Mu limitsderiv test

Page 1

Limits
and
Derivatives
Mu
 
 MAΘ
National
Convention
2010
 For
all
questions,
answer
E.
"NOTA"
means
none
of
the
above
answers
is
correct.”
 
 ⎛ 3x − 1 ⎞ 1.
Evaluate
 lim ( 3x − 2 ) ln ⎜ x→∞ ⎝ 3x − 2 ⎟⎠ .
 A)
0
 
 B)
1
 
 C)
2
 
 D)
3
 
 E)
NOTA
 
 2.
Use
differentials
to
approximate
the
value
of
 sin 60 ( 3600 / π ) ' .

(

)

A)

2 3 −1 3 3 +1 
 B)
 
 6 6

C)

3 +1 
 3

D)

3 3 −1 
 2

E)
NOTA

A)

1+ 5 
 2

C)

3+ 5 
 2

D)

4+ 5 
 2

E)
NOTA

3.
For
what
values
of
 x 
will
 x 
approximate
 x + 1 
with
an
allowable
error
less
than
or
 equal
to
 .001 .
 
 A)
 0 ≤ x < 75000 
 B)
 75000 ≤ x < 150000 
 C)
 150000 ≤ x < 225000 
 
 
 D)
 x ≥ 250000 
 E)
NOTA
 
 6x + 2 ln x 4.
Evaluate
 lim x→∞ x + 3ln x .
 A)
0
 
 B)
3
 
 C)
6
 
 D)
DNE
 E)
NOTA
 
 F 5.
Given
that
 F1 = 1 and F2 = 1 
and
 Fn = Fn −1 + Fn − 2 
find
 lim n + 2 .
 n→∞ F n

B)

2+ 5 
 2

⎛π⎞ 6.
Find
 f ' ⎜ ⎟ 
where
 f ( x ) = 1 + cos ( x ) + cos 2 ( x ) + cos 3 ( x ) + ... .
 ⎝ 3⎠

A)
 −2 3

B)
 −

2 3 
 3

C)

2 3 
 3

D)
 2 3

E)
NOTA

7.
How
many
of
the
following
expressions
are
of
indeterminate
form?
 ∞ I)
 0 0 
 
 II)
 ∞ 0 
III)
 ∞ − ∞ 
 IV)
 1∞ 
 
 D)
4
 
 A)
1
 
 B)
2
 
 C)
3
 
 E)
NOTA

π 
and
form
a
 2 triangle
with
the
 x − axis .
If
A
represents
the
length
of
the
side
formed
by
the
tangent
line,
 B
represents
the
length
of
the
side
formed
by
the
normal
line,
and
C
represents
the
length
 A2 + B2 − C of
the
side
formed
by
the
 x − axis ,
find
 .
 eπ π 2π 2π A)
 eπ − 1 
 B)
 e + 1 
 C)
 e − 1 
 D)
 e + 1 
 E)
NOTA
 
 
 8.
A
tangent
line
and
a
normal
line
are
drawn
on
the
graph
of
 f ( x ) = e x 
at
 x =


Limits
and
Derivatives
Mu
 
 MAΘ
National
Convention
2010
 
 
 9.
How
many
of
the
following
functions
are
differentiable
on
their
entire
domain?
 3 1 I)
 h ( x ) = ( x − 4 ) 2 
 II)
 g ( x ) = sin x 
 III)
 k ( x ) = ln x 3 − 
 IV)
 j ( x ) = cos x 
 2 A)
1

B)
2

C)
3

D)
4

( )

10.
Given
that
 x 3 y 2 + x 2 y cos y 2 = 0 
and
 x ≠ 0 find
 A)

2π − 1 2 π −2 2 π +2 
 B)
 
 C)
 
 π2 π π

D)

E)
NOTA

dx 
when
 y = π .
 dy

2π + 1 
 π2

E)
NOTA

11.
An
airplane
is
flying
at
a
constant
height
of
12
miles
on
a
path
that
will
take
it
directly
 over
a
radar
tracking
station.
If
the
distance
between
the
airplane
and
the
station
in
miles,
 S ,
is
decreasing
at
a
rate
of
400
miles
per
hour
when
 S = 20 ,
what
is
the
speed
of
the
plane
 in
miles
per
hour?
 
 A)
2000
 B)
1000
 C)
500

 D)
250

 E)
NOTA
 
 
 d2y 12.
A
parametric
equation
is
given
such
that
 x = sin t 
and
 y = cost .
Find
 2 
when
 t = π .
 dx 3 1 A)
 
 
 B)
1
 
 C)
 
 
 D)
0
 
 E)
NOTA
 2 2 
 
 13.
Find
the
guaranteed
value
 x0 
as
prescribed
by
the
Mean
Value
Theorem
for
Derivatives,
 given
 f ( x ) = 3x 2 − 1 
on
the
interval
 [1, 4 ] .
 5 3 A)
3
 
 B)
 
 
 C)
2
 
 D)
 
 
 E)
NOTA
 2 2 
 
 14.

Use
the
tangent
line
approximation
of
 f ( x ) = cos x + sin x + 5 
at
 x = 0 
to
approximate
 the
value
of
 cos ( −0.5 ) + sin ( −0.5 ) + 5 .
 13 9 5 1 A)
 
 
 B)
 
 
 C)
 
 
 D)
 
 
 E)
NOTA
 2 2 2 2 
 
 15.
A
given
periodic
function
is
defined
such
that
 k ( x ) = cos ( 2010x ) + sin (1005x ) .

At
what
 value
of
 x 
does
the
minimum
value
of
 y = Ax 2 + Bx + C 
occur
if
A
=
the
numerator
of
the
 period
of
 k ( x ) ,
B
=
the
denominator
of
the
period
of
 k ( x ) ,
and
C
=
the
period
of
 k ( x ) .
 2010 1005 1005 A)
0
 
 B)
 − 
 C)
 − 
 D)
 − 
 E)
NOTA
 π 2π 4π


Limits
and
Derivatives
Mu

MAΘ
National
Convention
2010

f ( x − 3h ) + f ( x + 2h ) − f ( x + 3h ) − f ( x − 4h ) .
 h→0 h B)
 3x cos x + 18x 2 sin x cos x 
 C)
 9 cos x 
 D)
0
 E)
NOTA

16.
Given
that
 f ( x ) = 3x 3 cos x 
evaluate
 lim A)
 9x 2 cos x sin x

cot x 
given
that
 x 
is
in
degrees.
 x→0 cot 2x π B)
1
 
 C)
2
 
 D)
 

 90

17.
Evaluate
 lim A)
0

E)
NOTA

18.

Find
 f 2010 ( x ) 
given
that
 f ( x ) = xe x − 2010e x .

A)
 xe x 

 B)
 xe x − e x 
 
 C)
 2010e x 
 
 D)
 2010xe x 
 
 

 
 19.
Given
that
 an = 20 − an − 1 
and
 a1 = 20 ,
find
 lim an .

E)
NOTA

n→∞

A)
 20

B)
 4

20.
For A)
 7

C)
 5

,
let

B)
 6

C)
 5

D)
 1

.
Find
 D)
2

E)
NOTA

.
 E)
NOTA

x 2 − 5x + 1 21.

Let
A=
the
number
of
critical
values
of
 f ( x ) = 
and
let
B=
the
number
of
 x−3 x2 points
of
inflection
of
 g ( x ) = .
Find
the
product
 AB .
 x+4 A)
 0 
 
 B)
 1 
 
 C)
 2 
 
 D)
 3 
 
 E)
NOTA
 
 
 22.
Use
two
iterations
of
Newton’s
method,
beginning
with
 x1 = 0 ,
to
approximate
a
root
of
 x 3 + 4x − 5 .
 45 346 298 285 A)
 

 B)
 
 C)
 
 D)
 
 E)
NOTA
 82 255 235 278 
 
 23.

Evaluate
 lim x (1/ x ) 
 x→∞ . A)
 −1 
 
 B)
 0 
 
 C)
 1 
 
 D)
DNE
 E)
NOTA
 
 
 24.

Use
differentials
to
approximate
the
value
of
 3 63 
given
that
 3 64 = 4 .
 19 191 233 216 A)
 
 
 B)
 
 
 C)
 
 
 D)
 
 E)
NOTA
 4 48 16 13


Limits
and
Derivatives
Mu
 
 
 dy 25.

Find
 
at
 x = 1 
if
 y = x 2 − x y .
 dx A)
 ln 2 
 B)
 0 
 
 C)
 2 
 
 
 
 sin x 26.
Evaluate
 lim 
 x→0 x .

D)
 ln 5

E)
NOTA

A)
0

D)
DNE

E)
NOTA

16 + k − 4 . B)
 4 
 
 C)
 8

D)
DNE

E)
NOTA

B)
1

C)
2

MAΘ
National
Convention
2010

k

27.
Evaluate
 lim+ k→0

A)
0

(

cos ( x ) − x 2 .
 x 3 + x 2 cos x + 2 sin x

(

x3 2 − x 3 cos x + x sin x

28.
Find
the
second
derivative
of
 f ( x ) =

( 2 − x ) cos x + 2x sin x 
 A)
 2

3

C)

(

x 2 2 − x sin x + 2x cos x

)

x

4

B)

D)

)

)

x3

E)
NOTA

⎧ x 2 − 2x ( k + 1) + 2, x ≥ 1 29.
For
what
value
of
 k 
will
 Q ( x ) = ⎨ 

be
both
continuous
and
 x <1 ⎩⎪ x − 1, differentiable?
 1 1 A)
 0 
 
 B)
 − 

 C)
 
 
 D)
No
such
value
exists
 E)
NOTA
 2 2 
 
 sin x ⎞ dy ⎛ 30.

Find
 ⎜ ∫ 1 − x 2 dx ⎟ 
 dx ⎝ x 2 ⎠. A)
 cos 2 x − 2x 1 − x 4

B)
 sin x cos x − 1 − x 2

D)
 1 − x 2 + sin 2 x

E)
NOTA

C)
 cos 2x − 1 − x 4


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.