Math bac cours 4

Page 1

‫داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ‬ ‫اﻟﺜﺎﻧﻴﺔ ﺳﻠﻚ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬ ‫‪ -І‬داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ اﻟﻨﻴﺒﻴﺮي‬ ‫‪ -1‬ﺗﺬآﻴﺮ ‪ -‬ﻧﻌﻠﻢ أن آﻞ داﻟﺔ ﻣﺘﺼﻠﺔ ﻋﻠﻰ ﻣﺠﺎل ‪ I‬ﺗﻘﺒﻞ دوال أﺻﻠﻴﺔ ﻋﻠﻰ ‪I‬‬

‫‪r‬‬ ‫‪x r +1‬‬ ‫اﻟﺪاﻟﺔ ‪ x →x‬ﺗﻘﺒﻞ دوال أﺻﻠﻴﺔ ﻋﻠﻰ [∞‪ ]0; +‬هﻲ ‪+ k‬‬ ‫‪r +1‬‬

‫‪ -‬ﻧﻌﻠﻢ أن ﻟﻜﻞ ‪ r‬ﻣﻦ }‪− {−1‬‬

‫→‪x‬‬

‫ﺣﻴﺚ ‪ k‬ﻋﺪد ﺣﻘﻴﻘﻲ ﺛﺎﺑﺖ‬ ‫‪1‬‬ ‫→ ‪ x‬اﻟﻤﺘﺼﻠﺔ ﻋﻠﻰ [∞‪ ]0; +‬وﻣﻨﻪ ﺗﻘﺒﻞ دوال أﺻﻠﻴﺔ‬ ‫*‪ -‬ﻓﻲ اﻟﺤﺎﻟﺔ اﻟﺘﻲ ﺗﻜﻮن ‪ r=-1‬ﻧﺤﺼﻞ ﻋﻠﻰ اﻟﺪاﻟﺔ‬ ‫‪x‬‬ ‫‪1‬‬ ‫وﺑﺎﻟﺘﺎﻟﻲ اﻟﺪاﻟﺔ → ‪ x‬ﺗﻘﺒﻞ داﻟﺔ أﺻﻠﻴﺔ وﺣﻴﺪة ﺗﻨﻌﺪم ﻓﻲ ‪.1‬‬ ‫‪x‬‬ ‫‪ -2‬ﺗﻌﺮﻳﻒ‬ ‫‪1‬‬ ‫اﻟﺪاﻟﺔ اﻷﺻﻠﻴﺔ ﻟﺪاﻟﺔ → ‪ x‬ﻋﻠﻰ [ ∞ ‪ ]0; +‬اﻟﺘﻲ ﺗﻨﻌﺪم ﻓﻲ اﻟﻨﻘﻄﺔ ‪ 1‬ﺗﺴﻤﻰ داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ اﻟﻨﻴﺒﻴﺮي‬ ‫‪x‬‬ ‫و ﻳﺮﻣﺰ ﻟﻬﺎ ﺑﺎﻟﺮﻣﺰ ‪ ln‬أو ‪Log‬‬ ‫‪0‬‬ ‫‪x‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪‬‬ ‫)‪ f ' ( x ) = ⇔ f ( x ) = ln( x‬‬ ‫‪x‬‬ ‫‪‬‬ ‫‪ f (1) = 0‬‬ ‫‪ -3‬ﺧﺎﺻﻴﺎت‬ ‫أ‪ -‬ﺧﺎﺻﻴﺎت‬ ‫*‪ -‬ﻣﺠﻤﻮﻋﺔ ﺗﻌﺮﻳﻒ اﻟﺪاﻟﺔ ‪ ln‬هﻲ‬ ‫*‪ -‬اﻟﺪاﻟﺔ ‪ ln‬ﻣﺘﺼﻠﺔ ﻋﻠﻰ‬

‫[∞‪]0; +‬‬

‫‪ln(1)=0‬‬

‫[∞‪]0; +‬‬

‫*‪ -‬اﻟﺪاﻟﺔ ‪ ln‬ﻗﺎﺑﻠﺔ ﻟﻼﺷﺘﻘﺎق ﻋﻠﻰ‬ ‫*‪ -‬اﻟﺪاﻟﺔ ‪ ln‬ﺗﺰاﻳﺪﻳﺔ ﻗﻄﻌﺎ ﻋﻠﻰ‬

‫[∞‪]0; +‬‬

‫[∞‪]0; +‬‬

‫‪1‬‬ ‫و‬ ‫‪x‬‬

‫[ ∞‪∀ x ∈ ]0; +‬‬

‫= ) ‪ln'( x‬‬

‫ﻧﺘﺎﺋﺞ‬ ‫ﻟﻜﻞ ﻋﺪدﻳﻦ ﺣﻘﻴﻘﻴﻴﻦ ﻣﻮﺟﺒﻴﻦ ﻗﻄﻌﺎ ‪ x‬و ‪y‬‬

‫‪ln x = ln y ⇔ x = y‬‬

‫‪y‬‬ ‫ﻣﻼﺣﻈﺔ‬

‫‪ln y ⇔ x‬‬

‫‪ln x‬‬

‫‪ln x = 0 ⇔ x = 1‬‬

‫‪ln x 0 ⇔ x 1‬‬ ‫‪ln x ≺ 0 ⇔ 0 ≺ x ≺ 1‬‬ ‫ﺗﻤﺮﻳﻦ ‪ -1‬ﺣﺪد ﻣﺠﻤﻮﻋﺔ ﺗﻌﺮﻳﻒ اﻟﺪاﻟﺘﻴﻦ ) ‪f : x → ln ( x − 1) + ln ( 4 − x‬‬ ‫‪ -2‬ﺣﻞ ﻓﻲ‬ ‫‪ -3‬ﺣﻞ ﻓﻲ‬

‫(‬

‫)‬ ‫‪ln ( x − x − 2 ) ≺ 0‬‬

‫اﻟﻤﻌﺎدﻟﺘﻴﻦ ‪ln x 2 + 2x = 0‬‬ ‫اﻟﻤﺘﺮاﺟﺤﺘﻴﻦ‬

‫‪2‬‬

‫)‬

‫)‬

‫(‬

‫‪g : x → ln x 2 − 3x‬‬

‫(‬

‫) ‪ln x 2 − 3 = ln ( 2x‬‬

‫)‬

‫(‬

‫) ‪ln x 2 − 2x ≤ ln ( x‬‬

‫ب‪ -‬ﺧﺎﺻﻴﺔ أﺳﺎﺳﻴﺔ‬ ‫ﻧﺸﺎط ﻟﻴﻜﻦ ‪ a‬و ‪ b‬ﻋﺪدﻳﻦ ﺣﻘﻴﻘﻴﻴﻦ ﻣﻮﺟﺒﻴﻦ ﻗﻄﻌﺎ و ‪ F‬داﻟﺔ ﻋﺪدﻳﺔ ﻣﻌﺮﻓﺔ ﻋﻠﻰ [∞‪ ]0; +‬ﺑـ )‪F ( x ) = ln(ax‬‬

‫‪1‬‬ ‫‪1‬‬ ‫[∞‪ ∀x ∈ ]0; +‬و اﺳﺘﻨﺘﺞ ان ‪ F‬داﻟﺔ أﺻﻠﻴﺔ ﻟﺪاﻟﺔ‬ ‫‪ -1‬ﺑﻴﻦ أن = ) ‪F ' ( x‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪ -2‬ﺑﻴﻦ أن ‪ ∀x ∈ ]0; +∞[ F ( x ) = ln ( ax ) = ln a + ln x‬ﺛﻢ اﺳﺘﻨﺘﺞ ‪ln ( ab ) = ln a + ln b‬‬

‫→ ‪ x‬ﻋﻠﻰ‬

‫[∞‪]0; +‬‬


‫اﻟﺠﻮاب‬ ‫ ﻟﺪﻳﻨﺎ‬-1

u ( x ) = ax ‫ ﺣﻴﺚ‬F ( x ) = ln u ( x )

F ' ( x ) = u ' ( x ) × ( ln ) ' ( u ( x ) ) = a ⋅

∀x ∈ ]0; +∞[

]0; +∞[

‫ ﻋﻠﻰ‬x →

1 1 = ax x

1 ‫ داﻟﺔ أﺻﻠﻴﺔ ﻟﺪاﻟﺔ‬F ‫و ﻣﻨﻪ‬ x

1 ‫ داﻟﺘﺎن أﺻﻠﻴﺘﺎن ﻟﺪاﻟﺔ‬x → ln x ‫ و‬F ‫ ﻟﺪﻳﻨﺎ‬-2 x ∀ x ∈ ]0; +∞ [ F ( x ) = k + ln x ‫اذن‬

]0; +∞[

‫ ﻋﻠﻰ‬x →

k = ln a

F (1) = k

‫و ﻣﻨﻪ‬

∀ x ∈ ]0; +∞ [

F (1) = ln ( a )

‫و‬

‫ﻟﺪﻳﻨﺎ‬

F ( x ) = ln ( ax ) = ln a + ln x

‫إذن‬

ln ( ab ) = ln a + ln b ‫ ﻧﺤﺼﻞ ﻋﻠﻰ‬x = b ‫ﺑﻮﺿﻊ‬

‫ﺧﺎﺻﻴﺔ أﺳﺎﺳﻴﺔ‬ ∀ ( a ; b ) ∈ ( ]0; +∞ [ )

2

ln ( ab ) = ln a + ln b

‫ ﺧﺎﺻﻴﺎت‬-‫ج‬

∀x ∈ ]0; +∞[

ln

∀ ( x; y ) ∈ ]0; +∞[

2

1 = − ln x x x ln = ln x − ln y y

∀ ( x1 ; x2 ;....; xn ) ∈ ]0; +∞[ ∀x ∈ ]0; +∞[

∀r ∈

n

*

ln ( x1 × x2 × .......... × xn ) = ln x1 + ln x2 + .... + ln xn ln x r = r ln x ‫اﻟﺒﺮهﺎن‬

1 1 1  ln  x ×  = ln1 ⇔ ln x + ln = 0 ⇔ ln = − ln x x x x  ln x r = ln ( x × x × ....... × x ) = ln x + ln x + ....... + ln x = r ln x ‫ ﻓﺎن‬r ∈ r

r

facteurs

ln x r = ln x − n = ln

1 x

n

ln x

=

p ln x q

‫اذن‬

ln y =

‫إذا آﺎن‬

p ln x q

p q

termes

* −

= − ln x n = − n ln x = r ln x ‫ وﻣﻨﻪ‬r = − n ‫ ﻓﺈﻧﻨﺎ ﻧﻀﻊ‬r ∈ y=x

p q

*

⇔ x p = y q ‫ﻧﻌﻠﻢ أن‬

q∈

‫ أي‬p ln x = q ln y ‫و ﺑﺎﻟﺘﺎﻟﻲ‬

*

ln x

p∈ p

*

/

‫إذا آﺎن‬

p = r ‫إذا آﺎن‬ q

= ln y q ‫و ﻣﻨﻪ‬ ln x r = r ln x ‫أي‬

1 ln x ‫ﺣﺎﻟﺔ ﺧﺎﺻﺔ‬ 2 ‫ ﻣﺘﺴﺎوﻳﺘﻴﻦ ﻓﻲ اﻟﺤﺎﻟﺘﻴﻦ اﻟﺘﺎﻟﻴﺘﻴﻦ‬g ‫ و‬f ‫هﻞ اﻟﺪاﻟﺘﺎن‬ ‫ﺗﻤﺮﻳﻦ‬ ∀x ∈ ]0; +∞[

f ( x ) = ln ( x − 1)

g ( x ) = 2ln x − 1

2

f ( x ) = ln x ( x − 1)

g ( x ) = ln x + ln ( x − 1)

0, 7

(a (b

2 + 1 + ln 2 −1 ‫( أﺣﺴﺐ‬1 ‫ﺗﻤﺮﻳﻦ‬ 2 ln 3 1,1 ‫ ادا ﻋﻠﻤﺖ أن‬ln ‫ و‬ln 6 ‫( أﺣﺴﺐ ﻗﻴﻤﺔ ﻣﻘﺮﺑﺔ ﻟـ‬2 9 ln

ln 2

ln x =


‫‪ -4‬دراﺳﺔ داﻟﺔ ‪ln‬‬ ‫‪ (a‬داﻟﺔ ‪ ln‬ﺗﺰاﻳﺪﻳﺔ ﻗﻄﻌﺎ ﻋﻠﻰ [∞‪]0; +‬‬

‫∞‪lim ln x = +‬‬

‫‪ (b‬ﻣﺒﺮهﻨﺔ‪) 1‬ﻧﻘﺒﻞ(‬

‫∞‪x →+‬‬

‫∞‪lim ln x = −‬‬

‫ﻣﺒﺮهﻨﺔ‪2‬‬ ‫اﻟﺒﺮهﺎن‬

‫‪1‬‬ ‫ﻧﻀﻊ‬ ‫‪t‬‬

‫‪x →0 +‬‬

‫= ‪x‬‬

‫‪1‬‬ ‫∞‪lim+ ln x = lim ln = lim − ln t = −‬‬ ‫‪t →+∞ t‬‬ ‫∞‪t →+‬‬ ‫‪x→0‬‬

‫‪ (c‬اﻟﻌﺪد‪e‬‬ ‫ﻟﺪﻳﻨﺎ اﻟﺪاﻟﺔ ‪ ln‬ﺗﺰاﻳﺪﻳﺔ ﻗﻄﻌﺎ ﻋﻠﻰ [∞‪ ]0; +‬وﻣﺘﺼﻠﺔ و‬

‫= ) [∞‪ ln ( ]0; +‬و ﻣﻨﻪ اﻟﻤﻌﺎدﻟﺔ ‪ ln x = 1‬ﺗﻘﺒﻞ ﺣﻼ‬

‫وﺣﻴﺪا ﻓﻲ [∞‪ ]0; +‬وﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺤﺮف ‪ e‬ادن ‪ln e = 1‬‬

‫ﻧﻘﺒﻞ أن ‪ e‬ﻟﻴﺲ ﻋﺪدا ﺟﺬرﻳﺎ و ﻗﻴﻤﺘﻪ اﻟﻤﻘﺮﺑﺔ هﻲ‬ ‫‪ (d‬ﺟﺪول ﺗﻐﻴﺮات اﻟﺪاﻟﺔ ‪ln‬‬ ‫‪e‬‬ ‫∞‪+‬‬ ‫∞‪+‬‬ ‫‪1‬‬

‫‪2, 71828‬‬

‫‪e‬‬ ‫‪0‬‬

‫‪1‬‬

‫‪x‬‬

‫‪f‬‬

‫‪0‬‬

‫∞‪−‬‬ ‫‪ (e‬اﻟﻔﺮوع اﻟﻼﻧﻬﺎﺋﻴﺔ‬

‫ﺑﻤﺎ أن ∞‪ lim ln x = −‬ﻓﺎن ﻣﺤﻮر اﻻراﺗﻴﺐ ﻣﻘﺎرب ﻟﻠﻤﻨﺤﻨﻰ اﻟﻤﻤﺜﻞ اﻟﺪاﻟﺔ ‪ln‬‬ ‫‪x →0+‬‬

‫‪ln x‬‬ ‫‪=0‬‬ ‫ﻣﺒﺮهﻨﺔ‬ ‫‪x→+∞ x‬‬ ‫اذن اﻟﻤﻨﺤﻨﻰ اﻟﻤﻤﺜﻞ ﻟﺪاﻟﺔ ‪ ln‬ﻳﻘﺒﻞ ﻓﺮﻋﺎ ﺷﻠﺠﻤﻴﺎ ﻓﻲ اﺗﺠﺎﻩ ﻣﺤﻮر اﻷﻓﺎﺻﻴﻞ‬ ‫‪1‬‬ ‫[∞‪ ∀x ∈ ]0; +‬اذن ﻣﻨﺤﻨﻰ اﻟﺪاﻟﺔ ‪ ln‬ﻣﻘﻌﺮ‬ ‫‪ (f‬دراﺳﺔ اﻟﺘﻘﻌﺮ ‪( ln ) '' ( x ) = − 2‬‬ ‫‪x‬‬ ‫‪ (g‬اﻟﺘﻤﺜﻴﻞ اﻟﻤﺒﻴﺎﻧﻲ‬ ‫‪lim‬‬

‫ﻣﻨﺤﻨﻰ اﻟﺪاﻟﺔ ‪ln‬‬


‫‪ (h‬ﻧﻬﺎﻳﺎت هﺎﻣﺔ أﺧﺮى‬ ‫ﺧﺎﺻﻴﺔ‬ ‫‪ln x‬‬ ‫‪=1‬‬ ‫‪x→1 x − 1‬‬

‫‪lim x ln x = 0‬‬

‫‪lim‬‬

‫‪x →0 +‬‬

‫ﺣﺪد‬

‫ﺗﻤﺮﻳﻦ‬

‫‪=1‬‬

‫‪lim x − ln x‬‬

‫∞‪x→+‬‬

‫) ‪ln (1 + x‬‬

‫‪lim‬‬

‫‪x‬‬ ‫‪ x−2‬‬ ‫‪lim x ln ‬‬ ‫‪‬‬ ‫∞‪x→+‬‬ ‫‪ x ‬‬ ‫‪x →0‬‬

‫‪=0‬‬

‫‪ln x‬‬ ‫‪n‬‬

‫‪x‬‬

‫)‬

‫‪lim‬‬

‫∞‪x→+‬‬

‫‪ lim+ x n ln x = 0‬ﺣﻴﺚ‬

‫(‬

‫*‬

‫‪x→0‬‬

‫‪lim− x ln x 2 − x‬‬

‫‪x →0‬‬

‫‪ – 5‬ﻣﺸﺘﻘﺔ اﻟﺪاﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻤﻴﺔ‬ ‫أ‪ -‬ﻣﺒﺮهﻨﺔ‬ ‫‪ u‬داﻟﺔ ﻗﺎﺑﻠﺔ ﻟﻼﺷﺘﻘﺎق ﻋﻠﻰ ﻣﺠﺎل ‪ I‬و ﻻ ﺗﻨﻌﺪم ﻋﻠﻰ هﺬا اﻟﻤﺠﺎل ‪I‬‬ ‫) ‪u '( x‬‬ ‫‪∀x ∈ I‬‬ ‫= ' ) ‪ln u ( x‬‬ ‫)‪u (x‬‬

‫(‬

‫)‬

‫‪ u‬ﻻ ﺗﻨﻌﺪم ﻋﻠﻰ‪ I‬و ﻣﻨﻪ ‪ u‬إﻣﺎ ﻣﻮﺟﺒﺔ ﻗﻄﻌﺎ ﻋﻠﻰ ‪ I‬أو ﺳﺎﻟﺒﺔ ﻗﻄﻌﺎ ﻋﻠﻰ ‪I‬‬ ‫اﻟﺒﺮهﺎن‬ ‫)‪u '( x‬‬ ‫وﻣﻨﻪ‬ ‫اذا آﺎﻧﺖ ‪ u‬ﻣﻮﺟﺒﺔ ﻗﻄﻌﺎ ﻋﻠﻰ ‪ I‬ﻓﺎن ) ‪f ( x ) = ln u ( x‬‬ ‫= ) ‪f ' ( x ) = u ' ( x ) ln' u ( x‬‬ ‫)‪u ( x‬‬ ‫اذا آﺎﻧﺖ ‪ u‬ﺳﺎﻟﺒﺔ ﻗﻄﻌﺎ ﻋﻠﻰ ‪ I‬ﻓﺎن )) ‪f ( x ) = ln(−u ( x‬‬ ‫)‪u '( x‬‬ ‫)‪u ( x‬‬

‫ﺗﻤﺮﻳﻦ‬

‫=‬

‫) ‪−u ' ( x‬‬ ‫) ‪−u ( x‬‬

‫= )) ‪f ' ( x ) = − u ' ( x ) ln'( − u ( x‬‬

‫‪∀x ∈ I‬‬

‫وﻣﻨﻪ‬ ‫‪∀x ∈ I‬‬

‫ﺣﺪد ﻣﺠﻤﻮﻋﺔ ﺗﻌﺮﻳﻒ اﻟﺪاﻟﺔ ‪ f‬و أﺣﺴﺐ ﻣﺸﺘﻘﺘﻬﺎ ﻓﻲ اﻟﺤﺎﻟﺘﻴﻦ اﻟﺘﺎﻟﻴﺘﻴﻦ‬ ‫‪f ( x ) = ln ( x 2 + 2 x ) (b‬‬ ‫‪f ( x ) = ln x 2 − 4 (a‬‬

‫ب‪ -‬ﺗﻌﺮﻳﻒ‬ ‫‪ u‬داﻟﺔ ﻗﺎﺑﻠﺔ ﻟﻼﺷﺘﻘﺎق ﻋﻠﻰ ﻣﺠﺎل ‪ I‬و ﻻ ﺗﻨﻌﺪم ﻋﻠﻰ اﻟﻤﺠﺎل ‪I‬‬ ‫'‪u‬‬ ‫ﺗﺴﻤﻰ اﻟﻤﺸﺘﻘﺔ اﻟﻠﻮﻏﺎرﻳﺘﻤﻴﺔ ﻟﻠﺪاﻟﺔ ‪ u‬ﻋﻠﻰ اﻟﻤﺠﺎل ‪I‬‬ ‫اﻟﺪاﻟﺔ‬ ‫‪u‬‬ ‫ج‪ -‬ﻧﺘﻴﺠﺔ‬ ‫‪ u‬داﻟﺔ ﻗﺎﺑﻠﺔ ﻟﻼﺷﺘﻘﺎق ﻋﻠﻰ ﻣﺠﺎل ‪ I‬و ﻻ ﺗﻨﻌﺪم ﻋﻠﻰ اﻟﻤﺠﺎل ‪I‬‬ ‫)‪u '( x‬‬ ‫→ ‪ x‬ﻋﻠﻰ ‪ I‬هﻲ اﻟﺪوال ‪ x → ln u ( x ) + c‬ﺣﻴﺚ ‪ c‬ﻋﺪد ﺛﺎﺑﺖ‬ ‫اﻟﺪوال اﻷﺻﻠﻴﺔ ﻟﺪاﻟﺔ‬ ‫)‪u ( x‬‬ ‫أوﺟﺪ داﻟﺔ أﺻﻠﻴﺔ ﻟﺪاﻟﺔ ‪ f‬ﻋﻠﻰ اﻟﻤﺠﺎل ‪ I‬ﻓﻲ اﻟﺤﺎﻻت اﻟﺘﺎﻟﻴﺔ‬

‫ﺗﻤﺮﻳﻦ‪1‬‬

‫‪x −1‬‬ ‫‪‬‬ ‫‪f ( x ) = 2‬‬ ‫‪x − 2x‬‬ ‫‪‬‬ ‫[∞‪ I = ]2; +‬‬ ‫‪‬‬

‫) ‪f ( x ) = tan ( x‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ −π π ‬‬ ‫‪ I = 2 ;2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬

‫ﺗﻤﺮﻳﻦ‪ 2‬أﺣﺴﺐ اﻟﺪاﻟﺔ اﻟﻤﺸﺘﻘﺔ ﻟﺪاﻟﺔ ‪ f‬ﻋﻠﻰ [∞‪ ]−1; +‬ﺣﻴﺚ‬

‫‪x −1‬‬ ‫‪‬‬ ‫= ) ‪f ( x‬‬ ‫‪x +1‬‬ ‫‪‬‬ ‫[∞‪ I = ]−1; +‬‬ ‫‪‬‬

‫‪x3 + 1‬‬

‫‪( x + 2 )2‬‬

‫= )‪f ( x‬‬

‫‪ -II‬داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ ﻟﻸﺳﺎس ‪a‬‬ ‫‪ -1‬ﺗﻌﺮﻳﻒ‬ ‫‪ a‬ﻋﺪد ﺣﻘﻴﻘﻲ ﻣﻮﺟﺐ ﻗﻄﻌﺎ و ﻣﺨﺎﻟﻒ ﻟﻠﻌﺪد ‪1‬‬ ‫‪ln x‬‬ ‫→ ‪ x‬اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ [∞‪ ]0; +‬ﺗﺴﻤﻰ داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ ﻟﻸﺳﺎس ‪ a‬وﻧﺮﻣﺰ ﻟﻬﺎ ﺑﺎﻟﺮﻣﺰ‬ ‫اﻟﺪاﻟﺔ‬ ‫‪ln a‬‬

‫‪ln x‬‬ ‫‪ln a‬‬

‫= ) ‪Log a ( x‬‬

‫‪Log a‬‬

‫[∞‪∀x ∈ ]0; +‬‬

‫ﻣﻼﺣﻈﺎت‬ ‫*‪ -‬داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ اﻟﻨﻴﺒﻴﺮي هﻲ داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ ﻟﻸﺳﺎس ‪e‬‬

‫*‪-‬‬

‫) (‬

‫‪Log a a r = r‬‬

‫‪Log a ( a ) = 1‬‬

‫∈ ‪∀r‬‬

‫}‪− {1‬‬

‫‪ln x‬‬ ‫‪= ln x‬‬ ‫‪ln e‬‬ ‫*‪+‬‬

‫∈ ‪∀a‬‬

‫= ) ‪Loge ( x‬‬

‫[∞‪∀x ∈ ]0; +‬‬

‫∈‪n‬‬


‫‪ -2‬ﺧﺎﺻﻴﺎت‬ ‫ﺑﻤﺎ أن ﻟﻜﻞ ‪ x‬ﻣﻦ [∞‪]0; +‬‬

‫‪ Log a ( x ) = k ln x‬ﺣﻴﺚ ‪ k‬ﻋﺪد ﺣﻘﻴﻘﻲ ﺛﺎﺑﺖ ﻓﺎن اﻟﺪاﻟﺔ ‪Log a‬‬

‫ﺗﺤﻘﻖ ﺟﻤﻴﻊ اﻟﺨﺎﺻﻴﺎت اﻟﺘﻲ ﺗﺤﻘﻘﻬﺎ اﻟﺪاﻟﺔ ‪ln‬‬ ‫) ‪Log a ( xy ) = Log a ( x ) + Log a ( y‬‬

‫∈ ‪∀r‬‬

‫‪2‬‬

‫) [∞‪∀ ( x; y ) ∈ ( ]0; +‬‬

‫) (‬

‫‪x‬‬ ‫) ‪Log a   = Log a ( x ) − Log a ( y ) ; Log a x r = rLog a ( x‬‬ ‫‪ y‬‬ ‫‪ -3‬دراﺳﺔ داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ ﻟﻸﺳﺎس ‪a‬‬ ‫‪1‬‬ ‫[∞‪∀x ∈ ]0; +‬‬ ‫= ) ‪Log a ' ( x‬‬ ‫‪x ln a‬‬ ‫*‪ -‬اذا آﺎن ‪ 0 ≺ a ≺ 1‬ﻓﺎن ‪ ln a ≺ 0‬و ﻣﻨﻪ ‪ ∀x ∈ ]0; +∞[ Log a ' ≺ 0‬اذن ‪ Log a‬ﺗﻨﺎﻗﺼﻴﺔ ﻗﻄﻌﺎ ﻋﻠﻰ [∞‪]0; +‬‬ ‫∞‪lim Log a x = +‬‬

‫‪x →0 +‬‬

‫*‪ -‬اذا آﺎن ‪1‬‬

‫‪ a‬ﻓﺎن ‪0‬‬

‫‪ ln a‬و ﻣﻨﻪ ‪0‬‬

‫' ‪Log a‬‬

‫∞‪lim Log a x = −‬‬

‫‪x →0 +‬‬

‫∞‪lim Log a x = −‬‬

‫∞‪x →+‬‬

‫[∞‪ ∀x ∈ ]0; +‬ادن ‪ Log a‬ﺗﺰاﻳﺪﻳﺔ‬

‫ﻗﻄﻌﺎ ﻋﻠﻰ [∞‪]0; +‬‬

‫∞‪lim Log a x = +‬‬

‫∞‪x →+‬‬

‫‪ -4‬ﺣﺎﻟﺔ ﺧﺎﺻﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ اﻟﻌﺸﺮي‬ ‫ﺗﻌﺮﻳﻒ‬ ‫اﻟﺪاﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻤﻴﺔ اﻟﺘﻲ أﺳﺎﺳﻬﺎ ‪ 10‬ﺗﺴﻤﻰ داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ اﻟﻌﺸﺮي و ﻳﺮﻣﺰ ﻟﻬﺎ ﺑـ ‪log‬‬ ‫‪ln x‬‬ ‫[∞‪∀x ∈ ]0; +‬‬ ‫= ‪log x = Log10 x‬‬ ‫‪ln10‬‬ ‫ﻣﻼﺣﻈﺎت‬ ‫‪1‬‬ ‫[∞‪∀x ∈ ]0; +‬‬ ‫= ‪ M‬ﻓﺎﻧﻨﺎ ﻧﺤﺼﻞ ﻋﻠﻰ ‪log x = M ln x‬‬ ‫*‪ -‬اذا وﺿﻌﻨﺎ‬ ‫) ‪0, 434‬‬ ‫‪ln10‬‬ ‫∈ ‪∀m‬‬ ‫‪log10m = m‬‬ ‫*‪-‬‬ ‫‪log 0, 01‬‬ ‫ﺗﻤﺮﻳﻦ ‪ -1‬أﺣﺴﺐ ‪log10000‬‬ ‫‪log ( x − 1) + log ( x + 3) = 2‬‬ ‫‪ -2‬ﺣﻞ ﻓﻲ‬ ‫‪ -3‬ﺣﻞ ﻓﻲ‬

‫‪2‬‬

‫‪ x + y = 65‬‬ ‫‪‬‬ ‫‪log x + log y = 3‬‬

‫‪(M‬‬


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.