live Demo of PCM+/MM 

Setup Details

Dashboards

Performance Monitoring

Site View

Configuration & Configuration History

Reporting

Question & Answer 

3

25 min

10 min

FAQs (Device Support list, Downloads, Release Notes, Lic Details, Doc,) on Slide __

Rev. 0.4


HP 7500 and 5120 Series

4

Rev. 0.4


HP 7500 Series Overview

5

Rev. 0.4


HP 7500 Series Overview 2-service slot chassis Deployed on the edge of the MAN, in the convergence layer of the small and medium-sized network, core layer of the small network, and the small wiring-closet

3-service slot chassis Deployed on the edge of MAN, in the convergence layer of the medium-sized network, core layer of the small and mediumsized network, and small and medium-sized wiring-closet

Horizontal 6-service slot chassis Deployed on the edge of the MAN, in the convergence layer of the large network, core layer of the small and medium-sized network, and large and medium-sized wiring-closet

6

Rev. 0.4

Vertical 6-service slot chassis Professional design of fire resistance, shock resistance and heat dissipation, deployed in the large data center

10-service slot chassis Deployed in the high-density wiring-closet and the core layer of the large network


HP 7500 Series Overview S7503E

S7506E-V S7510E

S7506E

S7502E

4

5

8

8 (vertical)

12

≥1T

≥1.6T

≥1.6T

≥2.4T

192G

480G

768G

768G

1152G/768G

Packet forward capability

143Mpps

274Mpps

488Mpps

488Mpps

773M/488Mpps

Engine redundancy

Support

Support

Support

Support

Support

Power supply redundancy

1+1

1+1

1+1

1+1

1+1

Maximum Gigabit port

96

144

288

288

480

Maximum 10 Gigabit port

4

10

16

16

24

Occupied rack size

4U

10U

13U

21U

16U

Number of slots Backplane bandwidth Switching capacity

7

Rev. 0.4

400G


HP 7500 Series Overview Capability of providing a wide range of services

• MPLS/IPv6/EPON/WLAN/PoE • Firewall/IPS/OAA High-performance multi-service bearer platform

• Wirespeed IPv6 forwarding • Wirespeed MPLS forwarding Most cost-effective 10 Gigabit ports

• The price of a 10 Gigabit port is less than 50% of the 10 Gigabit port price in earlier products. Flexible configuration

• Combination of multiple chassises, engines, and modules High security and reliability

• Endpoint admission defense (EAD) • Built-in security module • Graceful Restart

8

Rev. 0.4

Full service High performance Flexible configuration Security and reliability


HP 7500 Series Overview Chassis 10 Gigabit Ethernet Service module with the function of firewall

Gigabit Ethernet optical interface

Service module with the function of NAT/NetStream Gigabit Ethernet optical interface

4, 5, 8, 8, 12 slots Service module with the function of IPS

Gigabit Ethernet electrical interface Dedicated engine of the S7502E

100M Ethernet electrical interface

Ethernet module 9

Rev. 0.4

Salience VI

Passive optical network module Salience VI-10G

Salience VI-Turbo

Route Switching Engine

Service module


HP 5120 Series Overview • Single OS alignment with Comware core switch •

High scalability − Support 10G extension module & Intelligent Resilient Framework − IPv6 for static routing

High Reliability − Power & fan fault detection, fan speed adjust − Supports Intelligent Resilient Framework, smart link, MSTP, DLDP, RRPP

10

Rev. 0.4


HP 5120 Series Overview

11

Rev. 0.4


HP 5120 Series Overview

12

Rev. 0.4


File and Switch Booting

13

Rev. 0.4


Process Switch Booting

14

Rev. 0.4


Obtaining Software Image Files

15

Rev. 0.4


Managing HP A-Series Software Images

16

Rev. 0.4


Startup-Config and Running-Config

17

Rev. 0.4


Saving Configuration Files

18

Rev. 0.4


Management & Configuration

19

Rev. 0.4


Management Interfaces Management Interface ‐ CLI ‐ Web browser ‐ SNMP*

20

Rev. 0.4


CLI Command Levels

21

Rev. 0.4


Access to the CLI

22

Rev. 0.4


Access to the CLI In‐band Access – Telnet – SSH (encrypted)

23

Rev. 0.4


Access to the CLI Out‐of‐band Console Access – Cable • RJ‐45 to DB‐9 adapter cable – Terminal software settings: • Baud rate = 9,600 • Data rate = 8 • Parity = None • Stop bits = 1 • Flow control = None

24

Rev. 0.4


Authentication to User Interfaces

25

Rev. 0.4


Authentication to User Interfaces Authentication method set per‐user interface

26

Rev. 0.4


Authentication to User Interfaces

27

Rev. 0.4


Authentication to User Interfaces CLI Example : Set Authentications [Switch‐ui‐vty0]authentication‐mode scheme [Switch‐ui‐vty0]quit Create User Authentications [Switch]local‐user HP [Switch‐luser‐test1]password simple/cipher HP [Switch‐luser‐test1]service‐type telnet [Switch‐luser‐test1] authorization‐attribute level 3

28

Rev. 0.4


VLAN Configuration

29

Rev. 0.4


30 Rev. 0.4

VLAN20

VLAN10

VLAN40

VLAN30

VLAN Overview


VLAN Overview

31

Rev. 0.4

VLAN30 VLAN40

VLAN10

To understand VLANs, it is first necessary to have an understanding of LANs. A Local Area Network (LAN) can generally be defined as a broadcast domain. Hubs, bridges or switches in the same physical segment or segments connect all end node devices. End nodes can communicate with each other without the need for a router. Communications with devices on other LAN segments requires the use of a router.

VLAN20

Virtual Local Area Network, Virtual LAN or VLAN


VLAN20

VLAN10

VLAN Configuration

CLI Example : Create VLAN 10 [Switch]vlan 10

Create VLAN 20 [Switch]vlan 20

32

Rev. 0.4


IP Interface VLAN VLAN 10 : IP 192.168.10.1 VLAN 20 : IP 192.168.20.1

CLI Example : VLAN10 : [Switch]interface vlan‐interface 10 [Switch‐Vlan‐interface3]ip address 192.168.10.1 255.255.255.0 [Switch‐Vlan‐interface3]quit VLAN20 : [Switch]interface vlan‐interface 20 [Switch‐Vlan‐interface3]ip address 192.168.20.1 255.255.255.0 [Switch‐Vlan‐interface3]quit 33

Rev. 0.4


Port Type Operation

Command

Configure the port as an access port

port link-type access

Configure the port as a hybrid port

port link-type hybrid

Configure the port as a trunk port

port link-type trunk

An Ethernet port on an H3C Low‐End Ethernet switches can operate in one of the three link types: Access: an access port can belong to only one VLAN and is generally used to connect to a PC. Trunk: a trunk port can belong to multiple VLANs. It can receive/send packets of multiple VLANs and is generally used to connect to a switch. Hybrid: a hybrid port can belong to multiple VLANs. It can receive/send packets of multiple VLANs and can be used to connect to either a switch or a PC. You can add an Ethernet port to a specified VLAN. After that, the Ethernet port can forward the packets of the specified VLAN, so that the VLAN on this switch can intercommunicate with the same VLAN on the peer switch.

34

Rev. 0.4


Port Link-Type Access 1/0/1 VLAN 10

1/0/2 VLAN 20

CLI Example : Interface 1/0/1 [switch] interface ethernet1/0/1 [switch‐Ethernet1/0/1] port access vlan 10 Interface 1/0/2 [switch] interface ethernet1/0/2 [switch‐Ethernet1/0/2] port access vlan 20 35

Rev. 0.4


Port Link-Type Hybrid Port hybrid vlan HP> system‐view System View: return to User View with Ctrl+Z. [HP] interface ethernet2/1/1 [HP‐Ethernet2/1/1] port hybrid vlan 2 4 50 to 100 tagged Port hybrid pvid vlan # Configure the default VLAN of the hybrid port Ethernet 2/1/1 as VLAN 100. <HP> system‐view System View: return to User View with Ctrl+Z. [HP] interface ethernet2/1/1 [HP‐Ethernet2/1/1] port hybrid pvid vlan 100 36

Rev. 0.4


Port Link-Type Trunk

VLAN 10,20,30

<HP> system‐view System View: return to User View with Ctrl+Z. [HP] interface ethernet2/1/1 [HP‐Ethernet2/1/1] port link‐type trunk [HP‐Ethernet2/1/1] port trunk permit vlan 10,20,30 37

Rev. 0.4


Link Aggregation Configuration

38

Rev. 0.4


Link Aggregation Configuration

4 Gigabit

Link aggregation, also called trunking, is an optional feature available on the Ethernet gateway and is used with Layer 2 Bridging. Link aggregation allows multiple ports to merge logically in a single link. Because the full bandwidth of each physical link is available, bandwidth is not wasted by inefficient routing of traffic. As a result, the entire cluster is utilized more efficiently. Link aggregation offers higher aggregate bandwidth to traffic‐heavy servers and reroute capability in case of a single port or cable failure. 39

Rev. 0.4


Link Aggregation Configuration Switch A

Switch B

40

Rev. 0.4

Switch A Create static LACP aggregation group 1. [SwitchA] interface bridge‐aggregation 1 Add Ethernet ports Ethernet1/0/1 to Ethernet1/0/3 into aggregation group 1. [SwitchA] interface gigabitethernet 1/0/1 [SwitchA ‐gigabitethernet1/0/1] port link‐aggregation group 1 [SwitchA ‐gigabitethernet1/0/1] quit [SwitchA] interface gigabitethernet 1/0/2 [SwitchA ‐gigabitethernet1/0/2] port link‐aggregation group 1 [SwitchA ‐gigabitethernet1/0/2] quit [SwitchA] interface gigabitethernet 1/0/3 [SwitchA ‐gigabitethernet1/0/3] port link‐aggregation group 1 [SwitchA ‐gigabitethernet1/0/3] quit


Link Aggregation Configuration Switch A

Switch B

41

Rev. 0.4

Switch B Create static LACP aggregation group 1. [SwitchB] interface bridge‐aggregation 1 Add Ethernet ports Ethernet1/0/1 to Ethernet1/0/3 into aggregation group 1. [SwitchB] interface gigabitethernet 1/0/1 [SwitchB‐gigabitethernet1/0/1] port link‐aggregation group 1 [SwitchB‐gigabitethernet1/0/1] quit [SwitchB] interface gigabitethernet 1/0/2 [SwitchB‐gigabitethernet1/0/2] port link‐aggregation group 1 [SwitchB‐gigabitethernet1/0/2] quit [SwitchB] interface gigabitethernet 1/0/3 [SwitchB‐gigabitethernet1/0/3] port link‐aggregation group 1 [SwitchB‐gigabitethernet1/0/3] quit


Link Aggregation and Trunk Configuration After Configuration LACP in port. You can use trunking port in Link aggregation group.

Switch A Switch A LACP aggregation group 1. [SwitchA] interface bridge‐aggregation 1 [SwitchA] port link‐type trunk [SwitchA] port trunk permit vlan all

Switch B

42

Rev. 0.4

Switch B LACP aggregation group 1. [SwitchB] interface bridge‐aggregation 1 [SwitchB] port link‐type trunk [SwitchB] port trunk permit vlan all


STP And MSTP

43

Rev. 0.4


STP

The Spanning Tree Protocol (STP) is a network protocol that ensures a loop‐free topology for any bridged Ethernet local area network. The basic function of STP is to prevent bridge loops and the broadcast radiation that results from them. Spanning tree also allows a network design to include spare (redundant) links to provide automatic backup paths if an active link fails, without the danger of bridge loops, or the need for manual enabling/disabling of these backup links. Spanning Tree Protocol (STP) is standardized as IEEE 802.1D. As the name suggests, it creates a spanning tree within a network of connected layer‐2 bridges (typically Ethernet switches), and disables those links that are not part of the spanning tree, leaving a single active path between any two network nodes. 44

Rev. 0.4


MSTP

The Multiple Spanning Tree Protocol (MSTP), originally defined in IEEE 802.1s and later merged into IEEE 802.1Q‐2005, defines an extension to RSTP to further develop the usefulness of virtual LANs (VLANs). This "Per‐VLAN" Multiple Spanning Tree Protocol configures a separate Spanning Tree for each VLAN group and blocks all but one of the possible alternate paths within each Spanning Tree.

45

Rev. 0.4


Command STP/MSTP Operation

46

Command

Enable MSTP on a device.

stp enable

Disable MSTP on a device.

stp disable

Enable MSTP on a port.

stp interface interface-list enable | disable

Setup MSTP mode configuration

STP mode [MSTP | STP ]

Show the configuration information about the current port and the switch.

display stp instance instance-id [ interface interface-list ] [ brief ]

Clear the MSTP statistics information.

reset stp [ interface interface-list ]

Enable/Disable MSTP (packet receiving/transmitting, event, error) debugging on the port.

[ undo ] debugging stp [ interface interface-list ] { packet | event }

Rev. 0.4


Command MSTP

Configuration procedure Perform the following: 1. VLAN and VLAN member port configuration Create VLAN 10, VLAN 20, and VLAN 30 on Device A and Device B, respectively, create VLAN 10, VLAN 20, and VLAN 40 on Device C, and create VLAN 20, VLAN 30, and VLAN 40 on Device D. Configure the ports on these devices as trunk ports and assign them to related VLANs. The detailed configuration procedure is omitted. 47

Rev. 0.4


Command MSTP 2. Configuration on Device A # Enter MST region view, configure the MST region name as example, map VLAN 10, VLAN 30, and VLAN 40 to MSTI 1, MSTI 3, and MSTI 4, respectively, and configure the revision level of the MST region as 0. <DeviceA> system‐view [DeviceA] stp region‐configuration [DeviceA‐mst‐region] region‐name example [DeviceA‐mst‐region] instance 1 vlan 10 [DeviceA‐mst‐region] instance 3 vlan 30 [DeviceA‐mst‐region] instance 4 vlan 40 [DeviceA‐mst‐region] revision‐level 0 # Activate MST region configuration. [DeviceA‐mst‐region] active region‐configuration [DeviceA‐mst‐region] quit # Specify the current device as the root bridge of MSTI 1. [DeviceA] stp instance 1 root primary # Enable MSTP globally. [DeviceA] stp enable 48 Rev. 0.4


Command MSTP 3. Configuration on Device B # # Enter MST region view, configure the MST region name as example, map VLAN 10, VLAN 30, and VLAN 40 to MSTI 1, MSTI 3, and MSTI 4, respectively, and configure the revision level of the MST region as 0. <DeviceB> system‐view [DeviceB] stp region‐configuration [DeviceB‐mst‐region] region‐name example [DeviceB‐mst‐region] instance 1 vlan 10 [DeviceB‐mst‐region] instance 3 vlan 30 [DeviceB‐mst‐region] instance 4 vlan 40 [DeviceB‐mst‐region] revision‐level 0 # Activate MST region configuration. [DeviceB‐mst‐region] active region‐configuration [DeviceB‐mst‐region] quit # Specify the current device as the root bridge of MSTI 3. [DeviceB] stp instance 3 root primary # Enable MSTP globally. [DeviceB] stp enable 49 Rev. 0.4


Command MSTP 4. Configuration on Device C. # Enter MST region view, configure the MST region name as example, map VLAN 10, VLAN 30, and VLAN 40 to MSTI 1, MSTI 3, and MSTI 4, respectively, and configure the revision level of the MST region as 0. <DeviceC> system‐view [DeviceC] stp region‐configuration [DeviceC‐mst‐region] region‐name example [DeviceC‐mst‐region] instance 1 vlan 10 [DeviceC‐mst‐region] instance 3 vlan 30 [DeviceC‐mst‐region] instance 4 vlan 40 [DeviceC‐mst‐region] revision‐level 0 # Activate MST region configuration. [DeviceC‐mst‐region] active region‐configuration [DeviceC‐mst‐region] quit # Specify the current device as the root bridge of MSTI 4. [DeviceC] stp instance 4 root primary # Enable MSTP globally. [DeviceC] stp enable 50 Rev. 0.4


Command MSTP 5. Configuration on Device D. # Enter MST region view, configure the MST region name as example, map VLAN 10, VLAN 30, and VLAN 40 to MSTI 1, MSTI 3, and MSTI 4, respectively, and configure the revision level of the MST region as 0. <DeviceD> system‐view [DeviceD] stp region‐configuration [DeviceD‐mst‐region] region‐name example [DeviceD‐mst‐region] instance 1 vlan 10 [DeviceD‐mst‐region] instance 3 vlan 30 [DeviceD‐mst‐region] instance 4 vlan 40 [DeviceD‐mst‐region] revision‐level 0 # Activate MST region configuration. [DeviceD‐mst‐region] active region‐configuration [DeviceD‐mst‐region] quit # Enable MSTP globally. [DeviceD] stp enable 51

Rev. 0.4


Command MSTP 6. Verifying the configurations Use the display stp brief command to display brief spanning tree information on each device after the network is stable. # Display brief spanning tree information on Device A. [DeviceA] display stp brief MSTID Port Role STP State Protection 0 GigabitEthernet1/0/1 ALTE DISCARDING NONE 0 GigabitEthernet1/0/2 DESI FORWARDING NONE 0 GigabitEthernet1/0/3 ROOT FORWARDING NONE 1 GigabitEthernet1/0/1 DESI FORWARDING NONE 1 GigabitEthernet1/0/3 DESI FORWARDING NONE 3 GigabitEthernet1/0/2 DESI FORWARDING NONE 3 GigabitEthernet1/0/3 ROOT FORWARDING NONE # Display brief spanning tree information on Device B. [DeviceB] display stp brief MSTID Port Role STP State Protection 0 GigabitEthernet1/0/1 DESI FORWARDING NONE 0 GigabitEthernet1/0/2 DESI FORWARDING NONE 0 GigabitEthernet1/0/3 DESI FORWARDING NONE 1 GigabitEthernet1/0/2 DESI FORWARDING NONE 1 GigabitEthernet1/0/3 ROOT FORWARDING NONE 3 GigabitEthernet1/0/1 DESI FORWARDING NONE GigabitEthernet1/0/3 DESI FORWARDING NONE 52 Rev. 0.4 3


Command MSTP # Display brief spanning tree information on Device C. [DeviceC] display stp brief MSTID Port Role STP State 0 GigabitEthernet1/0/1 DESI FORWARDING 0 GigabitEthernet1/0/2 ROOT FORWARDING 0 GigabitEthernet1/0/3 DESI FORWARDING 1 GigabitEthernet1/0/1 ROOT FORWARDING 1 GigabitEthernet1/0/2 ALTE DISCARDING 4 GigabitEthernet1/0/3 DESI FORWARDING

Protection NONE NONE NONE NONE NONE NONE

# Display brief spanning tree information on Device D. [DeviceD] display stp brief MSTID Port Role STP State 0 GigabitEthernet1/0/1 ROOT FORWARDING 0 GigabitEthernet1/0/2 ALTE DISCARDING 0 GigabitEthernet1/0/3 ALTE DISCARDING 3 GigabitEthernet1/0/1 ROOT FORWARDING 3 GigabitEthernet1/0/2 ALTE DISCARDING 4 GigabitEthernet1/0/3 ROOT FORWARDING

Protection NONE NONE NONE NONE NONE NONE

Based on the output, the user can draw the MSTI mapped to each VLAN, as shown in Figure 2 ‐ MSTIs mapped to different VLANs. 53

Rev. 0.4


Command MSTP MSTIs mapped to different VLANs

54

Rev. 0.4


DHCP SERVER/DHCP RELAY

55

Rev. 0.4


56

Rev. 0.4


DHCP SERVER

The Dynamic Host Configuration Protocol (DHCP) is a standardized networking protocol used on IP networks that dynamically configures IP addresses and other information that is needed for Internet communication. DHCP allows computers and other devices to receive an IP address automatically from a central DHCP server, reducing the need for a network administrator or a user from having to configure these settings manually. 57

Rev. 0.4


DHCP RELAY

In small networks, where only one IP subnet is being managed, DHCP clients communicate directly with DHCP servers. However, DHCP servers can also provide IP addresses for multiple subnets. In this case, a DHCP client that has not yet acquired an IP address cannot communicate directly with the DHCP server using IP routing, because it doesn't have a routable IP address, nor does it know the IP address of a router. In order to allow DHCP clients on subnets not directly served by DHCP servers to communicate with DHCP servers, DHCP relay agents can be installed on these subnets. The DHCP client broadcasts on the local link; the relay agent receives the broadcast and transmits it to one or more DHCP servers using unicast. The relay agent stores its own IP address in the GIADDR field of the DHCP packet. The DHCP server uses the GIADDR to determine the subnet on which the relay agent received the broadcast, and allocates an IP address on that subnet. When the DHCP server replies to the client, it sends the reply to the GIADDR address, again using unicast. The relay agent then retransmits the response on the local network. 58

Rev. 0.4


DHCP SERVER # Enter system view. <H3C> system‐view # Create VLAN2. [H3C] vlan 2 # Enter VLAN interface view. [H3C] interface Vlan‐interface 2 # Assign an IP address to Vlan‐interface 2. [H3C‐Vlan‐interface2] ip address 10.110.1.1 255.255.0.0 # Specify to assign IP addresses in the interface address pool to DHCP clients. [H3C‐Vlan‐interface2] dhcp select interface # Specify to assign IP addresses in global address pool to DHCP clients (it is also the default configuration). [H3C‐Vlan‐interface2] dhcp select global Or execute the following command to restore the default. [H3C‐Vlan‐interface2] undo dhcp select # Configure a global address pool. [H3C] dhcp server ip‐pool 1 [H3C‐dhcp‐1] network 10.110.0.0 mask 255.255.0.0 [H3C‐dhcp‐1] gateway‐list 10.110.1.1 59

Rev. 0.4


DHCP RELAY

# Enter system view. <H3C> system‐view # Create VLAN 2. [H3C] vlan 2 # Enter VLAN interface view. [H3C] interface Vlan‐interface 2 # Assign an IP address to VLAN‐interface 2. [H3C‐Vlan‐interface2] ip address 10.110.1.1 255.255.0.0 # Enable the DHCP relay agent on the VLAN interface. [H3C‐Vlan‐interface2] dhcp select relay # Specify the DHCP server at 202.38.1.2 for the DHCP relay agent. [H3C‐Vlan‐interface2] ip relay address 202.38.1.2

60

Rev. 0.4


IP ROUTING/STATIC/RIP/OSPF

61

Rev. 0.4


IP ROUTING

IP Routing is an umbrella term for the set of protocols that determine the path that data follows in order to travel across multiple networks from its source to its destination. Data is routed from its source to its destination through a series of routers, and across multiple networks. The IP Routing protocols enable routers to build up a forwarding table that correlates final destinations with next hop addresses. 62

Rev. 0.4


IP ROUTING

These protocols include: • BGP (Border Gateway Protocol) • RIP (Routing Information Protocol) • OSPF (Open Shortest Path First) 63

Rev. 0.4


IP ROUTING Border Gateway Protocol (BGP) เป็ นโปรโตคอลสําหรับการแลกเปลี่ยนข้ อมูลของเส้ นทางระหว่าง gateway host (ซึง่ แต่ละที่จะมี router ของตัวเอง) ในเครื อข่ายแบบอัตโนมัติ BGP มักจะได้ รับการใช้ ระหว่าง gateway host บนระบบอินเตอร์ เน็ต ตาราง routing ประกอบด้ วยรายการของ router ตําแหน่งและตาราง ค่าใช้ จา่ ย (cost metric) ของเส้ นทางไปยัง router แต่ละตัว เพื่อการเลือกเส้ นทางที่ดีที่สดุ RIP (Routing Information Protocol) ต้ องกําหนด version ที่ต้องการใช้ งาน ใช้ distance vector ในการหาเส้ นทาง โดยพิจารณาที่จํานวน hop และแลกเปลี่ยนเราติ ้งเทเบิลกับเราเตอร์ เพื่อนบ้ าน การส่ง ข้ อมูลเป็ นแบบ broadcast ทําให้ เปลือง traffic ข้ อเสียคือเรื่ อง convergence time และมีจํานวน next hop สูงสุดแค่ 15 ข้ อดีคือ ง่ายแก่การคอนฟิ ก OSPF (Open Shortest Path First) ต้ องกําหนด process id, wildcard และ area ใช้ อลั กอริ ทมึ shortest path fisrt ในการค้ นหาเส้ นทาง พิจารณาจาก bandwidth ทําความรู้จกั เพื่อนบ้ านด้ วย hello ส่งการอัปเดตสถานะของลิงค์ไปให้ เพื่อนบ้ านและให้ เพื่อนบ้ านสร้ างภาพรวมและค้ นหาเส้ นทางเอง โดยจะไม่สง่ เราติ ้งเท เบิลไปให้ เพื่อนบ้ าน

64

Rev. 0.4


IP ROUTING TABLE

65

Rev. 0.4


STATIC ROUTE Operation

Command

Add a static route

ip route-static ip_address { mask | mask_length } { interface_type interface_number | gateway_address } [ preference value ] [ reject | blackhole ]

Delete a static route

undo ip route-static ip_address { mask | mask_length } [ interface_type interface_number | gateway_address ] [ preference value ] [ reject | blackhole ]

Delete all static routes

delete static-routes all

EX. Command Configure the static route for Switch A [Switch A]ip route‐static 1.1.3.0 255.255.255.0 1.1.2.2 [Switch A]ip route‐static 1.1.4.0 255.255.255.0 1.1.2.2 [Switch A]ip route‐static 1.1.5.0 255.255.255.0 1.1.2.2

66

Rev. 0.4


STATIC ROUTE

67

Rev. 0.4


RIP Operation

68

Command

Enable RIP and enter RIP view Disable RIP

RIP undo rip

Enable RIP on the specified network Disable RIP on the specified network

network network_address undo network network_address

Configure unicast RIP message Cancel unicast RIP message

peer ip_address undo peer ip_address

Specify the interface version as RIP-1 or 2 Restore the default RIP version running on the interface

rip version 1|2 undo rip ver

Enable the interface to run RIP

rip work

Enable the interface to receive RIP update packets

rip input

Enable the interface to send RIP update packets

rip output

Rev. 0.4


RIP 1.Configure RIP on Switch A [Switch A] rip [Switch A‐rip]network 110.11.2.0 [Switch A‐rip]network 155.10.1.0 2. Configure RIP on Switch B [Switch B] rip [Switch B‐rip]network 196.38.165.0 [Switch B‐rip]network 110.11.2.0 3. Configure RIP on Switch C [Switch C] rip [Switch C‐rip]network 117.102.0.0 [Switch C‐rip]network 110.11.2.0

69

Rev. 0.4


OSPF

70

Rev. 0.4


OSPF Configuration procedure 1. Configure Switch A: [Switch A]interface Vlan‐interface 1 [Switch A‐Vlan‐interface1]ip address 196.1.1.1 255.255.255.0 [Switch A]router id 1.1.1.1 [Switch A]ospf [Switch A‐ospf‐1]area 0 [Switch A‐ospf‐1‐area‐0.0.0.0]network 196.1.1.0 0.0.0.255 2. Configure Switch B: [Switch B]interface vlan‐interface 7 [Switch B‐Vlan‐interface7]ip address 196.1.1.2 255.255.255.0 [Switch B]interface vlan‐interface 8 [Switch B‐Vlan‐interface8]ip address 197.1.1.2 255.255.255.0 [Switch B]router id 2.2.2.2 [Switch B]ospf [Switch B‐ospf‐1]area 0 [Switch B‐ospf‐1‐area‐0.0.0.0]network 196.1.1.0 0.0.0.255 [Switch B‐ospf‐1‐area‐0.0.0.0]quit [Switch B‐ospf‐1]area 1 [Switch B‐ospf‐1‐area‐0.0.0.1]network 197.1.1.0 0.0.0.255 [Switch B‐ospf‐1‐area‐0.0.0.1]vlink‐peer 3.3.3.3 71

Rev. 0.4


OSPF 3. Configure Switch C: [Switch C]interface Vlan‐interface 1 [Switch C‐Vlan‐interface1]ip address 152.1.1.1 255.255.255.0 [Switch C]interface Vlan‐interface 2 [Switch C‐Vlan‐interface2]ip address 197.1.1.1 255.255.255.0 [Switch C]router id 3.3.3.3 [Switch C]ospf [Switch C‐ospf‐1]area 1 [Switch C‐ospf‐1‐area‐0.0.0.1]network 197.1.1.0 0.0.0.255 [Switch C‐ospf‐1‐area‐0.0.0.1]vlink‐peer 2.2.2.2 [Switch C‐ospf‐1‐area‐0.0.0.1]quit [Switch C‐ospf‐1]area 2 [Switch C‐ospf‐1‐area‐0.0.0.2]network 152.1.1.0 0.0.0.255

72

Rev. 0.4


IRF

73

Rev. 0.4


IRF/STACKING

74

Rev. 0.4


IRF/STACKING

75

Rev. 0.4


IRF/STACKING

76

Rev. 0.4


IRF/STACKING Configuration Example

77

Rev. 0.4


IRF/STACKING Configuration Step 1 Shutdown interface tengigabit 1/0/1 [Switch1‐Ten‐GigabitEthernet1/0/1] shutdown Shutdown interface tengigabit 1/0/2 [Switch1‐Ten‐GigabitEthernet1/0/2] shutdown Step 2 [Switch1]Irf member 1 renumber 1 ‐‐‐‐‐‐‐‐‐‐‐ Switch 1 [Switch2]Irf member 1 renumber 2 ‐‐‐‐‐‐‐‐‐‐‐ Switch 2 [Switch3]Irf member 1 renumber 3 ‐‐‐‐‐‐‐‐‐‐‐ Switch 3 Step 3 Irf‐port 1/1 [Device1‐irf‐port1/1]port group interface tengigabitethernet1/0/1 ‐‐‐‐‐‐‐‐‐‐‐‐ Switch 1 Irf‐port 1/2 [Device1‐irf‐port1/2]port group interface tengigabitethernet1/0/2 ‐‐‐‐‐‐‐‐‐‐‐‐‐Switch 2 ****configuration all switch**** 78

Rev. 0.4


FILE SYSTEM

79

Rev. 0.4


FILE SYSTEM Operation

80

Command

Display the information about directoriesor files

dir [ / all ] [ file-url ]

Copy a file

copy fileurl-source fileurl-dest

Delete a file from the recycle bin permanently

reset recycle-bin file-url

Delete a file Undelete a file

delete [ /unreserved ] file-url undelete file-url

Format the storage device

format filesystem

Display the saved-configuration information of the Switch

display saved-configuration

Display the current-configuration information of the Switch

display current-configuration [ controller | interface interface-type [ interface-number ] | configuration [ configuration ] ] [ | { begin | exclude | include } regular-expression ]

Save the current-configuration

save [ file-name | safely ]

Erase configuration files from Flash Memory

reset saved-configuration

Move a file

move fileurl-source fileurl-dest

Rev. 0.4


FILE SYSTEM / TFTP TFTP Client Configuration Example • The Switch serves as TFTP client and the remote PC as TFTP server. Authorized TFTP directory is set on the TFTP server. The IP address of a VLAN interface on the Switch is 1.1.1.1, and that of the PC is 2.2.2.2. The interface on the Switch connecting the PC belong to the same VLAN. • The Switch application switch.app is stored on the PC. Using TFTP, the Switch can download the switch.app from the remote TFTP server and upload the config.cfg to the TFTP server under the Switch directory for backup purpose.

IP 1.1.1.1

81

Rev. 0.4

Run TFTP server IP 1.1.1.2


FILE SYSTEM / TFTP Configuration Procedure 1. Start TFTP server on the PC and set authorized TFTP directory. 2. Configure the Switch Log into the Switch (locally through the Console port or remotely using Telnet). <Switch> 3. Enter System View and download the switch.app from the TFTP server to the flash memory of the Switch. <Switch> system‐view [Switch] 4. Configure IP address 1.1.1.1 for the VLAN interface, ensure the port connecting the PC is also in this VALN (VLAN 1 in this example). [Switch]interface vlan 1 [Switch‐vlan‐interface1]ip address 1.1.1.1 255.255.255.0 [Switch‐vlan‐interface1]quit 5. Upload the config.cfg to the TFTP server. <Switch> tftp 1.1.1.2 put config.cfg config.cfg 6. Download the switch.app from the TFTP server. <Switch> tftp 1.1.1.2 get switch.app switch.app 7. Use the boot boot‐loader command to specify the downloaded program as the application at the next login and reboot the Switch. <Switch> boot boot‐loader switch.app <Switch> reboot 82

Rev. 0.4


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.