A fundamental principle of brain

Page 1

BEHAVIORAL AND BRAIN SCIENCES (2010) 33, 245 –313 doi:10.1017/S0140525X10000853

Neural reuse: A fundamental organizational principle of the brain Michael L. Anderson Department of Psychology, Franklin & Marshall College, Lancaster, PA 17604, and Institute for Advanced Computer Studies, Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 michael.anderson@fandm.edu http://www.agcognition.org

Abstract: An emerging class of theories concerning the functional structure of the brain takes the reuse of neural circuitry for various cognitive purposes to be a central organizational principle. According to these theories, it is quite common for neural circuits established for one purpose to be exapted (exploited, recycled, redeployed) during evolution or normal development, and be put to different uses, often without losing their original functions. Neural reuse theories thus differ from the usual understanding of the role of neural plasticity (which is, after all, a kind of reuse) in brain organization along the following lines: According to neural reuse, circuits can continue to acquire new uses after an initial or original function is established; the acquisition of new uses need not involve unusual circumstances such as injury or loss of established function; and the acquisition of a new use need not involve (much) local change to circuit structure (e.g., it might involve only the establishment of functional connections to new neural partners). Thus, neural reuse theories offer a distinct perspective on several topics of general interest, such as: the evolution and development of the brain, including (for instance) the evolutionary-developmental pathway supporting primate tool use and human language; the degree of modularity in brain organization; the degree of localization of cognitive function; and the cortical parcellation problem and the prospects (and proper methods to employ) for function to structure mapping. The idea also has some practical implications in the areas of rehabilitative medicine and machine interface design. Keywords: brain; development; evolution; exaptation; functional architecture; localization; modularity Although an organ may not have been originally formed for some special purpose, if it now serves for this end we are justified in saying that it is specially contrived for it. On the same principle, if a man were to make a machine for some special purpose, but were to use old wheels, springs, and pulleys, only slightly altered, the whole machine, with all its parts, might be said to be specially contrived for that purpose. Thus throughout nature almost every part of each living being has probably served, in a slightly modified condition, for diverse purposes, and has acted in the living machinery of many ancient and distinct specific forms. — Charles Darwin (1862), p. 348.

1. Introduction and background Research in the cognitive neurosciences has long been guided by the idealization that brain regions are highly selective and specialized, and that function can be mapped to local structure in a relatively straightforward way. But the degree of actual selectivity in neural structures is increasingly a focus of debate in cognitive science (Poldrack 2006). It appears that many structures are activated by different tasks across different task categories and cognitive domains. For instance, although Broca’s area has been strongly associated with language processing, it turns out to also be involved in many different action- and imagery-related tasks, including movement preparation (Thoenissen et al. 2002), action sequencing (Nishitani et al. 2005), action recognition (Decety et al. 1997; Hamzei et al. 2003; Nishitani et al. 2005), imagery of human motion (Binkofski et al. 2000), and action # Cambridge University Press 2010

0140-525X/10 $40.00

imitation (Nishitani et al. 2005; for reviews, see Hagoort 2005; Tettamanti & Weniger 2006). Similarly, visual and motor areas – long presumed to be among the most highly specialized in the brain – have been shown to be active in various sorts of language processing and other higher cognitive tasks (Damasio & Tranel 1993; Damasio et al. 1996; Glenberg & Kaschak 2002; Hanakawa et al. 2002; Martin et al. 1995; 1996; 2000; Pulvermu¨ller 2005; see sect. 4 for a discussion). Excitement over the discovery of the Fusiform Face Area (Kanwisher et al. 1997) was quickly tempered when it was discovered that the area also responded to cars, birds, and other stimuli (Gauthier et al. 2000; Grill-Spector et al. 2006; Rhodes et al. 2004). MICHAEL L. ANDERSON , Assistant Professor of Cognitive Science in the Department of Psychology at Franklin & Marshall College, is author or co-author of more than sixty scholarly and scientific publications in cognitive science, artificial intelligence, and philosophy of mind. His papers include: “Evolution of cognitive function via redeployment of brain areas,” “Circuit sharing and the implementation of intelligent systems,” “Investigating functional cooperation in the human brain using simple graph-theoretic methods,” “A self-help guide for autonomous systems,” and “Embodied cognition: A field guide.” Anderson was recently nominated for the Stanton Prize, recognized as an “emerging leader under 40” by the Renaissance Weekend, and was an invited participant in the McDonnell Project in Philosophy and the Neurosciences workshop for early career researchers.

245


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.