Math bac ex 6

Page 1

‫ﺗﻤﺎرﻳﻦ‬ ‫ﺗﻤﺎرﻳﻦ ﻣﺤﻠﻮﻟﺔ‬ 1‫ﺗﻤﺮﻳﻦ‬

lim+ x

x

;

x →0

 x −3 lim x ln   x →+∞  x 

; lim

e

2x

x →0

−e x

x

‫ﺣﺪد‬ ‫اﻟﺤﻞ‬ 2x

x

e −e  x −3 ‫ﻧﺤﺪد‬ lim x ln  ; lim  x →+∞ x →0 x →0 x  x   e2 x − 1 e x − 1  e2 x − 1 e x − 1 e2 x − e x lim = lim  − −  = lim  2  = 2 −1 = 1 * x →0 x →0 x x  x →0  2 x x   x x

lim+ x

;

x=−

3 3 ‫ أي‬t = − ‫ﻧﻀﻊ‬ x t

 ln (1 + t )   x −3  3 lim x ln  = lim x ln  1 −  = lim  −3  = −3  x →+∞ t  x  x→+∞  x  t →0   lim+ x

x →0

x

= lim+ e x →0

x ln x

= lim+ e 2 x →0

*

‫وﻣﻨﻪ‬ x ln x

=1

*

------------------------------------------------------------------------------------------------------------

(

f ( x ) = ln e

2x

x

− 3e + 3

2‫ﺗﻤﺮﻳﻦ‬

)

:‫ اﻟﻤﻌﺮﻓﺔ ﺑـ‬x ‫ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ﻟﻠﻤﺘﻐﻴﺮ اﻟﺤﻘﻴﻘﻲ‬

D f ‫ ﻋﻨﺪ ﻣﺤﺪات‬f ‫ و ﻧﻬﺎﻳﺎت‬D f ‫ ﺣﺪد‬-1 f ( x ) ≥ 0 ‫ ﺣﻞ اﻟﻤﺘﺮاﺟﺤﺔ‬-2 lim ( f ( x ) − 2 x) ‫ ﺣﺪد‬-3

(

f ( x ) = ln e 2 x − 3e x + 3

)

x →+∞

‫اﻟﺤﻞ‬

D f ‫ ﻧﺤﺪد‬-4 x ∈ ‫ﻟﺘﻜﻦ‬ x ∈ D f ⇔ e2 x − 3e x + 3 ∀x ∈

e 2 x − 3e x + 3

0 ‫و ﺑﺎﻟﺘﺎﻟﻲ‬

0

∆ = −3 ‫ و ﻣﻨﻪ‬X 2 − 3 X + 3 ‫ﻟﻴﻜﻦ ∆ ﻣﻤﻴﺰ‬ D f = ‫إذن‬

(

)

D f ‫ ﻋﻨﺪ ﻣﺤﺪات‬f ‫* ﻧﺤﺪد ﻧﻬﺎﻳﺎت‬

(

)

lim f ( x ) = lim ln e 2 x − 3e x + 3 lim ln  e 2 x 1 − 3e − x + 3e−2 x  = +∞  x→+∞ x→+∞ 

x→+∞

(

)

lim f ( x ) = lim ln e 2 x − 3e x + 3 = ln 3

x→−∞

(

)

f ( x ) ≥ 0 ⇔ ln e 2 x − 3e x + 3 ≥ 0 f ( x ) ≥ 0 ⇔ e2 x − 3e x + 3 ≥ 1 f ( x ) ≥ 0 ⇔ e2 x − 3e x + 2 ≥ 0

(

)(

)

f ( x) ≥ 0 ⇔ ex − 1 ex − 2 ≥ 0

1

x→−∞

f ( x ) ≥ 0 ‫ ﻧﺤﻞ اﻟﻤﺘﺮاﺟﺤﺔ‬-5


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.