Complex numbers

Page 1

Complex Numbers “Not so Complex”


History • We learned in Math that we can’t have a negative number under the radical sign. • We also learned that the square of a number can’t be negative. • Now with complex numbers, these two laws no more exist.


Property of the square root of negative numbers • Lets know more about the imaginary unit ¡. 2  1 i  1. • ¡=

3  i 3

4  i 4 

2i

81 1  9i


If i  - 1, then i i 5

i  1 2

i  i 3

i 1 4

i  1 6

i  i 7

i 1 8

etc.


Examples 2

1. (i 3 )  i 2 ( 3)2  1( 3 * 3 )

 1(3)  3

2. Solve 3 x 2  10  26

3 x  36 2

x  12 2

x   12 x  i 12 x  2i 3 2


Complex Numbers • A complex number has a real part & an imaginary part. • Standard form is:

a  bi

Real part Example: 5+4i

Imaginary part


The Complex plane

Real Axis

Imaginary Axis


Graphing in the complex plane

.

 2  5i 2  2i 4  3i

 4  3i

.

.

.


Adding and Subtracting (add or subtract the real parts, then add or subtract the imaginary parts) Ex: (1  2i )  (3  3i)  (1  3)  (2i  3i )  2  5i

Ex: (2  3i )  (3  7i )  (2  3)  (3i  7i )  1 4i

Ex: 2i  (3  i )  (2  3i )  (3  2)  (2i  i  3i )

 1 2i


Multiplication of Complex Numbers • The product of two complex numbers is found by multiplying as if the numbers were binomials and using the fact that i2 = – 1, as follows. (a  bi )(c  di )  ac  adi  bic  bidi •

 ac  adi  bci  bdi

2

 ac  (ad  bc )i  bd ( 1)  (ac  bd )  (ad  bc )i


Multiplying Treat the i’s like variables, then change any that are not to the first power Ex:  i (3  i )  3i  i 2

 3i  (1)

 1 3i

Ex: (2  3i )(6  2i )  12  4i  18i  6i 2  12  22i  6(1)

 12  22i  6

 6  22i


Conjugates • The conjugate of a – bi is a + bi The conjugate of a + bi is a – bi


3  11i  1  2i Ex : *  1  2i  1  2i (3  11i )(1  2i )  (1  2i )(1  2i )  3  6i  11i  22i  1  2i  2i  4i 2

 3  5i  22(1)  1  4(1)  3  5i  22  1 4

2

 25  5i  5  25 5i   5 5

 5  i


Absolute Value of a Complex Number • The distance the complex number is from the origin on the complex plane. • If you have a complex number (a  bi ) the absolute value can be found using: a 2  b 2


Examples 1.  2  5i

 (2) 2  (5) 2

 4  25  29

2.  6i  (0) 2  (6) 2

 0  36

 36

6 Which of these 2 complex numbers is closest to the origin?

-2+5i


Basic Concepts of Complex Numbers • Two complex numbers are equal if their real parts are equal and their imaginary parts are equal;

a  bi  c  di if and only if

ac and bd


Basic Concepts of Complex Numbers For complex number z= a+ bi, if b = 0, then a + bi = a (real) So, the set of real numbers is a subset of complex numbers If a = 0 and b ≠0, the complex number is pure imaginary.


Developing useful rules Consider z  a  bi and z  a  bi (Conjugate) zz  (a  bi)(a  bi)  a2  b2  z

2

Remember well!!

z (a  bi) (a  bi)   z (a  bi ) (a  bi) a 2  2abi  b 2  a2  b2


Developing useful rules Consider z  a  bi and z  a  bi (Conjugate) z  z  2a z  z  2bi

Remember well!!

z 2  (a  bi )(a  bi )  a 2  2bi  b2 z 2  (a  bi )(a  bi )  a 2  2abi  b2


De Moivre’s Theorem ( cosq  i sin q )  cos nq  i sin nq n


Modulus and Argument • z= x+iy • z can be written as z= r ( cosθ + i sinθ)= reiθ

where r = |z| and θ= arg (z)


Argument • z= x+iy • z can be written as z= r ( cosθ + i sinθ) If you expand the above, you will get: Z= x+ iy = r cosθ + i r sinθ then: x= r cos θ and y= r sin θ We conclude that: cos θ = x/r and sin θ= y/r


Do you still need help? Contact us and we will provide more ď Š ibrahim.dhaini.2014@gmail.com


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.