Math bac cours 2

Page 1

‫اﺗﺼﺎل داﻟﺔ ﻋﺪدﻳﺔ‬ ‫ﺍﻟﻘﺪﺭﺍﺕ ﺍﳌﻨﺘﻈﺮﺓ‬ ‫* ﺑﺪﺍﻟﺔ ﻣﺘﺼﻠﺔ ﻭ ﺭﺗﻴﺒﺔ؛‬ ‫ـ ﲢﺪﻳﺪ ﺻﻮﺭﺓ ﻗﻄﻌﺔ ﺃﻭ ﳎﺎﻝ ‪ * :‬ﺑﺪﺍﻟﺔ ﻣﺘﺼﻠﺔ؛‬ ‫ـ ﺗﻄﺒﻴﻖ ﻣﱪﻫﻨﺔ ﺍﻟﻘﻴﻢ ﺍﻟﻮﺳﻴﻄﻴﺔ ﰲ ﺩﺭﺍﺳﺔ ﺑﻌﺾ ﺍﳌﻌﺎﺩﻻﺕ ﻭ ﺍﳌﺘﺮﺍﺟﺤﺎﺕ ﺃﻭ ﺩﺭﺍﺳﺔ ﺇﺷﺎﺭﺓ ﺑﻌﺾ ﺍﻟﺘﻌﺎﺑﲑ‪........‬‬ ‫ـ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﻔﺮﻉ ﺍﻟﺜﻨﺎﺋﻲ ﰲ ﲢﺪﻳﺪ ﻗﻴﻢ ﻣﻘﺮﺑﺔ ﳊﻠﻮﻝ ‪ f ( x ) = λ‬ﺃﻭ ﻟﺘﺄﻃﲑﻫﺬﻩ ﺍﳊﻠﻮﻝ؛‬

‫ـ ﺗﻄﺒﻴﻖ ﻣﱪﻫﻨﺔ ﺍﻟﻘﻴﻢ ﺍﻟﻮﺳﻴﻄﻴﺔ ﰲ ﺣﺎﻟﺔ ﺩﺍﻟﺔ ﻣﺘﺼﻠﺔ ﻭ ﺭﺗﻴﺒﺔ ﻗﻄﻌﺎ ﻋﻠﻰ ﳎﺎﻝ ‪،‬ﻻﺛﺒﺎﺕ ﻭﺣﺪﺍﻧﻴﺔ ﺣﻞ ﺍﳌﻌﺎﺩﻟﺔ ‪f ( x ) = λ‬‬

‫‪ -I‬اﻻﺗﺼﺎل ﻓﻲ ﻧﻘﻄﺔ – اﻻﺗﺼﺎل ﻋﻠﻰ ﻣﺠﺎل‬ ‫‪ -1‬اﻻﺗﺼﺎل ﻓﻲ ﻧﻘﻄﺔ‬ ‫‪ /a‬ﻧﺸﺎط‬ ‫ﻟﻴﻜﻦ ‪ C f‬ﻣﻨﺤﻨﻰ داﻟﺔ ﻋﺪﻳﺔ ‪ f‬آﻤﺎ ﻓﻲ اﻟﺸﻜﻞ اﻟﺘﺎﻟﻲ‪:‬‬

‫) (‬

‫‪-1‬‬

‫ﻣﻦ ﺧﻼ اﻟﺸﻜﻞ آﻴﻒ ﺗﺮى اﻟﻤﻨﺤﻨﻰ ) (‬

‫‪ C f‬ﻋﻨﺪ اﻟﻨﻘﻄﺔ ذات اﻻﻓﺼﻮل ‪ -1‬ﺛﻢ ﻋﻨﺪ اﻟﻨﻘﻄﺔ ذات ‪3‬‬

‫‪ -2‬أ‪ /‬أﺣﺴﺐ )‪ f ( 3‬و ) ‪ lim f ( x‬ﻣﺎذا ﺗﻼﺣﻆ‬ ‫‪x →3‬‬

‫ب‪ /‬أﺣﺴﺐ )‪ f ( −1‬و أدرس ﻧﻬﺎﻳﺔ ‪ f‬ﻋﻨﺪ ‪ -1‬ﻣﺎذا ﺗﺴﺘﻨﺘﺞ‬ ‫اﻟﺠﻮاب‪:‬‬ ‫‪ /1‬ﻣﻦ ﺧﻼل ﺷﻜﻞ اﻟﻤﻨﺤﻨﻰ‬

‫) (‬

‫‪ C f‬ﻳﺘﻀﺢ ان اﻟﻤﻨﺤﻰ ﻣﺘﻘﻄﻊ ﻋﻨﺪ اﻟﻨﻘﻄﺔ ذات اﻻﻓﺼﻮل ‪-1‬‬

‫و ﻣﺘﺼﻞ ﻋﻨﺪ اﻟﻨﻘﻄﺔ ذات ‪3‬‬ ‫‪ /2‬أ‪ -‬ﻣﻦ ﺧﻼل ﺷﻜﻞ اﻟﻤﻨﺤﻨﻰ‬ ‫ﻧﻼﺣﻆ أن‬ ‫ب‪-‬‬

‫) ‪(C f‬‬

‫)‪lim f ( x ) = f ( 3‬‬

‫‪x →3‬‬

‫ﻣﻦ ﺧﻼل ﺷﻜﻞ اﻟﻤﻨﺤﻨﻰ ) ‪( C f‬‬ ‫‪Moustaouli Mohamed‬‬

‫ﻟﺪﻳﻦ ‪f ( 3) = 2‬‬

‫و ‪lim f ( x ) = 2‬‬

‫‪x →3‬‬

‫ﻟﺬا ﻧﻘﻮل إن اﻟﺪاﻟﺔ ‪ f‬ﻣﺘﺼﻠﺔ ﻋﻨﺪ اﻟﻨﻘﻄﺔ ‪3‬‬ ‫ﻟﺪﻳﻨﺎ ‪f ( −1) = 3‬‬

‫‪1‬‬

‫و ‪lim f ( x ) = 3‬‬

‫‪x →−1+‬‬

‫و ‪lim f ( x ) = 1‬‬

‫‪http://arabmaths.ift.fr‬‬

‫‪x →−1−‬‬


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.