اﺗﺼﺎل داﻟﺔ ﻋﺪدﻳﺔ ﺍﻟﻘﺪﺭﺍﺕ ﺍﳌﻨﺘﻈﺮﺓ * ﺑﺪﺍﻟﺔ ﻣﺘﺼﻠﺔ ﻭ ﺭﺗﻴﺒﺔ؛ ـ ﲢﺪﻳﺪ ﺻﻮﺭﺓ ﻗﻄﻌﺔ ﺃﻭ ﳎﺎﻝ * :ﺑﺪﺍﻟﺔ ﻣﺘﺼﻠﺔ؛ ـ ﺗﻄﺒﻴﻖ ﻣﱪﻫﻨﺔ ﺍﻟﻘﻴﻢ ﺍﻟﻮﺳﻴﻄﻴﺔ ﰲ ﺩﺭﺍﺳﺔ ﺑﻌﺾ ﺍﳌﻌﺎﺩﻻﺕ ﻭ ﺍﳌﺘﺮﺍﺟﺤﺎﺕ ﺃﻭ ﺩﺭﺍﺳﺔ ﺇﺷﺎﺭﺓ ﺑﻌﺾ ﺍﻟﺘﻌﺎﺑﲑ........ ـ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﻔﺮﻉ ﺍﻟﺜﻨﺎﺋﻲ ﰲ ﲢﺪﻳﺪ ﻗﻴﻢ ﻣﻘﺮﺑﺔ ﳊﻠﻮﻝ f ( x ) = λﺃﻭ ﻟﺘﺄﻃﲑﻫﺬﻩ ﺍﳊﻠﻮﻝ؛
ـ ﺗﻄﺒﻴﻖ ﻣﱪﻫﻨﺔ ﺍﻟﻘﻴﻢ ﺍﻟﻮﺳﻴﻄﻴﺔ ﰲ ﺣﺎﻟﺔ ﺩﺍﻟﺔ ﻣﺘﺼﻠﺔ ﻭ ﺭﺗﻴﺒﺔ ﻗﻄﻌﺎ ﻋﻠﻰ ﳎﺎﻝ ،ﻻﺛﺒﺎﺕ ﻭﺣﺪﺍﻧﻴﺔ ﺣﻞ ﺍﳌﻌﺎﺩﻟﺔ f ( x ) = λ
-Iاﻻﺗﺼﺎل ﻓﻲ ﻧﻘﻄﺔ – اﻻﺗﺼﺎل ﻋﻠﻰ ﻣﺠﺎل -1اﻻﺗﺼﺎل ﻓﻲ ﻧﻘﻄﺔ /aﻧﺸﺎط ﻟﻴﻜﻦ C fﻣﻨﺤﻨﻰ داﻟﺔ ﻋﺪﻳﺔ fآﻤﺎ ﻓﻲ اﻟﺸﻜﻞ اﻟﺘﺎﻟﻲ:
) (
-1
ﻣﻦ ﺧﻼ اﻟﺸﻜﻞ آﻴﻒ ﺗﺮى اﻟﻤﻨﺤﻨﻰ ) (
C fﻋﻨﺪ اﻟﻨﻘﻄﺔ ذات اﻻﻓﺼﻮل -1ﺛﻢ ﻋﻨﺪ اﻟﻨﻘﻄﺔ ذات 3
-2أ /أﺣﺴﺐ ) f ( 3و ) lim f ( xﻣﺎذا ﺗﻼﺣﻆ x →3
ب /أﺣﺴﺐ ) f ( −1و أدرس ﻧﻬﺎﻳﺔ fﻋﻨﺪ -1ﻣﺎذا ﺗﺴﺘﻨﺘﺞ اﻟﺠﻮاب: /1ﻣﻦ ﺧﻼل ﺷﻜﻞ اﻟﻤﻨﺤﻨﻰ
) (
C fﻳﺘﻀﺢ ان اﻟﻤﻨﺤﻰ ﻣﺘﻘﻄﻊ ﻋﻨﺪ اﻟﻨﻘﻄﺔ ذات اﻻﻓﺼﻮل -1
و ﻣﺘﺼﻞ ﻋﻨﺪ اﻟﻨﻘﻄﺔ ذات 3 /2أ -ﻣﻦ ﺧﻼل ﺷﻜﻞ اﻟﻤﻨﺤﻨﻰ ﻧﻼﺣﻆ أن ب-
) (C f
)lim f ( x ) = f ( 3
x →3
ﻣﻦ ﺧﻼل ﺷﻜﻞ اﻟﻤﻨﺤﻨﻰ ) ( C f Moustaouli Mohamed
ﻟﺪﻳﻦ f ( 3) = 2
و lim f ( x ) = 2
x →3
ﻟﺬا ﻧﻘﻮل إن اﻟﺪاﻟﺔ fﻣﺘﺼﻠﺔ ﻋﻨﺪ اﻟﻨﻘﻄﺔ 3 ﻟﺪﻳﻨﺎ f ( −1) = 3
1
و lim f ( x ) = 3
x →−1+
و lim f ( x ) = 1
http://arabmaths.ift.fr
x →−1−