control system

Page 1

  ‫א‬٢٦٢




 ‫א‬٢٦٢  EF

 

‫א‬

 

 

 

   W،،‫א‬‫א‬،‫א‬

 

  ‫א‬ ‫א‬ ‫א‬ ‫א‬‫א‬  ‫א‬ ‫א‬  ‫א‬ ‫א‬ 

‫א‬‫א‬‫א‬،‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ ‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬W‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬  K ‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

  ‫א‬        ،‫א‬ ‫א‬‫א‬  

‫א‬  ‫א‬ ‫א‬ ‫א‬ ‫א‬ ‫א‬   ‫א‬    ،  

‫א‬،‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ ‫א‬‫א‬‫א‬‫א‬‫א‬ ‫א‬‫א‬‫א‬،‫א‬

 K‫א‬‫א‬،‫א‬

 ?? ?‫א‬‫א‬

 K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬? ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

،‫א‬،‫א‬‫א‬‫א‬‫א‬  K‫א‬‫א‬‫א‬‫א‬‫א‬

   W    ‫א‬ ‫א‬  ‫א‬    ‫א‬

 K‫א‬

 ‫א‬‫א‬‫א‬‫א‬

 




 ‫א‬٢٦٢  EF

 

‫א‬

 

 

 W‫א‬‫א‬  W‫א‬‫א‬‫א‬ K‫א‬‫א‬

K‫א‬‫א‬‫א‬‫א‬

K‫א‬‫א‬ K‫א‬

K‫א‬‫א‬

K٤ K٥

   W‫א‬‫א‬  W‫א‬

K‫א‬

K‫א‬

K

K‫א‬‫א‬‫א‬

K‫א‬‫א‬

K‫א‬‫א‬  

K٤ K٥ K٦

 K٣٨W‫א‬‫א‬  K‫א‬W‫א‬‫א‬  

 


 

EF

 ‫א‬

‫א‬

١



 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

 

 

W‫א‬‫א‬  W‫א‬

K‫א‬‫א‬

K‫א‬‫א‬‫א‬

 K‫א‬‫א‬‫א‬‫א‬‫א‬

K‫א‬‫א‬‫א‬‫א‬  K‫א‬‫א‬

K‫א‬‫א‬‫א‬‫א‬

K‫א‬‫א‬‫א‬‫א‬‫א‬

-١-


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 ‫א‬  

 

 W ١ J١ ‫א‬ ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ ‫א‬‫א‬، ‫א‬‫א‬‫א‬K   ‫א‬‫א‬

‫א‬‫א‬،‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬   ‫א‬‫א‬،‫א‬ ‫א‬‫א‬،‫א‬،‫א‬‫א‬‫א‬‫א‬ K‫א‬KKKK ‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ ‫א‬‫א‬‫א‬‫א‬

 K‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

، ‫א‬‫א‬‫א‬  ‫א‬‫א‬‫א‬ ‫א‬‫א‬‫א‬‫א‬ 

‫א‬‫א‬‫א‬‫א‬‫א‬

K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

 K‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬    ‫א‬‫א‬

‫א‬‫א‬‫א‬،‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

 K‫א‬KK‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

 W‫א‬‫א‬‫א‬ ٢ J١ ‫א‬‫א‬‫א‬‫א‬‫א‬،‫א‬‫א‬ ‫א‬‫א‬،‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬،  ‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬،  -٢-


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 ‫א‬  

 

،‫א‬،  

‫א‬K ‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬ ‫א‬ ‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬ K‫א‬

‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬K‫א‬‫א‬ ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

 K‫א‬‫א‬

 W‫א‬‫א‬ ٣ J١ ‫א‬  ‫א‬‫א‬‫א‬ ،‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬ ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ ‫א‬

K  ‫א‬‫א‬ ،‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬

 K‫א‬KKKK

W‫א‬‫א‬‫א‬‫א‬‫א‬‫ א‬٤ J١  W‫א‬‫א‬‫א‬‫א‬

،  ‫א‬‫א‬‫א‬  ‫א‬ ، ‫א‬‫א‬‫א‬‫א‬ K‫א‬‫א‬‫א‬

E

‫א‬‫א‬‫א‬ E ‫א‬، ‫א‬‫א‬، ‫א‬

K‫א‬‫א‬‫א‬‫א‬‫א‬،‫א‬

-٣-


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

 

 

،E   ‫א‬‫א‬F‫א‬‫א‬‫א‬‫א‬

‫א‬E‫א‬F‫א‬‫א‬‫א‬،‫א‬ K‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

E

E

‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

KEF

W‫א‬‫א‬ ٥ J١ E  ‫א‬F‫א‬‫א‬‫א‬E١ J١F‫א‬  ‫א‬، ‫א‬  K‫א‬



‫א‬

‫א‬ ‫א‬

‫א‬‫א‬‫א‬





‫א‬

H

J

‫א‬

‫א‬

‫א‬‫א‬‫א‬

‫א‬‫א‬ ‫א‬

‫א‬ ‫א‬

‫א‬‫א‬

‫א‬ ‫א‬

 

‫א‬‫א‬

 K‫א‬‫א‬‫א‬‫א‬‫א‬،E١ J١F

W‫א‬

‫א‬ ‫א‬ ‫א‬ K‫א‬

E

W‫א‬‫ א‬E

‫א‬‫א‬‫א‬‫א‬

K‫א‬‫א‬‫א‬

-٤-


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

 

 

W‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

K‫א‬KE‫א‬F‫א‬‫א‬ W‫א‬

‫א‬‫א‬‫א‬‫א‬، ‫א‬  

K‫א‬‫א‬‫א‬‫א‬

E

E

W‫א‬‫א‬

E

W‫א‬‫א‬

E

K‫א‬‫א‬‫א‬‫א‬ ‫א‬ ‫א‬‫א‬‫א‬  ‫א‬‫א‬‫א‬

K

W‫א‬

‫א‬‫א‬‫א‬‫א‬

E

‫א‬‫א‬، ‫א‬‫א‬

K‫א‬‫א‬ W‫א‬‫א‬

 ‫א‬  ‫א‬‫א‬E‫א‬F  ‫א‬

K‫א‬

E

W‫א‬‫א‬‫ א‬E

 ‫א‬‫א‬‫א‬

،‫א‬‫א‬  ‫א‬ K‫א‬‫א‬‫א‬

-٥-


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 ‫א‬  

 

 W ‫א‬‫א‬‫א‬‫א‬‫א‬، ‫א‬‫א‬ K١  ‫؟‬‫א‬‫א‬‫א‬‫א‬K‫א‬

‫א‬‫א‬‫א‬‫א‬ K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ ‫؟‬‫א‬‫א‬‫א‬

‫؟‬‫א‬‫א‬،‫א‬‫א‬‫א‬

‫؟‬‫א‬‫א‬‫א‬‫א‬

 W‫א‬

 K‫א‬‫א‬

E

 K‫א‬

E

K‫א‬‫א‬

E

K‫ א‬E

 K‫א‬‫א‬

-٦-

E


 

EF

 



٢



‫א‬‫א‬  

‫א‬٢٦٢

 ‫א‬

 EF

 

 

 W‫א‬‫א‬  W‫א‬

K

K

 K‫א‬

K

 K‫א‬‫א‬‫א‬

K‫א‬‫א‬‫א‬

-٧-

K٢ K٤

 


‫א‬‫א‬

‫א‬٢٦٢

 

 ‫א‬

 EF

 

 

 W ١ J٢ ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬K‫א‬ ‫א‬‫א‬‫א‬،‫א‬

‫א‬‫א‬‫א‬‫א‬K  ،  K

 W ٢ J٢ ‫א‬‫א‬‫א‬‫א‬

F‫א‬‫א‬K  ‫א‬

 K‫א‬‫א‬E‫א‬ J‫א‬  W ∞

  F ( s) = L( f (t )) = ∫ f (t )e− st dt 0

KE s = σ +

 W

jω F‫א‬‫א‬‫א‬‫א‬‫א‬WF(s)

E

KWL

E

K‫א‬‫א‬‫א‬‫א‬Wf(t) E

 W‫א‬ L−1 ( F ( s )) = L−1 ( L( f ( s ))) = f ( s )

 

c + j∞

=

1 F ( s )e st ds 2πj c −∫j∞

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

 K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬،‫א‬

 W ٣ J٢ ‫א‬‫א‬‫א‬

‫א‬،   ‫א‬‫א‬‫א‬‫א‬  W‫א‬K‫א‬‫א‬‫א‬‫א‬‫א‬ -٨-


‫א‬‫א‬

‫א‬٢٦٢

 

 ‫א‬

 EF

 

 

W‫א‬

E

L( af (t ) + bg (t )) = aF ( s ) + bG ( s )

 W‫א‬ E   L( Af (t )) = AL( f (t ))   L( f (t ) ± g (t )) = F (s) ± G (s)

 W‫א‬‫א‬

E

 W‫א‬‫א‬

E

n f (t ) ⎞ n ⎟⎟ = s F ( s ) − ∑ k =1 s n − k f ( k −1) (0) n ⎝ dt ⎠

  L⎜⎜ d

n

 WK‫א‬‫א‬‫א‬f(0)   f ( k −1) (t ) = d

k −1

dt

f (t )

k −1

( f (t )dt )t =0   L(∫ f (t )dt ) = F ( s) + ∫ s s

(

)

L ∫∫ f (t )dtdt =

F (s) + s2

(∫ f (t )dt )

t =0

s

2

 W‫א‬‫א‬

(∫∫ f (t )dtdt )

+

t =0

s

W‫א‬‫א‬‫א‬

E

 Ws‫א‬‫א‬

E

L( f (t − T ) = e − sT F ( s )

  L(e at f (t )) = F ( s − a ) L( f ( at )) =

E

W‫א‬

1 s F( ) a a

E

 W‫א‬‫א‬‫א‬ E

‫א‬‫א‬ lim sF ( s ) ‫א‬ s →∞

 W‫א‬f(t)‫א‬‫א‬

  f (0) = lim sF ( s ) s →∞

-٩-


‫א‬‫א‬  

‫א‬٢٦٢

 ‫א‬

 EF

 

 

 W‫א‬‫א‬ E ‫א‬‫א‬ lim sF ( s ) ‫א‬ s→0

 W‫א‬f(t)‫א‬

  lim f (t ) = lim sF ( s) t →∞ s →0

 WE١ J٢F W‫א‬‫א‬‫א‬‫א‬

A t≥0 ⎩0 t < 0

  x(t ) = ⎧⎨

 W‫א‬  W،‫א‬ ∞

X ( s ) = ∫ x (t )e

− st

0

dt = ∫ Ae − st dt 0

A X ( s ) = − e − st s

∞ = 0

A s

u(t)،A=1‫א‬‫א‬  W‫א‬،‫א‬ U ( s) =

1 s

 WE٢ J٢F  W‫א‬‫א‬ ⎧

  x(t ) = ⎨ Ae

at

⎩ 0

t≥0 t<0

 W‫א‬  W‫א‬‫א‬ ∞

X ( s ) = ∫ x(t )e dt = ∫ Ae e dt = ∫ Ae − ( s − a )t dt − st

0

at − st

0

A − st X ( s) = − e s−a

- ١٠ -

0

∞ = 0

A s−a


‫א‬‫א‬

‫א‬٢٦٢

 

 EF

 ‫א‬  

 

 W‫א‬‫א‬‫א‬ ٤ J٢ ‫א‬‫א‬‫א‬E١ J٢F‫א‬

‫א‬‫א‬‫א‬،‫א‬‫א‬  W‫א‬‫א‬



‫א‬‫א‬

‫א‬‫א‬‫א‬

1

r (t ) = δ (t )

‫א‬‫א‬

A s

⎧ A; t ≥ 0 u (t ) = ⎨ ⎩ 0; t < 0

‫א‬‫א‬

A s2

⎧ At ; t ≥ 0 r (t ) = ⎨ ⎩ 0; t < 0

‫א‬‫א‬‫א‬

A s3

r (t ) = At 2

‫א‬‫א‬

A s+a

Ae− at

‫א‬‫א‬‫א‬

Aω s + ω2

A sin ωt

‫א‬‫א‬‫א‬

As s + ω2

A cos ωt

‫א‬‫א‬

2

2

n! (s + a )n +1

ω

t n e − at

(n = 1,2,3,....)

(s + a )2 + ω 2

e − at sin ωt

s+a (s + a )2 + ω 2

e − at cos ωt

 K‫א‬‫א‬،E١ J٢F

- ١١ -


‫א‬‫א‬  

‫א‬٢٦٢

 ‫א‬

 EF

 

 

 W‫א‬ ٥ J٢ ،‫א‬‫א‬ ‫א‬‫א‬،  ‫א‬‫א‬‫א‬‫א‬‫א‬ ، ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

 K‫א‬‫א‬‫א‬

  F ( s) = F1 ( s) + F2 ( s) + ......... + Fn ( s)  W‫א‬‫א‬‫א‬   f (t ) = f1 (t ) + f 2 (t ) + ......... + f n (t )  W‫א‬،F(s)‫א‬‫א‬   F ( s) = B( s) A( s )

Ks‫א‬‫א‬ A(s)‫א‬B(s)‫א‬  W‫א‬‫א‬‫א‬‫א‬‫א‬

  F ( s) = B( s) = K ( s + Z1 )(s + Z 2 )...(s + Z m ) A( s)

( s + P1 )( s + P2 )...( s + Pn )

‫א‬‫א‬، ‫א‬  Pn, ..., P2, P1 Zm, …., Z2, Z1  n ،‫א‬‫א‬ ‫א‬‫א‬،‫א‬ ‫א‬

‫א‬  ‫א‬ ‫א‬  ‫א‬  ‫א‬   ‫א‬‫א‬ ‫א‬   ‫א‬ Km  K‫א‬‫א‬

 ‫א‬ Pn, ..., P2, P1 ‫א‬  ‫א‬   ‫א‬ ‫א‬  

‫א‬،،  ‫א‬‫א‬ ‫א‬‫א‬   ‫א‬‫א‬   ‫א‬ ‫א‬   K‫א‬  ‫א‬

 K‫א‬‫א‬‫א‬، 

 W‫א‬‫א‬‫א‬‫ א‬١ J٥ J٢  W‫א‬‫א‬‫א‬   F ( s) = B( s) = A( s )

a1 a a + 2 + ..... + n s + P1 s + P2 s + Pn

   ‫א‬‫א‬K‫א‬‫א‬ an ,...., a2 , a1 ‫א‬‫א‬

 W‫א‬‫א‬

- ١٢ -


‫א‬‫א‬

‫א‬٢٦٢

 

 ‫א‬

 EF

 

 

  a1 = (F ( s)(s + P1 ) ) s = − P

1

  a2 = (F (s)(s + P2 )) s = − P

2

 KKKKKKKKKKKKKK   an = (F (s)(s + Pn ) ) s = − P

n

 WF(s)‫א‬‫א‬‫א‬   f (t ) = a1e− P t + a2e− P t + ..... + ane− P t 1

2

n

 WE٣ J٢F  W‫א‬‫א‬‫א‬

  F (s) =

s+2 s(s + 1)(s + 3)

 W‫א‬  s=-3, s=-1, s=0‫א‬   F ( s) = a1 + s

  a1 = (sF ( s) ) s = 0 = 2 , 3

a2 a + 3 s +1 s + 3

1 a2 = ((s + 1)F ( s) ) s = −1 = − , 2

 W‫א‬‫א‬ a3 = ((s + 3)F ( s) ) s = −3 = −

1 6

 W‫א‬F(s)‫א‬‫א‬   F (s) =

2

1 1 3− 2 − 6 s (s + 1) (s + 3)

 W‫א‬‫א‬‫א‬E١ J٢F‫א‬‫א‬‫א‬   f (t ) = 2 u (t ) − 1 e−t − 1 e−3t 3

2

6

 W‫א‬‫א‬‫א‬‫א‬‫ א‬٢ J٥ J٢ ،‫א‬ P2, P1‫א‬‫א‬‫א‬   F ( s) = B( s) =

α1 s + α 2

 W‫א‬‫א‬‫א‬‫א‬

+

a3 a + ..... + n s + P3 s + Pn

(s + P1 )(s + P2 )  W s = − P1 ‫א‬ (s + P1 )(s + P2 ) ‫א‬ α 2 ,   α1s + α 2 s = − P = F ( s)(s + P1 )(s + P2 ) s = − P A( s)

1

1

- ١٣ -

α1 


‫א‬‫א‬

‫א‬٢٦٢

 

 ‫א‬

 EF

 

 

  ‫א‬‫א‬‫א‬‫א‬،‫א‬P1‫א‬

،  ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬  K α 2 ,

α1 

 WE٤ J٢F  W‫א‬‫א‬ (s + 1)

  F (s) =

s (s 2 + s + 1)

 W‫א‬  W‫א‬‫א‬

  F ( s) = α21s + α 2

s + s +1

+

a s

 W‫א‬‫א‬   s = 0,

s = −0.5 ± j 0.866

 W

  P3 = 0, P1 , P2 = −0.5 ± j 0.866  W s = −0.5 ± j 0.866 ‫א‬ (s 2 + s + 1) ‫א‬   s +1 s

 

s = −0.5 − j 0.866

= α1s + α 2 s = −0.5 − j 0.866

0.5 − j 0.866 = α1 (− 0.5 − j 0.866) + α 2 − 0.5 − j 0.866

  0.5 − j 0.866 = α1 (0.25 + j 0.866 − 0.75) + α 2 (− 0.5 − j 0.866)  W‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬  

− 0.5α1 − 0.5α 2 = 0.5

0.866α1 − 0.866α 2 = −0.866 ∴ α1 + α 2 = −1

 

α1 − α 2 = −1 α 2 = 0 , α1 = −1 s(s + 1) =1 s (s 2 + s + 1) s = 0

  a = sF ( s) s = 0 =   F (s) =

−s 1 + s + s +1 s 2

- ١٤ -

 W‫א‬‫א‬


‫א‬‫א‬

‫א‬٢٦٢

 

 ‫א‬

 EF

 

 

 

=

s + 0.5 1 0.5 − + 2 2 2 s (s + 0.5) + (0.866) (s + 0.5) + (0.866)2

‫א‬‫א‬، ‫א‬ ‫א‬‫א‬‫א‬E١ J٢F‫א‬‫א‬‫א‬  W‫א‬‫א‬‫א‬

  f (t ) = 1 − e−0.5t cos(0.866t ) + 0.578e−0.5t sin (0.866t )

 W‫א‬‫א‬‫א‬‫ א‬٣ J٥ J٢ ‫א‬‫א‬‫א‬،‫א‬‫א‬ r‫א‬‫א‬‫א‬  W‫א‬‫א‬‫א‬‫א‬،‫א‬‫א‬

  F ( s) = B( s) = A( s)

br br −1 b1 + + ... + r r −1 (s + P1 ) (s + P1 ) (s + P2 )

 W‫א‬‫א‬‫א‬ b1 ,...., br −1 , br ‫א‬‫א‬

 W، s = P1  (s + P1 )r ‫א‬   br = (s + P1 )r F ( s) s = − P

E

1

،s‫א‬‫א‬ (s + P1 )r ‫א‬ E W، s = P1

  br −1 =

d (s + P1 )r F ( s) ds s = − P1

W،s‫א‬EF‫א‬‫א‬‫א‬ br − 2

E

1 d2 (s + P1 )r F (s) = 2 2 ds s=−P

1

‫א‬‫א‬‫א‬‫א‬

W‫א‬‫א‬K‫א‬‫א‬

br − k =

E

1 dk ( s + P1 ) r F ( s ) k! ds k s=−P

1

 WE٥ J٢F  W‫א‬‫א‬ 

s 2 + 2s + 3  F (s) = (s + 1)3

 W‫א‬  W‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ - ١٥ -


‫א‬‫א‬

‫א‬٢٦٢

 

 ‫א‬

 EF

 

 

  F (s) =  K s = −1,

s = −1,

b3 b2 b + + 1 3 2 (s + 1) (s + 1) (s + 1)

s = −1 ،‫א‬‫א‬‫א‬

 W‫א‬‫א‬

  b3 = F ( s)(s + 1)3 s = −1 = s 2 + 2s + 3 s = −1 = 2

(

  b2 = 1

d 2 s + 2s + 3 1! ds

) s = −1

= 2 s + 2 s = −1 = 0

  b1 = 1

d (2s + 2) = 2 = 1 2! ds 2 s = −1

 WF(s)‫א‬‫א‬‫א‬‫א‬

  F (s) =

2 1 + 3 (s + 1) (s + 1)

 W‫א‬‫א‬‫א‬‫א‬E١ J٢F‫א‬‫א‬‫א‬‫א‬‫א‬   f (t ) = t 2e −t + e−t

for

t≥0

 W‫א‬‫א‬‫א‬ ٦ J٢ ‫א‬ ‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬،‫א‬ ‫א‬،  ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬،‫א‬‫א‬  W‫א‬K‫א‬‫א‬   an d

dy (t ) d n −1 y (t ) y (t ) + + ...... + a1 + a0 y (t ) = x(t ) a n −1 n −1 n dt dt dt

n

F‫א‬‫א‬،‫א‬KKKKK‫א‬‫א‬،y(t)‫א‬‫א‬‫א‬

‫א‬‫א‬KE ‫א‬‫א‬‫א‬‫א‬

 W‫א‬،‫א‬‫א‬‫א‬‫א‬   Y ( s) = B( s) A( s )

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬  W‫א‬‫א‬‫א‬   y (s) = L−1⎛⎜⎜ B( s) ⎞⎟⎟ ⎝ A( s ) ⎠

- ١٦ -


‫א‬‫א‬

‫א‬٢٦٢

 

 ‫א‬

 EF

 

 

 WE٦ J٢F  W‫א‬‫א‬‫א‬ 

d 2 y (t ) dy (t ) +4 + 5 y (t ) = 5 x(t ) 2 dt dt  dy (0) =2 y (0) = 1, dt

 W‫א‬ ‫א‬ ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬  W

  ⎛⎜ s 2Y ( s) − sy (0) − dy(0) ⎞⎟ + 4(sY ( s) − y (0) ) + 5Y ( s) = 5 X ( s) ⎝

dt ⎠

  (s 2Y ( s) − s − 2) + 4(sY ( s) − 1) + 5Y ( s) = 5 X (s)   (s 2 + 4s + 5)Y ( s) = 5 X ( s) + s + 6

  X ( s) = 1  W‫א‬‫א‬‫א‬‫א‬x(t)‫א‬ s

 W‫א‬   Y (s) =

s 2 + 6s + 5 s ( s 2 + 4 s + 5)

  s = −2 ±   Y (s) =   a1 = 0 ,

j, s = 0 



W‫א‬‫א‬

a1s + a2 a + 3 2 (s + 2 ) + 1 s

a2 = 2 , a3 = 1 

 W

W‫א‬‫א‬‫א‬

 W‫א‬‫א‬‫א‬‫א‬   Y (s) = 1 + s

2 (s + 2)2 + 1

 W‫א‬‫א‬‫א‬‫א‬E١ J٢F‫א‬‫א‬‫א‬‫א‬‫א‬   y (t ) = 1 + 2e −2t sin t

- ١٧ -

t≥0


‫א‬‫א‬  

‫א‬٢٦٢

 ‫א‬

 EF

 

 

 W W‫א‬‫א‬ K١ t≥0،x(t) = 10

E

t≥0،x(t) =-3t

E

t≥0،z(t)=e5t

E

t≥0،x(t) = -10 E t≥0،x(t) = 2t

E

WE١ J٢F‫א‬‫א‬ t≥0،z(t)=10e-7t

E

t≥0،y(t)=10Cos5t

E

t≥0،w(t)=eatsinωt

E

t≥0،x(t)=2sin3t E

t≥0،v(t)=eatCosωt

E

W‫א‬‫א‬‫א‬ 1 s (s + 1)(s + 2) s+3 F (s) = (s + 1)(s + 2)2 13 F ( s) = 2 s (s + 4s + 13) F (s) =

2 y '' (t ) + 7 y ' (t ) + 3 y (t ) = 0

  y ''' (t ) + 4 y '' (t ) + y ' (t ) + 3 y (t ) = 0

- ١٨ -

, y (t ) = 0 ,

E E E

W‫א‬‫א‬‫א‬ , y (t ) = 0 , y ' (0) = 0 E y ' (0) = 0 , y '' (0) = 0 E


 

EF

 ‫א‬

‫א‬

٣



 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

   

 W‫א‬‫א‬  W‫א‬

K‫א‬

K‫א‬‫א‬

K‫א‬‫א‬

K‫א‬‫א‬

- ١٩ -


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

   

 W ١ J٣ ‫א‬،  ‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ ،  ‫א‬‫א‬K ‫א‬‫א‬

‫א‬K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ ‫א‬

‫א‬‫א‬K ‫א‬ ‫א‬  ‫א‬ K ‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬  K‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬ ‫א‬‫א‬

K ‫א‬‫א‬ ‫א‬ ، ‫א‬‫א‬‫א‬‫א‬،‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

 K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

، ‫א‬‫א‬‫א‬‫א‬

K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

 W‫א‬‫א‬ ٢ J٣   ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬K  W

  an d

dy (t ) d n −1 y (t ) y (t ) + + ...... + a1 + a0 y (t ) = Kx(t ) a n −1 n −1 n dt dt dt

n

 W‫א‬‫א‬K‫א‬y(t)‫א‬x(t)   an s nY ( s) + an −1s n −1Y ( s) + ..... + a1sY ( s) + a0Y ( s) = KX ( s) ‫א‬‫א‬ ‫א‬‫א‬  ‫א‬‫א‬   G ( s) = Y ( s)

X ( s)

 W‫א‬‫א‬

=

K an s + an −1s + ... + a1s + a0 n

- ٢٠ -

n −1


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

   

 WE١ J٣F  W‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬   5 y '' (t ) + 2 y ' (t ) + y(t ) = 3x(t )

 W‫א‬  W‫א‬‫א‬‫א‬‫א‬   5s 2Y (s) + 2sY ( s) + Y ( s) = 3 X (s)  W‫א‬  

(5s 2 + 2s + 1)Y ( s ) = 3 X ( s )

Y (s) 3 = 2 X ( s ) 5s + 2 s + 1

G ( s) =

 W‫א‬‫ א‬٣ J٣ K ‫א‬،‫א‬‫א‬

‫א‬،‫א‬‫א‬‫א‬‫א‬  K‫א‬

 W‫א‬‫א‬‫א‬‫ א‬١ J٣ J٣  K‫א‬‫א‬‫א‬E١ J٣F‫א‬  ‫א‬

 

J

‫א‬‫א‬

 





‫א‬‫א‬ H

‫א‬‫א‬

H



‫א‬

‫א‬

‫א‬

 ‫א‬

 K‫א‬‫א‬‫א‬‫א‬،E١ J٣F  W‫א‬‫א‬‫א‬‫א‬‫א‬  K‫א‬W‫א‬ - ٢١ -

E


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

   

KE‫א‬‫א‬F‫א‬‫א‬W‫א‬‫ א‬E K‫א‬‫א‬‫א‬W‫א‬

‫א‬‫א‬W‫א‬ K‫א‬‫א‬

 KW

K‫א‬‫א‬EFW‫א‬

E E E

E

W‫א‬‫א‬‫א‬ ٢ J٣ J٣   ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

K  ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬  W‫א‬‫א‬

W‫א‬‫א‬‫א‬  ‫א‬‫א‬  ‫א‬G1(s)‫א‬‫א‬،

E

 KE٢ J٣F،G2(s)‫א‬

X(s)

 

G1(s)

Y(s)

G2(s)

=

X(s)

G(s)

Y(s)

 K‫א‬‫א‬،E٢ J٣F

 W‫א‬‫א‬‫א‬   G ( s) = G1 ( s) ⋅ G2 ( s)

X(s)

‫א‬‫א‬‫א‬، G2 ( s) =

1 s +1

10 2s + 1

 WE٢ J٣F  W‫א‬‫א‬‫א‬ Y(s)

10  G1 ( s) = 1 ،‫א‬‫א‬‫א‬ 2s + 1 s +1

W‫א‬

 W‫א‬‫א‬

- ٢٢ -


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

   

G ( s) =

 

Y (s) = G1 ( s ) ⋅ G2 ( s ) X ( s) 1 10 = ⋅ s + 1 2s + 1 10 = 2 2 s + 3s + 1

 W‫א‬‫א‬‫א‬  

10 2s + 3s + 1

X(s)

Y(s)

2

W‫א‬‫א‬‫א‬ E ‫א‬G1(s)‫א‬‫א‬،  ‫א‬‫א‬  KE٣ J٣F،G2(s)‫א‬

G1(s)

Y(s)

+

X(s)

=

X(s)

G(s)

Y(s)

G2(s)

 

 K‫א‬‫א‬،E٣ J٣F

 W‫א‬‫א‬‫א‬   G ( s) = G1 ( s) + G2 ( s)

20 s+5

+

X(s)

  ‫א‬‫א‬‫א‬، G2 (s) =

 WE٣ J٣F  W‫א‬‫א‬‫א‬

Y(s)

10 s +1

10  G1 ( s) = 20 ،‫א‬‫א‬‫א‬ s +1 s+5

W‫א‬

 W‫א‬‫א‬ - ٢٣ -


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

   

  G ( s) =        

Y (s) = G1 ( s ) + G2 ( s ) X ( s) 20 10 = + s + 5 s +1 20( s + 1) 10( s + 5) = + ( s + 5)( s + 1) ( s + 5)( s + 1) 30s + 70 = ( s + 5)( s + 1) 30s + 70 = 2 s + 6s + 5

 W‫א‬‫א‬‫א‬ X(s)

30 s + 70 s 2 + 6s + 5

Y(s)

 

WE‫א‬‫א‬‫א‬F‫א‬‫א‬‫א‬ E ‫א‬،     

،H(s)  ‫א‬‫א‬‫א‬‫א‬G(s)  ‫א‬‫א‬‫א‬

 KE٤ J٣F

X(s)

+

Y(s)

G(s)

-

=

X(s)

G(s)

Y(s)

H(s)

 

 K،E٤ J٣F

 W‫א‬‫א‬‫א‬   T ( s) =

G (s) 1 + G ( s) H ( s)

 WE٤ J٣F  W‫א‬‫א‬‫א‬ X(s)

+

-

1 0.25s + 1

- ٢٤ -

Y(s)


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

   

 W‫א‬

‫א‬،H(s)=1 G ( s ) =

1 ، ‫א‬ 0.25s + 1

 W‫א‬‫א‬‫א‬‫א‬

  T ( s) =

Y ( s) G ( s) = X ( s) 1 + G ( s) H ( s) 1 = 0.25s + 1   1+ 1 0.25s + 1 1 = 0.25s + 2

 W‫א‬‫א‬‫א‬ X(s)

1 0.25s + 2

- ٢٥ -

Y(s)


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

   

 W  W‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ K١   y ' (t ) + 2 y (t ) = x(t ) E   y '' (t ) + 20 y ' (t ) + 6 y (t ) = 9 x(t ) E   4 y ''' (t ) + 5 y '' (t ) + 2 y ' (t ) + y (t ) = 3x(t ) E   y ''' (t ) + 3 y '' (t ) + 6 y ' (t ) + 2 y (t ) = x(t ) E  W‫א‬‫א‬ K٢ X(s)

3 2s + 1

5 3s + 3

Y(s)

 W‫א‬‫א‬

 W‫א‬‫א‬

1 s+5

+

X(s)

Y(s)

2 s +1

  X(s)

+

-

4 3s + 2

2 s

- ٢٦ -

Y(s)


 

EF

 ‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬

٤



 ‫א‬‫א‬‫א‬  ‫א‬‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

 W‫א‬‫א‬  W‫א‬

K‫א‬‫א‬‫א‬‫א‬

 K‫א‬‫א‬‫א‬‫א‬‫א‬

K‫א‬‫א‬‫א‬‫א‬

K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ K‫א‬‫א‬

- ٢٧ -


 ‫א‬‫א‬‫א‬  ‫א‬‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

 W ١ J٤ K ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ ،‫א‬‫א‬‫א‬‫א‬‫א‬

،‫א‬‫א‬‫א‬‫א‬K‫א‬‫א‬ ‫א‬F‫א‬‫א‬،‫א‬

 K‫א‬‫א‬E‫א‬

‫א‬‫א‬،‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬K ‫א‬‫א‬‫א‬‫א‬

 K‫א‬‫א‬،‫א‬  W‫א‬‫א‬ ٢ J٤

W‫א‬‫א‬‫א‬‫ א‬١ J٢ J٤  W‫א‬‫א‬‫א‬‫א‬‫א‬   τy ' (t ) + y (t ) = Kx (t )

 W 

K‫א‬‫א‬Wτ •

K‫א‬‫א‬‫א‬WK • K‫א‬Wx(t) •

KE‫א‬‫א‬F‫א‬Wy(t) •

 W‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬K1y(t)‫א‬

K‫א‬‫א‬

E

KK‫א‬x(t)‫א‬ E

Kτ‫א‬‫א‬y'(t)‫א‬

E

W‫א‬‫א‬‫א‬‫א‬‫א‬‫ א‬٢ J٢ J٤ ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

،‫א‬،‫א‬، ‫א‬‫א‬

 W

- ٢٨ -


 ‫א‬‫א‬‫א‬  ‫א‬‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

  τsY ( s ) − y0 + Y ( s ) = KX ( s )  W‫א‬‫א‬،‫א‬‫א‬‫א‬‫א‬‫א‬   (τs + 1)Y ( s) = KX ( s)  W‫א‬‫א‬‫א‬‫א‬   Y (s)

X ( s)

=

K τs + 1

WE١ J٤F  W‫א‬‫א‬ 0.1y ' (t ) + y (t ) = 2 x(t ) y (0) = 0

W‫א‬

K‫א‬‫א‬

E

K‫א‬‫א‬

E

K‫א‬ E

 W‫א‬ Wy'‫א‬‫ א‬E τ = 0 .1

Wx(t)‫א‬ E K =2

  Y (s)

X ( s)

=

W‫א‬‫א‬

K 2 = τs + 1 0.1s + 1

E

 WE٢ J٤F  W‫א‬‫א‬‫א‬ R + vR(t) -

+

+

C

vin(t)

vout(t)

-

-

  - ٢٩ -


 ‫א‬‫א‬‫א‬  ‫א‬‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

 W‫א‬ ‫א‬‫א‬‫א‬،‫א‬RC‫א‬‫א‬

 W‫א‬‫א‬‫א‬‫א‬‫א‬،‫א‬  W‫א‬‫א‬‫א‬‫א‬   vR (t ) + vout (t ) = vin (t )

 W‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬   vR (t ) = Ri(t ) ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ i(t) ،Evc(t)=vout(t)F‫א‬‫א‬‫א‬‫א‬

 W‫א‬

  i(t ) = Cvout ' (t )  W‫א‬‫א‬vR(t)   vR (t ) = RCvout ' (t )  W‫א‬‫א‬‫א‬vR(t)   RCvout ' (t ) + vout (t ) = vin (t )   ‫א‬RC‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬K  ‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬  ‫א‬‫א‬

 W‫א‬‫א‬

Kvin(t)x(t)‫א‬ •

 Kvout(t)y(t)E‫א‬‫א‬F‫א‬ • KRC‫א‬ τ ‫א‬‫• א‬

K1 K‫א‬‫א‬‫א‬ •

 W‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ - ٣٠ -


 ‫א‬‫א‬‫א‬  ‫א‬‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

  Vout ( s) = Vin ( s )

1 RCs + 1

 WE٣ J٤F  ‫؟‬‫א‬‫א‬‫א‬ qi(t)

R

h(t)

qo(t)

A

‫א‬A‫א‬‫א‬ ‫א‬   K ‫א‬‫א‬KR‫א‬

 W‫א‬ ‫א‬ ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬  W‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬   qi ( t ) = q s ( t ) + qo ( t )

 W

 K‫א‬‫א‬‫א‬Wqi(t) •

، ‫א‬‫א‬‫א‬،‫א‬‫א‬‫א‬‫א‬Wqs(t) •  K q s (t ) = A dh(t ) W‫א‬‫א‬‫א‬ dt

qo ( t ) =

1 h(t ) ،‫א‬‫א‬‫א‬Wqo(t) R

 W‫א‬‫א‬

  A dh(t ) + 1 h(t ) = qi (t ) dt

R

 W‫א‬‫א‬R‫א‬   AR dh(t ) + h(t ) = Rqi (t ) dt

AR     ‫א‬ ‫א‬           ‫א‬ 

 K R

- ٣١ -


 ‫א‬‫א‬‫א‬  ‫א‬‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

 W‫א‬‫א‬ ٣ J٤ W‫א‬‫א‬‫א‬‫ א‬١ J٣ J٤  W‫א‬‫א‬‫א‬‫א‬‫א‬   y" (t ) + 2αy' (t ) + ωo 2 y (t ) = Kωo 2 x(t )

 W  

K?‫?א‬‫א‬Wω0 •

K??‫א‬Wα •

K‫א‬‫א‬‫א‬WK • W‫א‬‫א‬‫א‬‫א‬‫א‬‫ א‬٢ J٣ J٤ ،‫א‬،‫א‬‫א‬  W،‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬،‫א‬

  s 2Y (s) + 2αsY (s) + ω02Y (s) = Kωo 2 X (s)  W‫א‬‫א‬   ( s 2 + 2αs + ωo 2 )Y ( s) = Kωo 2 X (s)  W‫א‬‫א‬‫א‬‫א‬   G ( s) = Y ( s)

X ( s)

Kω o 2 2 s + 2αs + ωo 2

=

WE٤ J٤F  W‫א‬‫א‬

  y '' (t ) + 2 y ' (t ) + 5 y(t ) = 4 x(t )

 W

 K‫א‬‫א‬‫א‬

E

K‫א‬‫א‬ E

 W‫א‬ ‫א‬   ‫א‬ ‫א‬‫א‬ E W‫א‬‫א‬‫א‬‫א‬‫א‬   ωo 2 = 5 ⇒ ωo =

5 ⇒ ωo = 2.236

- ٣٢ -


 ‫א‬‫א‬‫א‬  ‫א‬‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

  2α = 2 K ωo = 4 2

⇒K=

2 ⇒α =1 2 4 ⇒K= ⇒ K = 0.8 5

⇒α = 4

ωo 2

‫א‬‫א‬ ‫א‬‫א‬ E   G ( s) = Y ( s)

=

X ( s)

W‫א‬

4 s + 2s + 5 2

 WE٥ J٤F  W‫א‬‫א‬‫א‬ L

R

+ vR(t) - + vL(t) Vin(t)

+

+

C

-

 

Vout(t)

-

 W‫א‬ ‫א‬‫א‬‫א‬،‫א‬RLC‫א‬‫א‬ K  ‫א‬‫א‬‫א‬‫א‬‫א‬ ،‫א‬

 W‫א‬‫א‬‫א‬‫א‬   vR (t ) + vL (t ) + vout (t ) = vin (t )

 W‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬   vR (t ) = Ri(t )  W‫א‬‫א‬‫א‬   vL (t ) = L di(t ) = Li ' (t ) dt

   ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬i(t)

،Evc(t)=vout(t)F‫א‬‫א‬‫א‬‫א‬

 W‫א‬

  i(t ) = Cvout ' (t )  W‫א‬‫א‬‫א‬‫א‬ - ٣٣ -


 ‫א‬‫א‬‫א‬  ‫א‬‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

  vR (t ) = RCvout ' (t )  W‫א‬‫א‬‫א‬‫א‬‫א‬   vL (t ) = Li ' (t ) = LCvout ''  W‫א‬‫א‬‫א‬vL(t)vR(t)   LCvout (t ) + RCvout ' (t ) + vout (t ) = vin (t )  W LC‫א‬

  vout (t ) + R vout ' (t ) + L

1 1 vout (t ) = vin (t ) LC LC

  ‫א‬RLC‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬K‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

 W‫א‬‫א‬

Kvin(t)x(t)‫א‬ •

 Kvout(t)y(t)E‫א‬‫א‬F‫א‬ • ωo =

α=

R  2L

1 LC

 W‫א‬ •

W‫א‬ •

K1 K‫א‬‫א‬‫א‬ •

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

 W‫א‬‫א‬

⎛ 1 ⎞ ⎜ ⎟ Vout ( s ) LC ⎠ ⎝ =  1 Vin ( s ) ⎛R⎞ s 2 + ⎜ ⎟s + LC ⎝L⎠

 WE٦ J٤F   ‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬KB‫א‬،KSpringM  KF(t)

- ٣٤ -


 ‫א‬‫א‬‫א‬  ‫א‬‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

  KSpring

F(t)

M

B

x(t)

 

0

 W‫א‬ ‫א‬،‫א‬‫א‬‫א‬  W،‫א‬‫א‬‫א‬‫א‬‫א‬   ∑ F =F (t ) − FK

− FB = M

d 2 x (t ) dt 2

FK=KSpring x(t)‫א‬‫א‬‫א‬‫א‬WFK • FB = B

dx (t ) ‫א‬‫א‬WFB • dt

 W  M d

2

x(t ) dx(t ) +B + K Spring x(t ) = F (t ) 2 dt dt

 W‫א‬   x '' (t ) +

K 1 B ' F (t ) x (t ) + Spring x(t ) = M M M

 W‫א‬ ωo =

K Spring

W‫א‬ •

M 1 B α= W‫א‬ • 2M 1  K = W‫• א‬ K Spring

- ٣٥ -


 ‫א‬‫א‬‫א‬  ‫א‬‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

 W  W‫א‬‫א‬ K١ 0.1y ' (t ) + y (t ) = 2 x(t ) y (0) = 0

W‫א‬

K‫א‬‫א‬

E

K‫א‬‫א‬

E

K‫א‬ E

10kΩ‫א‬‫א‬‫א‬RC‫א‬‫א‬

10µF‫א‬RC‫א‬‫א‬‫א‬

 W‫א‬‫א‬

K20µF‫א‬

K0.083 ‫א‬‫א‬‫א‬‫א‬

  y" ( t ) + 2 y ' ( t ) + 2 y ( t ) = 2 x ( t )

 W

 K‫א‬‫א‬‫א‬

E

K‫א‬‫א‬ E

‫א‬RLC‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

 KC=40µF،L=4mH،R=25kΩ‫א‬

- ٣٦ -

K٥  


 

 

 

EF

 ‫א‬

‫א‬

٥

- ٥٧ -



 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

 

 

 W‫א‬‫א‬  W‫א‬

K‫א‬‫א‬

K‫א‬‫א‬

 K‫א‬‫א‬

- ٣٧ -

 


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

 

 

 W ١ J٥ K ‫א‬‫א‬‫א‬‫א‬ ‫א‬‫א‬

 ‫א‬‫א‬‫א‬‫א‬  K‫א‬‫א‬‫א‬‫א‬

 W‫א‬‫ א‬٢ J٥  ، ‫א‬‫א‬  ‫א‬‫א‬  W،‫א‬

K‫א‬‫א‬‫א‬‫א‬‫א‬W‫א‬‫א‬

E

‫א‬‫א‬‫א‬‫א‬‫א‬W ‫א‬

E

K‫א‬‫א‬W‫א‬

E

K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ W‫ א‬E K

 W‫א‬‫א‬ ٣ J٥ ‫א‬‫א‬‫א‬  W K‫א‬‫א‬

 W‫א‬‫א‬ ١ J٣ J٥ ‫א‬K‫א‬‫א‬‫א‬‫א‬‫א‬E١ J٥F‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬K

‫א‬‫א‬ K ‫א‬‫א‬‫א‬

 K‫א‬

‫א‬ ‫א‬‫א‬

 

‫א‬

  ‫א‬‫א‬

‫א‬

K‫א‬‫א‬،E١ J٥F‫א‬ - ٣٨ -

‫א‬


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

 

 

 W‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

 K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

E

‫א‬،  ‫א‬‫א‬‫א‬ E K ‫א‬‫א‬‫א‬‫א‬K‫א‬‫א‬‫א‬

 K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

،‫א‬،‫א‬

KEKKK ،F‫א‬،

E

  ‫א‬، ‫א‬‫א‬‫א‬

،K‫א‬ K،،‫א‬

K   ‫א‬،‫א‬‫א‬

K ‫א‬‫א‬‫א‬

E

 ‫א‬‫א‬، ‫א‬‫א‬‫א‬ K

‫א‬،  K

K‫א‬‫א‬‫א‬‫א‬‫א‬

 K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

 W‫א‬‫א‬ ٢ J٣ J٥ ‫א‬‫א‬E٢ J٥F‫א‬، ‫א‬‫א‬ ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬K‫א‬‫א‬‫א‬

‫א‬e(t)  ‫א‬K‫א‬‫א‬ ‫א‬

‫א‬‫א‬‫א‬K  p(t)‫א‬  K‫א‬‫א‬‫א‬‫א‬‫א‬  

- ٣٩ -


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

 

 

e(t)

r(t) +

-

‫א‬

b(t)

 

p(t)

‫א‬‫א‬

‫א‬‫א‬‫א‬

c(t)

‫א‬

‫א‬

K‫א‬‫א‬،E٢ J٥F‫א‬

 W،‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬W‫א‬‫א‬

K‫א‬

E

K‫א‬W‫א‬‫ א‬E

 K‫א‬‫א‬‫א‬Wc(t)‫א‬

،‫א‬‫א‬‫א‬‫א‬‫א‬Wr(t)‫א‬‫א‬ K‫א‬

 K‫א‬‫א‬‫א‬Wb(t)‫א‬‫א‬

  F‫א‬‫א‬‫א‬We(t)‫א‬

  ‫א‬K  ‫א‬‫א‬E‫א‬‫א‬‫א‬

K‫א‬

‫א‬‫א‬Wp(t)‫א‬

 K‫א‬

E E

E

E

E

 W‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

، ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

،‫א‬‫א‬  ‫א‬‫א‬‫א‬‫א‬ KTd ‫א‬‫א‬‫א‬Ta‫א‬

K،‫א‬‫א‬، Ta ≥ Td  ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

،‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬،‫א‬ K‫א‬‫א‬،‫א‬‫א‬ - ٤٠ -

E


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

 

 

K‫ א‬E

K‫א‬‫א‬

K‫א‬‫א‬‫א‬‫א‬

E

E

‫א‬‫א‬‫א‬ ‫א‬‫א‬‫א‬

K‫א‬‫א‬‫א‬،  K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬  

- ٤١ -

 


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬

 EF

 

 

 W ‫؟‬‫א‬‫א‬‫ א‬K١

 ‫؟‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

‫؟‬‫א‬‫א‬‫א‬‫א‬‫א‬

‫؟‬‫א‬‫א‬‫א‬‫א‬

 ‫؟‬‫א‬‫א‬‫א‬

 W‫א‬‫א‬ K‫א‬‫א‬

E

Kr(t)‫א‬‫א‬

E

Ke(t)‫א‬

E

K٤ K٦

K‫א‬‫ א‬E

 Kb(t)‫א‬‫א‬

 Kp(t)‫א‬

E E

‫؟‬‫א‬‫א‬‫א‬‫א‬‫א‬

K   ‫א‬‫א‬‫א‬‫א‬

 ‫؟‬‫א‬‫א‬‫א‬

K‫א‬‫؟‬E

K  ‫א‬‫א‬‫א‬‫א‬ K١٠  K‫א‬‫؟‬  

- ٤٢ -


 

 

 

EF

 ‫א‬‫א‬

‫א‬‫א‬

٦

- ٥٧ -



 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬‫א‬

 EF

 

 

 

 W‫א‬‫א‬  W‫א‬

K‫א‬‫א‬‫א‬‫א‬

K‫א‬

K‫א‬‫א‬‫א‬

K‫א‬‫א‬‫א‬

K‫א‬‫א‬‫א‬

K‫א‬‫א‬‫א‬‫א‬‫א‬

K‫א‬‫א‬‫א‬

- ٤٣ -

 


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬‫א‬

 EF

 

 

 

 W ١ J٦ K‫א‬‫א‬‫א‬‫א‬،‫א‬‫א‬‫א‬‫א‬   ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬K‫א‬‫א‬‫א‬‫א‬ K‫א‬‫א‬‫א‬

‫ א‬‫א‬  

e(t)

r(t) +

-

‫א‬

b(t)

 

p(t)

‫ﻣﺤﻮل اﻹﺷﺎرة‬

‫اﻟﻤﺸﻐﻞ‬

‫ﻋﻨﺼﺮ اﻟﺘﺤﻜﻢ‬ ‫اﻟﻨﻬﺎﺋﻲ‬

‫א‬‫א‬‫א‬

c(t)

‫א‬

‫א‬

K‫א‬‫א‬‫א‬،E١ J٦F‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬E١ J٦F‫א‬

‫א‬ ‫א‬‫א‬K‫א‬  K‫א‬‫א‬

 W‫א‬ ٢ J٦ ‫א‬‫א‬ ‫א‬‫א‬‫א‬ ‫א‬KTTL‫א‬

K‫א‬ ‫א‬  ‫א‬‫א‬‫א‬

 W‫ א‬٣ J٦ ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬   ‫א‬‫א‬‫א‬‫א‬K‫א‬‫א‬‫א‬

 W‫א‬

- ٤٤ -


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬‫א‬

 EF

 

 

 

 W‫א‬‫ א‬١ J٣ J٦ ‫א‬‫א‬‫א‬‫א‬‫א‬ K  ‫א‬‫א‬،‫א‬،‫א‬  W‫א‬‫א‬‫א‬

 W‫א‬‫א‬‫א‬ ‫א‬  ‫א‬

E

‫א‬، ‫א‬‫א‬‫א‬  KE٢ J٦F‫א‬‫א‬K‫א‬‫א‬

K،E٢ J٦F‫א‬

 K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬E٣ J٦F‫א‬

 

 K‫א‬‫א‬‫א‬‫א‬،E٣ J٦F

W‫א‬‫א‬‫א‬‫ א‬E ‫א‬‫א‬ ‫א‬‫א‬،‫א‬L‫א‬،

‫א‬K‫א‬‫א‬‫א‬

 J٦F‫א‬، ‫א‬‫א‬E J٤ J٦F‫א‬K‫א‬

    ‫א‬‫א‬‫א‬‫א‬‫א‬E J٤

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬    K ‫א‬ - ٤٥ -


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬‫א‬

 EF

 

 

 

‫א‬‫א‬

‫א‬‫א‬





EF

EF

   K‫א‬‫א‬‫א‬‫א‬،E٤ J٦F

 K‫א‬‫א‬‫א‬‫א‬‫א‬E٥ J٦F‫א‬

 

K‫א‬‫א‬‫א‬‫א‬‫א‬،E٥ J٦F

 W‫א‬‫א‬‫א‬‫ א‬E K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ ،EF‫א‬ ‫א‬     K‫א‬         ‫א‬‫א‬‫א‬K‫א‬‫א‬‫א‬       ،‫א‬   ١٠        ‫א‬‫א‬‫א‬E٦ J٦F K، ١٠٠٠  K‫א‬‫א‬

 

K‫א‬‫א‬‫א‬‫א‬‫א‬،E٦ J٦F - ٤٦ -


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬‫א‬

 EF

 

 

 

 W‫א‬‫ א‬٢ J٣ J٦ ‫א‬‫א‬ ‫א‬‫א‬‫א‬  ‫א‬K ‫א‬‫א‬‫א‬‫א‬  J٦F‫א‬K  ‫א‬‫א‬‫א‬‫א‬E‫א‬‫א‬F‫א‬‫א‬ ، ‫א‬‫א‬‫א‬E٧ ‫א‬‫א‬،‫א‬‫א‬‫א‬  K‫א‬‫א‬ ‫א‬ 

‫א‬



  ‫א‬‫א‬



 

‫א‬‫א‬

‫א‬‫א‬

 K،E٧ J٦F

 W‫א‬‫א‬   F = PA

 W

KN‫א‬WF

E

KPa‫א‬WP E rKm2‫א‬، A = πr 2 W‫א‬‫א‬WA

E

K‫א‬ ‫א‬ K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬  K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬E٨ J٦F - ٤٧ -


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬‫א‬

 EF

 

 

 

A

B

K‫א‬‫א‬KEF

K‫ א‬KEF

K‫א‬‫א‬KEF

 

 K‫א‬‫א‬‫א‬‫א‬،E٨ J٦F

 W‫א‬‫א‬‫ א‬٣ J٣ J٦ ‫א‬ ‫א‬‫א‬‫א‬‫א‬ K ‫א‬‫א‬‫א‬‫א‬‫א‬ ‫א‬‫א‬

 K‫א‬‫א‬‫א‬‫א‬‫א‬E٩ J٦F‫א‬ 



‫א‬





‫א‬‫א‬‫א‬

 



‫א‬‫א‬

‫א‬‫א‬ ‫א‬‫א‬

 K‫א‬‫א‬‫א‬‫א‬‫א‬،E٩ J٦F

 ‫א‬‫א‬  ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

K   ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬  W‫א‬‫א‬

K‫א‬‫א‬W‫א‬‫א‬

E

K‫א‬‫א‬‫א‬W‫א‬‫א‬‫ א‬E - ٤٨ -


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬‫א‬

 EF

 

 

 

 W‫א‬‫א‬ ٤ J٦ K ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

‫א‬،‫א‬‫א‬‫א‬‫א‬‫א‬

 K‫א‬‫א‬

E٧ J٦F‫א‬‫א‬K ‫א‬‫א‬‫א‬

‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬ ‫א‬‫א‬  K‫א‬‫א‬‫א‬،

 K‫א‬‫א‬

  K‫א‬‫א‬‫א‬،E٧ J٦F‫א‬

 W‫א‬‫א‬‫א‬

 K‫א‬‫א‬‫א‬‫א‬

E

 K‫א‬‫א‬‫א‬ E

 K‫א‬‫א‬‫א‬‫א‬‫א‬E٨ J٦F‫א‬‫א‬

 

K‫א‬‫א‬‫א‬‫א‬،E٨ J٦F‫א‬ - ٤٩ -


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 ‫א‬‫א‬

 EF

 

 

 

W ‫؟‬‫א‬‫א‬‫א‬‫ א‬K١

‫؟‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

 ‫؟‬‫א‬‫א‬‫א‬

 ‫؟‬‫א‬‫א‬‫א‬‫א‬

 ‫؟‬‫א‬‫א‬‫؟‬‫א‬‫א‬‫א‬‫א‬

 ‫؟‬‫א‬

 ‫؟‬‫א‬‫א‬‫א‬

 ‫؟‬‫א‬‫א‬‫א‬‫א‬

‫؟‬‫א‬‫א‬‫א‬

- ٥٠ -

K٣ K٥ K٧

 


 ‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

 

AC motor actuator analog armature automation block diagram bode diagram cascade characteristic Equation characteristics chart recorder closed loop compensator control system control valve controlled variable controller critical damping cutoff frequency damping DC motor delay Time derivative derivative Controller design digital

 ‫א‬

 

 

 

 ‫א‬

 ‫א‬

 

 

 

 ‫א‬‫א‬

   

 

 

 

 

 ‫א‬‫א‬‫א‬‫א‬  

 

 ‫א‬

 

 

 ‫א‬  

 

   

 


 ‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

 

disturbance dynamic error feedback feedback path final control element flow meter flow rate forward path frequency response gain gain crossover frequency gain margin hydraulic input integral integral Controller lag compensator laplace transform lead compensator level magnitude manual control matrix motor open loop oscilloscope

 ‫א‬‫א‬

 ،

 

   

 ‫א‬‫א‬  

 

 

 ‫א‬

 

 ‫א‬

 ‫א‬  

 

 

   

   

 

 

   

 

 

 ‫א‬

 


 ‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

 

output over damping overshoot parallel peak time performance permanent response phase crossover frequency phase margin phase shift pneumatic polynomial potentiometer process programmablelogiccontrol proportional proportional controller reference input resonance frequency response response curve rise time root sensor series set point settling time

 

 ‫א‬

   ‫א‬

 ‫א‬

 ‫א‬

 ‫א‬‫א‬

 ‫א‬

 ‫א‬  ‫א‬‫א‬

 ،‫א‬

 ‫א‬

 ‫א‬  

 ‫א‬‫א‬

 

 

   ‫א‬

 ‫א‬

 ‫א‬

 ‫א‬

 

 

 ‫א‬

 ‫א‬،‫א‬

 ‫א‬‫א‬  


 ‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

 

signal conversion signal processing simulation specification stability stability criteria step input stepper motor summing junction system tachometer take off point time constant time domain response transducer transfer function transient response two position control underdamping unit step unity feedback

 ‫א‬

 ‫א‬

 

 ‫א‬

 ‫א‬‫א‬

 ‫א‬‫א‬

 ‫א‬

 ‫א‬

 

 

 ،‫א‬

 

 ‫א‬‫א‬

 ‫א‬

   ‫א‬

 ‫א‬

 ‫א‬  

 ‫א‬

 

 


 ‫א‬‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

 

 ‫א‬‫א‬   1.

Johnson, C. D. Process Control Instrumentation Technology, Prentice Hall, 2002

2.

Bateson, R. N. Introduction to Control Systems Technology, Prentice Hall, 2002

3.

Ogata, K. Modern control Engineering, Prentice Hall, 1997

4.

Dorf, R. C. and Bishop, R. H. Modern Control Systems, Addisson Wesley, 1998

5.

‫א‬‫א‬،   ‫א‬‫א‬، ‫א‬

١٩٩١،‫א‬‫א‬‫א‬


 ‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

 

 ‫א‬ ١ ١

‫ א‬‫א‬  K‫א‬‫א‬

٢

 K

٢

 K‫א‬‫א‬‫א‬

٣

 K‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬

٦

 K

٣

٤

١   ١ J١

 ٢ J١

 K‫א‬‫א‬

 ٣ J١

 K‫א‬‫א‬

 ٥ J١

 ٤ J١  

  ٧



٢

٨

K‫א‬‫א‬

 K

٨

٨

١١

١٢

١٢

 ١ J٢

 K

 ٢ J٢

 K‫א‬‫א‬‫א‬

 ٤ J٢

 K

 K‫א‬

 ٣ J٢  ٥ J٢

 K‫א‬‫א‬‫א‬‫ א‬١ J٥ J٢

١٣

 K‫א‬‫א‬‫א‬‫א‬‫ א‬٢ J٥ J٢

١٦

 K‫א‬‫א‬‫א‬

 ٦ J٢

  ١٩

‫א‬  K‫א‬‫א‬

٣  

٢٠

 K‫א‬‫א‬

١٥

١٨

٢٠ ٢١

٢١

 K‫א‬‫א‬‫א‬‫ א‬٣ J٥ J٢  K

 K

 K‫א‬‫א‬

 

 ١ J٣

 ٢ J٣  ٣ J٣

 K‫א‬‫א‬‫א‬‫ א‬١ J٣ J٣


 ‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

٢٢

٢٦

 

 K‫א‬‫א‬‫א‬ ٢ J٣ J٣  K

 

٢٧

 ‫א‬‫א‬‫א‬  K‫א‬‫א‬

٤  

٢٨

 K‫א‬‫א‬

 

٢٨

٢٨

 K

 ١ J٤

 ٢ J٤

 K‫א‬‫א‬‫א‬‫ א‬١ J٢ J٤

٢٨

 K‫א‬‫א‬‫א‬‫א‬‫א‬‫ א‬٢ J٢ J٤

٣٢

 K‫א‬‫א‬‫א‬‫ א‬١ J٣ J٤

٣٢

٣٢

 ‫א‬‫א‬

 ٣ J٤

 K‫א‬‫א‬‫א‬‫א‬‫א‬‫ א‬٢ J٣ J٤  K

 

٣٧

‫א‬  K‫א‬‫א‬

٥  

٣٨

 K‫א‬‫א‬

٣٦

 

٣٨

٣٨

 K

 ١ J٥

 K‫א‬‫א‬

 ٣ J٥

 ٢ J٥

٣٨

 K‫א‬‫א‬ ١ J٣ J٥

٤٢

 

 

٤٣

‫א‬‫א‬  K‫א‬‫א‬

٦  

٤٤

 K‫א‬

٣٩

 

٤٤

٤٤

٤٥

٤٧

 K‫א‬‫א‬ ٢ J٣ J٥

 K

 ١ J٦

 K‫א‬

 ٣ J٦

 ٢ J٦

 K‫א‬‫ א‬١ J٣ J٦

 K‫א‬‫ א‬٢ J٣ J٦


 ‫א‬

 ‫א‬٢٦٢

 ‫א‬

 EF

 

 

 

٤٨

 K‫א‬‫א‬‫ א‬٣ J٣ J٦

٤٩

 K‫א‬‫א‬

 ٤ J٦

٥١

‫א‬

 

٥٠

 K

٥٥

 ‫א‬‫א‬      

 

 


 

 


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.