An Interpolation Process on the Roots of Hermite Polynomials on Infinite Interval

Page 1

American Journal of Engineering Research (AJER)

2014

American Journal of Engineering Research (AJER) e-ISSN : 2320-0847 p-ISSN : 2320-0936 Volume-3, Issue-10, pp-75-83 www.ajer.org Research Paper

Open Access

An Interpolation Process on the Roots of Hermite Polynomials on Infinite Interval Rekha Srivastava Deptt. Of Mathematics And Astronomy Lucknow University, Lucknow, INDIA

ABSTRACT: For given arbitrary numbers

d k , k  1  1  n  1, d k , k  l  1  n  1 and d k , k  1  1  n , we *

**

seek to determine explicity polynomials R n  x  of degree atmost 3n-3 (n even), given by: n 1

Rn  x  

(1)

n 1

d kU

k

x 

k 1

n *

d kV k

x 

k 1

**

dk Wk

x,

k 1

Such that Rn '

Rn

 yk 

 d k , k  1  1  n  1,

 yk 

 d k , k  1 1  n  1 *

and Rn  xk

 d k , k  1 1  n , **

n 1

where  x k  k  1 are the zeros of n Hermite polynomial H n  x  and  y k  k  1 are the zeros of H n  x  . Let the interpolated function f be continuously differentiable satisfying the conditions: n

th

L im

x   x

2v

f

x  x 

'

0 ,   0 ,1, 2 ., .....

and L im

x   x

2v

  x  f '  x   0 , w h e re   x   e

2

 x /2

,

further in (1) d x  f  y k  , k   1  n  1, 1    y2k * d k  f ' yk  ,    e  ( f ',  , k  1  1  n  1,     1 n   d k  f '  x k  , k  1  1  n , then for the sequence of inter polynomials R n  n  2 , 4 , ...  , we have the **

estimate e

 vx

2

f

x

Rn

f , x   0 (  ( f ';

1 n

) lo g n ),

v 

3 2

Which holds the whole real line, O does not depend on n a n d x a n d  is the modulus of continuity of introduce by G. Freud. Keywords: Hermite, Interpolation

www.ajer.org

f '

Page 75


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.