Math bac ex 8

Page 1

‫اﻟﺘﻜﺎﻣـــــﻞ‬

‫اﻟﺜﺎﻧﻴﺔ ﺳﻠﻚ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬

‫ﺗﻤﺎرﻳﻦ و ﺣﻠﻮل‬ 4‫ﺗﻤﺮﻳﻦ‬

1 1 1 ‫ ﺗﺄآﺪ أن‬/‫ أ‬-1 − = t t + 2 t (t + 2)

dt

2

∫1 t ( t + 2 ) dt ‫ أﺣﺴﺐ‬/‫ب‬ π

∫02 e π

x

sin xdx

‫ أﺣﺴﺐ‬-2

π

J = ∫ x sin xdx ; I = ∫ 2 x 2 cos 2 xdx 2 0

2

2

‫ ﻧﻀﻊ‬-3

0

J ‫ و‬I ‫ ﺛﻢ اﺳﺘﻨﺘﺞ‬I − J ‫ و‬I + J ‫أﺣﺴﺐ‬

1 1 1 ‫ ﺗﺄآﺪ أن‬/‫ أ‬-1 − = t t + 2 t (t + 2) 1 1 t +2−t 1 − = = t t + 2 t (t + 2) t (t + 2) 2

∫1 2

∫1

dt dt t (t + 2)

‫ ﻧﺤﺴﺐ‬/‫ب‬

21 2 1 1 3 dt = ∫ − dt = ln t − ln ( t + 2 ) 1 = ln 2 − ln 4 + ln 3 = ln 1 t t (t + 2) t+2 2

π

A = ∫ 2 e x sin xdx 0

π

‫ ﻧﺤﺴﺐ‬-2

π

π

π

A = e x sin x  2 − ∫ 2 e x cos xdx = e x sin x  2 −  e x cos x  2 − K 0 0 0 0 π

π

1 A =  e x sin x  2 −  e x cos x  2 0 0 2  π

  = .........  π

J = ∫ 2 x sin xdx ; I = ∫ 2 x 2 cos 2 xdx 2

2

0

J +I =∫

π

2 x2 sin 2 0

xdx + ∫

π

2 x2 cos2 0

xdx = ∫

0

π

2 x2 0

( cos

2

)

π

π

1 3  2 2 x2 dx =  3 x  0 0

I − J ‫ﻧﺤﺴﺐ‬

1

-3

I + J ‫ﻧﺤﺴﺐ‬

x + sin x dx = ∫ 2

‫ﻧﻀﻊ‬

=

π3 24


I −J =∫

π

2 x2 cos2 0

xdx − ∫

π

2 x2 sin 2 0

π

π

π

(

)

xdx = ∫ 2 x2 cos2 x − sin2 x dx 0

π

 sin2x  2 − 2 x sin2xdx I − J = ∫ 2 x2 cos2xdx =  x2 0 2 0 ∫0   I − J = x 

π

π

2 sin 2 x  2

π

cos 2 x  cos 2 x  2 2 −   − x 2  + ∫0 − 2 dx 0 0

2

π

−π I−J= 4

‫اذن‬

π

π

 sin 2 x  2  cos 2 x  2  sin 2 x  2 I − J =  x2 − −x + − 2  0  2  0  4  0  J ‫ و‬I ‫ﻧﺴﺘﻨﺘﺞ‬

J=

π3 48

+

π 8

‫ و‬I =

π3 48

(

π

f ( x) = e 1 − e x

lim

f ( x) x

x→+∞

‫وﻣﻨﻪ‬

8 x

π3

I−J=

‫و‬

24

−π 4

‫ﻟﺪﻳﻨﺎ‬ 5‫ﺗﻤﺮﻳﻦ‬

)

;

I+J=

‫ اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ \ ﺑـ‬f ‫ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ‬

lim f ( x ) ;

x→+∞

lim f ( x )

x→−∞

‫ ﺣﺪد‬-1

C f ‫ و أﻧﺸﺊ‬f ‫ و أﻋﻂ ﺟﺪول ﺗﻐﻴﺮات‬f ' ( x ) ‫ أﺣﺴﺐ‬-2

‫ و ﻣﺤﻮر اﻷﻓﺎﺻﻴﻞ و اﻟﻤﺴﺘﻘﻴﻤﻴﻦ اﻟﻤﻌﺮﻓﻴﻦ‬C f ‫اﻟﻤﺤﺼﻮر ﺑﻴﻦ‬ (t

= e x ‫ ﻋﺪد ﺣﻘﻴﻘﻲ ﺳﺎﻟﺐ ) ﻳﻤﻜﻦ اﻋﺘﺒﺎر‬k

‫ ﺣﻴﺚ‬x = k

Ak

‫ ﺣﺪد اﻟﻤﺴﺎﺣﺔ‬-3

; x = 0 ‫ﺑﺎﻟﻤﻌﺎدﻟﺘﻴﻦ‬

lim Ak

‫ ﺣﺪد‬-4

k →−∞

(

f ( x ) = ex 1 − ex f ( x) ; lim f ( x ) ; lim f ( x ) ‫ﻧﺤﺪد‬ x →+∞ x→+∞ x→−∞ x x x lim f ( x ) = lim e 1 − e = 0 ; lim f ( x ) = lim e x 1 − e x = −∞

)

lim

x →−∞

lim

x →+∞

f ( x) x

(

x→−∞

)

x→+∞

x→+∞

(

)

ex 1 − e x = −∞ ; = lim x→−∞ x

(

-4

)

C f ‫ و أﻧﺸﺊ‬f ‫ و ﻧﻌﻄﻲ ﺟﺪول ﺗﻐﻴﺮات‬f ' ( x ) ‫ أﻧﺴﺐ‬-5

(

f ' ( x ) = e x − e 2 x  ' = e x − 2e 2 x = e x 1 − 2e x

)

‫ﺟﺪول اﻟﺘﻐﻴﺮات‬

2


x f '( x )

−∞

− ln 2 +

+∞

0

-

1 4

f 0

Ak

−∞

‫ ﻧﺤﺪد اﻟﻤﺴﺎﺣﺔ‬-6

0

0

k

k

Ak = ∫ f ( x ) dx = ∫ e x − e 2 x dx 0

1 1 1   Ak = e x − e 2 x  = − e k + e 2 k 2 2  k 2 lim Ak ‫ ﺣﺪد‬-4 k →−∞

1 1 1 − ek + e2k = k →−∞ 2 2 2

lim Ak = lim

k →−∞

‫ﺗﻤﺎرﻳﻦ‬

1‫ﺗﻤﺮﻳﻦ‬ ∀x ∈\ −{−1;3}

b c −3x + 7x + 2 = a+ + 2 x +1 x − 3 x − 2x − 3 2

‫ ﺣﻴﺚ‬a ; b ; c ‫ ﺣﺪد‬-1

−3x 2 + 7 x + 2 ‫أﺣﺴﺐ‬ ∫0 x 2 − 2x − 3 dx π 4 2 1x + x +3 2 cos 4 xdx ‫∫ و‬ ‫ أﺣﺴﺐ‬-2 dx ∫0 0 x2 + 1 e 2x − 1 e x − e −x ∀x ∈ \ = ‫ ﺑﻴﻦ أن‬-3 e 2x + 1 e x + e − x 2t x e −1 ∫0 e 2t + 1 dt ‫أﺣﺴﺐ‬ 2

ln2

2x ∫0 ( x +2)e dx

2 ∫0 x ln( x +1)dx 1 2

2‫ﺗﻤﺮﻳﻦ‬

π

;

∫02 x sinxdx

‫ ﺑﺎﺳﺘﻌﻤﺎل اﻟﻤﻜﺎﻣﻠﺔ ﺑﺎﻷﺟﺰاء أﺣﺴﺐ‬-1 π

∫0 e 3

x

sin xdx

‫و‬


‫‪ -2‬ﺣﺪد اﻟﺪاﻟﺔ اﻷﺻﻠﻴﺔ ﻟـ ‪ x → sin 3 x‬اﻟﺘﻲ ﺗﻨﻌﺪم ﻓﻲ‪ 0‬ﻋﻠﻰ \ ﺛﻢ أﺣﺴﺐ ‪dx‬‬ ‫ﺗﻤﺮﻳﻦ‪3‬‬ ‫‪1‬‬

‫ﻧﻌﺘﺒﺮ ‪I n = ∫ x n e x dx‬‬ ‫‪0‬‬

‫‪ -1‬أﺣﺴﺐ ‪I1‬‬

‫‪ -2‬ﺑﻴﻦ ‪I n +1 = e − ( n + 1) I n‬‬

‫‪ -3‬أﺣﺴﺐ ‪I 2‬‬

‫*‬

‫` ∈ ‪ ∀n‬ﺑﺎﺳﺘﻌﻤﺎل اﻟﻤﻜﺎﻣﻠﺔ ﺑﺎﻷﺟﺰاء‪.‬‬

‫‪I3‬‬

‫)‬

‫‪ -4‬أﺳﺘﻨﺘﺞ ‪+ 2x 2 − 2x e x dx‬‬ ‫ﺗﻤﺮﻳﻦ‪4‬‬ ‫‪1‬‬ ‫‪ -1‬ﺑﻴﻦ أن ‪≤ 1‬‬ ‫≤ ‪1− x‬‬ ‫‪1+ x‬‬

‫‪3‬‬

‫‪∫0 ( x‬‬ ‫‪1‬‬

‫‪∀x ∈ \ +‬‬

‫‪x2‬‬ ‫‪ -2‬اﺳﺘﻨﺘﺞ ‪≤ ln (1 + x ) ≤ x‬‬ ‫‪2‬‬

‫‪∀x ∈ \ +‬‬

‫‪x−‬‬

‫‪2‬‬ ‫‪∫0 ln (1 + x ) dx‬‬ ‫‪1‬‬

‫‪ -3‬اﺳﺘﻨﺘﺞ ﺗﺄﻃﻴﺮا ﻟـ‬

‫إﻟﻰ ‪.0,1‬‬

‫ﺗﻤﺮﻳﻦ‪9‬‬ ‫‪2‬‬ ‫‪2x‬‬ ‫‪= − 2‬‬ ‫‪ -1‬ﺗﺤﻘﻖ أن‬ ‫‪x x +1‬‬ ‫‪x x 2 +1‬‬

‫‪2‬‬

‫)‬

‫‪ -2‬ﻧﻌﺘﺒﺮ ]‪. k ∈ [ 0;1‬‬

‫*\ ∈ ‪∀x‬‬

‫(‬

‫ﺑﺎﺳﺘﻌﻤﺎل اﻟﻤﻜﺎﻣﻠﺔ ﺑﺎﻷﺟﺰاء أﺣﺴﺐ ‪dx‬‬

‫‪2x ln x‬‬ ‫‪2‬‬

‫)‬

‫‪x 2 +1‬‬

‫‪1‬‬

‫(‬

‫‪k‬‬

‫∫ = ‪Ak‬‬

‫ﺣﺪد ‪lim Ak‬‬ ‫‪x →0‬‬

‫ﺗﻤﺮﻳﻦ‪10‬‬ ‫‪2‬‬

‫‪t −t +1‬‬

‫‪1‬‬ ‫‪1‬‬ ‫‪ -1‬أ‪ -‬ﺗﺄآﺪ أن‬ ‫‪= − 2‬‬ ‫‪t t 2 +1 t t +1‬‬

‫)‬

‫‪t2 − t +1‬‬

‫ب‪ -‬أﺣﺴﺐ ‪dt‬‬

‫)‬

‫‪3‬‬

‫(‬

‫‪t t2 +1‬‬

‫(‬

‫‪∫1‬‬

‫)‬

‫‪ -2‬أﺣﺴﺐ ‪+ 2x + 1 ln ( x + 1)dx‬‬

‫‪2‬‬

‫‪∫0 ( 3x‬‬ ‫‪1‬‬

‫ﺑﺎﺳﺘﻌﻤﺎل اﻟﻤﻜﺎﻣﻠﺔ ﺑﺎﻷﺟﺰاء‬

‫ﺗﻤﺮﻳﻦ‪11‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫‪ -1‬ﺗﺄآﺪ أن‬ ‫‪− 2‬‬ ‫‪x x +1‬‬

‫‪ -2‬أﺣﺴﺐ ‪dx‬‬

‫=‬

‫)‬

‫‪x ln x‬‬ ‫‪2‬‬

‫)‬

‫‪+1‬‬

‫‪2‬‬

‫‪1‬‬

‫‪(x‬‬

‫‪2‬‬

‫(‬

‫‪x x +1‬‬

‫‪1‬‬

‫*\ ∈ ‪∀x‬‬

‫∫ = ) ‪ I (α‬ﺑﺎﺳﺘﻌﻤﺎل اﻟﻤﻜﺎﻣﻠﺔ ﺑﺎﻷﺟﺰاء ﺣﻴﺚ [‪α ∈ ]0;1‬‬

‫‪α‬‬

‫‪ -3‬أﺣﺴﺐ ) ‪lim I (α‬‬

‫‪α → 0+‬‬

‫ﺗﻤﺮﻳﻦ‪12‬‬

‫‪4‬‬

‫‪3‬‬

‫‪π‬‬

‫‪∫02 x sin‬‬


π

1 I0 = ∫ 3 dx 0 cos x

;I n = ∫

n sin x ) ( 3

π

0

cos x

; I 3 ‫ و اﺳﺘﻨﺘﺞ‬I1 ‫ أﺣﺴﺐ‬-1

I5 π

. n ‫ ﺑﺪﻻﻟﺔ‬I n + 2 − I n ‫و اﺳﺘﻨﺘﺞ‬

 π  0; 3  ‫ﻋﻠﻰ‬

x→

n ∈ `* ‫ﻧﻌﺘﺒﺮ‬

dx ‫و‬

∫03 ( sin x )

n

cos xdx ‫ أﺣﺴﺐ‬-2

1   x π  ‫ داﻟﺔ أﺻﻠﻴﺔ ﻟﻠﺪاﻟﺔ‬x → ln tg  +   ‫ ﺑﻴﻦ أن اﻟﺪاﻟﺔ‬-‫ أ‬-3 cos x   2 4  I 4 ; I 2 ‫ ﺛﻢ‬I 0 ‫ اﺳﺘﻨﺘﺞ‬-‫ب‬

5


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.