Math bac cours 10

Page 1

‫اﻟﺠﺪاء اﻟﺴﻠﻤﻲ ﻓﻲ اﻟﻔﻀﺎء و ﺗﻄﺒﻴﻘﺎﺗﻪ‬ ‫‪-I‬اﻟﺠﺪاء اﻟﺴﻠﻤﻲ‬ ‫‪ -1‬ﺗﻌﺮﻳﻒ‬ ‫ﻟﺘﻜﻦ ‪ v‬و ‪ u‬ﻣﺘﺠﻬﺘﻴﻦ ﻣﻦ اﻟﻔﻀﺎء‪ ،‬و ‪ A‬و ‪ B‬و ‪ C‬ﻧﻘﻂ ﻣﻦ اﻟﻔﻀﺎء ﺣﻴﺚ ‪ u = AB‬و ‪. v = AC‬‬ ‫ﻳﻮﺟﺪ ﻋﻠﻰ اﻻﻗﻞ ﻣﺴﺘﻮى ) ‪ ( P‬ﺿﻤﻦ اﻟﻔﻀﺎء ﻳﻤﺮ ﻣﻦ اﻟﻨﻘﻂ ‪ A‬و ‪ B‬و ‪. C‬‬ ‫اﻟﺠﺪاء اﻟﺴﻠﻤﻲ ﻟﻠﻤﺘﺠﻬﺘﻴﻦ ‪ v‬و ‪ u‬ﻓﻲ اﻟﻔﻀﺎء هﻮ اﻟﺠﺪاء اﻟﺴﻠﻤﻲ ‪ AB ⋅ AC‬ﻓﻲ اﻟﻤﺴﺘﻮى ) ‪ ( P‬ﻧﺮﻣﺰ ﻟﻪ ﺑـ ‪u ⋅ v‬‬

‫ﻣﻠﺤﻮﻇﺔ‬ ‫ﺟﻤﻴﻊ ﺧﺎﺻﻴﺎت اﻟﺠﺪاء اﻟﺴﻠﻤﻲ ﻓﻲ اﻟﻤﺴﺘﻮى ﺗﻤﺪد إﻟﻰ اﻟﻔﻀﺎء‬ ‫‪ -2‬ﻧﺘﺎﺋﺞ‬ ‫ﻟﺘﻜﻦ ‪ v‬و ‪ u‬ﻣﺘﺠﻬﺘﻴﻦ ﻣﻦ اﻟﻔﻀﺎء‪ ،‬و ‪ A‬و ‪ B‬و ‪ C‬ﻧﻘﻂ ﻣﻦ اﻟﻔﻀﺎء‬ ‫ﺣﻴﺚ ‪ u = AB‬و ‪. v = AC‬‬ ‫* إذا آﺎن ‪ v ≠ 0‬و‪ u ≠ 0‬ﻓﺎن ‪u ⋅ v = AB × AC × cos BAC‬‬ ‫‪u ⋅v = 0‬‬ ‫ﻓﺎن‬ ‫* إذا آﺎن ‪ u = 0‬أو ‪v = 0‬‬ ‫* إذا آﺎن ‪ u ≠ 0‬ﻓﺎن ' ‪u ⋅ v = AB ⋅ AC = AB ⋅ AC‬‬ ‫ﺣﻴﺚ'‪ C‬اﻟﻤﺴﻘﻂ اﻟﻌﻤﻮدي ﻟـ ‪ C‬ﻋﻠﻰ )‪(AB‬‬ ‫‪1‬‬ ‫= ‪u ⋅v‬‬ ‫* ‪AB 2 + AC 2 − BC 2‬‬ ‫‪2‬‬

‫(‬

‫)‬

‫‪ -3‬ﻣﻨﻈﻢ ﻣﺘﺠﻬﺔ‬ ‫ﻟﺘﻜﻦ ‪ u‬ﻣﺘﺠﻬﺔ و‪ A‬و ‪ B‬ﻧﻘﻄﺘﻴﻦ ﻣﻦ اﻟﻔﻀﺎء ﺣﻴﺚ‬

‫‪u = AB‬‬

‫اﻟﻌﺪد اﻟﺤﻘﻴﻘﻲ ‪ u ⋅ u‬ﻳﺴﻤﻰ اﻟﻤﺮﺑﻊ اﻟﺴﻠﻤﻲ ﻟـ ‪ u‬و ﻳﻜﺘﺐ ‪u 2 = AB 2‬‬ ‫اﻟﻌﺪد اﻟﺤﻘﻴﻘﻲ اﻟﻤﻮﺟﺐ ‪u 2‬‬

‫ﻳﺴﻤﻰ ﻣﻨﻈﻢ اﻟﻤﺘﺠﻬﺔ ‪ u‬ﻧﻜﺘﺐ ‪u = u 2‬‬

‫ﻣﻼﺣﻈﺔ و آﺘﺎﺑﺔ‬ ‫‪2‬‬ ‫* ‪u = u2‬‬ ‫*‬

‫إذا آﺎن‬

‫‪ v ≠ 0‬و‪u ≠ 0‬‬

‫‪ -4‬ﺧﺎﺻﻴﺎت‬ ‫∈ ‪∀α‬‬

‫‪3‬‬ ‫‪3‬‬

‫ﻓﺎن‬

‫) (‬

‫‪u ⋅ v = u v cos u ; v‬‬

‫‪∀ (u ,v ,w ) ∈V‬‬

‫ﻣﺘﻄﺎﺑﻘﺎت هﺎﻣﺔ‬

‫‪u ⋅v = v ⋅ u‬‬ ‫*‬ ‫* ‪u ⋅ (v + w ) = u ⋅v + u ⋅w‬‬ ‫* ‪(v + w ) ⋅ u = v ⋅ u + w ⋅ u‬‬ ‫* ) ‪u ⋅ αv = αu ⋅v = α × (u ⋅v‬‬ ‫‪ -5‬ﺗﻌﺎﻣﺪ ﻣﺘﺠﻬﺘﻴﻦ ‪:‬‬ ‫ﺗﻌﺮﻳﻒ‬ ‫ﻟﺘﻜﻦ ‪ v‬و ‪ u‬ﻣﺘﺠﻬﺘﻴﻦ ﻣﻦ اﻟﻔﻀﺎء ‪.V3‬‬

‫ﺗﻜﻮن ‪ v‬و ‪ u‬ﻣﺘﻌﺎﻣﺪﻳﻦ إذا وﻓﻘﻂ إذا آﺎن‬

‫‪u ⋅v = 0‬‬

‫ﻣﻼﺣﻈﺔ اﻟﻤﺘﺠﻬﺔ ‪ 0‬ﻋﻤﻮدﻳﺔ ﻋﻠﻰ أﻳﺔ ﻣﺘﺠﻬﺔ ﻣﻦ اﻟﻔﻀﺎء ‪V3‬‬ ‫ﺗﻤﺮﻳﻦ‬ ‫اﻟﻤﻜﻌﺐ ‪ ABCDEFGH‬اﻟﺬي ﻃﻮل ﺣﺮﻓﻪ ‪a‬‬ ‫أﺣﺴﺐ ‪ AE.BG‬و ‪ AE.AG‬و ‪AG.EB‬‬

‫‪1‬‬

‫ﻧﻜﺘﺐ‬

‫‪(u + v ) = u + v + 2u ⋅v‬‬ ‫‪2‬‬ ‫‪(u − v ) = u 2 + v 2 − 2u ⋅v‬‬ ‫‪(u + v )(u − v ) = u 2 − v 2‬‬

‫‪u ⊥v‬‬

‫‪2‬‬

‫‪2‬‬

‫‪2‬‬


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.