Solutions Manual to accompany
Applied Fluid Mechanics
Eighth Edition Robert L. Mott Joseph A. Untener
Table of Contents
1. The Nature of Fluids and the Study of Fluid Mechanics
1
2. Viscosity of Fluids
14
3. Pressure Measurement
20
4. Forces Due to Static Fluids
28
5. Buoyancy and Stability
49
6. Flow of Fluids and Bernoulli’s Equation
68
7. General Energy Equation
91
8. Reynolds Number, Laminar Flow, Turbulent Flow, and Energy Losses Due to Friction
107
9. Velocity Profiles for Circular Sections and Flow in Noncircular Sections
129
10. Minor Losses
145
11. Series Pipe Line Systems
160
12. Parallel and Branching Pipeline Systems
212
13. Pump Selection and Application
239
14. Open-Channel Flow
245
15. Flow Measurement
262
16. Forces due to Fluid in Motion
267
17. Drag & Lift
278
18. Fans, Blowers, Compressors, & the Flow of Gases
287
19. Flow of Air in Ducts
296
CHAPTER ONE THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS Conversion factors 1.1
1750 mm(1m/103mm)=1.75m
1.2
1800 mm 2 [1m 2 / (103 mm) 2 ] 1.8 ×103 m 2
1.3
3.65 103 mm3 [1m 3 / (103 mm)3 ] 3.65 ×106 m 3
1.4
2.05 m 2 [(103 mm)2 / m 2 ] 2.05 ×106 mm 2
1.5
0.391 m3[(103 mm)3 / m3 ] 391×106 mm 3
1.6
55.0 gal(0.00379 m3 /gal)= 0.208 m 3
1.7
80km 103 m 1h 22.2 m / s h km 3600s
1.8
25.3 ft(0.3048 m/ft) = 7.71 m
1.9
1.86 mi(1.609 km/mi)(103 m/km) = 2993 m
1.10
8.65 in(25.4 mm/in) = 220 mm
1.11
3570 ft(0.3048 m/ft) = 1088 m
1.12
560 ft 3 (0.0283 m3 / ft 3 ) 15.85 m 3
1.13
6250 cm 3[1m 3 / (100 cm)3 ] 6.25 ×103 m 3
1.14
8.45 L(1 m3 /1000 L) = 8.45×103 m3
1.15
6.0 ft/s(0.3048 m/ft) = 1.83 m / s
1.16
2500 ft 3 0.0283 m3 1min 1.18 m 3 s 3 min ft 60 s
Consistent units in an equation 1.17
s 0.60 km 103 m 56.6 m s υ t 10.6 s km
The Nature of Fluids
1
1.18
υ
s 1.50 km 3600 s 871 km /h t 6.2 s h
1.19
υ
s 1000 ft 1 mi 3600 s 45.5 mi /h t 15 s 5280 ft h
1.20
υ
s 1.0 mi 3600 s 632 mi /h t 5.7 s h
1.21
a
2 s (2)(3.2 km) 103 m 1min 2 8.05×102 m /s 2 2 2 2 t (4.7 min) km (60s)
1.22
t
2s (2)(13m) 1.63 s a 9.18 m/s 2
1.23
2s (2)(3.2 km) 103 m 1 ft 1min 2 ft 0.264 2 a 2 2 2 t (4.7 min) km 0.3048 m (60s) s
1.24
t
1.25
mυ2 (15 kg)(1.2 m s)2 kg . m 2 KE 10.8 10.8N m 2 2 s2
1.26
mυ 2 (3600 kg) 16 km (103 m) 2 1 h2 kg m KE 35.6×103 2 2 2 h 2 2 km (3600 s) s
2s (2)(53in) 1 ft 0.524 s a 32.2 ft/s 2 12 in
2
2
KE = 35.6 kN m 2
1.27
mυ2 75 kg 6.85 m kg m 1.76 103 2 1.76 kN m KE s 2 2 s
1.28
2( KE ) (2)(38.6 N m) h 1 kg m (3600s) 2 1 km 2 m 31.5 km υ2 1 s2 N h2 (103 m) 2
2
m
(2)(38.6)(3600) 2 kg = 1.008 kg (31.5) 2 (103 )2
1.29
m
2( KE ) (2)(94.6 m N m) 103 N 1 kg m 103 g 2 37.4 g υ2 (2.25 m/s) 2 mN s N kg
1.30
2( KE ) 2(15 N m) 1 kg m/s 2 υ 1.58 m / s m 12 kg N
2
Chapter 1
The Nature of Fluids
3
The definition of pressure 1.43
p F /A 2500 lb/[π(2.00 in) 2 /4] 796 lb /in 2 796 psi
1.44
p F /A 6500 lb/[π(1.50in)2 /4] 3678 psi
1.45
p
1.46
F 38.8 103 N (103 mm) 2 N p 19.8 106 2 19.8 MPa 2 2 A (50.0 mm) 4 m m
1.47
p
F 6000 lb 119 psi A (8.0in) 2 / 4
1.48
p
F 1800 lb 3667 psi A (2.50 in) 2 / 4
1.49
F pA
1.50
F pA (6000 lb/ in 2 ) [2.00 in]2 / 4 18850 lb
1.51
p
4
20.5 106 N (50 mm)2 1 m2 40.25 kN m2 4 (103 mm) 2
D
1.52
F 14.0 kN 103 N (103 mm) 2 N 3.17 106 2 3.17 MPa 2 2 A (75 mm) / 4 kN m m
F F 4F 4F : Then D = 2 2 p A D / 4 D 4(20000 lb) 2.26 in (5000 lb/ in 2 )
4F 4(30 103 N) D 50.5 103 m 50.5 mm 6 2 p (15.0 10 N/ m )
Chapter 1
The Nature of Fluids
5
Bulk modulus 1.57
p E (V / V ) 130000 psi(0.01) 1300 psi p 896 MPa( 0.01) = 8.96 MPa
1.58
p E (V / V ) 3.59 106 psi( 0.01) = 35900 psi p 24750 MPa( 0.01) = 247.5 MPa
1.59
p E (V / V ) 189000 psi( 0.01) = 1890 psi p 1303 MPa( 0.01) = 13.03 MPa
1.60
V / V 0.01; V 0.01 V 0.01 AL Assume area of cylinder does not change. V A(L) 0.01AL Then L 0.01 L 0.01(12.00 in) 0.120 in
1.61
V p 3000 psi 0.0159 1.59% V E 189000 psi
1.62
V 20.0 MPa 0.0153 1.53% V 1303 MPa
1.63
Stiffness = Force/Change in Length = F/ΔL P pV V /V V But p = F /A;V AL; V A(L)
Bulk Modulus = E =
E
F AL FL A A(L) A(L)
F EA 189000 lb π (0.5 in) 2 884 lb /in (L) L in 2 (42 in)4 1.64
F EA 189000 lb π (0.5in) 2 3711 lb /in (L) L in 2 (10.0 in)(4)
4.2 times higher
1.65
F EA 189000 lb π (2.00 in) 2 14137 lb /in (L) L in 2 (42.0 in)(4)
16 times higher
1.66
Use large diameter cylinder and short storkes.
Force and mass 1.67
6
m
w 810 N 1 kg m/s 2 82.6 kg g 9.18 m/ s 2 N
w 1.85 103 N 1 kg m/s 2 189 kg 9.18 m/ s 2 N g
1.68
m
1.69
w mg 825 kg 9.81 m/s 2 8093 kg m/s 2 8093 N
1.70
w mg 450 g
1.71
w 7.8 lb lb s 2 m 0.242 0.242 slugs g 32.2 ft/s 2 ft
1.72
m
1.73
1 lb s 2 /ft w mg 1.58 slugs 32.2 ft/ s 50.9 lb slug
1.74
w mg 0.258 slugs 32.2 ft/ s 2
1.75
1.76
1 kg 9.81 m/s 2 4.41 kg m/s 2 4.41 N 103 g
w 42.0 lb 1.304 slugs g 32.2 ft/s 2 2
1lb s 2 /ft 8.31 lb slug
w 160 lb 4.97 slugs g 32.2 ft/s 2 w 160 lb 4.448 N/lb = 712 N m = 4.97 slugs 14.59 kg/slug = 72.5 kg m
w 1.00 lb 0.0311 slugs g 32.2 ft/s 2 w 0.0311 slugs 14.59 kg/slug = 0.453 Kg
m
m = 1.00 lb 4.448 N/lb = 4.448 N 1.77
F w mg 1000 kg 9.81 m/s 2 9810 kg m/s 2 9810 N
1.78
F 9810 N 1.0 lb/4.448 N = 2205 lb
1.79
(Variable Answer) See problem 1.75 for method.
Density, specific weight, and specific gravity
1.80
γ B (sg) B γ w (0.876)(9.81 kN/m3 ) 8.59 kN /m 3 ρ B (sg) B ρ w (0.876)(1000 kg/m3 ) 876 kg /m 3
1.81
ρ=
γ 12.02 N s2 1 kg m/s 2 1.225 kg /m 3 3 g m 9.81 m N
The Nature of Fluids
7
1N 19.27 N /m 3 2 1 kg m/s
1.82
γ = g 1.964 kg/m3 9.81 m/s 2
1.83
sg =
γo 8.860 kN/m3 0.903 at 5o C o 3 γ w @ 4 C 9.81 kN/m
sg =
γo 8.483 kN/m3 0.865 at 50o C o 3 γ w @ 4 C 9.81 kN/m
w w 3.50 kN 0.0268 m 3 ;V 3 V γ 130.4 kN/m
1.84
γ=
1.85
V AL πD 2 L / 4 π (0.150 m) 2 (0.100 m) / 4 1.767 103 m3
ρo
m 1.56 kg 883 kg /m 3 3 3 V 1.767 10 m
1N 103 N kg 8.66 3 8.66 3 γ o ρo g 883 kg/m 9.81 m/s 2 1 kg m/s m m 3
2
sg = ρo / ρw @ 4o C = 883 kg/m3 /1000 kg/m3 0.883 1.86
γ = (sg)(γw @ 4o C)=1.258(9.81 kN/m3 ) = 12.34kN/m3 w / V
w γV (12.34 kN/ m3 )(0.50 m3 ) 6.17 kN w 6.17 kN 103 N 1 kg m/s 2 m 629 kg g 9.18 m/s 2 kN N 1.87
1.88
w γV (sg)(γ w )(V ) (0.68)(9.81 kN/ m3 )(0.095 m 3 ) 0.634 kN 634 N
1N γ ρg = (1200 kg/m 3 )(9.81m/s 2 ) 11.77 kN /m 3 2 kg m/s 3 ρ 1200 kg/m sg = 1.20 ρw @ 4 C 1000 kg/m 3
w 32.0 N 1 kN 3 3.95 × 103 m 3 3 γ (0.826)(9.81 kN/m ) 10 N
1.89
V
1.90
γ ρg
1080 kg 9.81 m 1N 1 kN 3 10.59 kN /m 3 3 2 2 m s 1kg m/s 10 N
1080 kg/m3 sg = ρ /ρ w 1.08 1000 kg/m3 1.91
ρ (sg)( ρw ) (0.789)(1000 kg/m 3 ) 789 kg /m 3 γ (sg)(γ w ) (0.789)(9.81 kN/m 3 ) 7.74 kN /m 3
8
Chapter 1
wo 35.4 N 2.25 N = 33.15 N
1.92
Vo Ad (πD 2 /4)(d ) π (.150m) 2 (.20 m)/4 3.53 103 m3 w 33.15 N 9.38 103 N/m3 9.38 kN /m 3 3 3 V 3.53 10 m γ 9.38 kN/m3 sg = o 0.956 γ w 9.81 kN/m3 γo
V Ad (πD 2 /4)(d ) π (10 m) 2 (6.75 m)/4 530.1 m 3
1.93
w γV (0.68)(9.81 kN/m 3 )(530.1 m 3 ) 3.536 103 kN = 3.536 MN m ρV (0.68)(1000 kg/m 3 )(530.1 m 3 ) 360.5 103 kg = 360.5 Mg
wcastor oil γ co Vco (9.42 kN/m3 )(0.03 m3 ) 0.283 kN
1.94
w 0.283 kN Vm 2.13×103 m 3 γ m (13.54)(9.81 kN/m3 ) 1.95
w γV (2.32)(9.81 kN/m3 )(1.42 104 m3 ) 3.23 103 kN = 3.23 N
1.96
γ (sg)(γ w ) 0.876(62.4 lb/ft 3 ) 54.7 lb /ft 3 ρ (sg)( ρw ) 0.876(1.94 slugs/ft 3 ) 1.70 slugs /ft 3
γ 0.0765 lb/ft 3 1slug 2.38×10-3 slugs /ft 3 2 2 g 32.2 ft/s 1 lb s /ft
1.97
ρ
1.98
1 lb s 2 /ft γ ρg 0.00381 slug/ft (32.2 ft/s ) 0.1227 lb /ft 3 slug
1.99
sg = γ o / (γ w @ 4 C)=56.4 lb/ft 3 / 62.4 lb/ft 3 0.904 at 40o F
3
2
sg = γ o / (γ w @ 4 C) 54.0 lb/ft 3 / 62.4 lb/ft 3 0.865 at 120o F 1.100
V w / γ 500 lb/834 lb/ft 3 = 0.600 ft 3
1.101
γ
w 7.50 lb 7.48 gal 56.1 lb /ft 3 3 V 1 gal ft
γ 56.1 lb/ft 3 lb s 2 ρ 1.74 4 1.74 slugs /ft 3 2 g 32.2 ft/s ft sg =
γo 5.61 lb/ft 3 0.899 γ w @ 4 C 62.4 lb/ft 3
1.102
w γV (1.258)
1.103
w γV ρgV
The Nature of Fluids
(62.4 lb) (1 ft 3 ) (50 gal) 525 lb ft 3 7.84 gal
1.32 lb.s 2 32.2 ft 1ft 3 142 lb 25.0 gal ft 4 82 7.84 gal
9
10
Chapter 1
The Nature of Fluids
11
1.112
1.113 Required Volume 85 Gallons
Tank Volume 19,636 in 3 Required Height
1.114 Flow Rate
1 ft 3 12 3 in 3 3 3 19,636 in 3 7.48 gal 1 ft
(D) 2 (h) 4
(38 in) 2 (h) 4
19,636 in 4 17.3 in (38 in) 2 3
80 N 60 s N 960 5 s 1 min min
1.115 VREQ. 1.5 m 2.5 m 25 cm
Time Required
1m 0.938 m 3 100 cm
1 min 1L 0.938 m 3 15.6 min 60 L 0.001 m 3
π 24 in 2 1.0 gal 18 in 4 231 in 3 Volume gal 23.5 1.116 Flow Rate 1 min Time min 90 s 60 s 1.117 $17,000 7500
X
$ X years year
$17,000 2.27 years $ 7500 year
1.118 Annual Cost 2 HP
1.119 Displacement
12
0.746 kW 365 days 24 hr $0.10 1 year $1,307 Year 1 HP 1 year 1 day kW HR
π 7.5 cm 2 10.0 cm 0.001 L 0.442 L 4 1 cm 3
Chapter 1
1.120 Flow Rate
1.121 Volume
20
2.2 L 80 rev 1 m 3 60 min m3 10.6 1 rev 1 min 1000 L 1 hr hr
π 1 in 2 2.5 in in 3 1.963 4 rev
gal 1.963 in 3 1 gal X rev 3 min 1 rev min 231 in
gal min 2,354 RPM X 3 1.963 in 1 gal 1 rev 231 in 3 20
The Nature of Fluids
13
CHAPTER TWO VISCOSITY OF FLUIDS 2.1
Shearing stress is the force required to slide one unit area layer of a substance over another.
2.2
Velocity gradient is a measure of the velocity change with position within a fluid.
2.3
Dynamic viscosity = shearing stress/velocity gradient.
2.4
Oil. It pours very slowly compared with water. It takes a greater force to stir the oil, indicating a higher shearing stress for a given velocity gradient.
2.5
N.s/m2 or Pa.s
2.6
lb.s/ft 2
2.7
1 poise = 1 dyne.s/cm2 = 1 g/(cm.s)
2.8
It does not conform to the standard SI system. It uses obsolete basic units of dynes and cm.
2.9
Kinematic viscosity = dynamic viscosity/density of the fluid.
2.10
m2/s
2.11
ft2/s
2.12
1 stoke = 1 cm2/s
2.13
It does not conform to the standard SI system. It uses obsolete basic unit of cm.
2.14
A newtonian fluid is one for which the dynamic viscosity is independent of the velocity gradient.
2.15
A nonnewtonian fluid is one for which the dynamic viscosity is dependent on the velocity gradient.
2.16
Water, oil, gasoline, alcohol, kerosene, benzene, and others.
2.17
Blood plasma, molten plastics, catsup, paint, and others.
2.18
6.5 10 4 Pas
2.19
1.5 10−3 Pas
2.20
2.0 10 5 Pas
14
−
−
Chapter 2
2.21
1.1 10 5 Pa s
2.22
3.0 10−1 Pa s
2.23
1.90 Pa s
2.24
3.2 10 5 lb s/ft2
2.25
8.9 10−6 lb s/ft2
2.26
3.6 10−7 lb s/ft2
2.27
1.9 10−7 lb s/ft2
2.28
5.0 10−2 lb s/ft2
2.29
4.1 10−3 lb s/ft2
2.30
3.3 10 5 lb s/ft2
2.31
2.8 10 5 lb s/ft2
2.32
2.1 10 3 lb s/ft2
2.33
9.5 10 5 lb s/ft2
2.34
1.3 10−2 lb s/ft2
2.35
2.2 10−4 lb s/ft2
2.36
Viscosity index is a measure of how greatly the viscosity of a fluid changes with temperature.
2.37
High viscosity index (VI).
2.38
Rotating drum viscometer.
2.39
The fluid occupies the small radial space between the stationary cup and the rotating drum. Therefore, the fluid in contact with the cup has a zero velocity while that in contact with the drum has a velocity equal to the surface speed of the drum.
2.40
A meter measures the torque required to drive the rotating drum. The torque is a function of the drag force on the surface of the drum which is a function of the shear stress in the fluid. Knowing the shear stress and the velocity gradient, Equation 2-2 is used to compute the dynamic viscosity.
2.41
The inside diameter of the capillary tube; the velocity of fluid flow; the length between pressure taps; the pressure difference between the two points a distance L apart. See Eq. (2-5).
−
−
−
−
−
−
Viscosity of Fluids
15
2.42
Terminal velocity is that velocity achieved by the sphere when falling through the fluid when the downward force due to gravity is exactly balanced by the buoyant force and the drag force on the sphere. The drag force is a function of the dynamic viscosity.
2.43
The diameter of the ball; the terminal velocity (usually by noting distance traveled in a given time); the specific weight of the fluid; the specific weight of the ball.
2.44
The Saybolt viscometer employs a container in which the fluid can be brought to a known, controlled temperature, a small standard orifice in the bottom of the container and a calibrated vessel for collecting a 60 mL sample of the fluid. A stopwatch or timer is required to measure the time required to collect the 60 mL sample.
2.45
No. The time is reported as Saybolt Universal Seconds and is a relative measure of viscosity.
2.46
Kinematic viscosity.
2.47
Standard calibrated glass capillary viscometer.
For questions 2.48 to 2.53, Refer to Section 2.8 and to Internet resource 19 for Tribology-abc. Tables for SAE viscosity grades for engine oils and automotive gear lubricants are listed on the Internet site, from standards SAE J300 and SAE J306 that can be used to determine appropriate values for viscosities and information on the testing procedures used. NOTE: It is essential that the latest version of the standards be used for critical applications. See References 14 and 15. 2.48
The kinematic viscosity of SAE 20 oil must be between 5.6 and 9.3 cSt at 100C using ASTM D 445. Its dynamic viscosity must be over 2.6 cP at 150C using ASTM D 4683, D 4741, or D 5481. The kinematic viscosity of SAE 20W oil must be over 5.6 cSt at 100C using ASTM D 445. Its dynamic viscosity for cranking must be below 9500 cP at −15C using ASTM D 5293. For pumping it must be below 60,000 cP at −20C using ASTM D 4684.
2.49
SAE 0W through SAE 60 for engine crankcase oils, depending on operating conditions.
2.50
SAE 70W through SAE 250 for gear-type transmissions, depending on operating conditions.
2.51
From Internet resource 19: 100C using ASTM D 445 testing method and at 150C using ASTM D 4683, D 4741, or D 5481.
2.52
From Internet resource 19: At −25C using ASTM D 5293; at −30C using ASTM D 4684; at 100C using ASTM D 445.
2.53
From Internet resource 19: The kinematic viscosity of SAE 5W-40 oil must be between 12.5 and 16.3 cSt at 100C using ASTM D 445. Its dynamic viscosity must be over 2.9 cP at 150C using ASTM D 4683, D 4741, or D 5481. The kinematic viscosity must be over 3.8 cSt at 100C using ASTM D 445. Its dynamic viscosity for cranking must be below 6600 cP at −30C using ASTM D 5293. For pumping it must be below 60 000 cP at−35C using ASTM D 4684.
2.54
v = SUS/4.632 = 500/4.632 = 107.9 mm2/s = 107.9 10 6 m2/s − v = 107.9 10 6 m2/s [(10.764 ft2/s)/(m2/s)] = 1.162 10−3 ft2/s
16
−
Chapter 2
2.55
From Table 2.5: Viscosities at 40C in mm2/s of cSt ISO Viscosity grade Minimum
Nominal
Maximum
10
9.0
10.0
11.0
68
61.2
68.0
74.8
220
198
220
242
1000
900
1000
1100
Viscosity of Fluids
17
18
Chapter 2
Problem 2.77 Convert kinematic viscosity for ISO grades from mm2/s to SUS ISO VG* Nominal 2 (mm /s) (SUS) 2.2 32.0 3.2 34.3 4.6 39.5 6.8 46.5 10 57.5 15 76.5 22 107 32 151 46 214 68 316 100 463 150 695 220 1019 320 1482 460 2131 680 3150 1000 4632 1500 6948 2200 10190 3200 14822 *
Minimum (mm /s) (SUS) 1.98 28.8 2.88 30.87 4.14 35.55 6.12 41.85 9.00 51.75 13.5 68.9 19.8 96.3 28.8 135.9 41.4 192.6 61.2 284.4 90 417 135 625 198 917 288 1334 414 1918 612 2835 900 4169 1350 6253 1980 9171 2880 13340 2
Maximum (mm /s) (SUS) 2.42 35.2 3.52 37.7 5.06 43.5 7.48 51.2 11.0 63.3 16.5 84.2 24.2 118 35.2 166 50.6 235 74.8 348 110 510 165 764 242 1121 352 1630 506 2344 748 3465 1100 5095 1650 7643 2420 11209 3520 16305 2
First four values are called VG 2, 3, 5, and 7 NOTES: For VG ≥ 100 values computed from SUS = 4.664*nmm2s) Other values read from graph in Figure 2.14 Minimum = Nom*0.9; Maximum = Nom*1.1
Viscosity of Fluids
19
CHAPTER THREE PRESSURE MEASUREMENT Absolute and gage pressure 3.1 3.2
Atmospheric pressure is the absolute pressure in the local area. Gage pressure is measured relative to atmospheric pressure.
3.3 3.4
Perfect vacuum is complete absence of molecules. Absolutely NO pressure. Absolute pressure is measured relative to a perfect vacuum.
3.5 3.6
pabs pgage patm True.
3.7
False. Atmospheric pressure varies with altitude and with weather conditions.
3.8
False. Absolute pressure cannot be negative because a perfect vacuum is the reference for absolute pressure and a perfect vacuum is the lowest possible pressure.
3.9
True.
3.10
False. A gage pressure can be no lower than one atmosphere below the prevailing atmospheric pressure. On earth, the atmospheric pressure would never be as high as 150 kPa.
3.11
At 4000 ft, patm =12.7 psia; from App. E by interpolation.
3.12
At 13,500 ft, patm =8.84 psia; from App. E by interpolation.
3.13
Zero gage pressure.
3.14
P 6 lbs/(pi (0.3 in)2 ) / 4 84.9 psi
3.15
pgage 583 103 480 kPa(gage)
3.16
pgage 157 101 56 kPa(gage)
3.17
pgage 30 100 70 kPa(gage)
3.18
pgage 74 97 23 kPa(gage)
3.19
pgage 101 104 3kPa(gage)
3.20
pabs 284 100 384 kPa(abs)
3.21
pabs 128 98 226 kPa(abs)
20
Chapter 3
3.22
pabs 4.1 101.3 105.4 kPa(abs)
3.23
pabs 29.6 101.3 71.7 kPa(abs)
3.24
pabs 86 99 13 kPa(abs)
3.25
pgage 84.5 14.9 69.6 psig
3.26
pgage 22.8 14.7 8.1 psig
3.27
pgage 6.3 14.6 8.3 psig
3.28
pgage 12.8 14.0 1.2 psig
3.29
pgage 14.7 15.1 0.4 psig
3.30
pabs 41.2 14.5 55.7 psia
3.31
pabs 18.5 14.2 32.7 psia
3.32
pabs 0.6 14.7 15.3 psia
3.33
pabs 4.3 14.7 10.4 psia
3.34
pabs 12.5 14.4 1.9 psia
Pressure – Elevation Relationship 3.35
p γh 1.08(9.81 kN/m3 )(0.550 m) = 5.83 kN/m 2 5.83 kPa(gage)
3.36
p γh (sg)γ w h : sg p / γ w h) 1.820 lb ft 3 144 in 2 sg = 2 1.05 in (62.4 lb)(4.0 ft) ft 2
p 52.75 kN m3 6.70 m γ m 2 7.87 kN
3.37
h
3.38
p γh
64.00 lb 1 ft 2 5.56 psig 12.50 ft ft 3 144 in 2
3.39
p γh
62.4 lb 1 ft 2 50.0 ft 21.67 psig ft 3 144 in 2
3.40
p γh (10.79 kN/m3 )(3.0 m) = 32.37 kN/m2 32.37 kPa(gage)
3.41
p γh (10.79 kN/m3 )(12.0 m) = 129.5 kPa(gage)
Pressure Measurement
21
3.42
pair pA γ o 64 in 180 psig 0.9 62.4 lb/ft 3 64 in 1 ft 3 /1728 in 3 pair 180 psig 2.08 psi 177.9 psig
3.43 3.44
pi γh 1.15 9.81 kN/m3 0.375 m 4.23 kPa gage
patm = 24.77 kPa abs By interpolation App. E : γ m (13.54)9.81 kN/m 3 γ m 132.8 kN/m3 pB patm γh 24.77 kPa (132.8 kN/m3 )(0.325 m) 67.93 kPa(abs)
3.45
p γh (0.95)(62.4 lb/ft 3 )(28.5 ft)(1 ft 2 /144 in 2 ) 11.73 psig
3.46
p 50.0 psig γh = 50.0 psig 11.73 psi 61.73 psig (Sec 3.44 for γh 11.73 psig)
3.47
p 10.8 psig γh 10.8 psig (0.95)
(62.4 lb) 1 ft 2 6.25ft ft 3 144 in 2
p 10.8 psig 2.57 psi 8.23 psig 3.48
pbot ptop
ptop γ o h pbot : h
γo
(35.5 30.0)lb ft ) 144 in 2 h 2 13.36 ft in (0.95)(62.4 lb) ft 2 3
3.49
0 γ o ho γ w hw pbot pbot γ w hw 52.3 kN/m 2 (9.81 kN/m3 )(2.80 m) ho 2.94 m γo (0.86)(9.81 kN/m3 )
3.50
0 γ o ho γ w hw pbot pbot γ o ho 125.3 kN/m 2 (0.86)(9.81 kN/m3 )(6.90 m) hw 6.84 m γw 9.81 kN/m3
3.51
0 γ o h1 γ w h2 pbot ; but h1 18.0 h2 γ o (18 h2 ) γw h2 pbot 18γ o γ o h2 γ w h2 pbot h2 (γ w γ o ) 18γ o pbot 18 o 158 kN/m 2 (18 m)(.86)(9.81 kN/m3 ) 4.47 m h2 [9.81 (0.86)(9.81)]kN/m3 w o
3.52
p γh (1.80)(9.81 kN/m3 )(4.0 m)=70.6 kN/m 2 70.6 kPa(gage)
3.53
p γh (0.89)(62.4 lb/ft 3 )(32.0 ft)(1 ft 2 /144 in 2 ) 12.34 psig
3.54
p γh (10.0 kN/m3 )(11.0 103 m) = 110 103 kN/m 2 110 MPa
3.55
patm γ m (.457 m) γ w (1.381 m) γG (0.50 m)= pair pair (13.54)(9.81 kN/m3 )(.457 m) (9.81 kN/m3 )(1.381 m) (.68)(9.81)(.50) pair (60.7 13.55 3.34) kN/m 2 43.81 kPa(gage)
22
Chapter 3
3.56
pbot 34.0 kPa + γ o ho γ w hw 34 kPa + (0.85)(9.81 kN/m3 )(0.50 m) + (9.81 kN/m3 )(0.75 m) pbot 34.0 kPa + 4.17 + 7.36 = 22.47 kPa(gage)
3.57
pbot pair γ o ho γ w hw 200 kPa + [(0.80)(9.81)(1.5) + (9.81)(2.6)]kN/m 2 pbot 200 11.77 25.51 237.3 kPa(gage)
Manometers (See text for answers to 3.57 to 3.61.) 3.62
patm γ m (.075 m) γ w (0.10 m) = pA pA (13.54)(9.81 kN/m3 )(0.075 m) (9.81)(0.10) 10.94 kPa(gage)
3.63
pA γ o (13 in) + γ w (9 in) γ o (32 in) = pB 62.4 lb 1 ft 3 (0.85)(62.4)(19) pB pA γ w (9 in) γ o (19 in) = 9 in 3 3 ft 1728 in 1728 pB + pA 0.325 psi 0.583 psi 0.258 psi
3.64
pB γ w (33 in) + γ o (8 in) γ w (13 in) = pA pA pB γ o (8 in) γ w (20 in) =
(.85)(62.4) lb 1 ft 3 (62.4)(20) 8 in 3 3 ft 1728 in 1728
pA pB 0.246 psi 0.722 psi = 0.477 psi 3.65
pB γ o (.15 m) γ m (0.75 m) γ w (0.50 m) = pA pA pB (.90)(9.81 kN/ m3 )(.15 m) + (13.54)(9.81)(.75) (9.81)(0.50) pA pB (1.32 99.62 4.91) kPa 96.03 kPa
3.66
pB γ w (.15 m) + γ m (0.75 m) γ o (0.60 m) pA pA pB (9.81 kN/m3 )(0.15 m) + (13.54)(9.81)(0.75) (0.86)(9.81)(0.60) pA pB (1.47 99.62 5.06)kPa = 96.03 kPa
3.67
patm γ m (.475 m) γ w (.30 m) γ w (.25 m) γ o (.375 m) = pA pA γ m (.725 m) γ w (.30 m) γ o (.375 m) pA (13.54)(9.81 kN/m3 )(.725 m) (9.81)(.30) (.90)(9.81)(.375) pA (96.30 2.94 3.31)kPa = 90.05 kPa(gage)
3.68
pB γ w (6 in) + γ m (6 in) γ w(10 in) γ m (8 in) γ o (6 in) = pA pA pB γ m (14 in) γ w (4 in) γ o (6 in) pA pB (13.54)
62.4 lb 1 ft 3 (62.4)(4) (.9)(62.4)(6) (14 in) 3 3 ft 1728 in 1728 1728
pA pB (6.85 0.14 0.195) psi = 6.51 psi
Pressure Measurement
23
3.69
pB γ w (2 ft) γ o (3 ft) + γ w (11 ft) = pA p A pB γ w (9 ft) γ o (3 ft) =
62.4 lb 1 ft 2 (.90)(62.4)(3) 9 ft 3 2 ft 144 in 144
pA pB 3.90 psi 1.17 psi = 2.73 psi
62.4 lb 1 ft 3 6.8 in 0.246 Psi ft 3 1728 in 3
3.70
patm γ w (6.8 in) = pA 0
3.71
patm γGF h pA : h L sin 15 0.115 m sin 15 0.0298 m pA (0.87)(9.81 kN/m3 )(0.0298 m) 0.254 kPa(gage)
3.72
a)
patm γ m (.815 m) γ w (.60m) pA pA (13.54)(9.81kN/m3 )(0.815 m) (9.81)(.60) 102.4kPa(gage)
b)
patm γ m h (13.54)(9.81)(.737) 97.89 kpa pA 102.4 97.89 200.3kP(abs)
Barometers 3.73
A barometer measures atmospheric pressure.
3.74
The height of the mercury column is convenient.
3.75
h
3.76
h = 29.29 in
See Example Problem 3.13
3.77
h = 760 mm
See Example Problem 3.11
3.78
The vapour pressure above the mercury column and the specific weight of the mercury change.
3.79
h
3.80
101.3 kPa → 760 mm of Mercury (See Ex. Prob. 3.11) h
patm 14.7lb ft 3 144 in 2 2 33.92 ft very large (10.34m) γw in 62.4lb ft 2
1.0 in of Mercury 1250 ft = 1.25 in 1000 ft
85 mm .3048 m 5200 ft 134.7mm 1000 m 1ft
h 760 134.7 625.3 mm patm γ m h 133.3
24
kN 0.6253 m 83.35 kPa m3
Chapter 3
3.81
Patm γ m h
848.7 lb 1 ft 3 28.6 in 14.05 psia ft 3 1728 in 3
3.82
Patm γ m h
848.7 lb 1 ft 3 30.65in 15.05 psia ft 3 1728 in 3
3.83
h
3.84
patm γ m h 133.3
patm 14.2 lb ft 3 1728 in 3 28.91 in γm in 2 848.7 lb ft 3 kN 0.745 m= 99.3kPa(abs) m3
Expressing Pressures as the Height of a Column of Liquid
3.85
p 4.37 inH 2 O(1.0 psi/27.68inH 2 O) 0.158 psi p 4.37inH 2 O(249.1 Pa/1.0 inH 2 O) 1089 Pa
3.86
p 3.68inH 2 O(1.0 psi/27.68inH 2 O) 0.133 psi p 3.68inH 2 O(249.1 Pa/1.0 inH 2 O) = 917pa
3.87
p 3.24 mmHg(133.3 Pa/1.0 mmHg) = 431.9 pa p 3.24 mmHg(1.0 psi/57.71 mmHg) = 0.0627 psi
3.88
p 21.6 mmHg(133.3 Pa/1.0 mmHg) = 2879 Pa = 2.88 kPa p 21.6 mmHg(1.0 psi/57.71 mmHg) = 0.418 psi
3.89
p 68.2 kpa (1000 Pa/kpa)(1.0 mmHg/133.3 Pa)= 512mmHg
3.90
p 12.6 Psig(2.036 inHg/psi)= 25.7 inHg
3.91
p 12.4 inWc = 12.4 inH 2 O(1.0 psi/27.68 inHL 2 O) = 0.448 psi p 12.4 inH 2 O(249.1 Pa/1.0 inH 2 O) = 3089 Pa = 3.09 kPa
3.92
p 115 inWc = 115 inH 2 O(1.0 psi/27.68 inH 2 O) = 4.15 psi p 115 inH 2 O(249.1 Pa/1.0 inH 2 O) = 28.646 Pa = 28.6 kPa
Pressure Measurement
25
3.93
P = γ w h P= 9.810
3.94
kN kN 16m=157 2 157kPa 3 m m
P = γ w h h =
P γw
kN m 2 16.3 m h= kN 9.810 3 m 160
3.95
P = γ m h h =
P γw
lb 2 122 in 2 in h= 2 2 1.874 ft lb 844.9 3 1 ft ft 12 in 1.874 ft 22.5 in 1 ft 11
3.96
P = sg c γ w h P = 2.6 9.810
3.97
kN 3 m = 76.5 kPa m3
P = sg sw γ w h P = 1.030 9.810
P = γ w h h =
3.98
14.7 h=
26
kN 1000 m 11 km 111 MPa 3 m 1 km P γw
lb 122 in 2 1.5 x in 2 12 ft 2 50.9 ft =15.4 m lb 62.4 3 ft
Chapter 3
3.99
P γ w h = 62.4
lb 1 ft 12 ft 2 lb 1 in 0.036 3 2 2 ft 12 in 12 in in 2
P = sg gf γ w h h = Sin 25 X OIL
P sg gf γ w
1 in ; X WATER 2.37 in X WATER
X WATER ; X OIL 2.86 in sg
kN 0.790 m = 105 kPa m3 kN P738mm sg m γ w h = 13.54 9.810 3 0.738 m = 98.0 kPa m P = P.790 P738 105 kPa 98.0 kPa = 7.0 kPa
3.100
P790mm sg m γ w h = 13.54 9.810
3.101
P10 γ w h = 62.4
3.102
lb 12 ft 2 lb 4.33 2 (g) 10 ft 3 2 2 ft 12 in in
lb lb 8400 ft = 630 2 3 ft ft 2 2 lb 1 ft lb 630 2 2 2 4.38 2 ft 12 in in P = γ a h = 0.075
Pressure Measurement
27
CHAPTER FOUR FORCES DUE TO STATIC FLUIDS Forces due to gas pressure
4.1
F pA; where p Patm Pinside ; A Patm γ m h
(12 in) 2 113 .1 in 2 4
844.9 lb 1 ft 3 30.5 in 14.91 psi ft 3 1728 in 3
F (14.91 0.32 )lb/in 2 113.1 in 2 1650 lb 4.2
F pA (23.6 lb/in 2 )(π(30 in 2 ) / 4) 16 682 lb
4.3
F pA; A 36 80 in 2 2880 in 2 p γ w h
62.4 lb 1 ft 3 1.80 in 0.065 lb/in 2 ft 3 1728 in 3
F (0.065 lb/in 2 )(2880 in 2 ) 187 lb 4.4
F p A; A 0.9396 ft 2 (App.F) F (280 lb/in 2 )(0.9396 ft 2 )(144 lb 2 /ft 2 ) 37 885 lb
π (0.030 m) 2 7.07 104 m 2 4 F (3.50 106 N/m 2 )(7.07 104 m 2 ) 2.47 103 N = 2.47 kN
4.5
F pA; A
4.6
F pA; A π(0.050 m) 2 / 4 1.963 10 3 m 2 F (20.5 10 6 N/m 2 )(1.963 10 3 m 2 ) 40.25 10 3 N = 40.25 kN
4.7
F pA; A (0.800 m) 2 0.640 m 2 F (34.4 103 N/m 2 )(0.64 m) 2 22.0 10 3 N = 22.0 kN
Forces on horizontal flat surfaces under liquids 4.8
F pA; A 24 18 in 2 432 in 2 56.78 lb 1 ft 2 p γA h = 12.3 ft 4.85 lb/in 2 ft 3 144 in 2 F (4.85 lb/in 2 )(432 in 2 ) = 2095 lb
4.9
F pA; A π(0.75 in) 2 / 4 0.442 in 2 844.9 lb 1 ft 3 p γmh 28.0 in 13.69 lb/in 2 ft 3 1728 in 3 F (13.76 lb/in 2 )(0.442 in 2 ) = 6.05 lb
28
Chapter 4
Forces Due to Static Fluids
29
30
Chapter 4
Forces Due to Static Fluids
31
32
Chapter 4
Forces Due to Static Fluids
33
34
Chapter 4
Forces Due to Static Fluids
35
36
Chapter 4
Forces Due to Static Fluids
37
38
Chapter 4
Forces Due to Static Fluids
39
40
Chapter 4
Forces Due to Static Fluids
41
42
Chapter 4
Forces Due to Static Fluids
43
44
Chapter 4
4.58
4.59
# # # P γ h 2.4 62.4 3 14 ft 2097 2 14.6 2 ft ft in
hc1 = 1.75 m hc2 = 3 m Lc1 = 1.75 m Lc2 = 3 m A1 = 3.5m x 4m = 14 m2 A2 = 6m x 4m = 14 m2 N FR1 γ h C1 A 9810 3 1.75 m (3.5 m 4 m) 240 kN m N FR2 γ h C 2 A 9810 3 3 m (6 m 4 m) 706 kN m
Forces Due to Static Fluids
45
B H 3 4 m (3.5 m) 3 B H 3 4 m (6 m) 3 14.3 m 4 IC 2 72 m 4 12 12 12 12 4 I C1 14.3 m L P1 L C 1.75 m 2.3 m L C1 A1 1.75 m 14 m 2
I C1
IC 2 72 m 4 LP 2 LC 3m 4m L C2 A 2 3 m 24 m 2 4.60 h C L C 36 in A 10 in 28 in 280 in 2
FR γ h C A 62.4
# 1 ft 12 ft 2 2 364 # 36 in 280 in 12 in ft 3 12 2 in 2
FR 364 # # 91 # of bolts 4 bolts bolt Note: If accounting for slight differences between top and bottom bolts, Ic =0.1125 ft4, Lp = 3.019 ft, top bolt = 91.4 lb and bottom = 90.7 lb. FBOLT
4.61
hc = Lc = 1.5 m A WALL L W 3 m 7 m 21 m 2 h kN 3 m FR γ SW A WALL 10.1 3 21 m 2 318 kN 2 2 m
B H 3 7 m (3 m) 3 15.74 m 4 12 12 IC 15.75 m 4 LP LC 1.5 m 2m LC A 1.5 m 21 m 2 F P F PA A IC
4.62
46
Chapter 4
π (3 in) 2 7.07 in 2 4 π (0.875 in) 2 A ROD 0.601 in 2 4 # FEXT . P A CYL 60 2 7.07 in 2 424 # in # FRET P (A CYL A ROD ) 60 2 (7.07 in 2 0.601 in 2 ) 388 # in 2 π (3 m) A 3.53 m 2 8 A CYL
4.63
Y 0.212 D 0.212 3 m 0.636 m I C 6.86 10 3 (D) 4 6.86 10 3 (3m) 4 0.556 m 4
h c L C 1.2 m (1.5 m - 0.636 m) 2.064 m kN FR γ h c A 9.81 3 2.064 m 3.53 m 2 71.5 kN m IC 0.556 m 4 LP LC 2.064 m 2.14 m LC A 2.064 m 3.53 m 2
4.64 180 110 70
20 m 20 m X 21.284 m X cos (20) hp 16 m L C 21.284 m 21.284 m 13.284 m 2 2 h c L C sin ( ) 13.284 m sin (70) 12.48 m cos (20)
A G L W 16 m 8 m 128 m 2 kN FR γ h c A 10.1 3 12.48 m 128 m 2 16.1 10 6 N m
Forces Due to Static Fluids
47
B H 3 8 m (16 m) 3 2731 m 4 12 12 IC 2731 m 4 LP LC 13.284 m 14.9 m LC A 13.284 m 128 m 2 IC
M 0 A
0 (16.1 10 6 N 9.616 m) FS 16 m FS 9.7 10 6 N
4.65
F PA hA 2
1 ft π 8 # 12 in F 1.03 62.4 3 30 ft 673 # 4 ft
48
Chapter 4
CHAPTER FIVE BUOYANCY AND STABILITY 5.1
FV 0 w T Fb Fb γ f V (10.5 kN/ m3 )(0.45)(0.60)(0.30)m 3 0.814 kN = T Fb w 814 258 556 N
5.2
814 N
If pipe is submerged Fb γ f V (1.26)(9.81 kN/ m 3 )(π(0.168 m 2 )/4)(1.00 m) Fb = 0.2740 kN = 274 N; because w = 277 N > Fb It will sink. wc Fb 0; wc Fb ; γ cVc γ f Vd γ f 0.9 Vc
5.3
Then, γ c 0.9γ f (0.90)(1.10)(62.4 lb/ft 3 ) 61.78 lb / ft 3 wc Fb 0; γ cVc γ f Vd Vd Vc
γc γf
(0.30 m)2 7.90 D2 1.2 m 0.0683 m3 .X 4 9.81 4 4(0.0683)m3 X 0.9664 m = 966 mm (0.30 m) 2 Y 1200 966 234 mm
5.4
5.5
w Fb 0 γ cVc γ f Vd γc γ f
5.6
Vd (0.90)(9.81 kN/m 3 )(75 /100) 6.62 kN / m 3 Vc
w Fb T 0 γ CVC γ f VC T Vc (γ C γ f ) T VC
T 2.67 kN 0.217 m 3 (γC γ f ) [23.6 (1.15)(9.81)] kN/m3
Buoyancy and Stability
49
5.7
w Fb FSP 0 W γ 0Vd FSP FSP w γ Vd 14.6 lb (0.90)(62.4 lb/ft 3 )(40 in 3 )
1 ft 3 1728 in 3
FSP 13.3 lb 5.8
FV 0 wF wS FbF FbS FbS γ wVS 9.81 kN/m3 (0.100 m)3 9.81 N 0 γ FVF 80 N γ wVF 9.81 N 0 = VF (γ F γ w ) 70.19 N VF
70.19 N 70.19 N γF γw (470 9810) N/m 3
7.515×10-3 m 3
5.9
(2) 2 .3 ft 3 588.1 lb 4 wA Fb wc 588.1 30 558.1 lb = γ AVA wc wA Fb γ wVc 62.4 lb/ft 3.
VA 5.10
wA 558.1 lb in 3 1 ft 3 . 3.23 ft 3 γA 0.100 lb 1728 in 3
wc wA Fbc FbA 0 wA Fbc Fbc wc 588.1 30 558.1 lb(See Prob 5.10) γ AVA γ wVA 558.1 lb γ A (0.100 lb/in 3 )(1728 in 3 / ft 3 ) 172.8 lb/ft 3 558.1 lb 558.1 lb 5.055 ft 3 γ A γ w (172.8 62.4)lb/ft 3 If both concrete block and sphere are submerged:
VA
Upward forces = FU Fbs FbC γ wVs γ wVc γ w (Vs VC ) Vs D 3 / 6 (1.0 m)3 / 6 0.5326 m3 5.11
Vtot 0.6973 m3 wC 4.10 kN 3 VC 0.1737 m γC 23.6 kN/m3 FU FD It will float. Downward forces = FD wC wS 4.1 0.20 4.30 kN FU γ wVtot (9.81 kN/m3 )(0.6973 m3 ) 6.84 kN
5.12
wc Fb 0 γ cVc γ f Vd γ c S 3 γ f S 2 X X
γc S 3 γc S γf S2 γf
wH wS Fb 0 5.13
50
(1.0) 2 in 3 ft 3 (.25) 2 Fb γ w (V1 V2 ) 62.4 lb/ ft 3 .1.50 1.30 3 4 4 1728 in 0.04485 lb wS Fb wH 0.04485 0.020 0.02485 lb Chapter 5
Buoyancy and Stability
51
52
Chapter 5
FbS γ wVB 9.81 kN/m 3
(.45) 2 .03 m3 4
0.0468 kN FbC γ wVd wC wB FbS 0.771 0.4008 0.0468 1.125 kN FbC γ wVd γ w AX Fbc
X
γw A
1.125 kN 0.721 m submerged = 721 mm (9.81 kN/m3 )( (.45) 2 m 2 / 4 29 mm above surface
5.26
γ CT 15.60 kN/m3 wc Fbc wB FbB 0
(.45) 2 .75 m3 0.7753 kN 4 (.45) 2 Fbc γ CTVd 15.60 kN/m3 .70 m3 1.737 kN 4 w B FbB γ BVB γ CTVB VB (γ B γ CT ) Fbc wc 1.737 0.7753 wc γ cVc 6.50 kN/m3
0.9614 kN VB
0.9614 kN 0.9614 kN 0.01406 m3 At 3 γ B γ CT (84.0 15.60)kN/m
VB 0.01406 m3 t 0.0884 m = 88.4 mm A (0.45) 2 / 4 m 2
w Fb γ f Vd (1.16)(9.81 kN/m 3 )(0.8836 m 3 ) 10.05 kN 5.27
Vd D 3 /12 (1.50 m)3 /12 0.8836 m 3 Entire hemisphere is submerged.
5.28
w Fb γ f Vd γ w A X X
w 0.05 N 4 kN w 3 0.965 103 m = 0.965 mm 3 2 γ A (9.81 kN/m )( (0.082 m ) 10 N
D2 L 4 2 103 N 2 (.038 m) wS 76.8 kN/ m . .0.08 m . 6.97 N 4 kN wS wC 6.97 0.05 7.02 N Fb γ w AX w 7.02 N 4 1 kN X T . . 3 0.135 m = 135 mm 3 2 γ w A (9.81 kN/m ) (0.0802 m) 10 N
5.29A Wt. of steel bar = wS γ SVS γ S AL γ S
Buoyancy and Stability
53
5.29 B From Prob. 5.29, wT 7.02 N
D2 (.038 m) 2 .L .0.080 m = 9.073 10 5 m 3 4 4 FbS = γ wVS 9.81 kN/m3 9.073 10 5 m 3 103 N/kN = 0.890 N
VS
wT FbS FbC 0 FbC wT FbS 7.02 N 0.890 N = 6.13 N = γ w AX X
5.30
6.13 N 4 1 kN 3 0.118 m = 118 mm 3 2 9.81 kN/m (0.082 m) 10 N
wT Fb 4γ wVdrum 4(62.4 lb/ft 3 )
( (21 in) 2 ) (36 in) 3 ft 1801 lb 4 1728 in 3
Drums Weight 4(30 lb) =120 lb Wt. of platform and load = 1801 120 1681 lb 5.31
Vol. of wood: 2(6.0 ft)(1.50 in)(5.50 in)(1 ft 2 / 144 in 2 )
0.6875 ft 3 ends
4(96 3)in(1.5 in)(5.50 in)(1 ft 3 /1728 in 3 ) 1.776 ft 3 main boards (0.50 in)(6 ft)(8 ft) (1 ft/12 in)
= 2000 ft 3 plywood 4.464 ft 3 total
ww γ wV (40. 0 lb/ft 3 )(4.464 ft 3 ) 178.5 lb 5.32
wD wP Fb γ wVd Vd
wD wP 120 lb +178.5 lb 4.78 ft 3 total 3 γw 62.4 lb/ft
VD 4.78 / 4 1.196 ft 3 sub. each drum VD AS L AS
VD 1.196 ft 3 144 in 2 0.399 ft 2 57.4 in 2 L 3.0 ft ft 2
By trial: X = 4.67 in when As 57.4 in 2
wdrums wwood wload FbD FFw 0 wdrums 4(30 lb) 120 lb (Prob. 5.31) 5.33
wwood 178.5 lb(Prob. 5.32) FbD 1801 lb (Prob. 5.31) Fbw γ wV w 62.4 lb/ft 3 4.464 ft 3 278.6 lb (Prob. 5.32) D
w
wload FbD Fbw wD ww 1801 278.6 120 178.5 1781 lb
54
Chapter 5
5.34
Given: γ F 12.00 lb/ft 3 , γ C 150 lb/ft 3 , wC 600 lb Find: Tension in cable Float only : FV 0 wF T FbF T FbF wF But w F γ FVF 12.0 lb/ft 3 9.0 ft 3 108 lb (18.0 in) 2 (48 in) VF 9.00 ft 3 3 3 1728 in / ft FbX γ wVd (64.0 lb/ft 3 )(6.375 ft 3 ) 408 lb (18.0 in) 2 (34 in) 6.375 ft 3 3 3 1728 in / ft T 408 108 300 lb Check concrete block: Fnet wC FbC T w 600 lb 4.00 ft 3 wC 600 lb; VC C 3 γ C 150 lb/ft FbC γ wVC (64.0 lb/ft 3 )(4.00 ft 3 ) 256 lb
Vd
5.35
Fnet 600 256 300 44 lb down OK block sits on bottom. Rise of water level by 18.00 in would tend to submerge entire float. But additional buoyant force on float is sufficient to lift concrete block off sea floor. With block suspended: T = wC FbC T 600 256 344 lb (see Problem 5.35) Float : wF T FbF 0 FbF wF T 108 lb + 344 lb = 452 lb = γ wVd FbF
3 452 lb 3 1728 in Vd 7.063 ft γ w 64.0 lb/ft 3 ft 3
5.36
12204 in 3 Vd (18.0 in 2 )( X ) Vd 12204 in 3 X 37.67 in submerged (18.0 in) 2 324 in 2 Y 48 X 10.33 in above surface With concrete block suspended, float is unrestrained and it would dirft with the currents. FV 0 wA Fbw Fbo T T wA Fbw Fbo 0.10 lb (6.0 in)3 21.6 lb 3 in (6 in)2 (3.0in) Fbw γ wVd w 62.4 lb/ft 3 3.90 lb 1728 in 3 / ft 3 Fbo γ oVdo 0.85 Fbw 3.315 lb
wA γ AVT
Then: T 21.6 3.90 3.315 14.39 lb
Buoyancy and Stability
55
5.37
FS wc Fbc γ cVc γ f Vc Vc (γ c γ f ) Vc
D2 (6.0 in) 2 ft 3 .L 10.0in 4 4 1728 in 3
0.1636 ft 3 0.284 lb 1728 in 3 62.4 lb FS 0.1636 ft ft 3 ft 3 in 3 3
70.1 lb FS acts up on cylinder; down on tank bottom Stability 5.39
w Fb 0 γ cVc γ f Vd γ f AX
cVc γ c A(1.0 m) 8.00 kN/m3 / (1.0 m) X γf A γf A 9.81 kN/m 3 0.8155 m ycg 1.00 m/2 = 0.500 m ycb X /2 0.8155 m/ 2 0.4077 m MB =
I D 2 / 64 (1.0 m) 4 / 64 Vd ( D 2 / 4)( X ) [ (1.0 m) 2 / 4](0.8155 m)
0.04909 m 4 0.0766 m 0.6405 m3 ymc ycb MB = 0.4077 + 0.0766 = 0.4844 m < ycg unstable 5.40
w Fb γ wVd γ w AX w 250 lb(144 in 2 / ft 2 ) X 0.4808 ft γ w A (62.4 lb/ft 3 )(30in)(40in) X 5.77 in; γ cb X /2 = 2.88 in I (40 in)(30 in) 3 /12 9000 in 4 Vd AX (30 in)(40 in)(5.77 in) = 6923 in 3 MB = I /Vd 90000 in 4 / 6923 in 3 13.0 in ymc ycb MB =2.88 in + 13.0 in 15.88 in > ycg stable
56
Chapter 5
Buoyancy and Stability
57
58
Chapter 5
5.51
From Prob. 5.30, X = 118 mm VS = Vol. of steel bar = 9.073 ´ 104 mm3 p DC2 VCS = Sub. vol. of cup = ´X 4 p (82)2 VCS = (118) = 6.232 ´ 105 mm3 4 Vd = VS + VCS = 7.139 ´ 105 mm3 D yS = cb of steel bar = S = 19 mm 2 yCS = cb of sub. vol. of cup X 118 yCS = DS + = 38 + = 97 mm 2 2 y V + yCSVCS ycb = S S Vd (19)(9.073 ´ 104 ) + (97)(6.232 ´ 105 ) = 87.1 mm 7.139 ´ 105 I p (82) 4/64 MB = mm = 3.11 mm = Vd 7.139 ´ 105 ymc = ycb + MB = 90.2 mm ycg is very low because wt. of bar is >> wt. of cup—stable
=
5.52
From Prob. 5.22, Fig. 5.23: X = 600 mm ycb = X/2 = 300 mm ycg = H/2 = 750/2 = 375 mm 2 2 I p D 4 /64 D = (450) = 21.1 mm MB = = = Vd (p D 2 /4)( X ) 16 X 16(600) ymc = ycb + MB = 300 + 21.1 = 321.1 mm < ycg—unstable
Buoyancy and Stability
59
60
Chapter 5
Buoyancy and Stability
61
62
Chapter 5
Buoyancy and Stability
63
p DX4
I = 64
I
=
p (11.51/ 2) 4 64
= 53.77 in4
53.77 = 0.539 in V d 99.69 ycb = 0.75X = 0.75(11.51) = 8.633 in ymc = ycb + MB = 8.633 + 0.539 = 9.172 in ycg = 9.00 in < ymc—stable
MB =
5.63
(a)
=
å F = 0 = Fb - Wc - Wv v
Wc = Weight of contents; Wv = Weight of vessel; Find Wc + Wv Wc + Wv = Fb; But Fb = gfVd Vd = Vhs + Vcyl-d; Where Vhs = Vol. of hemisphere; Vcyl-d = Vol. of cyl. below surface Vhs = pD3/12 = p(1.50 m)3/12 = 0.8836 m3 Vcyl-d = pD2hd/4 = p(1.50 m)2(0.35 m)/4 = 0.6185 m3 Then Vd = Vhs + Vcyl-d = 0.8836 + 0.6185 = 1.502 m3 Fb = gfVd = (1.16)(9.81 kN/m3)(1.502 m3) = 17.09 kN = Wc + Wv (Answer) (b)
Find gv = Specific weight of vessel material = Wv/VvT; Given Wc = 5.0 kN From part (a), 17.09 kN = Wc + Wv; Then Wv = 17.09 - Wv = 17.09 - 5.0 = 12.09 kN VvT = Total volume of vessel = Vhs + Vcyl-T Vcyl-T = ( Do2 - Di2 ) (0.60 m)/4 = p[(1.50 m)2 - (1.40 m)2](0.60 m)/4 = 0.1367 m3 VvT = Vhs + Vcyl- = 0.8836 m3 + 0.1367 m3 = 1.020 m3 gv = Specific weight of vessel material = Wv/VvT; = (12.09 kN)/(1.020 m3) = 11.85 kN/m3 = gv
64
Chapter 5
(c)
Evaluate stability. Find metacenter, ymc. See figure for key dimensions. Given: ycg = 0.75 + 0.60 - 0.40 = 0.950 m from bottom of vessel. We must find: ymc = ycb + MB = ycb + I/Vd I = pD4/64 = p(1.50 m)4/64 = 0.2485 m 4 For circular cross section at fluid surface. Vd = 1.502 m3 From part (a). MB = (0.2548 m4)/(1.502 m3) = 0.1654 m The center of buoyancy is at the centroid of the displaced volume. The displaced volume is a composite of a cylinder and a hemisphere. The position of its centroid must be computed from the principle of composite volumes. Measure all y values from bottom of vessel. (ycb)(Vd) = (yhs)(Vhs) + (ycyl-d)(Vcyl-d) ycb = [(yhs)(Vhs) + (ycyl-d)(Vcyl-d)]/Vd We know from part (a): Vd = 1.502 m3; Vhs = 0.8836 m3; Vcyl-d = 0.6185 m3 yhs = D/2 - y = D/2 - 3D/16 = (1.50 m)/2 - 3(1.50 m)/16 = 0.4688 m ycyl-d = D/2 + (0.35 m)/2 = (1.50 m)/2 + 0.175 m = 0.925 m Then ycb = [(0.4688 m)(0.8836 m3) + (0.925 m)(0.6185 m3)]/(1.502 m3) = 0.657 m Now, ymc = ycb + MB = 0.657 m + 0.1654 m = 0.822 m From bottom of vessel. Because ymc < ycg, vessel is unstable.
5.64
Let Fs be the supporting force acting vertically upward when the club head is suspended in the water. å Fv = 0 = Fs + Fb - W; Then Fs = W - Fb Fb = gwVal; W = galVal; Where Val = Volume of aluminum club head Val = W/gal = (0.500 lb)/(0.100 lb/in3) = 5.00 in3 Fs = W - Fb = 5.00 lb - (62.4 lb/ft3)(5.00 in3)(1 ft3)/(1728 in3) Fs = 0.319 lb
5.65
FB γ F VD 32 ft 2 1 1 ft V 1.8 yd2 2 2 in 0.338 ft 3 12 in 1 yd 4 # # FB W ((1.03 62.4 3 ) - 38 3 ) 0.338 ft 3 8.9 # ft ft
5.66
π (0.5m) 2 VCYL. 2 m 0.393m 3 4 N WCYL. 0.393m 3 535 3 210 N m kN FB γ F VD 10.1 3 0.393 m 3 3.97 kN m F 0 F F W FT FB W Y B T FT 3,760 N
Buoyancy and Stability
65
5.67
A. When hanging above the water, there is no buoyant force, so the tension in the cable is equal to the weight of the diving bell; 72 kN kN B. FB γ F VD 10.1 3 6.5 m 3 65.7 kN m F 0 T W F Y B T W FB
T 72 kN 65.7 kN 6.3 kN C. When released from the cable, the bell will sink since when in the water, there is still tension in the cable holding the diving bell up.
5.68
m Weight Lifted 125 kg 9.81 2 1226 N s 1226 N VD 441 m 3 N (11.81 - 9.03) 3 m 3 V 3 4 π r VSPHERE r 3 SPHERE 3 4 π 441m 3 6 9.45 m diameter π The load must be carried below the balloon because the center of mass must be below the center of volume to be stable. D3
5.69
5.70
5.71
66
When neutrally buoyant, 0 = FBD + FBL – WD - WL 0 γ SW VD 78 9.81N VLEAD γ SW γ L N 1 m3 1.03 9810 3 82.5 L 78 9.81 N 1000 L m VLEAD N N 1.03 9810 3 11.35 9810 3 m m 4 3 VLEAD 6.759 10 m 7.67 kg
N π (0.12 m) 2 FB γ F VD 2.6 9810 3 4 m N FB 288 FT m Steel will float in any fluid that has a specific gravity higher than its own. Steel has a specific gravity of 7.85. From the table of common fluids listed in appendix, steel will float in Mercury, which has a specific gravity of 13.54.
Chapter 5
5.72
Naturally it will float since it has a specific weight less than that of water. N 13 m 3 W 9125 3 125 cm 3 1.141 N m 100 3 cm 3 N 13 m 3 FB 9810 3 125 cm 3 1.226 N m 100 3 cm 3
Weights FB W 1.226 N 1.141 N 0.085 N
5.73
WCAM WF FB CAM FB F WCAM (γ F VF ) (γ W VCAM ) (γ W VF ) WCAM (γ W VCAM ) VF (γ W γ F )
VF
WCAM (γ W VCAM ) 0.401 ft 3 γW γF
π (D) 2 1 ft 6 in 4 12 in VF 4 0.401 ft 3 4 D 1.01 ft 1 ft 1 ft π π 6in 6 in 12 in 12 in VF
5.74
WCAM WF FB F WCAM (γ F VF ) (γ W VF )
WCAM VF (γ W γ F ) VF
WCAM 40 # 0.754 ft 3 γW γF # # 62.4 3 0.15 62.4 3 ft ft
π (D) 2 1 ft VF 6 in 4 12 in VF 4 0.754 ft 3 4 D 1.39 ft 1 ft 1 ft 6in π 6 in π 12 in 12 in
Buoyancy and Stability
67
CHAPTER SIX FLOW OF FLUIDS and BERNOULLI’S EQUATION Conversion factors 6.1
Q 8.0 gal/min 6.309 105 m3 /s/1.0 gal/min = 5.05 104 m 3s/
6.2
Q 759 gal/min 6.309 105 m3 /s/1.0 gal/min = 4.79 102 m 3 /s
6.3
Q 8720 gal/min 6.309 105 m3 /s/1.0 gal/min = 0.550 m 3 /s
6.4
Q 84.3 gal/min 6.309 105 m3 /s/1.0 gal/min = 5.32 103 m 3 /s
6.5
Q 125 L/min 1.0 m3 /s/60000 L/min = 2.08 103 m 3 /s
6.6
Q 4500 L/min 1.0 m3 /s/ 60000 L/min = 7.50 102 m 3 /s
6.7
Q 15000 L/min 1.0 m 3 /s/ 60000 L/min = 0.250 m 3 /s
6.8
Q 259 gal/min 3.785 L/min/ 1.0 gal/min = 980 L /min
6.9
Q 3720 gal/min 3.785 L/min/1.0 gal/min = 1.41 104 L /min
6.10
Q 23.5 cm3 /s m3 / 100 cm = 2.35 10 5 m 3 /s
6.11
Q 0.296 cm3 /s 1 m/ 100 cm = 2.96 107 m 3 /s
6.12
Q 0.105 m3 /s 60000 L/min/1.0 m3 /s = 6300 L /min
6.13
Q 3.58 103 m3 /s 60000 L/min/1.0 m3 /s = 215 L /min
6.14
Q 5.26 106 m3 /s 60000 L/min/1.0 m3 /s = 0.316 L /min
6.15
Q 459 gal/min 1.0 ft 3 /s/ 449 gal/min = 1.02 ft /s
6.16
Q 15 gal/min1.0 ft 3 /s/449 gal/min = 3.34102 ft 3 /s
6.17
Q 6500 gal/min 1.0 ft 3 /s/449 gal/min = 14.5 ft 3 /s
6.18
Q 2.50 gal/min 1.0 ft 2 /s/449 gal/min = 5.57 103 ft 3 /s
6.19
Q 1.25 ft 3 /s 449 gal/min/1.0 ft 3 /s = 561 gal /min
6.20
Q 0.06 ft 3 /s 449 gal/min/1.0 ft 3 /s = 26.9 gal /min
68
3
3
Chapter 6
6.21
Q 7.50 ft 3 449 gal/min /1.0 ft 3 /s 3368 gal /mins
6.22
Q 0.008 ft 3 /s 449 gal/ min/1.0 ft 3 /s 3.59 gal /min
6.23
Q 500 gal/min 1.0 ft 3 /s / 449 gal/min 1.11 ft 3 /s Q 2500/449 5.57 ft 3 /s Q 500 gal/min 6.309 105 m3 /s/1.0 gal/min 3.15 ×102 m 3 /s Q 2500(6.309 105 ) 0.158 m 3 /s
6.24
Q 3.0 gal/min 1.0 ft 3 /s/449 gal/min 6.68×103 ft 3 /s Q 30.0/449 6.68×102 ft 3 /s Q 3.0 gal/min 6.309 105 m3 /s/1.0 gal/min 1.89×104 m 3 /s Q 30(6.309 105 ) 1.89×103 m 3 /s
6.25
745 gal 1h 1.0 ft 3 /s Q 2.77 ×102 ft 3 /s h 60 min 449 gal/min
6.26
Q
0.85 gal 1h 1.0 ft 3 /s 3.16×105 ft 3 /s h 60 min 449 gal/min
6.27
Q
11.4 gal 1h 1.0 ft 3 /s 1.76×105 ft 3 /s 24 h 60 min 449 gal/min
6.28
Q
19.5 mL 1.0 L 1.0 m3 /s 3 3.25×107 m 3 /s min 10 mL 60000 L/min
Fluid flow rates
6.29
W γQ (9.81 kN/m3 )(0.075 m3 /s) 0.736 kN/s(103 N/kN) 736 N /s M ρQ (1000kg/m3 )(0.075 m3 /s) 75.0 kg /s
6.30
W γQ (0.90)(9.81 kN/m3 )(2.35 103m3 /s) 2.7 102 kN/s 20.7 N /s M ρQ (0.90)(1000 kg/m3 )(2.35 103 m3 /s) 2.115 kgs
6.31
Q
W 28.5 N m3 1.0 kN 1.0 h 3 7.47 × 107 m 3 /s γ h 1.08(9.81 kN) 10 N 3600s
M ρQ (1.08)(1000 kg/m 3 )(7.47×10 7 m 3 /s) 8.07 × 104 kg /s
6.32
W 28.5 N m3 1h Q 6.33 × 104 m 3 /s γ h 12.50 N 3600 s
6.33
M ρQ
1.20 kg 840 ft 3 1.0 slug 1 min 0.0283m3 m3 min 14.59 kg 60 s ft 3
3.26×102 slug /s M ρQ γQ /g W /g 32.2 ft 3.26 102 slug 1 lb s2 /ft 3600 s W gM 3779 lb /hr s3 s slug hr Flow of Fluids
69
6.34
W γQ (0.075 lb/ft 3 )(61000 ft 3 /min) 4575 lb /min M ρQ
6.35 6.36
Q
γQ W 4575 lb/min 142 lb s 2 /ft 142 slugs /min g g 32.2ft/s 2 min
W 1200 lb ft 3 1 hr 5.38 ft 3 /s γ hr 0.062 lb 3600 s
62.4 lb 1.65 gal 1.0 ft 3 w 13.76 lb/min 3 ft min 7.48 gal t w 7425 lb min 1 hr t 8.99 hr W 13.76 lb 60 min W γQ
Continuity equation
6.37
Q Aυ : A =
Q 75.0 ft 3 /s πD 2 7.50 ft 2 υ 10.0 ft/s 4
D 4A/π 4(7.50)/π 3.09ft 2
2
6.38
D A 1.65 ft 12 A1υ1 = A2υ2 ; υ2 υ1 1 υ1 1 26.4ft /s A2 s 3 D2
6.39
Q 2000 L/ min × υ1
1.0 m 3 /s 0.0333 m 3 /s 60000 L/min
Q 0.0333m 3 / s 0.472 m /s A1 π (.30 m) 2 / 4
Q 0.0333m 3 /s υ2 1.89 m /s A2 π (.15 m) 2 /4 2
2
6.40
D A 150 A1υ1 A2υ2 ; υ2 υ1 1 υ1 1 1.20 m/s 0.300m /s 300 A2 D2
6.41
Q1 A1υ1 A2υ2 A3υ3 Q2 Q3 Q2 A2υ2 1.735 103 m 2 12.0 m/ s 0.02082 m3 / s Q3 Q1 Q2 0.072 0.02082 0.05118 m3 / s υ3
6.42
70
Q3 0.05118 m3 / s 7.882 m / s A3 6.793 103 m2
Amin
Q 1ft 3 / s 1 10 gal/ min 0.02227 ft 2 : 2 - in Sch. 40 pipe υ 449 gal/ min 1.0 ft/ s
Chapter 6
Flow of Fluids
71
Flow of Fluids
72
Flow of Fluids
73
6.62.
Pt A at gage; Pt B outside nozzle:
pA υ2 p υ2 Z A A B zB B ; p B 0 γ γ 2g 2g
υA2 υB 2 p 620 kN z B z A A 3.65 m 2 59.55 m 2g γ m 9.81kN / m3 A A 4.347 103 m 2 A B 0.962 103 m 2 υB υA ( AA / AB ) υA
υB 2 20.419 υA2
4.347 103 m 2 4.5187υA 0.962 103 m 2
υA 2 υB 2 υA 2 20.419υA 2 19.419 19.419 υA 2 2 g ( 53.94 m) 19.419 υA 2 2 g (53.94 m) 2 g (59.55 m) 2(9.81m/ s 2 )(59.55 m) 7.76 m/ s 19.419 19.419 Q A A υA 4.387 103 m 2 7.76 m/ s 0.0340 m3 / s 3.40×10-2 m 3 / s UA
6.63
6.64
pA υ2 p υ2 z A A B z B B ; p B 0, z A z B γ 2g γ 2g 2 2 2 2 2 2 2 υ υA 60.6 lb (75 42.19 ) ft / s 1ft pA γ B ft 3 144 in 2 25.1 psig 2(32.2 ft/ s 2 ) 2g 2 2 D A .75 υB 75 ft/ s; υA υB B 75 B 75 42.19 ft/ s 1.0 AA DA Pt . A before nozzle; Pt . B outside nozzle :
Q 10 gal/ min
1ft 3 / s 0.0223ft 3 Q 0.0223 ft 3 / s 3.71ft ; υA 449 gal/ min s AA 0.0060 ft 2 s
Q 0.0223 0.955ft p A υ A 2 pB υB 2 υB ; ; z A zB zA zB AB 0.02333 s γK 2g γK 2g 2 A 2 50 lb (0.9552 3.712 ) ft 1ft 2 p A pB γ K B 0.0694 psi 3 ft 2(32.2 ft/ s 2 ) 144 in 2 2g 6.65
Pt. 1 at water surface; Pt. 2 outside nozzle.
p1 υ2 p υ2 z1 1 2 z2 2 ; p1 0, υ1 0, p2 0 γ 2g γ 2g υ 2 2 g ( z1 z2 ) 2(9.81m/ s 2 )(6.0 m) 10.85 m/ s
Q A 2 2
(0.050 m) 2
10.85 m/ s 2.13×10-2 m 3 / s
4 Q 0.0213 m3 / s A2 1.2222 m / s 2 A 1.222 m / s; 0.0761 m AA 1.744 102 2g 2(9.81 m / s 2 )
p1 2 p 2 z1 1 A z A A ; p1 0, 1 0 γ 2g γ 2g 2 9.81 KN p A γ w (z1 z A ) A 6.0 m 0.0761 m 58.1kPa 2g m3
74
Chapter 6
Flow of Fluids
75
76
Chapter 6
Flow of Fluids
77
78
Chapter 6
Flow of Fluids
79
80
Chapter 6
Flow of Fluids
81
82
Chapter 6
Flow of Fluids
83
84
Chapter 6
Flow of Fluids
85
86
Chapter 6
2
6.107
2
P1 V1 P V Z1 2 2 Z 2 γ 2g γ 2g 2
V2 m V2 Z1 2g 3 m 2 9.81 2 2g s m V2 7.67 s π (0.020 m) 2 m m3 Q AV 7.67 2.41 10 3 2.41 L S 4 s s
Z1
Flow of Fluids
87
6.108 Q 6
A V A V .... A V 1
1
2
2
Q 6 A V 6 Jets
Q AV A
6
6
(0.012m) 2 4
12
m m3 6 Jets 8.14 10 3 s s
Q π D2 Q D V 4 V
4Q πV
m3 4 8.14 10 -3 s D 64 mm m π 2.5 s 3 16 oz 1 gal 1 ft 3 3 ft Q 2.79 10 6.109 6 s 128 oz 7.48 gal s 3 ft 2.79 10 3 Q ft s Q AV V 0.908 1 ft 2 A s ) π (0.75 in 12 in 4 2 2 2 V P1 V1 P V Z1 2 2 Z 2 P1 2 Z 2 γ 2g γ 2g 2g 2 ft 0.908 1ft # # # s P1 52 in 62.4 3 1.08 293 2 2.03 2 ft 12in ft ft in 2 32.2 2 s 2 2 2 P1 V1 P V V 6.110 Z1 2 2 Z 2 Z 2 1 V1 Z 2 2g γ 2g γ 2g 2g
m m V1 7m 2 9.81 2 11.7 s s 2 π (0.005m) m 1000 L L Q AV 11.7 0.23 3 4 s s 1m V 3L Time 13 s L Q 0.23 s
88
Chapter 6
6.111
L 13 m 3 1 min 12 Q min 1000 L 60 s m Q AV V 2.55 2 A s π 0.010 m 4
π 0.010 m 2 m 2.55 4 s A1 V1 m A1 V1 A 2 V2 V2 20.82 2 A2 s π 0.0035 m 4 2 2 V1 2 V2 2 P1 P1 V1 P2 V2 Z1 Z 2 P2 γ γ 2g γ 2g 2g γ 2 2 2.55 m 20.82 m N s s 180,000 Pa P2 9810 3 33.5 kPa m N m 2 9.81 2 9810 3 s m
2
2
2
P1 V1 P V V Z1 2 2 Z 2 Z 2 1 50ft. 6.112 γ 2g γ 2g 2g ft ft ft V1 Z1 2 32.2 2 50ft 2 32.2 2 56.7 s s s 2
D ft 2 in ft V1 V2 2 56.7 9.07 s 5 in s D1 2 2 V 2 V1 2 P1 V1 P V γ Z1 2 2 Z 2 P1 2 γ 2g γ 2g 2g 2 2 56.7 ft 9.07 ft # # # s s P1 62.4 3 3,035 2 21.1 2 ft ft in in 2 32.2 2 s 3 gal 1 ft ft 3 1.34 6.113 Q CM 10 min 7.48 gal min 2
1 ft 3 Q S Q CM 0.079 17 min 16 ft 3 Q M Q CM 1.261 17 min
Flow of Fluids
89
D
ft min 0.059 ft 12 in 0.71in ft 60 s 1 ft π8 s 1 min 4 1.34
4Q D CM πV
DS 0.174in
D M 0.694in gal 1 ft 3 1000 min 7.48 gal Q ft 6.114 Q A V V 1532 2 2 2 A π 4 in min 1 ft 2 2 4 12 in 2
2
2
P1 V1 P V V Z1 2 2 Z 2 Z 2 1 γ 2g γ 2g 2g 2
ft 1 min 1532 min 60 s Z2 10.1 ft ft 2 32.2 2 s 2 2 2 P1 V1 P2 V2 V2 Z1 Z 2 Z1 6.115 γ 2g γ 2g 2g 2
Z1
V2 ft ft V2 Z1 2g 12 ft 2 32.2 2 27.8 2g s s 2
1 ft π 0.5in ft ft 3 12 in Q AV 27.8 0.038 4 s s As the water level in the pool decreases, so will the flow rate of the water through the hose due to a loss of elevation head. gal 1 min 231 in 3 2 1 gal 1 ft Q min 60 s ft 6.116 Q A V V 212 2 A 12 in s π 0.062in 4
90
Chapter 6
CHAPTER SEVEN GENERAL ENERGY EQUATION
General Energy Equation
91
92
Chapter 7
General Energy Equation
93
94
Chapter 7
General Energy Equation
95
96
Chapter 7
General Energy Equation
97
98
Chapter 7
General Energy Equation
99
100
Chapter 7
General Energy Equation
101
102
Chapter 7
7.46
7.47
2
2
2
2
P1 V1 P V Z1 h A h L 2 2 Z 2 h A Z 2 h L γ 2g γ 2g h A 2.5 m 1.8 m 4.3 m Nm 1 s 0.65 125 W 1W P m3 P hA γ Q Q 0.0019 N hA γ s 4.3 m 9810 3 m m 3 1000 L 60 s L 0.0019 114 3 s 1 min min 1m
2
P1 V1 P V V Z1 h A h L 2 2 Z 2 h A 2 γ 2g γ 2g 2g ft # 550 s 31,570 ft # PA 70 HP 0.82 1 HP s
General Energy Equation
103
V P 2g PA h A γ Q 2 γ A V V 3 A 2g γA 2
ft # ft 2 32.2 2 P 2g s s 69.2 ft V3 A 3 2 γA s # π 0.35417ft 62.4 3 4 ft ft 3600 s 1 mile 69.2 47.2 mph s 1 hr 5,280 ft 31,570
2
7.48
A.
2
2
P1 V1 P V V Z1 h A h L 2 2 Z 2 Z 2 1 γ 2g γ 2g 2g m m VY Z 2 2 g 15m 2 9.81 2 17.2 s s VY m V 19.8 Sin 60 s
B.
m π 0.045 m m3 Q A V 19.8 0.0315 s 4 s
C.
P1 V1 P V V Z1 h A h L 2 2 Z 2 h A 2 γ 2g γ 2g 2g
2
2
2
2
2
m 19.8 s hA 20.0 m m 2 9.81 2 s
PA h A γ Q 20.0 m 9810 D. P
7.49
104
N m3 0.0315 6.2 KW s m3
PA 6.2 KW 7.5 KW ε 0.82
gal 1 hr 1 ft 3 1600 hr 3600 s 7.48 gal Q ft Q AV V 9.90 A 0.006 ft 2 s 2 2 2 P1 V1 P V V Z1 h A h L 2 2 Z 2 h A 2 Z 2 h L γ 2g γ 2g 2g
Chapter 7
2
ft 9.90 s hA 9 ft 3.8 ft 14.3 ft ft 2 32.2 2 s # gal 1 hr 1 ft 3 ft # PA h A γ Q 14.3 ft 62.4 3 1600 53.0 hr 3600 s 7.48 gal s ft P 800 W h P ET T 11.1 hrs E ft # 1.356 W 53 ft # s 1 s 2
7.50
2
V2 Z1 h L 2g Q AV
3 m 2.8 m 2 9.81 m2 1.98 m
s
π 0.020 m m m 2.00 6.22 10 4 4 s s
2
7.51
2
P1 V1 P V V Z1 h A h L 2 2 Z 2 2 Z1 h L γ 2g γ 2g 2g
2
s
3
2
P1 V1 P V Z1 h A h L 2 2 Z 2 Z1 h R 2.5 m γ 2g γ 2g N L 1 min 1 m 3 PA h R γ Q 2.5 m 9810 3 150 61.3 W min 60 s 1000 L m P 61.3 W Pε 36.8 W ε 0.6 2
7.52
m 7 2 2 2 P1 V1 P2 V2 V2 s Z1 h R h L Z2 h R 2.50 m m γ 2g γ 2g 2g 2 9.81 2 s 2 N m π 0.008 m N-m P h R γ Q 2.50 m 9810 3 7 40 344 @ 100 % Eff . s 4 s m 745.7W N-m 0.5HP 373 2 s 344W 100 92% , Which gives 8% allowable inefficiency 373W
General Energy Equation
105
2
7.53
106
2
P1 V1 P V Z1 h A h R h L 2 2 Z 2 γ 2g γ 2g # 1200 2 P1 P2 in hR 37,129 in γ # 13 ft 3 0.895 62.4 3 3 3 ft 12 in 80 HP 1 ft # PR h R γ Q 37,129 in 62.4 3 Q 0.87 12 in ft ft-# 550 s 80 HP 1 HP 0.87 ft 3 Q 0.293 131 gal min 1 ft # s 37,129 in 62.4 3 0.895 12 in ft
Chapter 7
CHAPTER EIGHT REYNOLDS NUMBER, LAMINAR FLOW, TURBULENT FLOW, AND ENERGY LOSSES DUE TO FRICTION DUE TO FRICTION
REYNOLDS NUMBER, LAMINAR FLOW, TURBULENT FLOW, AND ENERGY LOSSES DUE TO FRICTION
107
108
Chapter 8
8.11
8.12
NR
υ
Q 16.5 ft 3 /s 8.66 ft/s A 1.905 ft 2
υ
Q 0.40 gal ft 3 1 hr 1 0.732 ft/s A hr 7.48 gal 3600 s 2.029 105 ft 2
NR
8.13
υD (8.66)(1.558) 9.64×105 v 1.40 105
NR
υDρ
υD
(0.732)(0.00508)(0.88)(1.94) 1.02 Laminar 6.2 103
(0.732)(0.00508)(0.88)(1.94) 33.4 Laminar 1.90 104
Note : sg of oil may be slightly lower at 160 F. 8.14
NR
:υ N R D
υDρ
(4000)(4.01105 ) 0.424 ft / s (0.2423)(1.56)
Q Aυ 4.609 102 ft 2 0.424 ft/s 1.96 × 10-2 ft 3 / s 8.15
υ
Q 45 L/ min 1 m3 /s 2.667 m s A 2.433 104 m 2 60000 L/ min υDρ
N R
(2.667)(0.0176)(0.89)(1000) 5.22×103 Turbulent 8 103
Note : from App.D. 8.16
NR
8.17
υ
(2.667)(0.0176)(890) 13.9 very low Laminar 3.0
Q 45 L/min 1 m3 / s 0.432 m s A 1.735 103 m 2 60000 L/min
NR
8.18
υDρ
υDρ
(0.432)(0.0470)(890) 2260 Critical Zone 8 103
Q 1.65 gal/min 1 ft 2 /s υ 14.65 ft/s A 2.509 10 4 ft 2 449 gal/min NR
υD (14.65)(0.01788) 1105 Laminar v 2.37 104
REYNOLDS NUMBER, LAMINAR FLOW, TURBULENT FLOW, AND ENERGY LOSSES DUE TO FRICTION
109
8.19
A
Q 500gal/min 1 ft 3 /s 0.1114 ft 2 5 - in Sch .40 pipe υ 10.0 ft/s 449 gal/min A 0.1390 ft 2 , D 0.4026 ft
Q (500/499)ft 3 /s 8.01 ft/s A 0.1390 ft 2
Actual υ NR 8.20
υD
(8.01)(0.4026)(2.13) 2.12×104 3.38 104
N R v 2000(1.21 105 ft 2 / s) 0.3897 ft/ s 0.0621 ft D For N R 4000, υ2 2(0.3897 ft/ s ) 0.7794 ft/ s
υ1
Q1 Aυ1 (3.027 103 ft 2 )(0.3897 ft/ s) 449 gal/ min 1 ft 3 / s Q1 = 0.0530 gal / min Lower Limit Q2 = 2Q1 = 1.060 gal / min Upper Limit 1.180 103 ft 3 / s
8.21
(See Prob. 8.20) N R v 2000(3.84 106 ) 0.1237 ft/s; υ2 2υ1 0.2473ft/s 0.0621 D 449gal/min 0.1681 gal/min Q1 Aυ1 (3.027 103 ft 2 )(0.1237ft/s) 1ft 3 /s Q2 2Q1 0.3362 gal /min υ1
8.22
υ = 1.30 cs
1.076 105 ft 2 / s 1.40 10 5 ft 2 /s 1cs
Q 45 gal/min υ
0.1002 ft 2 / s) Q 14.65ft/ s A 6.842 103 ft 2
NR 8.23
1ft 3 / s 0.1002ft 3 /s 449 gal/min
υD (14.65)(0.0933) 9.78×104 5 v 1.40 10
v 17.0 cs
106 m 2 /s 1.7 105 m 2 /s 1 cs
Q 215 L/min 1 m3 / s 7.142 m/s A 5.017 104 m 2 60000L/min υD (7.142)(0.0253) NR 1.06 104 v 1.70 105
υ
110
Chapter 8
8.24
v 1.20 cs
υ
Q 200 L/ min 1m3 / s 8.69 m/ s A 3.835 104 m 2 60000 L/ min
NR
8.25
106 m 2 / s 1.20 106 m 2 / s 1cs
υD (8.69)(0.0221) 1.60×105 6 v 1.20 10
p1 υ2 p υ2 z1 1 hL 2 z2 2 : υ1 υ2 γo 2g γo 2g p1 p2 γ o [ z 2 z1 hL ]
NR
υDρ
(0.64)(0.0243)(0.86)(1000) 64 787(Laminar); f 0.0813 2 1.70 10 NR
L υ2 60 (0.64) 2 hL f 0.0813 4.19 m D 2g 0.0243 2(9.81) p1 p2 (0.86)(9.82 kN/ m3 )[60 m 4.19 m] 471 kN/ m 2 471 kPa 8.26
p1 υ12 p2 υ2 2 z1 hL z2 : υ1 υ2 ; z1 z2 ; p1 p2 γ w hL γw 2g γw 2g
Q 12.9 L/min 1m3 /s υ 1.724 m/s A 1.247 104 m 2 60000 L/min NR
υD (1.724)(0.0126) 5.67 104 (turbulent) 7 v 3.83 10
D /ε 0.0126/1.50 106 8400; Then f 0.0207
hL f
L υ2 45 (1.724)2 . (0.0207). 11.20 m D 2g 0.0126 2(9.81)
p1 p2 γ w hL 9.56 kN / m 3 11.20 m 107.1 kN / m 2 107.1 kPa 8.27
Let N R 2000; f 64 / N R 0.032; N R
υ
υDρ
N R (2000)(8.3 104 ) 2.85 ft / s D (0.3355)(0.895)(1.94)
hL f
L υ2 100 (2.85) 2 . ft = 1.20ft 1.20ft lb /lb (0.032). D 2g 0.3355 2(32.2)
REYNOLDS NUMBER, LAMINAR FLOW, TURBULENT FLOW, AND ENERGY LOSSES DUE TO FRICTION
111
8.28
pA υ 2 p υ2 zA A hL B zB B : υA υB γo 2g γo 2g pB pA [ zA zB hL ] υ
(800)(4 104 ) N R 0.717 ft / s D (0.2557)(0.90)(1.94)
64 5000 (0.717) 2 L υ2 12.5 ft hL f . . D 2 g 800 0.2557 2(32.2) 1ft 2 37.3psig pB 50 psig + (0.90)(62.4 lb/ ft )[ 20 ft 12.5ft] 144 in 2 3
8.29
p1 υ2 p υ2 L υ2 z1 1 hL 2 z2 2 : z1 z2 : υ1 υ2 : p1 p2 b hL b f D 2g γb 2g γb 2g υ
Q 20L / min 1m3 / s 0.719 m / s A 4.636 104 m 2 60000L / min
γ 8.62 kN s2 103 N 1kg m / s 2 = 879 kg / m3 g m3 9.81 m kN N
NR
υD
(0.719)(0.0243)(879) 3.89 104 3.95 104
D /ε 0.0243 / 4.6 105 528; Then f 0.027 p1 p2 = 8.62 kN / m3 × 0.027× 8.30
100 (0.719) 2 × m = 25.2 kN/m 2 25.2kPa 0.0243 2(9.81)
From Prob.8.31, p1 p2 = γ w h L ; h L = p1 p2 /γ w
hL =
(1035 - 669)kN / m 2 L υ2 = 37.3 m = f 9.81kN / m3 D 2g
f
hL D 2 g (37.3)(0.03388)(2)(9.81) 0.048 Lυ2 (30)(4.16)2
υ=
Q 225L / min 1 m3 / s = × = 4.16m / s A 9.017×10-4 m 2 60000L / min
NR =
υD (4.16)(0.03388) D = = 1.08×105 : Then = 55 for f = 0.048 -6 v 1.30×10 ε
D / 55 0.036 / 55 6.16×10-4 m
112
Chapter 8
8.31
Pt.1 at tank surface. p1 0, υ1 0
p1 υ2 p υ2 z1 1 hL 2 z2 2 γw 2g w 2g 2 υ h z1 z2 hL 2 2g
Pt. 2 in outlet stream. p2 0 D 0.5054 ft A 0.2006 ft 2
Q 2.50 ft 3 / s υ= = = 12.46 ft / s A 0.2006 ft 2
8.32
NR
υD (12.46)(0.5054) D 0.5054 6.88 105 : 3369 : f 0.0165 6 v 9.15 10 1.5 10 4
h f
L υ2 υ2 550 (12.46) 2 (12.46) 2 0.0165 45.7 ft D 2g 2g 0.5054 2(32.2) 2(32.2)
From Prob 8.31, p1 p2 = γ w hL = γ w f υ=
L υ2 D 2g
Q 15.0 ft 3 / s = = 8.49 ft/s A π (1.50 ft) 2 / 4
NR
υD (8.49)(1.50) D 1.50 9.09 105 ; 3750; f 0.0158 5 v 1.40 10 ε 4 104
L υ2 62.4 lb 5280 ft (8.49) 2 ft 2 /s 2 1 ft 2 p1 p2 = γ w f = × 0.0158× × × = 30.5 psi D 2g ft 3 1.50 ft 2(32.2 ft /s 2 ) 144 in 2 8.33
Q = 1500 gal/min × υA = a)
1 ft 3 /s = 3.34 ft 3 /s 449 gal/min
Q 3.34 ft 3 /s υ2 (6.097) 2 = = 6.097 ft / s; = = 0.577 ft AA 0.5479 ft 2 2g 2(32.2)
p1 υ2 p υ2 + z1 + 1 h Ls = A + z A + A Pt.1 at tank surface. p1 = 0, υ1 = 0 γw 2g γw 2g z1 zA h
NR
υA D (6.097)(0.835) D 0.835 4.21 105 : 5567 : f 0.0155 5 v 1.21 10 ε 1.5 104
hL f h
pA υ2 A hL γw 2g
L υ2 45 (0.0155) 0.577 ft = 0.482 ft D 2g 0.835
5.0 lb ft 3 144 in 2 0.577 0.482 12.60 ft in 2 62.4 lb ft 2
REYNOLDS NUMBER, LAMINAR FLOW, TURBULENT FLOW, AND ENERGY LOSSES DUE TO FRICTION
113
pA υ2 p υ2 z A A hLd hA B z B B γ 2g γ 2g
b)
Q 3.34 ft 3 /s υB 9.62 ft/s AB 0.3472 ft 2 hA
pB p A γw
(85 5) lb ft 3 (144 in 2 ) υB 2 υA 2 ( zB zA ) hLd 25 2g in 2 (62.4 lb) ft 2
(9.622 6.097 2 ) ft 2 /s 2 89.9 300.4 ft 2(32.2 ft/s 2 )
υ D (9.62)(0.6651) N RB B B v 1.21 105
D /ε
0.6651 4434 : f 0.016 1.5 104
hLd f
L υ2 2600 (9.62) 2 (0.016) 89.9 ft D 2g 0.6651 2(32.2)
PA hA γ wQ 300.4 ft 8.34
5.29 105
62.4 lb 3.34 ft 3 hp 113.8 hp 3 ft s 550 ft lb/s
υ2 p2 υ 2 Pt.1 at well surface ( p 1 = 0 psig). z1 1 hA hL z2 2 γ 2g γ 2 g Pt. 2 at tank surface. p2 υ1 υ2 0 ( z2 z1 ) hL hA γw p1
Q
745 gal 1h 1 ft 3 /s = 0.0277 ft 3 /s h 60 min 449 gal/min
υ
Q 0.0277 ft 3 /s = 4.61 ft/s in pipe A 0.0060 ft 2
NR
υD (4.61)(0.0874) D 0.0874 3.33 104 : 583 : f 0.0275 5 v 1.2110 1.5 104
hL f
L υ2 140 (4.61) 2 (0.0275) ft = 14.54 ft D 2g 0.0874 2(32.2)
(40 lb)ft 3 (144 in 2 ) +120 + 14.54 = 226.8 ft hA = in 2 (62.4 lb)ft 2 p A = hA γQ = (226.8 ft)(62.4 lb/ft 3 )(0.0277 ft 3 / s) / 550 ft lb/s/hp = 0.713 hp
114
Chapter 8
8.35
p1 p υ2 υ2 z1 1 hL `2 z2 2 γw 2g γw 2g
Pt .1 at tank surface. υ1 0 Pt .2 in outlet stream. p2 0
υ2 2 hL p1 γ w (z 2 z1) 2g
υ2
Q 75 gal/ min 1ft 2 / s υ 2 (11.8) 2 11.8 ft/ s : 2.167 ft A 0.01414 ft 2 449 gal/ min 2 g 2(32.2)
NR
υD (11.8)(0.1342) D 0.1342 1.31 105 : 895 : f 0.0225 5 v 1.21 10 1.5 104
L υ2 300 (0.0225) (2.167 ft) 109.0 ft D 2g 0.1342
hL f
62.4 lb 1ft 2 [ 3 ft 2.167 ft 109.0 ft] p1 46.9 psi ft 3 144 in 2 8.36
P1 p υ2 2 z1 1 hA hL 2 z2 2 γ 2g γ 2g
p2 υ2 ( z2 z1 ) 2 hL γ 2g
a) hA υ
Pt .1 at tank surface. p1 0; υ1 0 Pt .2 in house at nozzle. Pt .3 in house at pump outlet . υ3 υ2
Q 95 L/ min 1m 3 / s υ 2 (3.23) 2 3.23 m/ s : 0.530 m A π (0.025 m) 2 / 4 60000 L/ min 2 g 2(9.81)
NR
υDρ
hL f hA
(3.23)(0.025)(1100) 4.44 104 : f 0.021(smooth) 2.0 103
L υ2 85 (0.530) m 37.86 m (0.021) D 2g 0.025
140 kN/ m 2 7.3m 0.530 37.86 m 58.67 m (1.10)(9.81kN/ m3 )
p A hA γQ (58.67 m)(1.10)(9.81kN/m3 )(95 / 60000)m3 /s 1.00 kN m/s 1.00 kW
p3 υ32 p2 υ2 2 b) z3 hL z2 : p3 p2 [( z2 z3 ) hL ]γ γ 2g γ 2g p3 140 kPa (1.10)(9.81kN/ m3 )[8.5 m 37.86 m] 640 kPa
REYNOLDS NUMBER, LAMINAR FLOW, TURBULENT FLOW, AND ENERGY LOSSES DUE TO FRICTION
115
8.37
Q 1200 L/ min 1m3 / s/ 60000 L/ min 0.02 m3 / s
υ
Q 0.02 m3 / s 1.189 m/ s A 1.682 102 m 2
a) p2 p3 γ o hL γ o f NR
υD
L υ2 D 2g
1.189(0.1463)(930) 1079 Laminar 0.15 2
64 3200 (1.189) m 853 kPa p2 p3 γ o hL (0.93)(9.81 kN/ m3 ) 1079 0.1463 2(9.81) b)
p p1 υ 12 υ 32 z1 hA hL 3 z3 : p1 p3 , υ1 υ3 , z1 z3 γ 2g γ 2g hA hL
853kN/ m 2 93.5 m (0.93)(9.81kN/ m 3 )
p A hA γQ 93.5 m (0.93)(9.81 kN/ m3 )(0.02 m3 / s) 17.1 kN m/ s 17.1kW 8.38
At 100o C,μ 7.9 10 3 Pas a) With pumping stations 3.2 km apart :
NR
υD
(1.189)(0.1463)(930) 2.05 104 turbulent 3 7.9 10
D /ε 0.1436 m/ 4.6 105 m 3180; f 0.026
L υ2 (3200) (1.189) 2 hA hL f m 40.98 m (0.026) D 2g 0.1463 2(9.81) p A hA γQ (40.98)(0.93)(9.81)(0.02) 7.48kW
L υ2 b) Let h L 93.5 m (from Prob. 9.13) : hL f D 2g L
116
hL D(2 g ) (93.5 m)(0.1463 m)(2)(9.81 m/ s 2 ) 8682 m 8.68 km fυ 2 (0.026)(1.189 m/ s) 2
Chapter 8
8.39
p1 υ2 p 2 z1 1 hL B z B B γw 2g γw 2g υ 2 pB γ w ( z1 z B ) B hL 2g
Pt .1 at tank surface p1 0, υ1 0 Q
900 L/ min 1m3 / s 0.015 m3 / s 60000 L/ min
υ
Q 0.015 m3 / s 2.208 m/ s A 6.793 103 m 2
υD (2.208)(0.093) D 0.093 1.58 105 : 62000 : f 0.0162 6 v 1.30 10 1.5 106 L υ2 80.5 (2.208) 2 hL f (0.0162) 3.485 m D 2g 0.093 2(9.81) NR
8.40
(2.208) 2 pB 9.81 kN/ m 3 12 3.485 m 81.1kPa 2(9.81) 1 ft 2 / s Q 0.1114 ft 3 / s Q 50 gal/ min 0.1114 ft 3 / s : υ 18.56 ft/ s 449 gal/ min A 0.0060 ft 2 p p1 υ 12 υ 22 z1 hA hL 2. z2 : p1 0, υ1 υ2 0 γw 2g γw 2g p hA 2 ( z2 z1 ) hL γw υD (18.56)(0.0874) D 0.0874 NR 1.34 105 : 583 : f 0.0243 5 v 1.21 10 ε 1.5 104 L υ2 225 (18.56)2 hL f ft 335ft (0.0243) D 2g 0.0874 2(32.2) hA
(40 lb) ft 3 144in 2 220 ft 335ft 647 ft in 2 62.4 lb ft 2
p A hA wQ (647 ft)(62.4 lb/ft 3 )(0.1114ft 3 /s ) / 550 8.18 hp (b) Increase the pipe size to 1 1/2 - in Schedule 40. Results : υ 7.88ft/ s; N R 8.74 104 ; D / 895; f 0.0232;Then, hL 37.5 ft; hA 349.8ft; Power = PA = 4.42 hp. 8.41
p1 p υ 12 υ 22 z1 hL 2 z2 : p1 p2 0 hL γo 2g γo 2g υ=
Q 60 gal/ min 1ft 3 / s 9.45 ft/s A 0.01414 ft 2 449 gal/ min
NR
υD
(9.45)(0.1342)(0.94)(1.94) 272 Laminar 8.5 103
L υ2 64 40 (9.45) 2 hL f ft 97.23ft D 2 g 272 0.1342 2(32.2) p1 p2 γ o hL (0.94)
(62.4 lb) 1ft 2 (97.23 ft) 39.6 psi ft 3 144in 2
REYNOLDS NUMBER, LAMINAR FLOW, TURBULENT FLOW, AND ENERGY LOSSES DUE TO FRICTION
117
8.42
pA υ2 A pB. υ2 B zA hA hL zB γ 2g γ 2g 2 2 p pA υ υA hA B zB zA B hL γ 2g Q 0.50 ft 3 / s Q 0.50 υA 7.28ft/ s : υB 15.03 ft/s 2 AA 0.06868 ft AB 0.03326 N RB
υB D
(15.03)(0.2058)(1.026)(1.94) 1.54 105 5 4.0 10
D 0.2058 1372 : f 0.020 1.5 104 L υ2 80 (15.03) 2 hL f ft 27.28ft (0.020) D 2g 0.2058 2(32.2) hA
25.0 (3.50) lb ft 3 144in 2 80 ft (15.03)2 (7.28)2 ft 2 / s2 27.28 ft 174.1ft in 2 (1.026)(62.4 lb) ft 2
2(32.2 ft/ s 2 )
p A hA γQ (174.1 ft)(1.026)(62.4 lb/ ft 3 )(0.50 ft 3 / s ) / 550 10.13hp 8.43
υDρ QDρ QDρ 4Qρ 4Qρ : Dmin 2 πD η Aη πN R η Dη 4 4(0.90 ft 3 / s)(1.24)(1.94 lb s 2 / ft 4 ) 0.184 ft Dmin (300)(5.0 102 lb s/ ft 2 ) NR
2 1/2 in Type K Copper Tube : D 0.2029 ft : A 0.03234 ft 2
υ=
Q 0.90 ft 3 /s 27.8 ft/s A 0.03234 ft 2
NR
υDρ (27.8)(0.2029)(1.24)(1.94) 272 η 5.0 102
p1 p2 γ g hL γ g f
8.44
L υ2 64 55 (27.8) 2 lb 1ft 2 (1.24)(62.4) D 2g 272 0.2029 2(32.2) ft 2 144in 2
411 psi p p1 υ 12 υ 22 z1 hL 2. z2 γw 2g γw 2g υ 12 hL p1 γ w ( z2 z1 ) 2g
Pt .1 at pump outlet in pipe. Pt . 2 at reservoir surface. p2 0, υ2 0 Q 4.00ft 3 /s υ 11.52ft/s A 0.3472 ft 2
υD (11.52)(0.6651) D 0.6651 6.33 105 : 4434 : f 0.0155 5 v 1.21 10 1.5 104 L υ2 2500 (11.52) 2 hL f . ft 120.1ft (0.0155) D 2g 0.6651 2(32.2)
NR
p1
118
ft 1ft 2 62.4 lb (11.52) 2 210 120.1 144 in 2 142.1psi ft 3 2(32.2) Chapter 8
8.45
Pt . 0 at pump outlet inlet .
p0 p1. υ 02 υ 12 z0 hA z1 γw 2g γw 2g
hA
Pt .1 at pump outlet .
p1 p0 [142.1 (2.36)]lb γw (62.4 lb/ft 3 )(in 2 )(1 ft 2 /144in 2 )
Assume z0 z1 , υ0 υ1
hA 335.5ft lb/lb
333.5ft lb 62.4 lb 4.00 ft 3 1 hp . . . 151 hp p A hA γ wQ 3 lb ft s 550 ft lb/ s 8.46
pA υ 2 p υ B2 zA A hL B zB γg 2g γw 2g
pA pB γ g [( zB zA ) hL ]
Q 4.00 ft 3 /s 7.76ft/s A 0.5479 ft 2 Assume sg = 0.68 From App.D.
υ
υDρ (7.76)(0.8350)(1.32) 1.19 106 6 η 7.2. 10 D 0.8350 5567 : f 0.0145 s 1.5 104
NR
8.47
L υ2 3200 (7.76) 2 hL f 0.0145. 51.9 ft D 2g 0.8350 2(32.2) 42.4 lb ft 1 ft 2 [85 51.9] pA 40.0 Psig 80.3psig ft 3 144 in 2 p1 p υ 12 υ 22 Pt .1 at tank surface, p1 0, υ1 0 z1 hA hL 2 z2 γo 2g γo 2g Pt . 2 in outlet stream from 3 in pipe. p2 0 2 υ2 300 gal/min 1ft 3 /s hA ( z2 z1 ) hL Q 0.668ft 3 /s 2g 449 gal/min Q 0.668ft 3 / s oil-App.C υ4 7.56 ft/ s A4 0.08840 ft 2 Q 0.668 ft 3 /s 13.02 ft/s υ2 A3 0.05132 ft 2 L υ2 L υ2 hL hL3 hL4 f 3 3 3 f 4 4 4 D3 2 g D4 2 g υ3 D3 (13.02)(0.2557) 64 N R3 1548(Laminar) : f 3 0.0413 3 v NR 2.15 10
υ3
υ4 D4 (7.56)(0.3355) 64 1180(Laminar) : f 4 0.0543 3 2.15 10 v NR 75 (13.02) 2 25 (7.56) 2 hL 0.0413 0.0543 35.5ft 0.2557 2(32.2) 0.3355 2(32.2) (13.02) 2 hA 1.0 ft ft 35.5ft 39.1ft 2(32.2) (62.4 lb) (0.668ft 3 ) 1hp PA hA γ o Q (39.1 ft)(0.890) 2.64 hp 3 ft s 550 ft lb/ s N R4
REYNOLDS NUMBER, LAMINAR FLOW, TURBULENT FLOW, AND ENERGY LOSSES DUE TO FRICTION
119
8.48
p p1 υ 12 υ 22 z1 hL 2. z2 : υ1 υ2 γo 2g γo 2g p1 p2 γ o [( z2 z1 ) hL ] υDρ (3.65)(0.0176)(930) 64 1805 (Laminar) : f 0.0355 2 v 3.31 10 NR L υ2 17.5 (3.65)2 hL f (0.0355) 23.97 m D 2g 0.0176 2(9.81) p1 p2 9.12 kN/m3 [1.88 m 23.97 m] 201 kPa NR
8.49
p1 p2 γ g [( z2 z1 ) hL ](From 9.24)
Q
180 L/min 1m3 /s 0.003m3 /s 60000 L/min
υDρ (0.690)(0.0744)(1258) 0.003 Q 0.690 m/s υ η 0.960 A 4.347 103 υDρ (0.690)(0.0744)(1258) NR η 0.960 64 N R 67.3(Laminar) : f 0.951 NR L υ2 25.8 (0.690) 2 hL f (0.0951) 8.00 m D 2g 0.0744 2(9.81) NR
p1 p2 12.34 kN/m3 [0.68 m 8.00 m] 107 kPa Note : For problems 8.52 through 8.62 the objective is to compute the value of the friction factor , f , fromtheSwamee - Jain equation(8 7) from section 8.8,shown below : 0.25 f 2 1 5.74 0.9 log 3.7( D /ε) N R For each problem, the calculation of the Reynolds number and relative roughness
are shown followed by the result of the calculations for f . 8.50
Water at 75°C; v 3.83 107 m 2 /s
Q 12.9 L/min 1 m3 /s υ . 1.724 m/s A 60000 L/min 1.247 104 m 2 υD (1.724)(0.0126) 5.67 104 7 v 3.83 10 D /ε 0.0126 /1.5 106 8400; f 0.0207 NR
8.51
Benzene at 60 C : 0.88(1000) 880 kg/ m3 ; 3.95 104 Pas Q 20 L/ min 1 m3 / s 0.719 m/ s υ . A 60000 L/ min 4.636 104 m 2
(0.719)(0.0243)(880) 3.89 104 4 3.95 10 D / 0.0243 / 4.6 105 528; f 0.0273 NR
120
υDρ
Chapter 8
8.52
Water at 80 F : v 9.15 106 ft 2 / s D 0.512 ft; A 0.2056 ft 2
Q 2.50 ft 3 / s 12.16 ft/ s A 0.2056 ft 2 υD (12.16)(0.512) 0.512 NR 6.80 105 : D / 1280 6 v 9.15 10 4 104
υ
f 0.0191 8.53
Water at 50 F : v 1.40 105 ft 2 / s D 18in(1ft/ 12 in) 1.50 ft; A
πD 2 1.767 ft 2 4
Q 15.0 ft 3 / s 8.46 ft/ s A 1.767 ft 2 1.50 υD (8.49)(1.50) 9.09 105 : D / 3750 NR 5 1.40 10 4 104 v f 0.0155
υ=
8.54
Water at 60 F : v 1.21 105 ft 2 / s
1ft 3 / s Q 1500 gal/ min 6.097 ft/ s 0.5479 ft 2 449 gal/ min A
NR
D v
(6.097)(0.835) 0.835 4.21 105 : D/ 5567 5 1.21 10 1.5 104
f 0.0156 8.55
A D 2 / 4 (0.025) 2 / 4 4.909 104 m 2
Q 95 L/ min 1m3 / s υ 3.23m/ s A 4.909 ft 2 104 m 2 60000 L/ min NR
υD
(3.23)(0.025)(1.10)(1000) 4.44 104 : D / Smooth [LargeD/ ] 3 2.0 10
f 0.0213 8.56
Crude oil(sg 0.93) at100 C (0.93)(1000 kg/ m3 ) 930 kg/ m3 ; 7.8 103 Pas
υ
Q 1200 L/ min 1m3 / s 1.19 m/ s A 1.682 102 m 2 60000 L/ min
NR
D (1.19)(0.1463)(9.30) 2.07 104 3 7.8 10
D/
0.1463 3180; f 0.0264 4.6 105
REYNOLDS NUMBER, LAMINAR FLOW, TURBULENT FLOW, AND ENERGY LOSSES DUE TO FRICTION
121
8.57
Water at65C; v 4.39 107 m 2 / s D 0.0409m υD (10)(0.0409) NR 9.32 105 7 4.39 10 0.0409 D/ 889; f = 0.0206 4.6 105
8.58
Propyl alcohol at 25 C; kg / m3
1.90 103 Pas Q 0.026m3 / s 5.98 m / s A 4.347 103 m 2 υD (5.98)(0.0744)(802) NR 1.86 105 1.92 103 (0.0744) D/ 49600; f = 0.0159 1.5 106
υ=
8.59
Water at 70F; v = 1.05 105 ft 2 / s Q 3.0 ft 3 / s 3.82 ft/ s A 0.7854 ft 2 υD (3.82)(1.00) NR 3.64 105 1.05 105 1.00 D/ 2500; f = 0.0175 4.0 104
υ=
8.60
Heavy fuel oil at 77F;ρ = 1.76 slugs / ft 3
2.24 103 lb.s / ft 2 υ 12ft / s; D 0.05054 ft υD
(12.0)(0.5054)(1.76) 4.77 103 3 2.24 10 0.5054 3369; f 0.0388 D/ 1.5 104 NR
Hazen - Williams Formula 8.61
Q 1.5 ft 3 /s, L 550 ft, D 0.512 ft, A 0.2056 ft 2 R D / 4 0.128 ft, Ch 140 1.852
Q hL L 0.63 1.32 ACh R
1.852
1.50 hL 550 0.63 (1.32)(0.2056)(140)(0.128)
122
15.22ft
Chapter 8
8.62
1 m3 /s Q 1000 L/ min 0.0167m3 /s; L 45 m 60000 L/min 120mm OD 3.5 mm wall copper tube; D 113mm 0.113 m, A 1.003 102 m 2 R D /4 0.0283 m, Ch 130 1.852
Q hL L 0.63 0.85 ACh R
1.852
0.0167 45 0.63 2 0.85(1.003 10 )(130)(0.0283) hL 1.220m 8.63
Q 7.50ft 3 /s; L 5280 ft, D 18 in 1.50ft, A 1.767 ft 2 R D /4 0.375 ft; Ch 100 1.852
8.64
7.50 hL 5280 28.51 ft 0.63 (1.32)(1.767)(100)(0.375) 1 ft 3 /s Q 1500 gal/min 3.341ft 3 /s; L 1500 ft 449gal/min D 10.02 in 0.835ft; A 0.5479 ft 2 Ch 100; R D /4 0.2088 1.852
3.341 hL 1500 0.63 (1.32)(0.5479)(100)(0.2088) hL 31.38 ft 8.65
Q 900 L/min
1 m3 /s 0.015m3 /s; L 80 m 60000 L/min
D 112 mm 0.112 m; A 1.003 102 m2 R D /4 0.0283 m, Ch 130 1.852
0.015 hL 80 2 0.63 0.85(1.003 10 )(130)(0.0283) 8.66
1.78 m
Q 0.20 ft 3 /s; D 2.469 in 0.2058 ft; A 0.03326 ft 2 Ch 100; R D /4 0.0515 ft υ = Q /A = 6.01 ft/s (OK) 1.852
0.20 hL 80 0.63 (1.32)(0.03326)(100)(0.0515)
8.35 ft
REYNOLDS NUMBER, LAMINAR FLOW, TURBULENT FLOW, AND ENERGY LOSSES DUE TO FRICTION
123
8.67
Q 2.0 ft 3 /s; L 2500 ft a)
8 - in Schedule 40 steel pipe; D 0.6651 ft; A 0.3472 ft 2 R D /4 0.1663 ft; Ch 100 1.852
2.0 hL 2500 0.63 (1.32)(0.3472)(100)(0.1663)
61.4 ft
b) Cement lined 8-in ductile iron pipe D 8.42 in 0.702 ft; A 0.3867 ft 2 ; Ch 140 R D /4 0.1755 ft 1.852
2.0 hL 2500 0.63 (1.32)(0.3867)(140)(0.1755) 8.68
25.3 ft
Specify a new Schedule 40 steel pipe size. Use Ch 130 1 ft 3 /s Q 300 gal/min 0.668 ft 3 /s 449 gal/min s 10 ft/1200 ft 0.00833 ft/ft 2.31(0.668) D 0.54 (130)(0.00833)
0.380
0.495 ft
6-in Schedule 40 steel pipe; D = 0.5054 ft Actual hL for 6-in pipe D 0.5054 ft; R D /4 0.1264 ft A 0.2006 ft 2 1.852
Q hL L 0.63 1.32 ACh R
1.852
0.668 hL 1200 0.63 (1.32)(0.2006)(130)(0.1264) 8.69
9.05 ft
From 8.70 Q 0.668 ft 3 /s D 0.5054 ft 6.065 in; A 0.2006 ft 2 R D /4 0.1264 ft; Ch 100 1.852
0.668 hL 1200 0.63 1.32(0.2006)(100)(0.1264) hL 14.72 ft
124
Chapter 8
8.70
Q 100 gal/min 1 ft 3 /s / 449 gal/min = 0.2227 ft 3 /s L = 1000 ft; Ch 130 (New Steel)
a)
2-in pipe : D 2.067 in 0.1723 ft; A 0.02333 ft 2 R D /4 0.0431 ft 1.852
0.2227 hL 1000ft 0.63 (1.32)(0.02333)(130)(0.0431) hL 186 ft
b) 3-in pipe; D = 3.068 in = 0.2557 ft; A = 0.05132 ft 2 R = D /4 0.0639 ft 1.852
8.71
8.72
0.2227 hL =1000 0.63 (1.32)(0.05132)(130)(0.0639) hL = 27.27 ft m3 6.22 104 Q s 1.98 m Q= AVV = A (0.020 m) 2 s 4 m 1.98 0.020m VD s NR 4.4 104 ; Smooth); Then f = 0.021 2 m v 8.94 107 s 2 m 1.98 L V2 1200 m s hL f 0.021 252 m D 2g 0.020 m 2 9.81 m s2 gal 1 ft 3 1 min 750 Q ft min 7.48gal 60 s Q = AV V = 9.2 2 A 0.181ft s ft 9.2 0.4801ft VD s NR 1.17 105 ; 4 m ; Then f = 0.0195 2 ft v 3.79 105 s 2 P1 V1 P V2 P P Z1 h A h L 2 2 Z2 h L 1 2 P1 P2 h L γ γ 2g γ 2g γ hL f
ft 9.2 s
2
L V2 (2 5, 280 ft) 563 ft 0.0195 ft D 2g 0.4801 ft 2 32.2 2 s
REYNOLDS NUMBER, LAMINAR FLOW, TURBULENT FLOW, AND ENERGY LOSSES DUE TO FRICTION
125
# # 563ft 0.852 29,970 2 3 ft ft # gal 1 ft 3 1 min ft # 50, 020 PA h A γ Q 563 ft 0.852 62.4 3 750 ft min 7.48 gal 60 s s P = γ h L 62.4
8.73
P1 V12 P V2 Z1 h A h L 2 2 Z 2 P1 P2 h L γ γ 2g γ 2g m3 1 hr Q m hr 3600s 4.30 Q = AVV = 2 2 A 1.291 10 m s 200
NR
VD v
m 0.1282m s 157, 054; 5 m ; Then f = 0.0186 2 m 3.51 10 6 s
4.30
2
m 4.30 2 L V 15,000 m s 0.0186 hL f 2, 051 m D 2g 0.1282 m 2 9.81 m s2 N N P1 P2 2, 051 8,360 3 17.15 106 2 m m ΔP 17,150 kPa # of Stations 3.57 4 Stations PMAX 4800 kPa
mi 5, 280 ft 1 hr 1 ft 8.5 in VD hr 1 mi 3600 s 12in A.) N R 3.61 105 2 ft v 1.58 104 s km 1000 m 1 hr 135 0.070 m VD hr 1 km 3600 s B.) N R 1.74 105 2 m v 1.51 105 s mi 5, 280 ft 1 hr 1 ft 95 2.88 in VD hr 1 mi 3600 s 12in C.) N R 2.12 105 2 ft v 1.58 104 s m 440 0.013 m VD s D.) N R 3.79 105 2 m v 1.51 10 5 s 55
8.74
126
Chapter 8
8.75
Q1 = A1 V1 V =
Q 2 = A 2 V2 V =
Q1 A1
150
Q2 A2
gal 1 ft 3 1 min ft min 7.48 gal 60 s 55.7 2 0.006 ft s
150
gal 1 ft 3 1 min ft min 7.48 gal 60 s 14.3 2 0.02333ft s
ft 0.0874 ft VD s N R1 402,329 2 v 5 ft 1.21 10 s ft 14.3 0.1723 ft VD s N R2 203, 627 2 v 5 ft 1.21 10 s 55.7
1&2 1.5 104 ;Then f1 = 0.0231& f 2 = 0.0206 2
ft 55.7 L V2 100 ft s hL f 0.0231 1, 273 ft D 2g 0.0874 ft 2 32.2 ft s2 2
8.76
ft 14.3 2 L V 100 ft s hL f 0.0206 38.0 ft D 2g 0.1723 ft 2 32.2 ft s2 3 m 1 hr 8 Q hr 3600 s m Q = A V V1 = 4.53 2 A π (0.025m) s 4 m 4.53 0.025 m V1 D s N R1 111, 029 2 v 6 m 1.02 10 s m3 1 hr 8 Q hr 3600 s m Q = A V V2 = 0.503 2 A π (0.075m) s 4
REYNOLDS NUMBER, LAMINAR FLOW, TURBULENT FLOW, AND ENERGY LOSSES DUE TO FRICTION
127
m 0.003 m V2 D s N R2 1, 479 2 v 6 m 1.02 10 s 4.53
Yes, a Reynolds Number of 1, 479 is in the laminar flow region while 111, 029 is in the turbulent flow region on a Moody's diagram. 8.77
From PIPE-FLO ® ; V = 7.425 ft/s Pressure Drop = 0.153 psi h L 24.65 ft N R 66, 055 f 0.0252
128
Chapter 8
CHAPTER NINE VELOCITY PROFILES FOR CIRCULAR SECTIONS AND FLOW IN NONCIRCULAR SECTIONS
VELOCITY PROFILES FOR CIRCULAR SECTIONS AND FLOW IN NONCIRCULAR SECTIONS
129
130
Chapter 9
VELOCITY PROFILES FOR CIRCULAR SECTIONS AND FLOW IN NONCIRCULAR SECTIONS
131
132
Chapter 9
VELOCITY PROFILES FOR CIRCULAR SECTIONS AND FLOW IN NONCIRCULAR SECTIONS
133
134
Chapter 9
9.21
QT AT υ = (0.01414 ft 2 )(25 ft/s) 0.3535 ft 3 /s Qs Asυ = (0.0799 ft 2 )(25 ft/s) = 1.998ft 3 /s
3π (1.900in) 2 ft 2 As 0.1390 ft 0.0799 ft 2 2 4 144 in 2
9.22
D 4R 4((0.01*0.04)/(0.02 0.08)
N R (3m/s)(0.016)/(4.67 10 7 ) 1.03 105
Noncircular cross sections 9.23
A (0.05 m) 2 (0.5)(0.05 m) 2 (0.025 m) 2 /4 3.259 103 m 2
WP 0.05 0.05 0.10 .052 .052 (0.025) 0.3493 m A 3.259 103 m 2 R 9.33 103 m WP 0.3493m Q 150 m3 1hr 1 12.78 m/s υ A hr 3600 s 3.259 103 m 2
9.24
γ 12.5 N s 2 1kg m/s 2 ρ 3 1.274 kg/m3 g m 9.81m in υ(4 R) ρ (12.78)(4)(9.33 103 )(1.274) NR 3.04×104 2.0 10 5 A (12 in)(6 in) 2 (4.0 in) 2 /4 46.87 in 2 (1 ft 2 /144 in 2 ) 0.3255 ft 2 WP 2(6 in) 2(12in) 2 (4.0in) 61.13 in(1 ft/12in) 5.094 ft A 0.3255ft 2 0.0639 ft R WP 5.094 ft Q 200 ft 3 1 min 1 10.24 ft/s υ A min 60s 0.3255 ft 2 γ 0.114 lb s 2 1 slug ρ 3 0.00354 slugs/ft 3 g ft (32.2 ft) 1 lb s 2 /ft 2 (10.24)(4)(0.0639)(0.00354) 2.77 ×104 7 3.34 10 A (10in) 2 (6.625in) 2 /4 65.53 in 2 (1 ft 3 /144in 2 ) 0.455 ft 2 NR
9.25
υ(4 R) ρ
WP 4(10in) (6.625 in) 60.81 in(1 ft/12 in) 5.067 ft R A/WP 0.455 ft 2 /5.067 ft 0.0898ft Q 4.00ft 3 /s 8.79 ft/s υ A 0.455ft 2
υ4 R (8.79)(4)(0.0898) 3.808 105 6 v 8.29 10 Tube : D 0.402 in 0.03350 ft; A 8.814 104 ft 2 ft 3 /s Q 4.75 gal/min 0.1058 ft 3 /s 449 gal/min Q 0.1058 ft 3 /s 12.00 ft/s υ A 8.814 104 m 2 υD (12.00)(0.03350) NR 1.20×105 6 v 3.35 10
NR 9.26
VELOCITY PROFILES FOR CIRCULAR SECTIONS AND FLOW IN NONCIRCULAR SECTIONS
135
A 3.293 103 ft 2 (0.0417 ft) 2 /4 1.929 103 ft 2
Shell :
WP (0.06475ft) (0.0417 ft) 0.3393 ft R = A/WP = 0.00176 m = 5.770 ×103 ft
1 ft 3 /s 0.06682 ft 3 /s 449 Q 0.06682 ft 3 /s = = 34.63 ft 3 /s A 1.929 ×103 ft 2 Q 30.0 gal/min
NR 9.27
υ(4 R ) 34.63 ft/s (4)(5.77 103 ) 5027 Turbulet υ 1.59 104
Q
Pipe :
υ
450 L/min 1 m3 /s 0.00750 m3 /s 60000 L/min
Q 0.00750 m3 /s 0.402 m/s A 1.864 102 m 2
NR
υD (0.402)(0.1541) 6.08×104 6 v 1.02 10 Water at 20C
Duct : Benzene at 70C; ρ sg(ρ w ) 0.862(1000) 862 kg/m3 3.5 104 Pa s(App.D) A (0.40 m)(0.20 m) 2( )(0.1683 m) 2 /4 0.0355 m 2
WP 2(0.40) 2(0.20) 2( )(0.1683) 2.257 m R=
A 0.0355 m 2 = = 0.0157 m WP 2.257 m
NR
υ(4 R)( ρ)
;υ
N R (6.08 104 )(3.5 104 ) 0.392 m/s 4 Rρ 4(0.0157)(862)
Q Aυ (0.0355 m 2 )(0.392 m/s) 1.39 ×10-2 m 3 /s 9.28
υD (25)(0.1342) 1.00×106 6 v 3.35 10 2 A 0.1390 ft 3( )(0.1583ft) 2 /4 0.0799 ft 2
Inside pipes : N R Shell :
1 Do 1.900 in(1 ft/12in) 0.1583 ft Outside dia . of 1 in pipe. 2 WP (0.4206 ft) 3 (0.1583ft) 2.813ft
A 0.0799 ft 2 0.0284 ft WP 2.813 ft υ(4 R ) (25)(4)(0.0284) 2.35 105 NR 1.21 105 ) R
136
Chapter 9
9.29
Q 850 L/min
1 m3 /s 0.01417 m3 /s 60000 L/min
A Ashell 3 Atube D 1.735 103 m 2 3 (0.0150 m) 2 /4 1.205 103 m 2 WP (0.04970 m ) 3 (0.0150 m) 0.2890 m
A 1.205 103 m 2 4.169 103 m WP 0.289 m Q 0.01417 m3 /s 11.76 m/s υ A 1.205 103 m 2 υ4 R (11.76)(4)(4.169 103 ) NR 1.51 105 v 1.30 10 6 R
9.30
A (0.25in)(1.75in) 4(0.25 in)(0.50 in) 0.9375 in 2 (1 ft 2 /144 in 2 ) 0.00651ft 2
WP (1.75in ) 7(0.25in) 2(0.75 in) 6(0.50in) WP 8.00in(1 ft/12in) 0.667 ft R A/WP 0.00651 ft 2 /0.667 ft 9.77 10 3 ft
NR
N R (1500)(3.38 104 ) :υ 6.09 ft/s 4 Rρ 4(9.77 10 3 )(2.13)
υ4 Rρ
Q Aυ (0.00651ft 2 )(6.09 ft/s) 3.97 ×10-2 ft 3 /s 9.31
Air flows in cross-hatched area . A [4(3.00) 2(4.50)](50) 1050 mm 2
WP 12(50) 4(4.50) 8(3.00) 642 mm A 1050 mm 2 R 1.636 mm WP 642 mm
Q A 50 m3 1 106 mm 2 1h = . . . 2 2 h 1050 mm m 3600 s υ 13.23 m/s
υ=
NR 9.32
υ(4 R)( ρ)
(13.23)(4)(0.001636)(1.15) 6.11×103 5 1.63 10
A (0.45)(0.30) (0.30) 2 /4 2(0.15) 2 0.1607 m 2
WP 2(0.45) (0.30) 8(0.15) 3.042 m R A/WP 0.1607 m 2 /3.042 m 0.0528 m υ Q /A 0.10 m3 / s/ 0.1607 m 2 0.622 m/s
NR
υ(4 R) ρ
(0.622)(4)(0.0528)(1260) 552 0.30 (App.D)
VELOCITY PROFILES FOR CIRCULAR SECTIONS AND FLOW IN NONCIRCULAR SECTIONS
137
9.33
A (0.14446) 2 0.02087 m 2
WP 4(0.14446) 0.5778 m
A 0.02087 m 2 0.0361m R WP 0.5778 m 2 υ(4 R) (35.9)(4)(0.0361) 1.61×107 7 v 3.22 10 3 Q 0.75m /s 35.9 m/s υ A 0.02087 m 2 NR
9.34
A (0.75)(0.75)
(1.50) 2 8
1.446 in 2 (1 ft 2 /144 in 2 ) 0.01004 ft 2
WP 0.75 2.25 (1.50)/2 5.356 in(1 ft/12 in) 0.4463ft R A/WP 0.01004 ft 2 /0.4463ft 0.02250 ft
υ
Q 78.0 gal/min 1 ft 3 /s 17.30 ft/s A 0.01004 ft 2 449 gal/min
NR
9.35
A
υ(4 R) (17.30)(4)(0.02250) 1.112×105 5 1.40 10 v
π (0.75) 2 π (0.25) 2 (2(π )(0.50) 2 2(0.50)(0.50) 8 4 4
A 1.089in 2 (1 ft 2 /144 in 2 ) 0.00756 ft 2
WP π (0.50) 4(0.50)
(π )(.25)(2) (π )(0.75)(2) 4 4
WP 5.142 in(1ft/12in) 0.428ft R A/WP 0.00756 ft 2 /0.428 ft 0.0177 ft
υ
N R v (1.5 105 )(1.40 105 ) 29.66 ft/s (High) 4R 4(0.0177)
Q Aυ (0.00756 ft 2 )(29.66 ft/s) 0.224ft 3 /s
138
Chapter 9
9.36
sin 45 1.098 in sin 105 By Law of Sines sin 30 b 1.50 0.7765in sin 105 a 1.50
PART
A
WP
1 2 3 4 5 6 7 8 9
0.2209 in 2 0.0552 0.0736 0.0920 0.5625 2.250 0.4118 0.4118 0.2912
1.178 in 0.2945 0.3927 0.4909 1.500 2.000 0 1.0981 a 0.7765 b
A
4.3690 in 2
7.7307 WP
R A/WP 0.5651 in(1 ft/12 in) 0.04710 ft N R (2.6 104 )(6.60 106 ) υ 0.595 ft/s 4 Rρ (4)(0.0471)(1.53) (4.369in 2 )(0.595 ft/s) Q Aυ 0.0181ft 3 /s 2 2 (144in /ft ) 9.37
A (2)(8) 16 mm 2 (1 m 2 /106 mm 2 ) 1.60 105 m 2
WP 2(8) 2(2) 20 mm 0.020 m
R
A 1.60 105 m 2 8.00 104 m WP 0.020 m
Q Aυ (1.60 105 m 2 )(25.0 m/s) 4.00 104 m 3 /s each Qtot = (4.00 10-4 m 3 /s)6 = 2.40 103 m 3 /s (25)(4)(8.00 104 )(1.20) 6.40×103 1.50 105 From Prob. 9.24, R 0.0898 ft; N R 3.808 105 ; υ 8.79 ft/s; Water at 90 F
NR 9.38
4R
υ(4 R)( ρ)
4(0.0898) 4226; then f 0.0165 8.5 105
L υ2 (0.0165)(30)(8.79) 2 1.65 ft hL f 4 R 2 g (4)(0.0898)(2)(32.2) p γ w hL (62.1 lb/ft 3 )(1.65 ft)(1 ft 2 /144 in 2 ) 0.713 Psi
VELOCITY PROFILES FOR CIRCULAR SECTIONS AND FLOW IN NONCIRCULAR SECTIONS
139
9.39
Some date from Prob. 9.25 and Fig 9.13.
L 5.35 m 3.281 ft/m 17.23ft
Tube : Water at 200 F; γ = 60.1 u /ft 3 : N R 1.20 105 D
(0.0335) 223; then f 0.030 1.5 10 4 L υ2 (0.030)(17.23)(12.0) 2 34.50 ft hL f D 2g (0.0335)(2)(32.2)
Δp γ w hL (60.1 u / ft 3 )(34.50 ft)(1 ft 2 /144in 2 ) 14.40 psi Shell : Ethlylene glycol at 77 C; 68.47 u / ft 3 :
v 4.63 ft/s : R 5.77 103 ft; N R 5027 5.027 103 4R/ε = (4)(5.77 ×103 ft)/(1.5 ×104 ft) = 154; Then f = 0.044 L v2 525 10.562 0.044 611.7 ft hL f 4R 2 g 4(0.00577) 2(32.2) Δp γhL (68.47 u )(611.7 ft) (1 ft 2 /144 in 2 ) 290.9 Psi [Very high] 9.40
Some data from Prob. 9.26 and Fig . 9.11.
Each Pipe : Water at 20C; γ 9.79 kN/m3 ; N R 6.08 104 D (0.1541) 3350; then f 0.021 4.6 105
L υ 2 (0.021)(3.80)(0.402) 2 0.00427 m hL f D 2g (0.1541)(2)(9.81) Δp γ w hL (9.79 kN/ m3 )(0.00427 m) 0.00418 kPa 41.8 Pa Duct : Benzene at 70 C; B (0.862)(9.81 kN/m3 ) 8.46 kN/m3 4 R (4)(0.0157) N R 6.08 104 ; R 0.0157 m; 1365 4.6 105 L 2 (0.023)(3.80)(0.392) 2 . 0.0109 m f 0.023 hL f 4 R 2 g (4)(0.0157)(2)(9.81) p B hL (8.46 kN/m3 )(0.0109 m) 0.0920 kPa 92.0 Pa 9.41
Some data from Prob. 9.27 and Fig . 9.12.
Each Pipe : Water at 200F; γ w 60.1 lb/ft 3 ; N R 1.0 106 D
0.1342 895 : then f 0.021 1.5 104 L υ2 (0.021)(50)(25) 2 hL f 75.9 ft D 2 g (0.1342)(2)(32.2)
p γ w hL (60.1 lb/ft 3 )(75.9 ft)(1 ft 2 /144in 2 ) 31.7 psi Shell : Water at 60F; γ 62.4 lb/ ft 3 ; N R 2.35 105 ; R 0.0284 ft 4 R (4)(0.0284) 758; then f 0.0225 1.5 104
hL f
L 2 (0.0225)(50)(25) 2 96.1ft 4 R 2 g (4)(0.0284)(2)(32.2)
Δp γ w hL (62.4 lb/ft 3 )(96.1 ft)(1 ft 2 /144in 2 ) 41.6 psi 140
Chapter 9
9.42
Data from Prob. 9.28 and Fig . 9.18. Copper tubes.
Water at 10C; γ w 9.81 kN/m3 ; N R 1.51 105 : R 4.169 103 m (4)(4.169 103 ) 11117; f 0.017 1.5 106 L υ2 (0.017)(3.60)(9.05) 2 25.86 m hL f . 4 R 2 g (4)(4.169 103 )(2)(9.81)
4R
Δp γ w hL (9.81 kN/m3 )(25.86 m) 254 kPa 9.43
Data from Prob. 9.29 and Fig. 9.19. N R 1500 Laminar f
64 64 57 in 0.0427 : R 9.77 103 ft : L 4.75ft 12 in/ft N R 1500
hL f
L υ2 (0.0427)(4.75)(6.09) 2 2.99 ft . 4 R 2 g (4)(9.77 103 )(2)(32.2)
Ethlylene glycol at 77 F - 68.47 lb/ft 3
p γhL (68.47 lb/ft 3 )(2.99 ft)(1 ft 2 /144in 2 ) 1.42 psi 9.44
Data from Prob. 9.31 and Fig . 9.21. N R 552 Laminar
64 64 0.116 : R 0.0528 m N R 552 L υ 2 (0.116)(22.6)(0.622) 2 0.244 m hL f 4 R 2 g (4)(0.0528)(2)(9.81) p γG hL (1.26)(9.81 kN/ m3 )(0.244 m) 3.02 kPa f
9.45
Data from Prob. 9.32 : R 0.0361m : N R 1.61 107 4R
(4)(0.0361) 96267; f 0.008 approx . 1.5 106
L υ 2 (0.008)(22.6)(35.9) 2 82.2 m hL f 4 R 2 g (4)(0.0361)(2)(9.81) p γhL (9.47 kN/ m3 )(82.2 m) 779 kPa
9.46
Water at 90C Data from Prob. 9.23 and Fig. 9.22. N R 1.112 105 4 R (4)(0.0225) R 0.0225ft; 3600; f 0.019 2.5 105 L (105 in)(1 ft/12in) 8.75 ft
hL f
L υ 2 (0.019)(8.75)(17.30) 2 8.58ft 4 R 2 g (4)(0.0225)(2)(32.2)
Δp γhL (62.4 lb/ft 3 )(8.58ft)(1 ft 2 /144in 2 ) 3.72 psi
VELOCITY PROFILES FOR CIRCULAR SECTIONS AND FLOW IN NONCIRCULAR SECTIONS
141
9.47
Data from Prob. 9.34 and Fig . 9.23. N R 1.5 105 : R 0.0177 ft; υ = 29.66 ft/s 4R
(4)(0.0177) 472 : f 0.025 1.5 104 L (45 in)(1 ft/12 in) 3.75 ft
[Steel]
L υ 2 (0.025)(3.75)(29.66)2 hL f . 18.1ft 4 R 2 g (4)(0.0177)(2)(32.2) p γhL (62.4 lb/ft 3 )(18.1ft)(1 ft 2 /144 in 2 ) 7.84 psi 9.48
A (2.25)(1.50) 7( 2 /4) 2.602 in 2 (1 ft 2 /144in 2 ) 0.01807 ft 2 WP 2(2.25) 2(1.50) 7( ) 15.75 in(1 ft/12in) 1.312 ft R
A 0.01807 ft 2 0.0138ft WP 1.312 ft
NR
υ4 Rρ
N R η (8000)(3.38 104 ) :υ 23.05ft/s 4R ρ 4(0.0138)(2.13) 4R
f 0.0325
4(0.0138) 11000 5 106 L υ2 10.67 (23.05) 2 hL f . (0.0325) 51.9 ft 4 R 2g 4(0.0138) 2(32.2) L 128 in(1 ft/12in) 10.67 ft :
Q Aυ = (0.01807 ft 2 )(23.05ft/s) 0.417 ft 3 /s 9.49
449 gal/min 187 gal /min 1 ft 3 /s
A (0.100 m) 2 4(0.02)2 0.0076 m 2 A 0.0119 m R WP WP 4(0.10) 8(0.03) 0.64 m Q 3000 L/min 1 m3 /s υ= 6.58 m/s A 0.0076 m 2 60000 L/min υ(4 R ) (6.58)(4)(0.0119)(789) NR 4.40 105 ; f 0.0135 5.60 104 L υ 2 (0.0135)(2.25)(6.58) 2 . 1.41 m 4 R 2g 4(0.0119)(2)(9.81) A (28)(14) - 3[(8)(2) π2 /4] 334.6 in 2 (1 ft 2 /144in 2 ) 2.32 ft 2
hL f
9.50
WP 2(28) 2(14) 3[2(8) π) 150.8 in(1 ft/12in) 12.57 ft R A/WP 0.1848 ft (20)(4)(0.1848)(2.06 103 ) NR 7.36 104 7 4.14 10 Each Tube : Ethy1 Alcohal at 0F;assume ρ 1.53 slugs/ft 3 υDρ 5 105 lb-s/ft 2 (App.D); N R υ(4 R) ρ
9.51
N R (3.5 10 )(5.0 10 ) 26.02 ft/s Dρ (0.044)(1.53) D 13.4 mm(1.0 in/25.4 mm) 0.5276 in 1 ft/12in 0.044 ft
υ
142
4
5
Chapter 9
π (0.044 ft)2 26.02 ft 0.0395 ft 3 /s 4 Total Flow for 3 Tubes : QT 3(0.0395) 0.118 ft 3 /s L υ 2 (0.0232)(10.5)(26.02) 2 hL f 58.2 ft D 2g (0.044)(2)(32.2) D 0.044 8793; f 0.0232 5 10 6 p γhL (49.01 lb/ft 3 )(58.2 ft)(1 ft 2 /144 in 2 ) 19.8 psi Shell : Methy1 Alcohol at 77F (App.B) Q Aυ
A (2.00)(1.00) π (1.00) 2 /4 3π (0.625) 2 /4 1.865 in 2 (1 ft 2 /144 in 2 ) A 0.01295 ft 2 WP 2(2.0) (1.0) 3 13.03 in(1 ft/12in) 1.086 ft R A/WP 0.0119 ft υ
N R (3.5 104 )(1.17 105 ) 5.61 ft/s 4(0.0119)(1.53) 4 Rρ
Q Aυ (0.01295ft 2 )(5.61 ft/s) 0.0727 ft 3 /s 4R
4(0.0119) 9540; f 0.0232 5 106 L υ 2 (0.0232)(10.5)(5.61) 2 hL f 2.50 ft 4 R 2g 4(0.0119)(2)(32.2)
9.52
p γhL (49.1 lb/ft 3 ) 2.50 ft (1 ft 2 /144 in 2 ) 0.851 psi Given : Water at 40F; N R 3.5 104 ; Figure 9.30; Sections is semicircular . Find : Volume fiow rate of water . N R v(4 R)/v; Then, v N R v /(4R) Average velocity of flow v 1.67 10 5 ft 2 /s Kinematic viscosity A (1.431 102 ft 2 )/2 7.155 103 ft 2 ID 0.1350 ft; WP ID π ( ID )/2 ID (1 π /2) 0.347 ft R A/WP (7.155 103 ft 2 )/(0.347 ft) 0.0206 ft Then, v N R v /(4 R ) (3.5 104 )(1.67 105 )/(4)(0.0206) 7.09 ft/s Q Aυ (7.155 10 3 ft 2 )(7.09 ft/s) 0.0507 ft 3 /s = Q Energy Loss for 92 in(7.667 ft) of drawn steel : h L f ( L / 4R )(v /2 g ) 4 R /ε 4 0.0206 ft / 5.0 10 –6 ft 16 480 Then ƒ 0.023 2 hL (0.023)[7.667/(4)(0.0206)][(7.09) /(2)(32.2)] 1.67 ft Given : Figure 9.31. Three semcirculur sections. Velocity v 15 ft/s in each . Ethylene glycol at 77F; ρ 2.13 slugs/ft 3 ; 3.38 104 lb s/ft 2 (App.B) Find : Reynolds number in each passage. N R v(4 R) ρ / Top channel : 2-in Type K.copper tube (Half).ID 0.1632 ft; Atot 2.093 102 ft 2 A Atot /2 (2.093 102 ft 2 )/2 1.0465 102 ft 2 WP ID π ( ID)/2 ID(1 π /2) 0.4196 ft R A/WP (1.0465 10 2 ft 2 )(0.4916 ft) 0.0249 ft N R v(4 R) ρ / (15)(4)(0.0249)(2.13)(3.38 104 ) 9.43 103 9430 N R Turbulent
9.53
VELOCITY PROFILES FOR CIRCULAR SECTIONS AND FLOW IN NONCIRCULAR SECTIONS
143
Both side Channels : 1 1 2 in Type K copper tube (Half).ID = 0.1234 ft ; Atot 1.196 102 ft 2 A Atot / 2 (1.196 102 ft 2 ) / 2 5.98 103 ft 2 WP ID π ( ID) / 2 ID(1 π /2) 0.3172 ft R A / WP (5.98 103 ft 2 ) / (0.3172 ft) 0.01885 ft N R v(4 R) ρ / (15)(4)(0.01885)(2.13)(3.38 104 ) 7.127 103 N R Turbulent Energy Loss for 54 in (4.50 ft) of drawn copper : hL f ( L /4 R)(v 2 /2 g ) Top : 4 R / 4(0.0249 ft)/(5.0 106 ft) 19 920 Then f 0.0315 hL (0.0315)[4.50/(4)(0.0249)][(15.0) 2 /(2)(32.2)] 4.97 ft Each side : R / 4(0.01885 ft)/(5.0 106 ft) 15 080 Then f 0.0340 hL (0.0340)[4.50/(4)(1.01S85)][(15.0) 2 /(2)(32.2)] 7.09 ft (each of two sides) Total loss for all three channels: hLT 4.97 2(7.09) 19.15 ft 9.54
Given : Figure 9.32 Rectangulur channel with three fins. Q 225 L/min Brine (20 NaCl), sg =1.10 at 0C;ρ 1.10(1000 kg/m3 ) 1100 kg/m3
2.5 103 N s/m2 (App.D) Find : Reynolds number for the flow . N R v(4 R) ρ / A (20)(50) 3(5)(10) (850 mm 2 [(1 m 2 )/(103 mm)2 ] 8.5 104 m 2 WP 2(20) 2(50) 6(10) 200 mm R A/WP (850 mm 2 ) / (200 mm) = (4.25 mm)(1 m2 /1000 mm) = 0.00425 m v = Q /A (0.00375 m3 /s)(8.5 104 m2 ) 4.41 m/s N R v(4 R) / (4.41)(4)(0.00425)(1100)/(2.5 103 ) 3.30 × 104 = N R Turbulent Energy Loss for 1.80 m of commercial steel: hL f ( L /4 R)(v 2 /2 g ) 4 R / 4(0.00425 m)/(4.6 105 ) 370 Then f 0.030 hL (0.030)[1.80/(4)(0.00425)][(4.41) 2 /(2)(9.81)] 3.149 m
144
Chapter 9
CHAPTER TEN MINOR LOSSES
MINOR LOSSES
145
146
Chapter 10
MINOR LOSSES
147
148
Chapter 10
MINOR LOSSES
149
10.26 Sketches for the contractions for 15 and 40 gradual contractions:
10.27 Gradual contraction, θ = 120° D1 = 6.27 in, D2 = 4.17 in Ductile iron pipe D1/D2 = 1.50; K = 0.200
150
Chapter 10
MINOR LOSSES
151
152
Chapter 10
MINOR LOSSES
153
154
Chapter 10
MINOR LOSSES
155
156
Chapter 10
10.60
Dp = sg(Q/Cv)2 = 0.989(600/640)2 = 0.869 psi sg = 61.7 lb/ft3/62.4 lb/ft3 = 0.989
10.61
Dp = sg(Q/Cv)2 = 0.997(15/25)2 = 0.359 psi sg = 62.2 lb/ft3/62.4 lb/ft3 = 0.997
For Problems 10.62 to 10.70, values of sg are found from Appendix B.
MINOR LOSSES
10.62
Dp = sg(Q/Cv)2 = 1.590(60/90)2 = 0.707 psi
10.63
Dp = sg(Q/Cv)2 = 0.68(300/330)2 = 0.562 psi
10.64
Dp = sg(Q/Cv)2 = 0.495(5000/4230)2 = 0.692 psi
10.65
Dp = sg(Q/Cv)2 = 1.590(60/34)2 = 4.952 psi
10.66
Dp = sg(Q/Cv)2 = 0.68(300/160)2 = 2.391 psi
10.67
Dp = sg(Q/Cv)2 = 0.495(1500/700)2 = 2.273 psi
10.68
Dp = sg(Q/Cv)2 = 1.030(18/25)2 = 0.534 psi
10.69
Dp = sg(Q/Cv)2 = 0.823(300/330)2 = 0.680 psi
10.70
Dp = sg(Q/Cv)2 = 1.258(3500/2300)2 = 2.913 psi
157
158
Chapter 10
MINOR LOSSES
159
CHAPTER ELEVEN SERIES PIPE LINE SYSTEMS 11.1
Class I; Pt. A at tank surface :
PA υ2 p υ2 zA A hL B zB B : p A 0, υA 0 γ 2g γ 2g
υ2 L pB γ w zA zB B hL γ w 14 m hυB 0.5hυB 3 fr 30 hυB f hυB 2g D Entr. 3Elbows Friction 2
hυB Velocity head in pipe =
υ2B 1 Q (1.99 m/s) 2 0.202 m 2g 2g A 2(9.81 m/s)2
N R υD /v=(1.99)(0.098)/(1.30 10 6 ) 1.50 105 D / 0.098/1.5 106 65300 f 0.0165; f T 0.010 in zone of complete turbulence 9.81 kN 80.5 14 m 0.202 0.101 (3)(0.010)(30)(0.202) (0.0165) (0.202) 3 m 0.098
pB
11.2
pB 105.7 kN/m 2 105.7 kPa P υ2 P υ2 Class I; A zA A hL B zB B: υA υB; pB 0 γ 2g γ 2g pA γ[ zB zA hL ] γ[3.5 m + h L ]; f T 0.019
38 hυ hυ [7.10 724 f ] 0.0525 Ent . Chk. value Ang. V. Elbow Exit Friction
hL 0.78hυ 100 fT hυ 150 fT hυ 30 fT hυ 1.0hυ f
hυ
υ2 Q 435 L/min 1 m3 /s (in pipe); υ 3.444 m/s 2g A 2.168 103 m 2 60000 L/min
hυ (3.344) 2 /(2)(9.81) 0570 m NR
υDρ
(3.344)(0.0525)(820) 0.0525 D 8.47 104 ; 1141; f 0.0222 3 1.70 10 4.6 105
pA γ m + hL ] (0.82)(9.81 kN/m3 )[3.5 m +0.570 m(7.10 +724(0.0222)] =134.4 kPa
160
Chapter 11
11.3 Class I;
PA υ2 p υ2 zA A hL B zB B : pA pB γ[( zB zA ) hL ] γ 2g γ 2g
Q 60 gal/min 1 ft 3 /s υ 2 (5.73)2 5.73 ft/s: h 0.509 ft υ A 0.02333ft 2 449 gal/min 2 g 2(32.2) 50 hL 6.5hυ 2(30) f T hυ f hυ (6.5 60 f T 290 f )hυ : fT 0.019 0.1723 υDρ (5.73)(0.1723)(0.90)(1.94) D 0.1723 NR 2.87 104 : 1150 5 6.0 10 1.5 104 f 0.0260 : Then h L [6.5 60(0.019) 290(0.0260)](0.509 ft) =7.73 ft
υ
(0.90)(62.4 lb) 1 ft 2 pA 200 psig + [25 ft + 7.73 ft] 212.8 psig ft 3 144 in 2 11.4 Class I
PA υ2 p υ2 zA A hL B zB B γ 2g γ 2g
1 ft 3 /s Q 750 gal/min 1.67ft 3 /s 449 gal/min
1.67ft 3 / s Q 20.9 ft/s υA υ2B υ2A AA 0.07986 ft 2 pA pB γ ( zB zA ) hL 2g Q 1.67ft 3 / s υB 9.23 ft/s 0.181 ft 2 AB υ 2 A (20.9) 2 υ2 ft=6.79 ft; B 1.32 ft 2 g 2(32.2) 2g
fT 0.0162 is zone of complete turbulance
υ2A υ2 υ2 40 ft υ 2 A f 0.28 A (1.30 25 f ) A 2g 0.3188 ft 2 g 2g 2g Elbows Friction Enlarge Where D2 /D1 0.4801/0.3188 1.51 K = 0.28 (Table 10.1)
hL 2(30) fT
υA DA (20.9)(0.3188) 9.25 103 v 7.21 104 D / 0.3188 /1.5 104 2125 f 0.032
At 100°F, v = 7.21 104 ft 2 /s; N RA
hL [1.25 125(0.032)](6.79 ft)=35.6 ft pA 500 psig +
(0.895)(62.4 lb) ft(1 ft 2 ) [3.5 (1.32 6.79) 35.6] 513.0 psig ft 3 144 in 2
Similarly: At 210F,v = 7.85 10 5 ; N R 8.49 104 f 0.0205 hL 25.9 ft; pA 509.3 psig
SERIES PIPE LINE SYSTEMS
161
162
Chapter 11
SERIES PIPE LINE SYSTEMS
163
164
Chapter 11
Class II systems 11.8
Class II hL = 30.0 ft = f Then
Method IIC Iteration
2 ghL D 2(32.2)(30)(0.3188) 24.64 = = fL f (25) f
=
(0.3188) D 0.3188 4 = 2120 = −6 = 4.33 ´ 10 ( ): 7.37 ´ 10 1.5 ´ 10 -4 Try f = 0.02; then = 24.64 / f = 35.1 ft/s
NR =
D
L 2 D 2g
=
NR = 4.33 ´ 104(35.1) = 1.52 ´ 106; New f = 0.0165 = 24.64 / 0.0165 = 38.6 ft/s; NR = 1.67 ´ 106; f = 0.0165 OK Q = A = (0.07986 ft2)(38.6 ft/s) = 3.08 ft3/s Class II [Repeated using computational approach - Sec. 11.4] hL = 30.0 ft; D/ε = 2120; Use Eq. 11-3. é 1 gDhL 1.784n ù 2 log + ê ú Q =−2.22D L êë 3.7 D/ε D gDh L/L úû Q =−2.22(0.3188)
2
Method IIA
é (32.2)(0.3188)(30) 1 (1.784)(7.37 ´ 10-6 ) ù log ê + ú 25 (0.3188) 12.32 û ë 3.7(2120)
Q = 3.05 ft3/s 11.9
Class II
p1
+ z1 +
2 1
2g
−hL =
p2
+ z2 −
2 2
2g
:
Method IIC Iteration p p 68 kN/ m 2 L 2 2 ghL D hL = 1− 2 = = 7.70 m = f ; = ((0.90)(9.81 kN/ m3 ) D 2g fL =
2(9.81)(7.70)(0.0470) 0.2367 D 0.0470 = 31333 : = = ε 1.5 ´ 10-6 f (30) f
Try f = 0.03; = 0.236 7 / 0.03 = 2.81 m/s Dρ (0.0470)(900) NR = = 1.41 ´ 104( ) = 3.96 ´ 104 = 3.0 ´ 10−3 New f = 0.022; υ = 3.28 m/s; NR = 4.62 ´ 104; f = 0.0210 = 3.357 m/s; NR = 4.73 ´ 104; f= 0.0210 No change Spreadsheet solutions to Problems 11.8, 11.9, and 11.10 are on next page.
SERIES PIPE LINE SYSTEMS
165
166
Chapter 11
SERIES PIPE LINE SYSTEMS
167
168
Chapter 11
SERIES PIPE LINE SYSTEMS
169
170
Chapter 11
SERIES PIPE LINE SYSTEMS
171
11.14
Class II Pt. 1 at surface of tank A; Pt. 2 in stream outside pipe. u 1 = 0, p2 = 0 2 2 2 p1 p p 2 + z1 + 1 −h L = 2 + z2 : 1 + ( z1 - z 2 ) − 2 −hL Copper Tube: 2g 2g 2g OD = 50 mm ; 1.5 mm wall 2
150 kN/m 2 −5 m = 13.59 m = 2 + hL 2g 8.07 kN/m 3 2 2
+ 160 fT
+ 2(19) fT
2 2
Method IIC
D = 47 mm = 0.047 m A = 1.735 ´ 10-3 m2
2 30 mm 22 = (2.36 + 638)f 2 2g 2g 2g 0.0470 m 2 g 2g Entrance Valve Bends Friction ë r/D = 300 mm = 6.38 ® Le = 19 (Fig. 10.28) 47.0 mm D 0.0470 m D/ε = = 31333 1.5 ´ 10−6 m fT = 0.0094
hL = 0.50
2 2
I
+ f
In Eq. I: 13.59 m =
2 2
2g
+ (2.36 + 638f )
2 2
2g
= (3.36 + 638f )
2g (13.59 m) 2(9.81)(13.59) = = 3.36 + 638f 3.36 + 638f
=
2 2
2g
266.6 3.36 + 638f
Try f = 0.02 Dρ (4.07)(0.0470)(823) 266.6 = = 4.07 m/s; NR = = = 9.59 ´ 104 1.64 ´ 10−3 3.36 + 638(0.02) New f = 0.018; = 4.24 m/s; NR = 1.00 ´ 105; New f = 0.018 No change Q = A = (1.735 ´ 10-3 m2)(4.24 m/s) = 7.36 ´ 10-3 m3/s 11.15
Class II with 2 pipes: Pts. A and B at tank surfaces. Method IIC 2 2 p = pB = 0 pA u p u + zA + A - hL = B + zB + B : zA - zB = hL = 10 m: A uA =uB = 0 g 2g g 2g hL = 0.78
u 42 2g
+ 2(30) f4 T
Entrance Elbows + f6
u 42
u2 ü 55 u 42 + 0.27 4 ý Based on 4-in pipe; f4T = 0.0203 2g 0.1059 2g 2g þ D 0.1593 Friction Enlarge. 2 = = 1.504 D1 0.1059 + f4
u2 u2 u2 ü 30 u 62 + 30 f 6T 6 + 45 f 6T 6 + 1.0 6 ý Based on 6-in pipe; f6T = 0.0184 0.1593 2g 2g 2g 2g þ Friction Elbow Valve Exit
h L = (2.268 + 519.4 f3)
u 32
+ (2.38 + 188.3) f6 u 6 2g 2g 2
2
æD ö A But u 4 = u 6 6 = u 6 ç 6 ÷ = u 6 æç 0.1593 ö÷ = 2.263u 6; u 32 = 5.120u 62 A4 è 0.1059 ø è D4 ø
172
2
Chapter 11
SERIES PIPE LINE SYSTEMS
173
[11.15 solution continued]
hL = (2.268 + 519.4 f4)
5.120u 62 2g
(2.38 + 188.3 f 6 )
u 62 2g
(13.99 + 2659 f 4 + 188.3 f 4 )
u 62 2g
Solve for υ6
u6 =
2 gh L = 13.99 + 2659 f4 + 188.3 f 6
2(9.81)(10) 13.99 + 2659 f4 + 188.3 f 6
196.2 13.99 + 2659 f4 + 188.3 f 6
=
Iterate for both f4 and f6: D4 u D u (0.1059) 0.1059 m = = 883: N R4 = 4 4 = 3 =1.614 ´ 105 (u 4 ) -4 6.56 ´ 10-7 e 1.2 ´ 10 m n D6
e
=
u D u (0.1593) 0.1593 = 1328 : NR6 = 6 6 = 6 = 2.865 ´ 105 (u 6 ) -4 1.2 ´ 10 n 6.56 ´ 10-7
Try f4 = f6 = 0.02
u6 =
196.2 = 1.663 m/s 13.99 + 2659(0.02) + 188.3(0.02)
u 4 = 2.263 u 6 = 3.76 m/s
NR4 = 1.614 ´ 10 (3.76) = 6.07 ´ 10 ® New f3 = 0.0206 5
5
N R6 = 2.805 ´ 10 5 (1.663) = 4.76 ´ 10 5® New f6 = 0.0192
u6 =
196.2 = 1.368 m/s 13.99 + 2659(0.0195)+ 188.3(0.02)
u 4 = 2.263u 6 = 3.085 m/s
N R3 = 1.614 ´ 105(3.085) = 4.99 ´ 105 ® f4 = 0.0206 No change N R6 = 2.865 ´ 105(1.368) = 3.92 ´ 10 5® f6 = 0.0192 No change
Q = A 6u 6 =
174
p (0.1593 m)2 4
´ 1.368 m/s = 0.02726 m3/s
Chapter 11
11.16
Class II with two pipes Pt. B in stream outside pipe. pB = 0 pA p u2 u2 p u 2 - u A2 + zA + A - hL = B + zB + B : A + zA - zB = B + hL 2g 2g g o 2g go go pA
go
u u 175 kN/m 2 - 4.5 m = 14.68 m = B - A + hL I 3 2g 2g 0.93(9.81 kN/m ) 2
+ z A - zB =
Method IIC
2
30 u A2 + 0.52 u A2 + 100 u B2 + 2(30) u2 f8 fT 8 B : fT8 = 0.0088 0.0470 2g 2g 0.093 2g 2g Friction Enlarge. Friction Elbows Copper Tube: A = 50 mm OD ´ 1.5 mm wall; D A = 47mm 0.093 ë D2/D1 = = 1.98 B = 100 mm OD ´ 3.5 mm wall; D B = 0.3 mm 0.0470 AB = 6.793 ´ 10-3 m2
hL = f A
u A DA r u A (0.0470)(930) = = 4.60 ´ 103(u A) h 9.50 ´ 10 -3 u D r u (0.093)(930) DB/ε = 0.093/1.5 ´ 10-6 = 62000; N R B B = B = 9.10 ´ 103(u B) h 9.5 ´ 10 -3 DA/ε = 0.0470/1.5 ´ 10-6 = 31333; N RA = B
hL = (0.52 + 638f )
u A2 + (0.53 + 1075 f ) u B2 2g
8
2g
2
But u A = u B
æD ö AB = u B ç B ÷ = u B (1.979)2= 3.92u B: u A2 = 15.3u B2 AA è DA ø
Then: hL = (0.52 + 638fA)
2 2 15.3u B2 + (0.53 + 1075 f B ) u B = u B [8.49 + 9761fA + 1075fB] 2g 2g 2g
In Eq. I 14.68 =
uB =
u B2 2g
-
15.3u B2 u B2 u2 + [8.49 + 9761 fA + 1075 fB ] = B [- 5.81 + 9761f A + 1075f B ] 2g 2g 2g
2 g (14.68) 288.1 = - 5.81 + 9761 fA + 1075fB - 5.81 + 903 fA + 1020 fB
Iterate for both fA and fB .
Try f2 = f4 = 0.02
uB =
288.1 = 1.169 m/s; u A = 3.92u B = 4.58 m/s -5.81 + 9761(0.02)+ 1075(0.02)
N RA = 4.60 ´ 103(4.58) = 2.11 ´ 104; N RB = 9.10 ´ 103(1.169) = 1.06 ´ 104
New fA = 0.0255, fB = 0.0305 288.1 uB = = 1.02 m/s; u A = 3.92u B = 4.01 m/s -5.81 + 9761(0.0255) + 1075(0.0305) N RA = 1.84 ´ 10 4 ® fA = 0.0255 No change; N RB = 9.23´ 10 3 ® fB = 0.0305 No change
Q = ABu B = (6.793 ´ 10-3m2)(1.02 m/s) = 6.93 ´ 10-3 m3/s SERIES PIPE LINE SYSTEMS
175
176
Chapter 11
SERIES PIPE LINE SYSTEMS
177
178
Chapter 11
SERIES PIPE LINE SYSTEMS
179
180
Chapter 11
Practice problems for any class 11.23 Class I Pt. 1 at tank surface, Pt. 2 in stream outside pipe: p1 = p2 = 0; u 1 = 0 2 2 2 p1 p + z1 + 1 −hL = 2 + z2 + 2 : z1− z 2 = 2 + hL I 2g 2g 2g 2 Q 1500 L/min 1 m 3 /s (3.92) 2 2 = = 3.92 m/s: = = 0.782 m A2 6.38 ´ 10-3 m 2 60000 L/min 2g 2(9.81) fT = 0.017
2=
hL = 0.5
2 2
2
2
+ fT (160) 2 + fT (30) 2 2g 2g 2g
2 2
2g
[0.5 + 190 fT ] + 0.782[0.5 +190(0.017)]
= 2.917 m In Eq. I z1 − z2 =
2 2
2g
+h L + 0.782 + 2.917 = 3.70 m
But h = z1− z2 −0.5 m = 3.70 m − 0.5 m = 3.20 m 11.24
Class I Pt. 1 at collector tank surface. Pt. 2 at pump inlet. p1 = 0, u 1 = 0 2 2 é u2 ù p1 p + z1 + 1 + hL = 2 + z2 + 2 : p2 = g ê ( z1 - z2 ) - hL - 2 ú I 2g û 2g 2g ë Q = 30 gal/min ´
u2 =
1 ft 3 /s 1 = 0.0668 ft3/s 449 gal/min
fT = 0.019 for 2-in pipe
Q 0.0668 ft 3 /s u 22 (2.86) 2 = = 2.86 ft/s; = = 0.127 ft A2 0.02333 ft 2 2g 2(32.2)
10.0 ft u 22 u2 u2 + fT (8) 2 = 2 (2.50 + 58.0 f ) 2g 2g 0.1723 ft 2 g 2g 2g Entrance Filter Friction Valve u Dr (2.86)(0.1723)(0.92)(1.94) D 0.1723 NR = = = 2.45 ´ 104 : = = 1149 -5 h 3.6 ´ 10 e 1.5 ´ 10 -4 f = 0.0265 hL = (0.127 ft)[2.50 + 58.0(0.0265)] = 0.513 ft In Eq. I : 62.4 lb ft ft 2 p2 = (0.92) [3.0 0.513 0.127] = 0.94 psig ft 3 144 in 2
hL = 0.5
u 22
+ 1.85
u 22
+ f
SERIES PIPE LINE SYSTEMS
181
5
182
Chapter 11
SERIES PIPE LINE SYSTEMS
183
11.27
184
Chapter 11
SERIES PIPE LINE SYSTEMS
185
11.29
Class I Q = 475 L/min (1 m3/s/60000 L/min) = 7.917 ´ 10-3m3/s Pt. 1 at reservoir surface; Pt. 2 at pump inlet. p1 = 0, u 1 = 0 é ù u 22 p1 p1 u 12 u 22 p = g ( z z ) - hL ú I + z1 + - hL = + z2 + : 2 ê 1 2 2g 2g 2g g g ë û
u2 =
Q 7.917 ´ 10-3 m3 /s u 22 (2.56) 2 = = 2.56m/s: = = 0.335 m A 3.090 10-´3 m 2 2 g 2(9.81)
12.90 m u 22 u2 u2 + (0.018)(2)(30) 2 + (0.018)(340) 2 = 4.016 m 2g 0.0627 m 2 g 2g 2g Entrance Friction 2 Elbows Valve u D (2.56)(0.0627) D 0.0627 NR = = 4.46 ´ 105 : = = 1363 ® f = 0.0195 -7 n 3.60 ´ 10 e 4.6 ´ 10-5 fT = 0.018 L = 11.5 m + 1.40 m = 12.90 m z1 - z2 = 0.75 m - 1.40 m = -0.65 m In Eq. I 9.53 kN p2 = [-0.65 m - 0.335 m - 4.016 m] = -47.66 kPa m3
hL = 0.78
u 22
+ (0.0195)
See also spreadsheet solution. 11.30
Design problem with variable solutions: Pressure at pump inlet can be increased by: lowering the pump, raising the reservoir, reducing the flow velocity in the pipe by using a larger pipe, reducing the hL in the valve by using a less restrictive valve (gate, butterfly), eliminating elbows or using long-radius elbows, using a well-rounded entrance, and shortening the suction line.
See spreadsheet for an example of a modified system. 11.31 Class I Pt. B in stream outside nozzle. pB = 0 pA
g
+ zA +
u A2 2g
- hL + hA =
hA = ( zB - zA ) +
u B2 - u A2 2g
pB
g
-
+ zB +
pA
g
In 2 1/2-in discharge line:
ud =
Q 0.50 = = 15.03 ft/s Ad 0.03326
u d2 2g
186
=
(15.03) 2 = 3.509 ft 2(32.2)
+ hL
u B2 2g
uA = u A2
Q 0.50 ft 3 /s = = 9.743 ft/s AA 0.05132 ft 2
(9.743) 2 ft = 1.474 ft 2g 2(32.2) Q 0.50 uB = = = 54.2 ft/s AB p (1.3/12) 2 4 =
u B2 = 45.7 ft 2g r=
g g
=
64.0 lb/ft 3 slugs = 1.988 2 32.2 ft/s ft 3
Chapter 11
SERIES PIPE LINE SYSTEMS
187
188
Chapter 11
32
31
33
SERIES PIPE LINE SYSTEMS
189
190
Chapter 11
Problems 11.34 and 11.35 are solved using the spreadsheet on the following two pages. These problems are of the Class II type and are solved using the procedure described in Section 11.4. Method II-B is used because the system contains significant minor losses. In fact, one objective of these two problems is to compare the performance of two design approaches for the same system, using a different, more efficient valve in Problem 11.33 as compared with Problem 11.32. Recall that Method II-A is set up and solved first in the spreadsheet. This ignores the minor losses and gives an upper limit for the volume flow rate that can be delivered through the system with a given pressure drop or head loss. Then, Method II-B is used iteratively to hone in on the maximum volume flow rate that can be carried with the minor losses considered. The designer enters a series of estimates for the value of Q and observes the resulting pressure at the outlet from the piping system. Obviously this pressure for this problem should be exactly zero because the pipe discharges into the free atmosphere. Each trial requires only a few seconds to complete and the designer should continue making estimates until the pressure at the outlet is at or close to zero. Problem 11.32 shows that Q = 0.00285 m 3/s (171 L/min) can be delivered through the given system with a fully open globe valve installed and with a pressure of 300 kPa at point A at the water main. In Problem 11.33, the globe valve is replaced with a fully open gate valve having much less energy loss. The result is that Q = 0.003398 m3/s (204 L/min) can be delivered with the same pressure at point A. This is approximately a 20% increase in flow. Also, it is only about 3% less than the flow that could be delivered through the pipe with no minor losses at all, as shown in the results of Method II-A at the top of the spreadsheet.
SERIES PIPE LINE SYSTEMS
191
192
Chapter 11
SERIES PIPE LINE SYSTEMS
193
11.36
Class I Pt. 1 at surface of tank A; Pt. 2 outside pipe in tank B. u 1 = 0 2 2 é ù u2 p p1 + z1 + 1 − hL= 1 + z2 + 2 : p1 = p2 + g ê ( z2 - z1 ) + 2 + hL ú I 2g 2g 2g ë û Q 250 gal/min 1 ft 3 /s u 22 (23.87)2 = × = 23.87 ft/s: = = 8.844 ft A 0.02333 ft 2 449 gal/min 2g 2(32.2) u Dr (23.87)(0.1723)(1.53) NR = = = 3.00 ´ 105 : -5 h 2.10 ´ 10 D 0.1723 = = 1149 ® f = 0.0205 e 1.5 ´ 10-4 2 u2 u2 u2 æ 110 ft ö u 2 hL = 0.5 2 + fT (160) 2 + 2 fT (30) 2 + f ç : fT = 0.019 ÷ 2g 2g 2g è 0.1723 ft ø 2 g Entr. Valve 2 Elbows Friction
u2 =
hL = I
194
u 22 2g
[4.68 + 638f] = 8.844 ft[4.68 + 638(0.0205)] = 157.1 ft
p1 = 40.0 psig +
49.01 lb 1 ft 2 [20 ft + 8.844 ft + 157.1 ft] = 103.3 psig 3 ft 144 i n 2
Chapter 11
SERIES PIPE LINE SYSTEMS
195
196
Chapter 11
SERIES PIPE LINE SYSTEMS
197
198
Chapter 11
SERIES PIPE LINE SYSTEMS
199
200
Chapter 11
SERIES PIPE LINE SYSTEMS
201
44
202
Chapter 11
SERIES PIPE LINE SYSTEMS
203
204
Chapter 11
SERIES PIPE LINE SYSTEMS
205
206
Chapter 11
SERIES PIPE LINE SYSTEMS
207
208
Chapter 11
SERIES PIPE LINE SYSTEMS
209
11.51
210
Chapter 11
11.52
SERIES PIPE LINE SYSTEMS
211
CHAPTER TWELVE PARALLEL PIPE LINE SYSTEMS
212
Chapter 12
PARALLEL PIPE LINE SYSTEMS
213
214
Chapter 12
PARALLEL PIPE LINE SYSTEMS
215
216
Chapter 12
PARALLEL PIPE LINE SYSTEMS
217
218
Chapter 12
PARALLEL PIPE LINE SYSTEMS
219
220
Chapter 12
Compute NR values for Trial 1: N Ra = (5.114 ´ 105)(Qa) = (5.114 ´ 105)(0.50) = 2.557 ´ 105
Similarly, N Rb = 3.580 ´ 105; N Rc = 5.114 ´ 104; N Rd = 2.045 ´ 105 N Ra = 2.557 ´ 105; N Rf = 5.114 ´ 104
Compute f values for Eq. 9.9: 0.25
fa =
5.74 log (1.970 ´ 10-4 ) + (2.557 ´ 105 ) 0.9
2
= 0.0197
ka = (3410)(0.0197) = 67.18 Similarly: PIPE
f
k
Eq. for k
a
0.0197
67.18
ka = 3410fa
b
0.0194
66.00
kb = 3410fb
c
0.0233
47.65
kc = 2046fc
d
0.0200
68.26
kd = 3410fd
e
0.0197
67.18
ke = 3410fe
f
0.0233
47.65
kf = 2046ff
PARALLEL PIPE LINE SYSTEMS
221
222
Chapter 12
PARALLEL PIPE LINE SYSTEMS
223
224
Chapter 12
PARALLEL PIPE LINE SYSTEMS
225
226
Chapter 12
PARALLEL PIPE LINE SYSTEMS
227
228
Chapter 12
PARALLEL PIPE LINE SYSTEMS
229
230
Chapter 12
PARALLEL PIPE LINE SYSTEMS
231
232
Chapter 12
PARALLEL PIPE LINE SYSTEMS
233
234
Chapter 12
PARALLEL PIPE LINE SYSTEMS
235
236
Chapter 12
PARALLEL PIPE LINE SYSTEMS
237
12.13
238
Chapter 12
CHAPTER THIRTEEN PUMP SELECTION AND APPLICATION 13.1 to 13.14: 13.15
Answers to questions in text.
Affinity laws relate the manner in which capacity, head and power vary with either speed or
impeller diameter.
N2 0.5 N 1 Q1 0.5Q1 : Capacity cut in half. N1 N1
13.16
Q 2 Q1
13.17
N2 0.5 N 1 ha2 ha 2 ha1 0.25ha1 : ha divided by 4. N1 N1
13.18
N2 0.5 N 1 P 2 P1 P1 0.125P1 : P divided by 8. N1 N1
2
3
13.19 Q 2 Q 1
2
3
D2 0.75 D 1 Q1 0.75Q 1 : 25% reduction. D1 D1 2
2
13.20
D2 0.75 D1 ha 2 ha1 ha1 0.5625ha1 : 44% reduction. D1 D1
13.21
D2 0.75 D 1 P 2 P1 P1 0.422 P1 : 58% reduction. D1 D1
3
13.22 1
3
1 3 6 2 6 in casing-size of largest impeller 3 in nominal suction connection size 1
1 in nominal discharge connection size 2
13.23 1
1 3 10 2
13.24
1
1 36 2
13.25
Q 230 gal/min; P 22hp; e 53%; NPSHR 10.1 ft
PUMP SELECTION AND APPLICATION
239
13.26 At ha = 248 ft, emax = 57%: Q = 165 gal/min; P = 17.0 hp; NPSHR = 7.5 ft 13.27 From Problem 13.26, ha1 = 248 ft: Let ha2 = 1.15 ha1 = 285 ft Then Q 2 = 65 gal/min; P 2 = 8.5 hp; e 2 = 44%; NPSHR = 5.5 ft (approximate values)
13.28
6 in
7 in
8 in
9 in
10 in
ha
120 ft
195 ft
248 ft
320 ft
390 ft
Q
90 gal/min
130 gal/min
165 gal/min
210 gal/min
245 gal/min
emax
52%
55%
57%
58%
58.7%(Est)
13.29 NPSHR increases. 13.30 Throttling valves dissipate energy from fluid that was delivered by pump. When a lower speed is used to obtain a lower capacity, power required to drive pump decreases as the cube of the speed. Variable speed control is often more precise and it can be automatically controlled. 13.31 As fluid viscosity increases, capacity and efficiency decrease, power required increases. 13.32 Total capacity doubles. 13.33 The same capacity is delivered but the head capability increases to the sum of the ratings of the two pumps. 13.34 a.
Rotary or 3500 rpm centrifugal
b.
Rotary
c.
Rotary
d.
Reciprocating
e.
Rotary or high speed centrifugal
f.
1750 rpm centrifugal
g.
1750 rpm centrifugal or mixed flow
h.
Axial flow
1 3.35 Q 350 gal / min; H 550 ft; D 12in; N 3560 rpm
Ns =
N Q H
3/4
3560 350 0.75
(550)
1/4
= 586; Ds = DH Q
0.25
(12)(550) 350
= 3.1
Point in Fig. 13.53 lies in radial flow centrifugal region. 13.36 Q 2525 gal / min; H 200 ft; D 15in; N 1780 rpm
Ns =
N Q H
3/4
1780 2525 0.75
(200)
1/4
= 1682; Ds = DH Q
0.25
15(200) 2525
= 1.12
Point in Fig. 13.34 lies in radial flow centrifugal region. N Q
3/4
13.37 Ns = 3/4 : N = NsH Q H 240
0.75
(5000)(40) = 1000
= 795 rpm Chapter 13
13.38
Ns
N Q (1750) 5000 3913 H 3/ 4 (100)0.75
13.39
Ns
N Q (1750) 12000 2659 H 3/4 (300) 0.75
13.40
Ns
N Q (1750) 500 1237 H 3/ 4 (100)0.75
13.41
Ns
N Q (3500) 500 2475; Twice N s from 13.40 H 3/4 (100)0.75
13.42
Same method as Problems 13.38 to 13.41
a.
N s = 1463 radial
b.
N s = 260 too low
c.
N s = 3870 radial or mixed
d.
N s = 18.5 too low
e.
N s = 104 too low
f.
N s = 2943 radial
g.
Ns = 7260 mixed
h.
Ns = 24277 axial
13.43 to 13.46 See Text. 13.47
At inlet to pump. Pressure at this point and fluid properties affect pump operation, particularly the onset of cavitation. Pump manufacturer's NPSHR rating related to pump inlet.
13.48
Elevating reservoir raises pressure at pump inlet and increases NPSHa.
13.49
Large pipe sizes reduce flow velocity and reduce energy losses, thus increasing NPSHa.
13.50
Air pockets will not form in an eccentric reducer as they will in a concentric reducer.
13.51
N 2850 4.97 ft ( NPSH R ) 2 ( NPSH R )1 2 7.50 ft 3500 N
2
2
1
13.52
NSPH a hsp + hs − h p : Some data from Prob.7.14. 14.4 lb ft 3 144in 2 = 33.34 ft in 2 62.2lb ft 2 hs 10.0 ft; h f 6.0 ft;
a. hsp =
patm
=
b. Water at 180°F, hvp = 17.55 ft
h p 1.17 (Table 13.2) NPSH a 33.34 □10 □6 □1.17 16.17 ft
13.53
= 60.0 lb / ft 3 hsp = (14.4)(144) / (60.0) = 34.22 ft NSPH a 34.22□10□ 6□17.55 = 0.67 ft Cavitation will likely occur!
NPSH a hsp − hs −h f −h p 34.48 −4.8 − 2.2 −6.78 20.70 ft 14.7 lb ft 3 144in 2 patm hsp 34.48 ft in 2 61.4 lb ft 2 □ hs 4.8 ft; h f 2.2 ft; h p 6.78 ft (Table 13.2) Water at 140°F
PUMP SELECTION AND APPLICATION
241
13.54
NSPH a hsp hs□h f □h p 11.47 2.6 □0.80 □1.55 11.72 m patm 98.5 KN m3 11.47 m; hs 2.6 m; h f 0.80 m □ m 2 8.59 KN
hsp h p 13.55
p□p □
13.3 KN m3 1.55 m m 2 8.59 KN
NPSH a hsp□h s□h f □h p
patm 101.8 KN m 2 hsp 10.68 m; hs = 2.0 m; hup = 4.97 m □ m2 9.53 KN 2 2 □2 □2 L □3 L □2 h f f3 K1 3 f3T (20) 3 f 2 D 3 2g D 3 2g 2g 2g
Friction 3 in Foot valve Elbow Friction 2 in
NOTE : f3T 0.018 K1 75 f3T 75(0.017) 1.28
Q 300 L/min 1 m3 /s 1.05 m □22 (1.05)2 0.0560 m ; □3 A3 4.76810 □3 m 2 60000 L/min s 2 g 2(9.81) □ D (1.05)(0.0779) 5 D3 0.0779 N R3 3 3 2.3 10 ; 11694; f3 0.019 □ □ 4.610 □5 3.60 10□7 □2
Q 300 / 60000 2.31m □22 (2.31) 2 0.271 m ; A2 2.168 10 □3 s 2 g 2(9.81)
N R2
D □2 D2 (2.31)(0.0525) 3.4 105 ; 2 1141; f 2 0.0202 □7 □ □ 3.60 10
hsp psp /□ patm /□ (100.2 KN / m 2 ) / 1.48(9.81 KN / m3 ) 6.90 m
For all problems 13.56 □ 13.65: NPSHa = hsp ± hs □ hf □ hvp See Section 13.11, Equation 13-14. See Figure 13.37 for vapor pressure head hvp. 13.56
Find NSPH a : Carbon tetrachloride at 150°F; sg = 1.48; patm = 14.55 psia ; hs = □3.6 ft; hf = 1.84 ft hvp = 16.3 ft Open tank: hsp psp / / □ patm (14.55 lb / in 2 )(144 in 2 / ft) 1.48(62.4 lb / ft 3 ) 22.69 ft NSPH a : = 22.69 □ 3.6 □ 1.84 □16.3 = 0.95 ft (Low)
13.57
Find NPSHa: Carbon tetrachloride at 65C; sg = 1.48; patm = 100.2 kPa; hs = □1.2 m; hf = 0.72 m hvp = 4.8 m Open tank: hsp psp / □ patm / □ (100.2 KN / m 2 ) / 1.48(9.81 KN / m3 ) 6.90 m NPSHa = 6.90 □1.2 □0.72 □4.8 = 0.18 m (Very low)
242
Chapter 13
13.58
Find NPSHa: Gasoline at 40°C; sg = 0.65; patm = 99.2 kPa; hs = -2.7 m; hf = 1.18 m hvp = 14.0 m Open tank: hsp = psp/g = patm/g = (99.2 kN/m2)/[0.65(9.81 kN/m3)] = 15.55 m NPSHa = 15.55 - 2.7 - 1.18 - 14.0 = -2.33 m (Cavitation expected)
13.59
Find NPSHa: Gasoline at 110°F; sg = 0.65; patm = 14.28 psia; hs = +4.8 ft; hf = 0.87 ft hvp = 51.0 ft Open tank: hsp = psp/g = patm/g = (14.28 lb/in2)(144 in2/ft2)/[0.65(62.4 lb/ft3)] = 50.70 ft NPSHa = 50.70 + 4.8 - 0.87 - 51.0 = 3.63 ft
13.60
Find NPSHa: Carbon tetrachloride at 150°F; sg = 1.48; patm = 14.55 psia; hs = +3.66 ft; hf = 1.84 ft hvp = 16.3 ft Open tank: hsp = psp/g = patm/g = (14.55 lb/in2)(144 in2/ft2)/[1.48(62.4 lb/ft2)] = 22.69 ft NPSHa = 22.69 + 3.67 - 1.84 - 16.3 = 8.22 ft
13.61
Find NPSHa: Gasoline at 110°F; sg = 0.65; patm = 14.28 psia; hs = -2.25 ft; hf = 0.87 ft hvp = 51.0 ft Open tank: hsp = psp/g = patm/g = (14.28 lb/in2)(144 in2/ft2)/[0.65(62.4 lb/ft3)] = 50.70 ft NPSHa = 50.70 - 2.25 - 0.87 - 51.0 = -3.42 ft (Cavitation expected)
13.62
Find NPSHa: Carbon tetrachloride at 65°C; sg = 1.48; patm = 100.2 kPa; hs = +1.2 m; hf = 0.72 m hvp = 4.8 m Open tank: hsp = psp/g = patm/g = (100.2 kN/m2)/[1.48(9.81 kN/m3)] = 6.90 m NPSHa = 6.90 + 1.2 - 0.72 - 4.8 = 2.58 m
13.63
Find NPSHa: Gasoline at 40°C; sg = 0.65; patm = 99.2 kPa; hs = +0.65 m; hf = 1.18 m hvp = 14.0 m Open tank: hsp = psp/g = patm/g = (99.2 kN/m2)/[0.65(9.81 kN/m3)] = 15.55 m NPSHa = 15.55 + 0.65 - 1.18 - 14.0 = 1.02 m
13.64
Find required pressure above the fluid in a closed, pressurized tank so that NPSHa ³ 4.0 ft. Propane at 110°F; sg = 0.48; patm = 14.32 psia; hs = +2.50 ft; hf = 0.73 ft hvp = 1080 ft Solve Eq. 13-14 for required hsp = NPSHa - hs + hf + hvp = 4.0 - 2.5 + 0.73 + 1080 = 1082.2 ft Psp = g hsp = (0.48)(62.4 lb/ft3)(1082.2 ft)(1 ft2/144 in2) = 225.1 lb/in2 = 225.1 psia Gage pressure: ptank = psp - patm = 225.1 psia - 14.32 psia = 210.8 psig
13.65
Find required pressure above the fluid in a closed, pressurized tank so that NPSHa ³ 150.0 m. Propane at 45°C; sg = 0.48; patm = 9.47 kPa absolute; hs = -1.84 m; hf = 0.92 m hvp = 340 m Solve Eq. 13-14 for required hsp = NPSHa - hs + hf + hvp = 1.50 + 1.84 + 0.92 + 340 = 344.3 m Psp = g hsp = (0.48)(9.81 kN/m3)(344.3 m) = 1621 kN/m2 = 1621 kPa absolute Gage pressure: ptank = psp - patm = 1621 kPa - 98.4 kPa = 1523 kPa gage
PUMP SELECTION AND APPLICATION
243
13.66
244
Chapter 13
CHAPTER FOURTEEN OPEN - CHANNEL FLOW
OPEN- CHANNEL FLOW
245
246
Chapter 14
14.14
See Prob. 14.8 for d = 0.50 m; Prob. 14.9 for d = 2.50 m S = 0.50% = 0.005, n = 0.017 a. d = 0.50 m; A = 0.50 m2; R = 0.25 m 1.00 1.00 Q= AR 2 / 3 S 1/ 2 = (0.50)(0.25)2/3(0.005)1/2 = 0.825 m3/s n 0.017 b. d = 2.50 m; A = 9.72 m2; R = 0.909 m 1.00 Q= (9.72)(0.909) 2 / 3 (0.005)1/ 2 = 37.9 m3/s 0.017
14.15
a.
Depth = 3.0 ft: é1 ù A = (3)(12) + 2 ê (3)(3) ú = 45 ft 2 ë2 û
WP = 12 + 2(4.243) = 20.485 ft R = A/WP = 45/20.485 = 2.197 ft 1.49 Q= (45)(2.197) 2 / 3 (0.00015)1/ 2 = 34.7 ft3/s 0.04 Depth = 6.0 ft:
b.
é1 ù A = (4)(12) + 2 ê (4)(4) ú ë2 û é1 ù + (2)(40) + 2 ê (2)(2) ú ë2 û A = 148 ft2 WP = 2(2.828) + 2(10) + 2(5.657) + 12 = 48.97 ft R = A/WP = 148/48.97 = 3.022 ft 1.49 Q= (148)(3.022)2 / 3 (0.00015)1/ 2 = 141.1 ft3/s 0.04
14.16
nQ (0.015)(150) = 47.75 = 1/ 2 1.49 S (1.49)(0.001)1 / 2 A 10 y A = 10y; WP = 10 + 2y; R = = WP 10 + 2 y
AR2/3 =
AR
2/3
é 10 y ù = 10y ê ú ë10 + 2 y û
2/3
Find y such that AR2/3 = 47.75
By trial and error, y = 3.10 ft; AR
2/3
é 10(3.1) ù = 10(3.1) ê ú ë10 + 2(3.1) û
OPEN- CHANNEL FLOW
2/3
= 47.78
247
248
Chapter 14
OPEN- CHANNEL FLOW
249
250
Chapter 14
OPEN- CHANNEL FLOW
251
252
Chapter 14
Trapezoid: y =
A 0.4545 = = 0.5126 ft; R = y/2 = 0.2563 ft 1.73 1.73 2
é 0.02768 ù S= ê = 0.00471; 2/ 3 ú ë (0.2563) û A A 0.4545 yh = = = 0.3841 ft = T 2.309 y 2.309(0.5126)
NF =
2.75 (32.2)(0.3841)
Semicircle: A =
p y2 2
;y=
= 0.782 < 1.0 Subcritical
2A
p
=
2(0.4545)
p
= 0.5379 ft
2
é 0.02768 ù R = y/2 = 0.269 ft: S = ê = 0.00441 2/3 ú ë (0.269) û A p y2 p y yh = = = = 0.4225 ft T 2(2 y ) 4
NF =
14.39
a.
2.75 (32.2)(0.4225)
When y = yc, NF = 1.0 = é Q ù Then y = ê ú êë b g N F úû
b.
= 0.746 < 1.0 Subcritical
2/3
u gy h
=
Q Q Q = = A gy (by ) gy b g y 3 / 2
é ù 5.5 =ê ú ë 2.0 9.81(1.0) û
2/3
= 0.917 m = yc
Minimum E occurs when y = yc: From Eq. 14.18: Q2 Q2 Q2 Emin = yc + = + = y + y c c 2 gA2 2 g (byc )2 2 gb 2 yc2 = 0.917 +
5.52 2(9.81)(2.0) 2 (.917) 2
Emin = 1.375 m c. d.
e.
See spreadsheet and graph for values of y versus E. 5.52 For y = 0.50 m; E = 0.50 + 2(9.81)(2.0) 2 (0.5) 2 = 2.042 m From spreadsheet, alternate depth = 1.934 m Q Q 5.5 u = = ; NF = A by 2.0 y gy For y = 0.5 m, u = 5.50 m/s; NF = 2.48 For y = 1.934 m, u = 1.418 m/s; NF = 1.325
u=
OPEN- CHANNEL FLOW
253
254
Chapter 14
14.40
Circular Channel Q= 1.45 m3/s D= 1.20 m
y(m) q (rad) y less than D 0.10 1.171 0.20 1.682 0.25 1.896 0.30 2.094 0.40 2.462 0.50 2.807 0.60 3.142 y greater than D 0.658 3.335 0.70 3.476 0.80 3.821 0.90 4.189 0.913 4.238 1.00 4.601 1.199 6.168 1.20 6.283
n=
0.015 Finished concrete
A(m2)
T(m)
yh(m)
NF
E(m)
0.0450 0.1239 0.1707 0.2211 0.3300 0.4460 0.5655
0.6633 0.8944 0.9747 1.0392 1.1314 1.1832 1.2000
0.068 0.139 0.175 0.213 0.292 0.377 0.471
39.478 10.039 6.481 4.539 2.597 1.690 1.193
52.982 7.181 3.928 2.492 1.384 1.039 0.935
Velocity (m/s) 32.211 11.703 8.494 6.558 4.394 3.251 2.564
0.6349 0.6849 0.8010 0.9099 0.9231 1.0071 1.1309 1.1310
1.1944 1.1832 1.1314 1.0392 1.0240 0.8944 0.0693 0.0000
0.532 1.000 0.579 0.888 0.708 0.687 0.876 0.544 0.901 0.528 1.126 0.433 16.330 0.101 #DIV/0! #DIV/0!
0.924 0.928 0.967 1.029 1.039 1.106 1.283 1.284
2.284 2.117 1.810 1.594 1.571 1.440 1.282 1.282
Given y Critical depth
Alt depth for given y Nearly full pipe depth Full pipe (yh and NF undefined)
Part f of problem: Slopes for given y and alternate depth y(m) 0.50 0.913
R(m) 0.2649 0.3630
S 0.0140 0.0021
S for given y S for alternate depth
Problem 14.40 Procedure: Refer to Table 14.2 for geometry of a partially full circular pipe. a)
For given Q, D, and y: Compute q , A, T using equations in Table 14.2.
(
)
Compute NF = v / gyh = Q A gyh . Iterate values of y until NF = 1.000. See spreadsheet: yc = 0.658 m. b)
Minimum specific energy: E= y + v2/2g = y + Q2/(2gA2) From spreadsheet, with y = yc = 0.658 m: Emin = 0.924 m.
c)
Specific energy versus y: See spreadsheet using equation in b).
d)
Specific energy for y = 0.50 m: E = 1.039 m from spreadsheet. Iterate on y to find alternate depth for which E = 0.1039 m. See spreadsheet: yalt = 0.913 m.
e)
Velocity = v = Q/A, NF = v / gyh = Q / A gyh . See spreadsheet
(
)
For y = 0.50 m: v = 3.251 m/s, NF = 1.690. Supercritical For y = 0.913 m: v = 1.571 m/s, NF = 0.528. Subcritical. OPEN- CHANNEL FLOW
255
f)
Compute WP = q D/2 (See Table 14.2). Compute R = A/WP. 2
é nQ ù Compute S: ê 2 / 3 ú ë AR û See spreadsheet: For y = 0.50 m, S = 0.0140. For y = 0.913 m, S = 0.0021.
14.41
Triangular channel z= 1.5 Q= 0.68 ft3/s y(ft) 0.20 0.25 0.30 0.40 0.418 0.50 0.60 0.70 0.80 0.90 1.00 1.065 1.10 1.20 1.30 1.40 1.50
A(ft2) 0.060 0.094 0.135 0.240 0.262 0.375 0.540 0.735 0.960 1.215 1.500 1.701 1.815 2.160 2.535 2.940 3.375
n = 0.022 V(ft/s) 7.253 2.594
0.400
T(ft) 0.60 0.75 0.90 1.20 1.254 1.50 1.80 2.10 2.40 2.70 3.00 3.20 3.30 3.60 3.90 4.20 4.50
yh(ft) 0.100 0.125 0.150 0.200 0.209 0.250 0.300 0.350 0.400 0.450 0.500 0.533 0.550 0.600 0.650 0.700 0.750
NF 6.316 3.615 2.292 1.116 1.000 0.639 0.405 0.276 0.197 0.147 0.113 0.097 0.089 0.072 0.059 0.049 0.041
E(ft) 2.194 1.067 0.694 0.525 0.523 0.551 0.625 0.713 0.808 0.905 1.003 1.067 1.102 1.202 1.301 1.401 1.501
Given y Critical depth
Alternate depth
Slopes at given depth and alternate depth y(ft) R(ft) S 0.25 0.10401 0.521 Slope for given depth 1.065 0.44307 0.000229 Slope for alternate depth Problem 14.41 Procedure: Refer to Table 14.2 for geometry of a triangular channel. a)
For given Q, z, and y: Compute A, T using equations in Table 14.2.
(
)
Compute NF = v / gyh = Q / A gyh . Iterate values of y until NF = 1.000. See spreadsheet: yc = 0.418 ft.
256
b)
Minimum specific energy: E = y + v2/2g = y + Q2/(2gA2) From spreadsheet, with y = yc = 0.418 ft: Emin = 0.523 ft.
c)
Specific energy versus y: See spreadsheet using equation in b).
d)
Specific energy for y = 0.25 ft: E = 1.067 ft from spreadsheet. Iterate on y to find alternate depth for which E = 0.1067 ft. See spreadsheet: yalt = 1.065 ft.
Chapter 14
e)
(
)
Velocity = v = Q/A, NF = v / gyh = Q / A gyh . See spreadsheet For y = 0.25 ft: v = 7.253 ft/s, NF = 3.615. Supercritical For y = 1.065 ft: v = 0.400 ft/s, NF = 0.097. Subcritical.
f)
Compute WP = 2 y 1 + z 2 (See Table 14.2). Compute R = A/WP. 2
é nQ ù Compute S: ê 2 / 3 ú ë AR û See spreadsheet: For y = 0.25 ft, S = 0.0521. For y = 1.065 ft, S = 0.000229.
14.42
Trapezoidal channel z= 0.75 Q= 0.80 ft3/s y(ft) 0.05 0.1 0.1288 0.20 0.25 0.30 0.40 0.4770 0.50 0.60 0.70 0.80 0.90 1.00 1.065 1.10 1.20 1.30 1.40 1.50
A(ft2) 0.152 0.308 0.399 0.630 0.797 0.968 1.320 1.602 1.688 2.070 2.468 2.880 3.308 3.750 4.046 4.208 4.680 5.168 5.670 6.188
n = 0.013 b = 3.000 ft V(ft/s) 5.267 2.602 2.006 1.270 1.004 0.827 0.606 0.499 0.474 0.386 0.324 0.278 0.242 0.213 0.198 0.190 0.171 0.155 0.141 0.129
T(ft) 3.08 3.15 3.19 3.30 3.38 3.45 3.60 3.72 3.75 3.90 4.05 4.20 4.35 4.50 4.60 4.65 4.80 4.95 5.10 5.25
Yh(ft) 0.049 0.098 0.125 0.191 0.236 0.280 0.367 0.431 0.450 0.531 0.609 0.686 0.760 0.833 0.880 0.905 0.975 1.044 1.112 1.179
NF 4.177 1.467 1.000 0.512 0.364 0.275 0.176 0.134 0.125 0.093 0.073 0.059 0.049 0.041 0.037 0.035 0.031 0.027 0.024 0.021
E(ft) 0.481 0.205 0.191 0.225 0.266 0.311 0.406 0.481 0.503 0.602 0.702 0.801 0.901 1.001 1.066 1.101 1.200 1.300 1.400 1.500
Given y Critical depth
Alternate depth
Slopes at given depth and alternate depth y(ft) R(ft) S 0.05 0.0486 0.264 Slope for given depth 0.477 0.3820 0.000152 Slope for alternate depth Problem 14.42 Procedure: Refer to Table 14.2 for geometry of a trapezoidal channel. a)
For given Q, b, z, and y: Compute A, T using equations in Table 14.2.
(
)
Compute NF = v / gyh = Q / A gyh . Iterate values of y until NF = 1.000. See spreadsheet: yc = 0.1288 ft. b)
Minimum specific energy: E = y + v2/2g = y + Q2/(2gA2) From spreadsheet, with y = yc = 0.1288 ft: Emin = 0.191 ft.
c)
Specific energy versus y: See spreadsheet using equation in b).
OPEN- CHANNEL FLOW
257
258
Chapter 14
14.48
Q = 2.48H5/2 H(in) H(ft) 0 0 2 .167 4 .333 6 .500 8 .667 10 .833 12 1.000
Q(ft3/sec) 0 .0283 .159 .439 .900 1.57 2.48
14.49
Q = 3.07H1.53 H1.53 = Q/3.07 \ H = (Q/3.07)1/1.53 Min Q = 0.09 ft3/sec H = (0.09/3.07)1/1.53 = (0.0293)0.654 = 0.10 ft Max Q = 8.9 ft3/sec H = (8.9/3.07)1/1.53 = (2.90)0.654 = 2.01 ft
14.50
L = 8.0 ft; Qmin = 3.5 ft3/s; Qmax = 139.5 ft3/s Q = 4.00 LHn; H = [Q/4.00)L)1/n = [Q/(4.00)(8.0)]1/1.61 = [Q/32]0.621 Qmin = 3.5 ft3/s; H = [3.5/32]0.621 = 0.253 ft Qmax = 139.5 ft3/s; H = [139.5/32]0.621 = 2.496 ft H(ft) 0.25 1.00 1.50 2.00 2.25 2.50
14.51
Q(ft3/sec) 3.434 32.000 61.469 97.681 118.077 139.905
a)
Q = 50 ft3/s; L = 4.0 ft; Q = 4.00 LHn; n = 1.58 H = [Q/(4.00)L]1/n = [50/(4.00)(4.0)]1/1.58 = [3.125]0.633 = 2.06 ft
b)
L = 10.0 ft Q = (3.6875L + 2.5)H1.6 = 39.375H1.6 1/1.6
æ Q ö H= ç ÷ è 39.375 ø
14.52
æ 50 ö =ç ÷ è 39.375 ø
0.625
= 1.155 ft
Trapezoidal channel—Long-throated flume - Design C: H = 0.84 ft; Q = K1(H + K2)n K1 = 16.180; K2 = 0.035; n = 1.784 Q = 16.180[0.84 + 0.035]1.784 = 12.75 ft3/s = Q
OPEN- CHANNEL FLOW
259
14.53
Trapezoidal channel—Long-throated flume Design B: H = 0.65 ft; Q = K1(H + K2)n K1 = 14.510; K2 = 0.053; n = 1.855 Q = 14.510[0.65 + 0.053]1.855 = 7.547 ft3/s = Q
14.54
Rectangular channel—Long-throated flume Design A: H = 0.35 ft; Q = bcK1(H + K2)n bc = 0.500 ft; K1 = 3.996; K2 = 0.000; n = 1.612 Q = (0.500)(3.996)[0.35 + 0.000] 1.612 = 0.368 ft3/s = Q
14.55
Rectangular channel—Long-throated flume Design C: H = 0.40 ft; Q = bcK1(H + K2)n bc = 1.500 ft; K1 = 3.375; K2 = 0.011; n = 1.625 Q = (1.500)(3.375)[0.40 + 0.011] 1.625 = 1.194 ft3/s = Q
14.56
Circular channel—Long-throated flume Design B: H = 0.25 ft; Q = D2.5 K1 (H/D + K2)n D = 2.00 ft; K1 = 3.780; K2 = 0.000; n = 1.625 Q = (2.00)2.5(3.780)[0.25/2.00 + 0.000]1.625 = 0.729 ft3/s = Q
14.57
Circular channel—Long-throated flume Design A: H = 0.09 ft; Q = D2.5 K1 (H/D + K2)n bc = 1.00 ft; K1 = 3.970; K2 = 0.004; n = 1.689 Q = (1.00)2.5(3.970)[0.09/1.00 + 0.004]1.689 = 0.0732 ft3/s = Q
14.58
Rectangular channel—Long-throated flume Design B: Q = 1.25 ft3/s; Find H. Q = bc K1(H + K2)n; bc = 1.00 ft; K1 = 3.696; K2 = 0.004; n = 1.617 Solving for H: H = [Q/(bcK1)]1/n K2 = [1.25/(1.0)(3.696)]1/1.617 0.004 = 0.507 ft = H
14.59
Circular channel—Long-throated flume Design C: Q = 6.80 ft3/s; Find H. Q = D2.5 K1(H/D + K2)n; D = 3.000 ft; K1 = 3.507; K2 = 0.000; n = 1.573 Solving for H: H = D{[Q/D2.5)(K1)]1/n K2} = 3.0{[6.80/(3.02.5)(3.507)]1/1.573 0.00} = 0.797 ft = H
14.60
Select a long-throated flume for 30 gpm < Q < 500 gpm. Using 449 gpm = 1.0 ft 3/s, 0.0668 ft3/s < Q < 1.114 ft3/s; Select Circular channel; Design A; Q D2.5 K1(H/D + K2)n H = D{[Q/D2.5)(K1)]1/n K2}; D = 1.000 ft; K1 = 3.970; K2 = 0.004; n = 1.689 For Q = 0.0668 ft3/s: H = 1.0{[0.0668/(1.02.5)(3.970)]1/1.689 0.004} = 0.0851 ft = H For Q = 1.114 ft3/s: H = 1.0{[1.114/(1.02.5)(3.970)]1/1.689 0.004} = 0.467 ft = H H 0.10 0.20 0.30 0.40
260
Q(ft3/s) 0.087 0.271 0.531 0.859
Q(gpm) 39.06 121.7 238.4 385.7
Chapter 14
14.61
Given 50 m3/h < Q , 180 m3/h; Convert to ft3/s; 0.4907 ft3/h < Q < 1.766 ft3/h Specify Rectangular channel long-throated flume, Design B. Find H for each limiting flow rate. Q = bc K1(H + K2)n; bc = 1.00 ft; K1 = 3.696; K2 = 0.004; n = 1.617 Solving for H: Hmin = [Q/(bcK1)]1/n K2 = [0.4907/(1.0)(3.696)]1/1.617 0.004 = 0.2829 ft = Hmin Converting to m: Hmin = 0.0863 m for Q = 50 m3/h Hmax = [Q/bcK1)]1/n K2 = [1.766/(1.0)(3.696)1/1.617 0.004 = 0.629 ft = Hmax Converting to m: Hmax = 0.1917 m for Q = 180 m3/h H(m) 0.100 0.125 0.150 0.175
OPEN- CHANNEL FLOW
H(ft) 0.328 0.410 0.492 0.524
Q(ft3/s) 0.622 0.888 1.190 1.524
Q(m3/h) 63.38 90.49 121.3 155.3
261
CHAPTER FIFTEEN FLOW MEASUREMENT
262
Chapter 15
FLOW MEASUREMENT
263
15.6
Find Dp across Venturi, Q = 600 gal/min(1 ft 3/s)(449 gal/min) = 1.336 ft3/s u 1 = Q/A1 = (1.336 ft3/s)/(0.0844 ft2) = 15.12 ft/s Kerosene at 77°F; g = 51.2 lb/ft3; n = 2.14 ´ 10-5 ft2/s NR = u 1D1/v = (15.12)/(0.3355)/(2.14 ´ 10-5) = 2.37 ´ 105; Then C = 0.984 From Eq. (15-4), solving for p1 - p2 = Dp Dp = [u 1/C]2 [(A1/A2)2 - 1] [g /2g] = [15.12/0.984]2 [(0.0884/0.01227)2 - 1][51.2/(2(32.2))] Dp = 9551 lb/ft2 (1 ft2/144 in2) = 66.3 psi
15.7
Find Q through an orifice meter. D1 = 97.2 mm; A1 = 7.419 ´ 10-3 m2; d = 50 mm = 0.050 m A2 = 1.963 ´ 10-3 m2; A1A2 = 3.778; d/D = 0.05/0.0972 = 0.514; Trial 1: C = 0.608 for NR = 1 ´ 105 Ethylene glycol at 25°C: g = 10.79 kN/m3; n = 1.47 ´ 10-5 m2/s é 2 gh[g m / g eg - 1] ù ú 2 ë ( A1 / A2 ) - 1 û
1/ 2
u1 = C ê
é 2(9.81)(0.095) /[132.8 /10.79 - 1] ù = (0.608) ê ú [3.778]2 - 1 ë û
1/ 2
u = 0.766 m/s; Iteration: New NR = 5.07 ´ 103; New C = 0.623 New u 1 = 0.785 m/s; New NR = 5.19 ´ 103; New C = 0.623 - Unchanged. Final value of Q = A1u 1 = (7.419 ´ 10-3 m2)(0.785 m/s) = 5.824 ´ 10-3 m3/s = Q 15.8
Orifice meter. Propyl alcohol at 25°C; g = 7.87 kN/m3; n = 2.39 ´ 10-6 m2/s 40 mm OD ´ 3.0 mm wall steel tube: D1 = 34.0 mm = 0.0340 m; A1 = 9.079 ´ 10-4 m2 Let b = 0.40 = d/D; Then d = 0.40 D = 0.40(34.0 mm) = 11.8 mm = 0.01176 m A2 = p D2/4 = p (0.01176 m)2/4 = 1.09 ´ 10-4 m2; A1/A2 = 8.36 From Eq. (15-6), solve for h in mercury manometer; g m = 132.8 kN/m3 h=
[( A1 / A2 ) 2 - 1]u 12 2 gC 2 [(g m / g a ) - 1)]
u 1min = Qmin/A1 = (1.0 m3/h)/(9.079 ´ 10-4 m2)(1 h)/(3600 s) = 0.306 m/s NR1 = u 1D1/n = (0.306)(0.0340)/(2.39 ´ 10-6 ) = 5.1 ´ 103; C = 0.619 hmin =
2 2 2 2 [( A1 / A2 ) - 1]u 1min [(8.36) - 1](0.306 m/s) = = 0.0273 m = 27.3 mm 2 gC 2 [(g m / g a ) - 1] 2(9.81 m/s 2 )(0.619) 2 [(132.8 / 7.87) - 1]
Similarly, u 1max = 0.730 m/s; NR = 1.06 ´ 103; C = 0.610 hmax = 0.1754 m = 175.4 mm 15.9
Flow nozzle — Design: Install in 5 1/2 inch Type K copper tube; D1 = 4.805 in; A1 = 0.1259 ft2 Specify the throat diameter d. NOTE: Multiple solutions possible. Fluid: Linseed oil at 77°F; g = 58.0 lb/ft3; n = 3.84 ´ 10-4 ft2/s Use mercury manometer with scale range 0 - 8 inHg Range of flow rate: Qmin = 700 gpm = 1.559 ft 3/s; Qmax = 1000 gpm = 2.227 ft 3/s Velocity in pipe: u 1-min = Qmin/A1 = 12.38 ft/s; u 1-max = Qmax/A1 = 17.69 ft/s Reynolds No.: NR-min = u 1-min D1/n = 1.29 ´ 104; NR-max = u 1-max D1/n = 1.84 ´ 104 From Figure 15-5: Cmin = 0.955; Cmax = 0.961
264
Chapter 15
a)
Use Eq. (15-6) and solve for A2 from which we can obtain the throat diameter d A2 =
A1 é BhC 2 ù ê u 2 + 1ú ë 1 û
1/ 2
Where B = 2g[(g m/g Lo) - 2(32.2)[844.9/58.0) - 1] = 873.7 Let h = 8.0 in = 0.667 ft when u = u 1-max = 17.69 ft/s and C = 0.961 A2 =
0.1259 1/ 2
é (873.7)(0.667)(0.961) ù + 1ú ê 2 (17.69) ë û 2
= 0.07635 ft2 = p d2/4
Then d = (4A2/p )1/2 = [(4)(0.07635)/p ]1/2 = 0.3118 ft = 3.741 in = Throat diameter b)
Use Eq. (15-6) and solve for h to determine the manometer reading when Q = Qmin. (u 1 / C )2 [( A1 / A2 ) 2 - 1] B For u 1 = u 1-min = 12.38 ft/s and C = 0.955,
h=
h=
(u 1 / C ) 2 [( A1 / A2 ) 2 - 1 [(12.38 / 0.955) 2 [(0.1259 / 0.07635) 2 - 1] = = 0.3306 ft = 3.97 in B 873.73
Summary:
15.10
Nozzle throat diameter = d = 3.741 in When Q = 1000 gpm, h = 8.00 in manometer deflection When Q = 700 gpm, h = 3.97 in manometer deflection
Orifice Meter — Design: Install in 12 inch ductile iron pipe; D1 = 12.51 in = 1.043 ft; A1 = 0.8536 ft2 Specify the orifice diameter d. NOTE: Multiple solutions possible. Fluid: Water at 60°F; g = 62.4 lb/ft3; n = 1.21 ´ 10-5 ft2/s Use mercury manometer with scale range 0 - 12 inHg Range of flow rate: Qmin = 1500 gpm = 3.341 ft 3/s; Qmax = 4000 gpm = 8.909 ft 3/s Velocity in pipe: u 1-min = Qmin/A1 = 3.914 ft/s; u 1-max = Qmax/A1 = 10.44 ft/s Reynolds No.: NR-min = u 1-min D1/n = 3.23 ´ 105; NR-max = u 1-max D1/n = 8.63 ´ 105 From Figure 15-7: Cmin = 0.610; Cmax = 0.612 [Assumed b = d/D = 0.70] a)
Use Eq.(15-6) and solve for A2 from which we can obtain the throat diameter d. A2 =
A1 é BhC 2 ù ê u 2 + 1ú ë 1 û
1/ 2
Where B = 2g[(g m/g w) -1] = 2(32.2)[(844.9/62.4) - 1] = 807.6 Let h = 10.0 in = 0.833 ft when u = u 1-max = 10.44 ft/s and C = 0.610 FLOW MEASUREMENT
265
266
Chapter 15
CHAPTER SIXTEEN FORCES DUE TO FLUIDS IN MOTION
DRAG AND LIFT
267
268
Chapter 17
DRAG AND LIFT
269
270
Chapter 17
DRAG AND LIFT
271
272
Chapter 17
DRAG AND LIFT
273
274
Chapter 17
DRAG AND LIFT
275
276
Chapter 17
DRAG AND LIFT
277
CHAPTER SEVENTEEN DRAG AND LIFT 17.1
17.2
FD = CD æç 1 r u 2 ö÷ A: A = D ´ L = (0.025 m)(1 m) = 0.025 m 2 è2 ø a.
Water at 15°C: ρ = 1000 kg/m3; n = 1.15 ´ 10-6 m2/s u D (0.15)(0.025) NR = = = 3.26 ´ 103; Then CD = 0.90 (Fig. 17.3) n 1.15 ´ 10-6 FD = (0.90)(0.50)(1000 kg/m3)(0.15 m/s)2(0.025 m2) = 0.253 kg×m/s2 = 0.253 N
b.
Air at 10°C: ρ = 1.247 kg/m3; n = 1.42 ´ 10-5 m2/s u D (0.15)(0.025) NR = = = 2.64 ´ 102; Then CD = 1.30 n 1.42 ´ 10-5 FD = (1.30)(0.5)(1.247 kg/m2)(0.15 m/s)2(0.025 m2) = 4.56 ´ 10-4 N
Assume a smooth sphere a.
15 km 103 m 1h p D 2 p (2.0) 2 ´ ´ = 4.17 m/s A= = = 3.142 m 2 h km 3600 s 4 4 u D (4.17)(2.0) = = 6.27 ´ 105; Then CD = 0.20 (Fig. 17.3) NR= -5 1.33 ´ 10 n FD = CD æç 1 r u 2 ö÷ A = (0.20)(0.5)(1.292 kg/m3)(4.17 m/s)2(3.142 m2) = 7.06 N è2 ø
u=
Similarly for (b), (c), and (d):
278
u (km/h)
u (m/s)
NR
CD
FD(N)
(a)
15
4.17
6.27 ´ 105
0.20
7.06
(b)
30
8.33
1.25 ´ 106
0.20
28.16
(c)
60
16.67
2.50 ´ 106
0.20
112.7
(d)
120
33.33
5.01 ´ 106
0.20
450.7
(e)
160
44.44
6.68 ´ 106
0.20
801.9
Chapter 17
DRAG AND LIFT
279
280
Chapter 17
DRAG AND LIFT
281
282
Chapter 17
a.
Square cylinder: L = 9 in ´ 1 ft/12 in = 0.75 ft u L (147)(0.75) NR = = 9.42 ´ 105 ® Use CD » 2.10 Fig. 17.3 Extrapolated = n (1.17 ´ 10-4 ) ë [See Prob. 17.14 for n ] NOTE: Extrapolated values FD = (30.12)(2.10)(3.75) = 237 lb should be verified.
b.
Assume CD = 1.60 — Square cylinder — Point first orientation FD = (30.12)(1.60)(5.303) = 256 lb Highest
Circular cylinder: D = 9.0 in = 0.75 ft u D (147)(0.75) NR = = 9.42 ´ 105 ® CD = 0.30 (Fig. 17.3) = n (1.17 ´ 10-4 ) FD = (30.12)(0.30)(3.75) = 33.9 lb Note that CD would rise to approximately 1.30 at lower speed. But, because FD is proportional to u 2, drag force would likely be lower. c.
d.
17.17
Elliptical cylinder: L = 18 in = 1.50 ft; h = 9.00 in = 0.75 ft; L/h = 2.0 u L (147)(1.50) NR = = = 1.88 ´ 106 ® Use CD » 0.25 Fig. 17.5 Extrapolated -4 n 1.16 ´ 10 FD = (30.12)(0.25)(3.75) = 28.2 lb Lowest
65 mi 5280 ft 1h FD = CD æç 1 r u 2 ö÷ A : u = ´ ´ = 95.3 ft/s h mi 3600 s è2 ø
A = DL = (3.50 in)(92 in)1 ft2/144 in2 = 2.236 ft2 u D (95.3)(3.50 /12) NR = = = 2.38 ´ 105 ® CD = 1.10 Fig. 17.3 -4 n 1.17 ´ 10 ë [See Problem 17.14 for v] FD = (1.10)(0.5)(2.80 ´ 10-3)(95.3)2(2.236) = 31.3 lb 17.18
FDtot = FDdisks + FDtubes : u = 100 mi/hr = 147 ft/s (See Prob. 17.16): CDdisks = 1.11 (Table 17.1) N Rtubes =
u D (147)(4.5 /12) = = 4.71 ´ 105 ® Use CD = 0.33 Fig. 17.3 -4 n 1.17 ´ 10 T
ë [See Prob. 17.14]
p D (3)(p )(56 /12)2
æ 4.5 öæ 90 ö 2 = 51.31 ft2; Atubes = DL = ç ÷ç ÷ = 2.813 ft 4 4 è 12 øè 12 ø æ1 ö æ1 ö FDtot = CDdisks ç r u 2 ÷ Ad + CD ç r u 2 ÷ At = (1.11)(0.5)(2.80 ´ 10-3)(147)2(51.31) è2 ø è2 ø 2
Adisks = 3
+ (0.33)(0.5)(2.80 ´ 10-3)(147)2(2.813) = 1723 lb + 28.1 lb = 1751 lb Disks Tubes Total
DRAG AND LIFT
283
284
Chapter 17
DRAG AND LIFT
285
286
Chapter 17
CHAPTER EIGHTEEN FANS, BLOWERS, COMPRESSORS, AND THE FLOW OF GASES Units and conversion factors 18.1
Q = 2650 cfm ´
1 ft 3 /s = 44.17 ft3/s 60 cfm
18.2
Q = 8320 cfm ´
1 ft 3 /s = 138.7 ft3/s 60 cfm
18.3
Q = 2650 cfm ´
1 m 3 /s = 1.25 m3/s 2120 cfm
18.4
Q = 8320 cfm ´
1 m 3 /s = 3.92 m3/s 2120 cfm
18.5
u = 1140 ft/min ´
18.6
u = 5.62 m/s ´
18.7
p = 4.38 in H2O ´
18.8
Q = 4760 cfm ´
18.9
p = 925 Pa ´
1.0 in H 2 O = 3.72 in H2O 248.8 Pa
18.10
p = 925 Pa ´
1.0 psi = 0.134 psi 6895 Pa
1.0 m/s = 5.79 m/s 197 ft/min
3.28 ft/s = 18.43 ft/s m/s 1.0 psi = 0.158 psi 27.7 in H 2 O
1.0 m 3 /s = 2.25 m3/s 2120 cfm 248.8 Pa p = 0.75 in H2O ´ = 186.6 Pa 1.0 in H 2 O
FANS, BLOWERS, COMPRESSORS, AND THE FLOW OF GASES
287
288
Chapter 18
FANS, BLOWERS, COMPRESSORS, AND THE FLOW OF GASES
289
290
Chapter 18
FANS, BLOWERS, COMPRESSORS, AND THE FLOW OF GASES
291
292
Chapter 18
FANS, BLOWERS, COMPRESSORS, AND THE FLOW OF GASES
293
294
Chapter 18
FANS, BLOWERS, COMPRESSORS, AND THE FLOW OF GASES
295
CHAPTER NINETEEN FLOW OF AIR IN DUCTS
296
Chapter 19
19.8
3 ´ 10 in duct: 1.3( ab) 0.625 1.3[ (3)(10)] De = = ( a + b)0.250 (3 + 10) 0.250
0.625
= 5.74 in: Qmax = 95 cfm For hL = 0.10 in H2O
19.9
42 ´ 60 in duct: 0.625 1.30[ (42)(60) ] De = = 54.7 in: Qmax = 37000 cfm (42 + 60)0.250 for hL = 0.10 in H2O
19.10
250 ´ 500 mm duct: De =
1.30[ (250)(500) ] (250 + 500)
0.625
= 381 mm: Qmax = 0.60 m3/s
0.250
for hL = 0.80 Pa/m 19.11
75 ´ 250 mm duct: De =
19.12
1.30[ (75)(250) ]
0.625
= 125 mm: Qmax = 0.0295 m3/s
(75 + 500) 0.25
Q = 1500 cfm; hLmax = 0.10 in H2O per 100 ft ® De = 16.2 in Duct: 10 ´ 24, 12 ´ 20
19.13
Possible sizes from Table 19.2
Q = 300 cfm; hLmax = 0.10 in H2O per 100 ft ® De = 8.8 in Duct: 6 ´ 12 (De = 9.1 in)
Energy losses in ducts with fittings 19.14
Q = 650 cfm; D = 12 in round; u = 830 ft/min (Fig. 19.2) æ u ö æ 830 ö Hu = ç ÷ =ç ÷ = 0.0429 in H2O; C = 0.42 3-pc elbow è 4005 ø è 4005 ø 2
2
HL = CHu = 0.42(0.0429) = 0.0180 in H2O 19.15
C = 0.33 5-pc elbow; HL = CHu = 0.33(0.0429) = 0.0142 in H2O
19.16
Q = 1500 cfm; D = 16 in; u = 1080 ft/min (Fig. 19.2) æ u ö æ 1080 ö Hu = ç ÷ =ç ÷ = 0.0727 in H2O; C = 0.20 è 4005 ø è 4005 ø 2
2
HL = CHu = 0.20(0.0727) = 0.0145 in H2O
FLOW OF AIR DUCTS
297
298
Chapter 19
Damper: HL = CHu = 0.20(0.0505) = 0.0101 in H2O 2, 3-pc elbows: HL = 2(0.42)(0.0505) = 0.0424 in H2O Outlet grille: HL = 0.06 in H2O (Table 19.3) H Ltotal = 0.1629 in H2O
19.25
12 ´ 20 rect ® 16.8 in Circ. Eq.; use Q = 1500 cfm; u = 980 ft/min 2
æ 980 ö hL = 0.08 in H2O per 100 ft; Hu = ç ÷ = 0.060 in H2O è 4005 ø æ 38 ö Duct: HL = 0.08 in H2O ç ÷ = 0.0304 in H2O è 100 ø
Damper: HL = CHu = 0.20(0.060) = 0.0120 in H 2O 3 elbows: HL = 3(0.22)(0.060) = 0.0396 in H2O Outlet grille: HL = 0.060 in H2O (Table 19.3) H Ltotal = 0.1420 in H2O
19.26
Q = 0.80 m3/s For square duct: De1 =
u1 =
1.3[ (800)(800) ]
5/8
(800 + 800)1/ 4
= 875 mm Circ. Eq.
Q 0.80 m 3 /s = = 1.33 m/s A p (0.875 m) 2 / 4
æ u ö æ 1.33 ö Hu = ç ÷ =ç ÷ = 1.065 Pa è 1.289 ø è 1.289 ø 2
2
De1 / D 2 = 875 / 400 = 2.19 ® K = 0.40 (Fig. 10.7) Sudden contraction H L1 = 0.40(1.065 Pa) = 0.426 Pa H L 2 = 17 Pa (Table 19.3) louvers
Duct 1, HL too low for chart in Fig. 19.3 — Neglect Duct 2, u 2 = 6.30 m/s; HL = (1.10 Pa/m)(9.25 m) = 10.2 Pa H Ltot = 0.426 + 17 + 0 + 11.1 = 27.6 Pa Pressure drop from patm
Then pfan = -27.6 P
FLOW OF AIR DUCTS
299