ON I'HE COMPARATIYE STADY OF MATHEMATICAL MODELS FOR EARLIEST VISIBILITY OF THE CRESCENT MOON AND THEIR MODIFICATION
Cdndidare:
M UI IA MMA D SITA H ID QURESH
lo
I
SupeNisor (D..) N.sidddh Khan Prcfesso.. Depadmenr ofMarlEma cs Unive$ity of Karachi
Prcscntcd in
prrtiatfulfitme ofrhe
requircments for rle deerce
DOCTOR OF PHILOSOPHY ptder&, Aslrophysics
Ar Insliruk ofSpae &
unlversity of Kamchi, Kamchi September, 2007
CIiII-TIFICA'TE welcc.pllhe lhcsh
as
cortunrjns to the rcq0iEd $afttnrd
CERTIFICATE
c.
incd thn th. ..ndidltc hr! @mplcr.d $c rh. T undr ny supervision
a-w"* ,/U*sql
.',.hs la' t r- aanh,d$
Ur/
,{' \4{t 6{" iii
The
md
tnU'onaneofAltah
n
3}.'d/tul
ard t to rno8t D3''cficent
Dedicated to my late mother
Anwer Sultana whose patient struggle in life and passion for mathematics motivated me to study
I am d.cply graleful to Prolcssor Dr. Nasituddin Kndn, my SrDervisol aor his patience.
inkluble sriNlla(on *hen I
.n
and counlloss sugg6tions dsht from the bcSinning rill rhG poirrt
ablc ro complerc lhis $ork.
I sould ole lile lo
expess Dy CFlilude for tne valuble suSgestions polided by Prcfessor Dr. Roshid Kadal Ansli of IcdeEl Urdu UniveBily. Karachi_ in rhe bcginnnrs ol tlis prcjed My spccial
$hks
for Prcfcssor Dr. Mtrhamn)ad Ayub Khar you$rlzai
ol
Urne6nj ofKonchi$no Emincd a nofiaror tor mc nbuglour rhis \ork I mus,tso suhnrit nry hunblc tanks lo Prolcser Dr. Muhannad ltoys of rjnilcGny of Kuata l-!mpur. Maliysia, Dr Abdul Haq Suhan ol Univeriry of Sanaa,yenren cnconmAcment during
$is sort. lhanls !E ats due
aor
Mr MulNflrnrad
tor reir kind shotrl Odch
n nleins rhc wcbsllc NN\.icoon)ior! dnd Mr (hitid shorkor \\\rr!r!]N4lt!!!!.9r1!rr. prpeu aDd.laln lbr rhn
stccral rhdnlis
llr
uorh
\orl
lhc*
rcnraincd
! eurcc
"ohsitc lo hrve b..o posibt€. l_asr
Dr Shlbbir Ahs.n
$hoe {aluablc nrge$iions helped
oi
b
Lahorc Universny
nriNgilg
ot infomllliotr. rcscd'lh
nor rhc leasr; I subnjn
of M.meeNnr
m,
Scienccs
nre in cdnins rhn dissedation.
I sish b cxtcnd my sirrccrc thanks to lhc University of Knrachi. i! pirticutar ns vicc chrnc€ll . Prolcs$lpr Pecuda Qasinr Rm. lor rhc consislcnl DoRI suppon tor rho
My sife. cbildo. and in-laws enained under lols of prcsure durine lhis proloneed periodofny\ort lor shich no gralirude nay bc enough.
MSQ
Abstract The pmbl.m of
delemining ftc day when Uc nev tunar crcs.nl
ar an, site of observarion phenon.non
li.
!.!ieRtd alohe si$
3en ti6t
hs
ImniB imFnel
lunar calcnd.i. In
can be
Efrained an opch pobtem since andquirr, The for beeioing ! luw mon$ in a puEly ob*rvariomt
n6! chapler
the asrrcnomicat pdamercn relare.i
lolheprobtcnr
are
briefdcsriplion oasme rules oafitrnb arribut.d ro rhc ancicnr and lhe nr!ie!.1 nodets lhc afecrs ot geognphical loc.rion on rhc problcr orc aho dcscribed. A brief Evierv ofc.tendaB lnd.ssociared celestiat cycles h atso pescnled $nh splri.l chphasis on |hc rulcs enurcjarot for Islamic ob*rarionat lu.arcalcnd,r a
.{rlr
a
as lo'r cemu, AD. ln lhe end of the
.strcnoncrs of 2orr'
Solvins
ch.prf Eviov or rhe conlrib[ion of thc cenrurr is pesentcd $al b.8im rvirh thc etoFical toodct or
fte pnblm ol lhe ti6l visibilny
lenedy colcrlations and thc
oa lbe n.$. lumr crcsccnr inlolvcs
ofatt ctcFenrary !slrononjic0t rechniqucs. A tovi.w ot n e tcchniq,es and algorilhms is pEsc .d in rhc *cond chlpr. Sp$i.l emphNis is Ailrn lo r|r dekminarion oa linr of oriunclion of Moon sirh rhe SuD. i c binh of nc* trsc
Moon. rh. risinsand seu'hgol thr Smnnd rhe M@n_ posnionsofrhc sun,nd thc Moor ar 2n! tnrc on rhc rc day aftc. conjL .rion .t.tc ch.prr cnds rith a brict
dll or
dsscrption of the .ompurer prosranr Hitotot dsvebp.d r'.r compftrioN done ir rhis \ort A n$v posam is deEloped in ordq lo prcdnce the dala Fquied aor rhis \ol[
$ar is Cencrally.or avlitabte troh orher sotlwarc lhat aheadycxrsr ShniDg
$ilh simtl€ Ulbytonian
fic lhnd chaprr eiptores rhe ancienr dnd the Drdielal hlrbeoaricat hodets follo\€d b, rhe dcscriprion ol. narh.natical trploEion of oedieval Mutim Aslomn6. Condricat considehions asiaGd crncrion.
wilh the prcblen are.xplorcd in nrore dclaitin oder ro evalu0le the Lunlr Ripencss Las o.0 sMcess, suggc$ed in lhc medieval e6. Son nodincado.s to rh€ la$ aru ate 'ls suggesled Thc shoncominss of the ripenc$ lav a,c then di*ussd and lieht is shcd oD rhe Easns rhat lead ro lhe dcvelopnent of ARCV-DAZ ,.trrion b4d nodels b, the
cdly 2di cenlury astononeB. Thc simpk Babylonian
c ldion
significanr findin8
of the
chaprer
th€
modcls in thil
borh lhc
and rhe Lunar RipeNss IEw a!€ morc successfutin tcrms
thcn co.sistnct Nnh rn. posirile sghrings dords in comparison ddllopcd in
h $al
of
b fie hodeh
fiBr haliof2(]ucenrury Ascroa46Sobsonationsisuscdforleslinslll
{ork. nr.r incldc obseNations collccted
ln conparison lo lh. empnical odcls
since thc
nrd to
latcrhrlaof l9'i cemtry
prcdicr lhe visibilil) of lhe nc$
lu.
cr€*enl iill rhe lid balfot $e l$ndelh c€nlur)- lhe 6od.ls dcleloped on rhe b6is of phFical rheoriN of sl! brighhess and extincrion trc cxPloEd nr thc lol'nh .[dfl*. i he* models incl"de l[o$ d.ralotrd by Bun aM sclDrftr scpamLl]. Btoin
bed
his mddrl on lhe rveige briehhcss of lhc
Schacfeis model calculales th. octual
id
lin
lull
Mdon and lhe
lriligh
slv.
ins mdgnitud. oaihc skj and $c ntgnnud.
vkibilitt cldinr on rh. bnsis ol nugnirrd. coniGt and rs difte{nr ir nrtuLc tio$ allother nodeh An.ra bdel deeriprion of Bruin s modcl ihe
of rhc cftsdrl
tcsls a
scmi-cnrpiricrLnDdel
olYillot
is discu$ed in d{(.i1. Nhich isconsiderud to be
rlt
nDn
Nnrflchcnsi\c !trd aldrcnlic nrodcl. Y{llop dcducdd his busic d.h lrotrr lr ns \isibilnJ curvcs. On nre brsis of Schadfcas tcchliqocs qc hd\c rlconsLruorcd Inui s model rnd pruduccd lcw visibililt crNes Md. ncs scmi-enrpnicll nodel lbr rhe \isibilnJ oanc$ llnar crcscenl fte delclopNcnl ofllris n.w nrodel is
one
oith( Naior
{chicve.nEoflhis$ort.AllIhemodelsarclestddnthssamcdaldselasisusedinrhe
qorl is found lo be rhe bcst aDonssl !rc\ious chaplcr lhc nc$ nrodcldc\cloPLd in lhis rlB nlodcflr dr) dels in rcnrs olils cdnsnlcnct Nilh lh. nunrb.r olposirilc sishrinSs in lhc d asduscd A compali$n ofsuccess oaqch nodcl h aho disNsed in tlns
$c founn chapler a emtce} is iEmed b *di dle tulhcnticirt of a claim of siehlins or ne\ cte$e on lhe bsis of a rmi_enpnical modcl and th' -fhe sisnific.nce of such a stat€s) hN b€cn highlignred 4s Nasnitudc conlras oodel Al $e
rherc
ae
end of
found d nuob.r of authenric ne\r
coosisienr wnh a
cG$c
*ni-cmpilical nodel tn lhcse ces
a
risibihv claims thlt are
nol
semi'copnical nodel des not
cltsm wilnoul oprical This happens s aemi€npirical
allow visibilil, ofthe
aid bu rhe magnitude conkasr is in f.vour
bl. i.to considcnrion lhc elsvation of lhc sne of obseoation abole sed levsl md dr wcarher conditions t-he ofvisibility.
modcl
dcs
nor
maSn'lud. contBl model consided all lhese facto6.
Dcyond $eorctical considerarions a na$ematical model should possess poucr oa
appliabilily. The prine applidion of
rhc mathemaical nodels
cxplo&{. anatysed an,l
develoFd in this $ork is lo dermin€ rhc €adiesr visibihy ota ncN lunn cft*cniar location
oflhc {orld
applietion in the
and lo
fiih
lerify
a
8J
chim ofcre$on lhibiliry. Ap.n froh $is prirlc
chafler rhc sedi+mpi.ical modch arc applicd
lun
b
devetop a
cascent. The phenom..on
of
shonentu! otcrcscent lengrh is lino"n for centuries ond drrinS 20ri cenl!try a nrnrbc!
of
hchnique for cilculdring the leneti oan$v obsc(€d
4!$ns hale b(tn suSgcscd lor $e eme. Ilo\€rer. our sugg.srd rNhnique is rhc tld ofilsn rc ihr pdvid. a simplc com brionili@lforcrlculatirglensrholob*ncd .Nsccnl. Mooover. lhc *-nlichpincdl nlodch are nlso rfplicd
p@ti$'l obsen.t,onal lun.r cdendar i,r Paki$an for lhe
r. lcril}
lasr sc\cn
)c
thc act(dl
s. rhc nDdcls
tnctis.d calcndar aN found to bc in asEemcnr in 95% oi$e ncs mooff duling thc pciod of srudy. Morivaled by rhis hish rare of consh(cncl rve hrvc pNscntc(t a
and thc
''PEdicted Obscn arioml Lunar
C.leod.i forPakisan.
A sumntr' ofrhis Nhole.flon h preseired in lhe lasr ch.prcr. issues aE hiehliSlt
d $nh a di$ussion on rh. aurur.
scope
v.nols ihpoarrr
of Esearch nr the
arcd
,i tu, L Lfz/& L J \ rE -, p p,f.,/- 6 e.t ) r-l f-.g tetL 4 6)er. ( F,J) i\v1,r' 4. ?rr' 64 i, t ) :i v i v L L./t1,' (t t)I!,y.- gl = 4. €6
LX
(-
t
,fz1
6
r,r"
a t, r e. u
|
"J
i. z-tLl- ct g a't;' lo j 161 u ! r' 6,V. -[]c|
d,j' lr )'a t )' a.'.f4)!,J. +WJ*
t"
;" iv t " r,.{(" F\t) it4vJ r.l
!'i'; 14
r't
,p i L -r. z.t L,r l,-t tt,1,J,""4 a/iitt,t,,a.- tf ll ,iv ( tt),( J t lu e.r6t L ,J^" q': - i r- ;- l'!I' L <c*"nst*n) .
-V- v J-) 3 v { L,U{,L,' t',} i L J t,l/ z'et tt' - wt f-,ft,' -rS1 Aa4- cl )t* V:. vf i A'!-$ .,,'.,r:Lt' 5 A 4J', l-f'a le'' ra'Ya -'{,{,k L ;v'tt,,,L,f e :,,4 L,tt tu, L,f,,t -,),t *L t ts,, 'l
J'V't
|
t
r
t
J,t' r',/ h I
t4")trLiq,/t !)()-lvtQ.? d6'{p t ri. +6/,* !. 1 4. +W e c t L - u.t t) v /' r-- {,' f-,. E,e * ll I L {, * r! i{,! 4 ..- );t,- 7 ",t 'or
a
r
1
ilf'LLf' +
4t ?'(
,),.t
OS
,
c)'i
JW
( ),1 -t z-r z,lizt ", J,t ] t' - tfu O.L,.l' q' )a L,.a. +f- t@I., t
it+Vr{-
J!-
-ftE)6t2!-96-tt 1
d,J,
'9,!,r
t
G"p1c'st a x
!lr-t'
i
- iJr,,'v
-t
a
t
i
t,'1:r;i
rU,f f-
r' j-.-yry
Laffi /:t g a,"'.,1,f'S'.,st--tr-
( t)Vhftnt tunar Ripeness
:4ttr h ct ?, L
ef r, 6
t ) ),Ji;.r [ 6,",t- r-.t
L,l,t,t-'< t ! rt tfJ r',,t g,j.t,'v !- - -i i --,. y t,1 t..,-. " L v L,,a.w1 t t6,,)t,v.;,-r Lv L u il, JqJ it-l t
'U't 1
Z.
J'* ) rV, it'ts" affi {1V l,ilr 1tt',, L r t,t'. et c =V J-,. t.r L I 16 ) &.4 E q |
i
.
Jth
a)-Ii)+
1,,1
;9,f,t,,! i-st-
i
!J
f1,!,+,L J+A)1 (y ) 6,, i? i,J + v L r l t,F- /" )
L 6.a,t,<
iQ,f-- d,Jr ;- *,.r,,t ,tc,tui ;"tLi..+fu&
"'
p?,:b
*fu !xJf+:V.{-$
{,u;,t,t L |.s,cnaeter:lf E,!J "'-,-f',t4'tovi L lL/i<-G', t,t JeF it L=V i zV pV'!J iL 4r!,t i'/- t'L J'\ r" L4.r2 (4 "r,t " (L<y ano .l V,tLt)r. l'L L lL e;.,.,ri -p.- u il J =,1,'
r1,r.
q
" "E
.
+, V d t;-,/ +s,t tf,,
Lf
t!
t
--,. f, â&#x201A;¬_ d6ct tP{ L ;c/- /, r
11 t!>tt t.,L c|u,e,,t,t 6,t,,,{ L l+t L.a)! i,t,,r { d' t At a : i L /}- }/l9_ tL j"<,V[ 4{ E (r;,tL1\,J, .+Jt ritt:,tJt-Ai. J !-,udJt.,J/ $ ;u-' g4vLu Lg {)*,,J..t } :f/,t }4a-,.fv ,-.r r f - u t4 aL,' + -. {L l1Lt, LV 1 tfi" s r,,L 6 jlt t e ?V ,'t.{1tr l,.t LvL.;p-,';,! -,4v,1,4, 4,tr. : t,g, 4,,,,v .8-
1
t
V
.1_
6tt n'L'4,L,)
Jc,.r
=
y6
4lst
r, ;9
JaX4,, 662
;
1 2 7fu,k,flt 4 a i iv,L cu _ t 6 v {J*' 41 t t, v,I;- r'L j i L 4,, L t& /t, i /_t tt t * o t q 1 r+ d,!4'/, -. o,,!!j4, it' (4t,t 4 t t4 6, v!*:u- z- t /t (J t L,.t '.P-H o j.i (4 ) E,'L : Vr,!J U,\,L _ J3 i,{* ',r 1-'J 3L 1,
f:
4
i
t:'
/
L
A,
|
{' rtc 6r t 6A 1,r.
r
4 6 ;75-. _ 6 .1- r/svt(.hssr ';g;: r 4* *ut t',!, aa 1 v : ;,&,
fut'.r'+yr,,fuov - - j,,,,,':I j4y.q,,,,y. ;t
N lt J'C,,t djt I
q)a
vf Ll
.,u:
l$
f_
jy;
{U.,J,. c,,/+v, ri)
},,
/'t' f'L ))
L
72' A ety
{ d-- w L,t a,,} t LJ 4r1)l!1- "
-ffiS, 4 t'V rlu,l,f-,t' 6 4 /t-g,,u L s o tlt a Lyl +'180 "t{,./J tU. E { pvto{A + 1- *6,./.+ d,! d' -l 2,,!'l'J 6*t'z.t +'5. 4v t;- tt X"'"Pr. 7w J. lfoL L ig, 4v t z- {6 rfr ,1 I ;'1'4, : 5,1,u SW.,E,fJ.z i V
tt
,1.4 f ,t i.t +r. + i/f iJ tt "'v{r {ia=v v't*,! 67) 4 {,y''!. E < / ( F,l,t i, ov,!,J od t'-r,t,, o v } lJ t' to - L; A ;it {'4a \t,ss% qu,Lr ( $,f, u !r'& Jw..Ltl
ir
",
.
,td.
+
W"bf t,t) i' +v &',{s d .il-,, t
t
twp ? d,!ftF, r- t;4otqtl & tttt i = 7 d,S' t/a,.,, F{,-F-a o t,p.a z-''+, -at ",!
CONTENTS
Urdu R.ndenng of Abslracl
Introduction
Ll L2 t.l 1.4 L5 2.
P@nd.6
olNry
for visibiliry
sienillcmce o| ceogdphical Tbe Rut.s oaThunb: The
Crl.ndas
t
Lumr
Cr$chr
2
calion
Ani.m & fi. Medievrl
l0
tl
and CelesdalCycles
Aslro.on6
20
Astronomicsl Algorithms & Techniqucs
24
condbution oflh€ zod cotury
25
2.1
2.2
Dyne
cs
ofMmn ed
l0
|he Eanh
2,t
4i 2,5
2.6
55
2.1
58
2.8 2,9
3.
5l
Coordindtes of rhe M@n
Caenl visibihy Pard.ic'! Thc Softve Hiblol.qpp Nes Lu@
Ancicnt, Mcdicv{l & Etrly 20$ Ccntury Modcls
| 3.2 l.l 1.4 1.5 l.
63
15
'ftc ltabylonian Crilcri!
76
Some Sph€ncd Trigonomebc Consi.lcations
82
Thc
Lud
Ripehess I,3w md ils
Ehpidcal Models of Edly
2d
ConposonahdDiscussion
Modiicdlion
CenNry
t03 122
Phyaic.l Modala & their Evolution
4.1 4.2 4,1 44
Bruid
s Physical
Y.llopl
125
Model
t27
sinslc Pamel.r Mo.lel
Srch.f.ls Umitiog Magritudc Mo&l A Nry Crirrion For vilibility of Nry
l3? ta6
Luc cEsdt
tt9 t67
5.
Applicrtion
5.1 5-2 6.
t'|2
Lâ&#x201A;¬n$h of
l7l l9l
Cd!c.
Ob6.ri{tional L|lM C.lctrdrn of Pakkur
Dircusion
t9E
Th. sonwm
Hihlol.cpp
fte Anci.nl Med'.valrnd E dy 2of 'enluo
205
Models 2ll
PhysiolModcls Lwcd.nd.r2000'20{t Futurccalendar2ooE-2ol0
Th.
24! 255 264
21t
Chapter No.
I
INTRODUCTION Slnce rhe anclent ttmes rh. 6preaEn@ ot n€w tunar cr6cent marked lhe
beginningofa new monlh. With the d€votopment ot ctv zarions org.ntrtng lme tor e(ended pe ods lnto weeks, months snd teaE, the tlnar phase cyctes tead to tho
evolutio. ot calendaB. lh6refore the pobtem ot dotermining the day of tiFt sEhtingol n€w crescent moon arlbcted hlman betngr tt Invotves con stderatio n or a nuhber of astronomlcat es wett as other facto6. On the orher hand th6 probtem ol obserylng the new tunar cres.6nt at an eaniesr posstbte momenl ts chalenging for bolh amateuE and professtonat .5tonome6. Th6 .st,onomtcat paEmetets on whlch thesolution olthlsprobtem ts bas6d are b eflydtscussed in the ftsl .iicte ot
The circudstarces and parameteE assciated with th€ problem of sighting new runar cresce.t Sreatty vrry wirh th€ v.rytng post o. or obseder on rhe globe. The atfecls ot the geographicat tocation on the probtem ls briefiy discussed in rhe next 6rtlcle. Atempts to determlne crle a tor the delermintngthe flrst ltslbitity ot new runar c@scenr
ai..y
ptac€ rpp.ared as €any as the Babytonian ers (Faroohier
al, 1999, Bruin, 197?, tty.s, 19946). Signncanr adrances were made by Mustims and AEbs during medlevgt perlod. A brt€l nccount ot thes6 ancient aid medieval effons b discu$ed ln
thtd.dtcte ofthts chapter.
Srnce anliqolty changing phas6 o, the Moon and a comptete cyct€ or rhese
vrriallorc has been ured a3 meansot k€€ptnEaccount ofcatendaG. |yas hasgiven a delailed accounr of the history of ihe sci€nce of lunar crescent vlstblity and the
lslahic Calenda. (rryas, 1994.), Dogger h6 di$ussed lhe history and rhe deveropn. of calenda6 (oo€get,1992), Fetngold &o€rshowitz hav. presenred a (omparEllvesludy or morethan rw€nry catendaG or vsrtous (ypes both sncien, a;d
moden (Reingold & Dschowttz,
2OO1). A numbor
otorhor rutnors navo contrtbur.d on rcrai€d tssle. (atr.3hk, 1993, y.s, 1997, Odeh, 2oo4 etc.). A. ,ghr from rhe beginnlng the c6tenda6 rE 6s$ctated wirh th. cyct€s ot rh€ heavens, rhe eme .re Evi*ed atongvilh tno a$ociated catendaB in the nen anbb oi thts chapter wlth speclal emphasts on the tst.mic Lunar catendai Durlng the mod€rn
rims tt wa3 onty in rhe tasl quaner of the 19rh century
lh.l
weslem askorom66 stangd erpto,ing the pbblem of ea l6sr sigh trg o, new lunar the tast antcte is a bnot luruoy of lrorature that delcribed and 'oscent. ttweropod vaious c,ire.t. o, models for lhe $tulto. ot probt€m ot d.t.rmining th€ day or lh€ fl6t vlslblltty ot tun.r crescont at any ptac€ on th6 Elobe du nE 2olh
Ll
PARAMETERS FOR VISIlIILITY OF NEW LUNAR CRf,SCDNT
The Moon. the ody natunt sateuirc oflhe Eanh. is eoiog ound lhe [anh orbit thot is a hiShly iftgrlar ellipe Thc i resutariries in lhe pd$ of rhe M@n
h
an
a€ duc lo
llrc
facl Et
its norion is govemed by not onty tbe
also aaf.clcd by toan)
of
gEln
ional
pu
oflhe Eanh. bur is
rhe ncishholiing cetestial objecN (Danby, 1992).
\\,nh
r
Hadh s varying dhr&ce
fron lhc Sun, thc e,Iecioa $e Sun,s gnvnodonat pull v,rics srbstmti ly snh rheElarile posnionsofthe Eanh and the Moon. Moreov.!,lhe afcors orthe confisur.lion oflheshole Sotrsrslem (losirions ofa| lhe major ptMcrs a.d $c major ar.rcid9 on rhc morion oflhe Moon is oor nesligibte, Thus, accoding ro rhc ''Eplremirid€s Lun,irs Prisiemcs,, popularly tnoh d Chapont,s tuM tho,y ELp, 2000/82 (Chapronl-Touze & Chapronr. t 983, Cluprcnr-Touzc & Chaprcnt, t99l), tor lhe b.sl possible plecision iD te lonSirude, hdnde md lhe disrance (bclsen lhc Mon and the Eonh), dere aE equired as nany as 15i227 p€riodic r€rms. On lbe othf hand, for dcteminhg 6e position ofrhe Sun b r simile d.8E of acc@cy one 2,425 ,Variarions periodic rems in vicw olrhe S.culair€s des Orbnes plandaiet, rhe Fiench pr.netary th€ory lnoM as VSOP87 (B&raSnon & Fl!Bo!, t988, Meus' 1998). The
rqdB
accurat€ d€terni.alio. of lhc posiiiom of the
Su dd tl'e
explorins |he circunsr.ee of rlE vGibihy of ihc
Moon is tbe
!a lud .esnt,
fisl
slep towards
Handling sdh a
laqe hnmber of pdiodi. terms mak6 this fiEt slep very ciucial. The lest of the sludy dep.nds on th. Elativc thc aunsel for
pcitio$ of
lhe
Ss
and thc
M@n
ed
rhe
hod&i at md aner
a.y place on the &nh.
These theori€s detemio. lhe
obj*|' fid dc b6ed
c.l$i.l
ecliptic coodiiates of the sold sy$en
on sphencal polar c@rdinats. The fig
Ll.l
sho\s the spheiical
pol.r coordiMle sys&n, The origin of lh. syslen O is €nher lhe ccntrt of lh€ E nh ot
olsliptic, iound the Su, The x-dis poin6 in the diEtion ol lhat ofthe Sun. The xy'plane
k
the plane
the plane
i.
shich the
the vcmal Equimr
l
E
horbi6
which is the
poinr of intersection of the Ecliptic (palh of rhe Eanh arcund rhe Sun) and lhd celesrial equaror (rvhos
plde coimides wnh
rhe pl.ne oa rhc
lereslrial equalor). P is $e objsl
llhc Moon in gcocemric sysem or thc Earth in llelioccn(ric sy(em) $hosc stheical porq
@dimrs ollhe
tp. 0. 0)
e
p=
lo4.
0=
4oP 6d e-zzo?.\i\ee P ist\.
ollhe objccl on ro the xy-phne. In the celestial ecliptic cmdinaB the cetesial loicitudc I = o dd rhe cel.$ial l6(ludeP= 9f - el= zPoP ). whcn fie hcli@enilic eclipric coordinates ofthe E nh aa elaluared usins VSoP ft.y aE $en tdslomed inlo lh€ gc@nric eliplic coodimles of lhe Sun The corjuncdon or $e Bidh ofNe\ Men occu6 wben }{1 = Is. prcjccrion
position P
Fig.
No I I I
SuDpoe
..d
Oc
('-.r",/.)!d (.,,r",t) E
p6isc
dist nc6,
etipri. tonSnld.
rt
hnud. of lhc Moon .nd
rh. d.y of @njucrion. For
thc
Sltr Bperiv.ty, Ff.Gd ro fi. nsr cquircx ol .ny t@tor on th. Esnh wnh Gcri.l eotdimrcs. I rh.
rcGrdal lonsiud. ot rh. d@ .d t is rh. Lcid.l tlrirud., thc ti6t scD i. de d.rcmimtion of dc visibihy ot ft. nd t!@ cE$.ni is ro d.r.diF rh. aclut dyMicrl tin (TD oi rD T., of rlE @njwtion. N.xt, om Eqdc coBidcrine rh. la.!l tima ofslrdns ofrt. Su {d rlE M@n. IfT, lrd Tm (CoordiDr.d Urivcdt Tin.
rinB of rh. lcat sunsa ud rhc hooEt, ihcn d. visiblc only ilT, < To, This La4 to lh. p.md.r LAG - Tr Tr. TUC) bc lhe
Using th. cclipric c@rdiNl6 ot |he sun
dy
orho noD.ni of tiD., Oc
(a..t,) cd
bc
6d
thc
i*
G$cnr h.y b.
Mon drt.ut.l.d for rh.
1..
o,
cqq|oi.t @rdin c! of rh. |m bodiB (a.,4)!nd
oh.ircd. Vhcdd.
rhc nght
aeBion k $c
djspt@mcnr
of$. objer
fbm wdal .qdnox .long lh. cctcsli.t cqu|or (in $. q. qudtut s I ). md d delin.rion or rhe displ.ccftnl of$. obj.cl fbm dc pt.E or ue.qullor t c.l
js
$c
lour
Aigl. tf is rh.i oblaircd fon Oc dilT.Ene of thc leEt Sid.c.t Tin. (r_SD and rh€ ishr e.6iotr. This liMuy gies ihc leat horianr.t c@diiat s, dimuft (,r). rhc displ&.md ol rhe objer fbi rhc diEcdon of lh. Nonh rowrds E 5r ,tong $. hodenlal in l@l sty .nd rlE ald|ud. (r), rh. hciehr or rh. objer lbov€ hori&o. Aftcr .djustus for $. cf@rioi ed $. h.ishr of rh. obencr's to..rion .bovc s.. trycl rhc ropo..nric c@rdiiaks (,4., rr ).nd (,{, .}. ) of lhe M@n
lo almosr all rhc nod.ls
fo..&lid
- ,- -/'.,
e
de sun, 6!..riv€ty aE
hoo!-nddng, rh. mj.nt
mod.m, th. difieE@ ofeinurlrs (D,,tz = l!r.
rltiluda (ARcv
and
- /r.l. can.d rlodvc
s rcll .s lh.
szimurh)
.id
thrt
ot
$ rhoM in rhc fig 1t.2, at th. rin. of lc.l su@t T, Th. e of vkion is ale l.m.d s F of d.fft$ion. TIF tig, |.t.2 de show rhc *pa{ion bctwn ln. Sun lnd rh. M@ that is tsM !s 0E .rc of tilnl abbrtviacd s ARCL .rd is .ls tioM $ .tong$ion. c.llcd
of vision)
lor €nnien other
s
frh
Elni* &idrh, rlE e ofvision !d tn. e oflighq dE dirc.it visibility of luE d.gnr r€auircr ro aat it|ro @mid.6iion a @dba of
Ap&1
rh.
pm$€rd. On. e.h p@n€tq
t
ihe As. ofthe Moon (AcE) =
th€ tine elaps.d sine th€ la.t onjuncli@ rill rh. doc
of(rlE sn!.r
Tt or
To d.ffned
tlE any orhd
rclevut tioe) obsvltion Arbrhe inponDt lir.ror is dE Widft of
Cres.r (w) thti dep€Ids on rhc digre of$e Moor. As dE din@ of 6. Moon frm rhe €2trt veies 6on &@.d 0.14 nillion km to a@nd 0.4 nillid tD ln. Fni{i.rr€.d of rhe luw disc
vri6
liom I t
e
ninutF io | 65
e
minur6.
Fig I L2
Ihun if rhc M@n ir dGc$ to in anh.r th. rirc of obs{tion rne c|ts@i would b€ wid.g lnd th6 bndttrd Winh of tlE qtsfl i! di.6tly prcFrlo@t lo rhc Ph.F (P) of th. M@, thll is r tunqio of dE ARCL. r\ @mpla. ltul of all rh.$
T. 2
T.
2.
t-
3
T-.
T.
B€dTimeofvhibilily
Tr
AC€
1.
M@netTr Arc'ofvision Relative AziDurh
E.
Arcorlight(Elo!8afion) ARCL
10.
Pbseofcqc.n Widlhofcrcs@nl
Age oflhe
5. 6,
ARCV
DAZ
P
w
A conputarioml stnlegy may be lo stad b, deternining $e tim. of Bidh of lhe
th. Moon *ith the snn. For .ny plee on the slobe deremirc rh. dm€ ot suner |har follos rhe timc of bidn of ncw M@n. For this monenr conpute thc e€@entic .cliplic coorditulcs of both lte Sun aod $. Moon. Tlmfom New Moon or conjlnctio. or
the* coodinat.s
lGal horizonbl c@rdinates. Tbereby coFPute tnc LAC,lhe Age,
to lhe
ARCL, ARCV. DAZ and the width W. The ddoih of all
t.2
$6e
computations shau bc
SIGNIFICANCE OF GEOGRAPHICAL LOCATION Fo!
$c
pioblem
of rhc .dli.st lisibility or the Ncw
Cre$enr Moon $e
orientatiob ofthe paths of the Sun and the Moon Eladve lo mch othcr dM
hoizon h significdnl. They chatrgc depeod on thc latitudc
lhe sly appsr 10
scason
of lhe place. Due
hvel
1o
lo seaon as
\tll
tlarile
to lhe
as year lo ,car a.d olso
fte axial rctation of lhc lanh cvcrv object in
along a cidular palh (The Diuftal Patb) ext nding frcm ealcm
horimn ro thc $'eslm borircn. Thn parh lics in a plae
pellcl
equalo. Tlc obj*ts in ou sty sbos. delimtion is coNLnl
(sld
lo th€ Plane of thc
and other
exd_$lar
sysreh objccq slw.ys remd. in a 6xed smallcircle in our 3ky with Norlh Ccleslial Polc
being ren
Pole i.e. rheit diurnal palhs cE no( only 6xed bul lic in plan.s parallel to each
eund lhe Sun h inclined to lhe pla.e of lhe Equalor .l s .ngl€ of eosd 21tr 26' 26" lhcefor tne deliMiion ot lhe Sun in ou tkv vdi.s frch 230 26' 26" $nth ro 230 26' 26 nonh oY€r a y6. Thc declimtion ofrhc Moon vdi.s frem aoDd 280 S5 south to 280 35' ;onn duting. llMlion penod Thc olh€r. Thc Plan. of the orbn of lhc ednh
! dry rdlt.' dF pdh of dt Su B itt pdh of dp rroor @ bc 6Bid6.d r snrll circl. tl[l h.rc th.i poLs tl rlE Nodt cdcdi.l Pol6 i.. rlE dil4l plrlr3 ofrhc Su .d th. MM do nd lie ii p||G F .lld (o tlE pLG of dE di!.nrt prtht ot d6 Fo. ple3 on E!n[ wirh Lrtu L. 8ral6 (t.1 660 ]a' (Mln q ort) rlE! e d.yr dunls .sy rd, *ha Son tqn iB b.low th. hdid dl dry (d ltoe lh. horian dl da!). Sinilllr forplrc6wirh ld' h.gldrlbo6f 25'drhdorl! dE .I!d.ys dun.8 .tqy luu rEtl etE d! Moon n bdor rL hdizoi dl &y (or.borc tt& durtng
Ap.n fion th.
plr6 chc
to
v6y clole to tE ho.izon. Fo. pb€.
dr Gqld bd!
d$.
tt Su!d
thc
Mmmy16€l
lo tlE audor ilE Cclcs'rl Equnor p6s€s
doe lo dE anh !d tlElfd! ti. pdnr of ft S{n.!d dE Moon |!mi. hiSh in $c dq. Bu in ph6 wnh higls hd L. ih. Cd.lrid Equdd i! clos lo th. Hdid o th.l th. p.tlB of tlE S!..!d tlE M6 my b. d@ d cq bclow th. horizon. Th. 68|le @. 1.2.1 CFs lh. driw dirrdd of dE cliDlic.td cd.ri.l .quror ia 6np.rid lo tlE hdid for. lLe rin hrgl |tin|d. d dr dm of hol o&r !r !d!d rsd .quimx (6liFic in ttl.) .n rorld aodd .qlircx (6liFi. in pinl) .
N
\l.rsllldib
1l'
Figur.No.1.2I C.l.eid SdE fo. d
obffi
in hi8lj
blnud.
hid ldiod.! vhcr d'c dccli.dion oflhc Sun k eulh (wirt r in th. mnltfr h.hirph6c bctBa Sumd $lnie rld thâ&#x201A;¬ Auruhtul Equinox or ba96 &tunn l .quiu !d thc wint6 5lni@) tho p.th of rh. Su and @nt qu.dly rhd of ih. M@n |!Dir vrry okr!. ro th. hori4n. Ir rn F @nditi@3 th. w M@. .8q @nju.rion .nlE tlDitr h.low hqid or Ery cloF ro tlE ho.izon matina it inposibl. to s da .nq lF d ilre d.y! nm djuncrio. Th. iu.rion b.con6 @e ifdldng lhb p.n ofdE yd th..L.li.dioo oftlE M@. is oti of0a &.linrlion of th. Su4 p|nia,brly clos to AduFnd Equircx (@nd S.prcmbd.nd tuob6} B.rsq vqol .quitux !d dF SUDE Solricc (t@d ,uc) th.dlipric is rehtircly high .trd th. p.O3 oflh. S{n .d th. Md e higls 10. Dtina it asid to s rel.dv.ly tqDgq cGsnB Th. enl.rid n aG!.d gedly for th $urn@ Thi! figue clorly 3howr th.! for
Hdnd FiglE No. |
\r'
2.2: Cclcadd Sph@ &|r
D obr.ffi
in low
lrlind.
$. fg@ m. 1.2.2 dbE th. ddiE dndllod ofdc ..liptic !d equ|tioi ii oonpcilor to thc hodzon for i pLc. with low hritude ai {@rd
Sihihrly
@lqlirl
.rd |@rd auMMl .qui@x (alipiic in ligln pirl). ftir fise d$ 3ho* thd clo* io @tunr.l .quiDx t|| PrlB ofrh. Sun ed rh.
wrul
e{ui@r (eliplic in ligln blw)
slh of rnll ofthc Sun tn. drdhid & nd !6y lpod fd liSltilg of ! tl.riv.ly y@ng d*.nl. M@n
r.
rchrivcly cloF ro th. hodan.rd if !h. D.clintti@ ofthc M@. is
Tbh is lhe hain rcason bcbind @nsidedng Age of Moon
dt
visibilily of
cF56t.
dudng th. {ullmn and
In sprinS.nd
whcn lhe M@n is $ar ofdre Sun)
en
i.
wsl
not a vcry good indicabr for
Mm€r vcry t$utrg.ge
*inle6 very old clescent
hemisphed. Thc situalion is rcveB.d
s
s6odlly
of fte sun
cltg cd h. sn
lnd
may .scape sighling in th€ holthern
for de
(el6rial
sud@ hmisphec,
loncnudc or rh. M@n is
noc rh&
our sky it is Old Moon carching up wilh rhe Sun. The Old Cre$enr can
suriF. An r $e binh of Ncw Mmn (c.leslial longilude of rhe Moon b*omes jusl eratd lhe rbat of lhe sun) rhe Mooi Eehes e6r oltheSun6dcan no$ b. *njustaftssun*t. How.vn dcpending on ih. d{limrioB olrhe Sun and the Moon and lhe localion of$e observer $e new cBcent My et well bcfoE thc sunst in which cG it is iDFssible lo * th€ ncr crsceft Th8 the fisl and rhc Do$ nnporLnr clilerion aor lhe visihility of the .ev.$ccm Moon is ftar the Moon *$ an€r $c sunscl. Alknately $c cnbrio. for thc visihilily of thc l5l cd$ent is dDt rhc Moon riss before lhe suni*. b.
in lhe mominss befoE lhc
Whcn thc cresent is very close ro th€ sun il rcmains invisiblc
$c ohospherc close to lhe Thqefoe fi.rc n6 to
be a
dE
sun remains highlt illnminated evcn
to the facl tbar
afi( $e
sunser'
between
fic Sln
frininum lhrcshold epaEtion or Elongarion
,nd rhe Moon b.loN vhich ihe crecent cannol be sen. Thh minimud o. lhrshold eloneation varies hotuh to
oond 6 fie
djsrance bctween lhc Earlh and
$e Moon
keeps
kn lrom thc Eanh ind !l a Ne\ Mon ar apogec mat be *cn
valyine. Vhcnclossl (at apoe€e) $e Moon h tround 350000
fdhat (perig€) il k aound 400000 lo. Thus whennscbnsation fod rhc Suh is snallrnd a New Moon at periSce may nol b€ s.cn ar nuch ld8cr elongaton. Thi. is du. ro the fst that closer is thc Mmn the lars€r dd
lhe
brigbler ir appead in oui sky ahd wheo il k farrher il appeaB rhc
se
elongalion. Thts .nother
inpona crir.rion
for a combinorion ofcenain optinlm valu.s
fom
fi.
E.nh.
A cFsenr
thi! conbiMlion Esults
wi$ small €longation $al
and less biShl at
is lhar $e New Mmn cm be
ofelong ion
into tlE
saller
op(nm
and lhe
*en
distanccof$e Moon
valu€ of thc widlh
orcFv€nl
appea6 lare.t md briSller al apogee may be seen
and
a.rc$cnr snh ldgc clone.lion $ar apDcar snalle. snd laintr at p(riscc nar nol
RULTS OF THUMB: THE ANCIENT & 'rhe edli€st rcferehc. for
ey rireno.
TtII Mf,Dtt:vAL:
for lhc visibitir! ofncw luntr cresccnt is
annburcd ro rhe BabJ,lonians (Foueringhm, r9r0. Aruin. 1977. Schaete!. I
994. Faloohi er a1. I s99 elc.). Most
'Thc
Nons4 loas
,.n 18
lunar .rescent
i
hihnles h.hi4d th.
lgttsa.
yas.
oflhe cxplom a&ibute ttE tollowinS rutc of $unb
\
s.ek
en its
aAQ
nnrc thdn 21
ho^ un1 L
tns.!
h na3 bem pointcd oul ihar th. ,crual Dabytonu (lcnon ephislicarcd ar coopEEd ro lhk siopl. tule (F.r@hi €l ar 1999)_ ft is eilhs ou, trck ot knostcdse oa lhen era or the nissing hjsbncd rccords $ar h6 rcsrid€d our compchos'on of lheir effons. Autcnric Ecods of sighljne of new cEscent s young 5 hours durirs Babylo.id c€ qisls (I6loohi el ai 1999. Andcrtic & Fih€is.
as
2006) in
lit 6turc. Sinilady. in modcm harc bccn
*m
ftsc.nc
lagsjnS
o.tyjr
nrnucs behind $e
su.*l
wi(h aec tcaslhan 20 n6uB. Thc dala ser
duflnC lhis $ork
crcscd $nh
time
(b b. di*lssd
in ddait in chaFcd
l,
j
of46j obsetuations considcar dd 4) inctldcs jt cascs whcn rhc
C tcss rhan 48 Dinutes w.s cpon€d to h.vc bNn *en wilhour any oplicalaid. rvhcEas.26 ca*s arc tncE in shich lhe age ofMoon ws lcs than 20 ho!6. Rece rc-evatuation o|r(ords ofthe sigbdngs o|mscsrs in Babyton and Nineleh aho sholv rhar cFscenh much younger
rhd
20 hou*
dd lho*
lassrng bchind sunser muclr
l.ss rhln 40minures were sen (Andolic & Fimch.2006),
these rccenr compurarionat ef|ons for the recorded obseBarions oa lhc Babylonian e6 ctearly indicarc lhar lhe lule of thmb asociared wnh rhn eD is an ovcr simplificadon. lr has bcen eccndy ctaihed rh.t Babytonians had rodularcd I hrt, nalhehalicdt tun& lheory which rhey uscd for prcdicring vartuus paramercBotth tunrr
l0
s
notion
iounded in thc
lue
€ph€mdjs ih.y pEpaed (Fat@hi
d al,
1999). Ac@rding
lo lheF $udies it is pointed out lhal the noonset-su$et lag atone.ould nor have been used as lhc visibilily dit.rion by rhe Babylo.ids. BabytoniaN sysren had $c tollowi.S
rlohedrior rL,
- moon*r tasrme
In vdious $ud,cs lhe vrtue
rin deCrees,,S) - conninr
of$e conqant
rs
dedlce ftum | 7 degFes lo anyrhere
2l d.8R<. Hokercr
&ound
on lhe basis ot rhc confimed 209 positile siehlings fmnl ,car .567to yetu .77 rhc \atue of rhc .o6ranr is deduced ru be 2l degrees (Far@hi cr at,
r999).
Sinilarly hosr of$c modcm aulhou arribule rules ot th€ ttpe lo fie Muslinrsand A6bsofmedieval tinrcj ''Th.
t.latie attitLt! UnCy)
>
Ao
ahd
koans.t,ulet
td|tin
>.t2
nin
cr_
lr has been indicared lhar Mrslins. reatization thar rhe Eddh-Moon dhlancc laries during one comptet€ cyctc ot tlhar ph.ses and lhe hininuh moons€r lag lime considercd b, vaiied fiom 42 ninures for Moon ar perigee.nd 48 ninurcs for Moon at aposee ^Ebs
Thonsh lhis -nrle
of thunt. is no4
art'buled ro |hc Babylonims Arabs
sli
jr does nor
sophisricated
povidc
6
compNd ro $e
rhe complere prcrup of rhe cffons
ad Mulin' h $c hedirwt ines exl€trir ur ofAolemaic sy{en ed
spherical
risonodeq devetop.d b, Ambs
depends on
one
lead to the
ol rhe
L!n& Rrp€.es flnclion (bat
locatbritud. ofrheptace ofobrNadon dd lbe c.testiat to,gilude ofthe srn
and lhe Mooh)
6
eartr as lO cenrury AD (Bruin t97?)
Babylonie crirerion h indeed lery sinplc for praclcar purPoses and is supposed to have ben cmpirical in no significdt chahgc in rhh rill
tdis litc pa,ch Sidn it ( D 5OO) hints towards thc idponance of$c Vidrh oflhc luM crc$ent (Bruii, 1977) Thus an elabootc stsreo of calcularioc involvcd in delemining the tinc of €licsr visibilitt Flarively r€c.nr rimes, ho$v€r,lhc atiesr Hildu
appeds to have developed only abund AD 500. Morcexplicirnentiohsofrhcsederaited calcularions are
Ohe
loud
ar
vuios plaes
in the
dly
Islmic litenle (Brui.,
ol thc ealiesl Muslin Aircnomcr eho developed lnc lables fo.
197?).
se
lidnC
lisibilitywas Yaqub lbn Tdiq (Ke.nedy. 1968).lt has bcen eponcd in $e litcraluE (Atuin, 1977) that lbn Taliq had r.cogniad the imponance oflhc Width the luna!crescenl s
(w) oflhe
crescenr. Thh not only shows rhat ar rhd
Moon had been rcaliud bul it aho
mdc ir
rine
possible 10
rhe varying dislance ot rhc
inpov€
upon
dc ncs cr*cnl
vnibilily cinerion. Bruin hd Eponed th Al-Ailuni had $e Falizario. oflhe tong ind dillicult calcularions inlolved in lhe dercnnimlion tor the nev lun,r aesccm vnibitiry lnd in hG Crloro.,os " reconrmcnded rhc work ofMuhanm.d lbn crbn At B,llani
l
ltnlhook oJAtto"o,'t t?rstard to Lario by Nalino, l9|]3). 'lhe sihplc *nclioh for cadiesr vhibiliry oflunarcrescchr evotved sjnce lhe riftes
of B6btlonids qas passd onb rnc
Muslims drcueh Hindus wirh !e,)-' tinle inprclemenr. Molilated by the euEnic iijuhctions a.d rhe salnlgs of rn prollrr Muhamnad (PBUH) rh. Fobtem ofearliest sighring of hnar cE*enl \s lhomnehl). Invesriglredby rlrc earlJ Mrslih aslronomcGotsLhto l0'tccnluryAt).
ofreatiarion of the idjponance ofwid$ various Arab asllonomcrs lor celics( vjsibilil, ofcrc$.nl thc minimun equabrial $pararion offie
OD the bash
conclndcd
td
lnd the Moon varics from t00 whcn lhe crescent is widesr up to l2i whcn llr cNcc.l is n@$cst Such der,il.d calculariotr \.rc wor\cd oul.s earty as 9ri cenrur) Sun
AD by Muslinr asrrononers as$ciated wirh rhc Ab&sid coun of Al,Mahun. Fronl monesr the* {stbnoncf Al-BaIsli kncw lh,r ihc cnleria that.gc of n@, shoutd b€ moe tnan 24 hou6 (or arc sepdarion belveeo $e Sun sd lhe Mooh) isa good sldtine poinr but i A only m appnrnarion. H. b€t,.vcd LlEr lhc dcienl6hnomc6 d,d
nor
understohd the ph€nonenon conpteretr, According to Bruih,
sork
is o very
AtDatani,s compuradonal
elabo6re sysr€m of mrhehari€t catculalions (Bruin, | 977).
t2
'Ihis work is nor intcndcd lo explor lhc hisbry oa Aslonon! rulatn lo thc canie$ sigltingoflhe new lunarcresccnt. Tbe Babylonia. and the nlcdielalcilons shall nol bc
dplocd
frem a hi$orical FBpecrivc, wc shall rcstricl our explodlion onl) on
rlR codprison of $cse clTons sith
$os ofthe
moden ons. llowcvq $c mcdiclal
narh.nalical ide6 shall b. erploEd in morc dcoil in chaprc.
I.,1
:1.
CALf,NDARS AND THE CELESTIAL CYCLES
6 '!
ol orgaizine ,ir4 tbr fi. pupos. of @lonins im ow cxtend.d p€riodt (Doge( 1992). tl is a schcmc lor keping an .ccounr ol da!i.'wceks . monrh. . 'yc!6 - ceolunes and "nillennia . Thc bsic notion bchind I calendar isor8anizingr,la.olroairiconrinuous now rhal isindcp(ndcnr ol any ehcn. of irs orsaniztion. Ahongst lhe divisions of timc in dayi. w.chs dc Dogeel defines calendar
syslcm
eme aR dtccrly 4sociared snh $c celestial
/,rur.
A @nplele daily rcvolurion of lhe
lechnicallt an apparcnr Sun ar any pllcc.
r,/df.t,'
c_aclcs.
the
D,"r,at, \h. Ann@l
s\t. de DildEl norion.
is Efertsd
^d
b4
rhc
a day.
h the inlcpal bcrseen rwo successivc rransiN oflhc
Du. lo thc morion of rhc Eanh mund $e Sun rhe sky appc.m ro
rclolvc round tbe Eanh very slowly (lss rban a dcste€ pn da!) and one contterc Evolurion of sky i. rhis way is Ffmd lo 6 o ,.ar. I {hni€lr! a t opictt y.ar k trc time inleNal bctweh lwo successivc pseges
oflh. Su
rluough vcdat eqlinox. one oa
r\e porn6 ol inFMcrion ol rhc celB(dtequarorand rhe actiptic
i.to yea6. yeas inb nonths. non$s inlo vNks ed dals Most oflh€ know calmdm rha( mcn dcviFd bd sevcn da$ in a rvak. tn diflaent Esions md cras 4 to lodot weks halc aho bccn considercd. ltowclcr rhc nuobcr of days in a dond hd EDained variabl. in diltcc.i calcndars md wi$in a paniculd calcndar. Tlr scbeme. il$ce isany. ofdift€!€nl DUmb$ofdays in a monlh of a calendar is ba$d or rnc typ. ol cal4dar, Most of lhe knom atcndars.E clarsificd Each calendar is dilided
iflo
dtree major typcs. Solar Calcndm. Sriclly
L@r
Calenda6. A blief description is Evi.$€d in rhe foltowinel
1l
C.tcnda6 and Luni-Solar
Solsr
''ycai in
Cal.nd6 m b4d
such calendds
on the
ulrl
motion of lhe F-!nh @und the Su..
h ihc "Trcpial Yee,
defined abolc. Thon the lcng$
ota
'tropical y€&" (Dogger, 1992) b givcn by:
365.2421396698-0,0000061s359r-7,29xr0_r0Ir +2,64x10'07r (1,4,1) 7
s $e tinc in Julian cenruics
sincc
fic
epoch J2000.0
gilcn by:
T-(JD-245rt4t0!t6525
(1.4.2)
vherc JD is rhe Julid Dat€ which is th. dm€ in .mber ofdavs ctaD*d sine at
Genwich
on Janua.y
n 165.2421898 number
l. 4712
days or 365
on yer
of a
eld
heo n@n
Julid Cal6d{. Cwnlly thc loglh of t@pi€l ycar days.5 hos.48 ninurcs ed 45.2 sends. As it is nor a whote in
calodar @rsists of
crlendr cvery fourih yc& @.lained
cirher_ 365 days
166 days (i.e_ a teap
yed)
a
ot t66. tn old otbq
yff
Jution
conhincd
cuftntly us.d Cregoiian calendr! the leap ycd rutc is nodificd. A century ycd y 0ike 1700, 1800 elc) whict is a lop yer i. Juli& calmdtr bur is nol complerely divisible by 400 is nor a tep ycar in OEsorian mtcndar. Thus in crer,400 yeas theE ae I 00 l@p y€6 in Jnlitu Cal€rdff wiced in cESori& calqda, rb@ are only 97. The s€etu od nfuy o1her natMl pbsomcna toltov lnis sotar cyclc. sp.cialty 165 days In lnc
haBcsing rides, lhe length ofdays,lbc dmes of imir, suser, sunds. etc. I$e JLrtian calendar insrilured on Jdu.ry l. 45 Bc by Juli$ caM. wirh rhc h€lp of
B
Alciandlie stronon€r Sosigm6 &d
w
ofdc Roman Republidn and the ancicnr Egyptian calendaB (Michels, 196?). WtEcd lhe crcso.ian catendar was n(csibrcd du. to rhc facl ln.r dqinS oe od . lDlf nil.mia lhe Julim otcndar w6 r nodificadon
displaed from the ssonal vsiatioos by s much s l0 days. Thus pope Crcsory X t corclnukd a conmission in l6rt €qrury AD for lh. csl€ndar Efoms. The dain anrhor da dE nN sysrem w6 slononer Aloysiu Litju of Naplcs (Coync el ,t_ 1981. Dull4 1988, Moyer. 1982 October 4, I t82
ed Micb.k
196?). When
it ws implcn.nted ofljcialy.
(Thuday) in tne Jllie cal.ndar
6
rhe ddre
fouosEd by rhc dale Ocrcb$ I 5.
1582
(rdday)
ii
the Crcgorian
alendd. Ther.by
aU dare conversioo
algoilbms have to
kecp accoul of thh skipping of days in r]te solar calendar. Difercnl counrries, culluics
Fligiou omhMiiics adaprd to rhis DodilicElior ar diff@.1 !inc. Ir is lheEtorc high hrk for hisrorifls ro tccp racl of r]E apprepriare dalcs. and
,n every
solr qlendr thft @ iwctle mo.lbs.
a
For simple dithmcric Ea$ns
theE colld hdve been seven months of 30 dars and fi ve of I I days (in a nomal ye.r and
ofl0
plw 3ix or 3l days in a lcap re&). How;ver in pncrice sincc rh€ ime of CEek it w6s knoM lhar d€ wi.r6 h.lfofa nodat ,€u h6 l8l days whee6 rhc six
days
summ.rhalf@ ains I84
it&n for ih. sue is lie faler molio. of thc Eznh ro $; Su dar oeun on aound January 4,i. Srdnins
days. The
rhc Frihelion. thc Eanh clossr
with January cvery ancinale nonlh is
of3t days tiu Juty. rcbru.ry h of28 days (o.29 days for a le.p yctu) sd lhe Br G ofto days.&h. The.ltdar€ nonrLs ofjl days dd l0 dals omintB $.d frcm AuSul ro DMnber ln
Strictly Lunar cat€ndd, lhar is ba$d on $e luharion pcriod in one year lhcle arc eilher 354 days or 155 days. Tbe clrcnr ave!.8. of$e lunation period h 29.510589 a
days or 29 days, 12 hou6. 44
ninui4 dd 2.9 $con.l$(A$nrcmical Atnaiac. 2007). aEase is.hrging, Aaodin8 ro rh. tun5. lltery of Chaprcnl-Tou&, dd
HoEEr
ihis
chapont
lh.e
vdiadons
'lbur'ind Chapro
!E eoukd for
by the tolowing cxpEssion (Chdpon!
, 1988):
20.5305888511 + 0.o0oo0o2t62l, a_
I.o4! IO. o ! a. Da)5
(
r.4
r)
whce T n givcn b, ( L4.2). An, rrEdicutu phe cycl. my v.ry fmn te nes hv uD to seven hom. Tnus rhis priod vtuj.s froh !romd 29.2 days ro mor lnan 29.3 days fom nontn lo nonlh. Tnerefore in aU Iutu calend&s rhe numbe! ofdays in a nomh 29 or 10.
l.
is eithcr
Arithmetic Lunar calcndq rheE
$
lllenate hontns of29 and 30 davs. tn mey 4 rhE. rcns{ulirc mon$s o, 2,
lue Rt.ndd $.8 6 bc s days qch od d mdy s folr conKud@ momh5 of 30 days e.ch { obiwrional
l5
oys, I 994). In an
Arnhn.tic calcndar ther. are cilh.r 6 monlhs of 29 dals md 6 nonrhs of tO days. (a notml ycar) or 5 momlB of 29 days ad 7 nonlhs of 30 da's (! lep yd). Tnerc is no fixed nle for leap
nol
ycs
in
r
obseNarional tunar calcndar. rhcrccdn
anr. HoEver in lbe Aritineric L@d cat€tutd our ol lO yea6. cyclc t I yc6 aE hap tcds (3Js dayt (ly.s 1994. R.igold & Dcrshowirz 20Ol_ Tsybutsty, t9Z9). l.hc be
rule is rhal lhe tear
nunbf /is
(
l4 +
a teap
yer
it
ll.))modi0)< lt
(t.4A)
Olhwisc
the year is nor a teap year. In such an a.ihmelic lunar catcndor alt rhe odd .umbeEd mon$s conlain 30 days and lhe.vd nhb.ed nonibs conhin 29 days cach. re lcip yedr a day is added ro $e Meltih month. in gmeFl. a srrictl, tune oalendar ldvanc$ by I I days againj lhe solar cat.ndd. Th€refoF rhe $asons aod orhcr
h
a
pncnom€na rhzr dcpcnd on Ihe
eld
cycle {to
monlb numbq 9 (R nad&) in lhe Isl6mic
Thc Luni-Solar @tfldaB
ml
follow a slmcfiy lu,ar catddsr Ttc
qtods my f.ll
in
wi.l{. slmmd. aurmn
d
b.sielly lufu bul ro kep r&k of$e *a.ons in prrce of adding sin8le days in a lqp ye& a whol€ monfi k addcd (inrqcshlion) lo followthe $ld! cyclc, The Hebrew dd the Hindn qlendaG fa into thG ctass(Rcideol.t & De6howir2 2001 . Bushwic[ 1989, ScEIt & Ditshir 1896. at_Bituni r 000. at_Btuni
l0l0).In
ce
ofHindu calcnds (th.y have bo$ $e $lar tud rhe luni-sotar calcndaB) lunarmonrh is imclcalatcdiwhcneve,irnrsinroEconpr€resotarmoilh.tncascotrhc
HcbFw
l!ni,$lr
cole.dar
d
addniomt honrh of
l0
a
da)6 rs mrcEararcd betorc rhc
usurl 12" nonlh oflbe yce. The En ofihe dd.its of th6c calodd soc'al ahd reliSious nlrurc aod is nor in tine with tbeprcsnt*o,k.
i,
morc
of$c
Calend.ical cab'narioB for cacn calhdlr ha€ 6eir oM $phkhadons_ bul bcins phcnoncnoloSicat rtE obsctualionat lunr calend., is mosr chaltensins. A tunnr month bas lo beein wib the actuat sighling of lbe new luns cresce d.d tne conditions
I6
ofits si8hling greatly vary
not only longiludinally on rhc globc
bd de[Md o. $e tarnude
ofplaces. ThB an obedarioMl lunar c.lendar may vsry along the
iron calenddcal excitins
fld
aspects
se
logirude. Apart
$c pobl.m ofsighting v.ry yolne cGsc€nt is
challenging obseFations for both
$c
adareur
on€ of lhe mosr
md rhe pma€$ioml
asionofre6 Besides, thc pcdicion of fic vkibilily of a paniculer .erv cEsenr panicular placc is a long and inter.sling cohpuhrional exerci$ Thc sane was as early as rhe
dedieul times by
ar a
clliad
the grelr ostonomcs Al-Khwarizni, Al Batani. At
t|t under srutiny
Farghani etc (Bruin 1977) Mocovcr.
prediclion foL nak€d eye obseivarion ha lwo
noE cohplicated hsues
rh.laresr esearch. Onc oathese is biologicat.
lhc abililt ofhunan eye to conrfa$ $e dimly illunrinatcd ciesceht in rbe bnght rsilighl. The olher aspcct h ol physicrl n4lue ofalfiosph.ric conditions ftar c.n b.dtr aoecr rhe
risibilit! and rc contdsr h this \o.k
c
l'hdk h
morc on thc $lrcnoNical asp..rs
lhe eadiesl siebdrg olthe new luna!.rr$enl dnd ahosphcric €ondnion !.e onb
Opinions aro diided
d
tq thc oriSin
of$c.llton olcomlins
in rhe ARbian l,cninsula. Accordihg to At ttazsi Prcph€l Adan calehdar
sE
nuliplicrl
and spRod
aouid
rhc
rw
il $anln d
of
plnlr
yer6 in an! tofrr
as soon as
$c cni rcnof
(Ro$nlhal l9i2. l_mqi t979) A
originated wncn rhe Himyarires adoptcd one sjtn m epo.h lhal marked rhe
b.ginni.B or the eigns ol Tubbn. Cenerally it is b€licrcd thal lhc pnctice of 12 lunar nontns lo a year cxisbd in pre,lslahic Ar.b c.lend.rs since rhe rime ofconsrruclion of
Kaba b) lhe prophd Abnham a.d conrinued in Islom (llyos. 1994). The months and thcii sequenc€
Mre thc snc
calcndar Ibllowed by morc rhah
as
tho*
namcs
ol$c
used in lhc cuiicm tslamic lunar
on.lifrh of$e roralFopulation ofrhc world.
Fom historic pcspecrire lhc inpon.nce ofrhe lunarcalcnda in lbe pE-lslamic AEbia $€s the pilsrimage ro Kadba (Haj) rhar talls in $e monrh orzul-hajjah, rhc l2'"
nrnlh oflhe hlmic and prelslamk lunai religious evenl.
il
exchanging bands.
ad!dced llxoush
calendar, Althoush this event was a
puelt
b$ ol
goods
was also inportlDt ior kadc and busincss wnb
ll w6
this econonic
rcrivil, $ar w6s badly anected
*&ns. PEcufnent ofcop l1
and rhe ovailabilir)
as rhe
lunarrear
or.ac f.,ul anim...
8@rly vdied s6r lo s@n, 'fte t€en tha1 $e irbEl.tion s6 inl,ldud in de Arabim Peninsula w$ this .cooonic drivity rarh.r than dy sronomical t.son.
''QalM"
a nativ€
of Mecca is Fpuled to
daca for thc coming
(Hahim,
yem
198?, Ahmed,
be the
fiIsl petson assisned lo derrmine thc
pilgrinage and wheth.i $e inmalarion
w6 drc or
nol
l99l).
Sincc lhe early days of
four nonths including lhe
lh.
inception of lund cakndd in the Arabim P€ninsula
Zil Hljiah wE o6i&r.d scEd md \@
{!e
pDhibited
dudnglhesc sacrcd non$s. The custon cari.d over to the post lslamic.ra in lhe lsladic
cultu€. As with the Ronan ql.ndd thc change rh. saqed
i
ws abu*d i. ABbia
eEalalion
io ordq lo
nonfis inro noh{acred moorbs dd vicc-vc& Al thc eme rihe
rhe
lunarcalendt!us€d inMadi@rendined in itsoriginal lzmonthsay€arford.
Muslihs follo{ed rhe calendar ot Mecca in the bceiNling. Rut afier the l,lophcr Muhonmad migdred to Madin. alo.8 wnh his compdions. Mustims adoFcd lh. cal.ndar usd in Madina. Aner
$. conqu$tofMeccaby
propbel Muhlmmad, Muslims
conlinued 1o ue rhe calcnde of Madim bul rhe catcndar ofMecca the
lar pilgrimag€ ro Meca of
@ in pmllcl. Wi$
Propher Mubmnad in rhe lo,r ye& aner miSr.rion ro
Modina (AD 612) fequenlly abused pEctice of inicrcalation QuEnic injuiction. Th. pEcrie ofnadin8 a
\m
abolished thbush a
lsd
nonrh s.ith $e finl siebdne of nerv clesccnt MooD was iurhenticated by Qurtuic injuncrion and tne gayine of l,rcpher
Muhmad, sith paniculd empbdis on
b€Simine
dd
rhe cnding
of lh€ nonth of
fasting md the monrh of lhe pilgdmase.
With adoption of puel! lunar cat.nd& wirh a
fist
siehdns
ofrhe ncw IuMr
crcscehr lhrcush
luar nonrh
euMic
bcginninS $ith $e
injuncrion
Pophet Muh.mmad |he .rolution of Isl.mic lunar catedar
b.gd
dd
lhe eyinSs or
As for my calendar
one r€qutr.s a staning point of rine Gpoch) or bceinnins of m en, tor couring yea6,
Oe p€ople of MadiM ac h€li.v.d ro hoK aftcr Prcphet
u*d d.poch
Muhdnad mignicd to Madina
wid€ly acepGd lime ofomcial adoptjon of
in AD 6t2
Ht6 s
t8
s ene dn6 ! mooin or tm (Iys,
! hore ofrhc Ist@ic cR n
1994). However
lhe bceinning
AD 617 during $c caliph.t of Umd bin Khafiab. Whltcvcr h. thc 1in. of adoplion, lhe
lslMh cal.ndrr. or dc Hiji c.l.nd& s@ wi$ Fnday l6ri ruly 622 AD on Julitu calends which Moding b didft{c luMr or krdrhicslddd is l" diy ofMuha]m (1" nonth ofe klmic y.ar) ofth. tsleic I (R.in8old & ftrshowii2, 2001). The '@ b l'' Muhtu Il AH (and HijB) o,ficial dar. or adoprion oflhi!.h &d cal.rdd
Simpl. 34heh.s or 4rolh odd appoxidlions b$cd on long b€.n dcvi*d to pcparc long
&d
tne
d!t6
in oth.r
r.d
vid
cel.nd& in
lei-$lo ad el& olcndr
blanic legd syst h cgllcd Shdia
, is
Lm 3vs.gs h.d
ol incrconv.uion ol lslmic drGs
d.r.s.
lh. sou@ of lsldic tn+kcping
whil. le8.l pc.pls .rc efeglnd.d by seking
sisbne
ststn.
$. *i.nlilic kno*l.dge. Till th. rin. of sking of B.ddad by Hrl.su Xhu in AD 1258, Isluic law had fom
.ldr guidclires ao. elcndriol oNidcFlio.s (llya 1994). The olcndric.l sddelircs ftlv.d undcr thc Islmic lN qn bc outlin d a follows: cvolv.d
i)
l-.nsth of
a lunar month is cnhe. 29 days
it
L.nA$ ol
a
iit
Tn rc can be
lumr tlar
.
is
.ith.r
154
dlts
or l0 days.
or 155 dayr.
mdimuh of 4 cor*cutiE monrh. of l0 datr @h or
3
conscutive nomhs of29 &ys each.
E4h new nonth b.sins with fiBt sightns ot ncw lu@ cGccir ovd k$em hori@n .n.r ft. l@l ss.i,
v)
the
Ailcmptr rhould bc nad. on 29u of ea.h honrh for sighring of ncw crcscnr.
lf il is nol scn on the 294 duc lo any l€en (stmnohic.l condirions or w.thd connEints) thc noi$ should bc complckd a of l0 days.
l9
visul
sighring epo.t must b. suppon€d lhrcugh a wnness rcpon.
The p.rson involvql in rcponing musl be eliable. adull, lruthful, sme
virh good cyesielt !f it i! puDo*ly nisled
!iii)
the
preved
dat the
Fen
pioviding wihess
pe6on ousl b. punished.
Thelisual sighling Epon should
nor
coniict vilh basic scientific knowledgc.
'lesling ofcvidcne ot sighting on scienlific srcunds includc 0hcckine oflhu shapc
dd
of crcscen! ils inclinalion. Poshion in sky. altitudc. imc ofoberyalion
sky condnions.
Sighting should be caried our in sh
o.8ditd
way for €dch moflh.
!
ol io days due lo invisibilrty of ih. adcent of i,te 29'" ofoiscutire nonlht bd ro be avoidcn *hodd thc ns c6c.nl is sighted oo 2Etr ofa nonth. li such ascs con crions ec nadc b bcgituing of thar mo lr Accunula(ion of emB @orriculally in view ofconsideling
toonth ro bc
As the klamic lav and lhe Qudih injunctions depend hcovily on tbe fiNl sishling of new lunar cr€scent the eE ly hlanic slale plrced speial enphsis on $e
Bsdch i.
$c
the lield of Asmhony. CoNcque ly €nomous onlribution!
developmcnt
of $i€n€e of fie
CONTRIBUTION OF Tne
nod.h
@lid
2OIH
visibility of new
$n
crcsnt dd
mde in
pEdicrion
CENTURY ASTRONOMERS
dcvclopmenl of lhe sciencc of erliesl noon_siehinS bc8iN vnh
fic
Scbnid vho Bordcd a ldge nmber of.cw and old cescmB fon Arhens io th.lal{ h.lfof lhe l9'i c.ntury. On rne basis of rhis obsdarioml dalt
obFMtio.al work
oa
Fo$qinglm ([olhcinskm, l9l0) and Maunder (Mabd.r, l9ll) dweloped the obscralion.l oirdia of ediest vhibility of ns lmd crescent. A similtr work is 20
in rhe Explanation Io the ln.lloh Attranonical EPle,cfir $al is basd oi Schoch (Sch@b, l9l0). In allrhe* worts for dei€miriry lhe day ofrhe fi*r liribilir) ot new cE$o! ARCV (arc ofvirion) b shoM to be a sMnd d.8Fe pohomial runcrion reponed
of DAz (claive uinuth). The* edly €florc !rc only empnical in natuF N rhe critcria
dc!.loped de bsed on lluing rhe dau so rh8t mo$ ofthe obs.oaiions arc conshlcnl
1977)
TlE* nelhods do not hke into cosideElion lhe vidth ofcE$enl Btuii (Bruii, co.sidd rh€ ihpodahce oacE*cnt widtn fld his Dod.l desqibes ARCV (in
rems ofannud. of cr.scent above horizon plus tn€ solar depRssion belov lhe horizln) os a
funcion ofthe crescenr widtn. The Nodel ofBruio. ho\rever, kkes $e {idlh !s
funcion ofih€
dirnrl'ler
RCV ond DAz md a fircd Ddnh-Mmn dislaftc (in lemsolfixcd
ol fte lu.ar
disc). Hc sas
ale thc fi6t \no
i'
consid.rcd phJsical .stkcs
dsociakd *nh $c problen like blightnds ofskt and thar oflhe M@n. Thus due
*
a
tu
nrodcl
lo Bruin is the lirsl drolelical nodelofr|t nodern timcs Using the nrodels tur thc
lull M@n as a fuhcrion of altilude (Befrporad, 190,r) lnd $c s[t brighhe$ duri.g lNililhi (Kooncn ct al., 1952, Si€denbpl 1940) Bruin delclop lhc visibililt cu^6 r€lnrin! the aldudc olcrc*€d sirh the slar dcpGsion. AlonS lhc$ briShhess oalhe
ctrrvcs the bdehb€ss ofcrcscem (modellcd on os
$e basis of lirll Moo.) is al leasl
tlhl ofrhe twiliShl sky. He aho delclopcd cuNes sholvnu rel{lDn
and
sl.t
depesion rhll
ldd
ds much
berwccn ARCV
prorcd to bc crucial for lunhcr nodellihg ol canics'
Yallop has edne lbr funho improvemenr ond consides cece *idth as a funclion ofARCV. DAZ and lhe acllal scmi-dianeter ol lhe Moon (rhar depends on Lhc Eanh-M@n disrucc) al $e time ofob6endion (Yallop. 1998). \vilh de!€lopinS a model
lor lhe besl time of yisibiht YaUop s nod.l polynomial tunction of
$e actul
cresc.nt
al$ onsideF ARCV 6 a ihi.d d.gtce oidrh ar the ben ime of visibihJ. Such
polynofrial is oblain.d by applying leasr square appbxination on a basic data sel This
blsic data s€l *qs d.duced bt Yallop fom lhe limiling
slctins ARCV for
a Sircn sidtn from
tlr ninin@ 2\
lbibilil, .uvs of
bnrin b!
oh lhe componding limilin8
visibility curve. So
slronohi€l 10
cri|€na
fd th.
b lhe morl oulhfltic and dep€ndable for cxper.d ali.sl visibilily ol new l$m ccenl. The modct due mod€l due to Y.llop
Yallop isa smi-empirical model based on $e lheor€dcal considedions of Bruin and
.ftiteriononthebasisofabusicd.tadeduccdfonBrui. svisibilitycurvcs.
r.atm6t of rhe physicat dp<l3 eciared wit th. pDblm is due lo SchNld (schacftr, 1988(a). I988(b)) who has considercd tlt Poblem of bidtn€ss contEl isoroudt. He ale rcali2ca jnpoitance ofthe physiolosicol aspecrs like $e abilirt oahunan.yc ro eoe th. limili4 co.kast. Soh&reas nodel is ! pdrel! lhoerical n\odcl. Recntlt Odeb (2004) hls claim€d to harc dev€loPed a nc* ctnenon for the.arli.sr vnibihr oineq luffi cle$ent bur his cinqion isjust ano$o lom ol Tnc mosr extctuive
Olh.r authoE have contributed on cloted nsues (Ashbrcot, lt7!a. I97lb. Cald$ell a|]d t-anct.2000. I0loohi c. al.. l99lt. lltas. l98l!. l98lb. l9li'll, l93lb 1985. 1988. 199,1r. 1994b, M.N5l1r_. 1983, Schaefler, 1988r. 1988b, 1996- Sch!{ffcr er'
Queshi& Khan.2005.2007 elc) ln fih \ork. €och ancior Md nodciD halhc'hadcrl mod.l aor detmnrnB $e day ofltu fi6l siehing ofne* lunar cEsce h cNploied A comparative study oi lhes nodch is canicd out and each crncrion is rrlsfornrd in(o a one pdamcter visibilily crilcriotr like th.t duc lo Yall.p
!l
1991, Suhan.2005,
Th€ resulrinS cllendaricdl imp licariohs
lr
.rc aho cxplorcd
hos been poinlcd our in lhe bLSinnine
determinihg $e dat when the nes
of $e chlpld thar the prublem
luar (esc€nl $onld
bc \isible has its calcndarical
inplicarion. The earli$t siShtine of new luMr calcnde is ale
maleuB
and Dlolessional
a
cballmging
l.st
lor bolh
ashhoncB. In \ic$ olrhis rhc chafler hd niehli8hled:
Paranere6 on which visibiliry of new lunar cescent depends
Thc cfons ofrhe
6tro&meB
iD
lhc lncie.l and lhe
22
ol
n
di€ul tlnes.
.
Th. d.pend.nc. ofth€ dlendsB
. txB
on th. cyclic moiion
ofth. Moon sld $e
Suh.
$. Mulih! .spei.lly a lh.i. b.li.rts lticrty dphais. u tltliarsidtingorrhetwloNcr$.a fois.niosaldcldilglun&ndrha
.
c.l.ndar of
A! rccou ofrh€
eilons ofrhe
rsrorcmd oflhe oodc6 rim.s |o rd.lr.ss
the
prcbhm ofderemining$e fiisl day ofsishdnsofnew Iund c'.eenr
lh. b&ksound of tlE$ cfon! w tFrc qplor€d all lh. old ald thc modm mrhodi Mthcm.dol dDdel or crirdion dEr r.quiG ro be $tisfi.d for 0E lirsr vGibility ot ihc !w lu{ cEsdr, Duing lhi! qploGtion rn E$ltr of lh.$ nod.ls N comFcd lnd nodifietios baw b..n 3uSgcrt d $,lEE fler posibl.. Funhd ft. mo$ authentic of the hodeh hav€ b€en uscd to .xolod fie ob€crvationil lunar cal.hdar fouowEd in Pakhhn. A.sed o. the rcsulF ofthese exDloHions a luturc obervrtioml lus calcndd for Patislm is anDut d, Itr
23
Chapter No, 2
ASTRONOMICAL ALGORITHMS
&
TECHNIQUES For lhe determlnatlon
ol th€ prsiso locallon ol the obJsts in th6
Solar
SFtem, panbulany the Sun .nd rh6 Moon, ih6 Fr€nch planetary theory VSOPaT, (sretagnon & Francou, 1994) and
Chapron!1943,
€91) rr.
th. lunrr
rh€ory ELP-2000 (Chapront-Tou# .nd
well sulted. A number of sotlwaE hav6
tor lho shulatlon of cel€stlal phenomona based on
ben develop€d
the$ th€o.16 and similar otner
works.In the cunanl studylhe same lh€ori.s havs b6.n
u*d
lo lollowthe pGitlons
otthesun and rhe Moon.
to
conven the theorles Into computatlonal iechnlques, malhematlcal lechnlques, tools and dlgo thms nave been dtloted. Moch ot the computailon.l work is ba*d on the algorithms devoloped by Me€us (Me€us,199a) but a subslantlal ahount or work on computatlonal aEonthms has been done Ind€pendsnlly. For a ihorolgh und.Franding ol lhE compul.tlon.l toob the Moreoler,
problem of llme ls explor6d rnd discused in d6tatl. ln this 6Ebrd the @nblbution of a numbd of authors has beon sludled in as much detail as ls required (Aokl et.
al., 19aa. Sorkoskl, 1944, Clomen@ 194a, 1957, de ,ag6€, and ,lappel (Eds.),
197l- Dl.k, 2ooo, E$€. and Parry, 1995, E3*n et, al., 195a,
Gurnot dnd
S6ldelmann, 1944, Markowiu er. Er. 1954, Mullor 6nd rappel, 1977, t9unk and
lrlacoonald, 1975, Nel$n et, al., 2001, Newcomb, 1495, Sadler (Ed.), 1960,
seldehann rnd Fukqshlmai 1992, Spencer, 1954, Stephenson and Moi$n, 1944, 1995, Sleph6n$n, 1997, W€lls, 1963, otc.).
th.
output ot ihesa €ftort!
b a .omplter progr.m for
vblblllly ol luh.r cr€scent named Httatol wrttten
2.I
In
.natysts ot
ftst
C.t.ngs.ge dt$u$ed 6t the end
INTRODUCTION For rhc derernination of lhc visibilily mnditions otNew lund Cre$€hl (or the
old.st lutur cresccn0 over a tocal hori2on, lhe 6Bt rask h ro deremine rhe Unive6al Tine (uT) and dai. ofrbe scocenhic cobjucrion of thc Moo. &d rhe sb or thc Binh of New Mmn. In ils morion tuDnd rhe Eanh rhe Mmn tralcls doud 12 deg@s frcn
c6t cvery day sd iakes ovr
rv€sr ro
When de Moon is vcry
rhe Sun in
doud
every 29.5 dars on thc avcm8c.
clo* lo ve$ ot (he Sun it aprears
betore the
sunrie ed vhen il
N elst oilhe Sui it appcmsjusr anq rhc sunset. The lunar crcscenr is vcly rarel) on rbedayofthe conjLncton. Dqjon Linn(Danjon 1932. t9l6) has
a limn on Ihe
hininuo
lkibtc
b.cn i.$rpreted as
clongalion ofrhe visible
lu@ cE*cnr Accordine lo rhis lihir the ruMr ccsc€nr is nor visibb if lhc elonSadon is te$ lhd ? deSEes (Do88er & Sch.efer 194. Schaefe! 1991, yallop 1998). Thc hdimM elonSadon ot $e Moon ar
of$e Eeocentdc conjuncrion is same as the inctinarion otrhe lunar orbjt fbn rhe plo. of ectipric (50 9). When rhe Moon lakes orr rh€ Sun ar ir ndimun elongation $c ninimun time il lal€s b molc foo bein8 / fmm rhe $n (on the .6rem side) ro be ?o again {on &e w6om side) is eoud th,ee quans ofa day. Th6 it is theorcdcally possible lhrl rhe qesent is t6l sen on $e dly of conjunction or is tsr lhe dtoe
seen on the day
ofconjunction. TheoEricalty n is aho possibte rbar
if$e
seno.
ofconjuncrionad
ln. da, iller, orthc
the day
crekenr rs rasr
srn
rhen rhe new cEscenr
6
seen on
on rbe day b€to,e rhe conjurcrion .nd !h?. rh. new
crescenr
n hsl
c@dl
n *en oflhe conjunction. In th6e cM rhe cre$e r.mDs hv$ible for.oneahalf' day. Howevcr non€ of the$ lheoletical possibihia are rcatird in practice too freque.dy. Mosrty rhe cEscent Enains inlisible for .two-sd.a-holt, days on the day
at least,
These condnions dcpehd on
tc
obse(ets t@a on.
25
O@ thc rim. of thc g.cdric biil of th. Ncw MFn is d.lmin d, dE rcxl r.3l( ir b d.cdic dE locd circuhlt .c6 oflhc Su ud dE M@n tt dE tirc ofsu5.l on lhc day of rh. conjwrid or r &, .ncr thc djulction (or d lh. lirc of swi$ on lh. dly ol conjncdon or thc dly b.foE). Fd this i'lk ooc mEt d.r.miE th. l@l tim6 of thc ru$t a.d lhc noon3ct In tr. mmins in otdcr to b. vkiblc th. Su rhould tag b.hind thc Moon in odd rh|lth. @s i3 visiblc .d in thc dcnine! thc M@n sholld bc hgAitrg b.hind rh. Su. Clsiotly thc LAC of $c M@n h!5 Em.in d on ih!{ndr cosidcElion for lhc adi.sr vbibility of$. w lua ct6..nl. SiM thc rim6 of th. Babyloni.ns thtuu8h ni.tdl6 !96 .rd ill tlE 20d e uy it hs b.qr
I deisiv.
aerd. Blbyloni@ @Nidc!!d nininm LAG rcquiGd for tlF visibihy or new lund ca*nt to b. 48 miNt6 wh.@ thc MBlidAFbs co.sid.td il lo b. 42 to 48 minut s dcp.ndinS on th. E ih-M@n disl'ne. In Dod.m liis tlDogh thc lisibihy condnioB hlvc b.cn eFncd nainly d@ lo .ll kinds ot lnifi.ill pollurios dc ncw luM cGs6t hls bc.n rcpon d lo b. tishr.d vlEn ia LAC B
coNid.Ed
mwh
ls
ths
42 hinutâ&#x201A;¬s.
suEr ..d $. n@nsr, though statd !o b. s@nd t.st in *qu.na, i! dcp.nd.nt on rhc dct mimtion ol dt PEci* toldenkic @diMl* of th. Su ed thc M@n- h is rh.tfoE imFnliv. lhat b.foE rh. &t frinatioi of rhc LAG orc nusr find th. E.@ ric @rdiMl6 ed lh.n lhe bpo@ntdc c@rdinarcs foi $c l@don on lh. globc fom sh.E ob6cNalion it to bc m&. of th.* bodic!. Th.* e dcrivcd fren th. two $.oti.s, dF VSOPET .rd th. TIE ddcmin.tion ot $c
l@l riGs
or rh.
$. ch!pr.o. As both rh* thod.s &*db. lh.luM.nd $. iol& c@dinatcs 6 .xplicit tin sid, mlkiig olt thc prilc "lim. usm.nt' is *nlid tor lh. appUcadon of tI6c fodul8. 'It. "ritu" co*idcrcd in thc* 0E@.s ed rh. orh.r thcod6, is . rim ird.Dcnd.nr oflh. dillioB of thc E nl ed ir g.tudlly Lfr.d s "Drnmial Timc . How.r dc limC' speificd bt ou clclc b ba*d on thc !sn8. norion of rhe Esnli .nd t. Sui 6d is lm.d .s thc "Md Sol& Tim." Th. titu cosi&cd in ihc applidion of dE rh.oncs b ihc B.lyc.ftic DyMic.l Tin. (tBD) or dE TcGrrirl Tirc (II) which ir 6sin d wirh th. C6.dl Th@ry of RGl ivily (Ch.po -To@a & Ch!!ro4 l9l, Ncl$n.t..1,2001, Guiml & ELP-2000
(di*.us.d lakr
in
26
Seid.lm@, 1988). The TT is d.fined in FlatioD witb the "lnt matioDl Alonic Tine"
T"I=TAI+]2F.IE4
c.l.t)
Btce TAI it dgul.t€d &cording ro atomic rimc, In TAI $c b6ic uoir of rime is thc SI sond {defined by Bueu Inremarional des Poids.l M.su6, BIPM, in t96?, a dudlion of9,192,611,770 periods of rodiarions cooesponding ro lh. tmsition b€rween
uo htFrfinc
levcls
ofd.gbund slat oflneCesinm
lll
abm G.t tenerat.,2OOt)).
A day on rhk scale is 86400 SI seonds long {Astonomicat Atndrc, 200?). On rbe other hand rhe clet dm." is thc Univ.Ml Tin€ (Ul denned wirb rcf.r.nc€ ro nem sun and Nocialed vi1h thc Crccnwicn Md Sid@t Tim. (GMST). UT is detircd as $e hour angle ofrhe Med rctations of th€ Eanh
ihcr
Sun ar
N
cEenwicb ptus 12i6. Due ro rhe in€euta ries in the
di$repancies
b.reen
the lwo rimes. rhe
TT and rhc UT.
This dillcrcrce is ruferred ro as $c delht (At):
AI=TT-UT Th.rcaore wh.nevcr
w
wanl
(2.t.2)
b dd@irc
th€ position of
$.
SM
and lhe
M@.
lbr a panicular lime on ou! clocks w€ have to fomutate rhe rine argudenr using rhese cons'dcEiions othcnvi* fie clock dn. of the phcnomena shaU nor be appropriat€. Finally. rhc lime arSunenl in drc rhcorics requi,es lhe delemimtioh otrh€ Jutim Dare of the UT in question. TIE Julim Dale is th. sys!€h ofconrinuols limc sle lhar begins o. Noon or crcen*i.h Jduary t,
y6
-4?t2 (cdlcd lhc cpoch oftne..r!lian dde,) ln rhis
r,m€ scare tlre moment described by a date (CEeorie or considercd as rhe
"nmb.r of
dayJ,, d.nor.<t
6
Julie)
ond rine (UT) is
JD, (consisting of a whole number
indicali.g rhc nuober of days .tapsed sj.ce tbe ep@h of Juli& Dar€ dd a filclion d.sribine the flacrio.s ofa day after lhe whole number of dayt since the ep@h of
Julie
Daie. Using rhjs JD for
&y Domol lh.
1 is tten .ddcd
lo .c@unr fo, th. tinc arghehl I lhat is on lhe
icguldnies in the oradon of thc Edrrb. The theories use $al. of".umber ofJulio centudcj ehps€d rinc rh. epoch r2OOO.O.
21
Thus usine tbn
ine
argunent md the explicii tin€ eries fomulas of the ELP
c@rdicrcs of lhe M@n d.y aAq @njudion-
-
ad
In
th. ecliptic longitud. and
Tn*
c@rdinals
Mooisr
rhe Sun
9. the dcliplic ladtude,
i. lh ft sqt dsirely
ca*
d for
fte s.me
i6i'nl
lbe VSOP th.
of rhe day or th.
s. @ spheric.l pol& @ordimtes a th€ gtucsrdc disr.nce,
(or rhos of $e sun.ie
TIE lune
m calcrl.t
ed
ad noosi*)
refeftd b
as
X"
th. Ediprh Coordimles.
ro obrain rh. im€s of th.
Su$.i &d dE
for 1hc day in qu6rion.
(or rhc cE*enrs of M€rcury
&d venls) k fomcd by $e region of $e lbn suface tow,rds fie Sun tnar fa.lls belwn rhe two plancs rhrcu8} the e E of rh. Moon, one perp.nd'.ulr ro rhe tine ol vi.w of fie obFn.. dd thc o$.r FrrEtrdicule to rhe di@rjotr of
rhe Sun. Thc
total dea of th€ Lund disc is called
di@tty r€laLd
ro
nrio of rh.
ea
of lhis
crcw
lhe.phs.. ofihc Moon, The phse ot
md lhc
th€ Moon is
rh. seperion bcrwen rne Sun and rhe M@n or .lorgation.
The Astronohical Alm$ac pubtished amually shtes lhar $e dew luna! cr€scenr is sencElly nor visibtc who irs phe is te$ lhan t% (Askomniqt Almde, 2007).
-
ha prcv.d ro b. nisl@dine in vicw ofihe fac| rhar the brightn€$ oflhe csenr can sr.auy vary rbr the ehe vatue ofthe phas owins lo the varyin8 dislanc. ofrhe Mmr froh $. Eanh. The Elrri-Mmn disunft Eics foo t5O $o@d kitomcrrs lo 400 lholsdd tilomer$. Tnus when dosl lo ihe Earlh the luntr 6cshl hay be This
vGibl. wilh ns pnsc much l€s lhan r % and in cae of fanhd ir nsy not b€ vkible evdn wilh ph& g@ler thd l%. D@ ro rhis varying disr.rce rh. siz of rhe tuu dis i. fer cha.ges. Closer the Moon ih€ disc dppees larger. Th. Muslims had nodccd rhh vdhdon ii th€ sizc of rhe luie disc hund I OOO ye6 aeo. tn rbe Modm rimes il was nol before Bruin lhar lhc imporrace of 1he actul visibt. widrh of lh. lutu cllsqr
M
@liz4
Uhinately n w6 yaltop who ued the widlh of luo{ cr*cent in his ohe_psmei€r nodel of tu4 cre$.nr vjsibitity etadng n b the ahnnd. of rh€ c@.nr on rh. local
orce rh€ sc@orric c@rdinar6 of thc sd md thc M@n e catcutar.d lh. .fieIs oi Refracrion, Abcration hd fic pddta @ @lculat.d for llc.@odinaies of
2a
both rhe Sun and thc Moon. Thse cor€ct d eclipiic coordi.ates of fie Sun and the M@n
@
lhen arNtomcd into Equtodal
Delination. In order lo g.r th. ihe
Su ed
the Moon, rhe
tical Hodental
ob*frers rcft$rial
(dcfin€d as lhe L@al Hou AnSle ro
fie Greensich
@dinal6 a, the RiSht A*nsion 4d 6,
oflh.
lhe
coo.dimt€si Ahitude and Azimuth, of
cooidinale
dd
the
t
cal
SidftalTime
Equinox) aE rcquiEd. A simple alSorilhn lcrds
Mean Sidereal Time (GMST).r lhe Oi'Unilesal Tinre for any given
dsle. AddinS lhe local longilude 1o rbis GMST erv.s 1he
r,cal
Md
Sidereal
Tihe for
0i' Uhiv.sal Time for any eiv.n dale is oblained. finally to gct $€ Local SidcealTine for my nonent of the day day be obtain€d keepids in mind the f6ler pace of $e
Oncc lhe
obj*t is
tical SideEolTihe
ofany moncnl is looM the Hour Anele oflhc any
oblained. The local Euatorial coordiiarcs
s, th. Hou
declinalion,lead to the Altnudc (heiehr obove lh€ holizon)
tine
@
ed 6. the dd Azidu$. n@ poiilsol Anele
imporrant lor lhis slldy. when m objecl is al lhe local meidian (i.e. TEnsi().
when rhc objecl rbes ind when an object srs.
Thc time oa tEnsil may be calcularcd using rhe Hour Angle to be co.siderinS rhe
tical
olthispointoflimc
Sidereallime
can b€
1o
eo,
at
rhe
b.lhe Righr Ascension offte objccr. The *timate
inpoled uing
an
ireraive
pccs
(hal inmlves Eadjustihg
the lime arsumena'lo be lhis approximatc tim€ and rccalcuhting the coordinates
objd
or
offie
thisdme argumehr.
ConsiderinS Hour Angle (n€earive
t,
t
io be
9Oo
or 6i" approxidare rihe of rhe rkins
o. the se(ins (posnive 14 ae obraincd. R*rlculatins $e rimc dsunenrs
tor approxidale limes of thcsc eve s $c coodi.Eres ofrhe object de deremined again
ad
of$e inct oflh€s denrs ac ob!.ined. This giv.s the a.d the setins orthe cenres ol$e objers (rhe sun and the Moon) thar can b€
the b.lter approximtion
risins
adjnsred |o s€t
$e actual isins (the first
app€arance
.nd acrual s.tti.s (homen! of dcappe&ance ofrh.
29
of the weslem limb of the objec,
cded linb
of the objsrl.
edor selting ofbodr fie Sun 6d rh€ Moon are oblained th. p.mete6 of fic import,nce for lhc atrsl (ot la0 visibilitv ot
Onc. lhe lincs of fting on€
d
work our att
lutr
rhe n€v (or old)
crc$.nr.
DYNAMICS OF THE MOON AND THE EARTH
2.2
T!.
dcv€lopn€nt of nodem
dy.di4l lhoics
for $e sole sv$em beg& wnn
$e discov€ry of Laws of Pleel,rf Motion by Jobannes Kepler in the 16('centurv At aboul rhe sm.lin€ haac N€Mo. cme !p wilh his tt$ of Motion dd the Univeisal
ol developool ol nathemtiql ng 10 the fo m! latioi o f Cd 6tial Dynam ics The e llois w.rc d ir4t€d to
Law of Cdvi|llion. Whar fouowd is a long histo.y techniques lead
i
describcrh€dorionofplanctsandlheirsal.lliles,dteroidsand@nebinordcrtopledicl then positions in tuturc with accey of SEater 4d g@l€r d€sG Conuibntio.s of
Cowll. Encke, Claittul. Hesn. D.launav. Hill and Brown. besides daoy olher nahemalici.ns and astdnoneb. bare ben oi grat Eul€r, Laplace, Poison. Gauss, Olber,
si8nificancc. A nunbei ofcldsical md nodcn books de now available thal d.scribe thc d€rails
ofd.F
conuibutions (Sna41953. Deby, 1992, Plunmer, 1966. Pollard 1966.
Woolard and Cl€nene 1966. Bouvct lnd Cl€mence, 196l elc.). Contibutions ae oho availabl€ rhat give delails ofthe lund dynamics (chaplont_Touze
1991. 1988. Chaproni er.
rldrivu
al. I998,
x
etc)
Chapront.
l98l'
Einsrein's theolv of
suc(aded in dc$nbrns the molion olthe penhelion
The satllite to planet ( 1.23
Srandish I981. 1998
dd
svst€n
s
larg€sl
ey o1h€r saEllite-ple.t pait (lh. nexr ldecar beins lhar of l6s ntio = 2 i lO I ). Thccforc rhe Eanh do.s not prclid. lhe dominmt
l0-r ) in compdi$n
Triton-N.Drune
nss !.tio in case of lhe Moon_E nll
ro
efecrive fore aclins oh lhc Mooh.It is not only lhe Sun bul all msjo!pltnels and la€€r of lh€ dtdoids lhat @nkibute 10 th. cffcctiv€ force ,cting on the Moon Thus
d
cph€ncredF prcpded *ilhout tdtinS into
emn@u' Mey of lomJlauon of
the epheheedes of
$.
eout Moon
lh.e contibudons b boud to be of.dlv dsvs, both b.lor' md aliet $e all
$e Neqonie ndhtuics. weE bded on
averages of various Lnds r.laled 10 lhe
dyndics of lhc Moon 30
obieBed
sd
lompukd
tnoM with a g@l degK of @!6cy lhoi lhe avetagc avrodic p.riod (intepal ber\,s t$o coMurive ne* M@m) is 29.510589 davs (29 dars, 12 hom 44 ninul6 dd 2.9 sondt. The av€Bec uomalisd. morth (intcn.l ber@n lwo Today it is
su(esive pa$ages of 18 oinutes
ed
32.1
rh€ Moon throush
$cond, ed
4
it! perige is 27 5s4550 days (27 davs
13
hous
aw'age sidercal honth (inLdal b.tw€en
re
succesiw p6eg€s of rhe M@n tnroueh ! fixed st!r) is 2? 321662 days (27 davs ? houf
4l
minures and I1.6 secondt. Thus on thc b6is
ofa sidcEal
no
h thc Moon rravel3
abund 12.176158 degr.et p.r.lay on the av.rage Relaiv. to lhe Su. lhc M@n traveh
dtgc6 per day on lv€mee. Howvo, rhe mininu Bt 6 b. 12 08 deges Fr day and $e ndimum t2.41 deeees per day. Tnis oll happeis beau$ the orbil oi rhe Moon around tbe Ennh is a hiehly "i!rcCular' .lliPe whercs lho deviadons tre 12.190?49
cau$d by p.nuibatios du. lo the S!n, lhe Planeb and olhs
$lf
svsten
objsls
ollhc orbn ol M@n n on alcnge 384400 kn bul has a snaU oscilldlion aound thb valn€ whose period is hala lhe svnodic nonth Thc Thc smi-major arh
sj 0 l lT The inclinalion of the luhr orbir from the ecliplic is 500 9' bul vdi6 up tol9 Elen the nod6 (poihts of
.@enrricily of the orbn is 0,t49 bul vdics
d
much
inFdecrion ollhe lunar orbil and the ecliptic) of lhe orbn !re noi fixed 'nd go round ihc rcliptic in 18.6 yeaB with an o$illalion.bour dE $cular notion lhal moun|s to as nuch as I 6? dcsl6 Thc line ol apsd?! tle eo rcund thc echpiic complelrne on' rouod in 8.85
''elenentt' oi
yem
and dciltations
the orbn exhibn
deimiMdon of lund
{iih udnude of
bo$ scular
a ell
as
12'413 destccs
Ths all
lhc
peiodic ldiarions lhis mkes rh'
ephem€Ed€s a daunling task
dd thal of th' planets in $e nod€m *lup b€sd vith lh€ doluliodv e4loits oi Johees K'Pler $d lsc The undeslandi!8 of lhe dynanics ol the Moon
N.s,ror Kcpt.r cnpnically dcdu€ed his Lls of Pld.lary Molion on thc b6is ot o posilio' of extensile study of the obsralional .lcta @llected ovcr ce'nies of lhc pldets. Thcsc cfl be sbtcd 6 follows:
3l
L 2.
d. clliptic with lhe Sun a1 one ol lh€ foci. R.di6 vdtor of ! pldel (V@lor dnM liom the sun lo rhe Pld€D Pl&erary otbiB
sw*ps equal &.a5 in equl lihe jorensls.
L
Th. sqlle of rhe Friod of rcvolulion of a Plder eund rhe Su
is
proponionalto lhe cube ofils dea. dblance ftom die Sun.
N€fion nol only prcent€d his Law ofUnive6al Gralilaion but verified KePleas of Pleetary Motion usi.8 lh. tnw ol G6vilation. According to N€Mon s Larv rhe
of atmcion beM.en two bodi6 wilh nas*s
F
2' ed
Frem rhe ddc
pl@d 6t a dista.ce
=c!+i
'r-)*s
rrr).
of publicalion ot
i
/
(2.2.r')
The force is aflnclive and G is the PmPonio.ahy constant Consranr (6.6?2x 10
,,
is
dllcd Univ.dl Cavilalioml
enhs dit€ctcd ircn ,L to
tte'Priripi.l
-r
or rron
',rou|
bv NeMon in 1687 a nudbet
o'
astlononeB, physicisrs and na$cnalicians conribulcd sisnilicontlv in $e dcvclophenr of th.
lndesl..dins of Lud sd Plm€hry dy.amra.
Howele. at lh€ time of NeMon (and p€ftap3 lill lodav) the dvnanics of lhe Moon pa*nred sear dilficuhy rhar forced Ne\\'lon lo darc thal ",',e Ltmr theo'v nale his
vorld think o! it no norc " lDanbv 1992) ro He had tlitficulry in describing lh. modon of Fnge (the poill in lod orbil cloesr (1749) the &nh) and could explain it ro only withi. m accurev ot 8 percenl Clanaut appli.d ml)lical merhods ad succeded in explainilg d€ molion of p€ngee bv 6'ng he.l
ache dtut kept
hih aeake
so
olen thut
he
seohd o.der approximation. He published his lraorP de Ia /,,e md a se! ofnumencal tablcs ih 1752 ior computation of lhe posnion of fie Moon. the Eost sisnificmr contribudon frcm Euler appered in l 7?2 shcn he tublish€d his srcond lL@ lh'ory
32
ficory of luM hotior, Publish.d in 1802. cnploy.d rrmfo@ing th. eqution ofmolions $ tlt.t the lruc longltudc wa an independ.nt ldiable Hh wotk also
kplM\
povid.d
e dpl.n who
sdo
a@1.61io. of the
M@! ripl@'s
mdhods
w.E
of accu!@y by sevetal malhedaicies One of then was publthcd his th@ry dd r.bl6 in 182? that Gmaircd in *id' Ne until
cdied io a high
Dmoi*e.
tion of lh. degrce
Ha.Fn! sork dppeaed. P. A. Hasen's wolk ext nded for over fonv veds fon 1829 dd his r.bl4 w.re publkM in lE5?. ThGe labl6 rcmain.d in s for w.ll ov'r finv yds. Delaunay publishcd his work ih 1860lhal M basd on disturbiry tunctions $ai in€ludcd 120 t€ms. By sn.ltti.al m.4 h. Gmov€d 0E teru of disorbins turulion on' thc by one ahd gEdually builds up th. $lution. Autho6 cl.im thar Delaunav s vorl( n mo$
Frf{t
elulion of th.l@r problm v.t found {D&bv
Thc posilion of coordinatcs
eliflic
$e M@n dodd
th€
ElnI is desdbed
(r,,190 p) wnn r bci.s th. heli@.ntric
lonsitudc and
I
1992)
disr:nce or rhe tltncr' ? $e
lhe ecliFic laliode The most commonlt
lunai $bles dlrinB the nosr Pan of 20't c.n$ry \rcG dDc lo
ll]M $.ory w3 inpo!.d
bv Eckefi
&d ws tnown
6
bv spndical pold
Gd
edv lo handl€
BrcM (Bmm 960) This 1
ILE, sho^ tot Inprored
Lrnr
6 ELP Epr,rdr,r. Tnc lh.ory coGtruct d bv ChcPont and ChaPon(_Toul is knosn (Chapo er. al,. 1983. 1988) shon tot Ephtina des I air's Pukienhes ln ELP luDa nolion in $e simplifi.d tables have ben cxlEclqi from lhe lheorv lo rcplcsnt lh' $e fom of explicit line sries fomule. Th6e tabl's @ b€ lsed to direcllv compute ro ILE it luntr coord'nabs. ELP h Dol onlt morc Peci* md complele in conpdien For ale povides noe nodern valEs oi l(M pdmelels md olh€r Phvsical coislsts' 6000
y.4
on eacb side of J2ooo o ELP povid€s
lund c@rdiMt€s that
l4lv
have
eno$
VSOP (Vdialrons .xc.eding few arc secoo.ls Toeelher with th' d€v€lopment of t!bl6 due ro Sacnl.ifs des Olbires Ple€titt bv Bctagllon ed Fdncou (t9E8) lhe Chapront er.
al
destib€ the motion
sysrem. Both rh€
ofall
major bodies (€xcept Pluio) ih tbe solar
$€ori6, ELP &d rhc vsoP
ll
w
dcv'lopcd
d
rhe Buean d's
inies ionolasysrcm of di0eGnial eqladoi dat constin&s th. major pad of th. sfudy of elcstial n46mic' Therc & i. gddt t$o.ppoachcs for slving such dyndical systctu, ealytol ud nusical, Anallri€l nerhods m b6ed on solutio. by Iouder sen€s ed thc Poiso.\ S€lies. Thc ELP-2000-85 (Chdprcnl€r,al, 1988) is semidalttic sd has be€n obla'ncd frod
a
BdicaUy a nhcory of pldelary
ed lund
fil o f ELP-2000-82 (Cn!po!i
cr. al. I 983) to
Propulsion Labomrory DE200/LE200 (Slstrdish
$keh iion Lasrar
For
te
penurbarions.
Gsklr, an
motion involvd
th. nlncrical inrcer.tion of lhe .lei
l98l). P@$ion
in this o@ry
ha
b€en
1986).
lylic par!
ELP-2000
Fpet€s th€ nain lEblm fbm th.
Th. 6ain problem tak s into accout thc &tio. of thc E nn's ce E of
m6s aid lhe acion ofrhe Sun's orbir aound lhe Eorlh-Moon baycentr. such lhat
Ihe
Sun\ odit is asuned to be Kepl€rid cllipse. This rcrulls inlo Fouri.r series w'lh numdical c@fiicie s snd ar$mdb th.t m suns ol mulripls of fou fundade.tal
ned longitudcs of the Sun ed $e M@n). / (mean monaly of rh€ Moon), l(hem anohaly of $e Sun) lnd a (M@n s argumen( ol paBmeted D (diffeence of ihe
h
ude).
ladtude and
acrons
6uhs inlo dne *.ies fomnld for Mmn\ longitudc. gocenrric disrscc @daining 2645 rcos in all. Apan flofr lh* *rics
Tlis main
problem
of all rh€ other
significant objects
in
solar sysren
dt
consideed N
'Fnurbadons lo ihc mdin pbblen lhol include:
L
tndiKr pl&c(ary perturbarions rbar re induced by lne diff.tsoc.s b€lwecn the lrue orbit of the Sun aound lhe Eanh-Moo. bdycenue and tssuned Kepbnm Elliplhal orbil oflhc Sun *uned in the min Pmblem.
2.
Dir€ct planerary penub.tioN due lo etions of
lor
borh the direct
co6id6
L
th€
ad
orbib ofthe
othr plan$
on ibe M@n
rhc indt€ct planetlry penubalions lhe ELP-2000
pldct
giv€n by BGlagnon\ VSOP82 rh@.y.
P.rurbations du. ln€ figues of $e
34
Edh md
thc
Mon
(Moons, 1982).
4.
R.larivislic p.nub.rions (Lsrnd. & Chlpronl-Tou?J 1982).
5- Penurb.tuG du. to tidd afccis (villim3.t. a!
6.
Molion of the efccnce
frde
conside&d wilh
l97E).
spect
to m in€rrigl
fime of
fomlla for geocentric of lcm !o 15:37.
consideradon ol all lhese pelturbarioB esuhs inlo rime series longitude, IatiMe
.rd disra@ of 0E M@n
An al€natc ro this
6 tinc
at
nds
$e numh.r
ther€icrl appro&h is !o rcpr€*nl1hc
coordinai.s explicilly
ledes fomule. This epEs.rolion of tlie tinc sed€s is dcrloped by Chap6n!
Touzi ind Chapront (Chapront-Touu & Chaprcnq
fiis work.
The
mjor fomula
used in rhh
Tbe ge@entric longitude
'/h.xpesed
l9tl,
pp. l0) und ha bcc.
!*d
in
vork due !o $es authob de lkrcd beloNl
as:
+0.000001856tr'
'/=218.31665416+48126?.8813424'r-0,00011268'r: 0.0000000r534.r1+,5. +(s; +/ 1si +r' xsi/1oo0o)/l0oo (2.2.t)
wh€rc
I = h in iulian
s, =tv,sr,(dj')
centuies sinceJ2000.0
+d|),,+ao *r' xro I +ao)'/r xr0' +d|,.rr (2.2.21
I )':st(o;''
-a:"'
si = tv;,s,,(d;,o
+
=
'4
dnD.r)
(2
2.r\
(2.2 4)
xro r)
$.t%'sr'(sfl + dI'.,)
v- r; ct, d!o8 eitb |b ot a'. G Sivto i! Chr.odCt q.od (Clg!d.To@a.nd Ci{.Gi, l9l, rp a!-56}
Tb vdB 6f
Tout.d
Ib
tb.ootM
gcoc.nttc
ldhde UL
t/-s,, +(s:/
s,,
(r25)
riE
b,:
+r'$ +i's;/10000)/100
.5,"si,'(rj". p:".,.p:!.rr
xron
+/i",r
xr0r +r'r 'r'
Q26)
x ro
')
Q2.?',)
tl
e2.8)
+r4D.,)
t229'
s:,
-'u.,&4fri.t + p{t.
.$
-tr:$4i:o
q.t!;&,(r;o +r'o.,1 Th!
y.lG
Toudsrd
Q2.tO)
th c@trt ! t - !; .iq dotE eilh lho.c of 0!.t 8lt'.! in Clqlot' Ctar@r (ct Fld-ToEald ftlnfi, 1991, I? 5?{a). of
rindly tl|c geo.6tic dllt n6 it dven by:
x-315000.57rsr +sl
+r.8i
+y'.s;/10000
Q2.rD
s-
xron)
=t'"cdldj"'+djl
(2.2.t2)
s;=:4cd(d;'+r;,''/l s; = t,;c,rt6"4'
+
r,4,
(2.2.t))
.4
(2.2.t4)
si= i"-",,(u-'' +d;o).r) -fhc
!!hEs of
'fouzi
the consr.nls rz,
and Chapronr
/;
lnd
r; e
in
etc, dlong with lhose oa6s ae given in Ch.prcnl-
{Chapo.r-TouzC and Chatronr. 1991. pp 65-73),
Atlat0)s. /0)s and D{ors, ,',
arr\, y'r's, d1'\,
e.z.ts)
si,si,.';
and
desEs/6tury2,
,;
4
md
r;
@ in desrcB,
ac in d.s@Jcenrury, ar'\, y''?\. irlrs,
ao's,
aid d'h de in deecs/centud. kiloderrs/cenru.y. siand
s,,,sl..U,su,si./.'r.r;.,". y'r\,
ana
d's m
R, s,? and Sh
in aegeevcenruD
dc in
kilomelres,
r
si.si.v;
and a"rs,
5i md 4
/'rs
.t
in
sr. in kilometftVcenruly:.
For Tbe detemimtion of plan.lary coodinstes lhe complele n-body problcn is
requied to be slv€d.
A. ml,,lic
solution
of
planerary dotion wa3 pre*nted by
8rct.Slon (BElaglon, | 982) of Burau d.s LonSilud€s of Fnce lhat described only thc
.llipric @rdinates of the pldels. Th. elution is populdly knosn d VSOP82 (Variations S.culai6 d6 Orbit€s Pldauirct. Latcr, BEtagnon and F6Nou of th. se Bur6u hodificd VSOP82 inro VSOP87 (Bcl8non & FMcoq 1988) in 3uch a uy lJllt th.i! eluio! povid6 both thc Catcsim (or tst&suld) @rdimtes 6 wll a th. sphcdcal pola coodiiates of $e pldels in a helimenlric syslei. Thcir slllion V
SOP8t descibes ln€
el
enehls of thc
osc ulat
ing or
t7
inst
aneous
orbit in lems of:
- sdimjor uis of th. dbil l, = m@ ld8itlrL ordF ddt a
l= ?,@$
p=
sincr,i
Dsino
c= si(Xi)coso
r is ln. bngnud. ofp.dhelion, i ir th. incliodon oflh. orbit fmm rh. plD. ofeliptic dd O is the logilud. oflh€ e.lding nod. oa th. olbit. €.cholth. rcctarsul$c@rdioat (X L a or &c aph.ic.l polar coordimt€s (2. I t) is u.xplicir tunctionofiime ed is inlhe forn of p.dodic eds md Poison $ies. Every lcd ot Ues $.i6 is in fic tod of: whec.
is thc.@eotriciry ofthe orbn,
I"(ssii9+ I:cosp) or 1"..i€os(, +c?) $,lEE
a
- 0, l,
2,
l, 4, 5. I
f= e=ia,1,, i = I
is
(2.2.t6J
tn. tire in lhoFnds of.,ulie
)€s fod
J2000.0, i.€.
165250
to 8,
= 9, l0
!
reprsent rh. m.m longnud.s of the plancc Mercury lo
6d I Lc rcpllsfl
The hsl of tlay. In thc
I
is the
na
th. Dclawy sgmen& of lh. Men D, F md
longiMe of U. Mon Bivd $nh
ah@te €xpcsion,
B= Za,^,"
S
-
6p€t
+
P
c=>d,N,
12.2.11,
(2.2.r8)
-,asinp,
l8
to
lh.
,l
md M dc Sivci in
the lable 2 of
(BdaBnon &
Flmou
l96E)
@ .vailabl€ on CD's dd laFs For r.cta.gular c@rdiml6 of rhe phf,€ls |he dlia llles VSOPS?A. VSOPSTC dd VSOP8TE dc @d sd for the These data series
spherical polarcoordinaEs VSOPSTBand VSOPSTDa!. used. A shonerleBionofrhese data series
hbles firsr €olumn
lheff. tr
l. the* gives.4s, fie eco.d ,s dd the lhird sives Cs. The dats file hs 6
isSilenby Meeus (M.eus, 1998)and
u$d in this@r\
sedes fo, €dh or rhe coodi.ates L (h€ helioccnlric Lonsnud.) and R (lne helioccntk
dislanc. ofthe Eanh) and 5 for fte c@rdi.ale B (lhe hclioc..lric Lafiudc)
Iiiclr s$ics
t't i
0. l . 2.
:1.
lir
=
L. ll .nd
ll ne
uscd as
LA; co\B; . I jT t.
4. and 5 lor l- md I( and 0,
(L). 2(lJ) and 3{R).
x rus tolsh
I -
r2.2 rol
l,2,3,4lor B Ihc
0 lo dilfeonr
suFrrscnpt
incger lor di(feEfl
tsund for
I
coordinaGs and
/{i coftsponds ro lonsirudc scri.s. I = l ro lari$de sri€s and I = 3, /r,coiiesponds to dist .ce serica. ll.ch
their lssiatcd seri6- Fo. l/{iconsponds
follo\s ro obhin thc heliccDkic polar
0-
coordin eislhcneuluatdas:
r=ltcu il' /. md
crlier
=l:, ',''
) "=lz'',')
, d. ir ndian nesuEs rhe c@.dinares of
$c
I
and X is in aslrohonical unils. These
(2 2 20)
m
as menrioned
Eanh in heliocsnkic c@rdinare sysrcm wnce6 for {he
problem ofdckmrining posirion oflh€ Sun inour sky w. €ctually requiE rhe Cmcentric
coodinales of lhe Sun instead. In case of rhe Eanh this uNformation is sinple:
l9
,is = I +l8O!
ond the hcli@entric
2.3
Fs= -e
dislanft ofthe E.nI is smc
as
12.2.2t)
th. s€@edtic distanc' oflh€ S!n'
BIRTH OF NEW MOON
arcund 12 A3 menioned earlier the Moon in ilsjounev dound the Eanh llavels €vcry 29 5 davs whc' rhe dcgrees cvery doy in our sky and $l.s ovcr tic Su in lround
Ccoc€ntnc Lonsnude of the Sun
e.l
lhe M@n
N se
rhe
nonent is tnoM
s
tnc
of Nev M@ns Tine ol Bidh of Ncs Moon Tbe dudion berve€n two succe$ive Binhs petiod is n is called lhc Lun.lion Period Ho$ever dE Llnal'on from 29.2 days lo 29 8 davs This is rh. d.ys €ach or lhe con*culive
cMn
b€hind
irt tu'd
mon$s of 29
'ons For fi€ tine ofBinh ofNew
luor monlh of lO davs cacn
lonsilud's Moon one requiEs to find lhe noment when rhe seocentric
olilt
Moon and
thcn
rinc eeh of rhc sun coiNide Thus one needs to lracl lhc lo'Siludcs of lhe lonsiodes of the Sun md Coisidcrins $e najor rcms oa lhe line scrics fomulac fo' ELP-2000'8? $e $c M@tr in th€ planeurv rhcorv VSOP'2000-8? and lhc l(nw th@rv An alsori$m due b Meeus noment when thc rwo lonsiludes aG sMc can be evaluatd Ns Mmn is as rollos: (Mceus, l99E) for $e dclemiiation or $e rin' or Binh of passages ol lhe a!c€8. lhe tnpic.l Y€d (dudiion betw'en t*o conseculive (from (l I l)) Thc avedge svnodrc Sun lhroush equ ox) iscudcnrlv 16524219 davs Moonsr toten o\er a rcn'ur} ii Monrh (trre intedal bclwccn r$o cons{u'r\c t\e*
On
'Ixus in oft topical vear rh're aG otr a\€Esc 12 1682664 29.530589dar(fon (1.3.3)). 2O0O i e J2O0O O the nunbei of Synodic mo h5 Thqeloe since lhe $ad of lhe vcd synodic monlhs elapsd oregrveh bvl
t and lhc time in
=
(f,'
(2.1
- 2000) x l2 3682664
lropical ceoruries el.Psed since J2000 0 is Siven
bti
l)
ofth.Iulid
An approximarc valu€
JDE
-
2451550.09166
t.2)
(2
t236.42664
Dale ofthe Ncw M@n
ir $cn giv€n by:
+29.5JO58886t.t+0.00015437..r
-0.OOO00Ol5
j.r
r!
+ 0.000000000?3'
(2.3.3)
$herc
t i. d
lid ces.nr 4l
*!.
inteSer Thus @ording ro this fomula rhe for
ofycar
2OOO
is 2451550.09766 lhar is
I of dynlmical lime. For
lhe p€dlrbation
a
horc accmle valu€
t
= O |h€
Jutiil
Dar.
J&ury 6.2000 ar I8n
oa ihe
of$c
r4m, md
Julia D.te of thc New Moon
tchs
due lo lhe Sun md rhc planer ar€ added, Thc pertuibafions tenrs due to thc sun d€ given byl
x=
-0 t07 2.SlN(M )+ 0 I72J t
+0.007i9.E"'lN(M -M)-O 0 00| t
T
EISIN(M) +O.0l60A.SINOr M )+0
0O5
1.t.ErSINtM
t 'SlN(M -2.F)-0.000t7.StN(M
+
+
V
0lAj91stNe,F)
+a 0a208'E^2istN Q,M)
2*F)+O OOO|6.E.SI^-(2+M,
+
M)
000J2.slN(3.M )+ A OOO.| 2+E.StN(M+ 2tF)+0,aoB8*E.SIN(M_2.F) -a 00021'E.stN(2. M'-!r' o 0u | 7,stN4.] 0.00007.stN(M'+ 2.io -0
+0
0a0u.slN(2.M -2. F) +O.00001'S!N(1.M)+0 \oaol.stNi,,t-+ M-2+F) +0 0040j.SIN(2'M + 2.FrO 00O03.S|N(M +M.2.F) +0.
0000J.StN (M -M + 2.D
-0.
@OO2.S|N(M.
+0.00002.s1N(1'M) wherc
-M). D -O.O0OO2.StN(r. M, + M) Q).4)
rb. mce &omaly ofth. Sd al ihc JDE = 2. I SiJ +29 I A5 3567.k-0 ,OOO0 t I -0 oaoooo I I
,r,1 =
t
I (2.3.5)
M
= thc mee anomly of de Moon d lhe JDE = 2A 1.5613+ J85 8 1693528'k+O.Ot 07j82N -0 0A0A0A0,8.
11
4l
I
+0
OAOA
I :38.
I
F"
-
M@'!.4ruqtof hind. ! 6'0.? !
+
aE+390.670t0264.1-0.00t
0.0@w0
.f
61 r
8.
|
- 0.0U00227.
?
Q.3.1)
g - lncinde of lsnding md. of {!. luar orbn
-
!24.7716-1.5637t588.t+0.0020672'1 +
0.OOOOO2 t
5r
I
(2.3.8)
E=
=
Eedtricity of $. oftit of Elni 1-0.002t 16.T-0.0000074.
Th. pedurbltion |.tus
v
=
de
io
?
(2.1.e)
pleas eâ&#x201A;¬:
A00032t.StN(A I )+A000165+sNLtr+a000 t6.trSIN(/r+0.0a01 26.stN(A1) + 0.
0 00 t
t.sr N (,4, + a 0,f06 2 +stN (/tq + a 00006. stN(t7) + 0. 00u t 6.3 !N (/ E)
7.s tN (,t 9) + 0. 0000 4 2.s N (/ t q + a 0000 1. s tN(t t t ) +0.0000t7rsIN(AI2)+o0o00J5.StN(Ar i)+o W023.SlN(,| !4) (2 3 to) + 0.
00001
A I -299-
2 7 + 0.
t O74o8.k-O,OO9 I 7
t. ?
t2-25t.E8+A0t6J2t.N
(2.3.1r)
12.t.t2)
,13-25 LE|+266J IEA6.t
(2.l.lr)
a4-t19,42+J64t2478.*
Q.3.t4)
/5-U.66+ ! 8 206239.k
(2.1.15)
A6-t4171+53.303771.t
(2.3.16)
/7=207-14+2.153732.t
(2.1.17) (2.3.18)
19-34_t2+27.26t2391t A ! /1
(2.3.19)
0- 207. I I +0. | 2 1 824'k
Q3.20)
64a379.t
Q.3.2tt
t I = 29 t. 34+ l.
42
A I 2=
1
6t. 7 2+24. I 98 I 54.k
(2.3.22)
t099.t
(2.3.23)
E.*
(2.3.24)
A I 3= 2 39. 5 6 + 2 t. 5 t
at 1:33
Tlus $c
,ulid
t. t5+ 2.7925
Dlle of lh.
I
Na
M@n ie giv.n by
JD=JDE+X+Y Thc dm€ deeribcd by this mad€ lo get
th.
Ld.l
(2
dat
is lhe DlaMnical Timc and lhc
r.2t
coretions for Al mcr
be
$e Universal Time (discu*d in 0Encxtarticle). For anr l@al coopuralion,
Zonc
lide
and
d!i. n6r b.
calculated ftom |he UniveMl Tim. and dale
ohaincd abovc on rhe bdis oatbe lonsirudc ofany place on rhe Eanh. Thc darc h $en de day of conjuncrion fo! the place and rho rime of conjuncdon (he bnrh orNcw M@n) can b€
dy rinc fom 0-
2.4
THE TIME ARGUMEI{T
10
23r"
59'" t9h
on
thd dav.
ft w6 mentiohed earlicr thal rhedynahicsofatl soltr systcnr objec$ isdescibed
lomula b6cd on 6adcs of Cl6sic.l Mcchdics and lhe Relarivisric Dyneics in t.m3 or rid€ serics. In order b ersriv.ly ue rhcsc fomulas an apprcpriate ?rrs by
argMerr cotrcsponding to rhe honeht of obseiving the lunar crescenr at my place on lhe surface of the E rth h6 io be €valualcd. Such a lime a.sudent h6 ro b€ co.inuou and
mui halc a clearly
dcUncd point of i's beeimine (|he
aro rine).
.p€h. various theorics and problems uF difercnr .pochs depending on rhs co.rext for a geneEl consideFtion in pls.lary ad luE dynmics thft ,re lwo ihporlanl epochs. Th€
nr$ of
lhese epochs is a
G@nwich on Janlary l.
4?
oonefl
called
in edote pdsl coftsponding to rhe Noon al
l2 B.C.E. on th. Julid c{l.ndar (or Nolember 24, 4? I I on
Cdgode cal.ndtu) (R€ingold & D.Rhowila ?001), Fren $is pojnt of timc rh. rine elapsed tiu my laler point oflime in number of days md a possiblc fierion ofa day h
4l
elled th. Julid Dare abb@ialed B JD.
So the
,D @Gponding lo thc 5i" 30.i. on
Ocrober 5, 2004 ar Grcenwich is 245t284.2708t11t.. Thls rhe Jutim
of
tih. clapsd sine thn €pocl 6id is cxpEss.d The orhcr epoch of inpori,lcc lo rh€
J2000 0 a.d
in nmber of
€lftnl
D!i. i3. mesE
n@ eld
d.y5_
work k fie noncnt of dme €ell.d
il Eprcseds lhe l2ln TDTon J.nuary l,2O0O
i.€.
(Abononhal Almahac,
2007). Tbe JD conesponding ro rhis hom.nt dl C@nwicb is 2451545 days. This is the
2eo me for borh rhe Luq Th@iy ELP,2000 (Chopo.lTouz{ & Chaponr, l9l) dd th€ pl&elary th@ry VSOP,87 {Brc|,gnon & Fmcou, 1988). In bo$ rhes 0leodcs lih. m@!red frcn J2000.0 bo foMrd od b6ct*ards. In ELP thir rimc is in is coBidcrcd in rulian CentJies (i.c.16525 me.n sle days) md i! VSOP il is inJulie .poch or
Millemia (365250 mce solrdays). BoththeseepocbsmbasedonrheinreRaloirimealted..toedn$hrdat,
qhich
a fie int rval berween lw slccessile rhsits (r6sdge rhlough rhe locll ofrhc fic ious body knoM as ft. mee Se. This ficlitious body novcs sirh
is defincd meddim)
uifom sF.d
alory lhc cel6ial cquabr .hd is consider.d in place of lh. acrul Sun $ar oovcs vith non-unifom sped (dw ro rhe .llipli€ orbn of tne Efin) abnS lne Ectipd€. The
tmsit of $c aclual Sm over a local heridi& vdes
of on€ lrcpical
ye
up ro
I I minurs over a penod
(Astmnooical AlFanac, 2O()7), Thereby atl civil rim. reckoning
have b€eh a$ocialed with the hedn
Sln lhot consisrl of 24 mean solar hous,
The
beeinningofa civilday, i.e. zro hou* on civil clocks occu^ at nidniehl when the nour
dgle of rh. Mean Sun
is rw€Irc hou6
lccodin8
to the local or
Th. tiDe describ€d by lh. cl@k showing
di*Ep.n i6.
In
fd
d. mm
sisddd hcidia..
$lf
rinc is not wilhoul its
it is lhe E€rtn, $e gtob€, ilsctf rhal is ou cl@t lnd $c n.m solat
tine B suppos.d to b. basd
on ths a!€ragc rate al which lhe Eadh
n spinning
a@und irs
dn. Howeverlhn considearion is only with rcspecl !o lh€ Med Sun. Du.lo the orbilal noionoflh. Eanh beins in rhe sme direction as its dis ofmlolion (ton qesl lo EEst)
ubl
totaiion coDpldes in l6s thm ihis
nee sold day. So the actuat nle of dial rchtion is b.t r ralized by rhe No sw;sivc resirs of a sior. Dis in|cdal is lemed on€
a r Si&F.l
Dry
ud rh.
timc
masuld @rdi.s to thb $d. is
rlrc
Sid.Flt
Timc_
ofr[. E lrh ttris D.riod i!.le nor uifom e w h!rc ro @tuid* "M.rn Sidccal Day" rnd !@diiSly M6 Sidaql Tirc. Oc md el& dly cquls |.002?3?90915 !|16 .i&Gd dlys (or 24B 03i" 56.t553?* on m@ sid.Mt tim.). Altcturcly oE md 3idcEd dly cquals 0.9?26956633 ns st.r d.ys (or 2lb Aglin du.lo lhc clliptird orbit
56'r" 04.09053* on
md
sol$ rimc).
o@ eld {n ir rhc rinc |.t n inro &@6r in bolh lb. civil tu. ekoning a sll a tlE $tromnic.l. Wh.Ed lh. dylmiclt rh6d* denbc |h. norions of th. objers ii solr srsr.m on th. bair of rhc coninuoBly nowins tinc dc$dbcd a Dyimiol Tim.. T|| UniwBl Timc .d rlE DyiMiel Tim. E nor @Biri. .nd rh. dilTelwc bdw6 dF tw is lot ! trom fumrioi of ritu dd @utd bc lound only bt high pcirion ob&dados of th. skics. Th. diffm. of thc lrc AT is rlbull|.d i. Asnonomicrl Aln.t@ for th. t.tqopic G6 (AD 1620 ri lodar.). For rh. cd prior lo lic rcl.spic .n rhc v!l@i ol dT G cdcll.r.d on thc blsis ot rnc qlculatioB of .cliter @ultrrion lnd 0E rin6 of th* d.nt. @rdert jn lh. tmwn history. Th. val@s of AT e giEn fq only |h. nan of.eh cd.nd& y.r ,nd $os for olh.r dn6 ofFd ce b. incrlDlar.<l. VeioG .u0!oc havc giwn veio6 lehniqu.s fot obt inins llF* slq (Di.k y 195, M.!!t, l99E, Motri$n & Scoh.Nr, 2004. Mofti$n & W.d, 1975, Scph.@n & MoEien. 1984 ald 195. Sr.ph.nsn, 1997, In gcrcr.l rh.
lsl.m .t d. 2001.
e.wnl ir to bG p. iomcd s ed( oul.v.rging on l@l civil dh. sd dac. ror iBlhe vhcs llE rim ed darc of rh. binn or Wh.ncv.r a c.lcul.tion for
b.sd
nd M@i is compucd
lqlr
cone our ro b. in dynmictl rim. This dyMical dmc should h. conv.ncd ro thc Univ@l tinc by adding rhc c!frnr wt* or & ud 0En lo th. l@l civil lim. by addine lh. Equbit &n tirc (@BidcEd posiliv. fo..6t rh.
bnsnudB and rcg.dv. for
Br
lon8itud.s) for lh. l@tion of
ob*rci
Simil&ly if oie
wrs ro olculnc to ric Dcition of rh. M@n fo! {y l@rion of ob*rer, rh. ld.l zoi. tin. hts to b. @nvcn d io uiwrsd tiD. by subr&ri.a thc aE tin. &d rh.n rhc crent
vduc or
41 should
b. $bt .cr.d iom n
ro
gd tnc
Dylmiql Tim.
How.r s noE @nhtlon l !'pNch
ir
ro
@!qt loâ&#x201A;¬l <bre.rd ar rim
ro
uiv.Eal dalc ed time which is ihcd cotrrcncd b rh. ,ulid .!ate dd fmUy th. .fi6r of dt is taln inio ecoul. Tlc s. lpprorch b u*d in lhe fonowilg atgodrhn foi c.lcul.tioo of
the
dn dgme
Srep-l: l8el
Local
l
Doaroh ercgorin
Cal.nd@
LZ
LMM, LDD
Sr.F2: INrtIBalTin. &7awTih. LHH, LMN, LSEC, ZON S4 LryY=LIY, UMM-LMM UDD.LDD UHH= LHH + ZO N, UMIN = LMIN, LIsEC = I.S EC
ln eedeEl rhe only Univcsal dme md
d.t
(considercd in inresal
Univc6d
dare
dif.rc.c. bclwen
is th. diff.cn
ho6 hcr).
. bel@n b
mar difLr by onc &d tr.!&
I[(UHH>=24)
(
Duc
......
rhis
is
rf (uMM> t2)
UMM-|: UW-LYY+ 1:
t)]
{
... ...
d..t @ do,
UDD=LDD.!:
{
If(uDD-o)
(
lhe
hou6 rhat cq@h zon time
ditf.rene th. t@al d.rc hd lbe
1rcft6. dar
'UMM-LMM+Ii
upHH<o)
ed
.djcthsf.
UDD-LDD+I tf (UDD>dorqLMM)) //darr LDD=I: I
I
local hne tinc a.d dale
UMM.LMM.I
If(UMM-1)
46
nMber of days in
a
donrh
@y
AYY-LW-l; J
UDD-&tr(UtlM)
olr@
l[. UEircc.l
d.rc dd
tirc
is
lppllFi.Lly dju{.d @ pcad! lo
{d rhc ritu. For rlis calcularion ihc nondr is Jmqry o! fcbnoy, it i! co id.Ed morh .mbq c.lcula& rhe Julih Dar. for 0E d.lc Esp@tiv€ly, ofthe
inirially 13
or
if
14.
ptwiou trd ad rh. t@ i! sle d.crcNed by l.
UW-WY-l
ofeftry yd (likc ,E | 100, 1700 .rc) d[ ln. yd lo t@6t for !mh6 of mhd rap y@.
Thc
ir Fquicd
nmbd
UYY
Stcp4: 1=INr(Wt00) lml
of 6e $tommic.l dlculariotu ! daL d and .na Fliday. Octoba 15, 1582 is coaid.tld io b. I dlc of Grgodd caldd.r {d a darc toni Thsdly, Octob* 4, l5E2 ..d prior to rhb datc i. coGiderd s a dale i! Jutie ln
Ilru ifa dsl. i! fton Crc8ode cal.dde ndh.. EquiEs m accout ofnon-tlap yed tom.mong3i 0F nomal lcap yds due to th€ modified rule ofliad y.rinthe Grc8onlr qal.nd$(y.$divisible by 100 but rot diviribte by 400 e @r L@! yes). cal€ndd.
d"@ledq it
I
casdtb' a=2-/t+rMf(1/1)
.l*1I "@Ldo
(
IdlM" B_0 J i.t
47
c@t 6. nub.r of diys .laps.d si@ the Julid DaL epoch (Jeulry l, 4712) iill Ihc .nd of th. PEviou yc& .rd lhe trmb€r of dltr €laled flom ln. n61 d.y of rh. PEviou yd till the cnd of lhe c|lml monlh Now orc n6ds ro
ianing fom ys -4716 dD( thal @ balmed by subt@lion of lh. co6t ni 1524.5.
Meu
@dider this
sMbl
JD=\NTQ65.2t(UW+
17 16)+
adds addilional davs
tl]/r(30.600t (uMM+ 1))+ UDD+ B-l 524 5
(u HH + (UMIN + USEq60)/60)/21
+
(2.4.r)
ln both th. lh.orics VSOP8? tnd ELP2000 lhe €Poch is the J2000 0 @ftsponding ro rhe Julie Dsr.2451545 theEfot one tin lly c.t5 the lin€
JD 245t545 16525
Notc rtEt in rhc
l6t
Ar
(242)
1155760000
st@
lh.
lid l.B
on 0E lighl
hfld
side is the
nmbd of
lulie entude elap*d sine 12000.0 ad th. s@sd l@ is for At which is @allv siven in mobd of.eonds od h.rc w. nccd to @nved n i o nmb.r of c€ntuies (lio ELP in a
&d Millemia for vsoP)
Juli$
lf
due to which
c€nrury ifor ELP md Julim
Mill.inia fot VSOP).
and when ttie dynmical tim. of
U.ivesal dd
Lhen into Local
il hN lo be divided by the nunbq of s6onds
d
cv.nt is
*rom
we need io @hv.n rl
Zon. tim.. Thc dylmical tihe is oblain d
of Julie cenluries sin@ J2000.0
e
that rhc Julisn dare of tbe evmt
48
cm
s
the
b
nmbet
b€ calculated
6:
1p
-
15575s.(, -
t
TIlc int Sr.l
t|| hclion l Frt
ro
St
F2:
Z-INT(JD)
St
d-3:
F-JDZ
Ft
usrsts =-4-), 3155?@@00J
ofdF Juliu D.!.
*ill
b.
onEtud
ea.t, io
Cdddr Dd. .nd
th Unirwl Tim:
Fd &rB Fior ro ocrobcr 15, | 582 (JD = 229161) rhc inl.Sq p.rr of.ID is !.oircd il ii olhdtuc ldjulr.d for th. @diti@ of lhc GGgorid cdqd{
!
St.pa: ifz<229161 ( Ert t
t-Z ) a-ln((ZlE672l6.2tyt652 t.2t) A-Z+I +GINT(d/0 )
Stcp5:
B-A+1521
sr.p6:
C-INT((B-122. ! y36t.2t)
SGp?:
D-INT(J65.25.C)
Stcps:
E-IM((I-DyJ0.6001)
Stcp9:
dar-EDLIItT(30.6001.8)+F
StcFf0: UDD-tNTldat) LDD-UDD sr.Frr: ttE<l4 ( ( Els.
UMll-El ) UMt'r-ElJ ) a9
LMU-UMM
stcFr2: alMM>2 { Etr. t
UW-C-1716
UW-C-17tt
} )
LW-UW
steFf3:
hout(=drylM(dqr))r21
Stepr4: UHR-tM(tbu) LHR-UHR-ZON If (LHR<o) ... d'o@. dar ( UIR-UIR+2I: LDD-UDDJ: ...
r!(LDD-0)
{
LMM-UMM-|; LDD-dasOMg: It&t4M4')
(
Ltl:'l'|2;
.
LW-UW-I;
}D
It(LHl>-2,t ... ... tt@t et) { LHR-LHR-21: LDD-UDD+,, 4t6-DD>day1vut4
'|
LDD-|:
LMM-UMM+I:
y(LMM>t2)
{
LW-UMM+I;
)))
ste!'rs:
htn .=Aov-L| 9.60
sreFl6:
UMN-IM(nlnut.) LW-UL{N
steplT:
tu.ond-(ntr.-LMIN),60
50
L
tN-l;
SGpf8:
USEC=lNr(taond) LSEC-USEC
Sr.pr9l
Outpd UW. UMM IJDD, UHR, tjMIN, USEC A"d LW, LMM AD LHR, LMIN, LSEC
In thc is
Nd-M@n Algorilhn
thc our pur is thc dynmi@t
p.niculaly usfll in @nvcning Uis rinc lo
2.5
U
this
dgon$D
v.Mt od &y l@.t @G rin
.
COORI}INATES OF THE MOON For rh. dckmination of lh. c@rdinrcs ot 1h. M@n .r
dlt
lin. &d
liB| scp
ey
lc.l
Sivcn
tim. .rd
fomular th. rinc a4um.nt a dieNcd in diclc 2.4. So lh. pcc$ bcsins by s.l*ftg pl.c. of ob6.rq (Ljnsirude &d La ud.), te.l darc ard rim. rhrl is ro
lcds to lhc rim. &Bum. t eco.dinS
ro
th. atgorjlhn dc$ib.d ,bovc,
?{51545 N 16525 1155?60000
Julon Do'. -
Using Uis rim. arsumcnr
Sr.F2r
(r 5.t)
*n6 d.*ribing rh. twr -Touza ed Chaponr t99t) s dieled in aniclc 2.2
th. @Bhcrio! ot rhc dh.
c@'dinar.s is do.c (chapo
StF||
s:
Fo..dipdc longirudcofth. Moon us.2.2.2 ro2.2.5 ed suhdrut lh.ir csulrsi.2.2,l. For cclipdc
t.hu&
of
U. M@!
E
2.2.? 10 2.2. t0
&d sub$nuE
th.i
Bul{.in2.2.6,
St.Fl:
For gec.nr.ic
dilllre
of rhc M@n uc 2.2. l2 ro
lh.nrcsulr.in2.2.1L
5t
2.2. | 5
ed
subsritut
DE to lh. nodotr of thc ob6*d. th. diual .nd lhe mual motior of thc Eatth. poiilior of €E.y objer in th. sky is afrctcd by 0!. phcmmn of Abcmdon- Th. followinS @cid.ntion is only for rhe Eaih'Moon includ. the
dimal nolion
S1.t-4r
of thc
pls.t.ry Ab.dlion sd
do.s
lol
ob6*er (W@lad & Cl.mcnce, I %6).
CORREC'TION FOR ABERMTION
v-y4.000 t 9521-0.0&nl059.skQ
25 1177 198
9\)
12 5.2)
U- U-0.40001 754t31h(183 J +48J202't)
(2.s.3)
R- R + 0.0708.C6Q
(2_5.4)
a
2 5 + 177 I 96. 91r)
ft.
d.y and dE mcm €quinox of lhe dly de difiedt dE ro thc phenom.non ofNuiation the F€.is cerdinab on nol be ob|dircd Fimlly
1he
lrue €quinox of
without th€ nul'lion in lonS itudc AV and the nubtioh inobliquityAs.
St
pS:
CORRECTION FOR NUTATPN
a'r =l0r
't(y, + y:..)'si,{/,I" +/d' '. +/d' '.r 'lo r) (2.s.t
Y=V+
L,t
. -22.63928-0 0ll\+0.555'lo'
12-5.6)
t.r -0,0141'l0j r tl (2.5.7)
^'
=lo
I
'I(., +,' '.). cdko)
+
/,r' . ' +rdr
..).lo
1)
(2.5.8) (2.5.9)
Tn€ thc
T$1.
v.lu. of F
s,
!,'3 md
9 in Chlprcnr-Tooze
G's
Bd
in lh.
qp63iont
6d Chlpotrt (Ch.pre
ahovc
tt!
gt!€n in
-louz; &d Ch.pon!
l99l,pp.l9): Oft. rh. @retion dE to .ubrion is dre onc my c@dihal.s, the Rjght Asnsion d dd thc dcclin tion 6:
St.p6:
da Eq@tori.l
EQUATOI.ULCOORDIANIES
"=r-'( 6=
L
so ro 6trd
c6(tpriio")Si4v)C6(U)
-.t4
Eps i t d) Si dlu
'l
sn't l3ih(Epsitm)Si"(v)cos(UJ
+
cB(Eptiron)sinei
(2.5.r0)
(2.5. I I )
Thc* re rh. nle cqubri.l c@'dinar6 of lh. Men wnh EfcEn.. b th. toe cqulor of $e dare ahd the trua dyunical equioox of the dar€_ Th€$ m stiu lhe s.oqtic c@diMl* md lhc afr.cr of lhc D6nion of lh€ ob*rcr on rh. glob. is ycr ro b. lalfl ifto @ounr so tb.t rhc ..iopoccnt.ic" c@rdid., (coordin t€s relariw lo thc posnion to be
ofth. ob*fr.r) nay
t t.n inlo &count. Th€
be obl.iied_ In
odd rcd5
rh€
!ffftrj oftE
..paraltd" arc
Pdttd r i! givcn by:
12.s.tz)
g€catdc dist4. of dE Mer HowEr rhis q@nry paml* d.Fnds Hoq Ancle (ihe since ibe object cosad thc l@al n.ridim) tor whicn w. ncd
wh@ 4 ir on rhe thc
lad
St
FTl
rhe
sidc@l
tin.
LST.
Fqhtlate tiw
dgM't
tlor
5l
t
UTlq !h. dat. ,tdet cwidqatio,.
I. =6r4t-50'.54841+E tot84,.s12s66I,+0'.093104.r, -0,.0000062.rr (2.5.1t
gits th. Grcawich
Mcan Sid€E5l
Ctqwich Si&@l Tio. T
-
To +
for &e
Ti6. .t
rirc ug@nt
oir UT of rhe drte. Th.n lh€
for ih. rimc of ob6qvation is:
(UHR + (UMLN +USEC/60y60)a0.997269j66JJ (2.5.t4)
'Iijen fic Hou anglc at ihis moncnt ofthe Moon is:
H=T
srep.sl
a
(2.5
tllec^ofPatala,
If p is th. goc€rntic 6dius ofrh. of irE ohsftr ih rh. dsh1 .s6io! co@lion for prhllar &€ obr.ined $:
@sd - p@sp'sin rcos
Esdh,
p,b
a' ed
ihe S.ocenkic hrirudc
rhc dEtiEtjon
l/
d'="".I Gind -psin9 sintr)cosaa ccd-pcGg'sinr@3tt
Fin lly ro otltain rh. lhc followi.g
SrcFg:
Lad Hdianrrl C@diDtcs A2inuth.nd
d,
t1)
(2.5.tE)
rt
AlriMe
lissfomalio$:
Azimu$
(2.5.19)
54
aft.r
(2 5.16)
<2.5
haY€
rt
E
.Aliitu& r=sinpUnrlcdp'cosr'costl This complcGs ihe der@inarion of dlipric, €qurqid
@rdid6
2.6
of rh.
.d
Oe hondnIll
Mor
COORDINATES OF TI{E SUN Foi rhe d.t.mimtion of 0E c@rdiDre of rh. Sun on.
se
(2.5.20)
say
a
slcFl: lqds
for lhc
@rdi!!re
ple
Scldt to rh.
oroh6dvd (Longiru& ed tilirud.). lcal
lire
ro thc algolirhm
Dde )451545
1652t0
Using lhis
in €runy rhe
of rhc Moon.
thc egment t &coiding Julian
p@..&
d ..dd
dceiib.d lbove,
rine rhat
s:
Ll
I | 55?600000
argment lh€ connrudion of
12.6.1)
d. (m. eriB
&enbins rh. c@rdinates of the Elnh s givd by Br.raSnon & Fdcou (1988) thc h.lie.nrric coodinales of lhc E nb de obtained lhar ft lder trusfoftcd into fte gre.tdc c@rdimles ofth. Sun s follosl
SreFl:
For
heliohllic dlipric
2.2.20
lonsitud. of lh. Flnll' in lirc wit[ (2.2.19)
w h!rc:
2^, "e"(,, .r^,
(2.6.2)
)
2"" "."6" t r,,l
(2.6.1)
55
&d
t,-'i^,-"(t"*",
\
c2.6.4)
L,-ZA,s\8,+c,. I
(2.6.5)
L.
(r5.6)
2t
=ZA,@l\tr+crt )
!,.:r,cdt
r
+cir ,
c2.5.?)
Ttr. l!l!.3 or A'', B'r .d C s for {i! d$n r 6ior c dB b, Mc.!i (Meu!, 1998, A!p.ndir-[], pp. 4lt.a2t). Finlly t!. lt lio..onic loBitd. of |h E lt
i,
-. (2.5.8)
t0' St
p2:
Fd Fliptic ldintdc ofrlF E nh;
lut Bo-Z/,.d\8,+c,. l ,r
=:/,dF"
+c"4
,, . X,{" "o.(r" +c,r
(2.6.10)
J
Bt-244a.+c"r I 8.
=
t,l,6.F" +c"'
Q.5.9)
J
(2.6.l|)
(2.6.r2)
(2.6.|])
Tb v.lu.t of A's, B't .rd C'! 6. (M6n, l9S, A!0.odtr-Itr,
!P. 4lS-421).
l} {oi.t nds tt giE
Fidlv lh.
t
lbc.otic ldlidt
For
19 l o.[8i t,,r"
=
+
c,'
(2.6.15)
(2.6.r6)
(2.6.17)
]
nt
t,r"co't " +c"'
13 =
t0, h=>an(fr]\B,+c{
(Mc.q,
=
vds
199E,
(2.6.rt)
J
)
(2.6.19)
t,."co4p" +c"' I
(2.6rI))
lo/
xr
TIE
ib it
lElioc.dric .lisl&e of th. E|nb
&-X,i"6!p"+c,r J zt2 t xr - I,r,6lp" +c"'J x,
of th' E
(26.r1)
l0'
$.Fl:
bv Mo.u!
of
4..
B's
!d C" b. lb eorlr Ei6 & tih
b,
M6!
Aprcndix-lu, pp. 4l E-421). Fi!.lly tlE helio@tric di!l&c. of th. Elnh
ZL,r " A!" Bs lnd C!
.d
A! i!
N
=
''id,
all in
.*!doiql
Q.62t)
hdiM for looSin|d! , a|(l ldltt|d. t uitr tu Llio.ldtc diaec X. 51
B6
od Ct
c
in
ttdieE
The coftcctions for Abe@don md Nuradon de done in
and Slep-5 b€fore. Fi@lly
te
horizonlal coordiDr.s is
done lhc
2.?
als
dc
sanc way as St
conveBion to rhc equaronat @ordinates
sme way
6 ws
done ror
dd
p4
then
b
fte Moon.
RISING AND SETTINC
d.refti@tion ofprecise rihings of rhc setrnE or nsing of& obFcl one requircs pEcis c.l€stial coordinales of $eF objech 6i lh€ insht of1he occunine ofrhe For the
phehomem However! these insranh dre the points ofime that we rcqlic ro find our so rhar a process oasuccessive appoxinadon is needcd lo ahv€ al lhee dhes. Such an iterarive plocess is nec€ssry b4au$ rhe objccis under con$dsaion (lbe Sun Md the Moon) significantly changc thei position relalive to the ixed cel€sriat sDhere durihg m i.terval around ha a ddy. The whols process shns sm m esehare ror the ritoc of ofthe objed (ove.lhe locatneridian) wbich lben reads ro,nlial esrinars for de 'ransn holrmghs ar th. appoxihare line ofrhe rising orselling or thc objer Th€e aB in facr the csimares for rhe tocat sidereal rinres ofdc phenonena. rrco these esfnales of rtE sdceal rimcsoflhe eveors lhe unilecat hean slarrimeardlheh lhe toql lihescan be cakuhted. fist approximarions fo! lhe ransii rbe nsihg ed rbe sedne are obtajned usinglhc cetestirtcoordjnars ofthe obj(r evaluard ar Oh. Ur. ar any poinr or rhe glob€ and ao! any otrhe evenrs under considecdon lhis nomeir ((]i, Ul oay be m cail.r or a tater nom€nr. This is the rson lhar the mrfial catcularions are onlv
ths.
rppo\imaro cdlcutduon fo.hcle appo\,dar. coordnats of thc objecr hNc to bc catcutaled
,t..,
.,.",. ,h. ."i..;;:. "t asain and wholc.atculalions
above
!!€ repealed for bekr
esrimates, The details
(he followinS p@sraphs.
Forrhe
sh.
,h.
henLion€d
of rh€e catculalions arc describ.d in
rhccompnaaon.
&e simptes conp@ rornore tor lhe Moon. the ,,(o. nme or hNir ot rhe Sun can be hirra coturdered
)
ar t2-,tocsl rzonc, rime vdi*. Th6 Unileisat Tihe or loql tuir is simply 12 ne) is posirive for the east lons,udq ed nesarivc for Resr
wnecas for the Moon n dEily
Zl
wheE ZT
(ene
58
uivcrssl rime
se
s Ih. loql dae. Th. rime dgu. for $is rine ed date is rhen fomulatcd dd th€ lonSitudcs. At
12 -
zT wilt b.
a
dn€ of 0E
darc in
O@wich
offie sunar.obaincd. wlm m objdr h in rmsil irs hour dgtc (HA) ed its dsh ecdion (RA) is se s ln. Loc.l Sidqdt Tin. (LSn siNc:
coordiMtes
zo
is
p.? l) As3Ming dar lhe
obj*t hs
r{A
-
a
!r da rine of t@t Fa6n e.7,I ) shos thal:
d= LSTt
If JD is
rhe
Julie ddc for $e dly
ar
d'
UT 0En wnn
, = eD _
mcaur.d in Julian centuri6 lh. c€enwich Mqn Sidc,@l Tide
4
I,
2451545y36525
{CMST) b siven by:
=6141-50,.s4841+8640184'.812866.r+0'.093t0,t.r: _0,.000006rr,r (2.7.t)
Thch for the observer ar rhe pla.e lonenud.s a<l posirive for rhe con)
vilh eeographic lonerrude , (negative fo. rhe ccnwich sid.rea! lme ot r,asit is:
csTrr=LsTtr_L
(2.7.4)
And lhe SideEat fme elaped siNe rhe OL UT of fie dar. is,
T,=CSTtr_To This rim. is rh.n converrd
b lh. UT
(2.7.5)
by:
UTU =Tlt.0Or?l?909175
59
(2.7 6)
west
FimUy the coordides ofthc
Ss @ Edcdar.d
for UTE
qd 0r
followins cdculadon
I,sT = a,
(2.1.7)
csnr-LST-L,
{2.7,8)
n_GSTtr-To
(2.7.9J
uTr=T,'L0027379093?5 So ihat theE is a
[or lhe
dilfer€ne of
l€ss
drs
a
*cond b.tween
(2.7.10)
one
v.lue
ofuTr ed ib.ext
locat sunrise and sunset
$c base vatue $ the UTtr ahd inirial apptoxmalDns for the sunnse k UTr - 6h = UTn and lhat ot tnc suMt is UTr + 6r UTst. Dcpendi.8 on rhe tocat longirude L, UTs ed Ursl nay ti.I on pr.viou or rexr day csp.clively so lbar a necese,y dare adjutmeir mul b. dorc. runher ddpe.ding on the local lairude il is funher possible thar these pbenomcna sihply donl occur.
-
The
pbc.s
bcgins
de c@rdi@res of rh. Sun for UT6 (or
Urs0. The holr angl€ HA
stt'ne or nsing ovcr a l@al horjzon k
(2.7
stEE
I
is rh€ eeghphic laritude of rh. obsedcr lnd lhe au nd€ of a$med to b. ero, How.ver owirS to th€ phdohcnon
d.
r)
poinr of sky is
ofEri&tion a ,r.r, rhe Su dd s rhcy @ a€ru.lly seo sdrjng or risin8. The E@iN visibte de ir ft hs gone j4 e Dinu!€s
pld.l ae wll b.low th. hode. std
t\@g€ rFe.t of EFadioD is rhar . srat below hori^n. 'Ilis allitudc is kmh s srand.rd drilud. dcnoEo s 4, ed
6t)
is @nsid@.I
N sords on aveas. f6r rlc Su, 0Ei itulud.s ihc affet of dE Ef4clion and thc sni dian.ter bo$. For a mor€ accwtc valuc the &rul s.mi dimet r SD,
lo bc -50
didea of1h. Su ed suh.actcd tioh d..veagc afi*l of Glhction, fte chag. in l.hp€dl@ in ihe niddle laritDd.s my lary thjs by @ud 20 seconds of tinc ed tbe baromctric pres6res nay caue a veiaion of dother 12 *con& of time. Ho{€v.r 6 rhcse varia{otu cd nol LE d.temired a priori the avcEgc afects m co.nd.ed in crlculalions. Unog fte $..drd slrjM. ?01h. hou anqlc oflh. rhould be calculal.d fmo dE
object is then eloluared as:
(21.t
Thus rh€ liBr dppro\,maion for lhe
T, =UTO
And $at ofrhe
s.
e
of lbe
Su
ha\e
t
&d
I
rhe ofrisng of$e obled h:
- E.
12.1tJ)
in8 isl
T,
Thes.
4
=Wtr+
Ho
(2.7.t4\
only !h. n6t app,oxinarion3 for lh€ tines of swise ahd the sunsel Esp.ctirely. Fomularing ihe lin a8unors for €.ch of fien Fpaan.l, rh. c@rdinar.s borh
h6
b
be catculared aglin. The Grecrwich
sid.El rinc
orrcspondjns ro
ro be obained as:
r-Ta+J6O.98564TTy'15 ,1 or
I e
rlEr l@at
12.7.\5)
lFu ogte 4d ihc &imurh of th. obj..t
12.1.t6)
is
Si"At = Sinpstnq +C6e,Cot6,CotH,
Th.
cordiG
for rhe
tuirg
!
d:
siring
AT, =
Adding these
(21.11)
(2.7 l8)
ifto rh. appropriarc I, givcs ibpDvcd valu.s tunhq inpov€d r:lucs catcutal. $e @.dinaas of rhc Ss fd &d
A?_,
rcpeat (2.6. r 2)
lor
!ffrr
ed
(2.6.1 8) ro obrain
Ue Moon rhc i$uc is
mt!
lh. UT for d€
complided
wau.
s
af€.r of panlta h signiticor.
dcc'le the anirh dist ne !o rhar the objed is visibl. dei if n is th@Edcat gonc dom $. horizon bln rhe aflccr of pa6 d b to inc@sc rhe zcnid d6t fte e lhe obj.cr is wlt .hovc lhc horj@n dd n a!,p.4 ro Mvc et (or rcl n*n Th€
ofrcfddjon h
ro
still), Thus for fie Moon the si&dard attjtude is Civcn by:
ao
qb.G
r
is
=E - 0-2n5.
t
-10134''
(2.1.te)
dc pa&Id of rb. Moon eivd byi
(2.7.20)
p
s $.
g€@eniric dist ncc
oflhe obsrvr &d X, rhe g@ce ric dislece otrhe Moon, p
\2.7.21'
62
r
is th€ equrorirl ndiu5 of the Eard,
E
nL
th.
dd .,
The resl of thc calculatiohs for rhe irlnsil, rising
ed
is th. pold mdids of the
lhe
stling of lhe Moon
arc
se d 1hat for thc Sun.
2.8
I{EW LUNAR CRESCENT VISIBILITY PARAMETERS A nunber ofpdrameleB have been corsidered imponanl for deteminin8 *belber
the new cr€$ent would bc lisible al a
di*u$ed
lcaiion oo the Eanh oi ool. Tbese weE briely
ad lblcd in thc b€eimins of chaper l.
paniculd Ncw M@i or th€ conjucrion
rquned
to h€ d€t
Once
of th. Binn or
a
numb.r of p,@eGB
@ T". {ii) Tinc of M6Mr T..
hs ben delmined
mincd. Th€* includ. (i) Tinc of Suroet
tr tiD. a
(iii) LAcTn - Ti (i!) Bcs| Time orvisibiliry Tr,(!) Ase ofrh€ Moon
ar Tb.
AcE. (vi)
Arc of visior ARCV, (vii) Reladle Azimulh DAZ, (viii) Arc of Lishr (Elonsatioi) ARCL. (ix) Ph@
ofcr€s.nt
width ofcrcsent w. In vhw of the di$u$ion
P, md (x)
ofth. s&onomic.l alSorirhns ed rehniqud in tbis chaptd the* circmst nc6 de cco$iderEd ro .xploE compurdiom of vdbN psm€re6 $al e inponmr ao. $e lnolysis of l@al visibility oflh€ ncs lunr cr.$nt on $e day ofconjuhdion or d. doy
The fiBl of rime ofBinh
th.s paludd ii
ofNcv hootr.
The
rh.
alsdirlm for
in anicle 2.3. U3ing $is algoddm thc obtain€d. The algorilho tates yee
s
tn. lh. conpuraion of (his tim. w6 pE*nl.d
coiju.tiotr of lhe M@. wnn
riic of
g@centic
binh of lhc Ns
insran@ the
a
bdb of lhe exp€cled dale of th.
Nry M@n in $e nodn ofApri!,2007 i. dp.ctd
,e0
m@n is
input and giles lhe Julian datc oflhe tine of the
iiy€ai is ior binn ofnew boon. Il is imporrmt ro nole $ar the i.pur is o Eal nMb.r €alculat€d on the
ihe Sm or
= 2047 +atJ0+t7)/J65
63
whole
iMbs, it
New M@h. For
msd
l7s d.y of thc
An |pDDxiE.r. valu. of
vholc nmba $c algoriihn ro thc
b.gimine ofthc
otuc
b..i
e G@ of f.e d.,s m*! wll. If UE "yd" it r si!4 lhc ,!lie D.rG to! $. Nd Men th.t @6 cl@n
"'*"
!d".
,ulid D.rc of$c binl ofrlE Nq M@n cl@n b tb. m. b inni.lly conwn.d lo lhc UniEEal
rhc
found
wirh
lh. .xpdrcd d.y
ha
rift dd darc ed
coneqE ly rhc le.l lih. and ddc. For ln.s convffirioE ftom Julis Dat. to rh. le.l rim. ed drlc th. tehniqu6 of rhc .rricl. 2.4 6 u$d, Bcfoc thb im. lh. Ew 'lun.rion" h6 nor b.!un s no qNnid ofrlr visibiliry ofrhc Bw l|!w cEghl on rh. A6ins
rin . B.foE this tin. only th.'bld cG*dl" ce b. lat wn b.foa on rhc dry of onjudion or a dly o! tvo b.foa-
bcfoE this
rh. sutuie
ot@dudion dc M@n n.y b. &rwhcrc wi$in . strip ot widd loo 18 eud dG elipric, i-.. wirhin 50 9 of rhc Sun. ap.n fom |h. ecume of . slar dlips $G "@.nl'cxisl5 bul dE lo irs.xlrEh. clo*ncs ro lh. slai!8 su ir co nor Ar
dr
rimc
b. s..n ed ha ndcr ben
Thc can be
sn,
p.md4 is $c l@.1 lim. of suel ed th. M@n $t Th.* d for ey day of lhc yd Bins th€ r.chniq!.! of $c anicl. 2.7. Howvr
ndr inpondr
conput
th. dctmin ion of th. c@diEtcs of both lh. Sln &d th. $ce rehniqEs 'lquiE M@n for D dFckd rihe of lrsi! dsing dd s.ltinS of dh of thd. Thc c@diDL3 of th. su !rc obl.incd usi.s dE VSOPE? fi6ry of Brdagnon ad fEncou {or a sihplificd v6ion sivcn by MeE) &d bricfly prc*ntcd in aniclc 2.2 Dd 2.6. Sihildly rh. D@iF @rdidtcs of thc M@n c oh.in d aing th. ELP2000 of ChrFo -Tot ed Ch.pont pr*nrcd in dticL 2.2 and 2.5. Th. .oddinal6 ofrh. Sun &d lh. M@n lhis wr e th. SMtric sph.dcd pold c@dinrl.s (dis1@ P. alatial lonsilud. r dd d€ c.l.nial l! rud. n. And @n cdon for .bdnlion thc sc e lMtfomd lo th. g.on.rric .q@torial @tdidlcs, dght s.cioi o &d &cliDlion 6. Firlly th. roFcc'tric dSlu e.sion ed d.cliMdon !r! oh.incd itld.s irto cosi&tstion thc
d[dl!
of pdallq. Using lhe local siddnat timc tb. @rdina€s
e
then
trdsfomcd inlo
Ioc.i hori@ntd @ordinalcs dr. ahitud. ud &imuth, Once $e
tine of leal
o@ctcr LAG = Tn dd ncSrdv.
rhc
and
th.t of Moon sr
Tr is elculat€d. Unlc$
(I.) d
lh. LAC is posnive for
cd ncv..
for old Mmn th€ cFsent
Suppoe
sd th.
(T)
sunsct
b€
obt in.d lhe
the New Moon
sen.
(..,,r.,r.)ed t,.j,,r.) d ftc p@ie
dislanes,
aliflic lo!8it!d.
Su, Esp.ctivcly. af@d ro the ft4 .qtinox of lMtio. on $c Elnh with tftstiat coordinaies(1.r) on rh.
lalirudc of rhe M@n and 6c
dD. or sunst at any
day, or day aftcr. lhe binh ofNew
Msn (al$ oll.d
the
Csenlric Coijliction oi th.
Moon).Thefi'slsteDinthedelemimtionofih.visibililyoflh€nevlunarcresce,on thc day of conjuncrion or the day affer, is io dcternihe lh€ actual dy.anical
ihe
(TD o!
ofth. Sun &d tb. Moon. Le! Tt dd Tn (Coordimi.d Univdsal Tine TUC) b€ th. tihes of lh. l@.1 sunsel dd the nooi.eq vi|h Tj < T.. TT) T", oflhc coojuction. Ncxl one requires considcrins the local rines ofsening
Using rnc .cliptic
@rdimLs
oa
lh. $n ad rh. Men E alculared for th. T6 thc
egutodal @rdimrs of rhe two bodics
(d.,4) dd (d,,t,) e c.lolat
d usins
(Me$,1998): s t h\^
- Tdnl P)sth(E) cas6)
)c os\r
st(d) = si,,(l)co(.J
)
+
(2.8
codB)st(€)st(r)
)
o.8.3)
wl@d, fi. nd emid is in 0r s. qudtul6 t, ed ', the obliquily orrh. dlipri. is d$ adjug€d for lh. d, . ed thc b.9 rine Th. tsal Hou Atgl. H is th.n oblaincd tion rhc difreren@ ofth. l@l Sidftal Tiru (Zsl) 4d th. rishl 6c.nsion Tnis finally gjves lhe l@d nonzontal c@dinal6
65
amulh
(,1)
$d
the
allilud. (ir) bv:
ranlAt =
si,(r)
=
(2.8.4)
c6(Ir)s,,{t) rz,(d)co{l)
sr,(c)si'(6)
+
(2.8.t
c4(d)ca(t)c,r(fl)
And adjusi.g for lhc rciacdon 6d $e heigh of $e obFNd's l@aiio. above *. Id'l rbc topoentic @oilinares (,r,,r")ed (,i,,7t,) of the Moon dd fte Sun. esFclivtrv
In alnost all lhc nodels for
cdlicst m@mid ins $c ancidl
d w'll
ts ibe nod'm'
dir@. of eim hs (DAZ = lA,-A-1. @lled El.tive @'ihuth) ard thn of or aldrudB (ARCV - ," - t.. cdl..l m of lision) d shoM in rhe lisr I, 'r the iimc
ln.
loc.l
3uEl
T,
As ihe
$6.
sd/or
al lhe
dgulu
b$l
Tb Play a
vilil ole:
sePar.tions invol!â&#x201A;¬d
dnes @ sdaU, wi6ou1 dEh
mt
th.
b.iwen $.
e
Sutr md
lh.
lunar cesenl at
of lighr (ARCL) h giEn bv:
(2.8.6)
Wh.@ for
larSct
ugl6
ARCL =
or moF
ffi.rc
Gults th.
d
of lieltr should b.
eldl.Ld
cdr(co(r-)co{rr,)cd(tra - s,'(r.)si(4))
66
(2
E
?)
Fi&28!
e
of lighr Uc cdlqir A@d tun lhc Ft.tiv€ .rlmuh tbc !D of villon and th. c@li<lddio t.qbcr of for dli6r ytuibrliry of t|ld qqc@t rlqoits io irL othd p!@der. One swh p€mcr{ is thc A8. of th. M@! (ACE) d!6n.d as thc tiEe
ie
til lt. lim of ob...Idtm Anothq idDoiird fr.io. i. thc Wi&h of CF$.dt (VD fin d.!.nd! on rhc dida@ of fie Moor 'IrE gtel aoom@ Al-gltllti of Brsldd hod rdi4d lt iopott c of @'@l {idth I Gl4a.d
.iG
th. h4 cor{l|!cdo.
r.s.go (BdiD lt7) At l[. dili.c oftlc MM nom Ot c|tih wi6 nm eud O34 nillid 16 !o Nutd 0.4 mlllid b! th. leni{i!rcEr of th€ lunlt die {rh. Am 15 I! oinu..lo 16.5 e ninn .. Tbut if{F Moot! is clo€.d lo F.flh.l thou$nd
ih. tim. of ohdarior th! cn .!nl *ould b€ wid6t &d thu brightn wid0r of lh. s!.c.d i3 din dy FDpo.tidtl lo lt Pte (P) ofih.ltloon thd i! t tmlid of rtc ARCL:
P- lr-cg?aRcLn 2
Ad tholhc c!!!6r
width is givm
bt:
(2.E.8)
(289)
"='"[ Sinc. ihc acienl birlh oI New Moon
lill
signindt p&Met€r.
dd
{E
thc nedieval dnes
thc sunsi of
lh. d.y in
ACE, thc time elapscd
quesdon,
siie fie
w4 eo@lly coNidecd
a
Howev€!, in ihe tinc of MuslinvABb $lronom€rs jl had already
c.lied tal
0E ACE is nor a nD&hc al padndcr, stll thc pardet* is inporlrnl 1o calculat€. This is bccaue oflhe fact that depending on rhe aordinats of the b.en
Mooo
dd
anat€u $e
s vcll a
€ord
ce b. ee.. Amongsl bo$ rbe $@ is aluyr a conFlilion for havinS
lhc seaens at lime a very "young' cEsanl
lo
s
rhe
prcfcssioBl Grronom.u
the "youneesr"
crcsr
Amongst the early nod€ls ofnew
eiihd wilh oFical aid or wilhout
cc*.!t
i1.
vnibility asltunomeB sed $c !.larion
betren rh. rcldrive altitudc (ARCV = alriMc of rhc Mmn - ahilude of lhl Sun) dd rhe rclrriv. uimurh rDA-/ - e'murh of Lh. Su - uimdh of de M@n' Th. rso parmeleG arc slill consideFd inporl&l as if DAZ = 0. the crcscenl is venically abole
$e point of 3uEel dd und.r such a cncM$dce the youg.st a @ll as lhc thimesl crc$qt cd bc ecn. Wirh lugd DAZ wles only oldtr md thc thictd ccs @ be
How lhick or lhin is lh€ cEsenl al any lime s.pmriotr (clonsaiion) b€twn rhc
su ed $c
cs
Mmn hd bccn
b€ ddemined once lhe
dchi'cd
usi.g (2
8
?)
or LiSht (ARCL) hads to lh. Phde (P fiaction of the illuninatcd lund disc facing fie obsdr) of lb. Mftn using (2.8-E). Ho*ev.a the lhicloN or $e widlh (w) or rhe sith €nh€r horizontal coordin.les or
rh€ €quatorial
aordintle!
This elongation or Atc
des not only dcFnd on thc phe of the M@!, also 't depclds on rhc Elnh'Moon disrece, rh. sMc cm be ohaitcd usins (2 8 9) Dte besr inc of lbc crcsdt visibihy sqgg€ned by Yauop is criical fot siShting lhc crcsn1
c..rral pon ol the
creot
u'dd mdgjml conditions &d ce
be @mpur€d
68
sine (2 E l) sisndne
i5 crirical when
THE SOFTWARf, HILAI-OI.CPP In this worl( a softwde k develop.d for the
odysh of
fisr visibiliry of new lue crc*dt dEr is simil& io mturc 6 rh. M@'calc by M@ur (Msru, 2001) dd Accurare Times by odeh (odcb, 2006) but rhar can b. lscd ro compae aI rhe rhe
ecie.l dd Doden visibiliry nod€ls. T1| lisdng of the poelm i! ApFndix 4. Tn progm f€nrca d bri€fly de*dbed b.to*:
compur.rional and thc
Hilalo|.cpp is giyco
Th. prog@ LinAnal ucs ih&e dala filcs, rwo for input
one for oulplt. The
For.ad.rv thal conrains rhe padrcr€E 4, ,, and., (s inanicle2,6 lbove ). The pdmetcs oflhis dala file de adtu8€d in rabtes2.l
two inpul dala described
il6 e
ed
(he files
(A) lo 2.1 (F) in appcndix 2.
'Ih.
dds.d
(D) in appendix L
itpnt tie is tlc .tp2MA& rhat conlaiE the paluercs as de$rib.d in rhc anicle 2.5 above. The pdmeles of rhis dara file d€ inbbles
Thc third
Ll
(A)
fiI. u*d
10 1.3
ol]],er
prcgrd is *..t lhal
dd
n*d only vhen fie Esults of fi. cobput2rions in Oc preetm m EquiEd to be sbEd. Tl!. vcGion of lh€ progr.n Hilalol giv€n in appendix 4 hs the lile nanc scrrrgaA, rhar sbres lhe by lhe
is optional
onpulalional Esulrs of a sinelc .x@urior of $e prcgrm.
fte
is
i.fomations stoBt in
o. No., rhc obsenarion nhber thar n scncally digned by Odch (odeh, 2004). Date. datc of
obwatioo,
Long., th. longitudc of 0E
Latil., th. ladMe oflhc
Eld.,
ple
ftom wh€E rh.
clesnr
is ob6eN.d
ple
the .lcvarion of rh. place above
s!
levcl,
T.mp., cnimred rcmFdturc of$e riDe of obswarion,
Hmid.. .stibaied relative humidny oflh. plac. S@.i, lhe l6al tinc of sNet
69
at rhe
rine of obs.Nadon
9.
JD of Conjunct, rh€ Julie Dat of the binh
10.
As., lhc a8c ofrhc Moon.r
ll. 2
L{C,
I
ARCL, dc ot light or elonsetion of lhe M@n
ll,
ARCV, the eladve altitudc of fie
1,4.
D,AZ the rclaiile @ibulh ai the best time, in degrc.s,
15. 16.
Widtb, the cenlral widlh of lhc
the diff€rcncc
17,
tim. e@ding
berNcn th€ Moo.
q-val. rh. visibihy
discssd
rh€ besr
*r dd
crc*ol .t
Fsr€nt
ptue1q
of.q 10
M@n or the
lsr
Yallop (Yallop, 1998),
it minucr, su at the b.st tme,
rh€ sunsel.
fion th. the
b.st 1ioe,
al bcs1 rime, in
it
in
d.crees
dc minues.
dcfined by YalloP (Yallop, 1998)
lo h.
in d€rail in chapl.r 4.
Phi+della,
fie dglc
thal lhc.cliPlic dalcs with lh€ venical on th. wslem
hoii2on, in d.sE.s.
E. 19. 20. 21. 22. 21. ?4, 25. 26 27. 28. 29. I
Mlalit. I,loo.
s
4liptic latiiude in
d.8e'
Mlongi! Moon's.cliptrc lon8itudc. in d.gtus-
*liptic longitud., in dccres M-SD, dgule s.minid.tcr of th. M@|L in @ oinut Slongil., Sun\
As-Fac!
e
s.
of sep@lioh fsctor d€fined in l.ler chap1e6, in dcgrc6
R-En, cslimat€d Rip.n $ Fucrion vatue dclin€d h chapler
I
R-A!er, averas€ Ripeness funcrion valu€ dellned in chapl{ 3 R-actual, acbal Rip.ns Fsction vtlue dcnled in chapls 3
DR+s! $e diflecnc€ of R-rclualand R-Enimaled DRnc! thc difrccne of R-a.tu4l ed RnErage MoonS M.g, Moon\ mogniiude al the besl
lne
of Yallop,
Lio-Mae(lin€), lh. LiDiting Mt8nitud. of the stv ned |ne
c€s6t s
defioed by Scha€ff.r (Schaefd, 1988b) aloDs wnh ih€ Yallop's besl dne in
udveEal dne dis.ts.d in cha .r 4.
30.
SI'(DME8), tbe univ.ssl tine wh.n the conrrdt ofthe stv bdelhes dd rh. Mmn\ bljehBt just tum in favou of thc Moon dd 0E ditr€Gnc' of dE
70
m.gnitude of the Moon
I_
dd $c linning
m.gnitutle of rhe sky ai thal monen!
B6(Dmag), fic divdsd rimc *h.o U. @ntrasl of rhe sry bnSh,ES th. Moon\ bdghret is b6r in favou of ha9irude of
rhe M@D
ed
rhe Moon
thc lim'ring m.gn'nrd.
ald thc diflcn@ of $e
ofih. sly
al rhar monen
Lsr(Dmae), ihe univdal tme wh€n rh€ conrmst orrhe sky bnshhess
32.
tbc Moon\
biehd
is
nagoirude ofthe Moon
lal io &vou ad
rhc
of th. Moon
ed
ad
rbc difcrcn@ of
liniring magnitude of$e sly
ar
ed $e
th.r momenr.
A3 thc .x€cution oflhe proghh b.gins ir prompts for ob*Nadon nMb.r, dale,
nonlh, y.&, longirude, Iaritude
od
cl.vation abole sea l€vel of th€ phcc and $e
estimrd r.larilc humidiiy of lhe place. This plompr by rh. lunction tzrdd,r.rtnd callcd by the tufuri,on nt i n n u t i
esrinated ttmperaturc ahd iniliared
is
"..
Ticn rh. prcg@ c,lls for $e tundi@ math .h4tg.. This tunc on n6r ddmin€s lh. Julia Date of dE dDc of n.esr @njwdon or rhe bini of ncw M@n crlling thc fucrion /t ]@_D@r. Th. tu dion r'r_r@_r@r is bdcd on .tgorithn due ioMeeus(1998)discqsedinadicl€2.3abovc(fomu162.3.1.ro2.3.25).'Iletuncrion
rorr,
cna,a. $en calh the tu.ctior renir&rr lhal dekmines the tihcs of lhc sunsel dd the Moon set tttroud fiD.rioB tun-q.t 6d mon_se.Ih€ tunciions rzu_r.r sd
tutu_sa
t.
rdttirgt.le
b6ed on lh€ alsorithn dhcus$d in aaicle 2.7 abov.. Dr functio. calculars rhe b6r rimc for casent visibitiiy aeording io @ndnion du€
di*ussd h a larq cha .r Tnis is followd by @hpul!fion of the Julie Dat 6d dB Exlcnd€d Juli@ dat corcsponding ro rhe best rim. 6ing rh€ tunctiolirri.ndrl. rhat t bs*d on rl| algorirhn pEdred above in anicl. 2.4. This Iesds ro fomulation orlhe rime {sM€n1GIs dipused in adiclc 2.1) fo' rhc Elp2ooi) md VSOPS? lheories for the c.lculation of coordimres of lhe Moon and ihc Su respectively. Th.e coordinates e calcul.r.d according b the algorithDs in anictes 2.5 dd 2.6 iopl.m.n&d in fucdoB a@r_.ou.t ed t\. su"_.erd Bpeilely. B.fore to Yallop (1998)
7l
rh*.@rdin 10
@ c.bdat.d th. etr€c1oftuhio. dd
the
sidd.d tihc coftspondins
zdo hou uiversal tide, for the dat€ consideed. are calculted using the tuncdois
,ttttid od
l€s
ad srl_tiw,
*'€.n
E#iv.ly,
t$aiqs ouinlo,
usins rhc
thu fe Scn nted is displayed scootd (.@fitn^.s of 1he su.) ed
The infomatioi/d.tA
t
rtbpt
dbrldr_n rord (coodinatcs of tbe Moon). Finally, fhc tunction nainrcutir. crLtl^r.s md dbplaF on
$en
aU rhe
visibiliiy parmetcrs dircused in pFiou.rricle (2.8) &d lisred ss l0 to 16 dd 2l abov. in lnc
clm
orher functions
O$d pffi.r.c (l7lo 20 dd 22 1o 12) re @mpui.d in (r? to 20 in tunction r@r_cMtt a\d 22 to 32 tt liM'si\ brl anicle.
display€d alo.g with these pdmet.rs. All thc the
outp
dda
(p@ncle6
Ddmd.s lisbd as I lo 32 d€ wiren lo file J.r"8ear in nmloulrro4, (pam€rs I to 29) ed tim._nnse
30 to 32),
Tle tundion
/ltr,r,,?
is ih€ reproducrion
ot Scba.fer's pog,aD
(S€hs.fer, 1998, Bogd, 2004) lor delediiirg th€ liniting hagnitude of
The Esl
of the functions
/.ar.r..l
used in lhc
pregrm aE lisLd
dd briety
point
of
dcscibed
y.e u$d is lcap yed (ac@rdi.8 ro crcsorid or rcr? lfrhe yd is lap lhc tuncdon rerums I orh€fli$ O.
chects lhe1hd the rule)
.orwt_r'ru
convens an
.,,rzt_rtu
convens lime in hours into
hodlw
Btms rh. @jnd.r .ff4 dividing
th€ inpur
h 6ed ohain 6e mst. in
0
pamt
dy
eelc
inro dcgres, arc minutes
do
arc
*cond3.
hoE, ninuIs &d s*onds. tuB€
b,
160.
6is fucdon
b 360 degE6. calculat s rh. afr*tl ot psrlts in i8hl acEion ad decu.adon to cct th. ropcdFic ddr as1fuion 6d d.ctinarion and is bas.d the
deercs
on step 8 of alsori$n in anicte 2.5.
itr._r.. rhrcud ,rr.-do, ,nd d"c_sc thrcugh chdging tine (al (at lev.ls ofdale
d.._r,,:
Ttcs. tundions altows
ld.b ofhourr ninure ad ssnds)
dd honrh).
72
and dare
sihin lhc tuldion di.i@{tt. lhc prcgr&n Hil.lo! ha do-|9kL l@p ^ (pl*in8 dld le,) fion thc Br. rhar remiDrd *tEtr rhe iddrifid za,r rcccivB V' If my oths key is prcsed lh. pregm rmdN in wait ndq PEsing Panicdd k ls a In fer
is obvioN in the
er.l{ar.
cohbilsriotr vdio{s&lions
e
iniii.l€d likc inc@ing or
chegilg tmpdal@ or hlmidity o. wiling to th€ output nb r.rngafir. bitiad.g any ofthFc.ctioro Gp..G th. *ftution ofall lhe conpulalions wilb new timc, dale,lcmp.dture or huDidily. In cd. ofpre$ingP all lh€ data is winen deoeasiry tim€
dd
datc,
s.r'"a4.t
Mit s only rhe $lected !alu$ oI tine and conesponding value of thc diffelcnce of doo.\ magnilude and $e liniling sky masnitude. Tlese f€atues of thc progm Hihlol (varyin8 dne, dale and !@lhcr conditio6) nEle tbe progrm norc dynoiq .s compdd lo Mooncalc of M&ru iMdd, 2001 ) ad A@uai. TiF. of Odeh (Od.h, 2006). ro fie out file
in one lin€ a.d prc$ins 4
d.rminiig th. dlr of the fi6l sier ing of new llld c@.nt in this cnaFd w cxploEd.ll thc Mjor 6pet of conp arional cForls. Th€* In view of lhc
prcbls
IE sm!.ndylicd
of
dyn.Dic.l lhddcs VSOP87 and ELP2000 d'at dryib. th.
ofplseB loud thc Su sd oflh. M@n reund the Eanh. The* e m. mosl rent dd nost accunt. avlilabl. looh for the delmi.ation ot motion
ephendb oflhc
Ite
Sun
dd th.
Mootr.
ateonlhm lhat lelds lo lbe dct min.lion oftb. dynmical lime ofde
lud
@njucdor or lh. binh ot ncw Moon. Tn€ pmblms ssociarcd wi|b th. dynamical
&d uiv€Eal lim€ ed
related
isues. Wiihout having a @mpl.l. kno* bow of lhse isues apprclrjalc
argmcnt for the d.lminadon of
lud ed dE $l&
1)
cmrdimres
co
tbe
not be
TL dl irpde dgsitor tu d. ddroni4 m. tr..r,r.l od locd roc dn . o{ th. @ rd 6. md* lllth! s* d6itr of ti.
lb pcr@i !rd&d tflt t Fb&o le or*dt ci rdt!. da-!.d. dD.r
of
di-
dShdrS o{
rtr
lrib I tdrwh ||I&tbt r of d| 6..c tt{itr d .|6mi.l G.hiS.. erl .ltdl6or | .orio!.. F!!im ir redd b &r .U t ,.w lull Tto 1b
ct# &ir_.r
plobLa ofib. d.olloilirS
tl.
dry
.ll
tt cqdrilrl ,trrit r@id.d
of6rr jihli!8 ofew
71
lurt.!..c.d
eith
it.
Chapter No. 3
ANCIENT, MEDIryAL & EARLY 2OTH CENTURY
MODEU;
For calendarlcar purposes .s we as an Interes0n8 and chalte.ging aslbnonlc.l p,obleh, jn rhe hbrory ofmanktnd there have ben constsrenr efiorts ro delermano when and whererhe nek tunarcro@nt
wll
be
lrst
seen,
t]e,esutrs
of these ealons have boen numeroG 6nd have been based on dtlle.ent technlques 6nd tools.lhose results can be temed as 't odets/Crireria tor the oadtest vtltbi|lry or n€w runar cfescenr,. Most ot the earty modets are de ved dtioc y trom the obs€oations of the new tunar crescent and are enDnjc.tin natlre. Some are based on th€orellcalconslderations. MGI tmpon.nt of these eftons hctud6: The Aabyroni.n rule of thumb .when the age ot the .ew Moon is 24
hooB only then the crescent can be seen,. fte redlscovery of the more mrrhematrc.lly lnvolv6d crfte on ot Etong. on + LAG > 21. lhal w6senunciatedw€ beforechisrian or. (Fatooht et at, 1999). )
Tho cdena deveroped In ihe medtevat periods by Mus ms/Adbs ba*d on obsenarion, sph6ri6t vtgonom€try and lhe ephemerid of
lhs Moon and the Sun (8rutn, 1977). This happen.d as earty .s rhe
llr)
The exploration or Foth€ ngham (1910), Maunda (1911) and orheF
fi6l
quarter ot the twontl6th @ntury. These effort! were moG ot slallsti€l in natur€ based on th€ obseda ons mos y in Room by ln the
75
In rhb ch.pter we stan wtth a b,t.f dtscGston on retativety Ecent G di<ov.ryofthe Babllorlan cdrorla for tho 66t 6t vbtbltty ol new tunar crcscenl. A sel or obsenatlonal d.ta solectld from rhe r*6nt tlteratore ts lsed to examtnerhe ments orlhe Sabylonlan cnbrbn.Thts ts folowed by 3ome sphencat trigo.omeuc conslderations ihat are llgnlllcant tor th€ condilloN on whtch the vlsibitiry or the invisiblllty of th6 n€w lunar'o6cont haydepend.
On lhe basls of lhe t,igonom.tdc
cofttd€htion the Lunar Ripene$ funclion
altrlhuled ro rheArabs rs.xplored and a tvodlfled Lunar Ripeness raw is suggested and examrned in vlew ot th€ ,€.ordod oEerva{ons h rhe dara sel men oned above. Thi3 Is dono uslng iho curient k.owtedgs, loots 6nd rechniques and the
.6uts of
rhls erprorarlon ar6 present6d.
a[ codputational wolk
ts done Gtng the
In the end ot the ch6pter the gfrpktc.t modeL due io moden asldnomeG
olrhe early 20s century ar. retstt€d and compartson ot ihe same
wilh the
is done
Babyronlan and the medievat mod6ts.
BABYLONIAN CRITERIA No lrisonobery or spheriqt rrigonomelly existed till rhe developnenb in,\rabia in lhe 9u descnbed
i.
dd
halheharical
rhc lorh cenlu.y AD; the probteh
rems ofcertain obseNable paranercs shown in rhc Fieure No
w6 o.ly
Ll
I in lhe
dcienr and lbe early Chrhlian e6.lfdny visibitiry $ireion was deduced musl have been basd on the observations and nedsulemenrs ot rhes observable qumtities. The figure snows lhe sesiern
bolizon a dnc
when the sun S
h6
gon€
r
deerees
bebw norizon
(the sole deprc$ion) and rhe crcsenr at M isjusr visible. AB is rhe equaror lhat nakes
agle q, $e geogBphical latitude oflhc ptace, wirh rhe nomat rhe sepeadon b€teen lhe Sun tud $e tvl@n comhonly knoM an
16
ro the horizon. SM
n
s .@ of lishl. and
abbelialed
s
ARCL but shoM
6
aL
difidce b.isFn the q "dc of dcs@nr" d€noi€d 6 ao (ako call.d
in th. figue. SD is the
su dd rhc Moon lnow .e of vision dd abbrevi.tcd s ARCV). Not that the aidnrde of lh. €Esenl abovc hodan is,l $ lnal a, = r + ,l As rh. ooitr( A is al lh. se altnude 6lhc cFsenl dd B at lh. sme depBion d th. su, A8 is .quabnal $pdti@ b.teen the Sun 4d rhc Moon called "arc of *pdrion ' ad is .qnivd6t b rhe Moon*r - SuNr tig shoM in the fisld d as The fig@ cd bc u*d to h.aua fi€ 4.s ofdesenl ed liehl for a alrirudes of the
Sivcn lalitude
I
once an accurare enough .phemetdes shows the
dc of sepdalion and
wheE to loot for the dimly illminaled cBcent againsl lhe briehl evening twiliSht.
lig No.3.1.1 Angule Pamcters as@ialed wilh
l,
modem tines the earliesi Ffee.cc of
sigbring of nev
lud
sighling ofnew lunar crescenl
ey
syslemalic study
cEs@nr is thrt du. rolhc.inShm (Fothainghd.
of the earliesi
l9l0). He refe6
ro l2s enlury Jryish phildopher Mcinoni<16. Asordine to lorhcringhm. the work .ppearcd in the
TEti$
by Mlimonid.s (Moshc bcn
th. Ntu Mo@ 0",islre''.'rotalt: Scfq z.hnim
77
-
Md@n) o\ \\.
SahcliJi.otion
Hilhot Kiddush H'Hodcsh, I l?8
oI
fial
wA diislaled by S. Oddz
6 Crlr of Moituntd.s, Boot Thr4, treatite Eigtu,
SmdiJicdtion ol the Nee M@a Yelc Judaic. Seris,
volh.
XI, Yatc Univesity pE$,
No Hav6
CT, 1956). Maimodidcs mrk w studi.d by von Lifl.ow in SiEunghberichk da Wiehu Altd.nie, Math-Natrre, Cl6e,lxvi, (1872), pp.459-480, ln his *ort Maimonides nak6 rh. snalLsl visible phe ofthc M@n depqdenr on trc variables, as claimed by Forh€.in8hd. Th.se veiables bave ben tem€d ss rr? rr€ etonAorion otthe Moon a\d
by
hgk ofrision
dirlaccs then
tle aplbre.t ahgle of tision - F6\.noghe
slarcs rhal
if
m.es the diffeEncc of the Sun md the Moon in rc.irh th. nle of Mainoid6 .nd his om rule for hinimlm visibt. pb4 of Mai1onides
Moon ae n€dly the
enc
Howevcr he f!fther says lhat Maimonides rute sivcs
slidrly
oininun alliludes that could be duc tc, b.(.r ob$fring condirio.s in Jeruslem lh& in Atbos. Unfodu.alely Fohednghah .dmik that hc could not sumcienrly lower
undedand Maimodis' dithmdiol nelhod same (Foihciinsham,
solving
has not giecn a dchited
@ounl of rb.
l9l0).
Lder, Bruin(Bruin. 1977)gives
ol
dd
a
moe debiled
fie probl€n of findin8 sronomi€al
eounrof
any medievalatenpr
€onditiotu for thc
fi6t visibility of
crsc€nl. De$ribinglhe Isl.mic astonomical procedurcs Btuin says $a1Al-Khurizini gives mathenadcal rules and rablcs lor pedicling thc new cre$e.t where6
peeds
a conplerc soludon. He aho nenlions lh€
AlBamni
lato accounl ofMo$s ber Madoon
lnd clains rhst ibn Mamoon larsely follos Al Balloi. One oflhe nost inponanl dp.cl
Anbs^rulins orthis ea had olEady rcaliz€d rhe sienitlcece of cE$cnr widrh. This inpoiant aFcl enaincd
ofBruin's accounr ofrhc eflods oftbe bedicval
era is rhar
hissins frem all th. najor cooiribudons of lw.ntietn century bcloE Bruin. d€scription
ed
thc modein loowl.dge in ihis work lhe sme
.xlecively od is pEsnt
d
latu id
h6
Bed
on this
been explocd
dor.
the chaPler.
lilcatue that app.ared duing 2od c.nrury lhe gencral rule of Babylods for first visibilily ofnew lunecresc€nlis:
78
lual su6.t shottd be g.ater than 2't hows the su6el ohd the no6et thDuld be g.ot* than 12 tim at the
titu
of
(l.l.l) l2 rim. deBes is cquivslenr ro
;$
ofo
hour or48
ninu$ (Brura I9??.llv4 le944
lto$ev4, il wd Fat@hi, Stephe$on and At'darghdlli who havc 'xPlorol lh€ to lhe histotiel cflon5 of lhc Blbylonians dlsiv.lv &d have epon€d rnal eording h Eords of re* c.Mnl siSlftings ol PG Christie m lhe cderion attibured oi Babylonis is d ov€r simplificalioi (Fabohi.t al 1999) Ac@tding lo $en $udv 209 recoids of Posi{ve new cr€sceol 3ig} ing
extdctd fom Babvloni&s Astronon'car
mathem'lical lunar lheory di&ies. the Babylonitus had succceded in ioduladng a lrulv wrlhoul $hich ihey 6ed to pEdicl !&ious par@ele$ of lumr notion Unfortumtelv aboul be presnline my iheorerical d€laih of Babvlonian eE lh'v appear 10
"ilicdl
above Bluin\ slgscsion thar Babvlonia criterion was whar is mentioncd as Follo*s: lnst€Ed.1hey clain that Babvlonian ctilerion wEs
Tnc
ies cEsce.r
is een
'' Elongutio, (ARCL)
(l l l)'
it
+ nooe|st6't
laE
tine
(Uc) (3.12)
Even, rhis cdrerion is
6
apon d on
(Neue'ba@r' b6sis of the suee€stios ol Ncusebaud of a madehalcal lh'orv Ttev have
ov
d'$rip$on *bich th€ lt@ rhsrv ol Babvlonids las nehtioned two svst€ns of sol& moliors on 1955)
&d nol
a rcsult of
wD drived al $ nol hoq lh€ new rul€ they hav. attdbded to the Babvlonims h8d on lhe giv6, They have gone on lo plesd .lifleant valucs fo! th' @nslul 'kh lalEs Engc fton 5 DiniDum of2loro a maximM ol23" lnlhe
based, but
;ideof(3.1.2) Th€se
p!€ent work we adofl fte followins slss.sted by Fatoohi el
as a bener
.l:
79
critcrion alfiibutcd lo de Babvlo'ians
as
'
(r. I
80
r)
The
Mon
ar
divi.s
d6dibes how bnghr
ctcse
@uld
this qitcda
paluelea moE
aurhos is thar (D ihc
m
of lisht
th. cFac.nl &d (ii) ihe moon*i*utuel lag de*db. hov lons the
is
coaii
6 d.sc'ib.d by th*.
abovc
is the
horian.n
r th€
$n sl. MoE
is rhe vql@
ofqch ofdrqc
po$ibilily ofsishdng offie ce*cni. Howver, drcr. h6 to b.5
ni.imun ofthe two dd the sigh{ne Eords wcre the only heans to verify lhc crilerion or diving al the (it€rion. Using $is condition Fatoohi a al hsv€ Fponed thc aslhs of lhcir @mpu|,alioB for 39 rw cEsnt 3ighings rhal in lud. bolh lhc conbined
Bab)lonirn cEscenr
qighr ing
Rordc tud thes'ghtine Ecords Eponed in $e 2Odcenrury
liredtule. Th. aulhos have rcponcd ihat oul l99 cdcs the Babyloni.n
c
lerion was
fic posilive siehliog {cE$e.r claioed to h.v. b.en sn) c45 but fsiled i. 45.7'lo c66 of the nesalive siShine GF$.rt no( *o) ces
succestul in 98.7% of
orsdialios haYe smnged for coll.cdon of €r.*ent Th*e inclu& Isldic Ctffint Oberyalion Prcjdl lh
In r€ccnt lin€s a number of sighting or non{ighline @ords.
So h African aslononical Obsaatory and rheii websiFs Sinild rccords are reponcd ro aid colhd€d at lhe wbsile @!sS.h!i!s.eol1 Morevet, lhc ldrgest data el yd availabl. in lhe pubhh.d paFG of lhes dords ofdening
Usins
(l.l.l)
is lhal by Od€h (OdGh
cEsnts el.dcd
appli€d
lo
the dar.
for
2004) we hav' *lecred 463
tE compdison ofrhe nodels
9l clet€d
for this
Ll.l.
wlk
the
studied in
'6!lts
u€
ln this lable ollv lhose rccords are prcscnled when thc + crescent wa reponed to hare ben seen wilh or snhoul ev optical aid ad ARCV LAG is les lha 22 degr€6 Th. rabL is en€d on ARCV + LAc It shows lhal thcrc
pEs
ed in the lable no.
ft
opli€llt unaid.d sighinss of new ce$enl tol salisfving $e Babvlonian cileion gi!.n by (l,l,l). The compl€G dola sel is P!€sent€d in the Appe'di\-ll Thc ? claims of
d on visibilily colum N in d€$ending older, so thal all oflically @id.d visibility ces of crc$cnt sighing in ordtr of ARCV + LAG (in dcSt*t app.d al lhe top of the llbl€ The table in Apt€ndia'll sho* S No ihc table
i. App.nditll
is
en
obseffation No. (odeh, 2OO4), dare ofobsryatio!, latitude of
ed
lonsitude of rhe location
ob6dtr, visibihy N' for uaided visibilitv' 'B' for visibilitv thrcugl binmld, T 8l
thftud rel.$ope. IlE vis'bility @lul6 @.mPty if rhe cjt*nt M not Fen and co.tains V' in an apprcpriatc colLlm if the c!.sc.nl is sen. The esl of lhe coluens oflhe nbl€ @n!in age ofMoon, LAC, ARCL, ARCV md DAZ. Th€ lasl file
for visibilny
@lmns arc ior the five models coroid.rcd in this chapler, The colllm h.dded A is for
This tabl€ shows $al out of 196 daims ofopdcally unaided sighlihSs oftbe nes
@ only ? cbes nol saisfyjn! lhc Babylonid critmon. HoEler, oul of 267 cdes vhen 6e cc*cnt wd nor e.n wilho any opftal aid ARCV + LAC is gleate! thdn or 6qul to 22 deg@s i. l07.ses. Thus for pdniw siehli.8s rh. crit€no. cresccnl there
is foutrd lob€ successlul in 96.4% c.ses
css
in 59.92%
cal
success
dd !frongsl
lhe hegalive sigbdn$ ii su@ssful
of€ model in desciibihg posilile sighlings alonc is tul a ofa nodel. Thc model is not suned seu if n is nol able to dc$tibe the
negalilc sishfng
The sucess
6
wcll as ir d@s the p$ilive siShtings.
SOME SPHERICAL TRIGONOMfTRIC CONSIDERATIONS
Thh
hd be.n m.ntioned e&lio
rhal ior rhe ploblcm ofsiglting of new lund
crescenl $e orienlation ofthe ecliplic plays md inportant lole (article 1.2).
is inportant
b rrisil
*lipric nlkes wilh
Thecfoc, il
lhe ne|hods thai lead lo lhe ddelhimion oflhe mgle lhal the
the horircn al the
tinc of snel on the *$em hotian (il
is
panicularly significer in view oflhe fact that the new c!e*.nt appeds close lo n). This
ofthe ecliPtic slowly fislE no 3 2,I on lhe nexl pag. shovs lhe wcsrcm pan of
angle lalies as agaiNi rhe lixed celesrial equalor lhe orientation
laries lhroueh the year.
lis
$e cclcnial spheE wilh impodanl points &d angles
w' t,
m d de$nM
the west cardinal point,
rh€
P, the
v€ml cquinox, inl€eclion of.cliptic dd cqulor. Nonh
c.l.sti.l
pol€.
82
below:
Z
qv - r
z
8}'r1
Z ZSr
rb ouiq'iry of6..dinic,
- 900 + 9, 9 bdte lb.lditd. od6. d...' - 9 + 4 lb dSb ofrb.cliP(ic xdft 6. v..dc.l,
rs-d-G5tlirst
tu,
d.clhnioofrn
- 90'- o, St - ?e 6. lonSili. ofd! PZ
$'!
FrsNo
FMn
3phicrt
1! 6su!
ti8oiodt
32l
3.2.1 in lhc tPhdic.l
tt.rdA non &. !id.
PZ
ttrtgL oe
SPZ
gBs:
ioo
b..e..o d..lidlor
1.l{ of ctsiE of
(Jr.r)
tlne=cort.o.PSz
'ft. g@d |!l
'pplvi'g
5
.d
lonSind'
.int - doP co.. +.o.P.i!'rin
83
r
I
i3:
(3.2.2) (3.2.1)
FDm
ridcle sh,
st nir8 !r Pr:
@s(PSz +@+
usins (3.2.2)
!d
A)=rer.@r,1.
(3.2.4)
(3.2.3):
0.2.5)
6d (32.t) tosethd *irh
(1.2.1) leds lo:
(1.2.6)
(3.2.5)
sd
(l.2.6) thd sivc:
Ju"' elipti. nEt s wirh thc v.nicsl is 5.e! 6 n d.peo& on the lorgitud. ofthc su only for a fix.d place {or latirude 9).
This show that e + A or the .ngl. thlr ihc
dcp.rdcnt
ln th. Esr of rh€ di$usion in rtis snicl. rhc anglc ncxl
.!ticl. etr@ cv.r In
? + A is
L*d
it h
olol&Ld
900 -
on ibe
q + A is d€nor€d
t
s
V. In dE
6is of (3.2.7).
@
the dslinaion of th. Moon is $u1h of th.t of lhc Su in NonhqD H.nisphft (md north of the Su in th. rcuth@ hemisph*) it is possibl. thsr d.n .ncr conjuction th. tr.w
llM cKar $i! b.f@ lhe slNr
84
in which
w
ir ir simply
cr.!ent, TLse circmshnc.s aF shom
impossibtc io 3a thc
vdal eqlinor. Sm thar is just *riirg
in the 68ure 3.2.2 on the
Cl, lh. cclsli.l .q@lor, 1 i! th.
al s.
iD
TS is the diuFal path of th.
iii)
DE b thc diumal palh of the Moon th.l s€t before thc
-
6s,
decliMtion
6M
Ds =
6M
t
the Moon
zcvs = NS
vi)
whee
DM =
dM
3t E.
letpendi.ula. to the c€lesial equlo. is lh€ dif.rence of lhe of ihe M@n &d the deli.ation 6s of rhc sun. Declinalion of
south of lh€ sun md rhe upper limn of Ds is 50 9'. lhe inclihalion
oflund orbit
v)
sUNl
to lhc
9Oo
-4
trliplic. is the
agle
bctween
$e c.l.srial equ.tor lnd $e horihn
lhe lotitude oflh€
Pl&. TheztSD
C
teprenls
-
qs, lhe dilreEnce of risht a$cnsio. dM ofMoon and rhc rishr
=C
eension os oflhc Sun. For higher lairudcs DE nav b. htgc allowing laigc vllues ol ncepliE LAG
vii)
sF = pM
-
9s
:
0M is
c.l6ial taliluds rhelinilof5'9'.
lhe
viii)
aftr co.junction
p€,Fndicultr ro
fi.
of the Men and lhc
E lifljc
Ss
is $e difiercnce
As for DS
Sf
bctw*n
never €xcads
ptrallel lo FE (E' .ol showo in rhc fisure 6 it almost coincides wilh E) h
the
ix) lislhe Vemal Equinox ed Z)6t = v h !h. angle of lhe Ecliptic with $e lary ftum zeto horizon. Dep.ndniS on laliude C and lh€ se@n, 'Y naY is alons the botizo') lo 90 deB€6 (when €cliptic is (vhctr ecliptic
pc+endicula! to lhe holzon)
l!
cas' when
v
is small
DE
thal has
b
be
paEllel lo the 4liplic is nuch ltrsei tha' DE (ftol is paEllcl io lh€ cqualo!) of$is oSle md and hdc. E sd E aE mrch s.panted Tlle det€mi'arion
sienifidc. shall be di$sed in the n'xt drcL I'lt figurc shos rh€ SM is jN| about o sel in a pl&e oI sdall b n€diud *l (dd M@n havins ddlinarion eulh of il' sun ha al@dv
its
x)
laftude d , $e
wd
set at
poinl E)
$
th.l lh€ LAG = TiG of
E'
Mdnct Tim of suNer is
fig. 1.2.2: G@tn r.y ofP@riv. Ag. .rtd N.gaiE L.g A@rding lo rlE luN
elqdr
b.!.d @ IIE binh of Nd M@ b.bc tlE
ssa
mn$ b.gio .l dr tirc of o.!a 6 $ii vrt Ming- How6, for tll. lu@ c.lsds b.!d d rn viltbilitr of $. n4 s@4 w hN mfli &e.ol b.gii on thb cming B n b 3inply ioF{bl. lo $ tlE w luu c|!g in this cinhtee. Fd plE witt lrSc ldind.. d|r dbw for llre v.l6 of DE |,d h.@ DM ln. tri&gl6 uidd 6!&l6.riB o rbt tr rtrdl .dd.!xl ..otl b. tBt.d s ryhdicrt r.iugl6. tlc! d y @ll lo tr|.diun hdnd6 @ qEidqld e th|r th. tdugl. EDS i! r 3rdl dgh rlgld oilElc o *y wih dt.!gl. tt D t..Ia E .d S tu 9oo !r!d rlE a.sl. d S b.rsa D !d E i! ?. $. ldind. oftlE pL& Th@foE: tha
nd
lun|r
SD
(328)
Af
86
sioiLdyrt rrtdSL
AEFS b
dlo.ndl
r!d. t codrt.ld|plEdilati|lgbqi6
tilr,.= Pcpl$iry
SD by 5M
tN Ag.in in ISDE tm
-
(3.2.e)
E!, SF by
PM
-
ES
illn
-ts-$N -6d,H
(3.2.8) ,nd (3.2.9)
w
02.r0)
t!rc:
.DE
DA-@,
-r=S, ln
!! lid .llrdrudi8
-6,161
(3.2.U)
b frrr! !23 $,ldd It dlr d. Dlc ntDglc Ft sDE of6. Flvior6 68rta
rEql'itld.ortun.8 dvcLAOi.i.i.EDM<aEhr: DM
(l.2.ll)-
DM
-
(d{-!.)
-(au-asr<Qu -,s)r$a
Pig.3.2.3
87
4.2.t2,
usirg (3.2.l0) il
tlr4 lat s into:
(aM
-as)<tPu - Ps).inttsinv
(r.2.8)
ThN whcmvd ih. Ncw M@n is bod jsl bcfoG le.l su!54 ln. LAc .hould bc tu8lliv. if condidon (3.2. | 2) o. (3.2.1l) is s.lkfi.d if thc ce.d i3 $ulh of th. Sw.
csjud olcul.€
offic M@n d th. tim of S!Mr. lf ARCV is nc8.tiv. rh. LAG ha ro bc rceaiivc. Still lhc conditioN (3.2.12) d (1.2.13) show lh. d.Fn&nce of thc ph.mmenon on dE (i) ln rh. hod.m s.tup oE
rh. Elarivc ,ltirudc ARCV
$d th. Moon, (ii) thc hnudc e of lhc ple, (iii) thc aliptic hlitud.s ot th. Su. srd ih. M@n .nd (iv) lh. egl. v or.cliplic with $. hoden. Thc Tlble 1.2. I sho*s smc of lhc n gltis LAG ces during the ye6 2000 to 2010 AD tor Kech'. Paki$d (lariud. 24.85 d.g6. lonenudc 6?.05 d.e@t. .q@to'ial
Mdidle.
of lh. Su
Ne8{iv. LAG ces
on thc da, olconjun tiotr
Frlly oeu tom smdl
!o
n di6
llritld.s bul @ sis.ili@l a. cld dividine linc b.l$q conju.dioMl luN qlcn&6 ed th. obacMiioMl lune cd. t!3. for hirl| htitud. pl*ca rcearirc LAG 6cn anc. conjuictioi dly @cu moE f€qu.ntly. The coluntu of 0E r.blc in scqucncc fom bn ro dsht
e d.*dH tsrl
b.low:
dllc of coijuiction.
tncd Timc of Conjmtion,
su!a, As. of M@tr .t le.l suet in ho6, Elongadon or Moon rroo tlF 56 in dcrFs,
Zorc (PST) tihe of locd
Delimtion of M@n
in dceE€$,
Delidlio! of Su itr &88, Righr AsEion of M@n i. dcgG, Rieh AsEid of Su in dcgr6, EE
Laliild. ofMoon in d€8rc6, Angle of E liptic wilh Horizon in d€8rees,
LAG, Moonkt
rable No
3.3
{u6el
in oinut
3.2.1 : posirive Ase
s.
Nesaiifr&B-;s-i66l2oliT;R;;iifr;;
LUNAR RIPENESS LAW & ITS MODIFTCATION Befor€
|h. rin$ of ptolefry lh.rc ws no knoyn sy$enalrc descriprion ofthe
dynamics of thc planeb and rhe Moon, Theretoe pblemy,s explor.tion Che epicycle based description ofthe pltret4y noiion) sens to be rhe tirst sciious. scientific 6d
ststemlic aucmpl to d€$nbe
1he
dymics oteld
systed obl*is. Muslim 6ed lhis
tyiem b cxploc lhe condidoE for 1hc fid visibility of ns lutrd cr€sce . plolemic th€ory hal d.*rib.d th€ plderary nodon Eins rhe epicyctcs tcory rhal could Dddict the pl4ehry, lunar .nd sol& ephen€ns to a g@d soush d.er€. of accuacy. Tne Muslins had put ro use lhis iheory weu ond had developed sotr dnd lu.ar tables. The pos ion of$e Sun ws predictable !o a g@d dce@ ofprccisio. and @nsequendy rhe aele !r lhat ih. *lidic hal6 with ihc hoizon ar the line ofsue( ould b€
calculard
Bing rne sphe.ical uigoroheFy that Muslim naomddn hav€ d€v.loDed th€n*1v6. As decrib€d by Bruin ( 1974 sing lhc &8lc of ectiplic ,y wid! the hoiizon al lhe tine of su*! the lalitude of th€ place of obseFarion, egle of sepsauoo b€rseen Moon
dd
a9
Sm p.r.[d lo lqldo. (difrcqE of ddr dgii L!..dioB), tlE !sl. of d@!n (dife|i@ of a|lnuda o. ARCU !d ri€ tid[ ofs€c.'n the M4lin aslorcEcrs $@ aU. to develop ! hisltly rdi.ble qilcion for tlE visibilry or invisibihv ofrh6 @
enicl ir r r.otuttu rin offg@ 4t ofBtui. ( le77) shovs tl|st dF sD IEs jur !.r sin of r/t{. Thc liie \nX D85rg tb.o{8! $ts drllal poilt W, is th€ e{uror irclined d o dsL g (tlE ldihd. of lhe ple) fim tlE @rnd to rhe Figua (l.1.
I
)
bclow
k th. dimd pdn ofth. Sun !h!t is p66llel lo thc.qualor is shom as broko 1i... TIt diurnrl BIh ofd. Md MZ is tls sboM wnh 3 3imilt trot€.linc
horiar
AS
tL E lipaic lh.t drd e .ngl. A wfi th€ diurol path of 6e Su d $..qulor ThBtL FiiiFb D!l6.td..8L q + d witl the Mnrl. MS t th. s.r.r.dd b.'ra rlF Mdn !d ttr Su (e of liSln). Ddrall€l Io
ih. .qudor. TIE lin. HS ir
\:\.
Fig No
l.l. | : Trigmrdic
ddiFin
of @rdni@ of
w
luE d6ern
i[. ..lirdc rII8 ar.h l}a TS - 1 - 16. b 6. 'Etl tinsb MIII, rn - fu d ft. erb a H b..r!.r Eclbrb (IIT9 jd &. Ho.te|.l olM) - 9d - (r + AI Tb - rilrb tm{ b lisb.raLd d T yE tq!.d3L i M MT i3 p.rDodoio to
!cvl.{HddT-9+A.Itrb.ioplyk &b6crdtio: ra-Er +rS-t,6lp+D+L |hir
Fldih
n
.e.
.r .$|d@ O)
of B.uh O9ZD.
4.
Irtia8b
HgB b
ABS
rlcd s . ph.
(3J:)
codr+ a)
{d ti.lgL
(3.3.1)
lad! lor (3.33) (33.4)
(3.3.t
'Il&
eb &uii
tih in hi! .qurid (a) |b h cbiD. nr b..o obi!.d by ld4 lhe tigoffiy. Ittt smc 6ru. i, 'slr
(3.3,5)
t'.d.d ||3toglpt ric.l
i! dimalot
Aom
!i!@.tty, turiotbADs
f|(!o .phqi6l trt|tEL tlTMr
9l
O9,D t&
8it&.1
sin
rr'r _ rh&
sn(e+a) erhlr I.
(3.1.t)
@s(e+a)
rs = sili(sin r!.r..(e + 6r+,L
-,rr
0.l_6)
sphoical iridglc ABS:
stnaD
and in
.
4r @eP
(1.1.7)
sinfls=-l]1gll +
l].l.8l
stn
spherial lridgle HCS:
co(@
:l
a)
glj! ! !. ) ".( (:
t::! :9:.q ; +a)
-t
(3.3.9)
[.
laegles Hs dd ss @ snall cqua$ons (3.3.6) lnd (1.3.9) yhld alnost sme lesutB s thos by (1.3.1) ad (1.1.4). If the valuc of 9 b lege. then Hs dd as ae nol shalland th€ spherical trisonoderric rsults (3.3.5) and (3.3.9) should be ned for doF Muale
of (3.3-6) is thlt if th. cphcme€des of both rh€ Su and the Moor m tnoM @uErdy (aj th.y c rcw) ud rhe &gl. 900 (p + A) = v of etipri. {irh ihe honan €lculalcd fom (1.2.7) rh. !.lE of HS @ bG aal@ted for rbc tire of 11'e sienificdce
sUM
for
dt
day of lhe
yw !trd psrti.uldly
92
for rh.
dlt
or rt y
.Rc
UE bnh ot ncq
Moon.
wlee6,
hinimm &stc of sepaDrion !s (.quivd.nt ro LAc) fo, $e visibility of @w l@d ct€.st is tnoM for thc day the @rcspondine agle HS sinS (1.1.9) cs als b. .vatua&d. Horev.r, rhc ue of (j,j.6) is ind.p.nd.nt ofany visibility condition
ed
oncc rhc
is fixcd for rhe day ir d.pcnds only on rhe posirions oflhe Sun and lhe
M@n for fie rim. ofobsenato. &d the locaiio. ofrhe obF ei. On the u$ or (3.1.9) dep.nds on trE vjsibifty @ndiiioG, @cly lhe
o$( hahd rhe mininu del. of
s@ml'on tu, thar.& b.
kmh
only on lb. bdis ofa
t
gc
nunbd of obo€Mrions tor
At rhe rim€ of Muslih Gtrononcts rhe .phener€des of $€ Moo. oay nol hale ben so aeudely tnown s ir is today, but rhe Eligiou tecnn.ss oflhe seing $e new
lund cr€s@t nusr hlve tcad ro moc rcchre valu6 or,s. Bruin (t9?7) hs i.dicared that Muslim arbnoheG rveE welt awe of rbe f&! lhar d8Lnce oalhe Eanh ild rh€ Moon and hence rhe width ofcrescent for sde uc oflighr varies. Though exploiations
ofdr
ancienr considcred lhis variarion ro behdve tibearly we now know thal it inlolves lne lflgononefic func on. In lnis worL $is prcbleb is h&dlcd by considering rne actual eni_d.in€ler of th. Mooh dd lhc fer $at MnslinvABbs ob*tued thal ar shone r .lisrances the crcscenr
wasseenwhehtheLACo!arcofseparationaswaslOd€elccsor40minulesoftimcand al la€e! dishcca thc cErcent
48 ninules of timc.
-r1li5
ks seen Nhen rhe m ot seplFrion dJ B t2 d€8res or teads b a siople Eladon b€lwn /s md lhe aduat semi-
^-Using rhis etalioo thc
*p@tion felor
D
ol
22
@ of *pdlion
necded for ce$enr
is .alcutated in ihe sonwar.
9l
Hilalol.
r0)
As mc ioned abov. dE Mulin sao&Ders have alaldy d€duad from obrpatios lhar for very thin but visibl. cE$ent mirimm ss @ 12 lime degds (48 minureO
dd
for d {ider but bmly vbible cresent mininm as w6 only
l0line
nininm as ie acturlly dep.ndcnr on the width of $e crc*ent rhar @ be dedvcd 6ins (2.E.E) dd (2.8.9).nd rhe Elarive atitud. (ARc9 thar cd be obtained using (2.8.5) for th. sun ed the Moon. Th. issue shall b. dieussed in noe degl6
(40 minulcr. This
d.tail larer. Usins 0.3.10) rh.t shows 6s beins dependent o. the lisull dimers (in arc minulet of lh. M@n in our sky one ce compute lhc Lun Rip€i.s Fudio. A(,i9) Btuin (Brui., 197?) or tha! is siven by (3.3.6). Aaodihslo Bruin rhe rul. d€dr€d by M6lims w6 thal if thc lalue of HS calculat€d using (3.1.9) equals or
as henrioned by
exccds lhar @lcolared by (1.!.6) rhe work this rule has ben named
M6lin
c..s
would be visibl. orhcNi* nor. In thn
Lunar tup€ness Law or
According ro Bruin (19?7) $e valu6 ol HS de.ored (3 3.6)
seE pGsenled in
rhc
$+
sin
a
R()., 9)
lled Lunat Ripenss Tables sDd
Lunr cmcent ws walulcd by Mulin BltonomcB HS a3 deived tom (3.3.6) h d€nokds,l4 and:
-
sifrply Lumr
Ripen€ss
obkin.d fron
fisr visibility ofne!
usiog rne sboE rul€. In lhis work
r[sin/, r.nre+^t+lM ts
(l.r.r l)
^d.,
ofl,, sin ly is also smatl &d lko n ahosl sme as rv ,j. Bui when the *liplic is wll inclihel io$&ds lhe Fo, a fixed pl&e (e constal0 it is noted lhat forsDallvalues
hoien (q
+ A is large bu lcas rhan 9oo) 1r'4, nay becode noE rhan
snd ecliptic is roweds nonh) or renain le$ rh&
1! ri(iflv
1, - .ls (ir pr, <
>
0
0 and etipric is
iowdds nonh). Ho@er,{da is endely independenl of Oe se@. aod dep€nds only on
l)
is
to ihc ACE
of
rhc rcladve coordinates of rhc sun md rhc Mood. As rhe major componen in (3.1.t
lhc diferenc. ol longnudes of rhe
su
and lhc Mooh ,taa
h closely linked
Mftovd. ir sign
0.3.1l)
shows
differcnl signs
&e
.
9M
th
x&" * l,{ - k. Bur whcn boil 0M 6d I + A hav. the s4e &4 *ould b. mor. thd l, - & and if pM dd e + have o,
would bc
l.$ the ,L -
The vahes for HS ohained
.ts.
Bul thcF v&iatioos u€ nor
^ sMnal
fom (3,3,9) dc denolcd s X,b and:
(l
I
12)
^,,=.'""( For a
fi&d
ber@n the
place (9 consrd.t) R,, dcPcnds on ae sun
ed
shoM larer. Using
the Moon).nd thc
(he
s.en
6I
spa6tio. a,
+ A is
*son
(rhe equabrial
fiat shall
b€
fo! $e dav or
lh.
dependeot
looh sod le hniqu.s di*ussd in.hapter 2
ie,
t'Ac
ii .valuaEd. Ille ninihud valueofas is @lculaled 6ing rne lrchnique d.srib.d al lh. .nd ol Ptviou .nicl€ $ lhat ,tB is dedu.ed. If lt- is calculat d using h csdml.d value ol a, rh.n w call il X." (m Erimared valk ot Lunar Ripencit funclion), Il ir is .al.ulated uin8 an avedge vrlue 10.5 degres of a, thcn *. c.ll il I- (d .vcaec wluc ol Lud tuFns nrtudo.) Ac@drnely A&" = i- - X,a,6d Alt-, = i^ - 1&) Thc sinpl€st fom ofrhe Ll|E day alier conjunction aor s placc of ob*ryarion
i3i
:)
'"'(
a;t+,ry
$i"
-rsj'o (3.1.r)
Tlus Lunar Ripeness Law that piolidc
a solution of the probleh
rhe first day of visibility of n€w lunar cre*enl
h
oldelemining
based on the Angle lhat the Ecliptic
bodzonlal or $e angle 0 + a ihal it dak.s wilh the venical. on the dav or the day after conjunciion once lh. coordinatcs of the Sun dd the Moon at the tim€ of
nat6
wilh
the
suns for &y leation.rc applopnab value
oi4 d
calcuhted. (3,3.1l) allo*s onc lo calculale,e,4
sivenby(3.3.10), in (3 3 12) the valu. 95
ofx"i ce
ed sine be
6
tound ltr
vi€w of $udying ihe behaliour of lhe Rip.nes iunction oler a yea! for any pl&c calculding Ie, for cvcry day of the yd is not useful. This is bc@w of thc &ct lhat y€ar ro y€e
dd da,
(o day vdiarions in lalitude oflhe Moo.
dep€ndent on the rime of
el.v
val@ of
l*
yd
degc.s
an appopdate value for the day
bdis of
the
lS6. foi
dill@lt
of,,
vary from
se
sell
d
l0 degcca lo
12
as
oi day after conjunctioh is obtained only on the
ule disraice o. sminimd.r of the Moon. Still tor
a
compdie.
values
,, = loo dd
calculaled lor both $e cxrene valucs
a,
of
-
curves,t,r aeainsr the longitude oflhe Suo (fiom March 2l) aft ploned in
FiSuGs (3 3 2) lo (3.1.5) These
i)
nd, ats not
&d study ns veialioG scenally
$irh chdging lalilude of pl.cc. As possiblc values
120 and the
hence
ye.!. However, *ith posiblc lalues of4, one cd calculate
for @h day ofa
ladrudes,
dd
cw€s
snow inleFsting featres lbat
from fi8.1.1.2 il is cl€ar rhar forg = sinusoid.l wirh
mdina.t
i... for
a placc on
March 21, Septcmber
D4ember 21. Snalle! v.lues of rounger cEsent m.y b€
O0
rn.
iG nems
cs
b€
sunmdized
$eequabr&i!
2l dd hinima
is
at Ju.e 21.
shaller lalues ]?d4 or !€lariv€ly
L&g€r values of x i" dcans largq valus
iia
orrelaliv.ly oldcr crcscenl may b. seen. Thw close to equalor older cEsceht nay be visible near equi.oxes and Elatilely younger cresc€nl .ea! ehrlc€s. If $c Moon is nc{ jls apog€c lhen il is noving faner and apFaB rhicker in sky Blatively younger cescents b€cone ripe for visibilny. Funher rhe paencc of two maxim and two binima ihdicates four stong innecdon points. There arc rwo regions ot
lpMd
concaviry (douod solsdcet
dd
rs
of downwdd concaviiy {&ound cquinoxs) As rhc larirude of rhe place in
rc66
(one move ro rhe nonh
ofequabt $e
muinum ol1." at $e venal equjnox loseu nDline ir eard lo k d a youngcr cescenr bul the ndimum of lhc veml equinox ris.s e $al it becones norc difiiculr to ec a yodge! crc$ed (69. 3.3.3). On thc o$er hmd fte ninimM of lhe s|!md ehric€ mo6 rowuds sdng (v.mal equinox) ad that of rhe wintd rchric. mov€s rowds autumn (aurunnal eqlinox) md in ei$er
c&
d.crcae funner making ir esier
96
ro
*e
a younger
cwc ahaFs clos. ro ll€ alhlnn l m6d thc solsti.6 flltt ns.
F g. No.
Ll.2 X* forg=00
15
Kg.
13
ffi
12
10
..
I
.r.
9o
BcyoDd tropic of
hsimu
al lhc
.alF
rl,
ll
I
;
210
180
Fi8 No.l
iiD
.,.-
rt'L forg= l0o
two of the infl@don Poids
aotmnal €quinor
91
ds
re
simPlv gone
&d $e
tunner malir,g n FoE difficuh lo
s
(f8; 3J.1). Tb nioidsn oftL qttc Ed,. tt !t .quinox mrli!8 it .did io r.c yomg.r @3@l! n tr ro â&#x201A;¬ml .qu$ox . yomg.r
iv)
ct!.c.
ttl
frltd iF!.ic i. dr ldtr& &. D!!io@ bcoc tt}.' rd !i8le lrd dt. ril!i|!@ t cF &cr!.'nry tuvi!8 &n ftr biSba ld'ndd il i5 rG
g6.r.lty .si6 ro @ younScr cr!.c.nt3 cl@ clqe b aull|nn l cquilor.
to
vlrnll equimx .ltd
diffrct lr
'17
t6 13
1o
to Fis. No.
l.l.4r X"i
for g
- 25'
1}. siuDtidr r!\/{r!6 .dirlly i! fivou ofam|'llll cquiM ft. lb
-ttld!
Sn cr ih& 63.5 &8t a!) il k liDplt ml polribL to s rh. s9 loM q.!..oi cloa. ro .utmt .quinox 6 th. vrl'r of&i t @06 gt lddra 9d. Tb vdE G snll.! 50 ofx* cl@ to tqDd .quid indielc riqlt &.t cr!.c.nts y@gq tle 6 For the Arctic Circle .nd to it3 lorth (latitu<tc|
c@!d!d
!o thor. clde
10
lutunn l cquiaox
9E
N
bc
!.d
a0
50
20
Fi&No. 1.1.5.
Howev€r lhe narcr i! lrot
$
i^fore=61
50
sinplc beca6' tuc olc of latitude of
rhe
cKdt'
plavs e impona role lhai i-., whcth€t thc cc$eni is !o!ih or north of ihc Sun dcFndst Now lh' stDns nuimum dercmin6 rhe v.luc ofrtdo lhal is lronglv btnude vbibl' lttitud6 indicat's thtt e old'r M@n rov rc1b' at lhe
v.oit
.qrinox for hi8h.r
ThtebE n m'v b' nisleding
b s the AGE offt. Mo@ iNrrsd $ do6 iG elo'sdi@ ad brighlress
valucs posibL ftat invisibilitv $g86l.d bv $' Rrpcnas tun.lid vd6 drd sm lqr€lEof x'L h rlnt Thh inly l.!d lo ltlollN for sdalld LAG dab avlilablc in lilettrurt e $!d( th. RiD.G$ tulcrion vtl@s for dE ob!'dltioml dx' s't th' c!56 whd thc cscenl .dculacd sd pr6.ntcd in ApFndirlt Out oflhis RipGs ltw rE also s||os nor h lg.mdt *nn dE L|M is
s
Eporr.dly
sd
bui .rc
(Odeh' obae liontl dah k $lccLd AoF lh4 tPo :d bv Od'h re cosidercd onlv Ttblc ;0{a) fron *hich c.*s or cvdi!8 '6cnr obs'naiioN (Od'h' 20Oa))' dtt' of obseNttion ldnud€ 3.1.1 shows o. No. (th. oberysti@ nunb'r LAG' snele v of ecliPlic sitt' ,ftt longin/. of ih. t@dron of obaa$s' M@n\ !8e and ed th' 3d' Rd giv'n bv (13 12) rrorLo, t"lio,a" or Uo.,, toogirudes oI the Moon d'8r*s' Ri' sircn bv *ill !6 siv@ bv (3.310), Re siv€n bv (3 3 12) *ith 's = 10 5 O.3.I l) and a&. = Rdq - &"
in nblc rc. 3J.1. TtG
I
'Ihe table in App€n.tix'U shos S. No , the obseNation No (Od€h 2004)' date or visibilitv 'N' for lbaided obseNalio., latiiude dd longilude of the locaiion ol obseru€r, lhouel binGuld''T for visibihv thbush lelescope The
lisibility,'B' fot visibiliiy visibility coluds d€ empty
iV' in an the.res.ent wd nol s*n sd conlaitu oflhe t8ble contarn .ppropriltc colmn ifth€ q€sftnt is sen The rcsl ollhe coluons file columns de fot the live age ofMoon , LAG. ARCL, ARCV dd DAZ The ld the Babvlonid model' models consideted in this chrpter The colu. headed A is for
if
B and A for the Lunar Ripeness model The colnmn headed
cod'ins
AR"
,Appendixll shows lhat oul of 196 cdcs in shicb $e crese has thee tle onlv 14 cases hat do not b€en reponed to hove been een wilhoul oplicdl aid rhcs obscrydlions de tinther obey thc LuMr Ripencss La* stalcd above The debils or The nodificalion is below *ltn a Modi6ed L@r Ripeness Law is sugeest€d The lobl€
i!
exploEd
needcd in ordet 10 sepdarc tbc used for clescent
caes of dked eve visibilitv and rhe caes when optical is
visibilitv
wnh the helP of A tot.l number of l2 posiliv€ obsedations ih tbis dala hav€ b'en vilhout oplical aid dnd the bin@ules ed klcscopes when $e cr.$enl ws nor visible
Luai
was deduced $ ork
.ot elisfied 'nth is logicallv valid as the Lua' Ripencss Law durine thN onlt for mlcd eve ob*tvatiotr Tlis bas he'n the dolivadon
Ripe.ess Law is
lo ood i fy th€ Lunft Rip.ne
ss
Law ro e ocompass the otricallv aided
obse
d'tions
ofihe table contain Ob$flario' Ssial Nunber as led bv Odeh ol the Place Visibililv (2004), Date of ob*tvation titilude oi lhe Place Longitud€ (wirh iele*ope)' The* colunN N (lor unaided visibilirv), B (wirh bimculd) and T lisible R€st of lhe colums d. €mptv io! invisible cresent md co ain v for The columN
visibilily
fo' the best ime (Y6llop' 1998)' Lae in (ARCL)' the angle v = nin(es, S.padtion b€twc€n the Su ed tbe M@n At of LiShl hotizon on the wsted holizon for the dav 900 - (9 + d), that thc €clipiic mai<es wih ile Is th€ latitude ol $e Moon' l'M rh€ longtude of rhe M@n
colws
contalns Ase of ctesce.t in hou6
of c'lculrtioi/obsedation,
OM
100
the lonsirnde orthe
sd, Arc{f-*pdtion
Iuclion, ,{.r olcularcd eqution
fa.tor,
Sitd
by (3.3.10), Esdnat d Ripencss
(3.4.2), Ar6of-epdalion ractor, Aversge Ripen.ss
Fwrion X., calcllared Ning avcds. tu = 10.5 d.gEs dd lh€ €quarion (1.4.2), Aclul RiDene$ Fucrio. ,Rdy calculated sins equtioh (3.4.I ), AP-" the difie€ncc of AveEge RiFn s Fwrion & th. Acrul one. Th. ribL l.l. I des nor show thc visibility @luons s tbis table @mprises of css wher ihe cesftnt Ms r€Podedly seen withont oflical
The lsbl€ is soned on the values
ofd&y.
On the basis of a
clo* dalrsn of
the
results of conparing ARNi ihe dilleences of Av.lage Ripeness Funclion valu€s End lhe
Actual Ri!..ess Fuclion v.lucs we ob*de dEt:
The Tablc shows
ft.t lh.E
are
only
14
196 positive siShlings that are nor according
pGitive sidrrines out ofa rolal nmber
lo lhe Lunar Ripe.ess
t{
of
(ARo, = Rn",
The€ a!. no posilire siSndne wirh A&q < -1.58 wirh or wirhour oprical aid the Ens€ in wnich
l8 aft.npb
have
ben nention.d in the lne6ud. We
Coup-A for thc Modificd Muslin Lund
''tt th. tlill..e,ce ofAv.rase
Ripencas
Np.ts
Las lhal we slal. ih ihis
viibility cdes,
dc
grcuprd
6
see
nE n.N
as
erlq 6:
luat .rcsc.nl
coup-B. Therc de la (llolo) mked cye
25 (19.?%)binoculd visibihy
cesdd
l6 ( 12.6%) r€lesopic visibiliry
cses for values of AFw lying betwen -1.58 dd 0.0. Oul oflhe
ca*
it
Fanctior R-, omt the Actuot Rip.h6s
Fu"cion Rro F /Re) is l.ss nnh -J.6 it is ihDossibl. to tor att ldtitula uith or Nilhott optical aid'. The ncxl I27 c6es
consid€r
14 natred cye
lisibiliry
Th.* e No. 286. 2 dd 2?2 witb AR.!i valu. -3-5, -3.4? md -2.88 All lh* c4s m ner autumnal.equiiox (Sepr.20. Oct.2l &d Ocl. t epecdvety), €r€$enl hs oldc. age (39.1 l, 39.24 dd 4l .91 hous Elpectiv.ly) md hav€ consqueitly larger phe. in thn range, threc lery low AR{yfvalue cdcs have comon chancterisdcs.
l0t
All lhe* conditions falolr (1.41) that
aor
lisibility and it wds ncntDncd above in view of oldcr a8e cresccnb (/.M ls ta€e) sh! er arc or scparation may be rhe
auowed. Thisexplainsrhe very sm.ll LAG (29.s, 33.62 and 32 07 respecriv€ly) in rhese cas. Modov€r, in all $.s cases lhe arc ofvbion is snau (ARcv 6.85, 6.8
deg!€es rcspectively)
buftelorile uihulhs
rc
dd
7.34
(DAZ = 18.4,2O.j and 18.l d€grees r$perilely) aioh the sun and tos€r widlhs (51,65 ed 5r dc seconds respccrilely). Atl lbese lacloB suppolt thc ctaims of lisibitjry md weE anlrcrpatcd above whcn il sas suggesred rhat smalter
L,{C valnes oa!,
be
taree
alosed in such
All d€F clains de latirudejusr moE rhm 30 des*s. The shath, values ot Rj"y in conpdison to R.,, h lnes cscs is due ro larsc lalues ofa + A (noe th& 54 deee$),lhe &gle oalhe eclipric with venical ed large nesaivc vatu$ of tarnude of Mooo LM (tes than _ 4.5degrcs) lhar rcduces Rla to hate n nuch shalter lnu /w _ cases.
fon
1.. Alt rhe* rhr€
obsen.rion de rncgR.nedqrrh rhe Babytonru cr.rerion Therc is no fudhq c6e
dong$ otherposilile
cases
ofcesenr visibitity
wilh -1.6 < AR."r <
t02
O,
tjl.
varue of
dRq < -1,6. Fbh
two de very young
ccenr'
Thee
m
obddation no.274 (ARm = -1.19 ) drd 416(A&tr- -l_06) i{i$ age 14.8 sd t5.9 houE rcsredvely. Despile being lery yorS having FLlively l&aer LAGS (39.j md 17.7 ninulcs
in ldse
sperively)
visua.l
only). with
in both
dimcler bur lh€
$all
c&s
rhe Moon
cltsnl
ws
widrhs wcrc
the rclalivc eimurhs (4.6
a
l.8
very close ro the Eanh rcsuhine
sb.ll
(10_?
dese,
&d ll.9 e. s@ndr
the crcsent eas atnost
su rhat bring it in ihe ided cordnion foi visibiliry bul lh€ snau (8.5 ed 9.1 deele) nake rhe$ claims highly oplini$ic. Borh th6e
ve'liMlly abov. the elative altitudes
obse^ario6ec in d$dgreementwirh
Lh€
BdbyloniM qirenon.
Out of th€ 14 positive obseru.tioi wnh
A&r
< O,
ihte
werc very
f.ini
cEscenrs
obsrarion n@be6 389 (d&. = {.94), 341 (AR^, = -0.87) ed a55 c0 62) The* crscent werc low in ottitude (?.2, ?.8 and 8.j deg,es resp€dively) ed hrd sna erongarion (10.9. 13.3 dd 9 deg@s Esp.cively), This hakes these ct6i6s lo be higbly i.e.
opr'n'strc cnlenon
os
well. Two otthcsc {389 and 455) are sko in djeereocot
{heec
341 is a
How€v€r, for all
mdSiMl6e
$ee
w6
Babylonian
in Babylonian qirerion (with ARCV + LAC =
I I 9 c6es when $e
wirh naked eye,lhe conmo. ieatule
viri
crescnt wd daoed
ro hdve been
sen
relariv€ty hi8h l&uoes {generalty g@&r
thq
S0 degrres on €ilher side
of rhe €quator) except fo! obFNatbn no. 416. Th€ cbim 4l6 n tioh latitud€ 6.5 degres nonh Apan fmm rhh lonely c6e it appe&s lhat fo, A&r < O n is ihpossible to see lh€ cE*entatpt&es witlllatirud€s less fian 30 desEes (borhNodh
Inlhe l19caksofsroup B,lhe frequency for optica y aid€dyisibiliry (botb wnn binocula and retescopcs) ihceses ed one ce cdily g€nerau€ lhal whcn Atqr, ties between -3,58 and O.O theE is s hjgh rDssibility of crescenr visibilhy wilh soe oprical sid for bod lh€ high latifude as wel s low l.rilude obefres. I hereby jn this wort the s4ondpd of rhe Modilied t\4ujlih Lus RiFne$ LaB $$Rds
t0l
''if h. nns
b.nv.r -3,t otd 0.0 th. posibili9 oJ rhibilit! ollittt crcnetl *ith and *itio optical did ln re6s vnh ihcE6iig tolu6 o!.4R-. fot hlEh.r latitqda, gq*o ! gedt.r thon 30 d.erc$ notth a4d souk ard ZR*. b.l"g h th. ronq. -3.5 b A0 h. postibility ol nak.tt erz visinlw ako irceqe llowvq, in t'. tong. oI th.G wluzs oJ r'RnIor tMllo lotitad6 th. .tz vitibilitr h dlMt tizt
"oh.d
N€xt is the Oroup-C $at mnrains 76 cases wilh AFrv in rhe dnB.0.0 ro L6, In lhB goup rh.r. 12 naked cye visibihy.as.s (15.8ol.),26 binocuta (14.7%) and 15 &l6copic visibilily cs4 (19.?%) e lhar vGibility with both naled cye and with opdcal
e
rid b.com$ ooe probablc. UnfonuMt€ty rhe dala is h.avily inclined lowads the high htnude clesanda cl€rdenarcation for u.aided visibilit, for snalter laritudc ob*Fe6
cd
nor be made. Srill, the
''fth. wtu6
thid pan oftbe [,todilied Muslim Lund
oJ/R@ tk 6ztwa 0.0 an.t r.6 ttt. pEribitiiu
Ripeness Law is
of,i,n i,
oJJint
cftsceat teith and tuithout oplicdt k ,trong fo, higlrq latitud.d,. The Croup-D containine a ro|at nlmber unaided
vhibilitr oflunar cscs
forr'i!'
of 221 c6es
has 170 cases ofoprically
> 1.6,Il is
^il r'B@ >t.6 ttt. posnbitu, oJ ,bibititr siorg lot boh towt aMt hiEha totitd.r".
of
li61 c6c.nt fitttott opti.dt b
Finally, the 3umnarized Moditied Muslim r_umr Ripencs
ZR-< -3.5 ihpNibL 2,
to tee
l-awr:
th. n.v luaar c.6c."tlo,
a tdrru!., ,ith o,
/R@ < A0 ihposibt. to ee the neN crcsce"t with ot *,tthout oplicnt oit! Jo, tnt .r latitutl$. For hiehe, t,titnds therc b n high pnsibiti,r ol gibititt otli6t cE .nt dth oyial -3.5 <
104
t
0.0 < .1R,. < 1.6 p8tbiti,tr o!
,hltw
Ji6t M@nt btrh ond withoul
o!
h staq !o, tigt.r tdlituds. Lo.a!|rA N6t tuith opticd! a ! a".! th.a try nelnE lt Nlth haL.d e!. h6 a eood .ranc. o! opticdlr u"tided optt ol
ne,>
1.6 th.
pNtlbnrr
oJ'
tbi!i!, oifust
cnse
wtuhout optcat
t
st ona
Jor bo& Iow.r and highu tatttud.t,, Another way oI lootjng inio ih€ delaih of Lue Ripene$ hodel is lo look inro the plots ofaverage ripehess fmcrion md rhe acod ,ipenes tuncion for borh vhibh &d invisiblc crcsei$ for single talirude, U.forluarcly, rhe dru avaitable dd considercd in lhis work h Esrficlcd in rhc F6e lhat scieltifically re@rded ob*dalions fo, a sinetc
hnud€ a€ nor found lery fr€qucnrly €xcept tor Athens (ladrude 38 dc8,as .orrh) ed Cape
Tou
(laritude 13.9 degr4s so!rh). !n panicula, for
sn,I€r tatitudes. plac6 cto* IoequarorobseruatiouarelolvcryfFquenuyav.ilable.Anunb€rofplaccsecsetecred herc
od
tbeir
d.h pto(cd for Alerage Ripenes Fundion &,,
Fuiclion R6y for borh rhe Eponedty inlisibte plees with laritudes L8N, 33 95, 6.5N
Figure 3.j.6 for tadtude
3
dd
dd
38N
the vilibtc
(FiguB
and the Acllal
oe*mr!
Thesc jnctudc
3.3.6 1o 1.1.9).
L8N snows tbe b€sl slc
,_J:'iff:ln:"11,'#:J:
sieh,incs ou,
of 6 (83.37") in asrcen€ wnh $" obscdat'ons (6 our of6) e in agrccm€nl wilh the ta* toi this 'rown-(hnnde
Ripen*
ll.9
S) wirh succcss percenhgc 65%
(ll
larilud€. Nexr is Cap.
posrlire siehings in sgenenr
20, the needrvc obseryauons fo, Cap€ Toq are In agrehenr sirh la\ tor 9lJ% c66. This 6 ao owed by ,40r.6 (ladrlde 39N) w,rh 2 oul of3 {66.7910) posirivc eghlingsad II o of l8 (61.l%) neSariv€ sighdnes a8rce snh od, ol
fic lav. Ior
laritude 6.5
deg!.es, I our of2 (50%) posilive sightings od 4 oul of6 (66 ?y.) asE. wirh rhe tan.
I05
I
4 15
't0
loo
0
^
Fia No.
3 3.6:
zlo
actual RF
3b
400
br in\isibte . e.lrrr nr Or ri"tOre
Rjp.@r Fundion for r-ditute 3 L8 d€g.c Nonrr
---r;-+: ;b.,RF6.'"".b,. Fig. No
I
1.7:
Rip€lB Fudid
.acrld
R
for C.p. Tow4
t06
Sqth Anic!, Lgnbde r3.9
it€lr*
f
-111+.-Ig'1.rl'1 Fig. No
t
r.tl'::.gE::.
f
l.l.8: Ripdess Fudi@ for Lrtibde 6.j d|:gG Non\
20 1a
l6
10
300
20n
J.E""'g:f*,","..,v"ltr" iU,ar nr b. rnti"itrc Fig. No 3.1.9: Ripdcas
luDrid
for Arhdq
]
lrriMe t8 dâ&#x201A;¬@ Non[
Loogitudc 21 7 d.grca Easr
t01
/too
All thes. figu6 show ! lend for lhe Aveog. RiFn€s Funcrion lhal is indicaL<l bt rh6&thal consitt ralions tud deEocr.at.d in figGs 3.3,6 b 3.3.9, c..ealy ihc
ce$enr hav. Actu.l Rip€ne$ Fucrion vdu6 b.low lh. AwnC. Ripoess "Cwe md lh. visibte cBcens have v!l@s rhal @ abov. rhc cle. Devi.tions oa invisible
both foms ac prc*nt ald
e
discu$ed ,bove. A rh€orcricalty visiblc cG$en$ (aclual
Rip€n6s Funclion valu. .ounts
s
noE rb& the avcRg€) is reponcd invisibt. $ar gendlty 'Positive E@lied lh.oErically i.visibte q€sc€m (acr@l Ripc.ess Function
valuc les 1ha lhc ave@g€) Eponed to be se.n, a..Negalive Edof,. The posirive ero^ dponed halc no atiecr on the modet as rh.se cm6 nay occurdue ro mdy uncontroued fado6 ( like seather cond id ons and obseNer,s abi I ity to scn* lhe conr 160, Thc negative cmB nay eirher by hiShty oprimislic bur inconect clains or they nsy rndicsre hcr of authcnticity ofthe nodet both di$lsed abole ih derajlfor $e LunarRipenes Law
ovd atl @hprrisoi of the Lud Rip€ness taw wih thc Babytoni& oitcrion shows lhat lhc Babylonie crjrelion huch noe succcssfut. .ltE succcs percenr,g€ for ,a,n
pcllNe cs$ fq lh€ ipenqs law h 92.8% aeaitrsr 96.490 or Babytohid qiroion. Ior the negatve si8]]iings lhc .iFne$ las succ*dr in 57.?ro css ,€ainn 59.9% for the
3,4
EMPIRICAL MODELS OF EARIY 2o.rr CENTURY After lookine
Modd
i
o Ine deraits of
tc
&d lne co.srE,nrs of rhe tupcness ctoser look in|o rhe figw3.3.1 ad tne eatysis of th€ obseryed to itc Lu.& RiFn€ss Las, d impond dp€ct success
oftheMslinsa
oara rn comparison
is rcv.ated. The following figee3.4 t whicb an exlhsion of fie 3.t,1, in addrrDn to Moon b€ing nonh of $c rcfiptic. als shows rhe M@n b be sourh ofectipric. In lhis €6e though sign of latillrde. pM oflhe M@n tats c@ ofwhcrher rhe tmgih HT is to be added or subrracted nom ln - ,6 in equario. (3.1. r t) or (3.3.6) bur tuother qwsron becones rlever rn rhe cae shoh in rhe tisuE for sane as tbe Moon is huch tunner away ror lhe Sun when Moo. is south of $e Sun (in nonhem hemisphec), rhe cese n6 ldes m of tishr
108
rd t
!.d
FlriFM@ dir.E. So n n DosibL thlr $e d6acrr eirh m.lld & md @.r.qudtly strdla .o mr b. vi3ibt . Ilis i! p@j$ly thc ce for rhe obgMtaom m. 286,2.rd 272, lna @.ctn s ct.itried ro b. sl eirh nrl€d eyc but the Lury RiFnB te i.di.d6 rh. otsuriB P@ imf.sibt. (My lo, A&, vlluet wh€@ the Blbylonia. dilsio. atlos fi.n. So lb. quGrion lriss, for pt.as mwh
thidd fd
hdia Dd dE qegn b€inA o. hori@n !id. oI ilE eliptic ah@ld w giv. do.! .Uolle for !c? Shoutd rhe p€.I! ol with hign6 bdlud.q etipric mch inclin.d rorsds tlE
Rip.B
Fundion
{q
be
low th.. $c, e
&cotding io
rltmr.l
6glB 3.1.2 to 1.3 5 clos. jn lh. dilosio. of thc
.quimr? TrF luF ii ddd, lcr.rt @nsloinrs ofrhc Lu@ &F|€3s tuturion wtEn ir i5 poi.t d od rhr for rcry low AR", v.ru.3 rh. d*qn of bw LAc hn okt agc.td hjc DAz i, E ofl.d ro ben sd. thjs nay b. th. po$ibl€ l6$n for rt. nrort n sirob@! tik. MDidd !.d Fothdiigh|n qploriig tu .el.ri@ b.tqq ARCV .d DAz for the ft51 vhibitity of tu@ cresn to tlE
o,^.
--. ig
Fig No 3
4.t: Spncriql Trigonomfiic ih..iFion
t09
of
6ndiiid,
of
nq
lu@
de*nt
In cae ofMoon nonh
DAZ
and
'n
!
ofediflh:
ES = EJ
J JS
lassine I es
-elr
@te
{r.4.r)
*6s - 6n
(1.4.2)
c4c ofM@n soulhof(tipric:
o,lz - o5 -
p1g
,
115
=
DAZ siven by (l.a.l) js much sfraller
o,
"in,
$&
(3.4.1) rhe
cos
p
rhar eivcn by (1.4.2) for th.
difirEicc of dqliiatioD of rh€ Sun qd rhe M@n (\ _ 6M) rr{ in (3.4.2). wnh k4er aRcL (SM') for M, (3.4.2) as compared rar8.r bul
&[
or Rd. is
sdc.
Ahhongh
A&,i (Ra,
-
&ryJ
r
r.son tar in is sna er |han
|o M (1.4.r) &ry
j,
sme tdr the two ca$s bur
crc$cd al M. is older, rhick.. and brighrei mucb soaler rhan for M. Esutts into dill.Enr ofarcs oftishr (ARCL) or older cE$eit with large! ph6e. Thus in case of in case ofM it hst be difijcult to ke the crescqr s conp&.o ro rne c6eofM.. When€ler as is v.niet (perpodicuttr optihue- aidnioo of I Oo (when
f.nhd frcn rh€ Ea.rh) ccu_
to rhc horiz!) DAZ
Moon is ctosesr !o rhe t dnh)
As and whei tu
i;
b
vanish€s tud
l2v (,hen lhe
nor v€niet lhe
M@i
is
ol. DaZ coh€s inro play lnd Oe oplimum condiroN for as ca b€ retded. For hucn ls8er valu€s of DAZ 4d older dd wjder cesc€nr may b. visibte wirh s@ er vahca of ARCV or aD. So rhe oodels inlolvine ARCV-DAZ rclarions comc into play. these hodel ARCV is a runcrron ofDAZ so as should aho be a fuction ofDAZj
h
4,. = 4.. cosa
ad ARcy = ftDAz)=aL
- -[(DAZ)
Il0
(J4.3)
n@s
This
rhar for coBtaor LAC
(e a)
ARCV
decE|s
ed ARcv e di@tty lotDnionat ro ech L lrgc DAZ dd taige ARCL m@s mall€r ARCV
com|anr 9, t.AG
ktnude LAC.
Duing Elarivety ucnI lioes rhe dploorions of rhe @tist visibiliry
rutu cr€sc.nt or
rh€
rurc du€ ro
@leldtui@t
lat
oa
nd
visibjtity of rhe old cFsc€nr b.gd wnh lhe obstuations oad€ in Alhens and iG viciniry by Schnidt md othes. fteoretical
(Foth*inshm
exploradon was iniriared
E6otu ll)e
ey
paniculd sbononiqt qusdon
1903).
h
lhc beginning of th. trcnlietb ceirury n was eatized rhat ncrhods of verifying dates, panicltarly tum, dotes, wcrc nor avrjtable md pspje were @ncehed 6bout the 6r6noorc.t ondniom thar gov€n dE nsted €rc visibilny of $e lun.r .,esccnr (FodE nsllah, t90l). To evatuare anonohicrl condirions for rhc ktiesl risibitny of *.ber ofsrudies ,ppeaEd. .rhe slrk ofr. K. " Forhe,iishd (1910) hinsell4d that ofE. W. Mau.dq (l9ll) is of vjtal importance. aou rhcsc onu'bur'ons *eE bed on fie nal€d er. obcenarions ot new luna cr€*enr nade by Augusl Momeseo, JutiN schhidt sd Friedricb schn
rs
*'*!'
::::::
@nriburo^
"-"
ee .,p,.r*, i" "'*
";;
;;;;:;Til:,#:lTJ:,i:;;
lonn n.ghao claim ro havc sueg.sEd (in his d,crc aprHed in rh€ roumat of Philqophx ^, . 90) lhat in ord.r to catcularc thc rrue date ol phasis on ough ro have a lable of te requisne depre$ion of the Sun 1
aurtude
sun.
ol
He
betow honzon at
h6
.l$
fic 6oonkt,
or of lhe $tuer for dif€re o8uld dishnces of the M@r fom rhe adnitted abou his hl'en* .
the M@n at ttE
Motre.-;;;rJ,'* T,,'1:::;:;llTf moo. hade h the laGr Monhsn
in ,his rcead.
Schmidr and
bdh of
half of thc nine&flti century by Jutic Schnjd| Iriedrjch
Morn*n himslr n€
such
hblcs menlioned
e;liq euld be @nslrEred
on the
obFrystios dut were povided in Monm*n, s chromtogie lt8a3),
lll
W_
69{0. Fo(brilgb.(l (t910) hs &!.rd,!od lt !. oh.{trdo.! giviq cilit drB of ot66htio! od ir! r!$lnc Fsvit d Dy tioi.iaod ll. !E!Xind.,nd thaidltrh of t! M@ Ebiis ro lh. Stl! r drc lim of Ms.r (or !ui!.) crrqld.d by Fo$dDgh.n tin!.lt Tt4 ob6.'vdo$.r. ,!lrrr!8ed i! rh. T$tc No. 3.a.2 { h sb. rddidool .rlc-rr@.. Tb culs &! .ts Fs&d oo o ARCV-DAZ chti in Fi8@ No 3.4.2. Fo{t.iishn (t9t0) .t$ Gidna I ddrrEy r.u. lhar is r.prottuc.d a Tibt.3.4.1 b.lo% rhd sivB rt nisinM lltiidc for lh. !.nibt. @*a|l fot rr|ridl! valu.s ofrcldirc .?hn'h.
T.bL No. 3.t. t: H.
Fortsiryhrn,.""-r,rffi
.!o it"EtoFd . mlrhoni.d Gt
rion lo
Mioioue Atrtr*
-
dc'qitc rtc k,E:
12..0 _
0r.0OrZ,
(3.a.a)
*** ni5 cod. d.fn* a r.sioD or sry lroud rh6 poiot of y* ]T1,:.* $Ds a $ow! u n6 tgu€ 3.a.2 b.!oe.
d!
.l 6. d4 of su!.! rL crBc..l i! .boE iot T[. cruE h crinlit to. Fo6qingh.n,s If,
cu.rc ir ltould tc viliuc orh€.eirc
Fit. No. 3.al Fortdbgh!$!
lt2
clrl!
T.ble No. 1.4.2
Forh.dng[d\
Rutc
d66
-
A@-on
ii-
'
3' 1,1 lo&!
& ia
I|l
w. d.firc a pa@et . !r , .,visibihy pamerd,,
rt
=
accordiDg ro Forheringhao
(aRcv - t2 + 0.00s21)
rn lhc T!bl. No. 3.4.2 rhe oD.eryaxon Epon€d by Forherineh@
tsl colhn
| tO
(1.4.s)
@nrajd ihe v!l@
ed rhq rh.lablc
sl
is
$n
of
,.
fo, €mh
d in rh. inccasiag ordcr
ofyl . ln !i.w of{1.4.4) iflnc lund attitlde is lcss rba. 12,-0-0..OO8Zr lhe qcscent should nol bc visible_ Alr€matct, in vj€w of(1.4.5) if rhe value or ,ts is rcSalive
ccsnl
the
shoutd nor be visible, Thc
vdB
of Elarivc altiiude of the Moon
dd
irs
Gtaliv€
ainuths aE rho* calcul.&d by Fothqinghah. Ir is e.s y nobd thal out of 20 obsetuations ao. which lhe varueof,r is negatilc two obseryario$ ar€ posilivc: One. on Oci 27, 1859 (obseru.don no.2) od tbe 0lh0 on tlE nohmg ot scpr. 14, t87t
roDsnar'oo no.4t). Hosrver he nor
hin*lfdnilslhat
$ Etiabtca tE sumary
his marheh.dc€l elarion (3.4.4) js
labte.bla. Thc eo€ is exhibile{r All ir'c esl ofdE posnjvc ob$dadons aborc FotheringtEn
e
i.lhe FiC@No.1.4.j.
3 vnibitiry
cw..
ofEtying on lh. ..bueb,. rylDxihale natbeharical nay consider the su6My tabte dala and ltr a quadratc cune approxrhation. Following rhis we oblliEd lhe tolosins @.a@n ARCV dd DAZ jor rhe shmarJ rabt. r.4.r d,h: hsread
/RCv
ed
dennc
= -0 0ot2g Da
z'
+o.o7442aDAZ
e
dlkrure visrbitiry pamercr ya ba*d apProx'&afior d folto$: I L\ =
URcl/ +a.00929D,42,
+|.86429 or Seond
'.O.O14429DAZ _|t.s642g)I
lt4
(3.4.6)
d€88 L@r squd
|)
(j.4_7)
Tabl.No.1.4.3
5
fhis nbdi6c.tio!
i! rn oL
by Fo$dnBltn
repsr€d by Forh€.ingh.n
.rd e$lrs
e pc5I.d in Tlble m. I 4 I
lnbL n
d$ pr*ft€d
in FiA No
s@nd d€gE polynohisl h.5 ob*N.don
(ofo.t
have
Dunng th€ the
hbl. .o
3 4 4
!t ir
TIE dat! of the
th3t rh€
lill€n into th€ mg€ ofn g{ive vd!$ of
27, 1878) a$d
lppli€d to dE obseutio4
l@t sq@e ntins ro a inprovcd $ylhin8 6ttF tN nore positive
I4.1
id
4ily sa
it
vd Th*
ee Nmb€red 6?
l7 (F.b 20, l87l).
sme.6
Mdundg
(l9ll)
@Nid€rcd &olh€r b6io data s.i given in
b nr $e obwnioml drl..
30
20
hvl3bL cro.c.nt3
. villbL cr.8c€nb .
Fig. No 343 Fothringhan
l16
s
Forh6rinoham
Rule
tute
25
F-d;:
Fi8 No 144 A last
sque qu.d6dc poltDnnl 6ncd b $jt d.L iGld! [E fi)llowing cl.rion:
DAz'1 PAzl
at-v
lm
20
Usiig lbls polynoni.t ed $e @nditid
ARC1'>
a.d lppli.d 3
4.4
i
In
$d
tt the
(r.4 s,
(,B@tt
!4: V1+r
to dd. us€d by
!dfig.no 3 44
+
-l
DAzl
, ,fl!0o20)) , =f no",
(34e)
obrlid 4c prc&tn d in t$lc m t t lh. 'visibility p.m€rcl dcfin.d asl
rdtsirghd
lh. tabb
would be visiblc if:
$e @h3
-P4.,\\
II?
(3 4 r0)
35 30 25 20 15 10
5 0
-10
. hisible
Cre€cents . Visibt€ Cr€sconts
fig. No 1.4.5 Th. rrbl. 1.45 3how U[r !E @ft! br.d on Medd,s oaM &. such inprevcd Md rhs. b dly * obqvdid j.. m 4j d le?l t4, tS7l, thd dqin6 eon rhc @rdidoa (3.4 9) IE irbt. j 4.4 and dr fg!rc ooln sr|N rh|r ood.t du€ ro M.udq is nu.h inpotld s ohprld lo rh. Dodet (!l. b ho Ein*hrn.
rin.lly in appljed
vort bolh the @ddq .trl. Forhdi|ghe .tr rh.r due |o M&i<t, ro thc Ft..i.d 463 obs.rio$ nm nr6d),e (Od.b 2OO4) rhis
nE
e p'lsrd i! ffBod m. I 4 6 (Fo.tEngn '!br n,r mdct) &d 1.4 ? (Mr!id6t arld
&€
@lb
mod.t)
oc rpFndix-tr (Colu@ C .d D, r6p€djidy).
Th. fiCW m. 3.4.6 Dd dE r.bte i, r'p.ndir-n (@bm C) lhow Lt l rhq. !E a larae tumbd (90 our of t96 po.nirc 3igtni.g) of ,on! wh.n rh. dcaar reloned vbibte fi.r dwin. AM FortEi.eho,s
obb
trFdet
rt. linir mvij.rt Fdtdi,Bh.r Thi. a|€g.q! tb.r rrh. ll@s of the dte is to ih€ d!r. m which Fothdingnm wdr.d on and .equind siou
by th€ tul€ (3 4.4) d@ to
highly relr.icted
rd
B
ll8
Lc betow
E- 6i
6i
intTii:i
na
s E
ll9
n3
'E
:i:: alF{s_?{";+E:'-.-l
{-:
'l
Fia. No
On lhâ&#x201A;Ź orher han4 figure 3 4 ? ,nd rh.
l4
7
tdlte
i.
tl od ol 196 pGniv! nShd.Ss o,ly lO o6@tirotu d*i.1e |ion Ihur M.unders etton is mrch b.rid lho dd of 6ppe.dix
Forb.gnant
t20
lh. €floft
e
nol
s
s
lh. Babylonia cdlcnon ed Lud RiFnc$ Law coBider.d in the prelioN two articl€s 6 fd s lb. nMbq ofdeviorion fon the law in the ob*tued @seni d€ @ren.d. su@esstul
Anolher eforr ofgEar significance rnar h found in tir.6tuE is based on rh€ of Schoch ( I93O) and h known d lndie Melhod give. in the Exp tnlnion ro The trdian
wft
Astronohi.at Ephenetis , t^ ttlh n€lhod
dr
givs hee
ba5ic dala u!€d rs
il
lablc no
3_4.6,
A
leasr square quadralic
A
nC
t
UsinS lhBpotynomiaI
/
RC
polynoniat fincd b rhis dala yields lhc fo owing Etaionj
= l0
od
v >1e
@d applied il to dara
t74l -
u Ot 3l)DAZI _ O.@aj
rhc condirion dur rhecre*enr $outd be
it4i
*l
Ihrs G
hrl( $e
ii (t.4.12)
Esutrr ohained aE
''visibilily peamelef defined
19 our 196 porir.\e sishrinss Dar devidrc
TIs rill rhe hrer hatfofrhc 2Od c.otury rh. Indiao n.rh@ ws Horck in vi€w of rhe analysis of Babylonian 6d
\6rble
sl
=(ARCV _ lt}.3:,43 _ O.o137DAzl _ o.!n97 D,12..)) (3.4.1:l)
,,,,,.i." "" -O
exploFd
(1.4 r r)
- o.ot lTDAzl_ o.@st DAZ.
Pc*nled in fis. no.1.j.8. For 6is figuE ,// Bed
\
DAZI
rbn l,ll.
condi on
consid.red to be rhe besr.
cnlcrion and the Lund Ripen s Law prsenred in this voik. dot w.d rhe Indim mehod rs s sle6sful in |.ms
l2l
of Fsnivo 3igidier dwidirB froo rbd.l. Dring rlE nodsa tis6 rh. Belylonim cniqioo dd Ripenss tuaction h.! no( ben exploEd s rho@8fly 4 is done in rhe
wott
hs lqd ro a sianili@1flnding rhai rh. eient md rh€ n€nievat for rn orlien visibility of @ tuD ff*rr e s u$tuI s loe of d€
This cxploorion
nE<t€ls
{-.
.;'.':i. .,
ilr
r
lgrlq-;':t! *:;19;!t *j:.t
l
Fig. 3 4.3
3.5
COMPARJSON AND DISCUSSION TIE wort
F6qn.d i. rhi, .h!rr6
6
b.
sDtuis.d e & os:
o obe*rioid lur c.L.d!r h is inpondr b rel,& uur rhe @ndnion "binh of @ MM o difri@ b.fd. tqt $dc- i, d .t .|| . rclirbl. For
ondition for visibi|ny of B tuE @$.,n Thij i! p.niotdy impolt nr in €es wnen tbe M@. @ s.t b.fore $ma *n .na @juldion Thus a
lunr
o.onjudid ofM@ *ith rh. sr b.forc trE b..t $nst dd e obseitio@t tue c.lcid., rh.t ..qui6.dut sighdne of rh. ew cltenr @lerdd bred
nav€ lo
De
€slnirtty dif@nr.
t22
Tne
ddc
oa
aliflic
wirh lnc horizon plats
d
impondt olc for
th€ condirioE of edli.st visibility ofn.w tun( cese.i. For norlhd h.misrhcre if. conjunctio. falls nes aururual equinox this ssle is snall for borh hiddle md high.r latitudes md fi€rcfoE cBeol is eidlcr cloe to rhe horian or .vcn b€low lhe
hori&o .r rhe lin
ofsu*!.
Th.EfoG old.r @scenG may
Th€ acicnt Bobllonie crildion for the
h6
the hienc$
suee$ pcencge
*ape si8hli.g.
€elid
(96.4rr'o)
visibitit, or new tunar ccscenr monesr alt rhc nodets consid.Ed in
lhis cbapr€r for posiljve sighdigs coGidered in lhjs tr!,k. Ho$!ver, $c su@e$ perccnlage fof neSalive lidri.gs is nol good enouSh (59.9%). Th$ the o!e6[ succ.ss
pe rcen
rzge ot lhe
Babylonie c rir.rion is 75.4%.
b lh. Luar Ripeness tuncrion thal deletoped dlrin8 $e nedi.val ca ae lhobughly invcsligared. Wirh ftoucm rahnques The ideas retated
ohpulltioB rhis hs Esultcd i o a useful ne6od for det mrnrng fi6t sighdlg of @w lumrc&$enr. The probteh
of
lhe day ofrhe
onl/
thar sdaced againsr lhis nethod i3 lhc sightings that deviared from rhe nod€l i. hisher tatlludes. Thee are older c,€*ents a.d brighler crcscentr h,v€ lowq Rip.ness rh€ s@ess per.nlas. of Lunar RiFnB rarv for posnive siel incs G 9.8% (bcrb rhan alt hod.ls coNidcEd excepl Babylonitu cril.rion) bul rhal fo regadve sightings n only 57.?% (wose lhan all ofter crneria consideEd in this .hapte.). The o!.hlt succe$ p.,cenbg€ is 72.l./o.
11"' ly:.
Theadw.rage ofnelhods lhar sre bakd on Etarion beNeen ac ofvision &d !€hdve .zinulhs ed thal dc moE lhomu8hly invesric"ted durjng Eod.rn.6 is a6o exptored. Il is fomd lh, rhe Indie Dcrhod b.sed on dr b.sic dala of Scho.h is rhe besl aDones! lhe ARCV_DAZ ba*d Dedods amon3st the
€npidel
Dodels
rollw.d b) rhe Mlmdets
ofte
e&ly 20,r cenrur', rh€ rndid De$od be.l uccss peEenlaec tor posnrve srghrings {eo.l"b) herhod r84?%r and rh. me$od due ro Maundcr
t23
Howv.r, in t m of th. su.6e pc@nla8e {o. eSatve sighdnes Forhdinghm\ crilfion is rlE bcn (@ons$ slt m.thods consid@d in th. (54.lYo).
chaptet wnh 94.7% fotlMd by Momdeas (82%) /67.8r/'.
ed
th€n rhe
The oveEll success pcrced.ge of rhe In<tian mcthod is 79.5%, merho! is 81.lqodd rhat ot FohrinShm\ method
Indid ednod
oflhc Maundeas
a 7@.
The .uth@ ciry or succ.s of .ach is m.6uEd in rems of nhb.r of cGscnr siShtirgs wirhour oprical aid (posi,jve sigtrings) rhal ae In aEreehent qnh $ecnl.non. Some aurhorc have sre$ed on lesdng cdt.ria on rhc basis oI nunbcr of 6es whcn rh. cnlqon prcdicts sighrins ed dlc qe*ent i, nor s@n (nee.rv. sghrncs) (Far@hi e1 sl, 1999) 6 wctl. How€vq odlcB hav€ indicated rhar cban
inoe.s wirh insca* in moe 1988a). -IheEfoE
.,"","J;; ;;::,;:T:::"::i1",#;
our eftpbdis is on .xploring @nditions uder ehich cE$enr cm be scn od not on whcrh.r il is &rE y stu or noi e rhat lDNo.s may be 3t€lchcd for Judeing ft€-eliabiliry ofthe cl.jG of siShtin8e A3 menrioned cadier thee c& be a ro n€gadve sightings. rfa c terion pedicb sighilg snd mc @rccnr E not 6crldly *en d@s nol sl dll ncm lhat 1h. $irerion is not rcliabic. TIE condi,roro 8@,ry str6, vis,brny.!cn ,f sry,{ no, ovft$r as sh,rr br *.n 'nc rn rhc n€xt chapG. B.tole authcndcn, of a cdledon is ,
:::lq
*
*; ; ;;;;".;" *:lj:: :"ffj;j:T
":t, ::_ :jTt Frw€cn the dimtt illmimied Ihin
cecot ad
t24
lhe bignrnes ot
IM&h
sky,
Chapter No. 4
PHYSICAL MODEIS & THEIR EVOLUTION
AI thblclh rhe twen €rh .entury and Inro $e ie€nry ftrst century a tot o, wotk h.s been done on vanous aspects ot the probtefr of vtstli ty ot new tqnaf ce$€.t. th€se other t$u65 In.tud6 (t) ton€th o, tunar cr6sc6hi {Danjon 1932. yas 1936, 19a3b, 1garta, McNa y, schaeisr, 199ft, McN.xy, 19a3, sotran, 2005, Qu6hl & khan, 2006, .rc,) (ia) the mintmun o, timtthg €tonga(on lunar cfescenr (Danjon,
of n6w vistbr.
1932, ras 19a3b
6tc,), (thr $asohat varaa ons In the €anbt vjstblliry oi .ew luna,.r.scenr (llyas, 19A5, Crrdwel & !an€y, 2OOO erc.). On€ ot rhe mosr stgntfi.ant or these and olher sffons B rhe hrroduction of rhe -|rrohattomt Lmr D6te Ltne" or |LDL (contras0na rh. |nr.ma onat date ltno (solar)) by lltas (ltyas! 19A6b). Thoogh the td6a h.s n€ve, D.en !s6d h pbctic€ of lunar cat€.daE but rhe !€me has b€en erten.ivety usoc |n lonrare (ror insrance luooioat by t{an4r lnd A@urat. llmo by Odeh) as a gu|d€ for the rcgtons of vlslblllty or i.vtltbllty oi ths n6w l!..f cr€s6nt, How€ver, In thi. wort the main emphasts ls on th6 modets rhat deat wlrh rh€ probt.m o, eaniest vlsrbi ry of new lun.r cesco.t so that other tssues 6r€ nor constdered. The
ri6t asr@phlstc.t
modet fo, ervtng thls polreh was rhat o, aruin {8tu1n, 1977),Ihis kas ba$d on tho av.rage bdgttness hodetrorru tltoon, rh6 averaSo b.tghtnoss ot the twlighr sty and lhe theory or extlnction ((ooman, 1952, B6mporad, 1904, Sted€ntopf, 1940). Sruh was ,bo rhe rid jn modern rimes ro exprott lho v.rtaflons of tunrr s.miii.meter
wlth rhe Eaft]vtoon
dlsrance,
Afiotu€rds, app€ared lh6 .xtenstve u!6 o,lho phFlca .nd scionce ot vtslblity by Schaetor donng rh6 t6st quarte, o, th€ twe. eth @ ury Gchaefrer, 19s6, gaaa, 19aab, 1989, 1990, 1991., 1993) ba$d o. vrdous racto6 ike armosohoric
e{inctton .nd sky briShtn* ds€ to vanou. objocrs l6adtn€ to th€ ttmtttng ma€l tude or the sky. H6 al$ lhe.att2od rhe hportance ot (a) tack ot hrorm.lton about seather predrclton st iems a.d (b) necd ot tunher qtlo.6 on ot th6 physlolos/ of huhan vi3lon c.pabthbs. Thus,3tnc6$€ rheoFltcat modet teadi€lo Lunar Rlp€nes law by modtqvat Mus ms th6 only rheoreltcat mod€ts a€ du€ ro Bruln and Schaeter In rhl. york Schaoter'. t$hntque! .16 .pptied ro th6 ,6cent obs.aalion.l data and a.e toond to b6 In good aet!€metrt wtrh the obsetoalonal
The exptotts or yattop (ya[op, 199a) whlch was .gatn mor€ of enoticat tn .aruE b ba36d on the ob$da{onat dsta and p.n o, Brutn,. mod6t bur wtrh rhe srmprrcrt ot a 5tngl6 par.meref crito.ton tor the n.w oes.enr Yallop
s modet
usibtr(v, Thls
c..
b€ termed as a s.mbmpt car moder. one o, rh€ m6t srgnlllc.nt connbutons ot y6lop ts hts concept of b€st th€ of vistbfiiy, Tne sonware Hrtatol computes borh th. q_vatues (ya op, 199a) and rhe naCrltod€ @ntrst (rhe rerm cotned In rhts work) rhal tsthe dnf.ron@ o, rhe r{agnjtud€ ot tho llroon and th. timtflnS hagnltud6 of rhe sky ctos6 to cr€*enr. Ihe conpartson ot lh€ tso i3 di$ussed ..d som. ot th6 extra ordtnary oDsendtbns are cdflc.flr analy$d. rlle mosl stgniftcant part ol thts ch6pter ts the d€vetopnenr ot a new srnge psrsmeter crttodon for th€ fl6r vistb lty o, new tuhar crsc6nt, we have con3ld€red the acruatbnghrne$ ot the cr6c6nt rhat b pnase dep.nd€nt(instead of aver.€. bd€ntnBs ot ihe tul Moon ctos. to horizon usod by sruh).nd rho.ctual b ghrne$ ot lh€ iw ght 3ky close lo rhe potnt whee rn€ cesce rs prese( For lh€ bighhe$ of bolh (the 63conr and th€ sky) the loots devoloped
Schr.fer.nd
otheE hav6 been osed, thts has ,6!utted hlo new vlrtb tty and lmtring vbtb iry cunqr lhb te6ds to a n€w s€t of basic dat. whtch In run E.onvened hro a rcw slnge paramoter cdredo. ba*d on . retarion het e€n aRcv and width o, crescenl. lh6 osr mod.t ts anorh€r somfempnbat modot, Our cdterion is lo{.(t to havo bettor succe$ percentago than any orh.r crile on devetopod dq ng rh€ 2Oh
t26
4.1
BRUIN'S PHYSICAL MODEL
Atuin bsed his wolk (BNin, 1977) on 1he obseded avedge brigbh.ss of sky agaiBl rhe posirion of th. sun b.los ho,iD, ,ner ssel (0ut natched tnc resuls ol
K@h{
et. al. 0 952)) and &e
lhe 1h6ry
bdshrB
of rh. M@n
s a tu&tio. of ddud.,
b6ed or
ote
inclion dw B€npoFd (Benpomd, l9O4). The fi8ures gi!e, by him, Fie. ? $d 3 (Bruin. 1977, pp.339) arc r.poduced here in Fi8 No.4.t,1. On rh. b6h ofthcse sludies Aruin developed the Lund visibilily cuFes (relarin8 atdtude, of qeeenr plottcd asainst s, lhe els depE$ion b€low hoizon) 6d fie Lioiring Visibitiry curyes
,
{Elatine,
+
r,gai6r r) ed pEenled
in fis. no. 9 (in€tude<t in rh. eme Fig
No.4.Ll)
(Bruin., 1977pp.339).
Fis ? shows how $e .!e,a8e brighhss of the sLy ,s diminishes afre! suist s a Iunclion oI the allitude of dE sun, lhe elar dcpG$ion or orp r, s !n. su g06 b€tow hodrcn. Fig 8 (Btuin, I977) shos ihe @iarion of rhe av€ragc brightne$ offu M@D ar s a fnncrion of the alritude ofthe M@n n .r above honzon h. Lnnar Visibility odes dev€loped by Btuin shown in ng 9 @ruin, r97?) are d€vetop€d using the two functioB
Asum.
a panicular brignness
ofsky after rh. sunse! ey lU_ stitb, ead our lbc corespondhg sotar deprh below horizon fbn nC 7, r = 4,a degEes m rhis casc. In o!de! lhat lhe @en is visibh in such a bright sky lhe ctscenr should also be at a bighl (lor s!ilb). Then ftod fig 8 Ead onl rhc
lsr
coftrpo.ding bnghh€s
alftud. of ihe M@r wirh Ih.
rhar @Des our to
be, = 1.9 d€gr*s. This pmduccs a poi on !h. visibility curye jn Iig 9 1hal shows a rcta onb€rwentheahruderofth.cresc.nted ne &ld dip r below hdjrcn foi a panicultu brighrness of cre*enl and oa sky. Thus a visibilitycure isa coltectionofpoinbG,i =//r), shere oe bnenbes of cr*.nt ad thal.of sky mrh for cooshfl widrh of cE*nl. The qucslion is rhar fig 8 giv6 rhe brishl.ess of&c tull M@n (dound 30 hiiur.s Mdc) and rh€ cGcenr is eeneo y less rhan t alc minule in width. Bruin Galias this probteh bul t.av$ i! s ir is by shrinS Oat any dikrcpalcies shau b€ accounrd for by soh. rtnd of .Gcsbh,, taclor As
d
121
cxnibircd in n8 9 ir is mr.d lhnl aI
dif,cFnt vidrh ces@t3 @
$le
dip
r = 0 d€gees lh. ninimM dliNd€s for
girq 2
3
a2
Tbh hcms Aar rbe th€
bndrh$
cBent of@ftsponding
rt 16r
a
s
of lh. sky ar rhe* atrirudes (r) G widrh when lhe
we
.s rhe brishrne$ of
su hdjul $r. I. ord{ dul l,rtc ce$.
is
sty wilh dftEding ahiludc rh. c@e nusl b. wider ud sidc,. Tnes ar€ thc sanins poinls of rh. vnibilny c!ryes fial aG aU shaqty d(rtsing bright
the
f!.crions ol the sotar dip, That heons lhar not only the brighh*s oi cc$e bul $e brighr&s of sky (har cqul alons lbcs cwa) borh diminish sh!+t, wirh $e inc@ine st& deFEssion. Th€r.forc, for larger values ot r rh. ee$ent of sne brightne$ @ b. $en at lower od loer alftudc ,. Tlw arc al$ the sianing points or rn€ cums ttat show lhc b.h.viou of, + s {sh ofglribd. of M@n ed lh. sot{ depb) agaiGr th. $tar dept
r
Ahhou8h the
sm of th. atlitude /, of $e cresced dd the r me $lar dip Eoains alnost consbrt 4 $e ce*enr gos doM dese cw6 coftsponding to fix€d crcsnt width ed thcEby ro nx€d brighhess. As (he atrirudc of ce$.hl daca*s 0r. sky brighrness n4l d<Eases bul rhen closer lo rhc hodzon the
\isibilill
sbns deo€4in8. Tnus rhese cuNes fir$ sr.d decrsing with inc,eding !, reach d hininud ed lhcn sl,n i.cre6ing. This in facr shows the raryjng @slrst of the brigl JEs, ol lhe crcsn md lhar of sky. with smatler r and td8.! , lhe contAl is ag.insl dc v6rb,tity, As , incpses dd /l
te
decEass $e contFsr beo66 favoudbt. fo! vhibitity of c!€$enr. However. funho d€qees rhc @nusl again bc@Des dfavombt. Ior v$ibility.
t28
6
/,
Fig. No. 4.l - !
fic fi8u6 fron BNin s Pap.'
rrr, ?, rc rddb-r rr oi *l
t29
(
t
977)
For thimer
c6c.nr
rh€ ,r + s aSaitur r plots Sive thc b.st time of
poinr whi.h is the midhum of rhe
cwe, h rlso
Th*
de excellent
crc*dt my Ehajn
visibl€-
3ueSens a
id6
tug.
vhibility 6 the
of tim. for *hich Oe
rhar @uld help cre$ent-hunre6
bul untdtunably Btuin has nol pesenl€d a clear cul ompuratond lrchriqu€. Brs.d on
sihil& ided Schaefer ha worled
out Enorher schehe of computario. lo b€ discu$.d
latcr. The schcnc for computrtiohs is d€duccd
frch the visibility cuNes olBruin sd is
bsed on ll)e dinimum point of rbe r + It plor againn s. A relarion belken rhe cE$.nl vidth cor.sponding to d€ r + , cwe sd rhe valu. of , + r ar rhe minimum oi lh.
cufl. nay
be d.duced
fron abularing rheF ratucs. For lhis purpo* rhc data deducrd
fiom 6g 9 b, YaUop (Yallop,1998) is
d
follows:
Table 4. L2 2
3
, + r picked fbo rh. ninimln of rhe, + r cufl es asaisl r whi.h coqespon.ls to the b.sl -tine ofvisibihy ofcresent. Tlh dar! 6 edto The valu€s of ARCV ore the valucs of
a
dird degd polynonial
usinS lean
sq@. apptuximrion lqdr lo
ARCV =12.4023 9.487arv Tnis ( an be tEnslomed ro
v),
lh. \ Fibitrly
the
follovine r.larion
+3.9512W' O.5632tr'
oaEmero
.
r, lunc,ion
as
(4rr)
to'toq:
=(ARCV -(12.4021 9.481W +3.95t2t/) _0.5632W)Dtrc (4.1.2)
Tnis crn be le$6d on rhc obscnarional dara with the visibitiry condilio thal a cssce.l should be visible if,, > 0 olheNi* it should E@in invhible. Using condiion (a.1.2) on lhe data *t ed ro evatuar. n rhods in ch.prr 3 dlc plor w obhined is shoM in ligu. no. 4.1 ,2. ln this fig@ lhe cue nmed ..Boin\ Limit,, is the plol of $e equrion 4. t
|]0
.2.
Th. r€d of th. plor CD$ th. rc|t|iE.Xirtde (in d.8r€).gaiMr th.
I snd9
cltsdr
wirhh
(i.
@l obsd8rioi of ttE &tl sel coNid.r.d ii th€ peioos chl9iq. All !h. pd iE siglding cas .rd ihe @lrs of cdlculalimr b.$d d (4. L2) @ 31Em in Trbta 4 | 3 TtE @not.r. dda sr b shom i, €l@ld€d
ar
dE b€s tinc of visibility for
R.--E-'_;"_ 2
r-r*.rl.sc.G,wu.ca* Fig. No 4 1.2
ApFidix.|u slDB
rl| @hs
of .rptyin8 Btuin.s
[bn,
yttrop,s
ondid) €itdi@ (ro in rhj3 woli (ro be repon€d
disss€d in rexr rnicte) .nd th€ w dftdim d€vetoped in anicl. 4 4 betoe) undq rh. hQding -Mod.r tne firn @Enn otriaitu lh. vat!* of visibilily pmmetd d.fn€d by (4.12). TrE Ddl lh cotunr, e ror the orhq rh be
ltl
t32
lll
tJ4
tlq
?$I;;
135
1lz
Our
ofth.
196 positiv€ sighring in the
!o Btuin. TheEfoE rh. nodet du!
nod.k ad is
s
good
@pt.
cs6
t4
d.qarc rron th. Linjr d@ Bruin is thc best mongsl ql ihe orhe, 20o ccntury
b $ lh. Lufu RiFn*
Law.
Ar nx
es
rhai
daiar. f.oo
Brbylonid (io.rion atso dcviak froE Bruin,s nodet. A ctoer look in b ttE derails of 14 caes $at deviab fron Bruin,s mod€t sve.ls oEt rhe la cses devi.rilg frcn the Luar Rip.ness Law and lh.e 14 caes have 8 common cascs. rn. fihl I cs.s ofvisible cNolntable t.3.1 (ob*nation no.286,2ed 272) ofoncrec cros to auruDnal .qunox have !alu6 ofve srlt aboE Bruin.s timi! siyen by (4.r,2). A. n @ di*ussed snicle 1.3 the ce!ce.& in 6ese .6es
eE
'n
vi'ibihypo$ibre. rh. cases
ae erisfying
1ne
older
o
Bruin,slt.i,i,b.,.d..rh"b,ich.::,:;f,J:1':;T:: Btui.\ lioir
despite having sEEll las.
Our otlhe six cdes lhat d€viat.
fror Btuilt linit bnr not fbn LUM Ripenes raw{obs.4o.413,434,I19,ll5,2S5 ed 290) fiEi fiG havc qalt valu6 (o.ol,
0.061 and 0.07 rcspediv€ly) so
^Rm dc hsginal for Led Ripen*s Law. Sihitdly si, of the Ijg that deviat fbh rhe Lu@ Rip€n $ t.w but rc! f@h Btuin,, ljnir (obwlrioa numb6 286,2,2?2,314,6t3 ed 716) firsl lbG have b*n dscussed befoE. The n.xr
t36
ll4 ad 613 have smaU v, v.lu6 $ dc m&gitul €ds in BNint one (obs. No.7l6) is asain u old ag., wide ond bdClt crceoi two
Ths sc ob*rve exaclly supplcm.ndng
Brui. s
linit
that
eh
6c
Bruio's
Linit md the Lund
oth.r blr thcy @ rh.rically
Mod.l.
hw ee
Ripen.ss
cquiql.
ud noE su€6sful.
4,2
YALLOP'S SINCLE PARAMETER MODEL
nol
Howevd
is rakin8 brighhe$ into considqation theEloG Bruin's limit
logicat
Tn hsl
h
a
moE
pdndd
nod.l of firsr visibihy of luMr clt$nl Yallop used Bruin s wort in order to .xi6ct optimum crc*enls *idth for vdious rehtive To devclop his onc
ptvio6
ahnud$ o. @s of v'sion ARCV, nedion.d in developed a lomula
cllline ARCV wilh DAZ
on lhe bask
anicle. Like Folhcdnghan
ofht
sunnary ldble da|a,
b€lren ARCV md lhe Nidth W, Hh data (froft pase 2 ol NAO T*hrical Note No. 69 (1998)) is
Yallop coroider.d fie bsic dau for d€veloping a Elalion
of
crescent
Epioduc€d in the oble no. 4. | .2.
d
Hoselcr.
Mdh
slal.d hy Yallop, f6m 1996
HM Nautical Aldanac Ofllcc
ddided ro abndon i!3 tcsl bared on the Bruin m€lhod (4.2.1) for lh.
''Indi.n" melhod s'-shrings al high
Bed
on
d
baed on lhc
thc lndie m€thod produced mor€ scnsiblc rcsults fo! old .gc
alirnd6 thai occuB
at
l.rsl once
fie sorli of schoch (1930) th. b6ic
DAZ
one
y.r
d
dara
15.
20.
30
I00
Tatrl.No42l As rhe width of rh€
qesent
is sivcn by (2.E.9)
tt7
55
d.sd'
ued in the Indis. melhod h siven in
I0.
0'
fo.lalnudd rtomd
dd thst @ abo 6e wifien
as:
rr' = ls<t
- c.{A RCv).os(D,4z))
a$uming ih€ seFi-dim€ld of tne M@n to
cs b. t@sfomed
be 5
(4.2.D
con$lnt
15
dc ninutes. This basic Daia
inlo .Lt! rclating the width of the cesenl
likc thlt in table 4.1.2 ofYallop
r cubic polynomial6ing
ARCy =
bed
16l sq(@
ll
-aJ7l
-
on Btui.. Yallop
ed @
tr4Iomed
of lhion ARCV
ihal d4ta fittine it lo
appoximdion 6d ohainqlIh. following eladoni
6.3226u/ +0.7119tf1
(4.2.)
-0.10)8w'
While applying Brui!'s melhod (€qu.tion 4.1.2) or lhe Indim method (4 2 2) $e actual
vidrh t/ sbould be consid@d (nol ,4,RC,/ for lhe place the
e
minulet. The method
says lhat
of obseruation is norc than $e value of lhe right nmd side
.Escent sholld be visible. Thus
V|
l5
a @nstonl
-\ARCV
a
visibilitt pameler may
(rr.8J7r - 63226W
be
dein€d
oa (4
if
2,2)
s:
+073r9w'-0tntw')Jtto (4.2_3)
if the visibilily pemetei /p n Positivc lh. crcsce.l.may b€ s*n. Applyins this lisibility condnio. on rhe dala et of chaPtct 3 ii is found rhot 16 positive sighi.Ss out 196 deliate fom this lndian visibililv condilion Yallop €alls lhG ,/p
6
Thcse d.viating cases
4-value. In g€n€tal
ae shoM
i.
6guft
4 2 1 as
vhible ciescenls below the lndian
"Limit' ed re rabulated in rable 4.2.2 .nd ihe r€sults for cosPlele dao set ats prescnled in rpp€ndixlll io the s4ond colmn und.t lhc heading "Models" l. view of lb'sc eluhs w find rhar rhe Bruin's Mo&l is ndgiMlly better ihm Yallop's crnction fo! this
Yallop and
ds
@nvert d Maundd's condilion
tom DAz-based lo lhe width-bsd
oblaircd lh€ foUoving cubic reladon b.tw.et ARCV
ARC|/ lJt78) e.Olt2w -
2.O1OaW1
B8
ed
W:
-Ot16OW'
142.4)
*lich l6ds
ro
tlE visibiliiy
pabr..ld:
,ip = (,{XCr. . 01.t733-9.0312W +2011J4W" 013601/
)/10
(42t Fig No 421
. lnda Umir .
ApplyinS
thal oul
of
196
htsibl.c€.e
Mendd's nodifi€d ondition to thc daia sr of Ch.pLr I it is fou.d positiw sightings @ iher.27 clg th,l dwiat€ fron the 6nd;lion
5) rhe se e shoM in 6g@ 4 2 2 Thus Me 6s nodited @tdition is dill mr bdd th3r th. ltdiu lr|d rn Btuit's @rditios All thc 14 {,g rnat ddilr. iom Bruin s linit tte d6nd. lion rh. Indie linn Ttu rvo tddidonll wr io!! m. 3r4 .rd 33) ttd ddid. fron lndis $nn & Idtd to b. tugjn.l cet d.fined by
(4 2
(vr = 0 ol8
and o oo2
clore
sgr4rcot
s
repedively) in Y.lloP! Indiln dEd.l Thu3 thc t@ hod.ls ar€ in
Iney
re
both bas.d on
sinilu lpprs.hes a.d onlv slishtlv dillq
itr
i {
Fig No 4'2
2
@Ndting .ll visibiliiy otditions from DAZ-bas.d lo th. Widlhb!*d Y.llop achievâ&#x201A;¬d tqo orhd rdeltbl. t8ks. Oft oftheh is hh d.ducion of BBt ine of Visibihy The otht r.Mbble ontdbllion liom Yallop is io tkaw lincs lD addirion 10
140
condilions on lh.
b.twe.'r€giotrs of v&ids vbibility used in lhe Indian
mdlDd th|t
be
6.8tu
cals
b.s
of viribihv
pdma.. ,/}
.
Fis.No423 Fdthc bd rinc ofq.sit lisibililv' hc nor6 ih.t h fg 9 of Btuin tlE siniM ges.ent widths, fom a slrsisl]t line of viribilitv c!tues of , t r agaiin s lor different (" r) The 3{m h which whs Drcj.cl€d n€els tn orisin of the @rdiMt€ svst'm Th' shom h6e in fi8u.. 4 2 3 s a G{t lir. PNing ttroSli niiinun of @L @rc Itis dnimun @@sponds to lh' ortlt d(v !fl| b€d vilibility @dnio|\ thc b.d cerlln bd}6 rlE N6'ee briahtns it a 'poinr in tm' the b.iShtness oa th. c..stl ..dding lo Bruin Yall@ inrdPr'tt l, in a nlio 5 4 Thus rhNt rlivi.!€s "the tim€ lin€" beiv@ the Sunst ts ed lhe M@n!€t slop. olrhis
rhie
"poi.t
in
saSl lin.i3(, trta/4d,rs 5/{
tin€"
i3
th. b.!i tine
I,
of c..s..ot vitibilitv Sivd bv:
t,= 5\
+
4\rs
+
LlG)
9
l4l
, T. *!1,4c
(427)
coiDur.rioa have b.6 dotu for this besl tim. sivcn by (4.2.7). EsFcially the calculatiotu fo. rhe iable no. 4.2.2 iD $ltich rbe Indid condition (4.2.4) c used lhc @mputations ac done for this best tim.. In all
crloldjoE
in rhis
rcrk
rhe
Finally, Y.llop d.duccs rhe visibihy @ndilios for dillcrcnt M8es oI
q_vatu4
dltysk of rhe dlta *r of Nund 256 obsdado6 avaihble in his timc. Our Esulti in lh. sdond l$1 colmn of rlblc in app€ndix-lll, e lPpliqtion of lhc Yalloo s condnion (bascd on bsic dala of schoch, l9l0 or lhe Indid ndhod) io! $e doia selcted inchapter 3 wbich is taLh mostly iion Od€h (Odeh,2004) Theconditions
aic.
a
detailed
d.duced by Yallop
lisibility eiih
d.
Eprodu€ed heE in
labl.4
2
4 Ihese conditio.s
e
iddicalo6 for
or wilhout oPlica! aid.
Tlble 4.2.4r Thc t-test crileria.
{A) q> (B)
ENily visible (,4ICl 2 I2'r {EVl
0 216
02le,l> {014
p.rfd
condnioN (v
160:4 > -0 232
nedoptrtl lid'o w-itt neo oprielaia o
2l>4'-0
froivsrbG
(c)
May
(D)
{
(E)
-0
(F)
4-299>q
The
visible und(
29q
'sitk,
linilins ralucs of t weE chosn
find
U
PC)
cerdIMNOA)
frna crescent
tRoet
viii[lcmpe,4nC. < 8 5'tlt ueto" Dujon tinir;Rcl < 8' for lhc aix cnbria
a to
(v) (D I
F for the following
reens
(Yallop,1998):
-tlor A lo@ limit is rcquir€d to
spdl. ob*talio6
$at
d
uivial 6on rhos
l'ul
.len.nt ofdifiqitv. Accotding 10 Yallop il wc foud that lhe id'al sirr^ion ARCL = l2o nd DAZ = O" prcducd a Fnsible cut-otl poin! for shich q
nave
ed.
= +0 216, Tnere aG
Ill
exmDles
wh€n q exc.eds this value,
ad i.
Tabl. in appendixlll G'cond lai column) 8.Mal it should be v€rv ..sv lo se 1he new
i!
142
c@dt
in ln.e
m,
rponed posilive sightings i. dr6e cscs wilh (B)
I
tro obscaing cloud in lhc sky The
th.c is
Providcd
cascs
e
> +0.216 10 b. lhose wbcn the
I 14.
Tns
cccnl
it is
@mble
to consider
is esily visible.
Fon obseryc^ rcporls it has been fou.d that, in gcneral, t = 0 is close to lhe lowr linit for fi6t visibility ud.r p€lfecr ahosphenc co.ditio.s 3l s.. l€vel withour Equirine op1ic.! aid. YatloP u$d his Tlble 4lo st lhis losd linn for vhibility mot p@helyand he says thal from inspstion of Tabl. 4 ihe siSnilidcc ofq
- 0 @ b. str
bul
t
=
-{
014 is
&olhd
Possible cul_of val@'
Tabl.4 sith q in ihis Ens. in the daia u*d bv Ytllot wirh 48 positive siShtings. Th. data sed in this qotk (in app.ndixlll second lst @lu.) thec aE lll ca*s with q > 4Ol4 bul les lhan +0216 Oll of th€*
(c)
Thce @
68 €Aes in
l1l cse)
rhe!. ae 6a posirive sighnngs withoul oPtical aL
Yallopusd hisia6L4lo fi.d|hecut ffpoinl *hs opti@laid isal@vs ne€ded lo Iind the crcse.t moon by rutching lhe q_test visibilirv codc wilh scha'Iecs .od.. The rcund€.I value of 4 = _O 160 @ cho*n for lhc cut_olT dirclion ln Tablc 4 (YalloP, 1998), thcc
\,w
26
cNs
thar
s
Gfv rhis diterion
t0'16 < q <
wre positive unaided siSltings tbe tcst were *cond lat cormn se.n vith hiMul6 or r.lceoFs ln Tlble i. appendixlll' q_valu€s oul of vhich I 0 s€E useii in this *ork therc 62 cses in rhis tuge ol -0.014), only lhree
unaided si8ltinSs
(D)
ces
dd
out oflh.se
29 times lh€ cresced *as seen either vith bin@uktr oi
s'lh
> -0232) YaUop s Table 4 ha' roo lew enli's fton thc fact lhat which lo estinale a lowt limit for 4 The situalion is nade NGe bv oplical whe€ thse is an €nl!v. in non cas.s' the Moon ss not scen even wi$ a9pae't clo'galon aid. ln f4t it h @€ fot lhc cc.dl to be obedcd lElo* 6 lhis dg€ oul ofabout7c5 (Fatoohi d al, 1998) Ydlop's Tablc 4 h6 14 cs's in exl6 wbicb 6 re positiv€ sightirgs thdough binoculss o! &le$ope ed one ln lhis ca* (-0160 >
oiilinary
ce
t
of uaid.d siShing ln th' r'bl'
141
i'
app'ndixlll Gecold 16l
@l@) of lhb wolk lb@
e
with binoculd or 1el.$op6
33
.M
dd th@
our of which 18
extra otdinary
@ potiliv. sidines
ces
of unaid.d
sidli.g
(ob$flalion no. 189,455 add 2?4) lh.t is dillcral fren fi. @ @sidercd bv Yallop, Al lhe tine of Yallop {1998) lhis wG thc linil helow shich n ws
NW.d
that
il
is nol Posible 10
c
thc lhin
.t snl
n@n .v.n vilh
a
lel4oF
I'
for hoiienlal panllax of lhc Moon, and ienoring th' eff'cl of rcfa.liol\ fo. & aptent .longadon of ?q5, ,'{XC, = 8c5 lf ,'lZ = 0p rhis
Alloeing
coresponds to
. lowr linit
of
I = -{ 2l2
Wilhout good fidding lgles@p* md
posidoml infomation, obsne6 aa unlikelv [o
(E)
w
lhc
crc$"t
helow this limn
cul{fi Point *hen th. appatcnl elonSdlion of lhe Moo' l98lb frem the sm is ?", knom 6 lhe Ddjon linir (Ddjon l9l2 1936, llvas'
TheE is a lheoEical
al nabohi el al, l99S) This limit is obtained bv extlapolatine obedalions nade i8f,olrng lager elongtions. Allowing t" for hori@nul p@lld ofth' Moon a'd 1o ''{'R'1 = 8' rhe effect ofrefEcion, ah.ppor€nr elongarion o' 70 is eqnivalent Wirh
,,llcl, = 8'ed
However, in
D,42 = O! the corespondine low€r
linil
Yallopt lable 4 th€E tte 2l enfiies witl onlv
]
on
I
is -O 291'
posilive sightine
I < 4 212 ed no sighting claim wilh s_aided cve ln lable ir the mse -0 212 2 4 > in apFndix-lll (se@nd lst colw) th* ae l8 c*s
with
a
bin@uld fot
snh binocuhr ot tlescopes and onlv 2 455) Both the* un_aided siShdngs (obsdation los 389 and po'nl dcviak from all the crit.ria considered up b lns
-0 299 oulofwhich there atc claims
of
obfdrtio.s (r)
7 sishdng
wod( shoss 66 cases wtrr The table in .ppendixlll G4ond last cotumn) or this claim of sishtins -0 299 > q ed therc is one.xtra ordiMry silb o! opti*l aid (obs .o. 189) Ap&t fron $is lheE is no posilive siehting of €Esce sisblins $ wilhoul opdcal sid. In lable 4 of Yatlop tnee is no clain
A@oding |o the visibilitv divid.d into
5
dNifiorion shos
abovc, rhc
suf4
of E nb b
lhe tgions bv four consi&t_q val@s As lne aclual visibihY of
crescent
dd oi iis dltilude .bov. hori@n d th. rioc of su.sd accodi.g lo Bruin (Bruin, l9??) dd Yallop (Y.llop, 1998) a @nsht q'valu. describes a cufre on th. globe i.di@lin8 sinile visibiliiy @nditio.s along all poinc of$e curye' Such a clne is a psldcr@bolic cwe wi$ v€icx on the 6l-dost loisitude Thc lonpludi.al p6nion of lbis ven x vei* nonih 1o nonlh 6nd th' hnude of |he vqar depends on ils width
ed lhe Sun on the ccle$itl sphere Duing sumheG in nonhem henisph€lc lhe sun\ declimtion h extren€ nodh dd if ihe d.climtion of ths Moon is norrh of $c su lhis ledex no!.s to exlEne nonb and lhe
d.Fn&
on lhe d.cliMtion of th. Moon
c6@
visibilily is edier
ladud.s if lhe Mmn is nonnern posilion
i.
eufi
dd still
tne
Thc situaion h revese for lhe
rhc nonn hitudes Duing summer of the nodnem of lhe s6 then ftis v.nex d@s not @ch irs
.e{ cE*mt vhibilitv
is better in
$liheal henisph€te Tne
(nonhwardt and below Goutbwrdt fion
'xcm€
1ne
norlhen laitudcs
palabolu opens westMd above
vcnex The CuR' A is
th€
rhe collection
of
points on rhe 8tob. fot which rhe q_value is 0.216 All rc8io's $ithin lhc lwo b6nches ot $. p&abola wesl of rhc vertcx the EgioB wh.e |h. q_vdhe is s@ler lhm 0-216 md
e
ln. Mlcd eve in lhis rcgion' Csc B is the colleclion or all points where the q-value is -0014. In all tbe Eeions be$€e! cuftes ed B lhe cicsc.nl is lisible to thc nai.d ete onlv undet pcrfed visibililv condnions
the cle$ent h ea3ily visible to
d
_0-16) de $e tgio's io wbich The Fgions b.(wen cuN. B and C (q_value visible lo obsen.r suld Gquire opdcal did 10 locatc ihe cr*c'nl dd th€n it mav be
naked cye. For reSio.s
wi$
q-vdlue I€$
t\ai
_0 16 rhe
the .akcd eye For a comnon. untaincd obsePer
*ould
bc seen in
rgions
ed
cresenl wolld not be visible to
it h highl) unlikelv thal ihe cFscem
oflhe aNe A Thc scienificallt ecoded
obsaliom
(oh
bNd) do oot Pohibil obedalion of in facr' lhc .r.sc.nl wiln mkcd €ye in region belwn cwet A 6d C In sucn t'gioN' probabilily of obsenation incFdes whh the nlmbef of keen tdined od expenenced ehich all $c sludy of the rwnli€th cdturv i3
145
SCHAEFFER'S LIMITING MAGNITUDE MODEI,
4J
Ilruin (197?) ued only avfrgc brislhcrs ofsk, duinsrviliehl and rh' vanarion of brishtrcs oinE full Moon ro obEin appNximlc cohlrsl lb! (csccnls of$rtuus sidths ro develop hh crcsccnl lisibility cuncs dhcussed a6o!c ftc t'srltins nodel
lms of , rclation berwen cRsenl width md thc Elalilc tltiludc ol €{*dr ar "tal rime dcduccd by Yatlop (1998) pro!.d 1o b€ hiShlv succcssful' fornalized in
lihough, the basic data cxtacled by Yallop frcm Druin rcplaced
bt rhc
iom Bruin
ih
was
s
d,tt .re mrlgi.ally
ces€
vhibilil! n h6
bccn secn rhlr
bctter dan thc lndian mcthod
lhc ddo scl
nN
Schacllcr (1988a. 1988b) oh lhc o$er hand has uscd
cxr.nsivclt
visibililv cuBcs-
basic das due to Scboch (1930) (lhe Indiah nclhod) lo aFivc ar his q_
value coodidons (di$nsed abovc) for rh€
rcsulls
s
$c
'or
phvsics
of \isihilirv'
rcsulrcd inro a lool (6at S€hacrdconvencd inlo a compubr Dmgmm) to
ddmine $c briebhcss ol sky at anv
poi ol tinc dd
for di{Icrcnl aftosphenc
{ork Scbaeficls progrm h ep$duccd a'd frade pad of the lundr crc$eni visibililt software dcvclopcd. Ililalo! ro clal@re lisibilily cohdnions. Tlis pan of the sftld is rsi b conpurc thc sk! briSbhcss (or linni.B magnirude) al points clos to $e cre$eht md the aPPatunt nagniiudc or lh'
rcmp€*tutes aDd rclarile humidil!. Ih rhis
$c laryins conmsr dunng twilighr for vanous tcnpcrat!rcs and olativc fiunidny. If rhe appaFnl brighmes of the crc$e.l h morc ddi tlE bighhcs of (1988a) himsell' lhc xrilishi sty lhc cre$e should b. visible o$cNne nor Schacflcr lunar crcscenr ro sludy
sinilar rcchnique lo @lyscthc visibililvor invhibilnv data avnilablc in his arc @hnique is ,Pplied to $e d a*lof rh. chap161dd the rcsulB obbiocd
hasap!li.d riFc.
-l
he
pnqntcd
a
in rabt No 4l l
Bcforc
a
discussion
6n rhcs' Esuhs Schrcli'is
nldhodology t-or compulins sky briShhess undc! difeEnl ahosphcnc condithns 's
Aner rhc conjunclion thc ne* lumrcrescen{cd bc seen in rh. scslcm skv ck'sto tne non&n md lhe Poi oa $@r Simildly the last crc$enr cm bc secn i. lbc
casrcrn
st!
bc
forc sunsd. l hc
rwilislr sky dcp{nds on
conlEi
d number
bc(wce n lhe briebtness
o
f crcsccni
Nd thai
o
r thc
of f.clou. Thcsc incllde:
P6nio! of the c@nl which n.elf is significsntlv {fTctcd bv Tbc $.nerine orthe
tieii
cEee fld
ftom
Lhc
thc sunliShr dle to (a) thc
roial amount oaair-nass the ligbi tdvels-lhrcugh. (b) thc rotal amounr ol
aeosol pesnt in lhis air. and (c) lhc slratosphctic ozonc thoush shich rhc lighl bas lo ftvel. Th6c *!lt ring souEes cauF th. inlcnsnv of liehr
$c S!n. lhc M@h and o$r sourcG (like anilicial light lbat G nol considcfd in this work 8lh'v m noi s affc(i!c during lwilisht.
sourccs of liehr rhal includc
The amosph{ic
ldp@tuE
and the
relaive hunidilv
lh* alldls |he to|,al brighlncss of lh ikv is conpded at lh€ point whcE cmcol is pae lf rhe bnsl i$s of $c atv is noE than rhe or equal to tbe briShine$ of the ccs. ihc cGcent En nor be s(n' Eten ii Taling in|o considmrion all
it is vcrv brishtness of the crcsocnr is marginallv moe $an the bflghtncss ot ihc skv difilculi lo loc.c lhc (erc6t withour tny oplictl lid ln $e followinS thc q@'rilalivc bols aR di*ussed bricfly for .ll dc$ @nnuaiions:
w.ll lbo€ horian $e lpFcnt Fsnion ofrhc crc*e isEi*d anamon.tR. thc angl. ofcfmdion (Snan l953.G@n 1985). givcnby: For alirudc
x=5s.{#]*' whec P is the ahoq'hcic
P6$rc. /
is rh.
|cnFatuc
(4.i r)
and z
lhe cEscenr. for ahiildcs closr ro rhs horizin rhe following
t47
bv
,+ 1i - l L I+441 r ."rnr I x- t.ot.corlA,+n'+s.tt | i
=
I
whcre, 90'r : lnd
,
- 9ou
:
lion schacf4
and dcrailed
pogBE)
linitiie
rc
Hilalol wo develoi,cd in $is work
naehitude thc major nePs ol calcularions
lised b.low wih bncf de*riPtion Rel4nccs
d.sc'iptions can bc folnd in Scherd (1993)
Thc prcgEn funcion
. .
s
The sollwde
t.2)
(4.ltj
I
R
ror lh€ delcrminarion of lisual iadoplcd
(4
l,.cor
/drat
r'l(,)
1at6
s
inpu/pE-c.lculatcd valnes listcd bclow:
a4r. thcal(iludcofnoon abovehonzon.
ftc azinnth oithc noon
kvelih ndcB, Pn,z. cslimlted rclalivc place. p/a/. lairud€ of the plde. PratP. esrinatcd lcnD€dlrrc of
par. the alrillde oflhc place abovc hunidny of the
tdu.
sea
. sd/pn4. lhe right Nensioh ofthe $n at the inc of ob.cnstion. . \eshlil (= 0.365.0.44,0.55, 0.?. 0.9) $. {av.lcngths @@spondinS lo U- B. v. R
md I bands
. b,r.r[t (* Sxl(]iJ. ?x10 i. lx10fr. I'loi3.3xlOI) p!3ncl$ !.lues in lho nish dhc brigihss sssilled snh .rch wvelenglh $lccrcd
. a!r1t
(= 0, 0.0.01!. 0.008.0) p@eler values in $e cxrinction cctlicicnr
corespondins lo lhe ozrne factor ssdialed wirh ceh wavel.neth sclccled
. rr.!.r/, (- 0.0?4- 0.045. 0.031. 0.02. 0.015) p.Bmcrer
values in $c cxrinclion
ceficicnr coftspondi.e to ihe w@ficr facloa (hmidnx lcmpedurc
.
associatcd
wilh each wavelengh sel{tcd
@vh[j]
l.
coftsponding
.
elc )
-lA.%. -10,45. -11.05, -11.9. _12.7) lhc nagnitude of fuu moon ro
dififtnt slel.d
warclen€lh b6nd5
mschtil (= -25.96. -26.09. -26.74, -27.26,- -27.55) coftspondinS to diff€rc sel*ted w6v.le41h bmds 148
fic $lar
magnilLrdc
cnschtl
!!
(
t.36.0.s1. 0.00, -0.?6. -1.17) @Nrion for lund masoirudcs
csponding ro difiere.l sleded wavelcngih b6nds
r"a..
the
ler ofde obseMtion,
c?,,ap.lhc elonsalion oalhc n@n
'lhc funcrion
shs
I O.l.lM tum dishnce ofrhis
+ 0.r-i-e. a poinl
I
wnh sky position
sitnhr lult
clo* lo th. cstrc of $e tu.e disc
Thc
mdh
^.ilh
poid.:ed,sr is scd lo calcul.k lhc 8as. aeiosl ed lhe o7..c
= {cos(?cdig )+0.0286
x4
=
bo(ud'i
"'=l
lhc sun al lhe line ofob*ryorion
Nnh $lcclinS a poinl
xr
. L
fon
)+o.or
I
icxp( to.5'cos(zsrd,ri 1€xp(
)r-l
(4.3.4)
-2a.s'cos( rd,u/,Jl ))l-r
(4l.t
l' lr.:oro;rrl ] lsintf,",./,r I
ndss
(4.t.6)
I
This is followd by rhe calculaio. of th€ cx nction @flicicnls componcnls comspondine ro live
diff@r
\Ev€l€nglhs
& =o 1066 '*e[- ?s4J'("qrrtl'r)
r,
=o
in the
@v Ydc,ll/:
4
14i7)
r,(xru;'".-,(-#).(' -a##-*,) ",",,,
J, Ka =
cleted
*orr'.^-,0*r!!\
' +0 4'lpto! ' o.'chlil'O
*,, =,,,,,,r,,..
''o'
t
co{satpha
)
- cosl3'
Ptat )))/
.
(.r.3.9)
*.(,i# ).".(tf ).".(- #il )
For cqch wav€loslh
(4.i.10)
bed rh.* eidnction ccmcicnts a'c ecumulalcd in
(4l l l)
krchli)= K, + Kd + Ko + K" And rheir linearconbinalio. wiih mas componcnls
tE
gathcrcd inro
n
v
dnvhJl:
,.tdchltl
=
lbe.qurioft O.
1.2,I
rhe
^
s
+
K,' x,
+ Ko' x o +
X-'
(4I
xs
12)
(4.3.?) to (4-3.12) aE Pleed in a loop thal rum nv€ ddes oncc for €ach i
Aner$eexccution oflhb loop lhc rir
and 4.
m4ss al
poin
r,
thc tosnion
of
M@nandfiarof theSunacc.lculal.dusinS:
rrr@/
il
r
K,
= [cos{'drd'Jt )+o.o2s
(nofu < 0)
ar
nnposl
icxp(-II'co(z"dirt.)]
(4.l.ti)
= 40
nnpoeJ -lcos(go -
-
nul )+0025 r.xp(-ll
il (\ah <0) xn@ld =40
et:.
snpoel = lcosleo
- ett) + 0.025 'cxp( -l
Th. masnitude olthe M@n
mtut
=
-.12.13 + +
FoUo$rd by
is lhen
. (4.1.14)
, , (4.l.tt
t
@lculatd NinSl
0.026.lt 80 -.to,@
|
+
a. ltso -.tons )a' r 0 t
c'.rrt4
nid -am. bnghrncs.
honlidl
biehh.ss. twilishr bnghl.s and $c
nq6tl ctree - n 4 1. Lkhlil'
kn
= rc15t5
ftmp"
noohh
^filb
=rc
=
06
+cos'(/.io'sui
$c clonsrtion ofF
(tuh . ahree + aaoo@
roo
rc4 a'
l,
t'chlt l'
.
r
)J
'(l -
ro-0
4'ri.,l'l'"*/ )'
lt - c!tuae )i)
nschlil ttz 5 -s.t'
(r _
(4.r.r8)
,+
fon $. ccnft oflhc luE di$
o!'lo,htus D6c'il4+.r:7)
= t0-0at(,*.r,14
i_ ctort
is
(4.3.r7)
| 40) +6.2.107 t(leto,stunf
tot36 .(r
$hm /elo,At,
-!'dt'
-0r.,,.,r,r"*./ o
t(t@ I llchlnl
'
-
ro(6
|rydql
r5:/./d,N* i
1t3.rot
(4.120)
) (4.1.21)
a0)
+6.2'to1 tlfetoresn)z + ro$6 .(.oe *.o.'?(tt,,r* )) 03rrs/'I4\fuir' )' .tqh - |o ort'l' ;i,l't'n6chlil'ar'').t -I0 , *aaoooo'(t V"'
/g-,
(a3.16)
"fat
"hn))
150
(4.1.22)
(4.12l)
lf thc hviligh briebhes
.i
r,grrb
in
L.r/t
and
.'
rv/, doninats
,1, are slored in
,r.r/t
Morcover. ifrhe Moon
l-iially, fic brighbes
,.\rrlt
ovc. tne day lieh briehhcs dat, rhc. thc sud
otncffi$ rhe sun of ,'s&r, md etb rR noE'd is.bov. horizln thm de,, C lho addcd to bs.r/t/.
is @neened inlo
.m-tanb.6. fon cquaon (4l.16)
till rhis point all conpulalion is done id a looP that €recutes Ilve timcs again, once for sch wavel€rylh bdd *l4td fnc €aicula$on ol 6e limitins naghitudc /€, is donc .s (4.1.24)
l5o0)
la (tel <
Els
{ co,a
kh = tum'\t
t.. =
ic,,e=loat..eo
t6
+
i1 -2
Jctu" tb.t
-
Io
!
rr
. .n
o
lo-re)
"
I
0
r
'
(4.3.25)
}
r
t,IVD) \ In(I0) l
(4.1.26)
d.".htzl
Schaelcr (Scha.fer. 1988) in his drtshold
(4.) 21)
co.tdsl nodel calculates /i
of $c ratio of rhe acrual tohl brigltoBs of th. M@n
ad $e
as rhe log
tolal biSlttnss oi $c Moon
neded for visibiht fo. rhc givcn obsping condiions ln this
rc|k
we considr rhc
mlg.itude oflhe Moon and $e lisual limiliog naennude slculatcd frcm thc alsoinhm givcn abovc- The diftcmc. of Moo.s naenitude z"d!A and lhc visutl limitins nalnitude
le-
is consideted .s nugnitude .onxas de"or.d
bclow) sbows dirercncc ofscbacfcls thEshold cohtrasl
/r43
Scries I sho*s ,1aas lor crcsmls
crusoent ihrl \vcre sccn Sdies
wce not
sen
d lhal
I
$
I
4 zDzq and
A plol (Iig
4l
I
$c nasnnudo contasl
wca not $cn and erics 2
shows ,'lu zg ror
and series 4 sbow ,4 cot.spondins lo dcsccnc
$al
scte sen Esp.clively.lheda1a lor this fig is talcn lrom Sch.cfc!
vales ol cont6$ fo. crcscns $al wrc nol *o ad lhc nesrtilc vrlues lor conlrdt lhal *erc sccn snoN lhc inconsistcncics ol thc modcLs qirh lhc ob*ndion. Th6e inconsisteoci.s may E$ll fDn .stiDatcd lalues of t€npcaorc a.d (1988). P$nive
Elative hlmidill adopt€d for lhe calcllalions.
l5r
Thdhold conExl vr|
f.e.ltld. conbtt
i-
4l l Ta!t.4.1.1 is d.v.lopcd sina the sc prcssn Hildol i4 o!&r !o sDlv* $' crts@t ob*frarion @rds t Ln tod ti|c E (S.h&Lr' 1988t Ydlot' l99E Odeh Fig No
l'bl. obsfrrion Dmbq (s sign d bv Odch (Od'lL 2004). dde of ob*darion. ldrlud€, longrld. &d.lcvstion tlove s l.v.l of lh' ple ftos wh.d th. c'€l6l is ob*dc4 followEd bv $. diMr.d ldp.tat@ 3nd 6ri6aldl Elarivc h@idny. Th€ .ext thF @luld @nr.in $c uit.6,l lim' &d th' ldf,rdlig Ms,in4le .dr6t wh.n th. ru&ttn d" co,rr/dt b4om$ j6t f!vo@bl' .3l!n) *id n is b€sl for sidlinS for siShrinS of c'lsdt (@lum vith hddinS (@lwn wi$ lsdins 'bd-) ad whd i is favo@ble io' sidtina ror th' lar rin' (6ltm wilh hddirg 'ta'r). This 8iv6 lh. tine Engc lor $e posibl' Et'd cve 2004). In @h mw of thc
c'ls6! TIE rus,,'& .otdr i3 @Nid.ied onlv fot @id'd visibilit, oa crcsdt. Th. lan $E 6ll,!m @Duin th. i.fonMdo. E$ditg *tEths lhc clt* M claincd b b. vi3ible widout dv opdcal ai{ wi$ a bi'@ulu ot eith a visibihy ot $.
t57
Tt. ob*Mtio6 rhar
rh.
de not
@sidered in th. llblc 4.3.1
cc@ 6 sn El.ver. Moeov.r,
n €valual.d ntaEnituda
10
by
dy n@s .s
ody rno*
*lq il wr claim
ll|e r€cordi enen rhe
t€npdt@ dd Glatirc huidily il nr}€d eye visibihy ol $. asc.nl, If th€
by vrryiog thc Grinared
oblain oplimm @ndilios for
co"na
e
i.
is obtairea ro b€
favour of visibihy onlt dcn lhe
lim. ra.8. of
lisibility Ee delemined md included in thc rzble.lt thc nagnitude co"rf"rr is nol found b be in favou. of u.aid.d visibility the l6t posiliv. value of lhe naked cye crescenr
nagritutu conn$t is c5lculaled md th.
se
coGpoodins columns. 'rhe s,m positivc vahe in all that under lhe
walh.r ondnioN consid.Ed
]-his table shows tbal $erc d€ aid when nagnilude contmt was
css
e
ll
rh*
the cr€sccm
cases
in aU the thR @tM.s it rhc indicalion
vatue is included
ws Ev€r visible
to lhc naked
ofposidve sighting claihs {ilhout opiical
nclq in iavour otunaided visibility.
All
tsc positile
aho nor in aet€emenl wilh tbr conditions due io Folhqi.ghm dnd nalndeu
e
oily ntr8'hal 6e mlcdly diff€D fiom Lllm RiF@ss law. Onl, I of
Lunar Ripeoes las d@s nol allow
l0 of
thcse
dd
the two of lhen
b n. Only one $csc 13 ces ue not allowed by B.bylo.id cdknon. To or thesc ces m not allowcd by lndim n€lhod ed rhe !6t of th. thrce m n&giMl c66 i. Indid method. Boih Bruin's limit 6d Yallop s critcrio. do not allow.ine ol rh.s cases ln cae or cses a.cordins
orher
tou
dlaims
dlsion difieB
a
Ellfoutcs*
are marginally
lllow€d by Bruih's critelion bul Yallop
s
lot in one oflhem.
Thc liBt pase of the lahh 4.1.1 shows t$o etaa odinarv claims of nakcd cte vi.ibihy of crc$enl, ob6 No. 189 &d 455 wilh q_values -029 dd _0 216 Thc Yallop s
c.it.don d@s nor allow naked €y. visibitilt for lhc$ q Qlrcs
8d
tlE naanittde
.o"r'4r, b ale nor favoMble ev.n wirh hiSlly exassenled wealh.r condnions The Modifi€d Ripene$ Fuciion (chapb 3) !alu6 corespoldine to lh€s oberations e aho noi favoudbte G0.95 md -0.62 in tablc 1.5.1) for cEsc€ni vkibililv Therefole th.* obsedations, as lhey fdil to etisry evoy model, de highly melilble ahd ar. outlie*
l5l
noc clain ofnajcd eye vilibility of ffiant wilh t-Elue lcs rnd -0.16, obeMtion no. 2?4, with q-BlE -0.22 | (AR- = - l .l9)- I1tis obs.dalion it not allowed by both the Yallop s crilerion dd th. Lunar Ripenes Law but wnh highd .tevariotr (1524 n 16 ahove s lcvel) dd loe hmidity (6linat d to bc lo'ld lhe tuEnitude cohftast is favourabl€ for uaided visibilily lnd $e ob*nolion is not uNlidble. In rll the esl of lhe cB@nl oben rions *ith I-valB ls lnd -0 16 lhe TheE is only onc
claih ofvisibilily of cressnt is with binocular or nor
ucliable 6 out of25
s@h
claim
wit
lelescope. Thee
8 harc favounble
ete visibility with oplimm 4tinales of lehpcdtwcs
claiN de
also
uas,itt.L cotun lor n*.d
ed rclative hunidiry'
The hagnilude conrAr for sme other r.porledly Positivc cE$€nl sidrinss {ithoul oplical aid n nol favoudble. Th6e obeFalion nunbe6 14l, 3 19, 416, I16,
e
315. 2a6. 611, 314,272, 2. The q-values (and 0.8?), -0.1r (0.07),.0.101 c1.06). -0.047
(-1.t.
0.012 (-1.01).0.018 (-2-88),0.109 G1.47). For
A\"J
fo! $ese descents
&
_0 153 C
-0.02?(0.167), 0.00? (-3-5),0.01 c0.7?),
341.416.Il6
Lumr Rrpcoess Law md ihe nagnihde €oi!r60
e.
rhe
thrc. crireda (Yallop\.
co6islenl- For 286,633,114,212
ud€r "perf*l lkibility condnionJ but bolh lhc Lumr Rip€ness Ls* and lh€ naerrilude conltdt are nnfavoulable for nk.d eye visibilily. Thu ir apFd thll Lus RiFmss L3w is nole coNistcnl with the
dd 2 Y.llop's citerion allows.alcd
cye vGibilily
m.Snilude conlrdt rcsulis.
Io rhis work limiling t€lesopic hagnitudes &e not coGidcrcd as lhe r€poned ccsem ob$fr.tions wnh bineuls {d lclcsP.s do.ol pevid. approPriale d.iails. ThcrefoE lhe appopiale limiling lelescop.s cm not be conpnled MoEover, out is horc conccmed wilh
visibility of n w
casd
154
witboul
dy otircal
aid
wo*
t!.2131)
-'.gr""il,,;* I
,.;;;
I
;;;
t"
"
,.!('!,"]
r-?tp!!
,,;p,{ 155
I
t56
l5?
t58
4,4
A NEW CRITERION TOR NEW CRtrSCENT
while d€vcloping rhe "vbibilitv cudcs" (it againsl
5)
IISIBILITY
$d the
limi$n8 visibilitv
c!ru€J (, + r against r) for.onstad brightn.ss Bruin @nsidcrcd the avedgc brightnes of w$m horian duiog rwiligh od fi. ldistion of lh. bdgltN of lh' full M@n with tlE alitude above hotian c me ion d @lier' Instcad of @cid'dtrg av'ase brightness oi sky we hav€ coNideEd
dual
blighrnds of skv and fte cr'scent calculakd
sing the techniques developcd by S€hefet sd olh'6 (Schmier' 1988b, l99l) i' lhe $nw@ Hilalol. W. $lslcd c@ent vi.ibilitv circUmtarcls of ldious rcw Mm6 css wh€n lhe crcscenl Ms rponed b hav. beo sn For cFs415 ofa pan'culd tho width we found lhe altiludes I oi skv points with btighhess equivalent lo that ol of skv particlle crc$. at dill€tnt $l& depEsio.s r' Th. ovcdgd of the 'ltiludes in T'blc no 4 4 l Doinrs for difl'rnl $ln dctr.$ions for plirhuld sidlh d Lbllat€d grv€s The left most column of lhe lablc contains ihc solar dept€ssions r and ihe toP rov enties of rh€ {idrhs r oflhe crcsenrs sclaled ed thc n xl one giv.s its na8lnude Thc $e
6r
of
rhe
€blc ue lhc aldtu&s
briehtness of tnc
,
shcE lhe stv hs rh' sm€ brighhAt
4
lhc
cresknl ofthc width al th. top of lh€ @luon.
It should b. nol€d thal duins ihe twilighl 1ne widrh of the
crc*dt
vd'es up b a
d.sc.nls. Se6on to eason ed for dif|ere'r lalitldes the skv qch bddrlnes fot th. sdde altitu.l€ cl6e lo th. poid ldee ihe sun sts also vdi's lor column of th. lable 4.4.1 a numbq of c!*s of alnosl eme cE$enl widtb wE
dc
seconds for very wide
cdes Thc dtla of lhe tabl' 4 4 1 is $e' plott€d on a sraph shown i. fsw 4 4 1.lb lhis figure n as a fuhclion ofr (i' =/6,) @d r + ,' = s 6 a fuclion ofr (rl = sat) aG bofi ploned /ft represnl the "visibilitv cwea &d the s(, rc9dnc the liniting visibilitv cudcs" sinild lo wh'l Btuin
@nsidered md each ahitudc is aveEg€ of lh.se
(Bruin. 1977) developed.
159
T$LNa43.l
tf
a.l
t
li
a,
1l
t3
rl!.
-r.8 4.5
tt.a
1
95 5
2a 5_a
5
,
32
2.1
2,5
1.f
3.05
2f
r,e
r.t
255
0l
1
1,1
0a
ot5
0.t
0.55
o5
o3 o25
o,7
0,2
r.t 2
o2
oi5
1
Fia. r!b.4.,1.1
Altdav.r 6ot Oap,Ebo
I! 5
3 2
12
t@
0,8
o.t
Alttudo v.6 Sohr Oottesalon 19 13
€l:
!9
Th. @rdin rs oarn ninid ofafi, Ghom i. figurc 4.a.t) @del pe nrv€ dseloDed Sou tu dE i.ble 4 4 2l
Using
tubi. l€.e sque appronn rion
rchtiE .ltilud.
ot@rf
ARCv =
435t
ARCV
!d
*
e
lhd
b.sic dals for lhe
oh.ir€d lh. following El.ro. ben*cn
tu widd
r
37tvt +2222O75O57W2 5.42264J1tt! + t0.4341159 (4.4 D
I6l
On lhe
v
bais ofthh dlatioo wc tlcnre th. visibil,ty
p.m.t€r
v,
6
follows:
t/ + 10.4341759) e = QRCV - ('-O.35lg$7W3 + 2.22207 5057W2 - 5.422643U
/
l0
(4 4.2)
Our model for .adi.sl visibility of n w
s
visibility paEmctcr v, in (4.4.2)
ls& *s6!
th. r-vtl@) lhc
ir that if
ceml
rp > 0
(w
@ll the
moy be lisiblc withonl
Applting this €o.dition on thc dat
set
ued in chaflet I &d in
lhb chaptcr qe present thc rsulls obtained for whole data
set
of463
opdcal aid
olheei* noi
colunn of table in appe.dixlll.
Fid
fd .ss
optical aid in odcr of inccGing r-ralrcs @
only
I
I
66
d4iatc ton ou nodel. our of
cd*
in
d.ltn
when rhe visibilily is claiocd wjlhoul
sho$
in 1abl. 4.4-1. Oui
rhese I
I
ol0tcs cses
sill
c6es 8 de coosisteni
the
nagnitud€ conlrast 9 arc consisle.t wirh Yallop s crirerion and 8 ats consislcnt Mth the
Lund Rip.o6s Law, Tbe oberyaiion Nnbes 3E9,455,274, 341 from lhe
Lmr Ripen.$
negrdve
i.
I-aw, ihc
Yallopt crilerion ed
dd
1be Dagnnude
316lhal d.viale
conlrdt
d
also
our modcl. How€vcr the obseorion nwber 4161hat is negalile in orher
ille Een is th.t in this ce ARCV b redonably hish (9.41 .l€g@9. Txe widdi h small (eund la @ sondt bur |hc M@. is rcry close ro perige s closr ro $e Efih. models is allowcd by ou!nodel.
In fisuE 4.4.2 the minima of each visibilily cw. is joincd resulrins inro o nFi8ht linc stich $nen .xlodcd inr.e.l tn€ oigin of rhe (r. t) c@rdjnde stseo. The srope of rhis linc is found ro b€
''b*ttine"
of cesenlvisibility
,3 rB
=
(lh + sys
-)
9-3t5 ot t'/s
-
4.)15. This
lqds
ro a
a:
-=-i: s1:s+4.3(Ts+LAC)
(4.4
9.3
besl
tih. of crcscenr visibiliry
is give.
l(2.163)rhpanofLAG in conp&ison ro l(2.25)rh panoflAc in
t62
)
Dodi6.d
l6l
In
gendl l@kingd
'Ihr€
t
Lhe
$
@npt.rcdsl!
rn
ubtr jn atFndrxtlt
rl
(m
b€ nor.d
clain of visibiliy by ey n€{s who slalue < -O.t9l. In f{r as obrdolion nunbf 389 is not coDsin n( wjth .ny nod.l w dject n ed no
ihercrore we claim $at th@ js no aulhotic obstuation (wi1h or wi$our optical
.id) ofneq lunar cEsenr for s-vatu. < 4,162. Thus cFsccn! can not be sen wn€n vcr r-value < -0. l6 evs wirh a rel*cop€. For -0.16 < r-value < -0,061h.rc
e
opncd aid our of58 rcporled
coNidercd obse(arions.
.laims 45J, 274 and
sd
l4l d lol coNnlenl
fo. lhis tu8e ofr-utues the q€scenr
Ih 49 c6es
wi$
26 (45olt clains
-0.06 <
r{!lu.
cs
wirh
ey
ofcrcs
nodet
^s
< 0.05 theG
e ll
unaided visibilny
sw
be secn wirh opdcal
vrs,bihy wirh
@nclude lbal
ad only.
ueided
(25_5./0)
ed 2l
sighting with opricll aid (41%) we conctudc rhar thqe ac stonS chdces of &cmne crescenr vi0r a or.eutd or a Glespe oii very slih chmc6 for u..ided sishring, Unaided sightine b nol impossibt€ For 0 05 < r-vatue < o. I 5, rhce $'thour oprical ad t2ra,. I hus
nr h! r4se condnion
For
ot
(sarh{
r-ulue >
O. t
dc j5 sishtincs wirh dtuar rh.
tuflr
(1[r/r) and 14 hay b€ easit) *.n qrh opucdt aid
s-htr &d !m be seer wirhour opticaj dn coldiriotrs and heichr above
5, oul of nexl
2
*.
under ver) Com
lerct).
t3 obeR.rions th. c@kenr was s.en wirhour
oplrcal aid I 65 timcs (77.5yo). Th@foE wc conclude th.t for cEeent can bc esity seen.
Thus
ai d
ou oodcl $ar we @ll .eu€hi &
164
(lh
r-valu >
0. 15
rh.
critcnon..cd be sleheiz€d
4
l
Calculate
2.
Th. vbibilily condnior
r-vdu. (or vp @odins
vhiutc uaer pertco
a girn
ro
44.2) fo. th.
c|lsdl
by our 6odcl @
ihq
a1
ilc
besr
tine
giv€n in Tabte
onairiii'lili[
May rcquirc opricar aia
o
iiiiFitii?MFoli
Requi( ophol ad (ROA) Nor vis,ure wrrr opriciisia-li
.0.16 <r.value < -O.oa
j
The success of our hodet in t m3 of nuber or posniv€ ob&fradons in .gene.r wfth orc suggqrd c,itcrion is achi€ved dE ro lhe f&r rhat we halr u*d Schrc&as brigblre$ hodet, i.e. actul brjghrness of sky rnsread of the avela8e bnghD.$ ed acru.l brighbcs of ces@r ins&ld of 1h. b.ighh.s of ftU M@n. Th€ nudber ofposnivc ob*pations in agreeme Mrb a cnterion rs mostty int.rp,€ted 6 th€
-T--tn*h
:,;--
,l-(rr%r
165
Wlen a ctirerion allows oprielty uaid.d visibitiry of rhc ncw crcsnr dd ihe cFsnt is nol sn thcn it is a ncgativc.@t. Th.re c& be a.mbd of ree.s tor negativ€
em6. D.Airc
dlononer &d lmws Physioloey
f&r
rhal
s
obsd€i may
b€
.xFrioed ed r.ined
offie cEsent rhe armosphdic €ondilions od the of dc obw.at cy6 @t stil lead lo non-vbibilny of ihe crent Thes
facloB ae sdlt nol
Oil
rhe
the loerion
wll
exploEd rhus the high frequency
the probLm is srill nol
eh.d
ofrhc..gaive crc6 shos
conpl.Iety. A posniv. emr @cG when a nodel do* thc visibitiry is nor claimed Snaltq rhc n!frb€r of
allow visibihy oa cesc. sd posirive ercB dd b.ttq is a visibility c.irerion. The hbl€ 4.4.5 or
d'esrem.
slmdises
the posnile
ed
negative obseNarioB in
6greoe.t
with diafcEnr oilcrion fmn ft€ dara
sr w h.ve choen for $is M,k, Tte labl€ is aEanScd wirh dercsing succe$ pcrce age in tems of vjsibiliry claihs aruirenl wirh lhe $ircrion. Surprisingly lhe Babylonim cnrenon
ha rhe besr succcs percenh8e ti)ttow€d by our r-vatu. cril€rioo, Th. l.btc funher shows Btuin,s cnrenon (4,1_2) and th. L@r Ripens law e.qudly suae$tuI, Thse @ followed by $. q-valu. critcnon of yalop dd rnc ARCV,DAZ_bdcd Indid ncrhod (1,6.t3) Tlle crn*ion duc ro Ma@dd (3.6.10) od lo$erinsnd,s crjterion aE dD lc6t sucessful ofde mdhods shom in rhc |2bte, Ir sbould nor.d lhar tess succdstut a modd is in d€$nbine pGilive sighdnS gncEr it is. Moreoler, strcrer a hodel jt should be nore coosislenr wirh .cgaljve obs€ryatioDs (wl|en fte cGsc.hl ,s nor sn).
lh
i,
The number of iegarive obsrnadons in ag@mc urh lhc diterioo is at$ , omrdkd 6 a resl of a cnr.non by sodc alrhos (Fatooni et ot, 1999). Howe!e!! ii should be notcd $ar rhe exploration of Scha€fcr shows fior $e bneh|ness or nagnnude contra$ is highty dcpendenr on rhe w.alher .ondir io.s. All rhe single pameter cn&ria consdsed in the rable 4.4.5 do nor conlider wea$er ondiriotu of indilidu.l obsw.'r'on.If ay qitcdon alom viribility in soh€ cae il ,. sl,U possibte lhal lne setbq @ddirioN &c rcr f.vour.bk for vkibiliry &q oe crc*en is not acrualty
ofd*
166
Tl|rcforc, if Fothcdnghd's criGdon is nosl s@4stul
i. b.i4 cotui$dr fot
dl htu thrl it ii h.tcr or noa d.p.dabl. thd Ydlop'3 mod.l. Bolh Mah&E $d FolhdinSldt hod.k @ oa resative oh6d6tioB (whd ctlsdr is mt *n) but e lc.st sussful for pciliv. ob*d.lion. Ihh is tre sinply b..!4 the criteri! a. sficlcr s @nFGd lo o$d crireria. On th. oih6 h.nd Babylonib @ndition, i-v.lue criedon ed lhe Luar negalive obedadon rhG
Riperess law
e
dcs not
at
highlt cotuistent with rhe positive obervalions but
the ncgativ. ob*Nations. The*
dd
l4t
coNislent wilh
other crit.ria (Bruin's limn dnd Yallop\ 4.valuc
onedon) arc noF conc.hed with condnions ud€r rh. visibihy o{ n w lutu oesenl i3 tossible .nd not
*nh fte .onditions
un<ld which ir is
idp6siblc.
ln kms of ovmU coosislcncy M.!Mc6 mcthod atpcd lo Bruin'r
lini!
Y.llop
s
bc best, HoBevcr,
4-valu. cnrcrion, Lufu RiD€n.s law and o$ r-vdG ciieion
@
ba*d on ene Iheoelic.l co.sid.radons &d ihc orhcr hctlDds m only empiri@I. Thc methodr bai.d on @y thcore cal @nside€rion ndy bc inproved with be d unde6ta.dilg ol etual physical ed physiologicat dpccts of
4.s
the
probhn.
DISG.USq!9N In this chapter rh.
tobten ofde 6El vkibilny ofnew t6d cEscenr is cxpto..d on de basis of pbysical modeh d6cribiiS rhe bnSlttncs of c@$ot and that of rhc lMligh sty. Tn * nod.ls ha€ @u6cy of 2oyo vhjch is erhjbned in de succs Ftqiag. of Edin's lihir. Yallop,s 9-v.t@ crit€,ion .nd ou r-value cntedon eith ov€all @Nisr.my of?9.q/.. ?9.5% &d ?5.4% (espelivelr) wilh Ihe obseryatiotu. AU th* hodeb have tngh s@ss perolag. (90% ed plu) for posilive obFNarioB (eheo Ih. crcse.r wa Epo.ledly sn). Wilh horc accudtc nodets of biehrles or
c6c.nr &d r*ilighl sty
$s.
merhods
cd
be
ihproved funher.
Th. physical nodek co.lid€rcd in tht chaprer cd bc divid.d iflo rm clses On€ th,r b ba.d diectly on ln. brighrn* nodets and includ6 onty fi€ algoljlhn du€ ro
sch4fd Thc orh.. ct$ or nod.ts dcdec !tuibihty
t6l
@ndirjoN
o;
lhe basn of
cws inii.lly
visibihy
corceived by BNin, Thb
clss
includes Bruin's
lidit, Yallop\
a-EIu€ cnt€rion md th. s-value cilerion th.l is d.velop€d in dis work
w. hdc ucd Schaf€ls
algo.nhn ro cxploE rhe Epoaed ob$natoN out do
uder ftc "Edily visible ' @ndition duc io YolloP md when $. cEse m r€ponedly sen, AnohSsl th€s ob$palio$ ces lhal have ufavouiablc ha8litude cont6l are critically exoined md some sft Gjccted (esp4iallv obs.nation nlnbcts 389 od 455) s $ey de lol consislent wnh.ny of lhe visibililv ctit rion consideEd in not cone
rbis work. Bo$ lhce rcponed cses
m
nol .oDsi.lercd Fliable as .ven undq niehlv
t nFEtw md Glativ. humidny rhc magiudc contrdt is foud ro b. unfavoubL for cE$ent visibilily ve foud al lcdl onc ob*oation wh€n ile crc*enr sd Gpon€dly *n wi$olt.ny oflhal oid (obs. no. 274) ed thal is nol co.sistent wilh any cilcrion bul havc 6 lalourable nagnifude co 6t fo! tlalivc
exrgeerated .hosphdic
humidiry less than 50% and atnospheric lefrpcrature aound l0 deglee centiSBde
sd 455 1nee e ll olh.r caes shen the cEse w4 r.poncdly s@ without oPlical .id but ihe ma8lilud. .ont6l ws not Apan fron obervarion nDmb.6 389
m
ofFsitiv. ob$nado$ re consined wilh ar lcsl on€ oder crilerion consitleed in 6is sork A3 the brighhess model tE still nol pedecl rneEfore thcs. I I obsenalio.s ce nol bc dl.d out .s umliable. favowbt.. Howvcr,olee
The models $at
@ dedued Iioh
visibility cud6, th. Bruin's consisr.d
qith.{h
rh€ Bruin's
isibilitv cud6 ud liniling
linil md YalloP s single p&meter
(it
.ion
drc found to be
other. Bolh hav. stmosl.quivaldt succGs Frc€ntagc
br
Bruin s
We ha!. developed new visibihy curves and limiting visibililv curlcs using the
o$es O. the basis ofthese n'* cuBes a new dara *t ad a ncw sinsle pmetei cril.rion b d.duced The .s liniting visibililv cufl* havc lcad lo a slishdy nodifi.d "h.st lime of cE$nt visibilnv Our nw brid nss mod.h
due 10 schaeler md
visibiliry cril..ion, thc r-value
;ilaion, is
found lo be norc succ6sful fot posnive
168
obsMriom bul lcs sue.senn
in @mpdien 10 thc Bruin's I'mir
dd
Yallop'3 ctil.tion
for n.g.tiv. obsdaliors.
In vieq ofthe facl rh.t all th€ vkibilily oiroia de ai6ed al explorin8 conditiohs
undd which rhe new
luM rcsert
may b. seen the suc@$ oI a modcl lor positive
obsrv{ion is hor€ inporlrnl d i$uc as cohparcd to ils succe$ fo! ncradle obs.F iions. None of lh€ sodel h limcd ai deducin8 condnioa und.r which lhc vieibihy of ftw lbr cJ€sMt is Dposibl.. ThcEfo&, a nodcls see$ for bcing consblcnl wift $c positirc obsmlion b lh€ sses ofthe nodel. In
vi.s of
the nagnitude @nl@r model
rwiligbr sky il h6 ben
*en
lllar rhc
bed
on brienb6s of
lbibiliiy of .ew lun& cr$enl
c@.nt dd of
is Sreatly aff.cted by
(i) $e eleelion above sca l€v.l oflhe obs.Nation sne, (ii) rhe almospheric lenpcdurc and (iii) lhe relalive humidily. Higher is the.levation morc islhe maghiiudc contrasl rn
favou ofvhibilitt. Lowd is lhc lenpcEiuF or hunidily the nagnilude contdt is mote
cEse
if *niampidal diteri likc Yallop's g-vtlu. cril.rion or ou s-value critdiotr <to.r rct allows cE$enl visibilny wirhoul &y oflical aid thc mgnitlde conBl my b€ ir favour of nlcd cye visibilirt of the no ccsccnt lt favouBblc for
hay b.
due
hid*
sighdne. Evcn
elevation
ofrlE siL o. v.ry low lcdFarue
Thus in makins decisions about rhe duthenticiy of
or humidily.
ey clain
of vnibihy of
.eq
lun6! crcscant any s€mi-empi cal or a simpl..mpirical cribnon alon€ may nol pbve to
be sumcie.r, Such a
contdt befoe All
any
qiidon nNi b. suppledcnted b, m molysis of maglitld€
althdiicalion
th€ empirical
ad
the
is dorc.
si4mpirical
mod.ts
N
d€duced ftom
$ne baic
ei
Fa ARCV-DAZ rclarion (lik.
ofdara lhd is d.dued vithout tating th. ahosph.ric @nditions and cldarion .bov.
l.vel. This b6ic
et of
dala
mv bc b@d on d
Folh.rin8bm's, Maud€B or Schdh nodcb) or ARCV-WIDTII relaion (likc Ylllop\
nodd or our model dev€loped in rhh wo*) only. AlthouS}. atmospbdic conditions cu nor be Dr.dicred ;ccnrately, rhe sesonal svelases for temp€rature md Elalivc bwidirv
169
nay be considced for an adv&k pGdicliotr.
dual ahosbh.ric
conditions
esriMtcd tcmp.rarurc, 7,
cdc of vdifyins
a
visibilig claim
$.
mv b. 6oded.
Thercforc, a possiblc slral€gy for
t,
I.
vedliatio. day
be to usc eslituted alevalio.,
dd $dnakd Glaive huidity, l/0 md get thc rsults for
g-value or r.value. lf n allows crcsccnr visibilny for lh. eve.ing in question
dd fte claim
h nade, tbe clai6 is ac€pted lf1h. s.mi-.mpiricsl cribnon d@s nor.llows ccsc.nr visibility dd cresccnl sishtins is claim.d, .voluare mleniludc contBsl M,. Iftlo > 01he
i. el€valion, rempc€tur€ dd Elrtive hunidny e onc con adjust for thse quanfii* and qiry whether a favoulable ma8nirude contmsr (M progran Hilalol alloqs for vElidtio.
< 0) is obtaincd or nor If rhe new mgnilude contmsr is favoldblc dcepl lhe claim
On bsis of the d!r. generaled by pDgEn Hilalol GhoM io
ngu6
on the n xt
page) Elations berween magnitude coht6$ and rhe quantiries on wbich ir dep.nds ahd
I,
ar€ obtained
M=
6
i
M= I
{t I
aollows:
8177
-1.autE
+ O.0Ao000ze
t626e40n22)
M = -A 4 368 + 0 Ai26T
_A
0008f
+A OAOA6t'
ThG for meter inc.edc in elevalion M dece66 by O.OO0OO0I4' _ O,0O4l, for €ach pcF€nlagc ircre4 in relaive hmidity rl' vdies by incrss by O.O3l 56e(0 o,o:d) ed for €ach degce cenrigrade inc@sc
in t€npqarue
/
- O.OO08T + 0.000006T?. This n6y ledd to the alproprjat€ elcvalio,! rehriv€ hhidiry dd athospheric lenperarure tequjEd for faloldbl€ nagnituo€ conrsr An applopnate erclation my b€ tbe el€vation of . hill top o. buildirg Mf fbm wher€ m obseFalion nay bc @de or oay hale be. @dq The apprcpiare lchlsar@ ed rclalive hMidity
t70
incrcdes by 0.0126
may 6ose that nay
b. lhe ay€rlse for lhc eson or lhc valB $at wE
re@rded ar rh€ $ne of obsc(ation, ELEVATION VRS NAGXIIUOE CONTRAST
y=
?E.ri.odtr+
5
af?
3.
E3
HUMIDIIY VRS IIAONTUOE CONTRAS1
$, 3.
33
t
TEIIIPERATURE VRS MAGNITUOE CONTRAST
8 B
2
t7l
acNally
Chapter No.5
APPLICATIONS
Durin8 rhls work lt ls obs€oed thar since th6 Babytontan eE
nomber
ol
pr.diction crltsrta, mathehatic.t
flt
recenty a
.s we as obsewational. were
developed ro detemln€ whon the new tunardesc€nl woutd be flrsr seen tor a gtven rocataon. as tho
new month in sagnirrca.t
fist
appea.ance ot new tunar crescent marks tho beginning ot a obseryarionat tunar catendaE thele crireria and modets are
fo, calendaicat
purposes_ wh€ther
carendar, like the tstamlc Lunar catendar, carendar of not rhe36 c.trerta provtd6s
ui
an actuat obsrya ohat
tuna,
lh.se crireria tor arangtng its a €uidance for both teslhg an evtdenco ot izes
crescenl si8lting by common peopte and tracing down ihe dares ot a catendar jr hErory where app.opriate dates are not we recoded. Ttus the main uti ty oi the prediction c terta tor the eartiest visibiny of new crescent ts to regutate tho obsefr atlon.l lunar catendaf .
Although ftrst order approximations, rike Anrhmetc LunarCatenda, thar are oased on lh6concept of LeapyeaFand rh6 averag6 mooon or rhe Moon fave been in use, Nluslims hEve been to owing dctuat si€htng o, crescenls ar teast tor the monrhs of fas n8 (Ramazan) and pitgnmage (z hajjah), the acruat moion oi the Moon varies grea y due to vartous tactoB whtch causo rne obseryarionat catendar lo be ditfered froh the arithmelc c6t6trdar.rh6 Catendars if based on a prediction c lerlon llko thar otya op or ihe one devoloped In this work are rhe cto56t to rhe ob*patlonat catendai In this chapter, wecohp6rethese carendaBwith th€ a.tual obseryatronat catend6r in pracrice In paktstan tor th6 years 2ooo ro 2OOz, ft ts found rhst on avorage 93.7% obseryadons ,16 ac@rdtng yalop,s
to rho
t72
o_v6tue
criterion or our s-value (or Q&K) cnterion. The disagr.ededt ls lhe resull ot eilher
the bad weather
du.lo
whlch the.ew lonarcr6cent could not be slghted 6nd
th.
lunar nonlh b68an one day lare, or too opilmjsrlc clalms ol obse atloh and tho Lunarmonthbeganonedayearllerthanpredlcted. Funher, In ihls work another aoollcarlon ol these models is consldered. Tnls is lhe use ot lhese modelsto dwelop a compui.tional roolro
detemlnethe lenglh
of cesce.t from cusp to cus!. flie n€w lun.. c.scent as well as crescent on next
few evenan$ b obsened io bs shorter tha. its rheoreli.ar length Le. 180 degree
IromonecusDlotheother.Anumberoialrho6haved€scribedthereasonsforthe shortenln€ of the obsenBd crescent (Danlon, 1932, Schaefer, 1991, McNally,
1943). However, Jew have atlempted devislng a mathemallcal technlque lo delenino the exrenr of rhis shorrening ol rength ot crescent. On the basis ol one pafamelef dlleia ee have used cresent ot minimum visible widlh as limil on lhe
le.$h or .re$enr and
a simple rechnlque to calculate lr. beginswilh a desc ption ofthesme.
5.1
devrs6d
The chapter
LINCTH OF LUNAR CRESCENT
Ihe hct,lld rltc nc\v luhlrclesor appcds stroncr llEn 180. terA r.islnorn ldt cenlrics. Il wns Denj.h wlD fi^r savc rn exptturarnr for the pbenoneion (Dor.ru_
lt32&1936)andalributcdi(o$etunarteniincloseto$ecuspsMcN! yanribuluda dillerenl reNon snh
McNall) proved
tis
pbenom€ion disadine Danjon\ hlpo$esis (McNa y, 198:t).
rhar lh€ tcngrh
ofrhc shadoss ctose to $€
oflunar suiface IoD beins pertecr
spherc
coutdnl,jimiiish
hrnar rtre
cNp ond fic d.panolc
brignllrss oflhe regions
ofcresent close ro cusps lo bc rhe caNc ol rhe phenomenon. IIe arribured ttrc tength shorlcdng ofcNscent to lbe,.seing afeca,due lo $e turbrlcDe of lne ,rhosplrere. McNally has also developed a limula for calcutalnlg te knBh of rhc desceDl, Larcly Sull (Sulta., 2005) has anribured 0E shortening of lengtn of crcscenr duc to the Blackwell Conr.st Threshold (Btackwclt, 1946) and has d€leloped forhula lo
I
c.lcurale ciesenfs lcngrh. W. have aho devctopcd a sinpte &chniqne tor catcul.ring
173
l.nglh of new
lum ccscenl (Qucshi
and Khrh, 2007). In the fouowins we reprcduce
this cflorr wilh slighr nodiilcation md a codection,
Schrrer cjecred McNall! s expldaion on $e bais or his Yiw thar rhc shonening oflhe cr{ent length is situply b.ca6c oflh€ sharP d*line offie brigntn€ss of rhe cr€scenr clo* ro rhe cusps SchaelTer, 199 ! ). Usins rh. dcudte dodel of Hatl@ (
(llapk , 1984) for calcularing rhc surface brighhcs ollhe cesnt Scbaetrer claims that Daljon\ collected obse aions anJ his own n€* dara fic tbe nodel Howewr, nenhet Danjon nor Schaefer have sneecsred a ddhod lor calculaling
cacehl
ldg$
Hapk€t
rDdcl nat be accurat for $eoreical setling rclatcd lo thc clongalion ofrhe M@n bul
frr
as the obscryed cresc€nls are conconcd dEre oughl
lo be
a depanur€
as
frod snooth
relarion berween elongation and lhe crescenl lcngth. Thc tason we co.sider n baFd on
obsenarions ofsone norning and {enihs cesccDh.
ltosl of
the
edly desfiption of the phononen, concenuated on rclatine it to
plEs (or dongation) of the Moon ihal is gcnet lly
the
th€ !e6on b.hind the Phenonenon
As rhc clongalion increass rne lengrh of rhe cesccnl fronr cusp to cusP k€eps ioc€Ning Nhich a connon obseryalion. The nathemalicd dc*riprion ol lhe phenomenon
'n
lems
!ho\t to bc incoftd bv McNallv Hosev€r. e or€r rh€ ninimu \idlh of visibl. cEse (2 to 6 arc seconds) bv
ufdeficicncy arc. br Daijon Nd
limil oo VcNJlly le ro ren .mdll "dlu* lbr DJnjotr Liilil lhe d*np'ion due lo McNallv i: logicall, souDd so is $at of Suh dd bolh rcsulkd in$ tcchniques for calculatng
esrimrrcd
hDglh of
se$oa. HoNerer bolh llcNally
dnd Sullan hrve nol reponed lhe aptlicalion
of rlEn desription o. lh€ Ecorded hisloricll dria found in lii€iatuE (Yallop Schaeffer l99l elc ). Accordinglo Danjon, d desctibed by F.l@hiet al
si,(a)
st(.)
cot(@) at
fiS l
(5'l l)
Al" 198) a is rhe dd o i5 half the cccenl l€nElh tr apP€6 rhal Dojon tr*d lhe Sine
Wh.c $e @ elongltion
=
1998.
PQ =
o is fie deli.icncy
in
t14
(Fatoobi e|'
fomulE. by Nunins sphdicEl
6gL
at Q to b.
idr egle McNallv rejeded Dmjoo s
dSmcnt ed 6ing fou-Pafl fomuh adiv6 .l:
(5.1) . muejn't dillemce b'lsFn lhe lso the cre$ent l'nrth (2o) is Esults. Generally thc .lonsation (4) cd be cahulaled and ro obede.!. e the rw fomuls 6 b. LPd lo find fi' dclici'ncv arc' Hosder'
Nlserically, for small ddgtes
calcul.rc the angula!
c6..1
rpdlion
d
sd
a thee is onlv
lenelh nonc of these
9 ftoD
a cusp in
I SinE
@
be
ued- McNally daetoPs a fomula fot
tems ofclescent width R
d:
-T *t' t Rl
(5.r
r)
lron dE nininum lisibl. *id$ n.sured ih ddid dn€cdon 'wtv is l8O0 _ 29 disc. Thercforc the logh of th€ ce*ent h€ oblaits (sultan 2oo5) adres at tlE Usiry (he Blackqell $rcshold con(6t Sutan rh' smalld eqlival€nl Blackselr ninimun vhibG *id$ (in |ems of didetcr of l@rion of ob$Parion' (Bhckstll, 1946) di*) of c@enl ar Frigee dd apoge al his crc$61 lenglh rsi Tbe fomula rhal hc deleloped for calculali'8 thc
o.l4)
,=f!1.'to" l2t )
whde r h th€
sdldidetd
of tbe
Moo[ md
o5
l2t +w \
wirh w is the dim€ter
of
e
{5.1.5)
snallsr visible .quivalent Bl&kqcll dnc and l/ h cental
is$ecorsted fomof (1.5)inQureshi a Knan(Qutshi & Kian, 2007). Sultd.onside6 minimum diameter of Blacliwell dGc lo bc 0.14 alc minucs Nho the Moon b near peris€e md 0.16 m ninul€s wh€n the Mmn is n.or
widtholrhecre$e.t. (5.1
5)
The presenl $ork is based on rhe obseNalion or the last (old) rcsceit
oD
February 26,2006. Duling this obsenation rhat sGned from lhc bcginhing ofnorning
oviliglr rill \ell past sutrie, il was noriced rhar for rhis 48 holrs Mon. noE tlrn
dcFcs aMy ton lhe
sun
2?
ftc ce$ent l€n8fi srancd ro derede \rith lhe rising suD
simihr obsnalion on Mdch 28'' shen lhe aee of Moon wds dound
3l tous !.d
arolnd 18.5 degrees asay lron rhe sun. rhe cdscenr leneth d*leased nrorc npidly qi(h
d(E6ing co.ra$, The l.n rine thb ciescent wJs $en lvilhou optical aid well at$ sunriF s?s less lhd 90 dege* in l€ngh. Tso dtys later n€w cc$enl with agc 27 6 hols ar 15 degees a\ey fom lhe sun Nas olsned till setling Close lo lhe lDtiab though rhick humid a(mosphde the crcs€nt lenglh Ms aganr obscrved to bed4rcsnrg
Thee obsFations cleaily demonslrare thai lheF isnuch notc phcnohenon shows
ol
shonening of
expload abolr lhe
cc$ent lcngth apan fom tlapke s .c€urate model thrl
detendoce ofcB*cnt lcnsth on clongalion tlone.
TherefoE, inrhis rhe
1o b€
ce$e.r.
on th. aclual
fu
qorl,lo
besin
si$ qecoisidera
simPl. seodeuical model ior
model dFsibes the phenoncnon of shortnine of lcn8lh that depends
seniSiaocLr of lh. Moon
csc.nl o\fr tftal
d
*ll a the rclaliv. alliiude (ARCV) of th€
sky. This is denved fro,n thc sinste
crilerion of edlie$ visibiliry or cre$ent (chapler 4) whe.cve! rhe widlh (o' btigb$e$) of
vhiblc c€nrnl widrh (or
b ghtn6,
cF*c
pmnct.t
fld
clos to
(q-vatue or
!!al!c)
is bascd on th€ facl thai
cusp is below lhe mininuto
or rh. dcscent the vhol€ l.hsth or ccscent wirh
t76
s.lld
width eould nor b. visibl.. Applying ou mod.l on lhe rc@ded vbibihv rnd
fic ldgth ofcEsenl in 4ch ce is calculaiql Thc calcnlaled lenSrhs of c$en1 @ al$ omParcd wih thc obseded leheths dd wi$ thc lengds catculsred uing fodlls (t.1.3) de b McNally md (s.1.4 & 5 1 5) due b Slltan. ln iNisibiliiy
dala lvaitablc
cs
ofusing McNally's fomuh AA is @nsidded liom lhe cilerioD used in lhis work &d for Sul|!n's fomula the ninimM width or Bl&kwll disc (,) it 66ideEd b be in the d.ge 0.14 alc minul€ io 0.16 arc Finut€ and dep€nds on the dislane b.tqeen Eanh
&d th. Mmn obtained using simpl. lined inieQolalion
8..
sh*
t
=
G th€ radius
tF...Cdv tr -cos
ofcfsenr
tlre bLishrn€s
Irvi€wofQueshi & Khan (QuEshi & Khan,2007) displacement v frcn a cusp is gvei bY
t)+
ar
(5.r.6)
of Moon, F. is fie mdimun nux of sunlight
olVoon.l islhc 'ePar-rion berqecn lhe Sunand 'te Moon in our the Eanh' the lutu suface dd X B th€ disldc. of the M@n ftom lhe cescenl at angular sepaElion V fom lhe cusP is eivcn bv
lV,r,
whc t/. is lh. oo ro 9Oo
=rcosWll
width of fie
(5.!.7)
CosE) = tl ccatv
cdnr
i!
lne diddle ln bolh the* €quttioc
!' vari6 lmh
alo.g fie lenerh of rhe cFscent frcn centE ro a cusp respeclverv
For rhc develop'nen( ofanv nodel thai dcsibes $e
ni'inun
Po$ibl' sidlh rhtt
$e aclual bc visiblc lttrough naked eve one requi.es 10 s'ek guidance fron srv voug obedalioN. ln $e history of *idtjficatlv rcponcd obeNation of thc 1990 (eporled bv cr.sent Moon, lh€ ecord is that due lo Pi.rce od February 25' jusl 14 E he claift |o have sn wirh narcd ev' B
cd
cl€*nt ils widrh wa3 O 18 dc minut€
s.h!.fd ad houB and
Yatlop) Thc
Amonesl
t11
'll
rfie
'*oded
ob*flalios lh'
siglling of such a youg
ed
wb n€vd rcpon.d- In lhe norlel $ar is developed in this sork thc losct limil ofihe *idth ofvisibl. ctsent is considered ro be o.l8 aE minut€. However this ninimum is not th€ abelule ninimm for all c6@nls for all posible el ile altitudes (ARcv). I. fiis work *e consider rhh ninimun of 0. 8 md . arc-ninutcs of crcscenl width shen fic Elaliw dinulh. DAZ of $c M@n is ao rhin cesc.nr
1
rlr r.larir.
alliiudc
ARcv
gives lhe
q-lalueof_0.22. Y.llop
,1R(y =9 6311-6J226W +0 7319 Thc values of ARCV according lo lhis Nould
ield ! difcre lotr€rlihiion
dilTriem relarivc dzinulhs DAZ FoT
s
ditedon (4
t'i2 ol0ls,t/3
2 3)
for
$n q-
6'18)
giving $e q_rdlue equal to '0 22
*iteion
lhc visiblc width olthe crescenr' Tbis is causcd bv
lh. lasl posibl' ARCV (4o) th€ *id(h ol
lbe
ln iNisibk ae$erl Nould bearcund 108 alc{cconds $at occur dl a large valucofDAZ tr\i.\r ol diis $ilcrion ihi nininud {idth of lisible cr€$eol for @v ARcv is Gm'd and s te *esent isjusi invisible for$is{idth:
(tIa) Whqrc l'l. is tlE tlmrclical
enlEl sidlh of he ces'enr and 4costl
rvidth al aogte V Irom lhe center of $e ahnude ARCV li
\alue V =
Vn
de$ent
ordcr thal soEe pan ol
n
'/dsenl
dre
is $e r€duced
sidth r€duced bv the chnve
is visibl€
4(!'rvl > l'l'
'llrus thc eftstive visibte widlh of$e ce$cnl tor v nnsing
ar sonc
fon
0" ro
(5.1.r0)
900 - t th' aclul visible Th. brishlness of crescenl falls sha4lv s 0 approaches valu€ of vidh eiven bv of cE$.nt at any val!. of V m6r tE less tbd d€ e'onetic (5 1 10) is justiced (5.1.8) Therefore rhc etr6tiv' v6ible width siven bv
reidrh
equatioh
178
IE
dly lh koglh of.ilsc.d 6d nodo! htr lh. vilibL with of {tt*.al b! lo diminjrl rlso. Wh@\tr lhc cr.rcdt it ilviliblc 'n vi.w of (5.19) 4r'bs to it ir ma
c*v-fr=r
(5.1.Il)
ia vi.r6e lb .tleI it vit'bL ia sftlth tl to'E 'rgh dilh!6l!.cc..ttti3ncv.r!d.conDldc 180!irlcrgh Tbu!'tV=V.
I!.ll
oOE qscr.
!'n Dlrt
(5.r.r2)
Tladc i. (51.12) ||,! i! ! ddr.. lcogth
oflh. ctelcai k
of
Idf l!! l6â&#x201A;¬tt
of
ih' cr'!c'dt $ itll
lt' iol'l
Sivcn bY:
(t.l.lr)
t;rr*"CY'*)
D
mt
'I}lus $e €xcecds the
ae$c
mi.ioM
width
$.
value criterion, for
len$h
,/,
be dalualed whelever $e fieoelical
cd
visible acording
b YalloPt
palticular lalues of ARCV In
sidlh lr'
q'lalue ctn'rion oi our
$c Fis
5.
ll
the
s_
*8nent [D or
ARCV inlisibl€ according to Yallop's cliterion The scgnenl AB is rhe thorcdcal widlh ltl" at fie cenrE of fie cresccr! Al sngular 'lheefore the ponnt on spaBrion vr from tbc centre olc€sent ED equh4(nrl/" AC is the ninimm width lil- at
rhe ouler
s.
linb oi rlc
dv
cresceni tbal
las dguhr separaion fon cerrc geal$
noi be visibl€ TIE lisiblc = ZDOA should
cls€
then
crtnds fom D o D'
ihan @d
(nininum vhible wid$ accordnr8 b tan ttlq ($coetical widtb) {5 1 13) can nor bc sed ind the
has letrBlh 2!rn. One should nole lhal Nheneve! ttl"
Yallop
s
cresceDi
nitrion)
is Srearer
isnotlisible, ie iihas m lengdr'
crcsccnl hrs been The tr1odel developed nl this Nork lo cotrlpute tlB lenglhoflhe
applied
1984 Ylllop' lo a nuobc. ol ob*rvalions lepon'd in IneralE (Schaeffd irc of foi ihe crescenl length against lhe elongatio' also kno*n as
1998) Tbe resuls
lighl orARCL,ae ptscnled
in lable 51 1and in
Fig
t'l2
Tlre loBlhs mcalculaFd
foi tlrc valLE by scleciing lhc nnrinum vhiblc Nidrh Vn of dcscenl in rh€ elerv ca* and ihen usnrg (5 1 13) b
ofARcv
'c'ordrg
{t.1.8)
ob*ivirion thc @dinares of Fspeclilclv) tbe rclatilc umull) rhe lcatioD of obseryer (Ldlilude and longitud€ The colunns or rhe hble 5
l'
I
sllow rhc darc ot
clon8alion (ARCL) of $e Moon at lhc be'( PAZ). rlre dladve .hnude (ARCV) 'r:d lhe and lhc cental widh ol cr'scnl in arc rinc ofobstvalion. lbllowcd bv setr1i_didetr sidlh viiihle at lbe rclatile alritude ninules. rlt 4_valu., lhe niDimum cF$enl lensth cdlculared usiie (5 1 11) Thetablc c.lculated lom (5.1 8) and finallt the cE$e'r is aFmged in chmnotogi@t or<lr of data s€l lhat
hs
b€en used for
ob$mtio's dd
conpaine mod'ls for
180
co't'ains onlv Pai of th€ conPlele
carli esl crescenl siehting in
pe!'ous
200
F
fi
180
reo
3ro
Era
io80
roo
i;@ JM
=ao0
30 20 E mno
tig-
5. | ,2:
Crlgn
Lcogll!
tr' vdi.Ii@ dE
Tlr! Fi8 5 1 2 slD{! lhai lh. nbdioel
ctdid
ARCV
bdwen
ct!*4t
lcntlh
'd
lhc
mdcl Th' ctdgltion h not snolh s Eporr.d bv sd|Itrcr on {E b$i! of H@k''t tui! r.rlds fd tl 5 N (i) dE cr.rc.nt hngth ha to bc tff"t'd bv dE ElihMoon ro lqizd trN|l tfrecr li' dist ncc .! cl'in d abos (ii) 0F dttdgbdic n!td4' cloe ftal v'rv wi'lc cle cr$ent losrh., cl.imcd bv McN.[v ald Silrd MoEov{ 'ot! d4 vicitritv qftb $t hori4o mull mt v|tilh $ddolv for s
c
invilibte
dn
lo
$.it
$d nult not h'r'' as lcngh (i3 msl' !t eidt dt b. i isiblc) !.dding to cLi$ of scn*&t Ttt invisibilitv of t '!l*al sftn dft$L diiod' (ARCV) de to ii! clo..n6 io lFdzon (sd[ ARCV) Ho*E' b tbai for r sw' of $e rnc G..nt 3lEI bc d!ibl.. Ot <ftosnlid lnd cltir dt ldgft of $idlh tlt stving tud' (ARCV) mud clN lo dtc4" invisiblc crcsc.nr the elongaiion
rrn (sfrcidt) .le.nl fron nt mdinwn
mv
ba ttiSc
lcnr$ vh'n itt {-valu' is 69 5 12 odlv dto* h.low limils of !tuio!) sooulv dd iot sdltolt' b nE $din'd b'@ i"n or [E obsflllloB .rc coNidctld tri.n lh' d!â&#x201A;¬c'!t M cltimcd b h!rc
cr.!c.d Loglt i!
(al DAZ = 0) 10 iB minimun (terc
c!a!.bla
lEr
182
T.bl.
5.1.1 {Continued
r8l
Tabl€ 5.'1.1 (Conllnued)
Durins rhis
{ork $e
and Fabohi €1. al.) @uld nol he
?O
acc6sd, howvc.
beins eeneraied at fte Asaolonical
cBcell lengh fon
obw.tions of Dfljon (ne ionc{
Obsdllory
al
fe{ ycas
maiDtaind by oteh,
184
cdccnt ltngth ir
Univdilv of Kdachi. Th!
phologEphic Ecoids i5 given in Tabl€ 5
obsryadons made by olhe^ durirg past
M.icproi.on
the pictotjal data of
bv Scha'lTs
1
obseNed
2. This inclldes sone
and tbeir pictutes ate availoble liom
Tne nodel dcvcloped in lhis
e
for borh Ih€ brigh$6s
ad th.
lenglt of
.led by rhc single pmercr crilcrjon for $e earlien visibility of ncq lunar cFsc€n1, Thc model prcvid6 a simpte method of
cmce.i is nainly
geomerric, suppl€n
cdculaling lenglh
of
lunar ce$eot and tak€s inlo accounl lhe atnospheric afects
indiicclly through singlc pdaneler crit ria for th. vnibility of new llnar cressenr only. whenerer
t/. < n/- fi€
€r€$ent l6grh is nor cakulaled
according lo eordcd obsedation (lable 5.1,1),
TL
dd
rh€
nodel hd been Gn.d in nw $ays
I:i6r. ior so6e of $e rcccnt obeflarions whose phologlaphic Ecoids arc available $e cilculated dd obscrvcd cescenr le.erhs tre compared and shown in jablc 5.1 2 and nr
lig
5.1 7. The cFscent l.nerhs calculared ushg ou! lornula (5.1.13) arc SEaler thm lhc
obseoed values
dd
rhose due ro Sultan srechnique arc genedllt closer to the
!alu6. In calcul{ions
using th. fomnla of McNrlly A-t
obefled
= ,r- dd X = seni'diafreter ol
The colu$ns nr rable 5.12 show rhe dalc ofobseruation lhc coor\iiMlcs ol rhc
rhe Moon
fod
rhe sun
ii
resp*li!ely),lhe elongation
o1'
in d€8rees, the seni-diamcrer oflhe Moon. thc c.nlral rvidt[
ol
locatior ofthe obseNer (lalirode md longitudes
degr€e
lh
cEsce.l. ninioum visible width of cre*.nl (all in dc minul6). lollosed bv lhe crescenl length crlculated by our nodel ,id $e obsded crc*chl l€nglh. lhc .a'nc ordrc obseNer Th€
l.(
No colunns contain cGsce|n lcngtlrs
rlu" ro sutron onj Uctlutty
.,p.ctvely.
as calculaled usirr8
rlE nrodek
Thc du(a in rhh ubl€ has bccnlnlnucd iD ordcr
oiincre.sine elongalion ot ARCL. To d€Gmine rh. l€ngh is opened in any sraphic
ol!
$nw
ofr&n do*roeachoftu
crcsenl fom picroial record the dieital phoroemph
l@l- SeleclinS coordinales of
coordinales of lhe centre of the
luft
oa the
poin6
(*o
cenftof$ccrc*enoon of circlo h developed $at leads to
cusp md on€ closc ro supposed
vhible oute! liob ot lhe oe$eol an equation
lhe
the dre
disc, toining lhe cenlre of the lund disc with lh€
two yisible cusps of thc crsce.l tbe dsle made al fie centre bv thc tso cnspc is mc6u€d. Tn€ picue of one of tlE cre$ent m.$u.d in this Mv is shoM in Fi8 5 l ?
185
Fig. No. 5. L7: Mesuemcnr of Length for Cterent of Mav 28. 2006 as pholoeraphed rr
Xffiltr
UtoveElty obsefrd@ry.
'the dlta aor the obsiedcEscehl lenglhshoM in |able 5 12 and the cbart
i. fig
L? shows inlqesrine paficn. Clain d by Schacfer (Sch@fer, l99l ) fie crc$ent lcngh is a sn@$ fiDction of elonSatio.. but lhis drE er sho*s a tMd that cl*lv exhibns 5.
delialion tion
oy
such
sn@$ rel.tion. I]lc dala sdple is snall bnl lheE de lwo
subsets eech having neally sE@th relations, separatelv. b€twcc. lhc crescent length the €longation. Hovever,
elongarion
ll93
s a conbiNd dala sel lh€ obsflatios uith AnFa} l44l de8@s (bv Oner) 1667 degEes (bt
rhen consideed
de8lees (by
Ralini) md 20.12
tnd
Qwshi) deviarc Mk€dlv lbm $e apPaEnl snoofi rcsl oflhe dala set Cecchl l€nsths in rhcse four cNs are huch
degrees (by
rclarion exhibiled by the
snallcr thm lhe uend shown by the rcsl ofob$wationsas wellss thcresultsofe&h rhc mod.ls co.sid€red abovc fot calculaline lhs le.gtb of $e ciesccnl
186
AII the* fout deviati.S cdes ae photogdphically Ecoded dd have the ledi posibiliry o| obseNational ercs. Out of |he t€s1 of th. €ight ca*s anothcr six @
"ob$nation.l lcngrh of .ew lunr cE$ent is @nMed ils Eladon wift elo.Salion mul nol bc sneln 6 shoq in flsuE 5. L2 as w€u 6 table 5. l2 (or nsurc 5. L7). plDlosnphic. Thc rccords due lo Sch&fq de lhc only
It is rhe
t
0tar
erot
tunher nored $ar rhe rool mear square
conputational frdhods (Ouls, Sultmt and McNally
h6
cag
calculated
foi lhe lhree
it n found $at Suhan
led( cror (4.76 degr€et follosd by McNally's thal ha m
.mr
of 6
s melhod
16
decrs
degR' The najo. difer€nce h€lwen our model dd rhN Sulbn's dd McNaUy s is that olr nodel 8iv* coosislmtlv hisher valucs ol the lenefi oi crc$ent, wliets $e orner lNo nodcls havc bolh posidve lnd n.8flive emn
dd
our model hd an eror of ? 22
Th€functionalrel.tionbet*eenelongationardlhecrcscenll€nglhissinlilorinolrtuodcl aDd $ar due to Srll.n s. bul lhe oneerhibi(ed by McNally's model is m.rkedly difitrcnl McNally s mod.l is Sivins betre esuhs for larser elo.gaion but a3 $. clo.Sation becond snaller the emr given by McNally s nod€l beconcs leser and ltrger
Tdhl. No
t.1-2tth:.^r"la r'!h,lak.t
t87
L?ngths
o[CrctehB
180 160 '110
1m 100
80 60 zlo
15
ELOIGAN()|{
+OBSERVED FOURESHTS Fia.
r
SULTAMS o MCMI.LYS
No 51.7
200
i60 160
E.ro :100
380 360 20 0
15 20 25
3)
ELq{GAIOI{ Fig 5 |
8r
C'lsat tdgo5 $rinc Eloqiion
188
withdn
wi.rioa dc
ro
aRCv
Tlre modcl for rhe calculation of
cc*ot
lenglh may be u$d
d
rh.
.dli6t
visibiliry ctuerion 6uch in the smc say €nphasis
*6
nor
b
dcv€lop
6 Yallop\ cilcdon cm b. usd, Hos.ver, our d allcm e cdr€.ion for $c s€. This *ork ws i .nded
for a b€rter und.htdding ofthe grcme$y of the lunar cEscent md lo delelop a ne$od for cllcuhting iis l€nsrh.
The scond md indi@t tesi of the 6odel is its conparison qitb the rcsuhs of
Ddjon ncnliored in Fal@hi
el- al.
Ifthe niiimlm visiblc eidlh
,/,
for vdious ARCV
according lo Yallop's critcrioh is r.placed by rhe
nininum ever visible cenralwid$ of 0.18 aa ninuks tlEt is equivalor b igoring $e atmospheric allst for lower ARCV |hen the Eladon
b.tsen cEscdr
Schaefer (Schaeftr.
l99l).
The
lcngrh and
smc
is
.lon9rioo bccon€s snoolh
shoM
ii
as
pE*nrcd by
Fis. 5.1.8. The chart in figwc 5.1.8 aho
sho\s lhat limiling value ofelo.gation lor po$ible lisibilily oflh€ cEscsr is areund 8 d.grees. As our compurlrions do considerthe an'cctofparallaxrhis limil is equivatenr lo
te
? degrce
linil
very popultrly
rlown $ DanjoD\ linit.
On thc b6is of $e calcuhred lenghs of {escenr and ns elonearior using ou
hodel the Ddjon deficicncy arcs aE calculrted igno.ing the af&ch ol ARCV by aomula giv€n by Danjon and thal given by McNally (shown in Fig. 5.1.9 and s.t.lo
Bpedi!€ly) ^rrcduoion
These resuhs
ae in clos agreencnr wilh fte Fig I in Flroohi el al (lbar is a
of Danjon\ lis 2)-
189
*.
Fi8. 5.l.9i
D.fici@y Arc rg.ind Elongtiod f.dding to D6jon
;r 3.
Pig.5.1.l0: D.tr
idct A!!.gd!d Eld$tLa...qdiosb LlcNdly 190
LUNAR CALENDAR FOR PAKISTAN
6.2
Mosl of the hlami. counri* follow
ftn
d
ob*wadonal lu.d cal€nde,
ar leasl
fot
rcligious purposes, Although subslantial work is done to cvolle a pediction
ciiie on ro dcvclop a univerel calenda! by llys (1984b, 1988, 1991, 1994a, 199,1b, 1997) ed otheB, r truly lnilersd calendd could nor be d€velop.d. As according Io coDmon Islmic b€liefactual sighline
of$c n6! L6d crceenl
is n*essaty to b€gin a
Lund monlh, such a univesl calend& $cns lo be inpo$ible. This b |fue €speci.lly b€cau* just aner conjuncion $e new luna! crcscenr is nol visibl€ on rhe sme day lhroughoullh€ worl,l, eveD
ift*o
places
ofobseNatio.areoD sm€ loDgirude. According
1o recent delelopnenb (Scabefer. 1991. Yallop, I998, Qurcshi &Khao.2007) ob*ryational l@r calendaB for each Isl.mic counlry m be d.veloped bur dc ooi s.ncally
acceptcd b)'' rarious
Isl.nic conmunities.
ln Pakisian an Offrcial Commiirle (Ruer-e-Hilal Comnft(ec) decidcs about when 1o
beg$ a Lunar nFdrh on tbc bdis ofpublic cvidence and obseNatioos. This
sa$e6
infodaioi
rhc basis oflhe
3bour thc
claim ofsishriig
diFdncsof$e Islmic
organiatiom de
cle
rhe
csce
connilre
Thc clrims arejudged
oi
Laws. Som€ FpEsenlalivesofvdousscienrific
$c clain/s is jNritled
consnhed. Oncc
relisiously andor
soientilicauy, $e Ennoucemenl is nDde rboul begiming ofthe nexr Lun,r m.nrh In x way,lhe beginning
ofde pnncipals
'lle
ofE\v lunemond
is bascd
on
public obscBations ' verined
ii licw
laid dosn br lslamic shariaat laws (lisled inanicle 1.3).
advmrae. is rhal a larse numb$
of ob*Ne6" trle
pan in $e exeai$ and
wilh it the pmbability of sighlins .ew cBscenl is incesed. Morcover, hon observeis de iionr rural arcas sherc thde is leasl
ihduriallraffic
oa thcsc
6nd liSht pollution,
aid n k higlJy prob.blc thal lhe obseNing condilions d€ n€ar perfect. TheEfore in this
lhe* public obs.rvations e considcrcd |o bave a hki degE. of autnendciry. ln \ork all lhcsc public ob$dation-b.*d d.res ofsiart of€ach Lunu nonth frcn ye.r
sluljy lhis
2000
b
2007 ae reproduced and
4
srudi.d in conparison wirh thc Yallop\ q value and
l9l
ours-value crirerion-baed crireria. A similar wolk for the period2000-2005 has akeady
bcr reFned (Qu€shi snd Kh0,
2005)
of E 95 lnDation during the Jmualy 2000 lo Scprenbd 2OO7 1420 AH lo RaM, 1427 AH) .tong *nh obsRalional data 4 presenred
TIE resuhs
(Shawl,
in yeady lables in appcndixlv All rhe conpuklio.s fo! the* tables de basd for the city of KaEchi (Larirud. 24o 56, Longitude 6?0 l.). The fisl cotom indicales 16r conjDct'on wjrh nonrh, day, hour, ninde and seco.d for rhe l@al rim€ of conjuictioi in the sub-columhs. Thc calcularions are done for rhe day oftast
day and vherc
Equird two days
codlncioi,
tater, indicaled undc. colunn hcaded
followed by rhe Dale in Oregorian catendar. Nexl
$o
fo! $e nexr
.Ldt Coij
cotlmns givc lhe r€larive ahnude
(ARCV) and reladve azimuth (DAZ) in degrecs foltowed by nooDset-sunscr tag ir m,nules. ftc age ofM@n (in houc), rhe arc or tignt or €tonsalion {ARCL in degrt
fie cBscenhvidrl (irr arc minlret apper $e iexr rhre. cotunns, iolhsed by colhns indicaling the r-value, visibilily condition otr q-value. lhc .elahc and the and
visibihy conditio.s on s,value. Thc visibitiry condirions are lho* de$nbed in hblc 4.2.4 (for Yallop\ oiterion) dd labt€ 4.4.4 (tor euEshi & Khan qirerioD). Under rhe hcrding of
'Momh $c colmn givs
Isl.nic mondr $at begi$ anq a foltowed by $c CreBorion d.te ot slan ofrbh
rhe nrhc of
sighring reponed on $€ previous evening
lDnlh.In lhis 16l coluDn und$ Cregori& in dE nonrh,
iE
also
8nd
dare
ofsiafling lunnnDnrh, numbsofdar-s
Ttu la{ colunnr conr.ins a comnenl.
sl.nrng new lunar noDlh is in agrccment
thc column conrains I,ROPER.
tle
vi$
the prediotion
..ob*ryalional
If
rc dccision oa
critsioD Gratur q.ilqioi)
decision .nd tbc Nodet
arc
i..gEeme.t only $ne. thc s-value clirerion show Ev, i.e. crcscenr is clsily visiblc. Tbe conrhenr in ttE tasl cotuDn cobrains ,LATE, if thc dcchion of consideed lo b.
startng new lund nonrh is one day lare
lalue and EARLY
6
indicaled by rhe dat of
csy visibitiry on r_
iI
the lunar nonlh has been naned ooe day edlier rhan lhar indisted by the prediclion crn€ on. A5 staled eelier all de* calculariohs @ doDe for KaEchi and for rhe b.sr local lime for €E$.nr lisibitily.
Hower, ir
lhal observarion claios are couected from alloverlhe counry.
192
should
b.
nored
Out of rhe 95 public obsesalioDs reponed jn rhis \o*, rher wre o.ly six occ6ions (Jbe,2000, Juq200l, Juty 2004, ApnL 2006, Jury,2006 and Juty,2o0?) vh.n th€ sighling war Epon€d one day latc ii compdison b rhc pcdictio, crn€ria according ro which the New CEscent was lisible on rhe pevious day bd reponed. Tbere was oDty one oeasion {hor rhe earty sighrnrg is rcponcd 2004), hus,1herc weE only 6.3% enors in rhe decisio.s oflh€ moon
*s
not
Nov. D, sightingcomine
ld
sven yas. llese resul$ e ba$d on verifi.d chims Tbe data B8arding nnmberofcE*cnl siendnB d.ins $ar sre notrc ficd is nol available. The of Pakistd duing
only case
of
LARLY'sighring acepred by $c audonties was for rhe nonrb of
The main
rtr five indicated occdsions is th€ overBr sky all o\€r lhe country in.lllbese caes.In case of$e onl)-' earty sigh ns for rh.Ian scven yea6 alt€npts for cRscenr siehring \ere n,ad€ rhe Obscdatory ofu.ireBity oa Karuchi using
'e6oi
6
tor lare sishlinss or
CodC reliacror rclescopc.'the prediction crnerion based on r-value
dllowcd cescent visibility with oprical aid and rhat based on 4-vatue did hot .llowed visibilily eleo silh lelcsope. We failed in sighinS of the crsccnt bul rhe omcials acccpted clains of mlied eye sighli.ss
fron aR. ctoe to Kamhi. Akhough,(he d\o
$n$il
cosidercd did nol allow naked ete visibitny on rhisoccasion lhc misconc+tion lhat if rhe ph4se ol rhc cresenr is noE rh.n l% n shoutd be lisible (Asrmnonicul AhnrnJ..:l]O7r n ayha\c leJd he,te.i. or D.Jtcr rorcer rt,e.tdtrn;. The low percenbgc
compaGd
b
lhe
ofee6
6ul$ of
m@n
1960s and rcpon€d by Dogger
€rcs (qons clains of
wlch,
d
progEms cohdEted in Unncd Slales in thc tar.
& Schsller ( 1994) Accordi.erorhh rcporl l5%positite
observing
visible bur rhe obsrveF
in rhis obscryalion.l elfo,1 is much noE pbnisi.g
$€
cresceno and 2yo negadve
nissd then) {qc
iound monssr
eriou (cescenr
$c
cxperienced
was
ftooi
s"lche6. Thqe exF i.nccd h@n watcheu \v.rc geneElly consideFd b know wne,e lo lind $c crcsce.r dd whar dc oiolatioo of rhe ..homs" wa.
l9l
dy
sighiiog
(pardculely for ianins rhe dontbs of
Rd.a
Freque.dy. claims of lery
e
made
in sonc rcgioG of paknb!
ad Shawat
4s
ienrioned beforc) $at
ad nor accefled by rhe au|hodd€s. Oie offic Dajor @!s of rh4 dly clains of sighting ofncw se$cnt in Pakisran is lh. kenness otlh€ clainr dd lh€ nisco.epdon .mongst trasses ftar when lhe 'tighting" hos been eponed in the Kingdom of Saodi Arabia lhe cr$€nt nrusl be sighred the ncxt day in palistan, However. tbe oilcill d<ision about slani.g n.w acrual signdng
luiu
Donth in lh. Kingdom ofsaudi Ambia is nor baed on
c6ent
of lhe n w
e
Thee d€cisions
based on cnrcria rhar have
chased tuee tnes ov€t $c pan two decad6 (odeh 2o0o). Up ro 1999 the
or horc alter nron6.
fiis
oa Moon
citria
vas
6
fouows
lf$e
fi€ New M@q ihe pevious
actually
drsunslis t2 hou6 is the fi6t d.y of lhe Islanic
Moon.s age at
day
matu lhd lhc luDr donrh begiG
on
tu
day ofconjuncrion
vhich occurs on€ or two dats e.rlis than $e rime shen tbe n.N
crescent becom.s
vhible
Fmm 1999te crilerjon
ro lhe naked
{6
.ye,
chareed ro the tottowing: The tunar monrh besins on
lhe eEning *hctr the sun*1is b€forc
no€ di$rtuus .s ir is Fssible
tlt
moon
9l
according to Mrcca. This
lhar rhc sunsel befoe moonsd
sil
\as
occur even
belbre rhe conjunction. Th€Efore. rhe hmar montn may begin three days betorc rhe
in)
ccscent b€comes vhible to nlked cye.
Ftum 2001oD\ardr rhe
a) b)
Tl'e s€ocemic
cirdion
is:
onjudion scurs
b€foP
Sb*t.
The Moon sck aner rhe Sun.
This is nore realistic bul it is scarccly possible thal the crcscenl becones visiblc on dE day
The
ofconjunction.
Min p@mders signinc.nl in lh. .arti6r visibilily
cEscenl aE LAC, AOE, ARCV, DAZ, ARCL, Phas
ad
crnerion for lhe luoa
lh€ widrh of cE$e.t. As
n.ntioned abov€ none ofrh€s pomelets alonc decide the visibiliiy or.on vhibilitv of
t94
lhe
lmd ft*e.t.
C€ncrally thc crnical valuc of thc Phsc
(Astrononicrl AlMac, 200?). Duing were consid€.ed in lhis 3tudy rhe'e cEscenl with
phN l.$
when lhe ph6e
m
lhan l%
rhc p€riod flom
qs
ws
Jduary,2000
(as
b
b. t%
Sepr., 200?
nor a sinsl. incidencc when rhe
ihrr. ws
no claim of sightings
lh. oitclia considqed (Oct. 23,2006
In lhc cae ofNov, 13,2004 th. phase
siehting.lain qas accepred
consid€Ed lo
$ar
sidd.s ot
eponed and am€/.d. There weE two @c6io.s
grcarer rhan l% bur
not possible accoding ro bo$
b
ws I
a.d sighting
and Dec.
ws
2l,2006).
l9% lhal may have been lhc Eason rhat rtre
ne.don.d earlie4.
TheyounB€slcrescentof agc t9.l hou6(!r bstdheoivisibilny)eendurinClhe period of study was that of May l'7, 2OO?. Apan from b.in8 $e youngesl cre$eht seen
duing th€ Fnod of study lhc ob$rvltion has anottrcr inleresing teatur€. Thi5 Ms $e or y case when thc cr.eent was sccn on ft. enc cEgodm date a it N6 born ac@rding ro Patiskn sblded line. Apari ton $is record obstualion th@ are fou. orhd clains ofyoung Moons sighling,Nov. 11.2004(22.1hours),tan.t0.2006(21.45
ho6),
June 26, 2006 (22.76 houre)
dd
(21% of Ihe studied) ascs of sishdnS
Fcb. 17. 2007 (2 t .6 hous). ln
daiN
The obsemtion of Feb. | 7, 2007
@
when
nadc ar
$c .se of M@n
aI $eE vee 22
@
les rhfl l0
fic slronomical ob*Fabry
ar rh€
& PlanetJry Astophts'cs. Unrvcrsily ol Kr',(hr *. ,pou.a U. lhe 6' Codd Refractor T€lescoF. Both rhe prcdidion crileria alto$ed
Instrule of Spsce cre$ent nsing
crc*enr sighri.g wirboul oplical aid but wc could se rh. cr€scenl wi$oul
tetescope. No
of qesenr siShring wa ac.iv.d by $€ aulho ies on rhis day, Tte aulho lies acceptcd ou €laim. This was $c young*r ccseft sen ar ou obseoalory d$ng lhe period ofsludy, It is a Ko.d for ou! obs.ryarory and rhc vorld recod for rhn part'culaf clescenfs eeli.st obervarion (sw,ftoonsiahlina,con dd other claim
sv.icoprciecr.op). Our
phoroSraphic r.cord h also posred on retevanr websnes.
!95
Tlrc'€ seE 6
ed
w4 not
rhe crescenl
depcndablc
c66
l&to.
when thc ag. of M@n
seen. Thus,
@
bciwen 24 hou's dnd 30 hous
ihis srudy also suppons th. idea that age is not a
for any pEdiction crildion.
Anodier inrporbnt pdMeler concened is rhe noonFt-sun*l LAG. There are 22 occasions *hen the crescenr of lag 60 minures or less was Fen. Oul of rhese only two
*ft
wnh lag less rhan 50 hinules, Nov. l], 2004 with lag ]5 mi.ur€s a.d Aprit t0, 2005 Nith lsg .l,l minut€s. In ihe *co.d of thcse c6es rhe prediclion (ia a o$€d naked ele lisibility. There wer€ 15 cases when the tag sas b€lveen 40 and 50 minules
c
and bolh dic pEdic on crileria did nor altov crcscent
visibility *ilhoui optic.l aid, Tbls lh.
n@Mr-sN4lag
alone is also not a dependabte
parametef for any prediclioh criterion. Out of 95 new Moons rhe predic on crileria
from
$e
Babylonian clnerion (Faroonhi et al, 1999) only g
tines when
Dabylonian
22) alto$ nalcd eye visibility but Howld, on rhese nine ccas
,{luc dd
crnerion (ARCL + l"Ac(in deg.ect <
lhe s-laluc cnteria do
tur
difer
I'r view of tn6c fads we conclude rhat bod q-vatue ed r-value cilcda arc N€I suilcd predicrior cireria with r !.tue clireion delcloped in $is work has mdginalty be cr success percenrage ibr posnive ob$ralions (chapter 4). porricutarly in viewofrh€
facl dar
$cs fire.ia
do not march acrual cr.senr visibitiry onty in one
(1.057q).nd thal @casion cases Nhcn the cEscent
probl€n occun
Ns
ou
95
cas
conkoversial in liew ofrhe above discussioD. Thc nve
$as seen hler tan prcdicrd aE not conside!€d as an ero!
d d!. lo ore(sr
skies.
obenarional IuMrqlendar $ese Fediction
0s thc
TtrGfoF, tor lhe tomulaion oa turue dreia de nidly dependable_
TIE € has ben only o.e occasion whd lherc mrc three co.*curivc nonrhs 29 dars elcb (during June, July and Aususl 2ooo). This is rhe ndinum fo. Fpelnion 29 days lund nondrs anticipoied
The li6t (Rabi ul
s
e&ly
a
loricentury AD by Muslims
Awal, I42l) of$is lriphr ofnonthsbeema
196
(
of of
yas, 1994a).
day talerrhan p!.dicled
oftr\i'i$ lbir tNinun rcldirio! @!H ml lLv. tc.n th.Ia llxr! vt&r D frt! (diD|d) coorc.rlir.! tdt! of 30 d!y! 6d h 6b Fiod of
ac&noo
of
'lldy.
b.
sighio8' ca
c.r
Morlly o.cN!nn8 Ep.ririon of fou 30 d.F' @d! io f'v! o! sil Afthow\ rh. kludc shd. Lsw (cb{i.! t) dlos for con .don a! lnd et o oh..wrrion idic:!. m m., bur ftr.dvmcc ptslirg nd dcv.toFEr 6tcdf m ohsE|ioo l|E .j-n/- h.!G.t d Fcdidioo diEir b{' grarty bclp. Tt AFadix-V rhosa suh r ltnr c.ldr. in qdich .oryurrioB s! bed i! Knstti d lhe +v.lu. qilai@
tvl
Chapaer No. 6
Dtsct ssroN
$is inrsd.d to qplorc fld.ompae fic mathcmaical nodels for the crneds under which rhe new lund cresenl could be lnible at silen locdion on th€ Eanh, Mormk!, it was intendcd that acomparhoD offiese nlodcl is conducled and the
'ftis
rvork
compdien od nodiEcadon of the nodel hs b€en succcsstuuy achielcd dd a neN model the r.vahe criterion has heen dcveloped. A sumdary ofthis wo is presnted below sith r dkcusion on the najor models are nodified if posible, The lask of
achicvedenG ofllrc Nhole
eihll.
Fi6t ofalla bener undcFt.nding
ol$c
obrerarional, associated wilh rhe prcblem;f
dd sishri,lg of$e new lLmtr ssenr
issues.
l|t
firet
conpubrional, aslrononrical
is devcloptd. Wc have €xplodd the comPulalional tchniqucs and tlrc asrcnomical alSornhm dd rhcir applicadon (o $e extcnt that is .ecsary aor rhe calculations irrvolved
in
solving
lie
problem desribed
in nr€ pEviors paraeraph lrritially
lhc
Drcd work slcels bui duc lo leDglh, calculalions and lhe use oflong fomuld Ne \cre for.ed to dcrclop a cortputfr prcgnD tlilalol. T]le prognm has been used lo do allcrlculations lbt detemining c@ldinalcs of $c sun sd $c Moon.s well as the padmelcs inlolved in oor pobhm lhe rc$'lts ol' rcchtriques wcre nnptmenled on Miciosoft
$ne of tne modcls @ obunEd $ithin ln. pro8nn and lltosc for other modcls arc done on fic basn of $e dala generaled by pngEm thal is salcd as ao ouqul fllc. This file is $e. kanslom.d into an MS-Dxcel rork shet md lhe resuhs of orhcr
nr. applicalion of
re thar apF{ modeh
oblained therc. Tbc hbl€s comp sing thse in |hc
apFndiG rc all
d€velop€d
The modcl due to Babylonies as
fon
ts!l$ tifiin
rhes *otk sh€ets
d*dibed by Fatoohi
$at wa modilied by the MuslintAFbs is bricfly desribcd 198
et
ir
dre m.in t€xl and
is ns applicarion is srudicd jn companson with other nod€h in cbapls
] (anicle Ll) and chaptq .t This tule is based on lhe sun of$c elonca(ion ahd the dc oflision -the Lunar Ripcness rule dednced by Muslins of rh. m€dieval eh in exploEd more 1..2)
dd
errensirely. h is loun'i rhal though, $e Lutur Rip.!6s function is
a
fo
Dorc sophisl,caled
compaEd ro the Brbylonian rulc, the luo mclhods prcducc almost equivalent Esuhs
when applied to rhe
re{nl obseRational ccords.
'lhe $ct|rds h3sed oD relalions bclwe$ arc ofvision (ARCV) and $e tclJrivc azimurhs (DAZ) rhar \ere extcnsivcly develop.d durinerh€€arlypanoflhe 20- ccDrutv
ae loud noE sucesful dlrins lhis study in compdison lo U€ ancienr and Dcdielal Derhods The suoce$ in m€asuEd in ho* nany obseNalions are in agrcened wnh lhe models. I lorv mdny rines lh. cFsccnt is seen wlEn fi. mod€ls suggcsls ils visibihy.nd hoN nan! tiDcs lbe c:.sceol is nol seen shen lhe nodcl aho suCgesls inrisibilny.
lhc rcnen
rhl fie
oodels
blrd
I'n ARCV-DAZ tlalions are norc $cccsslul is
irar wilh ihcrcasins rrlative azinu$ thc skybrilhhess impro\.s
and the
biCllNs corrdsl oflhc
crcsccnt aalnrn rho
crcscentsofloseirclariveallitude ure visible. Sm.lleris
rlc DAZ lhis b e]trr$ com6l dclerionlcs lnd lhc crcscn( is only \isible al hiel'cr ,^RCv. h comprnotr to lhcse models lhc Lunlt Ripcncss tutrclior is slronglv buscd on rc of scpdlion. lh. toblcm $nh arc ol sparaiion is th $nh l ge DAz n tan tinruch snaller rhdn su-lgesrcd by lnc Lunft Rip$es law (10 to t2 d$recs) loi a lisibld cr.sceit. ln
rl$e
rhe larger valLEs
cas.s \vilh large DAZ tlrc Ripene$ luncliorr ,4,r can bc llrgc so lhrl
of
R,,, arc
eq
Ed. Conseqlendy. aor lrse. lrtirudcs ldgc .rc of
EqutcJ But lescr DAZ for larger laliodes auoNs snaller ARCV rtrd con*qucnrlt smrll( rc of scpration. fhercfore, cspeci.lly for localioDs Nit largcr hdudes Lunar Ripcn.ss law beomcs more inconsnrc s comparcd b the obscNtrions
scparalion is
and thc
ARCV-DAZ nodels.
ll
is
sftn du
ng
$c di*usion
ar rhe
.nd of lh. 4ri cbapl€r lhal
ba*d nodeb, the ForherihShmr's modcl. th€ Maundeas mojel
lhd
ARCV_DAZ
and lhe lndian nrodel
aE
successiv€ly belr€r. These imprct.menls ae due to deducrion of b.ner and b.trer basic
199
dau ofnininum aE ofvision for
fi.
difcrc el.tiv.
uinurhs- tlowrcr. all
th.*
modcls
lba
cas4.d ftar vdie SMrly with thc Eanh-M@n diskrcc for rhc saec elongllion. Thk c.!s!s vdiatioB in thc elully bdshh.s or th€ .Eeent of emc donsdion. Cons.qEntly, ft. s. pln of ARCV ad DAZ $c isDrc the ridrh of
n.w
t'i8hh.s of casnt v&i6 for dif.rcnt Eanh-M@n disranc.s. Th€ lsk of this considdrion is rh. Fain caus. of l.ss.r succ.ss pec a8. of $.* n.thods N conDlEd to the later ftod.ls foi posnilc ob*nations.
Th. Glliaion of vdyiiS bid nas of crc$crl si$ fic widrh or cE*.nt ro! se €lonSa on (and $m. pih ofARCV-DAZ €luct thc phriical d.$nPlion otth. poblcm by Bruin lead Yallop ro dcduce bdic dala €lating widtu ol cErent to $c arc ol visioi. Yallop d.dwed this dll! fod $c minima of lhe linning visibihy .ur$ of Inuin. Cons.qu.ndy. Ydlop @s su.cc$ful in dcducins hh3inel. p.6nttc' r.sr. rhc 4_ ulue ciledon. This crir.ion Produed bdler Gsuhs i. compari$n to atl th. ptcvious mdhod!. Th. dcdudion ofvadous visibiliry condirionson lh. bsis otdircBnt dngcs o!
$d rh2t ol rhc besr rimc of visibility' of .een frem rh. limitins risibilirv cunes of ENin !'e thc motr markable of Yallop\ contibution l-hc \isibili'! condirions pro\ idc ruidclinca lbour uds *h.t condnioos rlt co*cnr \ould hL casilv .r.valu.s
risibl€. $hcn n $ill b. visiblc undo P.rfcd st.rhct condnions whc. Ue opricrl \o(ld when fte cB$ent $ould bc sinPlv nor visible $ith ot Nnhout atrv b< Eqlircd
.d
opti.al aid.
rfu*
condilio* har. poKd ro b. noN and morc Eli.blc
$i$
incBtsnB
is rhc comp.ri$tr ol .ll fi. htljcls a @rclically, frathcm.ricElly, phytictlly.nd in vi.w of$eir success p.rcentagcs 'or s.r of ob*wations colled.d tom d. l.t. l9ri c.ntorv till dcntlv. Anorhcr 3isnillcst Thc najor
co
bution
ol
or e
contribudon ol lhh wott is lo convcn aU th. mo<l€ls ino arc listcd
si.8l. Padm.tcr crn€ria
bclo{ in th. inccsing order ofsucc€ss pcE.nlagc:
vp = (ARcv
- ( 12.'o-0'.00s(D,{z)'z rYlo
200
1
h.*
=(^*
",
-
-e4,:!.,'l) " # f l-
v, =ltncv .lo.no - o.orn1o.tz1tt =(^RCV
uaz2\lto
lrt.8311.- 6.3226tv + O]llgr2 -O.tOl8V3rttO
-
\t, v
o.ooot
-t5 + py rxtr+,pfl
| | = tARcv - \t2.4023 - 9.4818W + 3.9512W - 05612Wt vr=ARCL r !rc olscpaBlion -
Dt
rc
21"
ln rhis {ork schactels modcl of dldritc bdshrn€$ is ale erPlond in t.ms of -n'h nasnitud€ contrrst tnd thc dsllE aF in lsRD.nr $i$ his wo* (Schelet 1988.) ehieved by iniplcmenrine lh. rshliqus d.r.loPed bv Schel.r and o$ets |o brishtocss ol lhe ev.luarc sky brighhes (in tems of linninB mgnitud.) and cE$€nL Biglrness ofsky and that otcE$cnt dcp.nd heavilv on various ihosphenc has b€en
r
arsrs
Amongsr
ths
lenpeBluE and clolivc humidnv arc lcpl \2riabl. in
the
posram Hilalol in ord.r to exPlor posiblc condilions undd which claims of nlted ctc v'sibihy m.y b. Br.d for dill€Ent condilions fhis lc.ds lo wh.t Ne h!v. r€mcd 4
skr's linritnl8 a!!iNdr) lf mognnrd€ .onl6{ is n.galit n is lalour of cN*tnr visibililv o'tunvie Dol [or cxftnEly crilical n.kcd cyc obserylrion ckn$ of Nw lunlr ce*cN lhe magnitude co 6l lE ber dallaled nrinut lv h i5 tolnd $d $he of ftcs cdcs appear doublful 6 fie oasniude conrEst @ n.v.r in Lvout or cc*ent tisibililv cv'tr with hidlv ex.8g.ra&d wath€r coDdnioB (v.ry tow clttivc humidnv and lcmPtdur) lor the vhole dudtion of th. ooonsd-suet hg |inc. Using th. pogim Hilatol the tin$ have
Magdlude Conl6r (Amag
_
maenilud.
of Moon
-
of(i) \$en $c nasnitud€ contGi is ndinn (ii) whcn rh' nasnilude conlldr jnrl bccodc ialouEble for crcsa risibililv and (iii) {hen rhc masnirudc conm was last in falolr or ccsenr vkibilirv Th.s. esulN .r. sinild $ whar is
ben evaluat
d
de*ribed by. veniccl line
ovr.
liditing lisibili(y
201
cur. ofBruin
'fte najor
achjevem€nt of this
m*
is th. romulation of
t
neq sincle pstuerer
using lhe cireion on lhe b6is of rhe Fchniqus deleloped bv Bruin and Yallop cuFes and thc bngnrrc$ modcls develoFd bv Sch&fer dd othe6 rhc visibilirv
liniting visibilily cwes aE
developed for crceenls
actually obened tnd hav. bcen rcpodcd in
lile6tue
ol diffeEnl
widrhs
ll'!l
wcrc
Bruin dcvelopcd lhe$ cllvcs on
dalt,s *nh rhe bdis or{i) lhe ale6se bdshlnss ofthc tult M@n md thc wv i ot the skv dudrg decr€sing alftude abole hoi@h and (ii) tbe avedge brighiness On lhc olher way n depends on lhc dolld d'prc$ion b'lov horizo' |he
t*ilid
&d fic
wid
lor
r
llEn
tc bave usd rhe adual brightncss for Ihe obscb-ed cEsc€nB ola fixed rtrc sms tn sne ofobselvation we hare calculared th' al ude of skv poins bavins
hand
compuratios m $ar ol lh€ dcsenr for difrercht solar depcsions such sahe wjd$ al dilIelenl localions and Ep€ai.d for a nunber ofobseryed cE$e 5 of the our Thc wnole re ten dmes. The aliudes or thc skv poitrts lhu obt'ined 'vc6Bcd widlhs prccess h rhe. rcpeaFd for cnsce.t ofdilTereni
bridft$ d
These conpulations tesulled inlo our
lisibililv
curycs
ed $c linnins visibihv
$ose ae slishtlt diferenl 'iod linc joining thc ninina oi dEs ntlighl The displ&cd slightlv with nini@ of Bruii for Bruin s cutves Tnis lcads lo slighd, cudes has a slope of9 3/5 as compaftd to 9/5 noo'elsuosl lag aller thc b.sl dme of visibililv" which is 4 l/9 1 rine th€
curyes. The linitihB
lisibilitv cses we
have obEined
differe
lae afiet cohPdcd lo Yallop s be$ tine which 4/g rincs $e noonst-sunscl l-rttd the ninim olor liniringlisibilnv cu8e rhe suset). Th€ bdic dala ob$inod fion visibihv pdamslcr: b a fiird desee Polvnodial tsuls inlo the fouowine
suet (6
s
=(.4RCV
-
(4351
31
/3 + 2222075057t4! - 5 422641ritf +
l04l4l?tt)/l0
io lbar of Yallop' we have als dedeed visibilitt condi$ons in a tum€t simild Yallop Howevet' ltplj_'n8 condilions tre sliCh v difiere lron those of
Our vhibihy
pcrcenrage is iound lo b' thc besl our model on the obseNatioml dal! the succcss \orr' erist and lhar dc €ncd dd conpaed in lhis dongn all the dot nodels brighhre$ and lhe btislrhss oi is tbat our model is baed on $e acrual skv
tll
Thc
e6on
201
(escenr $idr varying wea$cr condilions whercas Bruin s nodel
h
based on aleragd
brishlncssofsky dd rhe FullMooo. As clain€d by Sctaefd th€ brightn
still our Drodcl yielded be
.t
resul$
s
s
comPsed
mt
a mucb a 2elo 1o tho* due to Bdin ad YalloP as lar
modcls
@v
b€ in
by
conemed lt is lroped rhat wilh beller models of skv brighhcss slill beiterclitrion ior fiGt !isibility ofnew lund descent can be delclopcd as rhe posirive observatiohs arc
sonE of$e lpplicarions of {he cnbda of.atliesr visibililv of ne\f llod 'rc$ctrt ro havc becn considered in $is $ork The fid ond $c mosl impoddnt applicalion lre on d€(eaniDc Nhcn tbe new lunar cresceht would b€ visible ar soDe ldalion on lhe elobc
rhe elennrg aicr rh€ oonjundion Anolher ar.a ol appl'calion is lo deduce d ''obscNnrioMl lunar c.lcndii- tor a Yct anofier aBa ol apdic'tion \e hn\c 'eeion lhe lcnslh ofne\ ldDrr crcs(nr e\ploreJ
'.roJdrnrine
t( !1ay be recalled (hal lhe liret
appcardnce
of new llnn crcscctrt nrarlis
r
ola new monrh in obsenalional lunor calendarq rhere 'ril'ria and models drc calendai likc siBnillcor br calendatical Purposs whefier 'n aduul o6€n:ri'nol lunar Dol lhcsc rlc hliNic Lunar calendar' ulilizrs tb6e cril.da for a!6nging its cltndar ot b€sinning
cLirdia ptuvidcs
a
guidancc Ibr bolb tesing an tvidcnce oi oescenl sightirrg bv connnon
dates arc rol peotlcdnd tacingdowndtdtrlesofac.l€ndar inhhrorv{herc approprirle \€ll Ncordcd. rhus $c frtin ' ililt of the pcdicrio! crileria $e carliesr visibiln)' ol 'or dd tcsrifv lh€ clainrs ol calendtr lunar tnc obsefl.lional is lo egntalc crc$.m n€rv
risibility of ne\' lunar crcsccm tlrat di' Although fiIsl ordc! iPporirutions like Arnh'neLic Lunar Calendtr o' rnc Moon havt be'n nr lse based on lle conc€pr of Le.p Yea$ md rne a!.rage oorion lor lhe monlhs ol Muslims h.vc been follosin8 acoal sighing of cresc€DLs 'r l@l i6rii8 (R.maan) $d pilsinage (zil hajjah) Thc calendars if bled o' a PEdicrion
oir*ion like obervarional
lo rnc tbat of Yallop or dre ohe dcveloped in this work arc $e cLosest calendd Conpan$n of rhese criteiia wiih lhc actual obFNsdonll
201
blc Da dc (q!!thi sd Klte, 2005). h lbir q'!rt 6. mrdy it cid.!d.d lo tb y{ 20(I|. It i! biDd lb. d lvdsc 9J% obtlnltiol! lrc m.oding to th! Y.llop'! r-uh. â&#x201A;¬dt rion d our GEluc
old!
b
!|dc!
in
ruirD
frr lh.
Ft!
2000 io 2005
dilrio D. diltgt@t is lb. !!3rlt of lithd th. t d wtt|t r dM !o *hi'h qr &e rw |E|r c{&. codd nol t tigln d dd tb Lud E olh b.t!! oE &v l.|c bo AdrDirtic cLiu6 of otsElion tld {t L|e dot:t t g.! oE &t dlicr U|n (d Q&K)
tt|ldttbL !|gs for th. vi.ibnft, (ritsi. for ol@t'.ridl pltrPo" hB oorivcd |' to d.dE e "bt 6v.liodl lE[ c.lct b." for P'lii..r 0|al ts tctr Tbit
204
APPEDNIX-I COMPUTER PROGRAM
HILALOl
205
{ {
cl6c{):
maime.u0;
cltsqo;
Daiuourineo;
fclose(fptr4)t
gotory(]0,4hout<<"welcone io the New Moon cslculator"; goro\y(25,20):.oul<< Prs Eni.r !o $an :
void eaituoud.4void)
{
f!l.{=fop.n(schmse.hf',"a');
{ I
inputdalerime0i
cl6cd);
nonlh_chee.0i
ll6t_cahulatioo0; jd=juliadare(lred,lmo trtdab,tsac); jde=jd+denat[inl(lyeaFl620.o)]/(3600.0+24.0)i
stjd=juliedakoted,lmonrh,ldare,o.0); $=Grjd-:15 r 545.0n6525 0j i=(jde-2451545.0y36s2s0.0;
elonep=sin(ndeltap.Pvl 80.0f sin(sdethp+Pvl 80.0)l elonep=eloDgp+co(mdetaprPyl80.0)rcos{sdelbp*PI/180.0)
'co((slphap-rolphap).1
5.01P1.7180.0);
elongp=ncos(€longp)r180.o/PIr
eotor)(s2,?)j pdnl('T. Elon =');eoloxy(65,7):pinr(,,%?.llr phasep-(1,o-co(€lonSplPVl 80.0))/2.0i solox)(5:.8);pdnt( T. Ph6e =,,);Boroxr(65,8)iprinl(,,%7.If %'.Pbasco' 100,0); elone=sn(nrlarrPI/l 80.0)isinGhr'Pvl 8o.o)i c ons-elong F(on m14.Pl./ t 80 ol.@dslat ,Pt I 80.o).coq GtonSmlong.Pt/180 0li elong=acos(€londi 180.o/Pl:
phaF=(1,oa{doie'PUl80,0)!2.0; mseni{jia=(nBdhdsor I 80.0/Pr;
Sotor)r52.0)pn
fi"Widrh -'.gotoxrr65,o'.pnntt( !i?.lltm.$rd):
Sobr)15-2.10':prinrli
DAZ -
goro\tr52.ll):prinrf(
ARCV'igolorJr65.llr.prinrn
):Sotory(65.r0ripnnrt(5.7
qvall(oah-sall)-( I 1.837 | {,1226*wid+o,73 t 9.wid.wid0. l0l8'pow(qid,3)))/lo O; ov.l=(h.lr-slrx7.r65l-6.32261wid+o.71 19.*id.wid_ 0.l0l8.pov{wid,3));
,06
ltl
o.7.1tr
./o7.llf h .0de gotox(52,12):p.i {"Ase = '),sororr(6t,I 2ripnr'4 mjd).24.0): Sobry(5z,11);pdn("Qvalue = ):goloxy(65,13)prinl("%?.llf',qval); soioxy(52,1a)ipn (visib. =)rsoloxy(65,14);@ut<<'';
soroxy(68,l4);
i(qv.>o.2l6)
i(qv#-0.014) @ul<<"VUPC
r
i(qvaF-0.212) COUK<"MNOATFC'';
i(qvaF-o.293) cout<<'VWOAO"i etse
cout<<,,ct ;
eoroxy(s2,15);pnnt( Lae = ); i(l|mrhs<o.0)cour<<'!"rconven
eotoxr(52,16);pinq Rd.y
bn(r'abs(ltdstrst)i
= ");soroxy(65,16);p.inr(,'%.51!"_rdar;
sotoxy(52.17);pinr( Rdayl = );soroxy(65,t7):pdnr(aZ.5tf',rdayl): go'oxlr52,l8):Arnlfl l:gorory(65,t8ripnnln oo.5||.btyJ: i 8o'ott(52.1c):pdnrfi S-val@ - l:gorory(65.t9,:pnnr{l o/o.5tf .6ky-
tuly -
soloxy(52-20);print(thilen
-
'');goloxy(65,20);pri.r(.%. jlf ,phitend.); eoroxy(52 j21)rpiid(lhnele ho. = ")rgoroxy{65,21)ipi (,,%.51f,.ansl€_hot; soroxr(52,21)ipdnr( Lim MaB = "):gotoxy(65,21)iprinr("%.21f ',tindagnn0); sotoxy(52,22);prinq Mooro Mas = ''):Eoro\t(65.22).prinr ("% 2t f .mnm.g), sorox)(52,24).prinrt( Rel Hun = ):Boroxy(65,24);p nrr(,%..2tf .phm)i
eobxr(s2.25);pinr("T€mp@rG= 'il.sotoxy(65,25);pnnrft %.2tf ,plempl: Sotory(5,28r.pnnr( s{s/r, nmrm/n}lou l/t, h@id{o/b, !.mptdd j day(e/D prinr(p) rdse(q)
{
201
li
)
'] ) rvhile(nex|sl=V'); Eolory(50,29):@ur<<"NwCalcnlaion? ; gorox(77,29}nexts=g.rch(I clsto;
]
while(oexrsl=1r); gorox l0,l0)r@ut<<"Allal Hanz'; gcrch0; ) void inpurdaretiee(void)
{
goroxi20,2);coul<< "Enrcr L@dTinc & Dare,,j
eoroxy(r0,4)icoul<<'ObscpadonNo. :
Soloxy(10.6)icoul<<'Day goroxy( 10,8)icoul << "Mon$ Soloxy(10,10);cour<<"Yeo ,Lo.g.(+
;ciD>ocnr; :,,lcin>>datei !!;cjn >>monlhi :
:iiicin>>ycdj
gotoxy(10,12);cour<< lor East) : icin>>plongr goloxy(10,14);cout <<'jlkt. (+ for Nonn) :,icin >>ptari eotoxy(I0.|6);coul<< "Alritude abovc S€a ;cjn >>p.lli gotoxy( 10, I 8)icout<< 'Esiim Tenperarurc : "icin >>plenp; ,,;cin >>ph!m; gotoxy( 10,20);cour<< "Estih : prcs=1010.0;
:
*0.0;
Huidirt
) {
i(l.apch*k(inr(year))) nohthdayslll-29.01 clse mo hdayslll=28.0; ld.te=dak Jmo.lh=donth JydFyear; zonlin=plong/15.0;
i((b .
iDlong(anrinD0.5) 2ondmioubl€(tons(zondn+L0))i
entihdouble(lons(zontin));
lhorf houF (min+*d60.0y60.o)-a i(lhour>=24.0)
{
lho!Flhour24.0; ldri--ldale+1.0;
204
im:
i(ldltohonthdayslin(lnonlhl.0)l) ldaiFl.0: { lmonth=ldonth+ L0i
i(lmonrDl2.0)
{
lnonlh=I.o;
lyeFlyea$l
,0;
]]) ir0hour<0.0)
{
lhourFz4.0; ld.re=ld.r.-l -0; i(ldar.< | .0) {
lhonth=lmo.th- L0i i(lmo h<I.0) tnonth=I2.o;
{
tl
lyerlyed-l
.0;
) ld.tFnotrthd.rslint(lm@thr.0D;
ndalFlda!.xtnonrh=lmonth:tlyâ&#x201A;Źclycari tdouFlhour+d.ltltlin(lyed-1620.0)1/]500.0; i(ttbour>=]1.0) { iihoui=fihou,24.0; lldaie=ndalqfl .0; i(ndapmonthdlyslin(rttDoiIh)l) { ll<ratFt.o; tltlon!!=rnonlh+ 1.0;
i(n
{
.
nonrh>12.0)
tlnofih=I,o; ttyeaFilJear+ L0;
)]) J
{
dt_new_n@n(dar..nontnrE); soroxy(5,I rsout<<ill.w Moon ";pdnt(!D
pdnr('
or
- %lfrnjd); "od%dfld',in(mdare),ii(Mnonfi ),in(@y$r));
mdare=doublc(lo.s(mdate));
morth<oublc(long(nmonth); myerdoubl.(lone(Myed)); pr d(" ll.'!drl6d:vdd (TD)',int(MlFu),inl(t:min),int(m*)); pint(' or eidrl6d:94d (uD",irr(ulrow),in(ain)jn(M));
6*aunou.r(uinfi 8e.r'60.0/60.0y24.Ot&lL{in(mrrdIiBrcdculadonoi s.rinln0;
209
I
620.0)l/8400.0i
i(ho!P-24.0) iqhoul<0.0)
ni.{hou'double(loneGou)))160.0; s.c=(min-donble(lone(min)))r60.0; min=double(lons(min));
*c=double(lonc(s*)); houFdolble(lonc(hou)); ,
t
sun_$o; non *(1; brim=rGs+4.0.(lr,ns-hssy9.0: Soroxy(2,5);cout<<"(LT) olSun s.t : ";conve'l hms{ltss); goroxr(52,5)i@ut<<", Bel Tine : ;convcn hn<bl'n): gorox(30.5);@ul<<', Moon S€t :'iconven-hm(lrnti goloxy(2,6)icour<< (LT) orsun Rkc : "ponven_hns(hsti sotoxy(10,6);cout<<. M@nRi* :';.on!en hms(lrfrti
) {
goloxy{2,3)rcour<<
Lar-';
soroxy(8,3);coNert dms(fabs(pla0)r i(plat<o.o) pinr('s'); dse gobiy(20,3)cout<< ns. ":eoloxy(2?,1)i@nved-dns{fabs(!long)); pnnt( E ); dF ifulonc>00) goloxy(40,1):cout<< TZon€ ":
t
sobr'(48,);
i(enrim<o.o) cout<<"i;
€le
sotoxy(49,1);prinq %2.01f,fab(2ontim))i Eotoxy(2,4);p.int('LMT vo2d:%2d:%2d,int(hou).int{nin).inr(sc); 8otoxy(]5,4)jprin( (%2d l2dl%4d) UT",in(date).in(month),in(yed))i soroxy(31,4)roNed_hns(lhout; soroxr{42,4);print( (%2dl%2d7o4d), JD = ",in(ldal€),ii(looftn),int(lyeat); sotoxr(60,4)iprint( %.61f jd€)i sotoxy(6s,3)rcour<< TDr iconve _hm((lhour); Sotoxy(22,8)rout<< s u n":soroxy(40,8 ) rcour<< Moon j Soloxy(2,Io);cour<< Geoc. rong, ; goroxt{2,l l )imur<< Ged- Iilir.'i aotoxy(2,12);@ur<<"Cee. Disi."; go!oxy(2,14);@uK<'Gc@. RA:"; sotoxy(2,15);couK< c€e. DELT ; soroxy(2,I6):@ur<< Hou Anelc:"i Soroxy(2,IE)Fout<< Top. RA:": goloxy(2,19)i6ur<< Top. DEL|"i gotoxy(2,2o);coul<<"Top- HAf ;
8otory(2.22)tcout<<"AIfi udel';
2t0
gobxy(2,21);cout<<"Azimut ; gotory(2,24);cout<< Semi-Dia: ; )
i{(.Y.400)l=0)
{
if(n%100)==0)
k=0;
€le i((n%4F0) k=1;
)
) double julimdate(doubl€ yrdouble mndouble dcdouble
ft)
{
i(mn<X
yr=yFlrm.=ni+12:
)
a=(doubl. (long (yrl100.0))); b=2-a+(double (ron8 (./4.0))); jd=(doublc (lon8 ( 165.25'('r+47 I 6.0))))+(double {10.6001'(mn+1.0))))+d.tb-1524.5+fi i
(lo.s
) {
l=(jde-245 I 545.0)/36525.0; epsilon=21.0+(26.0+2 l-a48/60.0/60.0-(46.815/1600.0)'t'
(0.00059/3600.0rf 1'+(0.00t813R600-0)1.r1; elons=29?.85016+445267.1 I 1481-0.0019142*l'l+t*t'l/I89474.0' smon=35?.52?72+15999.05014.r-0.0001601'lir-t.r.r/300000.0 mmob=134,96298+477198.867398't+0.00869721'l+t't'VJ6250 0i mng=91.27 I 9l +483202.01t538rr,0.0016825{1.t+l*1*r/32?2?0.0 lnod€=125.04452-l9l4.t l626l1l+0.0020708.11r+rrr*t450000 0
fo(i{;i<61;i++) {
derbsi=delhsi+(nur obrlil[5]+nur_oblti]t6l1r).sin((nur_obltill0l.€loig+
nur,obltiltlheom+nur_obllill2l.ndom+nu obltiltll'nale+ nut_obllil[4]'lnode)1Pvl 80.0): delra€psi+=((nur_obltill?l+nul_obrlilt8lh0{co(nui obltiltoiielone+
nul_obltiltll*smom+nulobllill2li@oE+nut_obltjl13l'nar8+ nur obllill4rhode)'PYl80-0)); ) delrasi'=(1.0(t0000.0.t600.0)); <leftaepsi'1 1.041 0000.0'3600.0)); elsilon=epsilor+dellaepsii
2l!
) {
gmr4c6-0r{41.0+50.5484V60.0y60,0+(6640184-812866'si+0.093104'st'st0.0000062rst'srlsr)6600.0r east4@=eEst Erc{€lltsi'cos(epsilon'PUl 80.0yt 5.0i
smstz€rc-lGmrzro/24.0ldoubl{long(8tui4b24-0)))'24.0r gdu€re1Gastu o/24.0!doubL(loos(ssrz'o24.0)))'24 0;
if(smEm<o-o) i(gnsldo>24.0) i(s6rzerc<0.0) i(easrzerc>0.0)
8rnst4'o+=24.0;
gott4to-=24.0i gaslzco+=24.0i gastzdo-=24.0;
smstcun_Cnstrcro+frac124,01 I 002? 3 ?909I5 i gasrcuFsdzero+firc'24.0* 1.00273?90935;
i(snslcuP24.0) i(emslcun<0.0) i(sastcud>24.0) i(gastcuft<0.0)
snslcun-=24 0i Smslcud+=24.0i eastcuft-=24.0i sostcud+=240;
lostcllFgnncd+plong/15.0i l4rcuFedlcur+Plong/15.0i
i(lastcuPla.0) i(lostcud24.0) i(ldlcm 0O' ii(lmsbu<0.0)
lastcun-=24.0; lnsrcud.=z4 0;
ls(c!r-240i lhsr.!nt=24.0;
)
void convcn dmndouble c@d)
{
cdesdouble(lone(coord)): cmin=(coo'd{d€s)i60.0;
c*clcmin'dolble(1o.8(cmio)))'60.0:
pnd(
%3dooz2dn"/o2ds,in(cde8),in(cnin).in(cscc));
) void conven bn(double cood) {
cdes=double(loneGoord));
cmin=Good{dee)i60.0; csc=Lcmid.double(lons(cmin)))t60 0i o!2dhoo)dn' o2dr".,ntrcdegl,inlr(min).rnl, cscc\): prinr
(
) void sun cood(double) {
fplFfopen( v$pean.txt',
t
)i
// LO,\]GITUDE OF EARTH fodi=o;i<6:i+) { tehp=o.oi fo{=0j<lnellilj++)
2t2
{
y.lf,&sx,&bx,&c); rmr=lâ&#x201A;¬mF4.cd(bx+c.1);
fs@f(fpt'%lf
yolf
)
slong+{tmp.po*{!i): )
slonrslong/l 00000000.0; slong=jon8. | 80.0/PIi slong=Glon g/360.Odouble(longGlons/360.0)));
slongl=360.0 slone+-180.0 i(slone<0.0) dong+=360.0; i(slons>350.0) slong=slong-360.0: L.firurL OF EARTH
//
fo(i=0:i<2;i+)
ro(=oj<adlilj+)
I
[sco(fpr,"%lf yolf %lr,&ax,&bx,&c); temp-aeosrdrco(bx+c0t
)
slai+=Cemprpov{t,t); ) slat=*IaU100000000.0j
slatl-(t80.0/PI);
fo(i=0ri<sli+)
to{=0i<dsrflil;j+)
{
fs.n{&rr,"o/,lf %lf.4lf'.&a,&bx3c); r.mpaettp+u'cos{bx+cn);
)
sdst=sdsl+renp*pow(,i);
) sdsi=sdst/100000000.0r dst=sdsr. 149597E70.0: slo.g=slong+dclt!si{20.4898/sdrry3600.0i
elph!=sin(slons.Pvl80.0).6s{.Filon+Pyl 80.0); slph!-slph!-tdGlal'Pvl 80.0).ein(.plilon.Pvl 80.0); salpha=slphd(@s(slong.Prl 80-0)); lalpha=aran(salPha). I 80.0/PI:
i(Glong>90.0)&&Glorg<2?0.0)) sglphaFl8o.oi
if(slong>2?0.0) elpha-salphe/15.0; i(s.lph*24.0)
salpha+=150.0i
salpha=elph.'24.0:
sha=lastcur-salph!;
2t3
iisha<o.0) sdelb-sinGlarrPvl80-0f cos(epsilon'PI/180 0)l sdelta=ldclls+cos(sla1+ PV l 80.O)'sin(€ps ilon'Pv l 80 0)'si.Glons'PI/ 1 80 d€lta=6inGd€lla)' I 80.o/Pl
0)
i
salphap=elpha+.lcladpha
elr- sin$laf P!
sinrsdelrap'PI/ I 80.0 80.0): I 80.0)rcos(sba*15.0'Pvl " salt=asinGalt)' I 80.0/PI; I
80.o
)
rosulat'PL
I
80
0r.on sdehtp'PV
i(sw=l) {
;Ffra l .oz(r&(eh+l
o.v(sali+5.1 l ))'Pvl80
0)fe8l
0(271 0+teoF))!(pr€s
/l0l0.o); s.cb-nn{olarrPul80 0Is'n(!d.l!lp'PU180 0,'sinleli'Pv!80 0): tela=$etd(cos(cdelbp'PVl 80 0/'(olleht PLI 80 0r,: seela=acos(seela);l 80 0/Pl; sdcltrsde liap+srcfi'cos{seela * P l/ 1 80 0); slDr=sh!-(sefi*sin(seetai Pl/ I 80.o)ho(sdelta/u/180 0)/ I 5'0i
l I
sdehFsdelk: shFsha, l
idh=sinLplat'PUl80O)'iirsdelt,r.Pt/lSOOFcos(pldfPLlS00rrcoil3dcltat'PI/ 180.0)'cos(shd'15.0'Pvl80 0): satFdin(s.lr)' 180 o/PIi *lr+=r,c6ermar4erur+tnle/1000 0D' 180 o/PL/l 5 0
sa6=s,n(rd.ld. pU I 80 O Fsid ptalr PI/ I 80.0)! sintsallr sm=szn/Gos(platrPvl80 o)'co(elt'Pl/180 0))l
Pl/ | 80
sad=acos(saar)1 180 o/PI; s@=180 0i it(shdF=o
0) itlshaF=12o) ehe el* i(shd<I20) s*nidi.=Gn(ydsf
l 80.0/PIi
) void moon c@d(do!ble)
{
fDk2=foDcnf elP2000 ur'."r): sumv=o.o,suntp=0 0lsumvtp=0 0isunvppp-0 0:
fo(i=0ii<2l8ii+) I r(mfl rDu2.'%[
q.lf %lf &alpl &'ly'l " 0lf ,& \,&!lpo'&!lp l.&alp2 rr+alp2r1.r/10000.0 sMFsuov+v.sin((atpof atpl 0/"1r 0/0lf
+alp3iPo*(i,3Y1000000 0
2t4
0):
+alp3'pow(!4)/100000000.0)rPI/180.0);
)
fo{i=oji?44;i+f)
{
fed(fpa2,"o4lf%lf%lf',&v,&rip0,&alpl); smlT=s@vpf v'sitr((alpot.lp l'l)'Pvl 80.0);
) fo(i=oii<154;i+r) I fsc f(tptt2, r6lf %lfo/o1t',&v,&alp0,&alPi ); sumlpp=sumvpfi v's n((alpo+llPlil)iPI/l 80 0)i )
fo(i=0ii<25;i++) lsconi(fpu2, 9'lf ?'lf eolf'.&v.&slP0.&alpI)i I s!mwpp-smvppF ! | sin(alpo-alp I i t)t PVI )
80
0li
mton{=218.11665+481267.88134't-13.2581'l/10000.0
.856'po*(!3u 000000.0-1 .514'pos{tjy1000000{0 0 +sum!4Gur?+swvppl+sMvppp't'i/l 0000.0)/1000 0i
+
1
nrois=(nloD936o.o-(long (mlo.s,/360.0)))1360 0;
sumu=o,0tsumup=o.0rsunupp{,0isunuPpp=o 01 sunr=o.0;sumrFo.0isumrtp=o.0;suntppp-o.0i
lb(i=0ri<l88ri++)
r
fok2.'/'lf ' %lf t'll"/.lf %lf %lf ,&v.&.1p0,&alp l ,&alp2 &alpl.&'lp4 ): !mu+mu+vt sin(alPo-aipl 'r falp2'r't/l0000 0'alpJ'pov'1t.J iscanfi
+alpl.pov(!4y100000000-0)'Ptl
80
y'
t000000 0
0)i
) fodi=0;i<64ii++) e"lf .& v,&tlpo.&olP I ) { f$anf( lol12,i%lf'l"lfrsml( tlpo+alp l'r )r Pl/ l 80 0) suNup=sumufi! )
r
fscanll tDk2. '/"la %lf "/.1f ,&v,Aalpo.&alp | ):
sumuip=smupp+vtin(alPo+alpI'0'PI/l
80
0li
)
I
l*anfi fDr2."%lf %ll
c,6lf ,&t,&dpo.&dp
sunu;pp'sumuppF
|
)
vrnn(.lpo'llpl'0'Pl/l
80
0):
I ;hFsumu+GuouCsunupplt+smupPp1irVl0000.0yl000
0;
fo(i-0;i<l54ii++)
I
Gcsnf(fplr2, %lf "/.lf %lr9"lf 90lt 9"lf .&v.&alD0.&alDt,&.102,&alp3,&dlp4)i
snrsmrr'cosriltpO alpt'l+;lp2'rt/lO0o0o' Jpt'po*rt l/10000000 +alp3xpowt,4yl00000000.0)'Pv180.0)r
2t5
]
fo(i=o;i<l
{
l4ii+)
fs.d(fpL2,'%li %lf %lf'3v.&rlp0,&alpl ); suotFsuDr/*rcos((alpolalPl
rl)'?tl
80
0).
)
fo(i=oii<68;i+) I fscdf(fp$2,'/"lf o/.lf %lf'.&v.&alp0,&alpI): rt vmDp=suffpPrvtosl alp0+tlp l l'PI/ l 80 0),
l fo(i=oii<9:i+) r fsdfi fDk2."!/olf./olf %lf'.& v.&tlPo.&.lp
l)i )unrppp runrtpp{'coe(dlpo'alpl't'Pl
180
oli
)
md{-li5O0O.5 7+sunr sudrsr suffpp'l_sumrPpptl't | 0000 0: nla{=(ml5r/l60.o{lonc (hla/160 0)))'160 0i o'lf PUI80 0)): OOOrolla-O.O0OOt019'sin(225 O'47?lo8 '"i.""',-O mhr+-={.d o0o0l754'sin(l83 1+481202 0r0'Pl/! 80 0))i ndst+=(o o708rcos((225.0+a?7198 e'rl'PVl 80 0))
maipha=sin(mton8'PUlSOofcskFilon'Pvl800)i - nrn;ha- malDhard(mlal'Pt/l 80 0t'sin(cPsrlon'PUl80 0)' mal;ha=ialpha(@(mlong'u/180.0)); maloha=.iu(maLlha)+
I 80
o/PI
-ri,,ir.no'go oraai.r.ng<
iftmbn;27o
or
I
mdlphanalPha+-1600: uo o I
if(mh*24.0) inmhi<o.or
frba_-24 0; dha+=24 0i I Pv l80 ofcoslâ&#x201A;¬psrlorr m;?lk=$n(mltr
-i"iu=na.r.
PV
lao 0):
_1800:
--^ ^O)rsininlonsrPl/1800): -
-'Lmr"t'pvrtOO)tsin('psilontPVlSO
nrdelh=asin(mdella)'l 80 o/Pl:
rulphlp=malpha+dell4lPhai mha=hh.nelraatPha; 'iil""iJ" r80 0)'co(mderbP' er'i do ol'"'t.aerl!pr Pr/ r 80 o, "os(l)rar'Pv Pl/l8o.o)'cos(mnar lt 0rPyl80 0l, malr=6in(malt)1 180 o/Pli
-lii
i(sr=l) ;rcfr(
042730 remfl))'(tr 1.oz(bn(nal(+ l0 la mah s lt)fPl/l80oDft283 drcfFmefr/60 0;
216
mcela=sin(!lar*PI/180.0)'sin(mdcliaprPvl80.0)1si.(mall'PV180.0); nft la=merdcos(ndellarPvl80.0)'@s(mlt'PUl80 0));
i(fah6(nela)<=
I
1.0)
goroxy(45,20)i@ut<<" meeta=acos(mâ&#x201A;¬ela)' 180.(VPIi
mdehFnddiap+@t'1cos{mera*Pvl
80
0);
(@t'sii(6ela'rvl80.oycos(mdehe'Pl/180 0)yls 0i malFsin(plarrPvl80.0)'sin(ndehd'Pl/180.0)+cos(plal'PVl80 0)*co(hdcllai ?v180 0)rcos{mhdll 5.0'PYl80 0)i nralt=ain(mah)'l 80 o/PI; nalt+=(aco(eMj(enej+hik/1000 0))x 180.0/PI);
] cour<<'.eb geater lhan
I
i
)
{
hdeluFndellapi
lSOo)_s,n{plat'Pl l80ofs'n(moh'Pl l800r: nDzm=mdnv(cos(olaf PVI 80 0lrcos(mah'PVI 80 0)li nd=lcodmaa)r 180 o/PI;
; a,m-si1(m,lelrar'Pl
i(nha-12.0) nazm=160.0:
i(mla<12-0)
mm=1600_n@; nrmidia=(n6<Vmdsr)'
180
o/PI;
..r,r,="."u.otrtio"o'pr rtOOttsrn(eps'lon'Pl l80 0)rpos(l po$,lsi;(epcilonrPl,I80 0)'rn(slong'Pl/l80 0' 2 0) 0
ii;i'iriio",tr.o.po",rsinrcp'it.n'Pvl80 0)rs'n{slon8'PVl
iii=.co(iii)'l
0_
t)))
80 0) 2 0) 0
80.0/PI;
mele hor=90 o.Dhil.mdai
aii*rir.:-.*.iai*z zf oqplatrPl/l 80 0ycos{l)hil'ddt'Pvl80 rda;
5)li
l=l0 t'.os(plal'PVl80 0,/.osohilcmda'PVl80 0)i
217
0):
i((dnon8<90.0)&&(slon8>100.0)) ddone-nlon8+360.0_slon8;
Bky
dclong=mlong'5lon8; lal'tan(phitehda'PVl 80 o)+delonsi
l
doubl€ modtunc(double xY)
I
xFxy/l6o: \y=(xy{double 0on8(xY rr)f 160: iltxy<0)
loid paBlx(double hhdoublc dd)
t
ol,llliililt;lli*"""pr/r80.0!emai)rr80.0/pri 0)-r'Ih'sinr'r 0'|prar'Pr/I80 0rvl600 o: inor' hre'{nrplar'Pl 180 0) on': ;-eniin'vntuu'pt rro or"o',r'PVr80 yy ro\tuu'Pl/l80 o)'hit'.os(plar'Pl/180 o)/con:
ll,l"'lili-""t.r',t,
t
rho=po*(xx's+ty'y) 0 5)'.mtji
80 0f sidhh'PI/l 80 0)v i.rJom=aurt'pr'co"rphrPVl "' *' - --i""ltaa'priitooFpG'cos{PlatprPtl80olrcosthh'Pl/1800)))
delrMlPhal=(l 80 0/Pl): hp=hh_deltaalphal
or-Pie'sinuratp'Pvr 80 o))'/ 0)l\' aoirOa'er'lad Of @s'hb'Pl lso otspie'cos'pldp'Pvl80 dehapr=(180o/PI)i hp/-15.0:
i;i;i|$,ili;t4r", " "' _*
to'r'{sin(dd+ur
80
loid dr-new-roo.(doublcdoubledoublc) yy=y€a.+(monLh_l O+dak/lo Oir'l2 0i traY-tYY_20000f 12 3685,
ir(kar'0ni)aoou61.
06ng ltar)))- t.o; oons (ksY)));
e|s raF(dotblc L€--l,ay/1216 85i ;;=1"' ;';93;ggiijliil['31ffi 3"'ff.i::.i:.i:::*, -.""-."ar.""ii lSu-zq toSl5o7'kav 0 0o000l4't4'r*' 6ei528' kav'o o *""":l'j'#:,!';i"*::'r;;:.8 '_ ' .@.Le.r;co 0ooo00058r r€.re'leerrec)i r
218
I
07582' ree'
reF.
ooo0 I 2r8
forg nodf6c(160.?lo8+390.67050284rtoy'0.00161I81rcc're' 0.00000227'powtle .3)-0.00000001 l'por(1e. 4)): omes=modtun(124.??46_
I 56175588'kav'000206?2'l.e'tc.
0
000002I5'po$(tee3)l:
eFl.0-0.002516're-o.00000?414nei msur<PV180.0);moon.-(Ptl80-olr!re'1Pvl8o.0);ones'1PU180 0); oe--0.,r0?2.sin(mmoo.)+0. t724l.selsi!(ns!i)+o.016061sin(2.0'ndoo.)r perF(o.ol039rsin(2.0rfaq)+o oo739tceersin(nnoon-nsui)' o.005l4,eee,sin(msu+moon)); p€r+=(0.0020S'po{€ce,2 0)'sin(2-o'Et!.}o 0o l I t'si'(mmn'2 0'taq) 0.00057.sin(mnoon+2.01raq))i @r+=(0.000561ee'sin(2.0xmmoon+nsun}
0.00042{sin(3.0*hm@n)+o 00042'ee\in(nsu!+2 0*fdd)r pe*=(0.00038'e*;sin(hsun-2.orfds)_0 00024teee'sin{2 0hmoon_nsui)0.0001?'sin{omes)); o'mhonFr+1'0.00007'sin(mmoon+2 o'msd)+{ 00004'sin{2
2.0.fa€)+0.00004.si.(3.0'osun))i De.F(o.00003'si.(omoon+nsun_ 20.Lre)+0.00001+!n(2.0'mmoon+20'fare)) eeft I-O.O0OO3!n nmoon-nsu 2 0'fargh0 00001"in(mmoon_
'
msun+2
o.fes))i
Fr+=Co.00002'sin(nmoon_msun
'
2
0rlarg)_
000002'\i l.o'mmoonrsun,'O00002'sn 40'mdoon)):
ol=(299.77+O lO?408{kay_O 009l?3rteettee);al a2=(25 1.88+0,016321'kay)ra2'=(PI/180.0)l a11251.83+26.6t1336rkay)i.lr=lPul80 0):
2478'kayl.a4'1PUl 80 0) a5{84.66+1E.206239ik.y)ra5'1Pvl 80 0)i rkav):a6r=lPl/180 0)l 16=1 141.74+5l.lOl7?l a7=i207 l4+2 4tlTl2tkayl:r7+1Pl/180 0): a8-l I54.84+?.106860'kov),i8'=(PUl80 0): r9=i14.52+27 26l2torkayr.Jq.=tPVl 80.0), slo=l207 l9+0.121824'lavl:alo'=(PUl80 0), rl l=(291,14+l 84a379'tot) tl l'=tPl/180 0)l al2=i16r.72+24 laSl54rkry),a12'=(PVl80 0l ,ll={219.56+25 tllo99ikav) allr=(PVl800): ar4il3l.55+l 592518'kav);al4'=(Pl/I80 0): a41140.42+16.4
*=(PI/1 80
I
,,
| 0001 65
sin(t2)i addc*=O.O00r64tsrn(.1), addfr=o.000126'sin(aali iddcr+=o.oool ro'sinl15J; addc+=0.000062tsin(46) d&cr-0000060'sin(a7)i iddcne0000056'sin(aEI addcir=0.0OOO47rsin(ag): .ddcr=0.000042rsin(al0): addc*=0.000017'5in(al2)i addr-0.000040'sn(.1 addcP -O oOOOJt'siral3\: addcrjo 000021'sin(514)i mjdanjd+pe*addcr z-rdoubldlongrMjd+osDr:
addcrj Oo0l25.s,n(al
addq+{
l)i
2t9
0ll
I(24299161.0) e=z; el$
{
alph<doublc(lon8((2-186nt6.25y3652425))):, @-z+ L0+6lph-(doubl€ (lons (ddv4.oD);
I cldouble dd=(double
(lons ((bbj22.1y365.25)Di
(lo4 (355.25'@)));
e<double (lon8 (GMdY30.60{ l))); md.rFbbnd-(doublc (lo!s (30.600 l'c))Fr:
!)modn+l.o: clsc mmodh+13.0; i(montF2.o) my€f<4?16.0: els mlta-rc47l50i i(a<14.0)
nnrhor-{mdar€-double(!o4(md!tc)))r24.0i uho@houtsd.liatlin(myedl620.0)l/3600.0; min=(mhour-doubqlone(mhout))'60.01 ms6=(ubin.doublc(lons(minD)160 0i unin=(unoudoubl(lons(uhou)))160 0: Na=(uin-doubqlons(unin)))'60 0; ) {
i(s@>600) i(min=60.0)
{
mi"{
0:
hou.H; i(houP=24 0) { houFo 0i dare+;
i(daenonthdaYslint(nonthl'0)l)
{
datFloi mo.ll|++;
i(nonth>120)
{
lt )))
nonth=1o;
v6rr:
)
{
nin=00; if(ho!P=24.0) houFo-o]
{
220
dtt'+t;
iqdnl'd.ddryltin(0.dl.Ol) ( dGl.0; noiliFli r{rr{r,r12.0)
{
t , void
lro tsl.o; yaftsl-;
l)))
ning-no;
iE_tordvoio
{
i(no|t',-24.0)
i{d'r.>tuothdrylti!ft nornlFl,Ol) { dnFr.oi
mb+)i
t{montlFl2 0)
{
rcIilLno {
))l
ftGl.oi rttfi
rld*.ri
i{d"p@|tdry{i'(dl.0I)
. {
dGr.q
n|odrh++;
i(mdb-12.0)
I
moortsl.o;
.ll
l(3â&#x201A;¬l!-'d)
@no
)
I qEodD-12-0)
(
nofl.0;
l
Doll_ctee{i
2l
i(|enrd) s.t6i8_n0i
l
{(3â&#x201A;¬c<1.0)
{
eF59.0;
i(bll<!.0)
{
diF59.0i
hdc-; i{hom!.0)
(
hou-23.0; dr!+_;
i{d@<I.0)
t
nto'fi_;
i(r!.dtKt.0)
I
l t
)))'
lcnioLn0i
!to#12.0i
l. uu**Il!(.*.orlt
nin-i i&Din<!,0) DiF59.0i
{
i{ho8<t.0)
I
bou!23.0;
i{dab<r.0)
I
dr!&io
!erl-: i{no!.h<lo) I dlo!tFI2.o;
,.. drrc!.d!dry.(in('dLl.0)1i
22
t iqbou<I,0)
(
!dF23r; &l}-i
i{de<I.0)
t
mo!&-;
iftud<t.0) t e.dhl2.q
-. ,,
tqr-; d.|ddrF[i!{DoodFl.0l;
*!iâ&#x201A;¬|{: ) {
i{d.G<t.0)
{ i{Dolut<l.0)
{
mrtsl2.q
tlt.F.i , dd'nonrhdlyltidnondlt.0)l
. l
{
f.c.0.0;
lo(|qFt ttqtt<Jcnn+) i j<Fjdr.,r4.()rr
Eo.rr
4 6*r
jdFjd+ddrar[a{Ee. r62{.0)y(36{oo.z.o}
Drrrdo;
{Ciutiednq.t.r,Dodd...O.0}:
tF(dlt24s 15,.5.0yJ652J.0 8id_.te!(!tI
t 0d+245t5a5.0)865250'q E_cod(r)
223
nmFsin({50_c/60.0).Pv180.0)sin(plar.PVl80.0.)rsinGdeltap.Pvls0.0):
denn<os(!lat.Ptl80.0)ico(sd.ltap'PI/180.0)i
i(rab(nmr/dcm)+ | .0) { h6s?c6(Ntu/d.m)'160-0/Pl;
moFsalpha!-plong/l 5.o-Cmstz€b; mode=tuor-h8svl5.0;
hlwo-mnor+hstt 5.0i i(onoKo.o) @or+24.0; if(tuoF24.o) mor:24.0; i(none<o.o) noner=24.oj i(nonc>2a.0) none-=24.0; i(ntwo<o.0) m$o+=24.0; i{mtwc>24,0 dwo:24.0 sbs=smstzoo+nlqor 1.002?3790935: brwo-nlwo+delratlin(tyer-1620.0)l/1600,0; jd=juliandar(year,monrbdare,mr$o/24.0); r=(jd-2451545.0y365250.0:
caph=ns+ptone/l 5.0-etphp. axrs=asinhin(ptarr pt/ | 80.0f s,n(sdelrap.pt/t 80 0) +co{ptal.Pvl80.0).cos(sdetr.p'pt/r 80,0), cos(€ph' l5.0.Pllt 80.0)i 180.0/ptj dexm=t(attss+50.0,60.0t1(osutar'ttl 80.0) .codsd!lrap.Pt t80.0frn{caph. t5 Orpt l80OrJ !cs=hlwo+detrah;
) urss=utss-delar[in(lr€tr- 1620.0)]/3600.0; !tss+=(acos(emdj/{cmj+hrrc/l ooo.0rr I 80.o/pl)/l 5.or: rmcnBt24 0,
I
fo{lcnr=l
Jcnr<4
Jcnr+)
I
jd=jutimdde{yea,,oonthdare,ner: jde-jd+det'a(in(yeaFl 620 o, tt
)ilo.o.
stjd=juliddarciy.tu honoldale,o.0r, nlsUd-2451 545.0)46525.0i F(jd+2451545.0y365250.0;
214
24 o ).,
t.0.
nmFsinc(so 0/60 of?V l 80 0)sin(;lar'Pvl80 o)rsin(sd€l$prPVl
80 0);
dem=o(iL'Pvl80
0)t@s(sdel6P'Pvl80 0)i
iflfab(nud/d.M)<=
1.0)
I
hN=@s(.w/d@)rl800/Pl; mot=sdphaFplonS/l
nontmot'h4Yl5
5
o-gnstzdoi
0;
ntwetuot+hlsJl5,0;
i(dot<o 0)
nnot+=24 0i i(l@1>24-0) nnor*24 0; i(mon?<o 0) mooe+=24 01 i(oon>z4 0) mone'=24 0; i(nt*o<0.o) mtwo+=24.0i i(olwo>24.0)nt{o-=24 0; slsrgmsldo+mon tl 00273?90935: none=mone+d€ltarlin(lyed-1620.0)l/3600
0i
jd=juliedate(y.e,6odhdat,mo.e1240); F(jd-2451545-0Y365250,0a
su._coodc): @ph=srsr+plotrg/l 5.oelphap;
altsFbincid(Pl51Pvl80.0)isinGdellap'Pt/l 80 0) +cos(! lat'Pl/ 80.0)'cos(sdellap'Pv l 80 0) '@s(qph' 15.01PUI80 0))' I 80 o/Pli ddlan{(all.$50.0/60.o/(cos(plat'PI/180.0)' .os(sdehap'PI/l 80.0Xsin(€phx l5-04PU180.0))yl 5.0; ulsFhone+delrmi 1
) ulsFursFdellallin(ly.aFl 620.0)V3600.0i uts!+=(aco(e@y(eoaj+hite/1000 0))' I 80.0/PD/15.0)i rac=drsd24.0;
,
llsR$r+4nlrm;
i(hsr<o.o) hs.F24-0i i(lts!>24.0) Itsr:24.0; )
fo(lcnt=l Jcnt<4jcil+) {
jd-j'iiedardyeu,nonrhdate,f.e); jdFjd+d€llarlini(yed-1620.0)l(3600.0'24-0); nutarion0;
stjd=juliedlle(]dJnonthdat,0.0)i st=Grjd-245
t 545.0y3652t.0; sid-1imc(sr)i t=(jde,245t545.0y36525.0;
225
mooi coord(i),
llii'i--.Ji. i:s'pv
r
ro.or-'i"olat'Pvr
mder@P'Pr't
80 o
I
80 0):
''srd dem<os{plaf Pl/l 80 Of ds{mdelcp'Pv l 80 0): ifffabslnw/deM)'= I o)
{'
hass=a@s(num/domrrl80o/PI: Dnor{alph.Fplong/15.0_gnseeroi mone{nol-has/15 0;
mtwr.fuol+h6J15.0;
0)
nnol+=24 0;
i(mtoP24 0)
mnot-=24 0i
i(rndol<o
0)
nonar=24.0; i(mone24 0) nonc'=24 0i i(mrivo<o 0) ntqcF24.oi i(mone<o
i{mt{o>24 0)mt*o-24 0: sts!=sstzeGrmlm' 1.00273?90935i mlwoattu+deltarlin(lve{-1620 0)l/3600 0; jd=jdiandat (ye&,mo hdlt€,mtwoz4 0); r=(jd-24s1545.0)/36s25.0;
eph=qrs+plone/l 5.0-malPhoP, dlr t -6rn(simelar'Pv180.0)'5in(ndelup'Pvl80 0) _ c;.{pisr Pvl80 0fLo)(nddlap'Pul80 ( cvPl 'cos(eph'15 o'Pvl80 0))'l80 0) d.linn=(ali5e0.l25y(cos(plat'P/180 o'Ptl800))y15 0: 'cos(ndelap'Pvl80 0)'sin(@ph'15
!ts=mtwo+dellaml
I
uhs+(acos(cruj(eMl+h,td
l000.0J
f
IE0
0/Pl/l5 0)i
)
ltns=utns+aniin;
i(xms<0.o) ltmsts24.o; i(1lme24.0) llme=24.0; for(lcnFl Jcnr<4Jcnt++) { jd-juliedate(y@,monthdat€,fiac)i jd.=jd+d.lhrlin(y.d-I620.0)l(3600 0'24 0);
stdjuliddaG8q,monthd.lc,0.0); st=Gtjd.2451545.0Y16525.0i t=(ide-2451545.0Y3652s.0;
nllrsin(o.125'PV180.o)-sin(llatrPVl80.0)'sin(ndctaprPVl80
226
0);
d.m=@s(ptar'PvlE00)'6(md't!prPvl80 0); ,nfabsrnutr/d.M)<=I0) I has=aco(nln/dem)| t80 o/PI: nnotralPhaFplong/l 5 Gghstudi none=mnot'hddl5 0i
d{erurot+hds/15.0; i(mot<0 0) motl_24 0; i(moP24 0) 6nol'=24 0i
0) noneF24 0; i(none24 0) mone'=24 0i
iflmoc<o
i(mtwo<o 0) ntsoF24.oi i(mlso>24 0)ntsF24 0: $mFcmsrzso+mone'1 002?3?90935i mo;mon.rd.lollint(lved_I620 0)l/36000: jd=juli6datdv@,hon$3ate,6rwc'/24 0)i t=(jd-245r 545.0)/35525.0;
n@n @od(t); caph=shr+plors/I 5.0-halPhapi alimr-asin(<in(plaFPl/l80 0lrsinlndehap'PVl 80 0l +.odplat'PVl8o-o). codmdeltaprPvl80 0) tcos(eph'15.0*Pv180.0))rl80 otrli deliaml(al$4 12t(codpkePvl80 0) 1@(4d.ltap'ryl8O.0)'sin(caph' I 5-0'PUl80 0))y15 0;
urrcmonrdcltm; )
ulett((a@s{enaj/(cmaj+hldl000 0))r liEcatmr,z4.0i
180
l
rtrutmfrzonlmi i(xnr<o.o) ltmr+=24.0; i(ltmr>24.0) llmr=24,01 )
void dGplay_sord(void) {
il(slar<o) sd=
S'i ele
sd=N i
Sotoxy{16,1olconv.rt dn{ilons); eotoxy(16,I I);conven_dos(fabs(sla0)r soroxy(16,12)iprini(' %.21{Xm dn);
i("dclb<o.o)
gotox(l
sdrs,
ele
sd'N
r
4);@nv..t_bn{salpha); sotoxy(16, I 5)iconve't_dms(fab(sdelra))i 6,1
ifid.lllp<o.ol d
S:
â&#x201A;¬le
sd=N;
6)i@nven_hft s(sho); soloxy(l gotoxy(l 6, I 8);mnrcn_hnB(sdph,p): 6,1
227
o/Pl)/l
5
0);
gobxy(l
6,1
9);conven-dns(fabs(sdelap));
iotoxy(16,20);co.v.d-hds(sha)i coroxv{ 16,21)i@nren dmstsla)i
;oblt(I6.22 ):@ven d6l
rabslsalt Di
sdrBi.ls.
i(elr<0.oJ
$:Ai
lobxr(I6,2axprinrn'/..a1rd nin .sFidia'4 0)i I loid dhplay-mcooid(void) { i(mtat<o.o)
sobx,{l6,l0r.on(n dns(TlongI
sobry(16.1 1),.onven-dns(labs{darr)l
!dnd(
',6c".sd),
eoroxv16.12,:Dnntt( % 8lf ,mdst/em!j) &Fmdsr: ed=N i sd=s',
cl*
;tmd;lia.o.or
hms(nralphal, ;otoxy(16.1 5,.cDnven dms{fabs(mdelta))
.oloxytl6,l4),on!cn
soro\y(36,1 6)lconven-hos(rnht)
gorory(16,18).on!en hm(m.lphapli sd=N i ,fidelkD<oo) sd=s: else e;ro\ril6.l9 r;mnven dms(fabnmdeltaPr', sobxy(36,20r:@Ncn hm({abs(mha)): Robxv(16.22);conEndd{rabi mdlU:
;ftmah<O.oj SotoxY(
sdrB
ebe
sd=
Al
]6.21}:@nven dms(m@':
goto\y16.24,:pnn't "" 4lfdc mrn" m*midrd2 ur'
J
l
iDnmniDu4. \n';d1""dl"idr""d ocnl iniidate'Jnimon'h' rn(vean) %5 IlAt%t Il^f/"d\".plal plon&in(pall)): brinttflt4. 'ta'irii"-l."s.s. in((urssin(ubr f60 0)l: r rn'v,s. r trr," a."d\".flmp.phu.,n(urst frintfif;J4,'%15.t^f/'6 2llL",mjd Cd._nojor2a 0):
r.rinrntok4. %6.2lnlo/o6 2lAt',tlim$ltst'60 0'elongp)i bnntn6t4. 0/.6 2tlt'/"6 21fli .mah_salr.s.4_m@) ilaiirirld..as.rr^e,"4.:tNz8..lllt.wid'60 0.qvalohlri
'ri."iiiiiuo.""
pac
"s.alr
ort""s
4lNToa
4lrrt
9 5lft"phrtemda-mla(mlon&srong
[i,,iiro"n."vo.zrn.z*.1 tfl *,,8 ] lt\r./,8.11{\ro^8. 1ll\e.6. 1U\".25.5msFidiat.2,day,d.vl Bkv ul(v_rdavrstv_davl )i fDrinr(fpir4,"o/o8,lllvo8 3lAf '.nma8 len)i
22E
N
) {
ip nt(iprr4,""/od:%d{'/o8.3lo\t",in(thou),in((lbou'in(lhou))'60),nma8-len)i '
{ falt=malt+.1
;
fam=hem+.1:
kndisl=9o.o-fali:
Glomonlaco(sin(matl'PUl 80 0)rsin(fal1'Ptl80-0)+co(malt'Pv1 ah.P/180.0.)r@s((n'a-faa)rPvl80.)))r l80.o/lli relonsui=(acos(si nGan'
P V
1
80.0)* sin(lalt'P
Vl
iPl/180.0)'co(G@-ran)'Pvl80.)))1
E
80
0)'co(i
0.0)+cos(salr' PI/ 1 80 0)'cos(ral( 180.o/PI;
sacon=1.0/(cos(zendist'P/180.0)10.0286rq(-10-51@s(andist1Pvl80.0))); aacom-1.o/(cos(rndisl.Ptl80.0)+0.0l2lrexpc24.5xcos(4ndistiPI/180.0))); oacon=pow(1.0-posGin(Endisl'PVl 80.0)/(1.0+20.0/6378.0),2.0),-0.5)i fo(i=ori<5;i++) { kFo.1066'ex(-palr8200 0)rpow(Mchlil/0.55.4.0); lc=o l'pus(*6chlil/0.55.-l.r)'dptpalL/1<00 0\ ka=kaipow(1.0-0.12llog(phunVl 00.0),1.i3) '(1.0+0.13'si.Galpha'Pl/180 0).(pla/aab(plat)))i
ko{2$htir(3.or0.4'(plarr(PV180.0)1@s(elph.tPUl 80.0)-
@s(3.orplaCPvl 80.0))Y3.0; kw:Brehlil*0.94.(ph$!i 100.0)*cxp(pteDp/15.0)iexpcparr/E200.0)j
li$h[i]=kd.ka+ko+kw:
dnshlil=krSeom+k .dcon+ko.olcom+kw.gacom; )
npo$i=1.o/Go(EndistxPVl80.0)+0.025rexp(-t
ii(mah<=o.o)
l.0icos(zbdist*Pv180.0))j
mhposâ&#x201A;¬f=4o.o;
nnposeF I -0lcos(90.Gtu1r). PVI 80.0)+0.025rexpt I L0tco((90.0-
mlrxPyl80.0)));
ir(elt<=o.o)
snposef=4o.0i
snposcf=1.0(cos((90.onatrPr/l 80.0)r{.025.ex(-t 1.01@(90.0ex)1PVl 80.0)));
lb(i=oj<s:i+)
{ .idrb=boschtil.(1.or0.3'co<6.283.(ye&j992.0y1 1.0)); nigb|b=nisntb*(0.4+o.6/pow(1.G0.961po{sir(andistrpvl8o.o),2.0),-o.s));
nishrbrightb.pow(l0.0,c0_41t$htiirslpost)i oMas=-12.?3+0.0261rabs(l 80.o-etonsp)+4.0.pow(180.0elonsp),4.0).(!ow(t 0.0,-9.0))i
mmag=nnmas+.nshlil; co'@=pow(t 0.0,c0.4.k$blil.@pceo)
229
?O'/po$rlelomor20l: fem-Doq(IO0,(o I5'telomorv400)|'62'pov]l100 I80 0) 2 oi)i ii'-i..-po*tro.o.s xr, r 'oo+Po$kos(felomon'Pv m@nFrou4lo 0,(_0 4'(Fmal-noscnlrl4r z/ r"i .. doonb=;oonb 1l O pova 10 0'( '0 4+[shtr I'stpos'r I ))i
';j,f"nn",li.ilk##ir#niti#rr'niffi ;".r"'' ,fouF owlI0 0,t0 4'k$h[i]rsnpo*n):
f.s=6 i r mw( 10 0,7 0)/po*1|.loNu Z 0) lcs+=rov'( I O 0.(6.Itf.lodu 400)rl I 80 ili=,J"-'oi" rid 6.i:e" ' oe' pow;cosf'ro^nqun'Pv zr,n ' da\bno$( |0 0,( 0 4'(mshtrl_o6(nlrl*) 4rk$blil'slpo*r) rl davb=<t vb'( I G pow( 10 0
0 r'2
0)
{
d.;b=lr;s.ctoud440000.011.0-crourl)'davbi ,r,aout.t*itul b$hlil=nighlb+dalb,
b*hl'l=nielb+Nilb: cle' ifihalPoo) b(hL'l=bshlil+m@nb: bllrlil=bschlilipo*(10
0.12 0)i
t', -jili.TrJ,,gf*,,'; ;il"fi;iil;i"
L'=o*n,ruo.oo,,rr',*oo,,
;il=on;.po*( l .o+;oa{cr*o'ber.0 !cn=-16 57-2 5'log(khy'log(
10
5r) 20'r
0)4nscnlzl'
2i0
:l:::SXll3:::i:l
l
APPENDI'(.U 2OM ANCIENT, MEDIEVAI, AND EARLY CENTTTRYMODELS
23r
2!2
23J
234
215
236
2]E
2t9
240
24r
I
2A
APPENDIX.III PHYSICAL MODELS
211
!.I9
244
245
26
241
244
249
250
!!! 4!C q4!! 9! !.39 94 ,-!!: !4 -9!_ ,-9!l 9lJ1 9-41
25t
2r2
253
NB
91'!
254
APPENDIX-IV OBSERVATIONAL LIJNAR CALENDAR OT' PAKISTAN
.
200G2007
AND ITS COMPARISON WTIE
TSE VISIDILNY CBITERIA
u5
E
I
2
g
a
t
3
I
t
E
s
i
I
i
3
e
c
I : *
E
c
! !
E.
UJ
;
d
i
d
:
{
g
i
d 5
I!
:
:
:
d P n
i 3
I
a
E
?
i I
d
3
f
:
:
!
g
:
t
5
j
I
I
g
I z
E
!
E
I
: :
:
:
:
II
T
I
F
5
E
:
;
l i
; :
a E
5 e
i
3
a a
F
t
a
i
E
t
j
3
256
5
E
I
I
t t
3
;
It F
; s
E _1
t E
6
:
j
E
I
ltl Itl
?
P
t6t
I
E
e
Tl a
:l
ll:
i
I
lfLt-
I
H
3
i
i -tit_
I
t!
ils
t1l; lE
c
a
!tr
:
il: it_
3: :lt '!_ rE
:
r
dt:
t1!
llt E
I i
E
1i
lil: rl:
I
Et!
6
,t5 iL_
i i
N
:l
tcl
sl;
?
!la
Itr L ts
I
rl; :li I
e
E
I
s
t1i
IT lt,
c E: a
g
!l!
E
:
!
3tl
a
v
:
. 3
!
i
i :l: i Ets
5 z
311!
Ell alE
.|.
i ilr El; :
i
i I ! .L: ilc i t; i
I
I P
E
tF ;l-
257
H
F
3
I
t 7
6
6
E
E
H f-1
i i
a
P
I
:
E
E
â&#x201A;Ź g Ele .i
:t
?
;
EI:
i i
i
d
il!
i
:l;
:
:l
fi:ti :lâ&#x201A;Ź
!i
I
EEI
5 6
{
;T-1-
il! E
I
:
:-;
-l
.l
E
;
-l
rl
.l E
6
:
5
E
158
{
it sli
e
F
e
I
il!
I
I
:
!
tu :l:
!ti
I
z
I
:la
tl3
:
qli
T
+l-
!
al3
dt:
:
t
it_
it:
u
I
i
:li
a
d
P
I
g
i I
E
a
P
El lc
E
5
9
3
e
E
t
!ti
E
J
t
d
J 8
t
2
6
-
E
t
a 6 5
p 5
i
:
z
i
g
9
e t iE IIt
â&#x201A;¬
i
a
:
i
c
F
9
e
3
P
a
3
3 3 5
i
i
i
n 3
t!
!
c 6 a
d
a
d
s
g q
:
I
! I
t
tg
I
g
!
g
E
:
E
3
i
a
: : 6
:
!
!
5
Ip
?
I
I
F
a
z
I
I
a
a
e
i
I
t I
a
I
l s
F
t
3
259
:
r
e
;
f
El lc
P
5
t
g
e
:
;
Id ?
t:
a
r'
a
5
3
i
i
!
:
el 6l
a
?
!
I
6
i
ii;
: g
IIJ
:
!!
g
!
E
I
t e
5
a
{
r
a 3
i
3
t
!
:
6
:
g
e
!
i :
I I
,ljljl
:ljEl ll'11
iljljl
!
I
T
3
I x
I
: :
a
: a
II
!I ! ?
;
2
a E
a
F
E
q
E
:
E
t
6
260
i E
I
I :
i '8
E
6
I
El
I
E
E
lel
];I
a
E
n
a
I
l;l
ft h fl
flt"
:
6rT
E
i
i
6 a
3
:
i
i
i
i !
e 3
E
:
!
a
!
: :
E
{
<F l!tg >t!
i I
a
d
.:
3
x
:
?
a
I
€
a
3
-t lsl
l:
j
€
?
E
3
I
s
E
I
P
E
E
II
t
I !
I!
E E
i 6
:
t 6
E
l
I
3
F
I
E
E
,
:
3
E
3
d
t
:
I
t
!
i
E
I
:
I
a
B
3 8
d
6 E
E
?
a
3 P
:
E
:
I I
P
a
3
I
n F
6 6
I
i
a
:
;
i
i
&
!
:
: 6
i
d
a
a
!
:
e
I
a
:
:
:
g
I
i
!
:
;
d
s
:
i
a
5
iI
I
: E
3
E
:
n
l
3
I
E
!!
E
q
E
z
E
6
UJ E
:
!
i
;
r
E
E
I
i
E
t 6 E
3
i
;
5 E
3
t
E
I!
I B
; E
t
!
H
6
;
H
6
I! :
3
5 E
E
E E
z
6
262
I : i
i
i
t
E E
E
3 e
a 6
I
;
B
6
:
z
C
5
p
3
t t
T
c
i
s 6
a
d
I
:
I:
I
!
H]$
F !
a
E
t
a
d
I
!
tn
:
:
r
: 5
I
: :l;
:
;
!!
li a
r
t{|
I
qn :
t:
Il&
d
g
:
E
6
i:
.t
jI
E
;
6 a
:
g
d
!
g
{ :
i
d
a
i
6 a
I
a
i
i
{
!
E
i
n
:
I
&
:
tI
$
$
E
E
I
l
i
s
g
E
5
3
!
8
F
:
:
i F
e
263
3
3
l
t H
; E
6
5
E
t
APPENDIX-V F'UTURECALENDAR
DATA FOR TFE OESERVATIONAL LUNAR CAIEIIDAR FOR PAXTSTIN BASED FOR COORDINATES OT KARA'CEI, PAKISTAN
LATITUDE2"5I, I,()NGITUDE6/3'
PREDICTEI' OBSERVATTONAI, LUNAR CAI.ENI,AR FOR YEARS 1429 AII TO râ&#x201A;¬1 (200t AL _ 2txl9 AIt)
2A
AII
H
i t i !
3
t
I :
3 a
N s.
p
E
* e
:
t 65 3 ? IIi tt
a
i
!
a
9 3
tfs I
9 g
E f;
e
a
P
3
F
€
a p
3
IR
E
I
3 J
a
3 g a
I! I
') n
&
c
E fi 5 s N
s
a 3 q
E
R
n
R
a
R
g a 3 c a g E E F E s s F s : s c E c s s fi € N E F & E
I
F
P R R
i
R R
E
a a E a 5 s
E
s s F
F
6 F
I a
a a a F 5 E s s s F
E
E
a
I
a
;
c
e
R
?
il
R
c
ts
8
R
a
R
f
a g
I
8
a
s a € a
3
E
n
a a
=
; f
g
p
s
a
;t
;
a E
E
!
2
3
R
5 € s
& E
s
F B
I
B
s
E
3
ti 5 g
?
:
:
I
f t
?
I
I E8
P
3 a B 3
a
3
€
a e
E
b
3
F
I
6
a a
;
5
e
618tB a
{
t E
5
F e
: s
; E
6l
E
5
3
a
;
R R
a
!
F
g
R
€ 5
s
266
"9n30 An-"gR
! -i
E
E
;;':5F 3-1:F; --=aii" R6,:6.;,{d !;,n!as : as,-n 3.- -giF iE;:8{ 3i {? 1-na i = oss9 s
F;955
l!-;R:
!-':ri5i z;&;gi &. Oi9c :€ Y:55 i:
=;$$*'
\
;:
6ii=
:;;:-fr ? ;6; ^
B;;5i
S
5:
d:
==30 F:;R
i- i!;€ .;-^ :r
Jg ::ii; tF 5;dF
a;;=-= 3E:;sff; $F:;.i{ : ^^-
1; Fn55 P - a--i! :i ;ni5 EE ^-:F: ;i'55
{:
:;^a g;;-iF
E;;3in= q i:€.
;E-616-5
3==lt;" tF:,695{
-eiR:;:{5 Ea
E!
3:it--
$F "n{5 i;
i.
n=3F
:ras
I a:_i: ;-
:::
i;19==oR
3:;6i::l
:FndIR=
fs.:-=-*^ ;t:d{l';
"3i€ =": 3eF. is;ssF s;;;qfr5 5: s i 'n55 aE o---.:^
267
;Ci{{
E;!5isfr
=;::eifr si:€ i; ;e;ii i --; a"- g;.id9f .nni ;i "fFi :: t;g€ E:ssisR
S:
i:
\
3;
e=o9F
$g cggg sggg 3,: "u;gp e.3=$; is *;gg
;nd:p ::::]:
F;;i;
:F
5;
':=ii
ngi<9
E3-lrg 6.-;aia
c:!9,:: :.^:--i*--=aila E.'-;5i'i
E:::es
*'
fr
:!ii:d;
Eg^a;ei
R;,i;9ii5 eii'S
ss p::s
264
i
-E
u=
:-;
-'n
S! 6fi5 ooeg !5
?.s 6in5 _-: r
5-
n-
SE 9:sn"
:;;;g " :;ii
R;;--6,it
l=sl;!i9
.;st!.i;.;:i;F !;e;;;* E;;;=€
ju s:;s i-3:;;
;p".-siF SE'-g:l
iri:ii$ :-.
s
-5..
iissi:
;I :s;g Jls*g; fi i:;€ i:E;*;:i
;= sn55 3: eg;F is :==i " .;a F ^ *;",5ii ;;;€ii :;;i5ii !;,lss; i;:;j--i
:;i:::
;t:S=l :;i;;;li i-::,, *:i: ;s;3s! ii --.^.: : --x iisir=; :-=R ;;1tIl i::;;e;31€;: J::aiii ?. =a--- i.E;;;
l:--r*s j: ;-ig;ii.EiE *ii€ I€ ;si*i i:=s;;; 269
e:!:=;
;;-i=
BSxdgi:' E;EEiS
5i3;;n*
;i
B99g
:.-!ria: ; d d'ndE Ha
E3"g.s jr;i5i ?erf;il ia=,.'':IF }|{:--gi5 .iF =Y -O::, :a >E t: F aE--9tR = .S
;;o
,<
; s3g€ -i.:=3;:a5
-i;i--
E;="9i5 .'.;
F
ii*
gi;=-x 3F;io-6_3
-I:nS;nn
e;
?:iF
g;*d:Y H
E:rlg5i
fi,.e-::a
3F=;si-
:3:* 5i ic n!;i
itr 6-i5 i:. ":IF;: 6'{i5 -.5^=;6 F,?;n;6 :"--N
B:iiei >' ^:-i
;do-iif
3F 's
55
=<r 8t6:
:'--!i5 i: :"n.i 3e .'5xY ael€ i: Ei': i:;i 6!55 d: ^-:R
210
ii"i:,-s,;i
tr
-a
S!;r=:e 35=-sif
?:
sa9a !aF c;ii5 Fa"-i
*-i
9
-;=sii{
;:;5555
;6,.liis
i.-eFae :E-;(sF !-;;:-^;
9g :166"5
\
3' :::^:^i 1!
5;.::' j_i{
:i=;s;{ ! _^
3F ;f
3r
;i:3R
?o =n:a
S:
fi';i;5
2; ;i=5 1.. --=^^a
ia
!;
55
?I eggft
;;-;ii l;:li. 'a =^ = ;;;5Si 5 ^^ ^ - ^ j;:Ellu i;;l;; :;:;isi : : t ----. ^ = 6a^A;
;l:;
giiS=.; E::;;;;
!; i;3- :;.r Ei* n S:;.:.!-:= _.rF .-+ia 3F-=:i "*.. ;:;; ig ;l!i l;;r::i'{s g:s; 3::rq;; ii ;le; {: lp l;e; 3; :i:; i: ::;; 271
;;g;F ;;;gis :E::sF F;i;€€ g;;::E 3E=3EfrF
,;:rEi
il pg:;
*gecESi
i: \
g,
=::a ;3PS
j:;leg
3c:,ig;;5;:!€ ::-:6
;;:;Ei; ft, -^4,i; ;
-66^
ij
i:EK
:
5..<
::
;-Fi
:! c;i;g :6;:
3;qe;'i-'-9,i
;6ni5 -;r;ii?
E;:?19
Xi--F;
=,t:5{ia 6. 9aa.
>::;:<_
:F-;,3;;
P"':5F
-i!:it9a
i- -;^ Seii*;i
{3.-.r9€a-
;"
.::R
Qe :----
5; 6ii5
;: : c;e
;Fn-d'5-5
$:=-Edi Jg snFs
272
RETtrRENCtrS
L
Alned, M., 1991. Oigin of the Hijd Calende, ,4l-,Vardar,
Decenb€r
l99l.pp.51-54.
2.
al-Bcruni, Abu Raihan Mubmoad, 1000. "Al-Atnd afBaqiya! m alQu.an
Tmlaled.nd dnotated by Sachau, C E. d 'fte Chronology of Ancient Nations', willian H. Alle! & Co. London, 1879; Eprinted by al Khaliyal"
Ilijd L
Inrenqrioml Publishcrs, Lahoe, Paki$ao. I 981.
alBenni, Ab! RaihaMlhannad. t010.'l.dia: An acclrale Desciiflion of all Cabgoncs of l{indu Thoughl. s Well dD* Which arc Adnhsible s
' l ranslatcd lnd annolaGd by Sachau, C. E. !s 'Albcruni s lndia: An Accoud ol rlE Religion. I'hiloetlry, Lndtucrosc Which Musl be Reje.ted
Ceogbpht. Chronolo8y, AnronoDy, Cuslonrs. La$s
Williah H. Allen & Co., London, Govemm€nl of
AndLrlia.
hd Anrolosy
of
Ind
i!
.
Itl0: rcpFi edunde!lheAuthorityofthc
w.st Pokish. Lahorc, 1962, and by
S. Chnd
&
Co.. N.1v
U..dd Firneis. Nl. C.. 2006. Fisl l.unar Ccsccols tbr
BabJlon
-599) .
t2000
hup:/^\1\ \v.univi..Jc J'/F l,l I Ceschichtr l iFr_l urur_Cl*cnrs4r40ir.hrm.
5.
Aoki, S., Cuinol, B, Kaplan G. H., Kinoshila, H.. Mccarlhy, D. D.. & Seideld,nn. P. K.. 1982, Th€ Ne* Dcfionion of Universal Tine , ,.lrr'o,r AT rophts., rns, i59-36 1
Ashbrook, J,
l9?2. Sohc
v€ry Thin Lnnar Cr.senu". Sb,
n.
271
d L/cs.,p.,
tl2,
Asbbrcok,
3_
J,
1972,
"Moc rbour visibihy or LtM C@.na St/ 4
Aslrononi@l Almeac, 2007. Na orul Obs.tutory, WtllinCkJ\.
Almde
Omce, United Slars Nalat
_O. the Thory of Eirinclioi.', n_/i,r Ka n i st I uh l - He idet b e
t0,
S/?r@.
ry, 1, 69.
Blackwell, H,
R.,I946, Conrdr Th4sbotds of Hunan Eyc_,I cpriialSoc A"Et., 36lrr),624.
lL
t2.
rl
Compaalive sludy ofth. Tltousd yâ&#x201A;¬as", Mazd.
Borlowsti. K, M., 1t88. ..ELp TinE Rcl.rion..,,1n .ar 1
2OOO-s5 ahd
rhu
.,h..2Oa.L8.
Bowcr, F
15.
A.ndwali,R D
and
D)@ic6t Trnc Untre.sl
t982. -sthbsphdic
BcIasrcn, p. & Fmnco!, C. 1988, -ptdebry Theries jn
sp[ericol vdiabta. VSOPBT tol\tions.',
16.
lianid, Mnstin Lua!
A tuo
n
A, tuphrr., 202, W.lOg-
Bala&on, P., 1982, ."Ihaon. du hovehent de S olut i@ V SOp 82,,, As ro h.,4 y r oph, I 14,27 a -2A8.
17.
Bouwcr,D&Ctcmence,c. M,
1961, "M.thods of Ccksriat
Dyn@icj,
Ac.d€nic Prc$, New Yort. 18.
BmM, E. W., t960, ,An InlodEroy TEad$ on
19.
Bruiq F., t977...TlEFi6r Visibitilyof LundC€$cm', 21,331.
20.
21.
"und.Nrandios Oe
Caldsll,J. A.
24.
13.
R_
J*ish Cal.nda{ Moaaih
& hney, C. D., 2000, "Fi6r Visibitily
oa
lrnar Crscnr-,
M & Chnpronr. J., t98.1. .Thc Lunar Epbcne.is Etp 2000., r21,5e62.
ClrpoDr-To@. M & Chaponl J.. le9i, -Lue tabt6 tud pbgms 4000 BC. ro A.D 8000.. WiUhann-Bf . Rjchmo, virrrird. chapronr,Touk, M
&
fbh
Chapbnr, J., 1938, "Etp-2000-85 a *mi ealyic l"nar €phenEris ad€qual. for bijoricat rihcs', Asbon ,4,troph. t90,142. 25,
,'l'JI;.:,i
sv'ren
'*"'".ne
26
Chhence, C. M., t957, ,,Asrbn
27.
CoyE, O. V., HoskiD, M. A., ald rh. Calendar: prccedings
of
o'|
ashnontrar
Miqt.tinc,,, R.r. Mod. phrs.,29,2-g.
the
215
4o0d
AtuivNry,
1582n982". Ponrifica
24.
Da.by, J. M. A,,199.
29
Da.jon,A., 1912,,elncserVi.ilt
r0.
Ddjon, A..
"Fud@.
ofc.lcslial Dynmi6', rh. M&miltan
als
s
Acod.hio scidriam, SF@la
L6.s",
L
lsh@nie,16, 5j-66.
lel6."t^Creissr LunaiF" I A!rcrcdi.,50.51-65 A,,(Eds),l9?l, Irans. lnl. Asron.
Union, Vot XIV
B" 32
Dicl, S t., 2000, Polar Motion: r Hisloncat Ovefticu on th. Occosion the CeNennial of rhe lntemalionat Larnnde SeBice., In polar
oa
t\,torjon
Hisrorical and Sciendfic prcbtemi IAU Coltoquiuh l?8, Asp Conaercne Seri€s, vol.208. (Eds. Dick, S., Mccafthy, D, a.d LuuE. B.) sanFnnci$o, Astron. Soc. Pacifi c, 3-23.
33.
Dickey, J. O.. 1995,,,Eanh Rordioi VariadoDs
AppeEeller (tjd.), HightiAhts ot Publishgs, Irndon. pp. I 7-44. 34.
Doggel.
L. E.,
Atto"onical
1992.
Almtu,
Mill Vllley, CA. pp, DoSgetr, L. E.
..j
foo
.onoq,: Vot.
,,Calendars,,,
Explaalory suppten nr
to
th.
Seid.|hatu p. K., €d.. Univdsiry Scicna B.oll.
5?5-60E.
& Schaef.r, B. E.,
107,388403.
276
1994,
.Lutu Ce*qr
Visibilny,,,
La'6,
36.
Dulka J,, 1988-
"oi th. Grcgondn Revision of $e ltli&
Calendd"
Mdhenati@l lnlelliaehfu\ l0.Pp. 651
37.
E$en, L. & Pary, J. V. L.. Naturc,116,280-242-
38.
Essn, L., Pady, J. V. L., Mekowilz. W,snd Hall R
G
l9i8. lr'al'z r8r.
1054.
19.
Fmqi, N, A., l9?9. "E rly Mslim HirorioeEphv , Delbi
40.
Fdtohi, L. J,. Slephoen, F R. & Limil ol [irsl Visibilly of
4l
lh€
Lud
StlheBn.
25
AfDesalli. S S l9i8
_The Danjon
C€scent" O'ren?rdr] 118 65-72
& A!-Dargbiali- S s Firsl visibihy oi Lu.d CF$ml: Dam md Crit€rit . /11j Fal@h, L- J.,
r
F- R..
lt)9
-Btbtlonitn
1
_?2
5 l
\,|@o
Lo'
42.
fodennslm,,. K-,l9lo, Onth€ Not. R 4!r. 5o., 10, 527'51r'
41.
CaGrMg R. H-, 1989, Night-Stv Biiel ne$ al obserra:Yi's and Silct' Ptb. lsid So.. Pa.ili., r0r,306'J29.
44.
G@, R, M. 198t. SPhqi.d Astronomv. Cambidg' r"ni\e6itv
45.
Guino! B , 1989, Tin€,
46.
Pr'ss'
O4El Piinciples ol Ihe M'Esue of Tir': A$ronom'cal In R.ference fnn6 fc AltDnomv snd G€oPhtsics Bonon Kl\Er'
& Seid.lm.nir P, K 1988 noc inr.llctation", 194. loc308
CuiN! and
Small6r visibl' Phaseof:i'
B.
217
S@les: their
friory
definitions
47.
H.pl@,
43.
Hashim,
B, 1984, Bi@rionil R.fldtdcc SFctllMpv IIl. Conetion for Maceopic Roughn s", L,t6,59,4l. A. Q.,
'Taqwn T@kIi , (in Udu), kldic
1987.
R.sdch
l.stiurc, lslamobad.
49.
Hay.s, D. S.
dd
Extindion rnd
Alroplts
Ldhah, D, W.,
lh.
Helgen, P,,
5l
llrds,M.l93l,
'Redietrsion of lhe AnosPheric
Abelut€ spectal-Energy Dislribuftn of vclr
J., r91,591-60r
50.
1975,
1948,'Tn
.
Computadons
ofolbni,
Ann Arbor. MI: Edw..ds
Lowest Limn in lhc Ne$ Moon's f n$ Visibihy Crire.ion
Druin .nd ils Compari$n
,
vilh
the Maunder Crireiion. ,
O
.,|/
t
ot
arrN So.r, 22,
154-159.
5?,
Iltos, M., 1982. Earlie$ Clobal Visibilirt of the New Moon l98l-85.,. R.4'. llltror Soc. Cah., j6. 6, t7 t_38t.
51, Ilt.i O b se
54.
to ^a D\
s
a Crilerion for M@n.s
C6
Ilra, M.,
lunar visibitiry: a r€+x@rm&on.,i
I
x.
Canadd, 71, 214.
t984(a), ,Limb ShortciinS
LbrCBcdt Visibititf, ? I
56,
Edliql vhibiliry,,. fta
103, 26 -2a.
llya, M., l98lb, .D.njon Linil of Ast r.
55,
M., 1983a, 'Agc
.1
dd rhc LimilinS R.An.fB,25.42.
Etongation for rhe
1984(b), _A Mo<lcm cuide !o Aslbnomical Cdcut.rions of Istmic calcnd&, Tim. ed Qibla ., Bcdra pubt. sdn. Bhd.. Kuata Lmpu, Malaysia.
llya, M.,
278
57,
ffys, M.,
1985,
"vi5ibilily
ofdt
Youog
C@cnt M@tf"
J
Brlt Attt Ats.'
94,183,t84.
"A Sbining Dd€ Lid An int.esting f.atuc of lhc Sold cale\d.t', J. Ro!. As!rc, Soc Coh,80,l,ll4-l4l
5E.
tlys, M.,
59,
llys, M.. 1986b, 'Lwr
1986a,
Calenda$rThe Mhsing Dale Lin€",./ ,4
ror
soc
Cm ,40,6,328-t25,
60.
llyas. M.,
t988.'Limni4
Alritude
*p@lion in lhc M@nt
fid
lisibilily
cri|€rion . Aston. Astroph. 206, 131)35.
61.
llyas,.M.I991, Hij6 Da, Number, tslad Day Nunber and hlinic L$arion Nunb.r: New pdmcteB for exacting the lslomic calendd ,.l ,r ,4rnot
,l$,a. t0l,l,
62. llys.
175.
M., I994(a). 'New M@n\ vhibilitt and Inr€r.ario.al
Istahic
Calendal (For |he Asia,Pacillc Resion l407H,l42lH), Pnb, COMSTECH. OIC, Da'$ an Council of South
Ed
Asi!
and
p&ific (RISEAP). Mahysi..
63.
llyas, M.. 1994(b). l.umr Cre$eot visibiht Criledon ,nd Islanic Cde.dal', O I n.,4tr 5o., 35, 425-461.
64.
Ilya, M., 1997,
A
orcmy dd lsl@ic Catcndat, A. S. N@rdtu puba
Kuala Lumpur, Mal.tsia.
65.
M.,2003,'N.w Moon\ Visibihy sd lftedarionat hlanic for Asiaafrica-Europ. 1422 H ro l44j H (2001 c.E. - 2022 C.E.) , palisr.n Asciarion for History ard Philoephy of Sci€tue, Isl@bad, patin&. Ilyas,
279
66.
India M.t@olo$/ DePdlrna!
67,
Istan, S., sadiq.
195, " nE Irdid As[onomidl EPkfttis '
M, Qchi, M S.,2007' An
AppoxiMtioo of D€lla T", submitcd
68.
K.nn€dy, E. S.,1968. "The Near
69.
in
Lasic 4
Ll@ Visibililv
Inpov€d Polvoonitl
4PPl sd'
Theory of
YaqubIbnTariq J
Edrten Stud .21,126.
K@6e, M.
J..
4.
4l , 1952, 'MeduEmenls of BliShhess of Twilight Skv
,
J. Opt. Soc. An.,42,153-3s6
70.
Krhcilna3,
71,
Lasl@,J.,1986,
K
1991.'A Model of M@nligni, Arb.,,lt oi. Sd Pa.f., l0l. l0il-1019 ond Schaef.r, B. E.,
sdul{
rhe
Bdglin.$ of
|ems in clasical planettry thori€s usi.s
Brhsof
AE'WI n@tt- . Asttu1 ahd lslroPh., 116. 59.
72.
L.slra<le, J.
M6n
&
Chaprcnl-Touza,
M.
1982, "Relativislic P€nlbalions oa
lh.
in ELP200 , ,.lr/roa and Attrotlh , 116. 7 5.
?l- M@t, 4., 2001, "M@n
Calculatol: Ve6iotr
6
0
,
\\@,umnah.or!.uvmooncllc.html.
74.
M&kowilz, w., Hall, R. C,, Eseo, L., Pan,.-, J. v, L.,1958. P/,)5. ne*
t.r/.
1.105-t07.
75.
Maud.r, M., A eron.
l9ll,
"On the Small€st visible
Asec., 21, J55-362.
280
Phe oi Moon'. Lri r,
?6.
McNarl, D., 1983, The trnsth of
L'N Cltsnt , Q Jt R.6n.s.c., u,
4t1-429,
7?.
Me€u, J., 1948, 'Ast/onnical Algorithm', 2d Ed., Willnjh,Bell l.c.t Ricbnond, Virginia.
78.
Meeus, J.. 1998, The Effed
of Deha T o. Asrrcnohical Calcuhdonr,,
JBAA,rWt54-t56.
79.
Meur, J.2000, Polyhonhl Appoxinarion of Delra r, JB4A, rt0,
j2l.
324
80.
M€inal, A. and Mein.l, M.. t981, "Sun*rs, TeitiShls and Etning
Ski*
,
Cambridg. Uoilcsily Prcss. Cmbridge.
81.
Michcls"
A. K., t967. :Th. Cal€nde of
rhe Romn R.pubtic _ princ.ron
Universitt pess, prineton, NJ.
82.
Mo6osn, A..
3l
Moons, M.. 1982, ..Physicat tibRitions oflhc M@n , . C. Iestiol Mechanis_ 26.
t
881,
..Cnromtoe)...
HilpEcht Unir!tsily.
l3l_
84.
Morien, L. V. & Sr.phen$n, !. R., 2004. .Hiionc.t Valu* ofilE Eanh., Clock ERor Detla T ed thc Calcuhrion of E lips.t., I ltirr ,4rl,roa, 35(3). 327-3t6,
85
c., t9?j, ..An Ab,lysis of rhc Transns of M.rcuryi t677-t9t3", Mor. Not. Ror. A M Soc,, t?3, l{.:-206. Morisn, L. V, ed
Ward, C.
281
86.
Moullon, F. R., 1914,'An Inrrcdocrion to C.lestial Mecbanics", McMillu,
87.
Moy.!,c., 1982.'The Or.so'im C.lendd",Scte,rar..lnsican,24615),w. t44-152.
88.
Mull.r, E. A.
89.
Mw](, w. H. lnd MacDomld, c. J. F., 1975,..The Rolarion of$e Eant Canbridge UnivcBiry pres. New yolk.
90,
Nauticrl Almanac, 1958,.Pl.nebry CoordiniEs to! |he ycars t96O-1980.., H€' Majesrr's Naurical Alnorc omc., cdar B.orn.
91.
&
A, (Eds.), t977, Ttus td. Pde.din8s oflhe 16r c€n€El Asobly, crcnobtc. Jappel,
Nelson, R. A., Mccanh', D. D., Matrs, S.,
F., Dear, I{. L..
92.
Second: ils hisloly
t09-j29
Washingron D.C._ U.S_ co\a_ printins Ofice.
Odeh.
M. S., The AollEI
Saudi Dating Syslem',.
,fhe
Jordanidh
lslmic
S@icrt, ey.i.s.o!!.io/index.htmi,
94,
Odel, M- S., 2004, ..New Criterion for E perine dal
95
.
Ndronb, S., 1895, ..Asrrononic.l papes pFpaed for Oe Us ot $c nQica Ephch€is md muli€l Atnam t vo. vr, pan tj rdrl.r o/ds S,,,
91.
Union,
Lrvine,l.. Ouinor.8.. nicgct. H.
& Daithotomcs, T. R., 2ool...The Lcap
dnd possible furure" n cholosnr.38,
Aron
lshrcnL
L!tu
CEscenr Visibitity,,,
la. 39-64.
Odeh, M, S.. 2006, Accuhle TiE.s ,.
M.iconioicd.or€/ecut.hlml.
)82
hlmic
Cascenl ObseNation projet,
96.
Plulmq, H. C,, 1966, An Intlduclor, Tqtisos Dtuhicd A$rcmhv,
PqtieHall.N.l.
97.
Pollard, H. C,, 1966, Malhemaical Intodudion lo C.lcslial
Pcoiie Hall. Dnslcwood Clifs.
98.
Qmhi,
9t.
N.J.
M, S.,2005.'On rhe Modcm ApPnach
{,/. Un.I
Lumr Cesc.nf',
^l
Mshmict',
10 the
carliest visibilitv
of
&, VIl0 & |D,54-?6
Queshi. M. S & Khd, N. U, 2005. A onpamlive Slldv of Arilhmetic Lumr c.l.dar, obs€flariotrtl .nd Pr.dicled Lumr calcndar For Paldslan 2000t004". J. bdri. & awl.
l0O,
Qureshi.
M. S. & Khd.
LeaArh",J
lol.
b^i!
ftt
N
,2(2), t1"44
U.200?:MetnodsoiColculdtinecFscenr
& a?pl Sci 312).62'75
Visibililv Qwsbi, M. S. & Kbm,N U.20O?. ,^ Ncw Criterion lor Edlies( ofN€q Lun.rCrcsccna. to be $bn led
lO2, Qres\i, M
S.
&
Khm. N.
U.
2OO?.
'A
Compdison of the BabJ_lonion
Cribnon and thc L!n& Ripeness fuocrion for &diest Visibilit, ofNe$
Lstr
C6cent , io be s$nired.
103.
Queshi. M. S
LMr
&Khm,N
U.,2O0T "Masnitude co'tdst and tlre Lengh of
CEscenc , to be submirted
2OOI C'lenddctr Ctlculolions - Le Millemiun Edrion, Cdr$idg. Univ.rsilv, Csbndgc'
E
& Ddhovnz,
N
lO4.
R€ingold,
lO5,
RoaberS, C V,1966, Twililhi" l'lcnun, New York
M.
281
106. Roenlhd,
l0?.
1952.
"A History of Mulih
Historiography, 313 (quol.d in
Runcom,S. K., I966.,tcieditc An-icar,2l5(4J,26-33.
108- Sadl€r, D- H. (Ed.). 1960, TratMrio6 of Inte0aiolal Aslrononiql Unioh , vol. X, Pio@.dines of l0$ Cencol A$eEbly, Mo$ow, C.nb.
109. S&mundsn,
T., 1986, "Almcph.ric RefEclion , S& d Tel6@pe,12.10.
I t0.
Sch@fc!. B. E,, 1985, "Pedicdng Heliacal Risine and Scuinet,
l
Schaefcr. B. E., 1986,
.
St/ dr.l
Ahosph.ric Exriciio..fl*r! on sr.lld alisnnrna.
Atch@oastbmntt, r0, Surylencnr ol
rhe Joumal
of tlistory of AnoDonry,
sl9-s31.
ll2.
Schdf€r, B. E., 1987,
Hcliel
Riss Ph€mmcu . Archaa@hnom)..
Supplcment oa the Joumal ot Hislory oa
lll
schaefcr, B. 8.. 1988(a). "visibitiry
AiroNmy,
ofLud
S
|.
lg-Stl.
clescent ,
29,5rl-52t, I14,
schtu&., B. E., 1988(b), ..An Aaotuhm ro.
hictjng de
Crc*ent', Proc4dings ofilc Lae Calendd ConfeEnce, Ed. Altmed, L, 12. Int m. Inst. Isldic Tloughl, Hendon VA,
ll5.
Schref.r, B, E., 1989,
II-
..you Td@oFs Limiing M.gnitudc-, 54 d
f.leYope,78,522-525.
2E4
116.
Schefcr. B, E., 1990,
"T.l@pic Linilina
Magnitud6", Pub Asn@
'oc
Pacilc., r02.2t2-229.
ll?.
Sch*ter, B. E.,
I9l(a). Cld & C.ksnal
vtuibil'ty. Prb ,{rr'or
Soc
Pacifc, 103' 645-660,
rr8.
Sch@fer, B. E.,
l9lo),
Llnd Ce$c
Lensrh of
",qJlR.4shse
32.
265-217.
ll9.
B, E,, l99l. "Astonont and lhe Limi$ of vision', ,/irrar lstunont.3t 3l 136l.
l2O,
Scha€f€r, B.
r2r.
scbelfcr, B. E., t996. _Lunor
Schacfcr,
E.,Ahned.l A & Dossett. L.1991, Sientug', O / R ,{$r Se .54' 5l_56
cEs
t,
Record5 fot Young Moon
visibiliy"
0
Jt R
$r
sd ' 31'
159-764.
122.
schefer. B
123.
schoch,
L,
1998.
_
lo
Lh€
vEual
c.. 1930. EeaezugshEn
8{2), Bl?, T.fel
124- S.idell|)&,
P.
Lrmili.sb 4 I;/?\.oPe
95(5, 5?
zu den Astonomich'n N&Mchtcn
'
tu Nolicht.
K&
Fnkushim4
T, l92"
Whv New
Tid SctLj '{tttoz
Atttoph.,265, $1'a3a
l2t.
Sewell, R.
dd Dikhi! S B,1896
'TlE Indis C.le!dd'
qirh'rabb
fot the
conveFion of Hindu md Muhlll]@dD into A D. Dale3, ed vi@ vere' sith Ttbl6 of E IiFB vbiblc 4Indi! bv R Sc@', Modlal B'|6idN PnblhhcF, D€lhi, 1995
oieiMuv
publkhcd in 1896
285
w-mmBirhine.6m-
126.
ShaulGr K.,
!27.
sicdenlopt H., 0 940),
N4
Masmicots of visutl Cont'isl Theshold',
,(str. Ndchr ,21r, 193-201-
128.
Smdt. W, M.. 1953,'c.tcnial M@heics , CUP cmbridgc' Englhd
129.
Spencet, J. H., 1954, "Dim.nsions md Rolodons" ln
The EanI
130.
6 a ?ld€l , Ed C
Srandish. E.M.,
"sols s'stcm, vol ll: P KliFr, Univditv ot Chicago Pr'ss,
1981.'Nun€nd Inregdtion DE2O0&E200, msgncrict'Pe Libordlory. ( alifom'a In$tut. of lechnoloS). Pdadena
ll
l.
Slandish,
M., 198, "JPL
E.
D8405/LE405
"
JPL lit€roffi ce
Pl.neratY
sd Lum
Eph€mdides.
Mcnoendm, loM 312.F-98448.
Motrho.. L v 1984, "Long Tem Rordion ofE rlh: 700 BC lo AD l9a0 PhilonPhicdl Rotal Societt ef Lon.ln. A 3L.41-70
FL&
Il2.
StcpheNn.
133.
Siephe.en, F.
Moino. L v., 1995, Lone_Tem Fluctutions in rhc ?OO BC !o AD lgsO PhilBophical Tm8actions of Rotst
R
Eanh's Ro|afion:
&
Society ol Lon.lon, A 3sr, 165-202
ll4.
Sl€ph.@4 F.
R,
199?. _Hisiorical
Canbridse Udvssity Prc.s, New Yo
286
c
Eclips &d Edh\
Rotalion"'
ll5.
Sutt
n, A. H,, 2005, Th. L.!86 of rhc N.w ClE.6t Mm". tft,
Ob& nat o ry, 123, 227 -21 l.
\
116, Tsybdsty, V. V., Ori.nlat
137.
1979- 'C.l.n<tas of Middc E
n Couniq ', InstituL of Studies. USSR Ac.deny of Scidccr Mo*os.
Wells,.l. W., 1963,
138. Willidx rh. M@tf
139. lr@lad,
fatu
, 197,948,950.
lrd Yod.r, c'F., 197E, "Tidal . G.ophtsicd R6.arch lztqt,5,941, J.G., Sirchn, W.S,
E. W. &
Cld.@, c- M.,
lccel@rion of
1966, "Sphc.ical Astronomy,,,
pp t3O,
Aca&mic Pes.
140.
Yallop, B- D.,
t98, -A Mdnod of
pGdicrins rhc Fi61
Silhirg of
rtE
Nd
CBc.nt M@n", T.chnical Nore No. 69, HM Naurical Alnan.c Oftce. Rovll cenwich Obsfl.rory, Cmbridsc, UK. NAO.
2a1
,a:I