American Journal of Engineering Research (AJER) 2016 American Journal of Engineering Research (AJER) e-ISSN: 2320-0847 p-ISSN : 2320-0936 Volume-5, Issue-10, pp-121-128 www.ajer.org Research Paper Open Access
“A Study of Affordable Roofing System with Rectangular Pyramidal Panels” Ravindra R1, Subramanya K.G2, Tejus V3 1AssociateProfessor,Dept.of CivilEngineering,R.V. College of Engineering, VTU,India 2AssistantProfessor,Dept.of CivilEngineering,GSKSJTI, VTU,India. 3Post Gradute student,Dept.of CivilEngineering,GSKSJTI, VTU,India.
ABSTRACT:affordablehousingisatermusedtodescribedwellingunitswhosecostsaredeemed“affordable”toagrou pofpeoplewithinaspecifiedincomerange.Structuralfloors/roofsaccountforsubstantialcostofbuildinginnormalsituat ion.ThereforeanysavingsachievedintheroofingSystemsconsiderablyreducethecostofthebuildingunit.Afocusedinve stigationistobemadetocheckwhethertheprefabricatedroofingwouldreplacethenormalroofingprocess. In the study undertaken,Pre-cast RCC roof infill elements are supported on precast RCCj oist System.The rectangular pyramidal panels consideredhavealeastsizeof0.5mand0.75mwiththeaspectratiovaryingfrom1.25to2withariseof60mmatthecenter.Th eanalysisoftheroofSystemismadebyusingSTAADPROsoftwareandlaterdesignedusingM20gradeconcreteandsteelc orrespondingto415N/mm2.Thecostanalysismadeforthe affordable roofingSystemproposedindicatesacostreductionbetween0.4%to34.7%whencomparedtotheconventionalRCCslab of same size.The panels weighless errand can easily be handled by three to five masons. It proves to bea strong alternative to the conventional RCC roofing System. Keywords –Affordable Roofing, Precast Concrete, CostEconomics of Roofing System, Aspect Ratio. Affordable housing
I. INTRODUCTION Housingaffordabilityhasalwaysbeenaworldwideconcern.Roofsarethecomponentsinstalledatthetopofthebuildingsto protecttheoccupantsagainstadverseweatherconditionssuchastemperaturechanges,solarradiation,rain,snow,andwin d.So,anykindsofsavingattainedintheconstructionofroofingSystemsubstantiallyreducesthecostofthebuildingunit. Asotheressentialpartsofbuildings,roofscorrespondtoabout811%ofthetotalprojectcost[1].InIndiaaccordingtotheWorldBankestimatesof2013,around23.6%oftheresidentsareres idingunderthelowerpovertylineandtheshortageintheurbandwellingunitswasassessedas17millionunits. Inviewofsearchofalternateroofingtechnology,thepresentworkundertakenhasprecast RCCroofinfillelementswhicharesupportedonagridworkofprecastRCCjoistSystemandwithanoverlayofinsituconcrete.The components of roofing Systema r e (i).Roofinfillelementofrectangularpanelswithpyramidal shapeofsmaller thicknesstohavemembraneactionaswellasarchingaction. (ii).PrimaryandsecondaryRCCprecastbeamslikegridSystem. Thenecessityinthereductionofthecostinconstructionledtothedevelopmentofalternativeroofingtechnologies.Fillersla bisonesuchtechnology,whichisbasedontheprinciplethatconcretecantakeupcompressionbutisweakintension.Thusint heconventionalRCCslab,bottomportionofthe concreteissubstitutedwith acheaperandlighterfillermaterialforcosteffectiveadvantageoverRCCslab[2].PrecastRCCplanksandjoistSystemisanotheralternativeroofingtechnology.Her e,precastplanksaresupportedabovethepartiallyprecastjoistSystemacrossandarethenlinkedtogetherbyinsituconcretepouredoverfullroofingareaandreinforcedhooksprojectoutfromthejoistSystemstohavemonolithicaction[ 3]. B.V.VenkataramanaReddy,JagadishKSet.al[4]havehighlighted someissuesrelatingtotheenvironment,energyeffectsofalternativebuilding techniquesintheresearchwork.Alternatebuildingtechniquesdevelopedwereenergyefficientandtheembodiedenergyo fthehousingunitsconstructedusingtheseskillsarefoundtoconsumelessenergythanhalfoftheenergyutilizedbyconventi
www.ajer.org
Page 121
American Journal of Engineering Research (AJER)
2016
onalhousingunits.HiraBNandNegiSK[5]havefoundoutanumberofaspectsofprefabricatedbuildingpracticesforlowc osthousingbyhighlightingthevariousprefabricationtechniques,andtheeconomicbenefitsattainedbyitsadoption.Adla khaPKandPuriHC[6]havesuggestedtheuseofthePrecastRCPlanks and joists, PrecastRC Channel Roofing,PrecastConcretePanels,PrefabricatedBrickPanels,Precast RBCurvedPanels, andPrecast HollowSlabs etc.asroofelements.ResearchworkscarriedbyAdlakhaPK[8],VivianW.Y [9],TiwariP [10],and IanHolton[11]givesthecosteffectiveconstructionandsustainableenergy,anditisfoundthatthereisaneedof environment-friendlyand innovativehousingtechniquesforthedevelopmentofhousesandstructureswithsubstantialreductioninthecost. WilliamG.Davids[12],hasgivenastudywhichmainlyemphasizesonthein-planeloaddeflectionsaswellasbucklingresponseofthepressurizedprefabricatedarchesof continuouscircularcrosssection.ImmanuelGandKharthiK[13],havefoundoutbehaviourofvarioustypesofshelleleme ntsinroofslabsorinanyotherstructure.Researchworkswerecarriedoutontheoptimizationmethodsforroofslabsforthele astpossiblecost.RichardJ.BallingandXiaopingYao.,BoozWet.al[14],havementionedofoptimizationmethodforthree -dimensionalreinforcedconcreteframedstructuresandotherfloor/roofstructures. ItisnotedthatconventionalroofinginahousingSystemisoneofthemostcostlycomponentsandalsocontributeshugelytot heembodiedenergyofthebuildingsasawhole.Hence,itisnecessarytofindasuitablecosteffectivealternativeroofingtech nologybyusingprecastingtechniques.Byusingthistechnology,formworkcost,Labourcharges,castinsituworktobecarr iedoutetc.canbeavoided.Thisprojectaimsatdevelopinga costeffectiveroofingtechnologywhichiseconomical,lesstimeconsumingforconstructionandaestheticallypleasing roofingSystem.ItalsoaimsatdevelopingatechnologyofprovidingroofingSystemwithprecastpanelssupportedonpreca stbeams.
II. SCOPE AND OBJECTIVE OF THE STUDY Themainobjectiveofthisanalyticalinvestigationundertakenistoexaminethebehaviourandperformance ofthe precast joistsandpanel roofingSystem.ItalsoaimsatdevelopingatechnologyofprovidingroofingSystemwithprecastpanelssupportedonprec astbeams.Rectangularprecastpanelshavingshortersideoflength0.5mand0.75mareconsideredinthestudy.Theaspectr atioofthepanelisvariedfrom1.25to2withariseof60mm atthecentre.Table1showsthedetailsoftheproposedslabSystemundertakenforstudy.AtypicallayoutoftheroofingSyste misshowninFig1. ARS refers to affordable roofing system Table 1 Parameters Undertaken For the Present Study SL NO 1 2 3 4 5 6 7 8
Rectangular panel Dimension in (m) 0.5 X 0.625 0.5 X 0.75 0.5 X 0.875 0.5 X 1.0 0.75 X 0.9375 0.75 X 1.125 0.75 X 1.3125 0.75 X 1.5
Aspect Ratio 1.25 1.50 1.75 2.00 1.25 1.50 1.75 2.00
No. of Panels Along shorter span 5 5 5 4 4 4 4 4
Along span 4 4 4 3 4 3 3 3
longer
Total Size of the ARS Slab 2.50 X 2.50 2.5 X 3.0 2.5 X 3.5 2.0 X 3.0 3.0 X 3.75 3.0 X 3.375 3.0 X 3.94 3.0 X 4.5
Fig1.Typical Layout of the Roofing System
III. LOADS CONSIDERED  
Aliveload (LL)of 1.5KN/m2isconsidered,inaccordancetoIS875:1987 (Part2). Dead load is considered to be the self-weight of beams and panels. The Density is taken as
www.ajer.org
Page 122
American Journal of Engineering Research (AJER)
2016
25KN/m3.InaccordancetoIS875:1987 (Part 1).
Screed Concrete isassumedasfloorfinishing.Densityofscreed concreteisassumedas20KN/m3, thethicknessofscreed concreteiscalculated based on rise. Fig2showsthecrosssectionaldetails. Water proofing coat: The Density of WPC is taken as 20.40KN/m3 inaccordancetoIS875:1987 (Part 1)and the Thickness of WPC is taken as 50mm fig 2 gives the details of panel thickness and WPC thickness. Theanalysisiscarriedfora loadcombinationof1.5(DL+LL)asperIS456:2000
Fig 2 Panel Thickness and Floor Finishes Considered For Slab
IV. ANALYSIS AND DESIGN RectangularPanels ThesizingofthemainbeamandthesecondarybeamismadebypreliminaryanalysisoftheroofingSystemproposed.Thesi zeofthebeamof150mmwidthand150mmdepthwassufficientforallthetypesoftheslabsconsidered.Thedetailed analysisoftheroofingSystemismadeusingSTAADPROsoftware.Therectangularpanelsarediscretisedintothreenod edandfournodedelements.Atypicaldiscretised modelofarectangularpanelisshowninFig3(a) and 3(b).T heslabthicknessoftherectangularpanelsareassumedtobe 75mm in the initial phase of analysis which was later revised based on analysis results.Thesecondarybeamsaresupportedonthebracketprovidedon themain beam asshown inFig4.The analysisof the roofing System using thesoftwareyieldedthecriticalvaluesofbendingmoment(MxandMy),shearstress(SqxandSqy),andinplanestresses(SxandSy).ThenotationsforthecriticalvaluesforbendingmomentshearstressandinplanestressesarethesameasusedintheSTAADPROsoftware. Thetypicalstresscontoursofarectangularpanelmeasuring 0.5mx 0.625misshown inFig5(a),5( b),and 5(c).TherectangularpanelsaredesignedbylimitstatemethodinaccordancetoIS456:2000.Therectangularpanelsared esignedforBendingMoment,Shearandalsoforthecombinedactionofbendingmomentandinplanestresses.Atypicalreinforcementdetails in 2 therectangularpanelisshowninFig6.M20gradeofconcreteandreinforcementhavingyieldstrengthof415N/mm isass umedinthedesign.
Fig 3(a) Top view of Discretised Slab panel
www.ajer.org
Page 123
American Journal of Engineering Research (AJER)
2016
Fig 3(b) Front view of Discretised Slab panel
Fig 4 ConnectionbetweenBracketandSecondaryBeam
Fig 5(a) MxLocalStresses (for0.5mx0.625mPanel)
e Fig 5(b) SxLocalStresses(for0.5mx0.625mPanel)
www.ajer.org
Page 124
American Journal of Engineering Research (AJER)
2016
Fig 5(c) SqxLocalStresses(for0.5mx0.625mPanel)
Fig6ReinforcementLayout(forPanelofSize0.5mX0.625m)
Fig7 SlabofSize2.5mx2.5m(For0.5mx0.625mPanel) PrimaryandSecondaryBeam Theanalyticalmodeldevelopedforaroofofsize2.5mx2.5mis showninFig7.Theprimarybeamandthesecondarybeamofsize150mmx150mmaredesignedbylimitstate
www.ajer.org
Page 125
American Journal of Engineering Research (AJER)
2016
methodusingM20gradeconcreteandsteelhavingyieldstrength415N/mm2.Thesecondarybeamsareassumedtobesi mplysupportedattheends.Theassumeddimensionofthebeamsof150mmx150mmisfoundtobeadequateforthecritic al values ofbendingmoment andshearobtainedfromthedetailedanalysisusingthesoftware. Brackets ThearrangementofabracketSystemisshowninFig4.Thebracketsizeismadeconsideringthemaximumshearingforcetr ansmittedbythesecondarybeam.Basedonthisconditionthewidthofthebracketiskeptsameasthewidthofthebeams,wh ileabearinglengthof80mm wassufficientto ensurethebearingstresseswithinthepermissiblelimits (0.45fck).Depthofthebracketof 50mmissufficienttotakecareofthebendingmomentgeneratedduetotheeccentricityofthereactionsofthesecondarybe am.Limit state adoptedforthedesignofthebrackets [18].Thecentralbeamisaprimarybeamwhichsupportstwosecondarybeamsoneitherside.Secondarybeamtransfersar eactionontheprimarybeamwhichinturninducesamomentcausingtheupperfaceofthebrackettoactasatensionregiona ndthebottomregionasa compression. Thebracketisdesigned asper the guidelines ofIS456:2000.Fig8 showsaprimarybeamwithbracketconnectiononboththesideofitandsecondarybeamsrestingoverit.Atypicalreinforce mentofsecondarybeamrestingoverthebracketsoftheprimarybeamisshowninFig8.Slotisprovidedinthebracketandth esecondarybeamforplacinga10mmbarandgroutedwiththecementmortarforadepthof25mm.The slot is grouted with cement slurry for better connectivity.
Fig8 TypicalReinforcementofSecondaryBeamRestingovertheBracketsofthePrimaryBeam
V. COST ANANLYSIS Economy in the construction industry is one of the prime factors apart from safety and durability. Cost analysis is made for proposed affordable roofing System and conventional RCC slab. For a conventional RCC slab System concreting, shuttering and bar bending is done in-situ, where as in case of the proposed Affordable roofing System it is done in the casting yard. Hence same rate cannot be considered for both Conventional RCC slab and Affordable roofing System (ARS) slab, Rate analysis is done for the above said items and the respective rates are considered for cost analysis. Cost ratio is the ratio of cost of ARS slab to cost of conventional RCC slab per Sqm in Rupees (Rs) Table 2 Cost Comparison of ARS and Conventional RCC Roof (Rise 60mm) SL NO
SizeofSlab in m
1 2 3
2.5 2.5 2.5
X X X
2.5 3.0 3.5
www.ajer.org
Rise mm 60 60 60
in
Conventional slab
ARS slab
Total Cost in Rs 14460.12 17093.63 21428.18
Total Cost in Rs 13193.54 15493.87 20628.69
Cost Per Sqm in Rs 2313.62 2279.15 2448.94
Cost Per Sqm in Rs
Cost Ratio
2110.97 2065.85 2357.56
0.912 0.906 0.963
Page 126
American Journal of Engineering Research (AJER) 4 5 6 7 8
2.0 3.0 3.0 3.0 3.8
X X X X X
3.0 3.75 3.38 3.94 4.5
60 60 60 60 60
13979.66 25996.53 23591.83 27463.86 43033.79
2329.94 2310.80 2330.06 2324.98 2550.15
13923.87 19623.45 18934.42 21966.41 28109.10
2016 2320.65 1744.31 1870.07 1859.59 1665.72
0.996 0.755 0.803 0.800 0.653
Table3 WeightsofPanel,PrimaryBeamandSecondaryBeam
VI. CONCLUSION Based on all the analytical investigations carried out in the project the following conclusions may be drawn. The precast beam and panel roofing System designed in the work proves to be a strong alternative to the conventional RCC roofing System. There is 0.4%-34.7% of cost reduction in the precast roofing Systems when compared to the RCC roofing System, which advocates the adoption of this technology in low cost housing projects. The alternative roofing System proposed has a pleasing aesthetic appearance in the soffit of the pyramid portion. It requires no plastering work and false roofing work can be avoided which reduces the cost of the roofing unit. The roofing Systems proposed in the current project is designed to take the factored load of 1.5 times the dead load and live load. The important factor during the construction is the total time consumed for construction. The kind of roofing System adopted in the project would reduce the time of construction as the panels and joists are readily available precast and can be just placed avoiding the cast in-situ construction. The panel weighs lesser and can easily be handled by three to five masons. Thus reduces the cost in using Labour for construction and can be erected in a very short period of time.
REFERENCE [1]. [2]. [3]. [4]. [5]. [6]. [7]. [8]. [9]. [10]. [11]. [12]. [13]. [14]. [15].
SerdarUlubeylia,AynurKazazb,BayramErb,M.TalatBirgonulc,“ComparisonofDifferentRoofTypesinHousingProjectsinTurkey:Cost Analysis”,Procedia–SocialandBehaviouralSciences119(2014)20–29pp.221-228. KSJagadish,KSNanjundaRao,KRGaneshAndBVVenkataramanaReddy, “NationalSeminaronAlternativeBuildingMethods”,ProceedingsAlternativeBuildingMethods”,2002,pp.24-32. RinkuTaurandVidyaDeviT,“Lowcosthousing”ACSGEBITSPilani,October25-272009. B.V.VenkataramanaReddy,“Sustainablebuildingtechnologies”,currentscience,vol.87,no.7,10October2004. Jagadish,K.S.andVenkataramanaReddy,B.V.,Experimentsinbuildingtechnologiesforruralareas andAlternativebuildingsintheUngraregion,Alternativebuildings,ASTRA,IndianInstituteofScience,Bangalore,1981. HiraB.N.&NegiS.K.,“UpgradationofHousing&AmenitiesinRuralAreas”JournalofIndianBuildingCongress,Vol.11,No.2,2004; ; SeminaronAppropriateBuildingTechniquesforRuralHousing.BMTPCatBhubaneswar,December,22nd-23rd2004. PKAdlakhaandShriHCPuri,“PrefabricationBuildingMethodologiesforLowCostHousing”,IE(I)Journal.AR,June302003. PKAdlakha,“CostReductioninRoofingthroughSmall PanelPrefabrication“NationalSeminaronNewBuildingMaterialsandTechnology,Delhi,May19-21,1989. VivianW.Y.Tam,CostEffectivenessofusingLowCostHousingTechnologiesinConstruction,TheTwelfthEastAsiaPacificConferenceonStructuralEngineeringandConstruction,WesternSydney,2011pp.156-160. Tiwari P, Parikh K and Parikh J, “Structural design considerations in house builder construction model: a multi objective optimization technique”, Journal of Infrastructure System. 5(3), 1999. Pp.75-90. Ian Holton a, b, Jacqui Glass, Andrew D.F. Price, “Managing for sustainability: findings from four company case studies in the UK precast concrete industry” Journal of Cleaner Production 18, 2010 152–160. William G. Davids, “In-Plane Load-Deflection Behaviour and Buckling of Pressurized Fabric Arches”, Journal of Structural Engineering, Vol. 135, No. 11, November 1, 2009, pp.1320-1329. G. Immanuel and K. Kharthi, Jorgen Juncher “Structures for Sports Centre”, Indian Journal of Science and Technology, Vol 7(S5), 10-15 June 2014. Richard J. Balling, and Xiaoping Yao, “Optimization of Reinforced Concrete Frames”, Journal of Structu1’al Engineering, Vol. 123, No.2, February 1997, pp.193-202.
www.ajer.org
Page 127
American Journal of Engineering Research (AJER) [16]. [17]. [18]. [19]. [20].
2016
Booz W., Legewie, G., and Thierauf, G. “Optimization of reinforced concrete structures according to German design regulations.”Int. Conf. on Computer.-Aided Analysis. And Design. Of Concrete Structures, 1984. IS 456-2000 “Indian Standard Code of Practice for Plain and reinforced concrete, Bureau of Indian Standards, New Delhi. “Reinforced Concrete design”, By S Unnikkrishna Pillai and Devdas menon, Tata McGraw Hill Education Private limited New Delhi, Third Edition,ISBN NO:978-0-07-014110-0 “Limit State design of Reinforced concrete” Second edition by P.CVarghese, PHI learning private limited, New Delhi,ISBN:97881-203-2039-0 https://en.wikipedia.org/wiki/Demography.
www.ajer.org
Page 128