‫ا ا ر م‬ 2x + x − 1 x2 1 • f ( x) = 2 x + 4x + 5 x2 • f ( x) = 4 x + 2x2 + 2 3
• f ( x) =
x+2
x2 + 4x 1 x • f ( x) = + x x2 + 1 4
• f ( x) = • f ( x) =
x2 + 1 +
x2 x2 + 1
• f ( x) = sin x − sin x • f ( x) = cos 2 x + sin 3 x
•
f ( x) = tan 2 x
• f ( x) = sin x + x cos x
•
f ( x) =
• f ( x) =
• f ( x) = f ( x) =
1
x5 + 4 x 2 − 2 3 x
3
: ‫ د ا وال ا ــ وال ا‬ • f ( x) = tan x + tan 3 x
3
•
: ‫ د ا وال ا ــ وال ا‬ x+3 • f ( x) = ( x + 2) 5 x • f ( x) = 4 x +1 x2 + x + 1 • f ( x) = 2 ( x + 1) 2
: ‫ د ا وال ا ــ وال ا‬2 3x + 1 • f ( x) = x +1
• f ( x) = ( x − x ) 2 • f ( x) =
2
‫ا ـــــ وا ل ا ــ ـــــــ‬
x cos x − sin x x2
• f ( x) =
3
tan 2 x − 2 tan x + 5 cos 2 x 2 x − sin x x 2 + cos x
: ‫ د ا وال ا ــ وال ا‬4 1 • f ( x) = x +1 + x −1 1 1 • f ( x) = − ( a ∈ IR + * ) ax − 1 ax + 1
9− x 3+ x x x + x2 + 1
4x : ‫ ا‬x ‫ ا‬f ‫ ا ا ا د‬5 ( x − 1) 2 a b ∀ x∈ IR − {− 1,1 } f ( x) = + : b ‫ و‬a ‫( د ا د ا‬1 2 ( x − 1) ( x + 1) 2 f ‫ " دا أ ا‬# $‫( ا‬2 f ( x) =
2
2 x3 + 2 x − 3 f ( x) = : ‫ ا‬x ‫ ا‬f ‫ ا ا ا د‬6 x2 + 1 b f ( x) = ax + 2 : b ‫ و‬a ‫( د ا د ا‬1 x +1 0 + # ‫ ا‬#, 1 & '( )* ‫ ا‬f ‫ دا أ ا‬%‫( أ و‬2
‫ ز‬/‫ ــ هـ ــ‬1 : ‫ ـــ) ذ‬$ ‫ا‬